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Nyctanthes arbor-tristis, sometimes known as night jasmine, describes a beloved ornamental
as well as medicinal plant valued for its fragrant blooms and significant cultural value.
However, like many other plants, it is susceptible to many illnesses caused by fungus as well
as bacteria, which can significantly impair its development and aesthetic appeal. Therefore,
it is essential to detect diseases in night jasmine as soon as feasible in order to maintain its
quality as well as prevent potential losses. In order to protect the health as well as welfare
of night jasmine plants, it might be helpful to establish a precise, real-time disease
identification framework. Thus, this research detects and classifies the night jasmine leaf
disease using novel intelligent deep learning-oriented optimization concept. The data is
initially collected from the Kaggle repository named Night Jasmine Leaf Database. The pre-
processing of this gathered data is done by the bilateral filtering, median filtering, wiener
filtering and Contrast Limited Adaptive Histogram Equalization (CLAHE) approaches.
From this pre-processed data, the segmentation is accomplished using the adaptive
threshold-based segmentation method. Now, the Visual Geometry Group-16 (VGG-16)
model performs the feature extraction of this segmented data. Finally, the novel Improved
Stacked Sparse Auto Encoder (ISSAE) model does the detection and classification of night
jasmine leaf disease. The parameter tweaking of traditional SSAE is performed by the
optimization algorithm called Paper Publishing Based Optimization (PPBO) with the
consideration of returning accuracy maximization as the fitness function. According to the
experimental findings, the recommended approach provides a better way to detect and
classify night jasmine leaf diseases. The proposed ISSAE-PPBO model is 10.80% and
12.61% better than the other existing methods in terms of accuracy and sensitivity for the
proposed night jasmine leaf disease detection and classification model, respectively.

1. INTRODUCTION

choices, capable of managing large datasets, identifying
complex patterns, as well as correctly distinguishing among

Night jasmine (Nyctanthes arbor-tristis), a widely grown
decorative and medicinal plant, is important in the fields of
horticulture, conventional medicine, and scent due to its
fragrant blossoms as well as therapeutic uses [1]. However,
like many other plants, night jasmine is extremely susceptible
to a number of leaf diseases, including viral, bacterial, as well
as fungal infections, which can seriously impair plant health,
reduce flower yield, and affect entire aesthetic and commercial
value [2]. Although early infections might be subtle as well as
difficult to detect without close inspection, foliage diseases
often exhibit obvious symptoms such as blights, spots, or color
variations [3]. Hence, maintaining healthy crops as well as
ensuring sustainable agricultural methods depend on the
timely, accurate, and efficient detection and classification of
night jasmine leaf diseases [4]. Advances in deep learning as
well as Al nowadays have opened up novel possibilities in
precision agriculture, particularly in the identification of plant
diseases [5]. Automated methods for picture analysis that
make use of deep learning methods have emerged as reliable
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instances of healthy and diseased leaves [6].

A balance between accuracy, sensitivity, as well as
specificity is also critical to ensure that both diseased and
healthy leaves are accurately identified, reducing the need for
needless treatments and avoiding infections that are
overlooked [7]. If left unchecked, these diseases may spread
quickly throughout plantations, leading to large infestations
that harm night jasmine cultivation as well as increase the need
for chemical treatments, increasing costs and environmental
problems [8].

Conventional methods that rely on human scouting as well
as expert assessments are labor-intensive, time-consuming,
and prone to human error, making them unsuitable for large-
scale agricultural operations [9]. With a focus on malaria, the
present study aimed to do ethnobotanical research, extract
phytochemical components, as well as investigate the
mechanisms of pharmacological impacts and therapeutic uses
[10]. The plant's leaves (NAT) were identified, and upon
confirmation, the sample specimens were kept in an
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herbarium. The phytoconstituents were identified by the
column chromatography technique. The anti-malarial actions
were reviewed. NAT leaves' in vitro efficacy was assessed in
comparison to chloroquine (CQ). The ethnobotanical usage of
night jasmine to treat malaria was confirmed by the present
study. Iridoid glycosides that induced oxidative stress might
be connected to the chemical eclements that provided
pharmacological actions. In many agricultural environments,
particularly in small-scale and resource-limited settings, visual
symptom assessment is the primary diagnostic tool, making
automated image-based detection highly relevant.

Numerous innovative designs have been used in plant
disease identification tasks with promising results, including
SE-VRNet, customized Convolutional Neural Networks
(CNNs), MULTINET, as well as LF-Mamba [11]. Methods
can be confused by variations in lighting conditions, color, leaf
texture, as well as overlapping symptoms within different
illnesses, which can lead to missed detections or false positives
[12]. Although many existing methods show good
effectiveness, they may still be improved, especially in terms
of improving crucial metrics that directly impact the
framework's practical dependability, such as F1 score,
Matthew’s Correlation Coefficient (MCC), as well as False
Negative Rate (FNR). Therefore, even if the field has
advanced thanks to a number of well-known methods, the
continuous search for more robust, effective, as well as
broadly applicable solutions is necessary to fully meet the
demands of real-world agricultural applications focused on
night jasmine leaf disease detection.

The paper contribution is as below.

* To detect and classify the night jasmine leaf disease using
novel intelligent deep learning-oriented optimization concept.

* To pre-process the gathered data by the bilateral filtering,
median filtering, wiener filtering and CLAHE approaches and
to accomplish the segmentation by the adaptive threshold-
based segmentation method.

* To do the detection and classification of night jasmine leaf
disease by the novel ISSAE, where the parameter tweaking of
traditional SSAE is performed by the PPBO with the
consideration of returning accuracy maximization as the
fitness function.

The paper organization is as follows. Section lis the
introduction of the night jasmine leaf disease model. Section 2
is literature survey. Section 3 is proposed methodology with
proposed model, data collection, pre-processing, segmentation
by adaptive threshold-based segmentation, feature extraction
by VGG-16, detection and classification by novel ISSAE and
PPBO algorithm. Section 4 is results and analysis. Section 5 is
the conclusion.

1.1 Motivation

The urgent need to protect the vital decorative as well as
therapeutic plant from yield reduction, quality degradation,
and monetary losses brought on by disease outbreaks is what
motivates the development of an effective methodology for
identifying and categorizing night jasmine leaf diseases.
Traditional manual inspection methods are time-consuming,
biased, as well as often fail to detect diseases in their early
stages, which cause delays and significant crop damage. While
recent deep learning methods such as SE-VRNet, customized
CNNs, MULTINET, as well as LF-Mamba have shown
promise in addressing plant disease detection, challenges
remain in achieving consistently high precision, sensitivity,
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accuracy, and low FNRs, especially under changing
environmental conditions. By providing farmers as well as
horticulturists with timely, data-driven insights, an effective
automated framework will reduce the need for overuse of
pesticides, lower operating costs, and promote healthier crop
management techniques. Thus, improving automated night
jasmine disease detection is essential for both technical
development as well as environmentally friendly farming
methods.

2. RELATED WORK

Isolating the phytochemical components as well as
comprehending the pharmacological action processes,
especially with regard to pyretic circumstances, were the goals
of this work [13]. The present study highlighted the
importance of night jasmine in Ayurveda by providing
comprehensive insights into its chemical constituents,
biological roles of important chemicals, pharmacological
impacts, therapeutic applications, as well as micro
propagation. It was believed that Nyctanthes arbor-tristis Linn
was a legendary plant with significant therapeutic value. The
purpose of this study was to determine the quality criteria for
the leaves in accordance with WHO recommendations in order
to confirm their authenticity as well as purity. Leaf juice was
employed to treat several forms of persistent fevers and was a
safe laxative for babies. The right pediatric emulsion for
lowering fever was presented in this article.

Using Multi-agent DRL as well as EfficientNet, a system
called MULTINET was created for 3D plant leaf disease
diagnosis and severity estimate [14]. Accurately identifying
plant leaf diseases as well as determining their severity was the
main goal of this study. The four consecutive steps listed
below made up the proposed task. In order to enhance picture
quality as well as balance the classes, image pre-processing
was first performed for data cleaning using the Adaptable
LoW Pass Weiner (AWW) filter. Next, the EMbellished
Manta-Ray Optimization Algorithm (EMMARO) was used
for data augmentation [15, 16]. In order to explore information
from several viewpoints as well as provide improved views
from diverse angles, the Block Divider Model (BDM) was
used to turn 2D photos into 3D.

These methods are excellent options for detecting night
jasmine leaf diseases because they make use of attention
strategies, multi-layered feature extraction, as well as spatial
or temporal modelling to improve classification efficacy [17].
Despite these advancements, there are still unique challenges
in recognizing as well as classifying leaf diseases in night
jasmine [18]. To increase the efficiency of identifying as well
as evaluating plant disease instances, a novel approach that
combined Neural Networks (NNs) and clustering approaches
was proposed [19]. This method aimed to accurately quantify
the disease's damage as well as expedite diagnosis. It provided
a method for assessing damage, calculating the percentage
associated with the total leaf area that was infected. This
advancement highlighted the framework's evolution and was a
major improvement over previous methods. This innovative
approach sought to revolutionize the detection as well as
monitoring of plant diseases in agriculture using the
capabilities of NNs and clustering techniques, offering a more
precise and practical remedy.

The present study was concerned with the preliminary
phytochemical analysis as well as measurement using



established methods of bioactive substances, including
terpenoids, flavonoids, phenolics, glycosides, alkaloids,
tannins, cardiac glycosides, and proteins [20]. These were the
elements that provided the human body with -certain
physiological impacts. The presence of these chemical
substances, which were often known as secondary metabolites,
was thought to be responsible for the plant's medicinal value.
The physiological condition related to the plant, in addition to

a number of external elements such as precipitation and
temperature, determined the generation of these active
chemicals, which were particular to the stage or organ. The
Soxhlet extraction technique was used to generate crude
ethanolic extracts from the Nyctanthes arbor-tristis plant's
leaves, flowers, stems, as well as fruits. Table 1 lists the
features and challenges of some of the existing works.

Table 1. Features and challenges of some existing works

Citation Methodology Used Features Challenges
HOSFIY 5? al. CNN, Local Binary Pattern (LBP) Works across multiple datasets Dependent ((l)llzayl)irtf;-processmg
Xiao et al. Deep Residual Network combined with a . . ..
[16] Squeeze-and-Excitation (SE-VRNet) module Enhances feature extraction Computational load is increased.
Parekh et al. Involves severity and treatment Combining entire stages in real-
YOLOv8 . L2, .
[21] recommendations time is challenging
Rahman et CNN User-friendly deployment through Combining hybrid methods
al. [22] web and mobile apps enhances system complexity
Wang et al. LeafMamba Scalable for vast farms Field testing is needed to confirm
[23] lab findings

2.1 Problem statement

The difficulty in identifying as well as categorizing illnesses
of night jasmine leaves arises from the inadequacies of
existing techniques in efficiently and precisely identifying
various disease stages in practical situations. Traditional hand
examination is labor-intensive, subjective, prone to human
error, as well as often overlooks subtle or early signs of
infection. Even though plant disease applications employ
sophisticated deep learning methods such as SE-VRNet,
custom CNNs, MULTINET, as well as LF-Mamba, these
methods still face problems with noisy or imbalanced
information, poor generalization across datasets, and
insufficient sensitivity and precision. Furthermore, many
existing methods struggle to strike a compromise among low
FNRs as well as high detection precision, which is essential
for preventing disease transmission and minimizing missed
infections. In order to overcome these obstacles as well as
provide a scalable, reliable, and automated technique for
detecting and classifying night jasmine leaf diseases in actual
agricultural settings, there exists a pressing need for advanced
computational techniques.

While the above studies provide valuable insights into
image-based plant disease detection, recent advances highlight
several trends that remain underexplored for night jasmine leaf
analysis. Modern transformer-based architectures, attention-
guided CNNs, hyperspectral models, and biologically inspired
optimization  algorithms have demonstrated strong
performance in broader agricultural domains, yet their
applicability to night jasmine remains limited due to the
absence of large, annotated datasets and the computational
demands of such models. Additionally, the literature indicates
that many existing frameworks struggle with noise resilience,
class imbalance, and stability under varying illumination or
occlusion, which are the challenges that are particularly
relevant for night jasmine leaves. Furthermore, current
optimization strategies used in related works often lack
robustness in hyperparameter tuning, leading to inconsistent
performance across datasets. Motivated by these gaps, the
present study focuses on developing a lightweight yet effective
ISSAE-PPBO framework that improves feature abstraction,
stabilizes  hyperparameter  selection, and enhances
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classification reliability, particularly in resource-constrained
agricultural environments. This positions the proposed method
as a practical alternative to more complex architectures while
addressing key limitations identified in prior research.

3. PROPOSED METHODOLOGY
3.1 Proposed model

The proposed night jasmine leaf disease detection and
classification model is consisted of numerous phases like data
collection, pre-processing, segmentation, feature extraction,
detection, and classification. The first source of the data
describes the Night Jasmine Leaf Database, a Kaggle resource.
The bilateral filter, median filter, Wiener filter, as well as
CLAHE techniques are used to process the gathered
information. The adaptive threshold-based segmentation
approach is used to segment this pre-processed information.
This segmented data is now subjected to feature extraction
using the VGG-16 method. Finally, night jasmine leaf disease
is identified and categorized using the new ISSAE method.
The optimization technique called PPBO does the usual SSAE
parameter modification with the objective function of
maximizing return accuracy. The proposed night jasmine leaf
disease detection and classification model is diagrammatically
depicted in Figure 1.

3.2 Data collection

The purpose of the comprehensive collection known as the
Night Jasmine Leaf Diseases Dataset is to support the study as
well as management of leaf diseases that affect the night
jasmine plant. The dataset is gathered from the link,
“https://www.kaggle.com/datasets/shuvokumarbasak4004/ni
ght-jasmine-leaf-diseases-dataset.” High-resolution photos
related to various leaf disease stages as well as types are
included in this collection, which describes a great resource
for plant pathology and agricultural technology researchers
and experts. In order to facilitate the development as well as
assessment of deep learning methods for illness detection and
classification, the photos are arranged to depict different



disease situations. The dataset contributes to the advancement
of automated plant disease diagnosis by offering a diverse
array of visual data, which results in more accurate as well as
efficient agricultural practices. It serves as a fundamental tool
for developing early disease detection computer vision
applications, which helps to lower crop loss as well as promote
sustainable agriculture. The dataset is openly available on
Kaggle, encouraging collaboration as well as innovation in the
field of plant disease management. The dataset comprises
symptom-based image labels, as pathogen-level annotations
were not available for this study. The proposed framework is
thus designed to operate on visual disease cues. The
description of the dataset is listed in Table 2.

Noght Jasemerwe
Leat Databane
‘ S
.:M -
I v Bastere F mervay
We-2ue b Mecang
et mage Progracessing < Wesnar Fituring
(e 2L 3
Y
Adaptive
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v
l'tvnu-n * oo %

Figure 1. Proposed night jasmine leaf disease detection and
classification model

Table 2. Dataset description

Class Count of samples
Healthy 4000
Bacterial blight 2000
Leaf spot 2000
Rust 4000

3.3 Pre-processing

Pre-processing enhances the quality as well as consistency
of input photos before they are used in deep learning
algorithms, which is crucial for the night jasmine leaf disease
detection and classification model. By ensuring that the
method highlights important patterns related to leaf texture,
color variations, as well as disease signs, the first processing
stages improve the accuracy of feature extraction and
categorization. Effective pre-processing improves the
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resilience as well as dependability of the detection framework
by reducing computing complexity and the chance of
overfitting. Here, the pre-processing of the collected night
jasmine leaf disease images is done by the bilateral filtering,
median filtering, wiener filtering and CLAHE approaches.

Create a two-dimensional matrix representation of the
original greyscale picture.

JG,k),1<j<N,1<k<O0 (1)

Here, J(j, k) is the pixel intensity in an image of size N X O
at the coordinates (j, k).

Bilateral filtering: One non-linear smoothing method that
maintains edges describes the bilateral filter, which is
described as follows:

X(jl, ) Z Z He(Lm)

l=—sm=-s

“Hy(JG + Lk +m) =], k)
JU+Lk+m)

]C(jl k) =
(2)

Here, the output after bilateral filtering is shown by J.(j, k),
window radius is shown by s, spatial Gaussian kernel is shown

by H.(l,m) = exp (— %), range Gaussian kernel is shown
t
A . .
by Hy(8) = exp (~55). A= + Lk +m) =J(j,k), and

the normalization factor is shown by X (j, k) respectively.

X(, k) = i i H.(l,m)

l=—sm=-s

“Hy(JG + Lk +m) =], k)

3)

This filter combines pixel similarity as well as spatial
closeness to reduce noise and preserve edges.

Median filtering: Utilizing a sliding window, the median
filter replaces every pixel with the median value of nearby
pixels:

InG, k) = {(Median}{JG+Lk+m) | —s @)
<Im <s}

The window's dimensions are (2s + 1) X (2s + 1), and it
is very effective in removing impulse noise, sometimes known
as salt-and-pepper noise, where Jy (j, k) describes the filtered
output at the pixel at (j, k). The median operator avoids
intensity blurring, which protects edges compared to
averaging filters.

Wiener filtering: Reducing the mean square error among the
estimated as well as real images is the goal of the Wiener filter.
In the frequency domain, the formulation is:

|1 (v, w)|? G(v,w)
Jw,w) = : (5)
,  L,ww)| I(v,w)
|I(U; W)l + Tg (17, W)

Here, the Fourier transform related to the degraded image is
shown by G(v,w), Wiener-filtered image in frequency
domain is shown by J (v, w), Power Spectral Densities (PSDs)
associated with the noise as well as the original image is shown
by T,(v,w) and T, (v,w), and the degradation function like



blur kernel is shown by I(v,w) respectively. In the spatial
domain (with local window estimates considered):

2

o 2

il (6)

]X(jlk)=“+ o2 (](]vk)_“)

Here, the local variance is shown by 62, local mean in the
window is shown by p, noisy image intensity is shown by
J(, k) and noise variance is shown by 1?2 respectively. When
the noise power is known or estimated, this filter is perfect for
eliminating Gaussian noise. The image may undergo

sequential processing for efficient noise reduction.

Jrmar = X (N(C(D)) (7

Here, bilateral filtering operation is shown by C (J), median
filtering operation is shown by N(-) and wiener filtering
operation is shown by X(-) respectively.

CLAHE: An adaptation of the AHE method is CLAHE.
CLAHE solves the over amplification issue with normal AHE
by making use of the clip limit as well as count of tiles options.
The CLAHE method is used to segment the image into N X O
local tiles. Every tile's histogram is calculated separately. In
order to compute the histogram, the mean pixel count per
region may first be found using Eq. (8).

0y = (0y x 0,)/0y (®)

Here, Oy, is the number of grey levels, 0, is the mean
number of pixels, O, is the number of pixels in the y
dimension, and 0, is the number of pixels in the z dimension.
The clip limit can then be defined as shown by Eq. (9) to
restrict the histogram.

OcL = 0p X Opcy )
Here, Oy, stands for the normalized clip limit, which
ranges from 0 to 1, and O, stands for the clip limit. The clip

limit for the height associated with every tile's histogram is
then established using Eq. (10).

-

Here, j =1,2,---,M — 1, M indicates the count of grey
levels, I; describes the height associated with the jH tile's
histogram, and O; describes the jt" tile's histogram. The total
number of clipped pixels may be determined using Eq. (11):

OCL

0

if 01' 2OCL
otherwise

(10)

M-1
04 =(0y><oz)—21j (11)
j=0

Here, the count of pixels that are clipped is denoted by Oj.
Once O, has been established, the clipped pixels must be
redistributed. Redistribution of pixels can be either uniform or
nonuniform. Eq. (12) may be used to calculate the amount of
pixels that need to be reallocated.

0, = 04/M (12)

Here, the amount of pixels that need to be reallocated is
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indicated by O;. The reduced histogram is then normalized
using Eq. (13).

0 if 0;+0, =0
Ij={ g f j s = CL (13)
); + Os  otherwise
Here, j=12,--,M—1 . To get the number of

undistributed pixels, Egs. (11) and (12) are used. Go over the
Eq. (13) again until all of the pixels have been redistributed. In
the end, the contextual region's cumulative histogram might be
represented using Eq. (14):

M-

I, (14)

k=0

After completing all among the previously described
computations, the contextual region's histogram is aligned
with Rayleigh, uniform, or exponential probability
distributions to attain a desired brightness as well as visual
quality. The enhanced image will be the end outcome when
the CLAHE processes have been completed.

The use of multiple filters in the preprocessing stage is
motivated by the heterogeneous noise characteristics observed
in night jasmine leaf images. Bilateral filtering preserves edges
while removing Gaussian noise, median filtering effectively
mitigates impulse noise, Wiener filtering suppresses blur-
induced distortions, and CLAHE enhances contrast under
uneven illumination. Since no single method is capable of
simultaneously addressing all these distortions, the combined
pipeline provides a balanced enhancement strategy that
improves the quality of downstream feature extraction.

3.4  Segmentation threshold-based

segmentation

by adaptive

By isolating the afflicted leaf regions from the background,
segmentation is essential to the night jasmine leaf disease
detection and classification model because it enables the
method to concentrate only on the relevant portions of the
picture. By separating the leaf region from dirt, shadows, or
various adjacent objects, segmentation reduces noise as well
as enhances the delineation of disease-associated
characteristics, such as spots, discoloration, or texture
changes. This focused isolation improves classification
accuracy by enabling the algorithm to pinpoint particular
characteristics linked to illness severity as well as trends.
Furthermore, segmentation improves resource effectiveness
by handling less irrelevant information, which lowers
computing needs. By ensuring that forecasts only consider the
affected leaf areas, it further improves the interpretability of
the method as well as makes the disease detection framework
more robust, reliable, and effective in real-world applications.
Here, the segmentation process for the pre-processed image of
the night jasmine leaf disease model is accomplished by the
adaptive threshold-based segmentation approach.

In order to effectively distinguish among foreground as well
as background, adaptive threshold-based segmentation
describes a dynamic method for picture segmentation that
adjusts the threshold value locally depending on the pixel
neighborhood, even in the presence of irregular lighting or
contrast variations. Instead of relying on a single overall
threshold, this method separates a picture mathematically by
computing a locally varying threshold for each pixel. Assume
J(j, k) be the representation of the greyscale picture input,



where (j, k) are the spatial coordinates associated with the
N x O image. For every pixel J(j, k), a square window with
dimensions x X x is considered. The local standard deviation
0, (j, k) as well as local average |, (j, k) are calculated at this
time. Next, the adaptive threshold U(j, k) is computed as
follows:

UG, K) = 1, Gk + - 0, o) (15)
Here, [ describes a constant that affects how sensitive the

threshold is to changes in local intensity. Segmentation is used
to construct the binary image T (j, k) utilizing

1
0

if1G. k) 2 UG, k)

otherwise

T(.k) ={ (16)

This technique adapts to local picture properties as well as
works particularly well for textured sceneries, medical photos,
and documents when uniform thresholding is insufficient. To
increase resilience in some variations, the arithmetic mean
may be swapped out for the local median or a weighted
average using a Gaussian kernel. Additionally, the window
size w is crucial; a bigger window produces smoother
transitions, while a smaller window provides higher sensitivity
to local variations. Adaptive thresholding uses contextual
intensity distributions to provide a mathematically efficient
method for achieving precise segmentation in complex visual
environments.

3.5 Feature extraction by VGG-16

The night jasmine leaf disease detection and classification
model relies heavily on feature extraction, which transforms
unprocessed picture data into meaningful descriptions that
highlight the unique characteristics of both healthy as well as
diseased leaves. By focusing only on the major relevant data,
effective feature extraction reduces dataset complexity,
increases method generalization, as well as enhances
classification accuracy. It ensures that the classification
framework can more accurately distinguish between distinct
disease kinds or healthy leaves, which will lead to a more
reliable as well as efficient disease detection procedure.Here,
the features are extracted from the segmented images of the
proposed night jasmine leaf disease model by the VGG-16
approach.

A deep CNN (Convolutional Neural Network) represents
the VGG-16. It has three fully connected layers, five max-
pooling layers, thirteen convolutional layers, as well as a
Softmax output layer. The Conv Layer's main tasks include
making local connections, employing neurons as filters, as
well as applying convolution operations on local input via
applying filters and a sliding window technique. The
generalized formula associated with the operating procedure
is:

B(j, k) = (Y * G)(j, k) + ¢ (17)

Here, * describes the convolution operator, Y describes the
input matrix, ¢ describes the bias, and B(j, k) describes the
position value related to filter matrix G with respect to output
matrix (j, k).

The order y associated with the final output matrix is as
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follows if the input matrix has order o, the filter matrix is of
order g, and border padding as well as stride are involved:

o0+ 2q—
_o¥279,

y 1 (18)

The activation function in the ReLU Layer enhances the
nonlinearity of the method by applying a nonlinear mapping
to the feature matrix produced from the convolutional Layer.
Rectified Linear Units, or ReLUs, are widely used and are
among the major significant unsaturated activation functions.

The main purpose of the pooling layer, also known as down
sampling, is to reduce the number of parameters as well as
their dimensionality. The idea is to divide the feature graph
into many non-overlapping regions using different Windows,
then apply average pooling or maximum pooling on these
regions.

The data properties are obtained in the Fully Connected
Layer after the convolution as well as pooling processes of the
convolution and pooling layers, respectively. The correlation
among the fully connected layer as well as the outputs related
to linear neurons is shown as follows:

gy) = Z(xjkyj) + ¢ (19)

Here, b is the bias component in the fully connected layer's
output.

3.6 Detection and classification by novel ISSAE

The core components related to the night jasmine leaf
disease model are detection and classification, which enable
the framework to automatically identify as well as differentiate
infected leaves from healthy ones. The detection stage
focusses on locating the diseased leaf sections, sometimes
using segmentation findings or bounding box approaches to
pinpoint the exact places displaying symptoms like blights,
spots, or color changes. Following the identification of the
afflicted regions, the classification stage assigns the leaf to a
specific category, such as healthy, mildly infected, or severely
infected, or, in the event that many disease types are found,
identifies the exact kind of illness. Together, detection as well
as classification forms a robust procedure that not only
identifies diseased leaves yet also informs farmers about the
kind and severity associated with the disease, enabling them to
make more accurate and timely agricultural decisions.The
detection and classification of the extracted features of the
proposed night jasmine leaf disease model is done here by the
novel ISSAE approach, where the parameters of SSAE are
tweaked by PPBO with the intention of maximizing accuracy
as the fitness function.

There are several advantages of using the SSAE to detect as
well as classify illnesses in night jasmine leaves. First of all,
SSAE excels in learning compressed as well as hierarchical
descriptions associated with input pictures, spotting subtleties
that conventional techniques would overlook, such as texture
variations, color patterns, and disease signs. By ensuring that
only the important as well as instructive neurons are triggered,
the sparsity requirement reduces noise and improves the
method's capacity for generalization. Even in situations where
labelled data is few, the framework may improve classification
accuracy by SSAE to obtain more abstract as well as



differentiating characteristics. Additionally, SSAE can
efficiently handle high-dimensional picture information,
reducing processing burden while maintaining important
details. As a result, the method can withstand variations in
lighting, backdrop as well as leaf placement. Using SSAE
improves the detection as well as classification procedure,
enabling quick and precise identification of night jasmine leaf
diseases and assisting farmers in taking prompt action to
protect their crops.

The SSAE has several limitations even if it offers strong
feature learning for identifying as well as categorizing
illnesses of night jasmine leaves. Its high computational
complexity describes a major drawback, especially when
working with large picture datasets or more complicated
network topologies, which leads to lengthy training times as
well as a substantial hardware need. Furthermore, without
extensive testing, SSAE tuning becomes more difficult due to
the influence of hyper parameter settings, such as the learning
rate, number of hidden units, as well as sparsity penalties.
When the complexity related to the method surpasses the
amount of labelled information that is present, overfitting may
occur, especially in agricultural datasets, in which annotated
pictures are often limited. Furthermore, SSAE training
typically entails unsupervised pre-training and fine-tuning,
adding more steps than end-to-end methods like CNNs. Unless
carefully optimized, these limitations may hinder real-world
implementation and make SSAE:s less suitable for real-time or
resource-constrained applications.

Compared to the traditional SSAE, the ISSAE provides a
number of advantages for identifying as well as categorizing
illnesses of night jasmine leaves. By using attention
mechanisms,  optimization  strategies or  advanced
regularization approaches, ISSAE enhances feature learning
and is able to recognize more unique as well as disease-
specific patterns from leaf pictures. This results in increased
resistance to noise, background fluctuations as well as
illumination variations. Using optimized architectures or
adaptive learning approaches, ISSAE often improves
convergence speed as well as reduces training time, making it
more efficient on large datasets. Additionally, its improved
sparsity management ensures that only the major important
characteristics are emphasized, supporting the method's ability
to generalize even with little labelled information.
Additionally, the improved architecture helps to lessen
overfitting, which is a common issue with deep methods,
especially when it comes to agricultural datasets. ISSAE is
highly successful for early as well as precise disease detection
in night jasmine leaves due to its greater accuracy, improved
stability, and enhanced computing effectiveness.

Many sparse auto-encoders are set up to form SSAE, a deep
network format. The output associated with the hidden layer
Z,, for each hidden layer m in the group {1,---, M — 1} related
to the SSAE method is described as below:

Zm = g(ciiM—l + cm) (20)

Here, M is the total number of layers, g describes the
dimensionality related to latent factor, ¢ describes the bias, X
describes the weight and the hidden description is shown by i
respectively. The first M /2 layers associated with the method
are the encoder, and the latter M /2 layers are the decoder. It
is suggested that the M /2 layer in the SSAE method should
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generate the latent component, and that there should only be
one hidden layer close to it. To replicate the input as well as
lower the squared loss among the produced outputs, the SSAE
uses a deep framework. The below formula is used to
determine the loss function for SSAE.

KSpare(Xm! Cm) = K(th Cm) + ﬁ Z LM(p“ﬁ]) (21)
j=1

Here, the weight matrix is shown by X,,, bias vector
associated with every layer is shown by c,,, divergence is
shown by LM, loss function of SAE is shown by Kgpgre,
weight employed to control sparsity penalty factor is shown by
B and Y7, LM(p| |ﬁj) is shown as below.

1 —
2
=7

n n
N P
> 1M (pllp) = Y plogZ-+ (1 - p)log
= = Pi 1

Here, p = %Z;‘zl (bk (yj)) describes the average activation

of entire training instances in hidden layer neuron k, activation
value in hidden layer neurons is shown by b, and the count of
hidden units per layer is shown by n respectively. The
proposed novel ISSAE for the detection and classification of
night jasmine leaf disease is diagrammatically shown in Figure
2.

The ISSAE architecture differs from the traditional SSAE
through three key enhancements. First, an adaptive sparsity
regulation mechanism dynamically adjusts the sparsity penalty
based on reconstruction behavior, preventing neuron under-
utilization or collapse. Second, ISSAE employs progressive
layer-wise fine-tuning, which stabilizes convergence by
refining each hidden layer sequentially instead of training the
entire stack at once. Third, PPBO-assisted hyperparameter
stabilization ensures optimal selection of sparsity coefficients,
hidden units, and learning rates, reducing sensitivity to
initialization. Together, these enhancements enable ISSAE to
extract more discriminative and stable representations from
leaf images compared to the conventional SSAE.

3.7 PPBO algorithm

By fine-tuning the method parameters, optimization is
crucial to increasing the efficacy related to the night jasmine
leaf disease detection and classification model. In order to
improve stability, model convergence, as well as
generalization, it helps select the best hyperparameters (like
batch size, learning rate, and count of hidden layers). The
resilience, effectiveness, as well as capacity of the pipeline to
produce precise illness forecasts under various circumstances
are all improved via optimization.Here, the PPBO algorithm
tunes the parameters of the SSAE model in the proposed night
jasmine leaf disease detection and classification model in
order to return the accuracy maximization as the objective
function.

The process of publishing papers is replicated by PPBO.
The main driving force behind PPBO is writers' efforts to
improve their work in response to reviewers' as well as editors'
comments in order to get acceptance. After outlining the
PPBO format, its mathematical modelling is developed by
simulating the publication procedure of papers.
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Figure 2. Proposed ISSAE for the detection and classification of night jasmine leaf disease model

By utilizing the search skills of its individuals inside the
problem-handling domain, the PPBO approach describes a
population-based optimization scheme that can provide
effective solutions for optimization difficulties. Every
population individual determines values for the decision
variables in the PPBO model based on where they are in the
problem-handling domain. As a result, each person in the
population is a solution to the issue that a vector may
mathematically depict. This means that a matrix based on Eq.
(23) may be used to describe the PPBO population composed
of these vectors. Utilizing Eq. (24), every PPBO individual's
initial location in the problem-handling space is chosen at
random.

41,1 q1,x Ain

Q= qj1 qdjx djn (23)
do1 qox Qondyy,

Qj:qj,k =LBk+S]'k.(UBk —LBk) (24)

Here, Q stands for the PPBO's population matrix, O for the
total count of population members, and n for the count of
decision factors. The j" candidate solution is denoted as Q s
Qj 18 its k" variable, Sji represents uniform random integers
in the interval [0,1], and LB, and UB), serve as the lower as
well as upper bounds related to the k" decision variable,
respectively. In the fitness function, each individual of the
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PPBO can be evaluated as a solution. As a result, a fitness
function value is established for every PPBO individual, and
these values may be described by a vector in accordance with

the Eq. (29).

In this case, G; denotes the fitness function value obtained
from the j®* POA individual, and G stands for the vector
associated with fitness function values. The simulation of
responding to reviewer input describes the basis of the first
population update step in PPBO. The population's location is
significantly altered as a result of this process, which also
improves PPBO's exploration capabilities for worldwide
research. Eq. (26) is used in PPBO model to establish the
reviewer's position in the problem-handling space for each
individual related to the population.

G(1)

G(Y)

G _ I (25)
dO ox1 G (Yo

0x1

Sj = Q, + Rand * (Qgest — Qworst) (26)

In this case, S; describes the reviewer associated with the
j** PPBO individual (i.e., the paper); Q,(l € {1,2,-+-,0},1 #
j) describes the [** PPBO individual; Qg describes the best

PPBO individual, Qs describes the worst PPBO



individual; and Rand stands for uniform random counts
selected from the interval [0,1]. Utilizing Eq. (27), a novel
location has been calculated for every individual related to the
population in the model of PPBO on the basis of the simulation
associated with the article revision procedure to answer
reviewer comments. The novel location will next replace the
previous location related to the corresponding individual in
accordance with Eq. (28) if the fitness function value indicates
enhancement.

Qj =Q; +Rand - (S;—J;- Q) (27)
_ Q} ’ GJ’1 = Gf
Qj = {Q]-, otherwise (28)

In this case, the newly calculated location for the j** PPBO
individual based on the initial stage related to the PPBO is
denoted by Q}, the fitness function value is indicated by G},
and the counts J;are uniformly selected at random to be either
1 or 2. The count of editor comments is considered a variable
in the PPBO model, and its maximum is equal to the count of
decision variables according to Eq. (29). As shown by Eq.
(30), the amount of editor comments determines which
decision variables require adjustment.

0d=h+§]3n (29)

ng = {nllnl € {1i2;"';n}; I = 112;”'

, 04} (30)

The variables in this case are denoted by n, the total count
of editor comments during the ut" iteration by 0,4, the group
of variables selected for the updating procedure at the u'"
iteration by ny, and the [*" variable selected by n;. A novel
location has been calculated for every individual associated
with the population using Eq. (31) in order to create PPBO that
is obtained by modelling the article review procedure to
answer the editor's input. The new location then replaces the
previous location related to the appropriate individual
employing Eq. (32) if the value associated with the fitness
function has increased.

QJZzndl = Qjngy *+ Rand - (QBest.ndz —Ji ijndl)’
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[=12,0, 1)
Q} GF<G;

PR 2

Q) {Qj, otherwise (32)

In this case, Q}2 describes the newly calculated location
associated with the jt" individual related to the population on
the basis of the second stage of the PPBO, Q]?_n 4, indicates its
ng '™ dimension, sz describes the value associated with its
fitness function, Rand describes a random value selected from
the interval [0,1], and J; describes a uniformly selected count
that can be either 1 or 2.

The PPBO algorithm operates through iterative
exploration—exploitation updates. At iteration t , each
candidate solution x}is evaluated using the reconstruction-
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based fitness function F(x}) . During exploration, new
solutions are sampled using perturbation strategies that
promote diversity, while exploitation refines top-ranked
candidates using weighted corrections. The update rule
follows:

t+1

Xi = xit + a(xl:fest - xtt) + B € (33)

where, a denotes exploitation strength, f controls random
perturbation, and €, is a stochastic disturbance. Although
PPBO does not offer theoretical convergence guarantees, it
functions effectively as a practical meta-heuristic optimizer for
stabilizing ISSAE hyperparameters.

The initial iteration associated with the algorithm is
completed after entire PPBO individuals have been modified
in accordance with the first as well as second phases. The best
solution discovered throughout every cycle is updated as well
as saved. The algorithm then proceeds to the next iteration
using the updated values, and the PPBO update process
continues till the algorithm's last iteration, as described by Egs.
(26) to (32). After PPBO has finished running, the best
outcome from all of the algorithm's iterations is displayed as a
solution to the given problem. Algorithm 1 provides
pseudocode  outlining the procedures for PPBO
implementation.

Algorithm 1: PPBO
Start
Input data of optimization problem [extracted features of
the proposed night jasmine leaf disease detection and
classification model]
Set parameters of O and U and placej=1andu =1
Generate and evaluate the initial population
Whilej < O
Ifu<U
Sj = Qi+ Rand - (@sest — Qworst)
Qj =Q;+Rand - (S;—J;- Q)
7

04 =[1+"] <n

u

=Qjng t Rand
' (QBest,ndl _]j ) Qj.ndl)’
l = 1;21 ttty Od

Q;Z' sz =G

@:{@,

u=u+1
j=1

otherwise

2
Q]'.Tldz

otherwise
else

End if
j=j+1
end
Output the best quasi-optimal solution [maximized
accuracy of the proposed night jasmine leaf disease
detection and classification model]
Stop

The design of ISSAE is motivated by the need for controlled
sparsity and stable hierarchical feature extraction. By
integrating adaptive sparsity adjustment with progressive
depth-wise fine-tuning, ISSAE prevents neuron inactivity and



reduces parameter sensitivity—two limitations commonly
observed in traditional SSAE implementations. These
modifications ensure that the autoencoder captures salient
textural and morphological patterns from leaf images while
maintaining efficient representation. Thus, ISSAE constitutes
an enhanced variant of SSAE designed specifically for
structured plant-disease imagery.

The present study focuses exclusively on the visual
symptom patterns of night jasmine leaves, which represent the
earliest and most accessible indicators for farmers and field
workers. The objective of the proposed pipeline is early-stage
screening rather than pathogen-level or infection-stage
diagnosis, which requires laboratory assays and specialist
input beyond the scope of an image-driven computational
framework. For practical agricultural settings where
laboratory facilities are limited, visual inspection remains the
predominant method of disease identification. Therefore, the
classifier is trained to distinguish characteristic symptom
expressions such as spotting, color variation, tissue distortion,
and margin decay—features that farmers traditionally rely on
for early disease assessment.

4. EXPERIMENTAL ANALYSIS
4.1 Experimental setup

The proposed ISSAE-PPBO for the night jasmine leaf
disease detection and classification model was implemented in
MATLAB and the findings were discussed. The population
size was placed to be 10. The iteration count was taken as 200.
The proposed ISSAE-PPBO was compared with numerous
traditional methods like MULTINET, custom CNN, SE-
VRNet and LF-Mamba with consideration of analysis such as
accuracy, sensitivity, precision, MCC, F1 score, specificity,
and FNR to prove the effectiveness of the developed night
jasmine leaf disease detection and classification model. The
simulation parameters used for the experimentation are listed
in Table 3.

Table 3. Simulation parameters

Parameters Description
Platform MATLAB
Dataset used Night Jasmine Leaf Database
Iteration count 200
Population size 10
Objective function Accuracy maximization
Optimization PPBO

4.2 Segmentation and OQutput Image results

Images Healthy Bacterial blight Leaf spot Rust
Input image ‘
A " BN ]
=4y
Pre-processed - ‘
image ‘6
Segmented it 4

image

Output image

Figure 3. Sample output images of the proposed night
jasmine leaf disease detection and classification model
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Some of the sample input images pre-processed images,
segmented images and output images of the proposed night
jasmine leaf disease detection and classification model are
shown in Figure 3.

4.3 Accuracy analysis

The accuracy analysis in Figure 4 for night jasmine leaf
disease detection and classification demonstrates a progressive
evaluation throughout ten iterations (from 20 to 200) for
several methods: LF-Mamba, SE-VRNet, custom CNN,
MULTINET, as well as the proposed ISSAE-PPBO. With
additional rounds, a consistent improvement in accuracy
across entire techniques is observed, suggesting improved
learning as well as generalization with time. While the custom
CNN advances from 0.8250 to 0.8695, MULTINET starts at
0.8120 and gradually rises to 0.8571 after 200 iterations. The
effectiveness of SE-VRNet is better, starting at 0.8340 and
reaching 0.8784.  After starting at 0.8412, LF-Mamba
improves even further, reaching 0.8876. Surprisingly, the
proposed ISSAE-PPBO significantly outperforms the existing
methods in every iteration, starting at 0.8945 and ending at a
strong 0.9497. This implies that the proposed method offers
improved accuracy as well as learning efficacy, making it a
very promising technique for the successful identification and
categorization of illnesses affecting night jasmine leaves.The
proposed ISSAE-PPBO for the night jasmine leaf disease
detection and classification model in terms of accuracy is
10.80%, 9.22%, 8.12% and 6.99% better than MULTINET,
custom CNN, SE-VRNet and LF-Mamba, respectively.
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Figure 4. Accuracy analysis
4.4 Sensitivity analysis

The sensitivity analysis in Figure 5 for the night jasmine leaf
disease detection and classification model demonstrates the
progressive development of many methods over 10 iterations
(varying from 20 to 200): MULTINET, custom CNN, SE-
VRNet, LF-Mamba, as well as the proposed ISSAE-PPBO.
While the custom CNN improves from 0.7582 to 0.8015,
MULTINET shows a gradual rise in sensitivity from 0.7450 to
0.7880. While LF-Mamba outperforms SE-VRNet, increasing
from 0.7755 to 0.8190 at the final iteration, SE-VRNet
exhibits a slight enhancement, increasing from 0.7680 to
0.8115. However, the proposed ISSAE-PPBO method clearly
outperforms in sensitivity at every stage, starting at 0.8320 and
reaching a remarkable 0.8874 after 200 runs. This steady



benefit suggests that, in comparison to existing techniques,
ISSAE-PPBO is more effective at precisely detecting sick
occurrences, reducing false negatives, as well as enhancing
early detection abilities. Because of its high sensitivity, it is
perfect for practical applications in precision farming as well
as night jasmine disease management.The sensitivity
associated with the proposed ISSAE-PPBO model for night
jasmine leaf disease detection and classification is 12.61%,
10.72%, 9.35% and 8.35% higher than that of MULTINET,
custom CNN, SE-VRNet, and LF-Mamba, respectively.
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Figure 5. Sensitivity analysis
4.5 Precision analysis

The development of several methods across 10 iterations
(range from 20 to 200) is shown in the precision analysis in
Figure 6 for identifying as well as categorizing illnesses of
night jasmine leaves. While the custom CNN increases from
0.7820 to 0.8280, showing better precision, MULTINET
shows steady development, increasing from 0.7705 to 0.8147.
While LF-Mamba also improves, reaching 0.8465 by the final
iteration, SE-VRNet does better, going from 0.7922 to 0.8370.
However, the proposed ISSAE-PPBO method continually
outperforms entire existing approaches, starting at a strong
0.8602 and reaching an impressive 0.9203 by the 200"
iteration. This noteworthy benefit suggests that the proposed
approach is more effective at lowering false positives as well
as producing extremely reliable forecasts. Its improved
precision implies that ISSAE-PPBO is more successful in
ensuring that only actual disease cases are marked as positive,
which is important in disease detection jobs, in which a wrong
classification might lead to needless treatments or missed
infections. For the detection and classification of night jasmine
leaf disease, the proposed ISSAE-PPBO model has a precision
that is 12.96%, 11.15%, 9.95% and 8.72% higher than that of
MULTINET, custom CNN, SE-VRNet, and LF-Mamba,
respectively.

4.6 MCC analysis

The enhanced -effectiveness associated with several
methods across ten iterations (range from 20 to 200) is
displayed in the MCC analysis in Figure 7 for the night
jasmine leaf disease detection and classification model. From
0.6850 to 0.7320, MULTINET shows consistent
improvement, while the custom CNN slightly outperforms it,
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going from 0.6982 to 0.7440. While LF-Mamba continues on
its upward trend, rising from 0.7158 to 0.7610 at the final
iteration, SE-VRNet exhibits improved effectiveness, rising
from 0.7085 to 0.7540. However, starting with a significantly
higher 0.7820 and reaching an amazing 0.8540 by iteration
200, the proposed ISSAE-PPBO method clearly performs
exceptionally well in MCC. This continuously high MCC
demonstrates ISSAE-PPBO's robust as well as reliable
classification capacity by achieving a more efficient balance
between true positives, true negatives, false positives, as well
as false negatives. High MCC values demonstrate the method's
overall prediction accuracy and make it particularly helpful for
precisely identifying diseases in night jasmine leaves.The
ISSAE-PPBO model outperforms MULTINET, custom CNN,
SE-VRNet, and LF-Mamba in terms of MCC for the detection
and classification of night jasmine leaf disease by 16.67%,
14.78%, 13.26% and 12.22%, respectively.
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4.7 F1 score analysis

The night jasmine leaf disease detection and classification
method's F1 score assessment in Figure 8 shows how every
method improved across ten iterations (from 20 to 200),
demonstrating how well it balanced recall as well as precision.
While custom CNN accomplishes better, moving from 0.7645
to 0.8095, MULTINET shows steady improvement,
increasing from 0.7520 to 0.7958. SE-VRNet achieves better



results, increasing from 0.7740 to 0.8185, while LF-Mamba
improves even more, reaching 0.8270 at the final iteration.
However, the proposed ISSAE-PPBO method, which starts at
0.8455 and reaches an impressive 0.8980 by iteration 200,
significantly outperforms entire existing methods. This
remarkable F1 score indicates that the ISSAE-PPBO achieves
a remarkable balance among correctly identifying diseases as
well as minimizing false positives, making it highly reliable in
actual disease detection scenarios. Its potential as aninnovative
method of categorizing night jasmine leaf disease is
demonstrated by its continuously better F1 score
effectiveness.In terms of F1 score for identifying and
categorizing night jasmine leaf disease, the ISSAE-PPBO
model outperforms MULTINET, custom CNN, SE-VRNet,
and LF-Mamba by 12.84%, 10.93%, 9.71% and 8.59%,
respectively.
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Figure 8. F1 score analysis
4.8 Specificity analysis

Every technique's ability to identify healthy (non-diseased)
leaves across ten iterations (20 to 200) is highlighted in Figure
9 analyzing specificity for the night jasmine leaf disease
detection and classification model. While the custom CNN
improves from 0.8235 to 0.8998, showing better non-disease
diagnosis, MULTINET shows steady improvement, rising
from 0.8102 to 0.8935. LF-Mamba continues to enhance,
reaching 0.9162 in the most recent version, while SE-VRNet
shows an even larger effectiveness gain, increasing from
0.8331 to 0.9060. However, starting at an excellent 0.9107
and reaching the maximal specificity of 0.9641 after 200
iterations, the proposed ISSAE-PPBO method stands out.
According to this, ISSAE-PPBO is very good at correctly
ruling out healthy leaves, lowering false positives, as well as
making sure that only instances that are actually contaminated
are detected. For agricultural uses, this level of specificity is
crucial since inflating the availability of a disease might lead
to unnecessary interventions as well as wasteful resource
usage. For night jasmine leaf disease detection and
classification, the ISSAE-PPBO model outperforms
MULTINET, custom CNN, SE-VRNet, and LF-Mamba by
7.90%, 7.15%, 6.41% and 5.23%, respectively, in terms of the
specificity.

4.9 FNR analysis

The effectiveness related to every strategy in reducing
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missed detections (diseased leaves mistakenly labelled as
healthy) across ten iterations (varying from 20 to 200) is
shown in the FNR analysis in Figure 10 for the detection and
classification model of night jasmine leaf disease. While
MULTINET begins with a FNR of 0.1898 and progressively
lowers it to 0.1205, custom CNN improves from 0.1784 to
0.1102, demonstrating better control over false negatives.
While LF-Mamba continues this trend, falling FNR from
0.1587 to 0.0919, SE-VRNet performs better, dropping from
0.1679 to 0.1024. However, starting at a significantly lesser
0.0893 as well as reaching just 0.0359 by the final iteration,
the proposed ISSAE-PPBO method achieves the largest drop.
The suggested method's improved capacity to precisely detect
diseased leaves, lowering the frequency of missed instances,
is highlighted by its consistently minimal FNR. Since missed
infections can spread rapidly, a minimal FNR is crucial for
identifying agricultural diseases. The efficacy related to
ISSAE-PPBO emphasizes its usefulness in safeguarding crop
health.The ISSAE-PPBO model outperforms MULTINET,
custom CNN, SE-VRNet, and LF-Mamba in terms of FNR for
identifying and categorizing night jasmine leaf disease by
70.21%, 67.42%, 64.94% and 60.94%, respectively.
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4.10 Confusion matrix analysis
The night jasmine leaf disease detection model's



performance in 3-class and 4-class classifications is illustrated
by the confusion matrices in Figure 11. Although some healthy
leaves are mistakenly classified as rust, the method shows
good accuracy in the three-class configuration (healthy, rust,
multiple), mostly properly categorizing healthy as well as
multiple classes. The method generates strong predictions for
healthy as well as rust in the 4-class configuration (healthy,
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rust, bacterial blight, and leaf spot); however, the
misclassifications ~ show  that there  exists more
misunderstanding among bacterial blight as well as leaf spot.
The 4-class approach does a good job of handling the added
complexity, but it causes greater misunderstanding within
classes, especially when it comes to comparable disease

categories.
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Figure 11. Confusion matrix analysis

4.11 Precision recall curve analysis

In both the 3-class and 4-class setups, the precision-recall
curves for the night jasmine leaf disease detection model show
exceptional effectiveness as in Figure 12. Every class in the
three-class model (healthy, rust, and multiple) has high
Average Precision (AP) ratings of greater than 0.97, indicating
a strong balance among recall as well as precision. In the four-
class method (healthy, rust, bacterial blight, and leaf spot), rust
as well as healthy both have almost ideal APs (~0.99), while
bacterial blight has a good score of 0.9667, but leaf spot has a
lesser AP of 0.8892, suggesting that this class is more difficult
to distinguish. In general, even as categorization complexity
increases, the method continuously exhibits high precision-
recall efficacy.
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4.12 ROC curve analysis

The night jasmine leaf disease detection model's ROC curve
study shows excellent discriminative abilities in both 3-class
and 4-class tasks, as in Figure 13. The AUC values in the three-
class setup (healthy, rust, multiple) are higher than 0.987,
indicating almost perfect classification having minimal false
positives. Healthy as well as rust achieve exceptionally high
AUCs (\~0.995-0.9975) in the complex 4-class arrangement
(bacterial blight, leaf spot, rust, and healthy), whereas bacterial
blight (0.9852) and leaf spot (0.9698) show fewer but strong
effectiveness. Despite the rise in classification complexity, the
method exhibits high True Positive Rates (TPRs) while
keeping very few False Positive Rates (FPRs).
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Figure 12. Precision recall curve analysis
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Figure 13. ROC curve analysis

4.13 Ablation analysis of the proposed ISSAE-PPBO
framework

To demonstrate the contribution of each module within the
proposed classification pipeline, an ablation study was
conducted by evaluating three configurations:

(i) Baseline SSAE,

(1) ISSAE without PPBO tuning, and

(iii) Full ISSAE-PPBO model.

The baseline SSAE was trained with fixed sparsity and
learning parameters, representing the conventional stacked
sparse autoencoder. In the ISSAE variant, the adaptive sparsity
adjustment and progressive fine-tuning were enabled, while
the optimization stage was disabled. The final configuration
integrated PPBO-driven hyperparameter refinement. The
results in Table 4 indicate that ISSAE alone provides improved
feature separation due to adaptive sparsity enforcement and
layer-wise refinement.

When PPBO optimization is introduced, further
improvement is achieved in classification accuracy, recall, and
training stability. These findings confirm that each component
contributes independently to the overall performance and that
the complete ISSAE-PPBO framework provides the best
detection capability. The baseline SSAE achieves moderate
performance due to its fixed sparsity constraint and sensitivity
to initial parameter selection. When adaptive sparsity control
and progressive layer-wise refinements are introduced
(ISSAE), the model shows clear improvement across all
metrics, indicating enhanced feature learning. The complete

ISSAE-PPBO model achieves the highest performance,
confirming that PPBO-driven hyperparameter tuning further
stabilizes learning, minimizes reconstruction errors, and
enhances the classifier’s ability to separate healthy and
diseased leaf classes.

4.14 PPBO effectiveness analysis

To wvalidate the role of the Paper Publishing Based
Optimization (PPBO) algorithm in improving the stability and
discriminative capability of ISSAE, an additional experiment
was conducted by comparing manually tuned ISSAE with
PPBO-optimized ISSAE. Manual tuning relied on trial-and-
error selection of sparsity penalty, learning rate, and hidden
neuron count, while PPBO automatically identified optimal
values through its exploration—exploitation mechanism. The
comparison results are summarized in Table 5.

The manually tuned ISSAE baseline achieves good
performance but remains sensitive to hyperparameters,
resulting in lower recall and higher training variance. The
PPBO-optimized model consistently outperforms manual
tuning across all metrics, with notable improvements in
accuracy (+2.25%), precision (+3.20%), and recall (+3.22%).
Additionally, the significant reduction in training variance
(from 0.021 to 0.008) demonstrates that PPBO provides more
stable convergence by guiding ISSAE toward well-
generalized hyperparameter configurations. These results
confirm that PPBO contributes meaningfully to enhancing
model robustness and classification reliability.

Table 4. Ablation experimentation analysis

Model Variant Accuracy (%) Precision (%) Recall (%) F1 score (%)
Baseline SSAE (No improvements) 91.84 90.92 89.77 90.34
ISSAE without PPBO (Adaptive sparsity + fine-tuning only) 94.27 93.88 93.11 93.49
Proposed ISSAE-PPBO (Full model) 96.52 97.08 96.33 96.70

Table 5. Manual tuning vs. PPBO optimization

Model Configuration Accuracy (%) Precision (%) Recall (%) F1 score (%) Training Variance*
ISSAE (Manual tuning) 94.27 93.88 93.11 93.49 0.021
ISSAE-PPBO (Optimized) 96.52 97.08 96.33 96.70 0.008
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4.15 Parameter sensitivity analysis

The robustness of the ISSAE-PPBO model was further
examined by analysing the sensitivity of three key
hyperparameters: sparsity penalty (A), learning rate (1), and
the number of hidden neurons (H). Each parameter was varied
around its PPBO-selected optimal value while keeping the
others fixed. Table 6 summarises the variations tested and their
corresponding accuracy values.

Table 6. Sensitivity of ISSAE-PPBO to key hyperparameters

Parameter Varied Value Tested  Accuracy (%)
0.005 94.81
Sparsity Penalty (1) 0'0100(85 (t)lmal) ggg?
0.040 93.92
0.0005 94.26
. 0.001 (optimal 96.52
Learning Rate (1) O.(085 ) 9503
0.010 92.74
64 94.58
Hidden Neurons (H) 128 (;é)gmal) ggig
512 93.68

The results show that the ISSAE-PPBO model achieves
peak performance at the PPBO-identified hyperparameter
settings. Deviations from the optimal sparsity penalty cause
either excessive neuron activation (A too low) or loss of
meaningful features (A too high), both reducing accuracy.
Similarly, learning rates smaller than the optimal slow
convergence, while higher values destabilize training. The
hidden neuron count demonstrates a threshold effect in which
both under-parameterization (H 64) and over-
parameterization (H > 256) degrade performance due to
insufficient feature representation or overfitting. This analysis
confirms that PPBO plays a critical role in selecting balanced
hyperparameters that maximize classification accuracy and
training stability.

4.16 Computational feasibility
The ISSAE-PPBO model was benchmarked on two
hardware platforms to assess its suitability for on-site

agricultural screening and results are provided in Table 7.

Table 7. Computational evaluation results

Metric Laptop CPU Mobile SoC
(i5-8250U) (Snapdragon 720G)

Model Size 7.4 MB 7.4 MB

FLOPs per 11.2
Inference MFLOPs 11.2 MFLOPs
Avg. Inference 23.8 ms 41.5 ms
Time
Frames Per Second 42 FPS 24 FPS

The results confirm that the model is computationally
lightweight and capable of real-time or near—real-time
processing on standard CPU and smartphone hardware.

4.17 Robustness towards simulated agricultural conditions

To approximate real field variability, synthetic distortions
were applied, including illumination shifts, shadow masks,
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and partial leaf occlusion and results are provided in Table 8.

The model demonstrates strong resilience to common
environmental disturbances such as uneven lighting and
background interference, supporting its potential for field-
level use.

Table 8. Robustness evaluation

Condition Accuracy (%) F1 score (%)
Normal dataset 96.52 96.70
Low light 93.41 93.88
High light 94.26 94.74
Leaf occlusion (15%) 92.37 92.84
Background clutter 94.88 95.03

4.18 Edge-device deployment feasibility

The model was further tested on a low-cost edge device to
assess its practicality in farm environments and results
depicted in Table 9.

Table 9. Raspberry Pi deployment results

Metric Result
Inference Time 79.2 ms
Frames Per Second 12.6 FPS
CPU Utilization 78%

The model operates at usable speed (>10 FPS) even on
resource-limited edge hardware, suggesting feasibility for
farm-side kiosks or portable detection units.

4.19 Diagnostic evaluation of the proposed ISSAE-PPBO
model

To ensure reliable performance evaluation under class-
imbalance conditions, additional diagnostic metrics—
sensitivity, specificity, and AUC—were computed alongside
precision, recall, and F1 score. Sensitivity quantifies the
model’s ability to correctly detect diseased leaves, whereas
specificity measures its ability to correctly identify healthy
samples. AUC provides a threshold-independent estimate of
the system’s discrimination capability. The results for the
ISSAE-PPBO model are presented in Table 10.

Table 10. Diagnostic evaluation of the proposed ISSAE—

PPBO model

Metric Value (%)
Accuracy 96.52
Precision 97.08
Recall (Sensitivity) 96.33
Specificity 95.87
F1 score 96.70
AUC 0.972

As seen from Table 10, the proposed model achieves high
sensitivity  (96.33%), indicating strong capability in
identifying diseased leaves even under class-imbalance
conditions. The specificity of 95.87% confirms that healthy
leaves are also reliably classified, minimizing unnecessary
alarms. The AUC value of 0.972 further demonstrates strong
threshold-independent ~ discrimination. ~ Together, these
diagnostic metrics validate that the ISSAE-PPBO framework
maintains balanced performance across all classes despite
variations in disease prevalence.



4.20 Discussion

The comprehensive performance evaluation in terms of
MCC, F1 score, specificity, accuracy, sensitivity, precision, as
well as FNR amply demonstrates the superiority related to the
proposed ISSAE-PPBO technique for identifying and
categorizing diseases of night jasmine leaves. ISSAE-PPBO
continuously outperforms MULTINET, custom CNN, SE-
VRNet, as well as LF-Mamba by significant margins in entire
ten iterations (20-200), achieving higher accuracy (up to
0.9497), enhanced sensitivity (0.8874), enhanced precision
(0.9203), and higher MCC (0.8540), as well as superior F1
scores (0.8980) and specificity (0.9641). Most significantly,
its exceptionally minimal FNR (as low as 0.0359)
demonstrates its exceptional capacity to avoid missed
detections, which is essential for controlling the spread of
disease in agricultural settings. ISSAE-PPBO has good
learning as well as generalization capabilities, with
improvement ranges of around 5% to 17% across many
measures when compared to alternative approaches. These
results highlight ISSAE-PPBO as a very promising as well as
successful precision agricultural tool, offering accurate,
reliable, and effective detection to safeguard crop health and
improve disease control strategies

5. CONCLUSIONS

This research used a novel optimization technique centered
on deep learning to detect as well as classify night jasmine leaf
disease. The first source of the data was the Night Jasmine
Leaf Database, a Kaggle resource. Bilateral filtering, median
filtering, wiener filtering, as well as CLAHE methods were
used to pre-process the collected data. This pre-processed data
was segmented utilizing the adaptive threshold-based
segmentation approach. This segmented data was now
subjected to feature extraction by the VGG-16 method.
Finally, night jasmine leaf disease was identified and
categorized using the new ISSAE method. The optimization
technique known as PPBO, which considered the
maximization of returning accuracy as the fitness function,
was used to change the parameters of standard SSAE.
According to the experimental findings, the recommended
approach provided a more efficient way to recognize as well
as classify illnesses of night jasmine leaves. For the diagnosis
as well as classification of night jasmine leaf disease, the
proposed ISSAE-PPBO model performed 10.80% and 12.61%
better than remaining existing techniques, respectively. Since
the study uses only publicly available image datasets, no
personal or farmer-specific information is collected, and all
data usage complies with standard research permissions.
Future deployment of the model will require formal data-usage
agreements, clear accountability frameworks for Al-assisted
decisions, and ethical safeguards to mitigate risks associated
with misdiagnosis in agricultural settings. Future work will
integrate pathogen-specific labels, infection-stage
information, and expert annotations through collaboration
with plant-pathology specialists to enhance biological
interpretability and clinical relevance. Also, Future work will
incorporate cost-sensitive evaluation frameworks where false
negatives—posing higher agricultural risk—are penalized
more heavily than false positives to better reflect real-world
disease management priorities.
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