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 The in-depth development of personalized education urgently demands accurate capture of 

dynamic learning process trajectories. Existing methods show significant limitations in 

modeling spatiotemporal correlations in dual-phase learning images, decoding trajectory 

semantics, and generalizing behavior patterns, making it difficult to support process-

oriented learning diagnostics effectively. To address this, we propose an end-to-end 

framework that integrates feature extraction, spatiotemporal embedding, trajectory analysis, 

and pattern discovery. We first use a parameter-shared dual-branch Swin Transformer V2 

to extract multi-scale features from dual-phase learning images, enhanced by a multi-scale 

differential fusion module to emphasize trajectory changes. A spatiotemporal embedding 

mechanism maps features into high-dimensional trajectory vectors, and after reconstructing 

the full trajectory using Dynamic Time Warping (DTW), we apply an improved Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to discover 

learning behavior patterns. A lightweight strategy and contrastive loss are introduced to 

balance model accuracy and efficiency. Experimental results demonstrate that the proposed 

spatiotemporal embedding representation outperforms mainstream embedding and 

traditional clustering methods, achieving a clustering purity of up to 0.92. Key modules 

collaborate synergistically, with the multi-scale differential fusion module playing a crucial 

role; its removal reduces the F1 score of pattern recognition by 15.6%. Contrastive loss 

reduces trajectory cluster overlap from 42% to 11%. Personalized intervention shows 

significant effects, reducing task completion time by 25.6% for randomly exploratory 

learners and increasing test scores by 13.2% for indecisive learners. This study shows that 

the proposed framework enables an end-to-end transformation from image features to 

interpretable behavior patterns, providing critical technical support for real-time 

interventions and learning path optimization in personalized education, and enriching 

interdisciplinary research paradigms in educational data mining.  
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1. INTRODUCTION 

 

The deepening advancement of personalized education has 

prompted a shift in the educational assessment paradigm from 

a traditional results-oriented approach to a process-oriented 

one, with dynamic trajectories in the learning process 

becoming the core basis for analyzing learners' cognitive states 

and learning strategies [1, 2]. Learning process image 

trajectories, such as eye movement focus shifts and 

handwritten operation sequences, can intuitively map learners' 

attention distribution, thought progression, and decision-

making processes, providing rich unstructured data support for 

precise learning condition diagnosis [3-5]. However, learning 

trajectories simultaneously possess the dual attributes of 

spatiotemporal continuity and semantic ambiguity: at the 

microscopic level, it is necessary to capture the temporal 

correlations of eye movement points and computational steps, 

and at the macroscopic level, it is necessary to interpret the 

semantic mapping of trajectory distribution and learning 

efficiency. Existing methods struggle to achieve the 

coordinated modeling of both [6, 7]. Meanwhile, the 

computational power constraints of edge devices in 

educational scenarios, such as smart tablets and classroom 

terminals [8, 9], impose dual demands for high-precision 

trajectory analysis and lightweight deployment, making 

traditional complex models unable to meet this practical need. 

Existing research in the field of learning trajectory analysis 

mostly relies on structured data, such as answer time and click 

sequences [10, 11], and has insufficient exploration of the 

spatiotemporal features contained in image trajectories. A 

complete decoding process, from feature extraction to 

trajectory reconstruction to pattern induction, has not been 

established, leading to a disconnect between technological 

outputs and educational semantic interpretation. In the areas of 

dual-phase feature extraction and spatiotemporal embedding, 

the Transformer architecture, with its powerful temporal 

modeling ability, has shown significant advantages in dual-

phase data processing tasks, but the application of parameter-

sharing dual-branch architectures in educational trajectory 

analysis is rare [12-14]. Existing spatiotemporal embedding 
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techniques mostly focus on general scenarios such as 

pedestrian trajectories and traffic flow, failing to adapt to the 

unique logical associations of learning trajectories, such as the 

semantic progression from problem analysis to solution, 

resulting in embedding vectors lacking interpretability in 

educational scenarios [15, 16]. In terms of behavior pattern 

discovery, traditional statistical clustering methods, such as K-

Means, still dominate the education field [17-19], with low 

integration with deep learning feature extraction processes, 

making it difficult to capture the semantic association patterns 

implicit in the trajectories, thus limiting the educational 

practical value of the pattern discovery results. 

The core gaps in existing research can be summarized in 

three aspects: First, the feature extraction of dual-phase 

learning images lacks trajectory-oriented design, and the 

feature representation and spatiotemporal continuity of 

trajectories have not formed effective binding, resulting in 

insufficient capture accuracy of key trajectory turning points, 

such as attention shifts; second, deep spatiotemporal 

embedding is disconnected from educational semantics, as 

existing embedding vectors only represent feature-level 

similarity and cannot map to trajectory segments with clear 

educational semantics, such as problem analysis and 

computation; third, the trajectory analysis and pattern 

discovery processes are disjointed, lacking an integrated flow 

from trajectory segment segmentation to pattern clustering, 

making it difficult for technological outputs to directly 

translate into educational decision support information. Based 

on this, this study constructs a technology framework that 

balances precision and efficiency through the collaborative 

design of parameter-sharing dual-branch architecture, multi-

scale differential fusion, spatiotemporal embedding decoding, 

and pattern clustering, achieving an organic integration of 

technological innovation and educational value. 

The core contributions of this study include two dimensions: 

theoretical and technical. On the theoretical level, we propose 

a three-level mapping mechanism of dual-phase features, 

spatiotemporal embedding, and trajectory semantics, 

establishing a deep representation framework for learning 

trajectories, filling the research gap in the semantic 

interpretation of spatiotemporal embedding in educational 

scenarios; we also build a behavior pattern discovery process 

of trajectory segmentation, clustering, and semantic 

annotation, achieving a precise transformation from 

technological features to educational semantics. On the 

technical level, we design a collaborative architecture of 

parameter-sharing dual-branch Swin Transformer V2 (STv2) 

and multi-scale differential fusion, enhancing the precision of 

spatiotemporal correlation modeling through cross-phase 

feature consistency constraints and multi-granularity feature 

aggregation; we introduce a combination strategy of feature 

dimensionality reduction and lightweight decoding, along 

with contrastive loss optimization to improve embedding 

performance, enabling high-precision trajectory analysis and 

real-time pattern recognition on edge devices. 

The subsequent sections of this paper are arranged as 

follows: The second part details the technical specifics of the 

proposed integrated framework, including core module 

designs for feature extraction, spatiotemporal embedding, 

trajectory analysis, and pattern discovery; The third part 

verifies the effectiveness of the method through ablation 

experiments and baseline comparison experiments; The fourth 

part discusses the core value, limitations, and future directions 

of the research findings; Finally, the conclusion summarizes 

the entire paper. 

 

 

2. METHODS 

 

2.1 Problem definition 

 

 
 

Figure 1. Model architecture for learning trajectory analysis 

based on parameter-sharing dual-branch STv2 + multi-scale 

differential fusion 

 

This chapter aims to address the problem of trajectory 

analysis and behavior pattern discovery for dual-phase 

learning process images, providing clear mathematical 

definitions and semantic meanings for the input, intermediate 

representations, and output, setting clear objectives for the 

subsequent technical framework design. The input to this 

problem consists of two learning process image pairs captured 

at different moments T1 and T2: I1RH×W×3 and I2RH×W×3, 

where H and W represent the image height and width, 

respectively, and 3 is the number of RGB channels. The image 

contents are visualized encoded results of learning trajectories, 

such as eye movement focus and handwritten operations. 

Based on this input, the model first generates two key 

intermediate outputs: First, the deep spatiotemporal 

embedding vector of the learning trajectory ERN×D, where N 

is the total number of trajectory sampling points, and D is the 

embedding dimension. The vector must encode both the 

spatiotemporal position information and semantic association 

features of the trajectory; Second, the trajectory segment set 

S={S1,S2,...,SM}, where M is the number of segments, and each 

segment corresponds to a continuous trajectory segment with 

unified semantics. The final output of the problem includes 

two types of results: First, the learning behavior change map 

CMRH×W×1, which represents the spatial distribution of 

learning behavior changes between the two moments at the 
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pixel level; second, the learning behavior pattern label set 

L={l1,l2,...,lK}, where K is the number of pattern categories, 

and the labels must accurately correspond to typical learning 

behavior patterns with educational semantics. Figure 1 shows 

the complete model architecture for learning trajectory 

analysis based on parameter-sharing dual-branch STv2 + 

multi-scale differential fusion. 

 

2.2 Parameter-sharing dual-branch Swin Transformer V2 

encoder 

 

The core function of the parameter-sharing dual-branch 

STv2 encoder is to perform multi-scale feature extraction and 

trajectory-oriented representation for dual-phase learning 

process images. Its design centers on ensuring feature 

consistency across the dual-phase and encoding multi-

granularity trajectory information. To address the trajectory 

discontinuity issue caused by cross-phase feature space shifts 

in traditional dual-branch structures, the encoder adopts a 

connected network architecture, where both branches share the 

complete STv2 backbone network weights. This design 

enforces feature extraction of dual-phase images within a 

unified semantic space by binding the weights, thus providing 

the basis for subsequent temporal continuity modeling of 

trajectories, while also reducing model parameters, laying the 

foundation for lightweight deployment. 

The encoder employs a four-stage progressive feature 

extraction process, which uses downsampling and module 

stacking to achieve multi-granularity encoding of trajectories 

from micro to macro levels. The input images are first 

converted into a sequence of image patches using the 4×4 

Patch Partition operation, then processed in the first stage: 

Three STv2 modules are applied to the image patch sequence 

for feature encoding, generating scale 1 features with a 

resolution of H/4×W/4. These features focus on the spatial 

positions and morphological information of micro trajectories, 

such as eye movement points and pen tip landing points. After 

the first stage, subsequent stages perform 2x downsampling 

via Patch Merging operations, while adjusting the number of 

stacked STv2 modules based on the granularity of trajectory 

information: The second stage stacks three STv2 modules, 

generating scale 2 features with a resolution of H/8×W/8, 

encoding the associations of local continuous trajectory 

segments; The third stage stacks four STv2 modules, 

generating scale 3 features with a resolution of H/16×W/16, 

primarily modeling the logical associations of trajectories, 

such as from the problem stem to the options, or from the 

formula to the calculation region. The increased number of 

modules is due to the complexity of trajectory logical 

associations requiring deeper feature interactions; The fourth 

stage stacks three STv2 modules, generating scale 4 features 

with a resolution of H/32×W/32, encoding global trajectory 

distribution patterns, such as the spatial transition features 

between focused and scattered regions. The multi-scale feature 

pyramid formed after the four stages fully covers the 

microscopic morphology, local associations, and global 

distribution information of the trajectory. 

 
2.2.1 Architecture design 

The architecture design of the parameter-sharing dual-

branch STv2 encoder is based on the core principles of 

"trajectory continuity modeling" and "multi-granularity 

information adaptation," achieving a balance between the 

precision and efficiency of feature extraction through 

structural constraints and process optimization. The design 

logic of the dual-branch connected structure stems from the 

core requirement of dual-phase trajectory analysis—the 

comparability of features across phases: If the two branches 

use independent weights, the feature expressions of the same 

trajectory pattern at different moments would be misaligned, 

leading to misjudgments of key trajectory turning points. The 

weight-sharing mechanism ensures that dual-phase images 

generate features under the same feature extraction rules, 

maintaining feature consistency for the same trajectory pattern 

and providing a reliable basis for subsequent trajectory 

temporal evolution analysis. The selection of the STv2 

backbone is based on the advantages of its window-based self-

attention mechanism, which can efficiently capture the local 

continuity of trajectories within a window through attention 

calculations and, simultaneously, achieve global information 

interaction via window shifting operations, thus adapting to 

the local clustering and global migration characteristics of 

trajectories. 

The core window self-attention calculation of the STv2 

module is shown in formula (1). This calculation divides the 

feature map into non-overlapping windows and performs 

attention interaction within the windows, ensuring the efficient 

capture of local trajectory continuity while reducing 

computational complexity. 

 

𝑊 −𝑀𝑆𝐴(𝑋) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
QKT

√dk
+M) 𝑉 (1) 

 

where, X is the input feature of the STv2 module, Q, K, and V 

are the query, key, and value matrices, respectively, dk is the 

dimension of the query matrix, and M is the mask matrix used 

to avoid attention interference from invalid pixels within the 

window. Through this calculation, the module can efficiently 

aggregate the local trajectory features within the window, such 

as the associations between adjacent eye movement points and 

continuous handwritten trajectories. 

The module configuration and resolution design of the four-

stage feature extraction process are optimized to adapt to the 

characteristics of trajectory information. The downsampling 

strategy of Patch Partition and Patch Merging uses fixed ratios 

of 4×4 and 2×2, ensuring reasonable compression of feature 

dimensions while avoiding excessive loss of trajectory spatial 

position information. The differentiated configuration of the 

number of STv2 modules in each stage follows the principle 

of "trajectory information complexity matching": The 

information structure of micro and global trajectories is 

relatively simple, and three modules are sufficient for full 

encoding, while the logical associations in trajectories, which 

involve multiple regions and steps, require four layers of 

modules for deep iteration to achieve feature fusion, ensuring 

the completeness of feature representation for logical chains 

such as "problem analysis - computation - answering." This 

differentiated configuration ensures feature quality while 

avoiding redundant computation and improving the overall 

efficiency of the encoder. 
 

2.2.2 Spatiotemporal embedding mechanism 

The core goal of the spatiotemporal embedding mechanism 

is to convert the multi-scale features output by the encoder into 

trajectory embedding representations that incorporate both 

temporal continuity and spatial significance, realizing the 

semantic transformation from "image features" to "trajectory 

features." This mechanism strengthens the spatiotemporal 
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correlation representation of the features through three 

progressive steps: temporal embedding, spatial embedding, 

and spatiotemporal fusion, providing core inputs for 

subsequent trajectory reconstruction and pattern discovery. 

The temporal embedding step focuses on encoding the 

temporal evolution information of dual-phase trajectories, 

capturing dynamic changes between the two moments' 

trajectories through differential operations. For dual-phase 

features F1
s and F2

s at each scale s=1,2,3,4, the temporal 

difference feature ΔFs=F2
s−F1

s is computed element-wise. The 

physical meaning of this differential operation is to quantify 

the feature change at the same spatial location between 

different moments, directly corresponding to the temporal 

migration of the trajectory, such as the change in the eye 

movement focus from the question stem to the options or the 

movement of the pen tip from the blank area to the calculation 

area. By generating multi-scale differential features in parallel, 

the temporal evolution of trajectories at different granularities 

is synchronized and encoded, preserving fine motion 

information for micro-trajectories and capturing global 

migration patterns for macro-trajectories. 

 

ΔFs=F2
s -F1

s  (2) 

 

where, ΔFsRHs×Ws×Cs is the temporal difference feature at 

scale s, and Hs, Ws, and Cs represent the height, width, and 

number of channels of the feature at scale s, respectively. 

The spatial embedding step employs a spatial attention 

mechanism to enhance the features of key trajectory areas by 

quantifying the importance of spatial positions, increasing the 

feature weights of densely distributed trajectory areas. The 

calculation of spatial attention weights is shown in formula (3). 

The feature map is globally pooled and non-linearly 

transformed to generate an attention weight map of the same 

size as the feature map, which is then multiplied element-wise 

with the original features to obtain spatially enhanced features. 

 

As=Sigmoid(FC(GlobalAvgPool(Fs)) (3) 

 

Fspa
s =Fs⊙(As) (4) 

 

where, Fs is the original feature at scale s, GlobalAvgPool( ) is 

the global average pooling operation, FC( ) is the fully 

connected layer, Sigmoid( ) is the activation function, As is the 

spatial attention weight map, and ⊙ represents element-wise 

multiplication, Fspa
s is the feature at the s-th scale after spatial 

enhancement. The process assigns higher weights to key 

regions such as the formula region and the question stem area, 

while suppressing background noise interference. 

The spatiotemporal fusion step introduces a temporal 

attention gating unit to achieve collaborative integration of 

temporal and spatial information, focusing on reinforcing the 

feature representation of key trajectory turning points. The 

gating unit dynamically adjusts the weights of the differential 

features at different moments, allowing the model to focus on 

key events such as attention shifts and strategy changes. The 

calculation of the temporal attention gating is shown in 

formula (5): 
 

Gs=Sigmoid(Conv(ΔFs⊕Fspa
s )) (5) 

 

Fst
s =Gs⊙ΔFs+(1-Gs)⊙Fspa

s  (6) 

 

where, ⊕ is the channel-wise concatenation operation, Conv( ) 

is a 1×1 convolution layer for dimension adjustment, Gs is the 

temporal attention gating coefficient, and Fst
s is the 

spatiotemporal fused feature at scale s. Through this gating 

mechanism, the temporal evolution information from the 

temporal embedding and the key area information from the 

spatial embedding are deeply fused. The resulting multi-scale 

spatiotemporal embedding features contain both the temporal 

information of "when it changes" and the spatial information 

of "where it changes," providing accurate and semantically 

rich feature support for subsequent trajectory reconstruction 

and behavior pattern discovery. 

 

2.3 Multi-Scale Difference Fusion Module (MDFM) 

 

MDFM is the core hub connecting the parameter-sharing 

dual-branch STv2 encoder and the subsequent trajectory 

analysis modules. Its primary goal is to aggregate the four-

stage dual-phase features output by the encoder, enhance 

trajectory change information through differential operations, 

and then use multi-scale fusion and cross-scale associations to 

achieve deep enhancement of trajectory semantics. The design 

logic of this module is based on the multi-granularity nature of 

learning trajectories—fine shifts in micro-trajectories, 

continuous associations in local trajectories, and distribution 

changes in global trajectories must be captured simultaneously. 

Traditional single-scale fusion or simple concatenation cannot 

achieve the collaborative representation of multi-granularity 

information. MDFM fills this gap with a two-stage design of 

"differential initialization - trajectory-aware fusion." Figure 2 

shows the schematic diagram of the complete MDFM 

architecture. 

 

 
 

Figure 2. Schematic diagram of the MDFM architecture 

 

2.3.1 Differential feature initialization 

The core task of differential feature initialization is to 

transform the dual-phase multi-scale features into an initial 

representation of trajectory changes by quantifying the spatial 

differences between the features at two moments, directly 

mapping the position shifts and morphological changes of the 

trajectory. This process provides "change-directed" base 

features for subsequent fusion. The design of this process is 
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based on the dynamic nature of trajectories—core information 

in learning trajectories lies in the "change from T1 to T2," such 

as the movement of the eye focus from the question stem to 

the options, or the movement of the pen tip from the blank area 

to the calculation area. These changes can be accurately 

captured by the differential operation on dual-phase features. 

Specifically, for the dual-phase features F1
s and F2

s (at time 

T2) output by the encoder at each scale s=1,2,3,4, the element-

wise absolute difference is calculated to obtain the differential 

features Fd
s, as shown in formula (7). Here, Fd

sRHs×Ws×Cs, 

where Hs, Ws, and Cs are the height, width, and channel 

number of the feature at scale s. The element-wise absolute 

difference operation effectively retains the change magnitude 

information and suppresses background noise shared by both 

moments. The Fd
s at different scales corresponds to trajectory 

changes at different granularities: Fd
1 at scale 1 focuses on 

pixel-level shifts in micro-trajectories, such as the eye 

movement points or pen tip locations; Fd
4 at scale 4 captures 

the macroscopic changes in global trajectory distributions, 

such as the transition from focused regions to scattered regions. 

The parallel generation of multi-scale differential features 

ensures complete coverage of trajectory change information 

from micro to macro, providing comprehensive initial input 

for subsequent multi-granularity fusion. 

 

Fd
s=|F1

s -(F2
s ) (7) 

 

The advantage of differential feature initialization lies in the 

"unbiased retention of change information"—compared to 

attention-based weighted differences or thresholded 

differences, the element-wise absolute difference avoids 

distortion of the change magnitude by arbitrary parameters, 

fully retaining the original intensity information of trajectory 

changes. For example, the differential responses to small 

adjustments or large migrations of the eye focus will naturally 

show intensity differences, which serve as a natural basis for 

"focusing on significant changes" in the subsequent multi-

scale enhancement and also lay the foundation for identifying 

key turning points in trajectories. 

 

2.3.2 Trajectory-aware multi-scale fusion 

Trajectory-aware multi-scale fusion is the core process of 

MDFM. Through "multi-scale convolution enhancement - 

cross-scale trajectory association - residual fusion," the initial 

differential features are transformed into trajectory-enhanced 

features Ffusion that incorporate both multi-granularity 

information and semantic associations. The innovation of this 

step lies in introducing a "trajectory-guided" fusion logic, 

breaking the limitations of traditional multi-scale fusion, 

where "scales are processed independently," and enabling 

semantic association across different granularities of trajectory 

information. 

Multi-scale convolution enhancement adapts feature 

extraction to the different needs of trajectory change at various 

granularities by applying parallel heterogeneous convolution 

kernels. It creates "micro-local-global" three-level feature 

enhancement channels for each scale's differential feature Fd
s. 

Specifically, three convolution operations with kernel sizes of 

3×3, 5×5, and 7×7 are applied to Fd
s, as shown in formula (8). 

Here, Conv(k×k) represents the convolution operation with a 

kernel size of k×k, and Fd1
s, Fd2

s, and Fd3
s are the enhanced 

features output by these three convolutions. The 3×3 

convolution focuses on the fine details of micro-trajectories, 

such as the small movement of the pen tip; the 5×5 convolution 

captures the continuous associations of local trajectories, such 

as the continuous movement of the eye focus in the question 

stem area; and the 7×7 convolution extracts the distribution 

pattern of global trajectories, such as the transition from the 

"question analysis - computation - answering" regions. After 

parallel convolution, multi-scale enhanced features 

Fenh
s=[Fd1

s,Fd2
s,Fd3

s] are obtained by concatenating, achieving 

aggregation of multi-granularity information within each scale. 

 

Fd1
s =Conv(3×3,Fd

s ), Fd2
s  

=Conv(5×5,Fd
s ), Fd3

s =Conv(7×7,Fd
s ) 

(8) 

 

Cross-scale trajectory association is implemented through a 

cross-scale attention mechanism that achieves semantic 

binding between features from different scales, solving the 

problem of "decoupling micro-trajectory details from macro-

trajectory semantics." The semantic interpretation of learning 

trajectories requires multi-scale association, such as the "pen 

tip's stay in the formula area" corresponding to "focusing on 

the solving strategy." This association needs to be realized 

through cross-scale feature interaction. Specifically, the 

enhanced feature Fenh
4 at the global scale serves as the 

"semantic-guided feature" for computing attention weights for 

the features at other scales Fenh
s. First, Fenh

4 is converted into a 

global semantic vector G through global average pooling and 

a 1×1 convolution. Then, G is used to calculate attention 

weights for each scale's Fenh
s, resulting in the weight vector As. 

Finally, the features at each scale are semantically calibrated 

by weighted summation, as shown in formula (10), where 

GAP( ) is the global average pooling operation, and Sigmoid( ) 

is the activation function, and ⊙ represents the element-wise 

multiplication: 

 

G=Conv(1×1,GAP(Fenh
4 )) (9) 

 

As=Sigmoid(Conv(1×1,G⊕Fenh
s )),Falt

s =A±⊙Fenh
s  (10) 

 

Residual fusion retains the original change information 

from the initial differential features by using residual 

connections, avoiding information loss during multi-scale 

enhancement and cross-scale association processes. The 

features Fatt
s, weighted by attention, are upsampled to the 

resolution of scale 1, then concatenated to form the fusion 

feature Fconcat. Subsequently, Fconcat is residual added to the 

initial differential feature Fd
1 at scale 1 to obtain the final 

trajectory semantic-enhanced feature Ffusion, as shown in 

formula (11). The introduction of residual connections can 

effectively alleviate the vanishing gradient problem caused by 

deep fusion while ensuring the collaborative retention of both 

original change information and enhanced semantic 

information, providing high-quality feature input with both 

"change precision" and "semantic depth" for subsequent 

trajectory embedding decoding. 

 

Ffusion=Conv(1×1,Fconcat)+Fd
1 (11) 

 
2.4 Learning trajectory analysis and behavior pattern 

discovery module 

 

The Learning Trajectory Analysis and Behavior Pattern 

Discovery Module is the core link between feature extraction 

and educational semantic interpretation. Its main goal is to 

transform the multi-scale fused features into interpretable 
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learning trajectory representations and to infer behavior 

patterns with educational practical value from the trajectories. 

This module employs a two-stage design of "trajectory 

spatiotemporal embedding decoding - behavior pattern 

discovery," first achieving the semantic transformation from 

features to trajectories, and then completing the induction from 

trajectories to patterns through segmentation, clustering, and 

labeling processes, ultimately establishing an accurate 

mapping between technical features and educational semantics. 

 

2.4.1 Trajectory spatiotemporal embedding decoding 

The core task of trajectory spatiotemporal embedding 

decoding is to convert the multi-scale fused features Ffusion into 

trajectory-level embedding representations that combine 

spatiotemporal continuity and semantic consistency, solving 

the problem of semantic disconnection between features and 

trajectories, and providing a structured trajectory 

representation for subsequent analysis. This process consists 

of two progressive steps: embedding vector generation and 

trajectory line reconstruction, respectively achieving the 

transformation from "features to trajectory points" and 

"trajectory points to trajectory lines." 

In the embedding vector generation phase, the semantic 

mapping and dimensional adaptation of the features are 

implemented through a fully connected layer. Although the 

multi-scale fused feature Ffusion has aggregated the 

spatiotemporal and semantic information of the trajectory, it 

still exists in the image feature space and needs to be linearly 

mapped to trajectory point-level embedding vectors. 

Specifically, Ffusion first undergoes global average pooling to 

extract global features, and then passes through a two-layer 

fully connected network, ultimately outputting trajectory 

point-level embedding vectors (ei∈RD, i=1,2,...,N), where N 

is the number of trajectory points and D is the embedding 

dimension. This mapping process is shown in formula (12), 

where GAP( ) is the global average pooling operation, ReLU( ) 

is the activation function, and (W1, b1) and (W2, b2) are the 

weights and biases of the two fully connected layers. Through 

this design, ei simultaneously encodes the spatiotemporal 

location and semantic association of the trajectory points, 

achieving a deep representation of the trajectory points. 

 

ei=W2⋅ReLU(W1⋅GAP(Ffusion)+b1)+b2 (12) 

 

In the trajectory line reconstruction phase, DTW is used to 

address the issue of temporal misalignment caused by uneven 

sampling of trajectory points, and to aggregate discrete 

trajectory points into a complete trajectory line. During the 

learning trajectory collection process, the sampling frequency 

of devices such as eye trackers and handwriting boards is often 

influenced by the operation rhythm, leading to differences in 

sampling density at different moments. Direct concatenation 

would disrupt the temporal continuity of the trajectory. DTW 

solves this issue by calculating the optimal alignment path of 

the trajectory point embedding vectors for adaptive temporal 

matching. First, an N×N distance matrix Ddtw is constructed, 

where each element Ddtw(i,j) is the Euclidean distance between 

the trajectory point ei and ej. Then, dynamic programming is 

used to calculate the cumulative distance matrix Cdtw and 

backtrack to find the alignment path with the smallest 

cumulative distance, as shown in formula (13), where Cdtw(i,j) 

is the minimum cumulative distance for the first i and j 

trajectory points. After DTW alignment, the discrete points 

e1,e2,...,eN are reconstructed into a complete high-dimensional 

trajectory embedding representation E∈RN×D, which retains 

both the temporal continuity and the semantic features of each 

trajectory point. 

 

Cdtw(i,j)=Ddtw(i,j)+ 

min {Cdtw(i-1,j),Cdtw(i,j-1),Cdtw(i-1,j-1)} 
(13) 

 

2.4.2 Behavior pattern discovery process 

The behavior pattern discovery process takes the 

reconstructed trajectory embedding E as input and uses a 

three-step design: "trajectory segment segmentation–

improved DBSCAN clustering–semantic labeling 

verification" to inductively discover interpretable behavior 

patterns from the trajectories. The core innovation of this 

process lies in optimizing segmentation and clustering 

strategies to account for the density heterogeneity and 

semantic relevance of learning trajectories, ensuring the 

accuracy and educational interpretability of the patterns. 

The trajectory segment segmentation phase uses the 

semantic similarity of embedding vectors to semantically 

segment the trajectory, dividing the complete trajectory into 

continuous segments with unified educational semantics. The 

semantic features of learning trajectories exhibit local 

consistency—such as the highly similar semantics of 

trajectory points during the "question analysis" phase—while 

the transition from "question analysis" to "computation" will 

accompany a semantic mutation. Therefore, the cosine 

similarity of the trajectory point embedding vectors can be 

used to determine semantic continuity. Specifically, the cosine 

similarity Sim(ei,ei+1) between adjacent trajectory points ei and 

ei+1 is calculated, as shown in formula (14). When the 

similarity falls below a preset threshold θ, the trajectory is 

considered to have a semantic boundary, and segmentation is 

performed. The optimization of threshold θ is based on expert-

annotated trajectories: using a validation set of 300 annotated 

trajectories, a grid search is performed over θ∈[0.5, 0.9], the 

θ with the highest segment segmentation accuracy is selected 

as the final threshold. After segmentation, a trajectory segment 

set S={S1,S2,...,SM} is obtained, with each segment 

corresponding to a single educational semantic, such as 

"question analysis," "computation," or "checking." 

 

Sim(ei,ei+1)=
ei⋅ei+1

‖ei‖⋅‖ei+1‖
 (14) 

 

The improved DBSCAN clustering phase addresses the 

issue of traditional density clustering's poor adaptability to 

trajectory density heterogeneity by implementing an adaptive 

radius design for precise clustering of candidate behavior 

patterns. The density distribution of learning trajectories is 

significantly heterogeneous, such as high-density points in the 

"focused computation" region and low-density points in the 

"random exploration" region. A fixed radius parameter can 

result in over-segmentation in high-density areas or missing 

clusters in low-density areas. To address this, we propose an 

adaptive radius strategy based on trajectory density: for each 

trajectory segment Sm, the average Euclidean distance to its K-

nearest neighbors is calculated as the local density radius rm 

for that segment, and the median of all rm values is taken as the 

clustering radius Eps. The core point threshold MinPts is then 

set proportionally to the total number of segments. During 

clustering, the average embedding vector em of each trajectory 

segment is used as the clustering unit, and similarity between 
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segments is measured using the Euclidean distance. The final 

output is a set of candidate behavior patterns P={P1,P2,...,PK}. 

The semantic labeling and verification phase involves 

expert participation and quantitative optimization to assign 

educational semantics to the candidate patterns and calibrate 

parameters, ensuring the practical value of the patterns. This 

phase follows a closed-loop process of "expert labeling - 

consistency verification - parameter optimization": first, three 

education experts with over five years of teaching experience 

are invited to label the candidate patterns P based on 

characteristics such as spatial distribution and temporal 

rhythm of the trajectory segments. The labeling categories 

include goal-oriented, random exploration, hesitation, etc. 

Then, the consistency of labeling is verified using the Kappa 

coefficient, with Kappa≥0.75 considered consistent. If 

consistency is not reached, expert discussions are used to reach 

a consensus. Finally, the labeled results are used as ground 

truth to construct a confusion matrix to analyze clustering 

errors, and parameters K and MinPts are adjusted to minimize 

clustering error rates. After optimization, the final set of 

learning behavior pattern labels L={l1,l2,...,lK} is obtained. 

This label set not only aligns with the objectivity of technical 

clustering but also provides educational interpretability for 

practical applications. 

 

2.5 Efficiency optimization and loss function 

 

Efficiency optimization and loss function design are key 

components in ensuring the practicality and performance 

integrity of the model. Efficiency optimization focuses on the 

computational constraints of edge devices in educational 

scenarios. Through a full-process strategy of feature 

dimensionality reduction, lightweight decoding, and 

redundancy pruning, the model complexity is reduced while 

controlling precision loss. The loss function targets the multi-

task objectives of "change map generation - trajectory 

embedding - pattern clustering," adopting a hybrid loss 

architecture to achieve collaborative optimization of multi-

dimensional performance, providing precise guidance for 

model training. 

 

2.5.1 Efficiency optimization strategy 

The efficiency optimization strategy is based on the design 

principle of "full-process lightweight," optimizing three key 

components: encoder feature output, decoder upsampling, and 

feature channels. The strategy aims to achieve a collaborative 

improvement of model parameters and inference speed while 

ensuring that the core performance of trajectory analysis and 

pattern discovery is not significantly impacted. The design 

logic of this strategy originates from the practical constraints 

of educational edge devices—such as smart tablets and 

classroom terminals, whose computational power is typically 

only 1/10 to 1/5 of that of professional training GPUs. 

Therefore, targeted optimization is required to break through 

deployment bottlenecks. 

The feature dimensionality reduction and redundancy 

pruning strategy focuses on compressing the dimensionality of 

encoder output features, reducing the computational burden of 

subsequent processing while retaining core trajectory 

information. At the output of each stage in the STv2 encoder, 

a 1×1 convolution layer is applied to linearly transform the 

feature channels, reducing the number of channels to half of 

the original size. This operation uses information aggregation 

along the channel dimension for dimensionality reduction, 

avoiding the loss of trajectory spatial information caused by 

traditional pooling operations. Redundant feature pruning 

dynamically selects features based on the statistical properties 

of feature response values: the L2 norm of each channel 

feature is calculated as the response strength indicator, and 

after sorting the response values in descending order, the top 

80% of channels are retained, while channels with weak 

responses are pruned. 

The lightweight decoder design addresses the high 

parameter count issue of change map generation by adopting 

a two-stage upsampling strategy of "bilinear interpolation + 

1×1 convolution," replacing traditional transposed 

convolution. Although transposed convolution can achieve 

high-precision upsampling, it is prone to checkerboard 

artifacts, which blur the boundaries of the change map, and its 

parameter count is more than three times that of bilinear 

interpolation at the same resolution. The two-stage 

upsampling process in this study is as follows: In the first stage, 

the multi-scale fused feature Ffusion undergoes 2x bilinear 

interpolation, combined with 1×1 convolution to adjust the 

channel dimension and suppress noise; in the second stage, 8x 

bilinear interpolation is applied to restore the feature map to 

the original resolution, followed by 3×3 convolution to refine 

the boundaries of the change regions. 

 

2.5.2 Loss function design 

The design goal of the loss function is to simultaneously 

optimize the accuracy of change map generation, the quality 

of trajectory embedding, and the clustering effect of behavior 

patterns. A single loss function cannot meet the needs of multi-

task objectives, so a hybrid loss architecture of "cross-entropy 

loss - Dice loss - contrastive loss" is constructed, with weight 

distribution to achieve collaborative optimization of each task 

goal. The weights of each loss component are determined 

through grid search, with the highest comprehensive score on 

the validation set, evaluated by "change map mIoU + 

trajectory embedding similarity + pattern recognition F1 

score." The final weights are determined as: cross-entropy loss 

weight 0.4, Dice loss weight 0.3, and contrastive loss weight 

0.3. 

For the change map generation task, a combination of cross-

entropy loss and Dice loss is used to solve the class imbalance 

and boundary accuracy issues in pixel-level classification. 

Cross-entropy loss is a classic loss function for pixel 

classification tasks, optimized by quantifying the logarithmic 

difference between predicted probabilities and true label 

values, as shown in formula (15), where CMi,j is the predicted 

probability of the change map at pixel (i,j), and CMgt,i,j is the 

corresponding true label at that location. Since the behavior 

change region typically occupies only 15%-30% of the image, 

leading to significant class imbalance, Dice loss is introduced 

to optimize the sample distribution bias, as shown in formula 

(16), where TP is the true positive pixel count, FP is the false 

positive pixel count, and FN is the false negative pixel count. 

The combination of both loss functions optimizes both 

classification probability and overall matching of the change 

regions, improving pixel-level accuracy in the change map. 

 

LossCE=-
1

H×W
∑ ∑ CW

j=1
H
i=1 Mgt,i,j log (CMi,j)  

+(1-CMgt,i,j) log ( 1-CMi,j) 
(15) 

 

LossDice=1-
2TP

2TP+FP+FN
 (16) 
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Contrastive loss is used to optimize the discriminability of 

trajectory point embedding vectors, providing a high-quality 

embedding foundation for subsequent behavior pattern 

clustering. The core logic of this loss is to force the embedding 

vectors of similar trajectory points to converge and the 

embedding vectors of dissimilar trajectory points to separate, 

as shown in formula (17), where ei and ej are the embedding 

vectors of similar trajectory points, ek is the embedding vector 

of dissimilar trajectory points, and τ=0.1 is the temperature 

parameter used to adjust the steepness of the similarity 

distribution. This loss improves the semantic distinction of 

embedding vectors through contrastive learning, meaning the 

cosine similarity of similar trajectory points is reinforced, and 

the similarity of dissimilar trajectory points is suppressed. The 

final form of the hybrid loss function is shown in formula (18): 

 

Losscontra=- log
exp ( ei⋅ej/τ)

∑ exp (k≠j ei⋅ek/τ)
 (17) 

 

Loss=0.4×LossCE+0.3×LossDice+0.3×Losscontra (18) 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

To verify the discriminability and clustering quality of the 

trajectory spatio-temporal embedding representation for 

different semantic types of trajectories, this experiment 

compares the performance of different embedding methods 

across multiple metrics. As shown in Table 1, the proposed 

method outperforms all other methods for all trajectory types: 

the clustering purity for the review trajectory reaches 0.92, and 

the silhouette coefficient is 0.78, significantly higher than both 

LSTM trajectory embedding and Transformer trajectory 

embedding. Even for the "correction" trajectory, where the 

semantic boundary is less clear, the semantic classification F1 

score of the proposed method remains 0.88, improving by 

31.3% over the traditional K-means clustering. This result 

indicates that the proposed spatio-temporal embedding 

representation can accurately capture the unique features of 

different semantic trajectories, achieving high cohesion for 

similar trajectories and strong separation for dissimilar 

trajectories, thus providing a high-quality representation 

foundation for the subsequent precise discovery of learning 

behavior patterns. 

To clarify the contribution of each core module to trajectory 

analysis and behavior pattern discovery, this experiment 

observes the performance changes by gradually removing 

modules. As shown in Table 2, the full model achieves a 

pattern recognition F1 score of 0.90 and a clustering purity of 

0.91. After removing the MDFM, the pattern recognition F1 

score drops to 0.76, clustering purity decreases by 14.3%, and 

embedding dimension cohesion drops by 20.2%. This is the 

most significant performance degradation among all ablation 

settings, indicating that MDFM is the core component for 

aggregating multi-granularity trajectory features and 

strengthening semantic associations. After removing the 

parameter-sharing STv2 encoder, the pattern recognition F1 

score decreases by 8.9%, confirming the encoder's role in 

ensuring consistency of dual-time-phase trajectory features. 

When contrastive loss is removed, the silhouette coefficient 

decreases from 0.77 to 0.62, highlighting its value in 

regulating the cohesion of similar embedding vectors. These 

results indicate that the core modules of the proposed method 

do not function independently but work synergistically 

through the mechanism of "encoder ensuring consistency - 

MDFM aggregating features - contrastive loss strengthening 

distinction," collectively improving the performance of 

trajectory embedding and behavior pattern discovery. 

To verify the superior performance of the proposed method 

in learning behavior pattern discovery tasks, this experiment 

compares multiple metrics from different baseline methods. 

As shown in Table 3, the proposed method significantly 

outperforms others in terms of the recognition accuracy of 

various behavior patterns: the F1 score for the random 

exploration pattern reaches 0.88, which is a 14.3% 

improvement over Transformer trajectory embedding + 

DBSCAN clustering; the F1 score for the repeated hesitation 

pattern is 0.85, which is a 41.7% improvement over the rule-

based method. At the same time, the overall trajectory 

classification accuracy of the proposed method reaches 0.89, 

the user annotation consistency rate increases to 0.88, and the 

average pattern discovery time is only 65 ms—achieving 

efficiency optimization alongside accuracy improvement. This 

result shows that the proposed method, through spatio-

temporal embedding and multi-module synergy, solves the 

adaptation issue of traditional rule-based methods for complex 

trajectories and compensates for the recognition limitations of 

mainstream embedding methods in semantic ambiguous 

trajectories, providing better overall performance in learning 

behavior pattern discovery tasks. 

 

Table 1. Quantitative performance validation of learning trajectory spatio-temporal embedding representation 

 

Method 
Trajectory 

Type 

Clustering 

Purity 

Silhouette 

Coefficient 

Normalized Mutual 

Information (NMI) 

Semantic Classification 

F1 Score 

Proposed Method 

Review 0.92 0.78 0.85 0.91 

Calculation 0.90 0.75 0.83 0.89 

Inspection 0.88 0.72 0.81 0.87 

Correction 0.89 0.74 0.82 0.88 

LSTM Trajectory 

Embedding 

Review 0.75 0.52 0.63 0.73 

Calculation 0.72 0.48 0.60 0.70 

Inspection 0.68 0.45 0.57 0.67 

Correction 0.70 0.47 0.59 0.69 

Transformer Trajectory 

Embedding 

Review 0.81 0.63 0.72 0.80 

Calculation 0.79 0.60 0.70 0.78 

Inspection 0.76 0.57 0.67 0.75 

Correction 0.77 0.59 0.68 0.76 

K-means Traditional 

Clustering 

Review 0.62 0.38 0.49 0.60 

Calculation 0.60 0.35 0.47 0.58 

Inspection 0.57 0.32 0.44 0.55 

Correction 0.59 0.34 0.46 0.57 
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Table 2. Ablation experiment results of core modules 

 

Ablation Setting 
Pattern Recognition F1 

Score 

Clustering 

Purity 

Silhouette 

Coefficient 

Embedding Dimension 

Cohesion 

Full Model (Proposed Method) 0.90 0.91 0.77 0.84 

Remove Parameter-Sharing STv2 Encoder 0.82 0.83 0.65 0.73 

Remove MDFM 0.76 0.78 0.58 0.67 

Remove Contrastive Loss 0.80 0.81 0.62 0.70 

Remove MDFM + Contrastive Loss 0.71 0.73 0.52 0.61 

 

Table 3. Comparison of baseline models 

 

Methods 
Rule-based Learning 

Trajectory Analysis 

LSTM Trajectory Embedding 

+ K-means Clustering 

Transformer Trajectory 

Embedding + DBSCAN Clustering 

Proposed 

Method 

Goal-Oriented Pattern F1 0.72 0.80 0.83 0.91 

Random Exploration 

Pattern F1 
0.65 0.73 0.77 0.88 

Repeated Hesitation Pattern 

F1 
0.60 0.68 0.72 0.85 

Overall Trajectory 

Classification Accuracy 
0.68 0.75 0.79 0.89 

Average Pattern Discovery 

Time (ms) 
120 95 80 65 

Clustering Purity 0.70 0.78 0.82 0.91 

User Annotation 

Consistency Rate 
0.66 0.73 0.77 0.88 

 

To quantify the regulation effect of contrastive loss on the 

semantic discrimination of trajectory spatio-temporal 

embeddings and support the precise clustering of learning 

behavior patterns, this experiment uses t-SNE dimensionality 

reduction for visualization, comparing the trajectory 

embedding distribution features with and without the 

constraint of this loss. As shown in Figure 3, without 

contrastive loss, the embedding points of different semantic 

types in the goal-oriented trajectories, such as "review → 

calculation" and "calculation → checking," show about 42% 

spatial overlap, with the silhouette coefficient of the clusters 

only being 0.31. Both the intra-class cohesion and inter-class 

separation of embedding vectors are insufficient. When 

extended to all categories of trajectories, the confusion rate 

between the "checking → correction" class and the "semantic 

continuity" class reaches 37%, making it impossible to form 

clearly defined independent clusters, which would directly 

increase the misclassification rate of subsequent behavior 

patterns. 

After introducing contrastive loss, the overlap rate of 

embedding clusters for different categories of goal-oriented 

trajectories decreases to 11%, and the silhouette coefficient 

increases to 0.68. The spatial gap between the embeddings of 

the "semantic continuity" category and other changing 

categories increases by 2.3 times. When extended to all 

categories of trajectories, the confusion rate of all category 

embedding clusters is below 8%, and the "checking → 

correction" trajectory forms a compact and clearly bordered 

independent cluster, with the intra-cluster distance reduced to 

one-third of its original value. These features indicate that 

contrastive loss effectively improves the semantic 

discrimination of trajectory spatio-temporal embeddings by 

constraining the cohesion of similar trajectory embeddings and 

the separation of dissimilar embeddings. 

 

  
(a) Embedding distribution of goal-oriented trajectories 

(without loss) 

(b) Embedding distribution of goal-oriented trajectories (with 

loss) 
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(c) Embedding distribution of all categories of trajectories 

(without contrastive Loss) 

(d) Embedding distribution of all categories of trajectories 

(with contrastive loss) 

  

Figure 3. t-SNE visualization of trajectory spatio-temporal embedding vectors 

 

 
 

Figure 4. Correlation heatmap of learning trajectory features and behavior pattern metrics 

 

The core value of this result is twofold: firstly, it validates 

the rationality of the hybrid loss function design in this 

study—introducing contrastive loss fills the gap of insufficient 

semantic discrimination in embeddings when solely relying on 

change map loss; secondly, this embedding optimization 

strategy provides a high-recognition basis for discovering 

learning behavior patterns, improving the clustering accuracy 

of different learning behavior patterns by about 19%. 

Ultimately, this supports the precise analysis of learners' 

cognitive processes in personalized educational contexts, 

providing quantifiable trajectory representations for targeted 

instructional interventions. 

The 18 coordinate metrics in the heatmap shown in Figure 

4 cover two dimensions: learning trajectory features and 

learning behavior evaluation. The first four are review 

trajectory embedding similarity, calculation trajectory 

duration, inspection trajectory spatial aggregation, and 

correction trajectory frequency, focusing on the micro features 

of learning trajectories. They measure the consistency of the 

review phase trajectory representation, time allocation in the 

calculation phase, spatial concentration of the inspection 

behavior, and the frequency of correction operations, 

respectively. The 5th to 7th metrics are the proportions of goal-

oriented, random exploration, and repeated hesitation patterns, 

which classify the core learning behavior patterns to 

distinguish different learners' behavioral tendencies. The 8th 

to 10th metrics are trajectory spatio-temporal embedding 

dimensions 1/2 and the number of trajectory semantic 

segments, corresponding to deep representation and phase 

division of trajectories, supporting the distinction of 

embedding vectors and the semantic decomposition of the 

learning process. The 11th to 13th metrics are the switching 

time between review-calculation, calculation-inspection, and 

inspection-correction, reflecting the transition efficiency 

between learning phases. The last five metrics are learning 

efficiency score, attention concentration degree, strategy 

switching frequency, knowledge mastery level, and task 

completion time, which are personalized education metrics for 

evaluating learning states and outcomes, covering core 

dimensions such as cognitive focus, strategy adjustment, 

knowledge mastery, and task efficiency. These metrics form a 

complete chain from trajectory representation, behavior 

classification, to effect evaluation, providing multi-

dimensional support for analyzing the relationship between 

learning trajectories and personalized learning. 

To verify the effectiveness of deep trajectory representation 
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in predicting learning behavior patterns and learning 

outcomes, and to analyze the chain-like correlation 

mechanism between trajectory features, behavior tendencies, 

and cognitive states, this experiment quantifies the 

hierarchical correlation characteristics of 18 metrics through a 

correlation heatmap. From the construct validity of trajectory 

embedding, the correlation coefficients between review 

trajectory embedding similarity and calculation trajectory 

duration, as well as trajectory spatio-temporal embedding 

dimension 1, are 0.99 and 1.0, respectively, both showing 

highly significant correlations. This confirms the rationality of 

the embedding dimension design: embedding dimension 1 

accurately captures the semantic consistency features of the 

review phase, and the stability of this feature directly extends 

to the time allocation of the calculation phase, reflecting the 

coherence of information processing. From the logical 

correlation between trajectory features and behavior patterns, 

the correlation coefficient between the proportion of goal-

oriented patterns and review trajectory embedding similarity 

is -0.77. This negative correlation is not weak but corresponds 

to specific behavioral logic: goal-oriented learners tend to 

complete the review quickly and enter the calculation phase, 

showing lower similarity in their review trajectories, while 

random exploration learners show higher similarity in their 

review trajectories. 

From the explanatory power of trajectories on cognitive 

states, the correlation coefficient between inspection trajectory 

spatial aggregation and correction trajectory frequency is 0.79, 

indicating that the higher the spatial concentration of the 

inspection behavior, the lower the frequency of corrections. 

This correlation directly corresponds to the 0.97 highly 

significant positive correlation between attention 

concentration and knowledge mastery. Learners with higher 

attention concentration have higher spatial aggregation in their 

inspection trajectories, lower correction frequency, and 

stronger knowledge mastery. The correlation coefficients 

between learning efficiency score and attention concentration 

degree, as well as strategy switching frequency, are -0.63 and 

-0.75, respectively, further revealing the influence mechanism 

of cognitive states: frequent strategy switching is essentially 

an outward manifestation of attention distraction, and both 

contribute to an increase in ineffective time during the learning 

process, ultimately reducing efficiency. 

The core value of this analysis lies in dual verification: first, 

it supports the construct validity of trajectory embedding 

representation—embedding dimensions effectively capture 

the semantic features of learning phases and behavioral 

coherence; second, it clarifies the chain-like predictive path of 

"trajectory micro features → behavior patterns → cognitive 

states → learning outcomes": review trajectory embedding 

similarity can predict time allocation in the calculation phase, 

distinguish goal-oriented and random exploration patterns, 

and ultimately relate to knowledge mastery. This path provides 

an operable intervention logic for personalized education: for 

learners with low review trajectory similarity and large 

fluctuations in calculation time, targeted review strategy 

guidance can be provided to enhance the coherence of 

information processing and improve knowledge mastery; for 

learners with high strategy switching frequency, attention-

focus training can be used to reduce their trajectory spatial 

dispersion, thereby improving learning efficiency. 

To validate the practical improvement effect of 

personalized intervention based on trajectory patterns, this 

experiment implemented targeted strategies for learners with 

different behavior patterns. From Table 4, it can be seen that 

learners of all three patterns showed significant improvement 

effects: the task time for random exploration learners 

decreased from 12.5 minutes to 9.3 minutes, a reduction of 

25.6%; strategy switching frequency dropped from 4.3 to 2.5, 

while the review embedding similarity increased to 0.78, 

reflecting enhanced coherence in their review process; 

repeated hesitation learners' test scores increased from 68 to 

77, a 13.2% improvement, with synchronized improvements 

in trajectory features and learning performance confirming the 

precision of the intervention. Even for goal-oriented learners 

with a stronger foundation, their task time and test scores 

showed steady optimization. This result indicates that the 

behavior pattern labels derived from the trajectory analysis in 

this study have clear practical guiding value, and personalized 

intervention can precisely match the behavioral shortcomings 

of different learners, effectively improving their learning 

efficiency and knowledge mastery, providing an actionable 

pathway for the implementation of personalized education. 

To intuitively verify the differentiation capability of 

trajectory spatio-temporal embeddings for different learning 

behavior patterns, this experiment used UMAP dimensionality 

reduction to display the distribution characteristics of 

trajectory embeddings. In Figure 5, different clustered groups 

correspond to typical learning behavior patterns such as goal-

oriented and random exploration. Trajectories of the same 

pattern show high cohesion, while the embedding clusters of 

different patterns exhibit clear spatial separation, with 

trajectory segments of different semantics showing sub-

clustering characteristics within the clusters. This result is 

consistent with the previously quantified experimental 

conclusions, visually confirming the semantic differentiation 

of the trajectory spatio-temporal embedding representation. It 

not only maps trajectories of different behavior patterns into 

separated embedding clusters but also distinguishes detailed 

semantic trajectory segments within the clusters, providing 

visual representation support for the accurate identification of 

learning behavior patterns and further validating the 

effectiveness of the embedding method in the learning 

trajectory analysis task. 

 

Table 4. Effectiveness verification results of personalized intervention 

 
Learning Behavior Pattern Goal-Oriented Random Exploration Repeated Hesitation 

Pre-Intervention Task Time (min) 8.2 12.5 11.8 

Post-Intervention Task Time (min) 7.5 9.3 8.9 

Pre-Intervention Test Score (points) 85 72 68 

Post-Intervention Test Score (points) 89 81 77 

Pre-Intervention Review Embedding Similarity 0.82 0.65 0.60 

Post-Intervention Review Embedding Similarity 0.86 0.78 0.75 

Pre-Intervention Strategy Switching Frequency 2.1 4.3 3.8 

Post-Intervention Strategy Switching Frequency 1.8 2.5 2.2 
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Figure 5. UMAP dimensionality reduction visualization of learning trajectory spatio-temporal embedding for different learning 

behavior patterns 

 

 

4. CONCLUSION 

 

This paper proposed a learning behavior pattern discovery 

method that integrates deep spatio-temporal embedding with 

multi-module collaboration to meet the core needs of learning 

trajectory analysis in personalized education scenarios. The 

method’s full-link effectiveness from trajectory representation 

to intervention implementation was systematically validated. 

The core of the research is the construction of a technical 

framework: "Trajectory Spatio-Temporal Embedding—Multi-

Scale Feature Fusion—Behavior Pattern Clustering—

Personalized Intervention." By using the parameter-shared 

STv2 encoder to ensure consistency of dual-phase trajectory 

features, the multi-scale differential fusion module aggregates 

micro-, local-, and macro-granularity trajectory information, 

and contrastive loss enhances the semantic differentiation of 

embedding vectors, forming trajectory representations with 

both consistency and differentiation. The experimental results 

show that this representation significantly outperforms 

mainstream embedding methods like LSTM and Transformer 

in clustering purity, semantic classification F1 score, and other 

metrics, with clustering purity reaching 0.92. Ablation 

experiments confirm that the core modules improve 

performance through a "consistency preservation by 

encoder—feature aggregation by MDFM—strong 

differentiation by contrastive loss" collaborative mechanism. 

After removing multi-scale differential fusion, the pattern 

recognition F1 score dropped by 15.6%. In baseline 

comparison experiments, the F1 score of the semantic fuzzy 

repeated hesitation pattern reached 0.85, a 41.7% 

improvement over the rule-based method, with an average 

mode discovery time optimized to 65 ms. Further t-SNE 

visualization and correlation heatmap analysis clarified the 

regulatory effect of contrastive loss on embedding 

differentiation and revealed the chain-like correlation path of 

"Trajectory Micro Features → Behavior Patterns → Cognitive 

States → Learning Outcomes." In the personalized 

intervention experiment, random exploration learners showed 

a 25.6% reduction in task time, and repeated hesitation 

learners' test scores increased by 13.2%, directly verifying the 

practical value of the research. This study provides both a 

theoretical paradigm for deep representation of learning 

trajectories and quantifiable technical support for the 

implementation of personalized education's "precise 

identification—targeted intervention." 

Although this research has achieved significant results in 

trajectory analysis and intervention practice, there are still 

three limitations: first, the experimental data mainly come 

from middle school mathematics problem-solving scenarios, 

and the generalization of trajectory features and behavior 

patterns in other subject contexts such as Chinese reading or 

science experiments has not been fully verified; second, the 

evaluation of personalized intervention effects focuses on 

short-term task performance, lacking long-term tracking data 

on learners' cognitive habits and ability improvement; third, 

trajectory analysis relies only on objective features of 

visualized trajectories and does not incorporate subjective data 

like learners' self-reported motivation or emotions, which may 

affect the completeness of behavior pattern explanations. 

Future research could progress in three areas: first, expanding 

the sample dataset across disciplines and educational levels, 

optimizing model scenario adaptation abilities with transfer 

learning; second, designing a longitudinal tracking experiment 

lasting a semester to construct a correlation model between 

short-term performance and long-term ability improvement; 

finally, integrating multi-modal data, incorporating 

physiological signals (such as eye movement data) and 

subjective evaluations into the trajectory analysis framework 

to further improve the accuracy of behavior pattern 

recognition and the targeting of intervention strategies, while 

exploring lightweight deployment solutions for educational 

edge devices to enhance practical application convenience. 
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