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The in-depth development of personalized education urgently demands accurate capture of
dynamic learning process trajectories. Existing methods show significant limitations in
modeling spatiotemporal correlations in dual-phase learning images, decoding trajectory
semantics, and generalizing behavior patterns, making it difficult to support process-
oriented learning diagnostics effectively. To address this, we propose an end-to-end
framework that integrates feature extraction, spatiotemporal embedding, trajectory analysis,
and pattern discovery. We first use a parameter-shared dual-branch Swin Transformer V2
to extract multi-scale features from dual-phase learning images, enhanced by a multi-scale
differential fusion module to emphasize trajectory changes. A spatiotemporal embedding
mechanism maps features into high-dimensional trajectory vectors, and after reconstructing
the full trajectory using Dynamic Time Warping (DTW), we apply an improved Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to discover
learning behavior patterns. A lightweight strategy and contrastive loss are introduced to
balance model accuracy and efficiency. Experimental results demonstrate that the proposed
spatiotemporal embedding representation outperforms mainstream embedding and
traditional clustering methods, achieving a clustering purity of up to 0.92. Key modules
collaborate synergistically, with the multi-scale differential fusion module playing a crucial
role; its removal reduces the F1 score of pattern recognition by 15.6%. Contrastive loss
reduces trajectory cluster overlap from 42% to 11%. Personalized intervention shows
significant effects, reducing task completion time by 25.6% for randomly exploratory
learners and increasing test scores by 13.2% for indecisive learners. This study shows that
the proposed framework enables an end-to-end transformation from image features to
interpretable behavior patterns, providing critical technical support for real-time
interventions and learning path optimization in personalized education, and enriching
interdisciplinary research paradigms in educational data mining.

1. INTRODUCTION

coordinated modeling of both [6, 7]. Meanwhile, the
computational power constraints of edge devices in

The deepening advancement of personalized education has
prompted a shift in the educational assessment paradigm from
a traditional results-oriented approach to a process-oriented
one, with dynamic trajectories in the learning process
becoming the core basis for analyzing learners' cognitive states
and learning strategies [1, 2]. Learning process image
trajectories, such as eye movement focus shifts and
handwritten operation sequences, can intuitively map learners'
attention distribution, thought progression, and decision-
making processes, providing rich unstructured data support for
precise learning condition diagnosis [3-5]. However, learning
trajectories simultaneously possess the dual attributes of
spatiotemporal continuity and semantic ambiguity: at the
microscopic level, it is necessary to capture the temporal
correlations of eye movement points and computational steps,
and at the macroscopic level, it is necessary to interpret the
semantic mapping of trajectory distribution and learning
efficiency. Existing methods struggle to achieve the
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educational scenarios, such as smart tablets and classroom
terminals [8, 9], impose dual demands for high-precision
trajectory analysis and lightweight deployment, making
traditional complex models unable to meet this practical need.

Existing research in the field of learning trajectory analysis
mostly relies on structured data, such as answer time and click
sequences [10, 11], and has insufficient exploration of the
spatiotemporal features contained in image trajectories. A
complete decoding process, from feature extraction to
trajectory reconstruction to pattern induction, has not been
established, leading to a disconnect between technological
outputs and educational semantic interpretation. In the areas of
dual-phase feature extraction and spatiotemporal embedding,
the Transformer architecture, with its powerful temporal
modeling ability, has shown significant advantages in dual-
phase data processing tasks, but the application of parameter-
sharing dual-branch architectures in educational trajectory
analysis is rare [12-14]. Existing spatiotemporal embedding
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techniques mostly focus on general scenarios such as
pedestrian trajectories and traffic flow, failing to adapt to the
unique logical associations of learning trajectories, such as the
semantic progression from problem analysis to solution,
resulting in embedding vectors lacking interpretability in
educational scenarios [15, 16]. In terms of behavior pattern
discovery, traditional statistical clustering methods, such as K-
Means, still dominate the education field [17-19], with low
integration with deep learning feature extraction processes,
making it difficult to capture the semantic association patterns
implicit in the trajectories, thus limiting the educational
practical value of the pattern discovery results.

The core gaps in existing research can be summarized in
three aspects: First, the feature extraction of dual-phase
learning images lacks trajectory-oriented design, and the
feature representation and spatiotemporal continuity of
trajectories have not formed effective binding, resulting in
insufficient capture accuracy of key trajectory turning points,
such as attention shifts; second, deep spatiotemporal
embedding is disconnected from educational semantics, as
existing embedding vectors only represent feature-level
similarity and cannot map to trajectory segments with clear
educational semantics, such as problem analysis and
computation; third, the trajectory analysis and pattern
discovery processes are disjointed, lacking an integrated flow
from trajectory segment segmentation to pattern clustering,
making it difficult for technological outputs to directly
translate into educational decision support information. Based
on this, this study constructs a technology framework that
balances precision and efficiency through the collaborative
design of parameter-sharing dual-branch architecture, multi-
scale differential fusion, spatiotemporal embedding decoding,
and pattern clustering, achieving an organic integration of
technological innovation and educational value.

The core contributions of this study include two dimensions:

theoretical and technical. On the theoretical level, we propose
a three-level mapping mechanism of dual-phase features,
spatiotemporal embedding, and trajectory semantics,
establishing a deep representation framework for learning
trajectories, filling the research gap in the semantic
interpretation of spatiotemporal embedding in educational
scenarios; we also build a behavior pattern discovery process
of trajectory segmentation, clustering, and semantic
annotation, achieving a precise transformation from
technological features to educational semantics. On the
technical level, we design a collaborative architecture of
parameter-sharing dual-branch Swin Transformer V2 (STv2)
and multi-scale differential fusion, enhancing the precision of
spatiotemporal correlation modeling through cross-phase
feature consistency constraints and multi-granularity feature
aggregation; we introduce a combination strategy of feature
dimensionality reduction and lightweight decoding, along
with contrastive loss optimization to improve embedding
performance, enabling high-precision trajectory analysis and
real-time pattern recognition on edge devices.

The subsequent sections of this paper are arranged as
follows: The second part details the technical specifics of the
proposed integrated framework, including core module
designs for feature extraction, spatiotemporal embedding,
trajectory analysis, and pattern discovery; The third part
verifies the effectiveness of the method through ablation
experiments and baseline comparison experiments; The fourth
part discusses the core value, limitations, and future directions
of the research findings; Finally, the conclusion summarizes
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the entire paper.

2. METHODS

2.1 Problem definition
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Figure 1. Model architecture for learning trajectory analysis
based on parameter-sharing dual-branch STv2 + multi-scale
differential fusion

This chapter aims to address the problem of trajectory
analysis and behavior pattern discovery for dual-phase
learning process images, providing clear mathematical
definitions and semantic meanings for the input, intermediate
representations, and output, setting clear objectives for the
subsequent technical framework design. The input to this
problem consists of two learning process image pairs captured
at different moments 7 and T»: [;eR™7*3 and LeR""3,
where H and W represent the image height and width,
respectively, and 3 is the number of RGB channels. The image
contents are visualized encoded results of learning trajectories,
such as eye movement focus and handwritten operations.
Based on this input, the model first generates two key
intermediate outputs: First, the deep spatiotemporal
embedding vector of the learning trajectory £€RP, where N
is the total number of trajectory sampling points, and D is the
embedding dimension. The vector must encode both the
spatiotemporal position information and semantic association
features of the trajectory; Second, the trajectory segment set
S={51,52,...,5:} , where M is the number of segments, and each
segment corresponds to a continuous trajectory segment with
unified semantics. The final output of the problem includes
two types of results: First, the learning behavior change map
CMeR#71 which represents the spatial distribution of
learning behavior changes between the two moments at the



pixel level; second, the learning behavior pattern label set
L={l\,b,...,Ig}, where K is the number of pattern categories,
and the labels must accurately correspond to typical learning
behavior patterns with educational semantics. Figure 1 shows
the complete model architecture for learning trajectory
analysis based on parameter-sharing dual-branch STv2 +
multi-scale differential fusion.

2.2 Parameter-sharing dual-branch Swin Transformer V2
encoder

The core function of the parameter-sharing dual-branch
STv2 encoder is to perform multi-scale feature extraction and
trajectory-oriented representation for dual-phase learning
process images. Its design centers on ensuring feature
consistency across the dual-phase and encoding multi-
granularity trajectory information. To address the trajectory
discontinuity issue caused by cross-phase feature space shifts
in traditional dual-branch structures, the encoder adopts a
connected network architecture, where both branches share the
complete STv2 backbone network weights. This design
enforces feature extraction of dual-phase images within a
unified semantic space by binding the weights, thus providing
the basis for subsequent temporal continuity modeling of
trajectories, while also reducing model parameters, laying the
foundation for lightweight deployment.

The encoder employs a four-stage progressive feature
extraction process, which uses downsampling and module
stacking to achieve multi-granularity encoding of trajectories
from micro to macro levels. The input images are first
converted into a sequence of image patches using the 4x4
Patch Partition operation, then processed in the first stage:
Three STv2 modules are applied to the image patch sequence
for feature encoding, generating scale 1 features with a
resolution of H/4xW/4. These features focus on the spatial
positions and morphological information of micro trajectories,
such as eye movement points and pen tip landing points. After
the first stage, subsequent stages perform 2x downsampling
via Patch Merging operations, while adjusting the number of
stacked STv2 modules based on the granularity of trajectory
information: The second stage stacks three STv2 modules,
generating scale 2 features with a resolution of H/8xW/§,
encoding the associations of local continuous trajectory
segments; The third stage stacks four STv2 modules,
generating scale 3 features with a resolution of H/16xW/16,
primarily modeling the logical associations of trajectories,
such as from the problem stem to the options, or from the
formula to the calculation region. The increased number of
modules is due to the complexity of trajectory logical
associations requiring deeper feature interactions; The fourth
stage stacks three STv2 modules, generating scale 4 features
with a resolution of H/32xW/32, encoding global trajectory
distribution patterns, such as the spatial transition features
between focused and scattered regions. The multi-scale feature
pyramid formed after the four stages fully covers the
microscopic morphology, local associations, and global
distribution information of the trajectory.

2.2.1 Architecture design

The architecture design of the parameter-sharing dual-
branch STv2 encoder is based on the core principles of
"trajectory continuity modeling" and "multi-granularity
information adaptation,” achieving a balance between the
precision and efficiency of feature extraction through
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structural constraints and process optimization. The design
logic of the dual-branch connected structure stems from the
core requirement of dual-phase trajectory analysis—the
comparability of features across phases: If the two branches
use independent weights, the feature expressions of the same
trajectory pattern at different moments would be misaligned,
leading to misjudgments of key trajectory turning points. The
weight-sharing mechanism ensures that dual-phase images
generate features under the same feature extraction rules,
maintaining feature consistency for the same trajectory pattern
and providing a reliable basis for subsequent trajectory
temporal evolution analysis. The selection of the STv2
backbone is based on the advantages of its window-based self-
attention mechanism, which can efficiently capture the local
continuity of trajectories within a window through attention
calculations and, simultaneously, achieve global information
interaction via window shifting operations, thus adapting to
the local clustering and global migration characteristics of
trajectories.

The core window self-attention calculation of the STv2
module is shown in formula (1). This calculation divides the
feature map into non-overlapping windows and performs
attention interaction within the windows, ensuring the efficient
capture of local trajectory continuity while reducing
computational complexity.

W — MSA(X) = Soft (QKT +M> 14
— =softmax | —
N

(1

where, X is the input feature of the STv2 module, O, K, and V'
are the query, key, and value matrices, respectively, dk is the
dimension of the query matrix, and M is the mask matrix used
to avoid attention interference from invalid pixels within the
window. Through this calculation, the module can efficiently
aggregate the local trajectory features within the window, such
as the associations between adjacent eye movement points and
continuous handwritten trajectories.

The module configuration and resolution design of the four-
stage feature extraction process are optimized to adapt to the
characteristics of trajectory information. The downsampling
strategy of Patch Partition and Patch Merging uses fixed ratios
of 4x4 and 2x2, ensuring reasonable compression of feature
dimensions while avoiding excessive loss of trajectory spatial
position information. The differentiated configuration of the
number of STv2 modules in each stage follows the principle
of "trajectory information complexity matching": The
information structure of micro and global trajectories is
relatively simple, and three modules are sufficient for full
encoding, while the logical associations in trajectories, which
involve multiple regions and steps, require four layers of
modules for deep iteration to achieve feature fusion, ensuring
the completeness of feature representation for logical chains
such as "problem analysis - computation - answering." This
differentiated configuration ensures feature quality while
avoiding redundant computation and improving the overall
efficiency of the encoder.

2.2.2 Spatiotemporal embedding mechanism

The core goal of the spatiotemporal embedding mechanism
is to convert the multi-scale features output by the encoder into
trajectory embedding representations that incorporate both
temporal continuity and spatial significance, realizing the
semantic transformation from "image features" to "trajectory
features." This mechanism strengthens the spatiotemporal



correlation representation of the features through three
progressive steps: temporal embedding, spatial embedding,
and spatiotemporal fusion, providing core inputs for
subsequent trajectory reconstruction and pattern discovery.

The temporal embedding step focuses on encoding the
temporal evolution information of dual-phase trajectories,
capturing dynamic changes between the two moments'
trajectories through differential operations. For dual-phase
features F° and F>* at each scale s=1,2,3,4, the temporal
difference feature AF*=F>"—F* is computed element-wise. The
physical meaning of this differential operation is to quantify
the feature change at the same spatial location between
different moments, directly corresponding to the temporal
migration of the trajectory, such as the change in the eye
movement focus from the question stem to the options or the
movement of the pen tip from the blank area to the calculation
area. By generating multi-scale differential features in parallel,
the temporal evolution of trajectories at different granularities
is synchronized and encoded, preserving fine motion
information for micro-trajectories and capturing global
migration patterns for macro-trajectories.

AF=F3-F; @)

where, AFFeR#*"*Cs i the temporal difference feature at
scale s, and Hy, W, and C; represent the height, width, and
number of channels of the feature at scale s, respectively.

The spatial embedding step employs a spatial attention
mechanism to enhance the features of key trajectory areas by
quantifying the importance of spatial positions, increasing the
feature weights of densely distributed trajectory areas. The
calculation of spatial attention weights is shown in formula (3).
The feature map is globally pooled and non-linearly
transformed to generate an attention weight map of the same
size as the feature map, which is then multiplied element-wise
with the original features to obtain spatially enhanced features.

A’=Sigmoid(FC(GlobalAvgPool(F*)) 3)
F3p=F O(4) “)

where, F* is the original feature at scale s, GlobalAvgPool( ) is
the global average pooling operation, FC( ) is the fully
connected layer, Sigmoid( ) is the activation function, 4* is the
spatial attention weight map, and © represents element-wise
multiplication, Fip' is the feature at the s-th scale after spatial
enhancement. The process assigns higher weights to key
regions such as the formula region and the question stem area,
while suppressing background noise interference.

The spatiotemporal fusion step introduces a temporal
attention gating unit to achieve collaborative integration of
temporal and spatial information, focusing on reinforcing the
feature representation of key trajectory turning points. The
gating unit dynamically adjusts the weights of the differential
features at different moments, allowing the model to focus on
key events such as attention shifts and strategy changes. The
calculation of the temporal attention gating is shown in
formula (5):

G'=Sigmoid(Com(AF ®F,,)) ®
F~G OAFH1-G)OF,, ©

where, @ is the channel-wise concatenation operation, Conv( )
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is a 1x1 convolution layer for dimension adjustment, G* is the
temporal attention gating coefficient, and Fg* is the
spatiotemporal fused feature at scale s. Through this gating
mechanism, the temporal evolution information from the
temporal embedding and the key area information from the
spatial embedding are deeply fused. The resulting multi-scale
spatiotemporal embedding features contain both the temporal
information of "when it changes" and the spatial information
of "where it changes," providing accurate and semantically
rich feature support for subsequent trajectory reconstruction
and behavior pattern discovery.

2.3 Multi-Scale Difference Fusion Module (MDFM)

MDFM is the core hub connecting the parameter-sharing
dual-branch STv2 encoder and the subsequent trajectory
analysis modules. Its primary goal is to aggregate the four-
stage dual-phase features output by the encoder, enhance
trajectory change information through differential operations,
and then use multi-scale fusion and cross-scale associations to
achieve deep enhancement of trajectory semantics. The design
logic of this module is based on the multi-granularity nature of
learning trajectories—fine shifts in micro-trajectories,
continuous associations in local trajectories, and distribution
changes in global trajectories must be captured simultaneously.
Traditional single-scale fusion or simple concatenation cannot
achieve the collaborative representation of multi-granularity
information. MDFM fills this gap with a two-stage design of
"differential initialization - trajectory-aware fusion." Figure 2
shows the schematic diagram of the complete MDFM
architecture.
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Figure 2. Schematic diagram of the MDFM architecture

2.3.1 Differential feature initialization

The core task of differential feature initialization is to
transform the dual-phase multi-scale features into an initial
representation of trajectory changes by quantifying the spatial
differences between the features at two moments, directly
mapping the position shifts and morphological changes of the
trajectory. This process provides "change-directed" base
features for subsequent fusion. The design of this process is



based on the dynamic nature of trajectories—core information
in learning trajectories lies in the "change from 7 to 72," such
as the movement of the eye focus from the question stem to
the options, or the movement of the pen tip from the blank area
to the calculation area. These changes can be accurately
captured by the differential operation on dual-phase features.
Specifically, for the dual-phase features F'1° and F>* (at time
T2) output by the encoder at each scale s=1,2,3,4, the element-
wise absolute difference is calculated to obtain the differential
features F,/, as shown in formula (7). Here, F/eRAWsCs,
where Hs, Ws, and Cs are the height, width, and channel
number of the feature at scale s. The element-wise absolute
difference operation effectively retains the change magnitude
information and suppresses background noise shared by both
moments. The F/ at different scales corresponds to trajectory
changes at different granularities: F,;!' at scale I focuses on
pixel-level shifts in micro-trajectories, such as the eye
movement points or pen tip locations; F,* at scale 4 captures
the macroscopic changes in global trajectory distributions,

such as the transition from focused regions to scattered regions.

The parallel generation of multi-scale differential features
ensures complete coverage of trajectory change information
from micro to macro, providing comprehensive initial input
for subsequent multi-granularity fusion.
FoFlFi-(F3) ()
The advantage of differential feature initialization lies in the
"unbiased retention of change information"—compared to
attention-based  weighted differences or thresholded
differences, the element-wise absolute difference avoids
distortion of the change magnitude by arbitrary parameters,
fully retaining the original intensity information of trajectory
changes. For example, the differential responses to small
adjustments or large migrations of the eye focus will naturally
show intensity differences, which serve as a natural basis for
"focusing on significant changes" in the subsequent multi-
scale enhancement and also lay the foundation for identifying
key turning points in trajectories.

2.3.2 Trajectory-aware multi-scale fusion

Trajectory-aware multi-scale fusion is the core process of
MDFM. Through "multi-scale convolution enhancement -
cross-scale trajectory association - residual fusion," the initial
differential features are transformed into trajectory-enhanced
features Fjsion that incorporate both multi-granularity
information and semantic associations. The innovation of this
step lies in introducing a "trajectory-guided" fusion logic,
breaking the limitations of traditional multi-scale fusion,
where "scales are processed independently,” and enabling
semantic association across different granularities of trajectory
information.

Multi-scale convolution enhancement adapts feature
extraction to the different needs of trajectory change at various
granularities by applying parallel heterogeneous convolution
kernels. It creates "micro-local-global" three-level feature
enhancement channels for each scale's differential feature £/
Specifically, three convolution operations with kernel sizes of
3x3, 5x5, and 7x7 are applied to F, as shown in formula (8).
Here, Conv(kxk) represents the convolution operation with a
kernel size of kxk, and Fu°, Fz®, and Fz°® are the enhanced
features output by these three convolutions. The 3x3
convolution focuses on the fine details of micro-trajectories,
such as the small movement of the pen tip; the 5x5 convolution
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captures the continuous associations of local trajectories, such
as the continuous movement of the eye focus in the question
stem area; and the 7x7 convolution extracts the distribution
pattern of global trajectories, such as the transition from the
"question analysis - computation - answering" regions. After
parallel convolution, multi-scale enhanced features
Fo'=[Fa* ,F o' Fa'] are obtained by concatenating, achieving
aggregation of multi-granularity information within each scale.

F5,=Conv(3x3,FY), Fp 3
=Conv(5x5,F), Fi3=Conv(7x7,F%) ®)

Cross-scale trajectory association is implemented through a
cross-scale attention mechanism that achieves semantic
binding between features from different scales, solving the
problem of "decoupling micro-trajectory details from macro-
trajectory semantics." The semantic interpretation of learning
trajectories requires multi-scale association, such as the "pen
tip's stay in the formula area" corresponding to "focusing on
the solving strategy." This association needs to be realized
through cross-scale feature interaction. Specifically, the
enhanced feature F.,* at the global scale serves as the
"semantic-guided feature" for computing attention weights for
the features at other scales F.,;’. First, F..;* is converted into a
global semantic vector G through global average pooling and
a 1x1 convolution. Then, G is used to calculate attention
weights for each scale's F;', resulting in the weight vector 4°.
Finally, the features at each scale are semantically calibrated
by weighted summation, as shown in formula (10), where
GAP() is the global average pooling operation, and Sigmoid( )
is the activation function, and © represents the element-wise
multiplication:

G=Conv(1x1,GAP(F* ) 9)

A*=Sigmoid(Conv(1x1,G ® F,})),FS,=4"OF,,  (10)

Residual fusion retains the original change information
from the initial differential features by wusing residual
connections, avoiding information loss during multi-scale
enhancement and cross-scale association processes. The
features F..’, weighted by attention, are upsampled to the
resolution of scale 1, then concatenated to form the fusion
feature Feoncar. Subsequently, Feoncar 1S residual added to the
initial differential feature F,' at scale 1 to obtain the final
trajectory semantic-enhanced feature Flon, as shown in
formula (11). The introduction of residual connections can
effectively alleviate the vanishing gradient problem caused by
deep fusion while ensuring the collaborative retention of both
original change information and enhanced semantic
information, providing high-quality feature input with both
"change precision" and "semantic depth" for subsequent
trajectory embedding decoding.

Ffusianzconv(] Xlchoncat)+Fc]1 (11)
2.4 Learning trajectory analysis and behavior pattern
discovery module

The Learning Trajectory Analysis and Behavior Pattern
Discovery Module is the core link between feature extraction
and educational semantic interpretation. Its main goal is to
transform the multi-scale fused features into interpretable



learning trajectory representations and to infer behavior
patterns with educational practical value from the trajectories.
This module employs a two-stage design of "trajectory
spatiotemporal embedding decoding - behavior pattern
discovery," first achieving the semantic transformation from
features to trajectories, and then completing the induction from
trajectories to patterns through segmentation, clustering, and
labeling processes, ultimately establishing an accurate

mapping between technical features and educational semantics.

2.4.1 Trajectory spatiotemporal embedding decoding

The core task of trajectory spatiotemporal embedding
decoding is to convert the multi-scale fused features Fjion into
trajectory-level embedding representations that combine
spatiotemporal continuity and semantic consistency, solving
the problem of semantic disconnection between features and
trajectories, and providing a structured trajectory
representation for subsequent analysis. This process consists
of two progressive steps: embedding vector generation and
trajectory line reconstruction, respectively achieving the
transformation from "features to trajectory points" and
"trajectory points to trajectory lines."

In the embedding vector generation phase, the semantic
mapping and dimensional adaptation of the features are
implemented through a fully connected layer. Although the
multi-scale fused feature Fpgion has aggregated the
spatiotemporal and semantic information of the trajectory, it
still exists in the image feature space and needs to be linearly
mapped to trajectory point-level embedding vectors.
Specifically, Fjsion first undergoes global average pooling to
extract global features, and then passes through a two-layer
fully connected network, ultimately outputting trajectory
point-level embedding vectors (e;ERP, i=1,2,...,N), where N
is the number of trajectory points and D is the embedding
dimension. This mapping process is shown in formula (12),
where GAP() is the global average pooling operation, ReLU( )
is the activation function, and (W1, b1) and (W, by) are the
weights and biases of the two fully connected layers. Through
this design, e; simultaneously encodes the spatiotemporal
location and semantic association of the trajectory points,
achieving a deep representation of the trajectory points.

e=W, ReLUW, - GAP(Fjsion)tb1)+b; (12)

In the trajectory line reconstruction phase, DTW is used to
address the issue of temporal misalignment caused by uneven
sampling of trajectory points, and to aggregate discrete
trajectory points into a complete trajectory line. During the
learning trajectory collection process, the sampling frequency
of devices such as eye trackers and handwriting boards is often
influenced by the operation rhythm, leading to differences in
sampling density at different moments. Direct concatenation
would disrupt the temporal continuity of the trajectory. DTW
solves this issue by calculating the optimal alignment path of
the trajectory point embedding vectors for adaptive temporal
matching. First, an NxN distance matrix Das, is constructed,
where each element Dgp.(i,/) is the Euclidean distance between
the trajectory point e; and e;. Then, dynamic programming is
used to calculate the cumulative distance matrix Cdfw and
backtrack to find the alignment path with the smallest
cumulative distance, as shown in formula (13), where Cyni(i,f)
is the minimum cumulative distance for the first i and j
trajectory points. After DTW alignment, the discrete points
e1,e2,...,ey are reconstructed into a complete high-dimensional
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trajectory embedding representation £ € RYP, which retains
both the temporal continuity and the semantic features of each
trajectory point.

Cdtw>(i:i):Ddtw(izj)+

. ik o o 13
min { Cypy(-1).Cany(ij-)-Con (1)} (%

2.4.2 Behavior pattern discovery process
The behavior pattern discovery process takes the

reconstructed trajectory embedding E as input and uses a
three-step design: '"trajectory segment segmentation—
improved DBSCAN clustering—semantic labeling
verification" to inductively discover interpretable behavior
patterns from the trajectories. The core innovation of this
process lies in optimizing segmentation and clustering
strategies to account for the density heterogeneity and
semantic relevance of learning trajectories, ensuring the
accuracy and educational interpretability of the patterns.

The trajectory segment segmentation phase uses the
semantic similarity of embedding vectors to semantically
segment the trajectory, dividing the complete trajectory into
continuous segments with unified educational semantics. The
semantic features of learning trajectories exhibit local
consistency—such as the highly similar semantics of
trajectory points during the "question analysis" phase—while
the transition from "question analysis" to "computation" will
accompany a semantic mutation. Therefore, the cosine
similarity of the trajectory point embedding vectors can be
used to determine semantic continuity. Specifically, the cosine
similarity Sim(e;,e;+1) between adjacent trajectory points e; and
ei+1 is calculated, as shown in formula (14). When the
similarity falls below a preset threshold 6, the trajectory is
considered to have a semantic boundary, and segmentation is
performed. The optimization of threshold 6 is based on expert-
annotated trajectories: using a validation set of 300 annotated
trajectories, a grid search is performed over € [0.5, 0.9], the
6 with the highest segment segmentation accuracy is selected
as the final threshold. After segmentation, a trajectory segment
set  S={S5,,5,,...,Su} 1is obtained, with each segment
corresponding to a single educational semantic, such as
"question analysis," "computation,” or "checking."

. €; €1
Slm(ebeiﬂ):L

(14)
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The improved DBSCAN clustering phase addresses the
issue of traditional density clustering's poor adaptability to
trajectory density heterogeneity by implementing an adaptive
radius design for precise clustering of candidate behavior
patterns. The density distribution of learning trajectories is
significantly heterogeneous, such as high-density points in the
"focused computation" region and low-density points in the
"random exploration" region. A fixed radius parameter can
result in over-segmentation in high-density areas or missing
clusters in low-density areas. To address this, we propose an
adaptive radius strategy based on trajectory density: for each
trajectory segment S,,, the average Euclidean distance to its K-
nearest neighbors is calculated as the local density radius 7,
for that segment, and the median of all 7, values is taken as the
clustering radius Eps. The core point threshold MinPts is then
set proportionally to the total number of segments. During
clustering, the average embedding vector e,, of each trajectory
segment is used as the clustering unit, and similarity between



segments is measured using the Euclidean distance. The final
output is a set of candidate behavior patterns P={P,P>,...,Px}.

The semantic labeling and verification phase involves
expert participation and quantitative optimization to assign
educational semantics to the candidate patterns and calibrate
parameters, ensuring the practical value of the patterns. This
phase follows a closed-loop process of "expert labeling -
consistency verification - parameter optimization": first, three
education experts with over five years of teaching experience
are invited to label the candidate patterns P based on
characteristics such as spatial distribution and temporal
rhythm of the trajectory segments. The labeling categories
include goal-oriented, random exploration, hesitation, etc.
Then, the consistency of labeling is verified using the Kappa
coefficient, with Kappa>0.75 considered consistent. If
consistency is not reached, expert discussions are used to reach
a consensus. Finally, the labeled results are used as ground
truth to construct a confusion matrix to analyze clustering
errors, and parameters K and MinPts are adjusted to minimize
clustering error rates. After optimization, the final set of
learning behavior pattern labels L={/i,l,...,Ix} is obtained.
This label set not only aligns with the objectivity of technical
clustering but also provides educational interpretability for
practical applications.

2.5 Efficiency optimization and loss function

Efficiency optimization and loss function design are key
components in ensuring the practicality and performance
integrity of the model. Efficiency optimization focuses on the
computational constraints of edge devices in educational
scenarios. Through a full-process strategy of feature
dimensionality reduction, lightweight decoding, and
redundancy pruning, the model complexity is reduced while
controlling precision loss. The loss function targets the multi-
task objectives of '"change map generation - trajectory
embedding - pattern clustering," adopting a hybrid loss
architecture to achieve collaborative optimization of multi-
dimensional performance, providing precise guidance for
model training.

2.5.1 Efficiency optimization strategy

The efficiency optimization strategy is based on the design
principle of "full-process lightweight," optimizing three key
components: encoder feature output, decoder upsampling, and
feature channels. The strategy aims to achieve a collaborative
improvement of model parameters and inference speed while
ensuring that the core performance of trajectory analysis and
pattern discovery is not significantly impacted. The design
logic of this strategy originates from the practical constraints
of educational edge devices—such as smart tablets and
classroom terminals, whose computational power is typically
only 1/10 to 1/5 of that of professional training GPUs.
Therefore, targeted optimization is required to break through
deployment bottlenecks.

The feature dimensionality reduction and redundancy
pruning strategy focuses on compressing the dimensionality of
encoder output features, reducing the computational burden of
subsequent processing while retaining core trajectory
information. At the output of each stage in the STv2 encoder,
a 1x1 convolution layer is applied to linearly transform the
feature channels, reducing the number of channels to half of
the original size. This operation uses information aggregation
along the channel dimension for dimensionality reduction,
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avoiding the loss of trajectory spatial information caused by
traditional pooling operations. Redundant feature pruning
dynamically selects features based on the statistical properties
of feature response values: the L2 norm of each channel
feature is calculated as the response strength indicator, and
after sorting the response values in descending order, the top
80% of channels are retained, while channels with weak
responses are pruned.

The lightweight decoder design addresses the high
parameter count issue of change map generation by adopting
a two-stage upsampling strategy of "bilinear interpolation +
I1x1  convolution," replacing traditional transposed
convolution. Although transposed convolution can achieve
high-precision upsampling, it is prone to checkerboard
artifacts, which blur the boundaries of the change map, and its
parameter count is more than three times that of bilinear
interpolation at the same resolution. The two-stage
upsampling process in this study is as follows: In the first stage,
the multi-scale fused feature Fjion undergoes 2x bilinear
interpolation, combined with 1x1 convolution to adjust the
channel dimension and suppress noise; in the second stage, 8x
bilinear interpolation is applied to restore the feature map to
the original resolution, followed by 3x3 convolution to refine
the boundaries of the change regions.

2.5.2 Loss function design

The design goal of the loss function is to simultaneously
optimize the accuracy of change map generation, the quality
of trajectory embedding, and the clustering effect of behavior
patterns. A single loss function cannot meet the needs of multi-
task objectives, so a hybrid loss architecture of "cross-entropy
loss - Dice loss - contrastive loss" is constructed, with weight
distribution to achieve collaborative optimization of each task
goal. The weights of each loss component are determined
through grid search, with the highest comprehensive score on
the wvalidation set, evaluated by '"change map mloU +
trajectory embedding similarity + pattern recognition F1
score." The final weights are determined as: cross-entropy loss
weight 0.4, Dice loss weight 0.3, and contrastive loss weight
0.3.

For the change map generation task, a combination of cross-
entropy loss and Dice loss is used to solve the class imbalance
and boundary accuracy issues in pixel-level classification.
Cross-entropy loss is a classic loss function for pixel
classification tasks, optimized by quantifying the logarithmic
difference between predicted probabilities and true label
values, as shown in formula (15), where CM;; is the predicted
probability of the change map at pixel (i,j), and CMy;; is the
corresponding true label at that location. Since the behavior
change region typically occupies only 15%-30% of the image,
leading to significant class imbalance, Dice loss is introduced
to optimize the sample distribution bias, as shown in formula
(16), where TP is the true positive pixel count, FP is the false
positive pixel count, and FN is the false negative pixel count.
The combination of both loss functions optimizes both
classification probability and overall matching of the change
regions, improving pixel-level accuracy in the change map.

1
Losscp=- W,Z{‘il 2;1/1 C My, ;log(CM;))

(15)
+(1-CMy,; ;) log (1-CM, ;)
2TP
Losspjpe=1-———7 (16)
2TP+FP+FN



Contrastive loss is used to optimize the discriminability of
trajectory point embedding vectors, providing a high-quality
embedding foundation for subsequent behavior pattern
clustering. The core logic of this loss is to force the embedding
vectors of similar trajectory points to converge and the
embedding vectors of dissimilar trajectory points to separate,
as shown in formula (17), where ¢; and e; are the embedding
vectors of similar trajectory points, ey is the embedding vector
of dissimilar trajectory points, and 7=0.1 is the temperature
parameter used to adjust the steepness of the similarity
distribution. This loss improves the semantic distinction of
embedding vectors through contrastive learning, meaning the
cosine similarity of similar trajectory points is reinforced, and
the similarity of dissimilar trajectory points is suppressed. The
final form of the hybrid loss function is shown in formula (18):

exp (e; ¢;/)
Losscontra:' lo

g a7)
Z;c# exp (e; - e;/7)

Loss=0.4%Losscg+0.3%XL0sSpicet0.3%XL0OSS onira

(18)

3. EXPERIMENTAL RESULTS AND ANALYSIS

To verify the discriminability and clustering quality of the
trajectory spatio-temporal embedding representation for
different semantic types of trajectories, this experiment
compares the performance of different embedding methods
across multiple metrics. As shown in Table 1, the proposed
method outperforms all other methods for all trajectory types:
the clustering purity for the review trajectory reaches 0.92, and
the silhouette coefficient is 0.78, significantly higher than both
LSTM trajectory embedding and Transformer trajectory
embedding. Even for the "correction" trajectory, where the
semantic boundary is less clear, the semantic classification F1
score of the proposed method remains 0.88, improving by
31.3% over the traditional K-means clustering. This result
indicates that the proposed spatio-temporal embedding
representation can accurately capture the unique features of
different semantic trajectories, achieving high cohesion for
similar trajectories and strong separation for dissimilar
trajectories, thus providing a high-quality representation
foundation for the subsequent precise discovery of learning
behavior patterns.

To clarify the contribution of each core module to trajectory

analysis and behavior pattern discovery, this experiment
observes the performance changes by gradually removing
modules. As shown in Table 2, the full model achieves a
pattern recognition F1 score of 0.90 and a clustering purity of
0.91. After removing the MDFM, the pattern recognition F1
score drops to 0.76, clustering purity decreases by 14.3%, and
embedding dimension cohesion drops by 20.2%. This is the
most significant performance degradation among all ablation
settings, indicating that MDFM is the core component for
aggregating multi-granularity  trajectory features and
strengthening semantic associations. After removing the
parameter-sharing STv2 encoder, the pattern recognition F1
score decreases by 8.9%, confirming the encoder's role in
ensuring consistency of dual-time-phase trajectory features.
When contrastive loss is removed, the silhouette coefficient
decreases from 0.77 to 0.62, highlighting its value in
regulating the cohesion of similar embedding vectors. These
results indicate that the core modules of the proposed method
do not function independently but work synergistically
through the mechanism of "encoder ensuring consistency -
MDFM aggregating features - contrastive loss strengthening
distinction," collectively improving the performance of
trajectory embedding and behavior pattern discovery.

To verify the superior performance of the proposed method
in learning behavior pattern discovery tasks, this experiment
compares multiple metrics from different baseline methods.
As shown in Table 3, the proposed method significantly
outperforms others in terms of the recognition accuracy of
various behavior patterns: the F1 score for the random
exploration pattern reaches 0.88, which is a 14.3%
improvement over Transformer trajectory embedding +
DBSCAN clustering; the F1 score for the repeated hesitation
pattern is 0.85, which is a 41.7% improvement over the rule-
based method. At the same time, the overall trajectory
classification accuracy of the proposed method reaches 0.89,
the user annotation consistency rate increases to 0.88, and the
average pattern discovery time is only 65 ms—achieving
efficiency optimization alongside accuracy improvement. This
result shows that the proposed method, through spatio-
temporal embedding and multi-module synergy, solves the
adaptation issue of traditional rule-based methods for complex
trajectories and compensates for the recognition limitations of
mainstream embedding methods in semantic ambiguous
trajectories, providing better overall performance in learning
behavior pattern discovery tasks.

Table 1. Quantitative performance validation of learning trajectory spatio-temporal embedding representation

Method Trajectory Clustering Silhouette Normalized Mutual Semantic Classification
Type Purity Coefficient Information (NMI) F1 Score

Review 0.92 0.78 0.85 0.91
Calculation 0.90 0.75 0.83 0.89
Proposed Method Inspection 0.88 0.72 0.81 0.87
Correction 0.89 0.74 0.82 0.88
Review 0.75 0.52 0.63 0.73
LSTM Trajectory Calculation 0.72 0.48 0.60 0.70
Embedding Inspection 0.68 0.45 0.57 0.67
Correction 0.70 0.47 0.59 0.69
Review 0.81 0.63 0.72 0.80
Transformer Trajectory Calculation 0.79 0.60 0.70 0.78
Embedding Inspection 0.76 0.57 0.67 0.75
Correction 0.77 0.59 0.68 0.76
Review 0.62 0.38 0.49 0.60
K-means Traditional Calculation 0.60 0.35 0.47 0.58
Clustering Inspection 0.57 0.32 0.44 0.55
Correction 0.59 0.34 0.46 0.57
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Table 2. Ablation experiment results of core modules

Ablation Setting Pattern Recognition F1  Clustering Silhouette Embedding Dimension
Score Purity Coefficient Cohesion
Full Model (Proposed Method) 0.90 0.91 0.77 0.84
Remove Parameter-Sharing STv2 Encoder 0.82 0.83 0.65 0.73
Remove MDFM 0.76 0.78 0.58 0.67
Remove Contrastive Loss 0.80 0.81 0.62 0.70
Remove MDFM + Contrastive Loss 0.71 0.73 0.52 0.61

Table 3. Comparison of baseline models

Methods Rule-based Learning  LSTM Trajectory Embedding Transformer Trajectory Proposed
Trajectory Analysis + K-means Clustering Embedding + DBSCAN Clustering  Method
Goal-Oriented Pattern F1 0.72 0.80 0.83 0.91
Random Exploration
Pattern F1 0.65 0.73 0.77 0.88
Repeated Helsslltatlon Pattern 0.60 063 072 085
Overall Trajectory
Classification Accuracy 0.68 0.75 0.79 0.89
Average P_attern Discovery 120 95 80 65
Time (ms)
Clustering Purity 0.70 0.78 0.82 0.91
User Annotation 0.66 0.73 0.77 0.88

Consistency Rate

To quantify the regulation effect of contrastive loss on the
semantic  discrimination of trajectory spatio-temporal
embeddings and support the precise clustering of learning
behavior patterns, this experiment uses t-SNE dimensionality
reduction for visualization, comparing the trajectory
embedding distribution features with and without the
constraint of this loss. As shown in Figure 3, without
contrastive loss, the embedding points of different semantic
types in the goal-oriented trajectories, such as "review —
calculation" and "calculation — checking," show about 42%
spatial overlap, with the silhouette coefficient of the clusters
only being 0.31. Both the intra-class cohesion and inter-class
separation of embedding vectors are insufficient. When
extended to all categories of trajectories, the confusion rate
between the "checking — correction" class and the "semantic
continuity" class reaches 37%, making it impossible to form
clearly defined independent clusters, which would directly

Question analysis —~ Calculation
@ Calculation — Checking
® Checking -~ Correction *

Semantie continuity

.9 :i >
Pt

(a) Embedding distribution of goal-oriented trajectories
(without loss)

increase the misclassification rate of subsequent behavior
patterns.

After introducing contrastive loss, the overlap rate of
embedding clusters for different categories of goal-oriented
trajectories decreases to 11%, and the silhouette coefficient
increases to 0.68. The spatial gap between the embeddings of
the "semantic continuity" category and other changing
categories increases by 2.3 times. When extended to all
categories of trajectories, the confusion rate of all category
embedding clusters is below 8%, and the "checking —
correction" trajectory forms a compact and clearly bordered
independent cluster, with the intra-cluster distance reduced to
one-third of its original value. These features indicate that
contrastive loss effectively improves the semantic
discrimination of trajectory spatio-temporal embeddings by
constraining the cohesion of similar trajectory embeddings and
the separation of dissimilar embeddings.

@ Question nnalysis —~ Calculation

® Caleulation — Checking

® Checking — Correction *
Semanticcontinuity

(b) Embedding distribution of goal-oriented trajectories (with
loss)
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(c) Embedding distribution of all categories of trajectories
(without contrastive Loss)
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Figure 3. t-SNE visualization of trajectory spatio-temporal embedding vectors
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Figure 4. Correlation heatmap of learning trajectory features and behavior pattern metrics

The core value of this result is twofold: firstly, it validates
the rationality of the hybrid loss function design in this
study—introducing contrastive loss fills the gap of insufficient
semantic discrimination in embeddings when solely relying on
change map loss; secondly, this embedding optimization
strategy provides a high-recognition basis for discovering
learning behavior patterns, improving the clustering accuracy
of different learning behavior patterns by about 19%.
Ultimately, this supports the precise analysis of learners'
cognitive processes in personalized educational contexts,
providing quantifiable trajectory representations for targeted
instructional interventions.

The 18 coordinate metrics in the heatmap shown in Figure
4 cover two dimensions: learning trajectory features and
learning behavior evaluation. The first four are review
trajectory embedding similarity, calculation trajectory
duration, inspection trajectory spatial aggregation, and
correction trajectory frequency, focusing on the micro features
of learning trajectories. They measure the consistency of the
review phase trajectory representation, time allocation in the
calculation phase, spatial concentration of the inspection
behavior, and the frequency of correction operations,
respectively. The Sth to 7th metrics are the proportions of goal-
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oriented, random exploration, and repeated hesitation patterns,
which classify the core learning behavior patterns to
distinguish different learners' behavioral tendencies. The 8th
to 10th metrics are trajectory spatio-temporal embedding
dimensions 1/2 and the number of trajectory semantic
segments, corresponding to deep representation and phase
division of trajectories, supporting the distinction of
embedding vectors and the semantic decomposition of the
learning process. The 11th to 13th metrics are the switching
time between review-calculation, calculation-inspection, and
inspection-correction, reflecting the transition efficiency
between learning phases. The last five metrics are learning
efficiency score, attention concentration degree, strategy
switching frequency, knowledge mastery level, and task
completion time, which are personalized education metrics for
evaluating learning states and outcomes, covering core
dimensions such as cognitive focus, strategy adjustment,
knowledge mastery, and task efficiency. These metrics form a
complete chain from trajectory representation, behavior
classification, to effect evaluation, providing multi-
dimensional support for analyzing the relationship between
learning trajectories and personalized learning.

To verify the effectiveness of deep trajectory representation



in predicting learning behavior patterns and learning
outcomes, and to analyze the chain-like correlation
mechanism between trajectory features, behavior tendencies,
and cognitive states, this experiment quantifies the
hierarchical correlation characteristics of 18 metrics through a
correlation heatmap. From the construct validity of trajectory
embedding, the correlation coefficients between review
trajectory embedding similarity and calculation trajectory
duration, as well as trajectory spatio-temporal embedding
dimension 1, are 0.99 and 1.0, respectively, both showing
highly significant correlations. This confirms the rationality of
the embedding dimension design: embedding dimension 1
accurately captures the semantic consistency features of the
review phase, and the stability of this feature directly extends
to the time allocation of the calculation phase, reflecting the
coherence of information processing. From the logical
correlation between trajectory features and behavior patterns,
the correlation coefficient between the proportion of goal-
oriented patterns and review trajectory embedding similarity
is -0.77. This negative correlation is not weak but corresponds
to specific behavioral logic: goal-oriented learners tend to
complete the review quickly and enter the calculation phase,
showing lower similarity in their review trajectories, while
random exploration learners show higher similarity in their
review trajectories.

From the explanatory power of trajectories on cognitive
states, the correlation coefficient between inspection trajectory
spatial aggregation and correction trajectory frequency is 0.79,
indicating that the higher the spatial concentration of the
inspection behavior, the lower the frequency of corrections.
This correlation directly corresponds to the 0.97 highly
significant ~ positive  correlation  between  attention
concentration and knowledge mastery. Learners with higher
attention concentration have higher spatial aggregation in their
inspection trajectories, lower correction frequency, and
stronger knowledge mastery. The correlation coefficients
between learning efficiency score and attention concentration
degree, as well as strategy switching frequency, are -0.63 and
-0.75, respectively, further revealing the influence mechanism
of cognitive states: frequent strategy switching is essentially
an outward manifestation of attention distraction, and both
contribute to an increase in ineffective time during the learning
process, ultimately reducing efficiency.

The core value of this analysis lies in dual verification: first,
it supports the construct validity of trajectory embedding
representation—embedding dimensions effectively capture
the semantic features of learning phases and behavioral
coherence; second, it clarifies the chain-like predictive path of
"trajectory micro features — behavior patterns — cognitive
states — learning outcomes": review trajectory embedding
similarity can predict time allocation in the calculation phase,
distinguish goal-oriented and random exploration patterns,

and ultimately relate to knowledge mastery. This path provides
an operable intervention logic for personalized education: for
learners with low review trajectory similarity and large
fluctuations in calculation time, targeted review strategy
guidance can be provided to enhance the coherence of
information processing and improve knowledge mastery; for
learners with high strategy switching frequency, attention-
focus training can be used to reduce their trajectory spatial
dispersion, thereby improving learning efficiency.

To wvalidate the practical improvement effect of
personalized intervention based on trajectory patterns, this
experiment implemented targeted strategies for learners with
different behavior patterns. From Table 4, it can be seen that
learners of all three patterns showed significant improvement
effects: the task time for random exploration learners
decreased from 12.5 minutes to 9.3 minutes, a reduction of
25.6%; strategy switching frequency dropped from 4.3 to 2.5,
while the review embedding similarity increased to 0.78,
reflecting enhanced coherence in their review process;
repeated hesitation learners' test scores increased from 68 to
77, a 13.2% improvement, with synchronized improvements
in trajectory features and learning performance confirming the
precision of the intervention. Even for goal-oriented learners
with a stronger foundation, their task time and test scores
showed steady optimization. This result indicates that the
behavior pattern labels derived from the trajectory analysis in
this study have clear practical guiding value, and personalized
intervention can precisely match the behavioral shortcomings
of different learners, effectively improving their learning
efficiency and knowledge mastery, providing an actionable
pathway for the implementation of personalized education.

To intuitively verify the differentiation capability of
trajectory spatio-temporal embeddings for different learning
behavior patterns, this experiment used UMAP dimensionality
reduction to display the distribution -characteristics of
trajectory embeddings. In Figure 5, different clustered groups
correspond to typical learning behavior patterns such as goal-
oriented and random exploration. Trajectories of the same
pattern show high cohesion, while the embedding clusters of
different patterns exhibit clear spatial separation, with
trajectory segments of different semantics showing sub-
clustering characteristics within the clusters. This result is
consistent with the previously quantified experimental
conclusions, visually confirming the semantic differentiation
of the trajectory spatio-temporal embedding representation. It
not only maps trajectories of different behavior patterns into
separated embedding clusters but also distinguishes detailed
semantic trajectory segments within the clusters, providing
visual representation support for the accurate identification of
learning behavior patterns and further validating the
effectiveness of the embedding method in the learning
trajectory analysis task.

Table 4. Effectiveness verification results of personalized intervention

Learning Behavior Pattern

Goal-Oriented Random Exploration

Repeated Hesitation

Pre-Intervention Task Time (min)
Post-Intervention Task Time (min)
Pre-Intervention Test Score (points)
Post-Intervention Test Score (points)
Pre-Intervention Review Embedding Similarity
Post-Intervention Review Embedding Similarity
Pre-Intervention Strategy Switching Frequency
Post-Intervention Strategy Switching Frequency

8.2
1.5
85
&9
0.82
0.86
2.1
1.8

12.5 11.8
9.3 8.9
72 68
81 77
0.65 0.60
0.78 0.75
43 3.8
2.5 2.2
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Figure 5. UMAP dimensionality reduction visualization of learning trajectory spatio-temporal embedding for different learning
behavior patterns

4. CONCLUSION

This paper proposed a learning behavior pattern discovery
method that integrates deep spatio-temporal embedding with
multi-module collaboration to meet the core needs of learning
trajectory analysis in personalized education scenarios. The
method’s full-link effectiveness from trajectory representation
to intervention implementation was systematically validated.
The core of the research is the construction of a technical
framework: "Trajectory Spatio-Temporal Embedding—Multi-
Scale Feature Fusion—Behavior Pattern Clustering—
Personalized Intervention." By using the parameter-shared
STv2 encoder to ensure consistency of dual-phase trajectory
features, the multi-scale differential fusion module aggregates
micro-, local-, and macro-granularity trajectory information,
and contrastive loss enhances the semantic differentiation of
embedding vectors, forming trajectory representations with
both consistency and differentiation. The experimental results
show that this representation significantly outperforms
mainstream embedding methods like LSTM and Transformer
in clustering purity, semantic classification F1 score, and other
metrics, with clustering purity reaching 0.92. Ablation
experiments confirm that the core modules improve
performance through a ‘"consistency preservation by
encoder—feature aggregation by MDFM—strong
differentiation by contrastive loss" collaborative mechanism.
After removing multi-scale differential fusion, the pattern
recognition F1 score dropped by 15.6%. In baseline
comparison experiments, the F1 score of the semantic fuzzy
repeated hesitation pattern reached 0.85, a 41.7%
improvement over the rule-based method, with an average
mode discovery time optimized to 65 ms. Further t-SNE
visualization and correlation heatmap analysis clarified the
regulatory effect of contrastive loss on embedding
differentiation and revealed the chain-like correlation path of
"Trajectory Micro Features — Behavior Patterns — Cognitive
States — Learning Outcomes." In the personalized
intervention experiment, random exploration learners showed
a 25.6% reduction in task time, and repeated hesitation
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learners' test scores increased by 13.2%, directly verifying the
practical value of the research. This study provides both a
theoretical paradigm for deep representation of learning
trajectories and quantifiable technical support for the
implementation of personalized education's "precise
identification—targeted intervention."

Although this research has achieved significant results in
trajectory analysis and intervention practice, there are still
three limitations: first, the experimental data mainly come
from middle school mathematics problem-solving scenarios,
and the generalization of trajectory features and behavior
patterns in other subject contexts such as Chinese reading or
science experiments has not been fully verified; second, the
evaluation of personalized intervention effects focuses on
short-term task performance, lacking long-term tracking data
on learners' cognitive habits and ability improvement; third,
trajectory analysis relies only on objective features of
visualized trajectories and does not incorporate subjective data
like learners' self-reported motivation or emotions, which may
affect the completeness of behavior pattern explanations.
Future research could progress in three areas: first, expanding
the sample dataset across disciplines and educational levels,
optimizing model scenario adaptation abilities with transfer
learning; second, designing a longitudinal tracking experiment
lasting a semester to construct a correlation model between
short-term performance and long-term ability improvement;
finally, integrating multi-modal data, incorporating
physiological signals (such as eye movement data) and
subjective evaluations into the trajectory analysis framework
to further improve the accuracy of behavior pattern
recognition and the targeting of intervention strategies, while
exploring lightweight deployment solutions for educational
edge devices to enhance practical application convenience.
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