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 Nyctanthes arbor-tristis, sometimes known as night jasmine, describes a beloved ornamental 

as well as medicinal plant valued for its fragrant blooms and significant cultural value. 

However, like many other plants, it is susceptible to many illnesses caused by fungus as well 

as bacteria, which can significantly impair its development and aesthetic appeal. Therefore, 

it is essential to detect diseases in night jasmine as soon as feasible in order to maintain its 

quality as well as prevent potential losses. In order to protect the health as well as welfare 

of night jasmine plants, it might be helpful to establish a precise, real-time disease 

identification framework. Thus, this research detects and classifies the night jasmine leaf 

disease using novel intelligent deep learning-oriented optimization concept. The data is 

initially collected from the Kaggle repository named Night Jasmine Leaf Database. The pre-

processing of this gathered data is done by the bilateral filtering, median filtering, wiener 

filtering and Contrast Limited Adaptive Histogram Equalization (CLAHE) approaches. 

From this pre-processed data, the segmentation is accomplished using the adaptive 

threshold-based segmentation method. Now, the Visual Geometry Group-16 (VGG-16) 

model performs the feature extraction of this segmented data. Finally, the novel Improved 

Stacked Sparse Auto Encoder (ISSAE) model does the detection and classification of night 

jasmine leaf disease. The parameter tweaking of traditional SSAE is performed by the 

optimization algorithm called Paper Publishing Based Optimization (PPBO) with the 

consideration of returning accuracy maximization as the fitness function. According to the 

experimental findings, the recommended approach provides a better way to detect and 

classify night jasmine leaf diseases. The proposed ISSAE-PPBO model is 10.80% and 

12.61% better than the other existing methods in terms of accuracy and sensitivity for the 

proposed night jasmine leaf disease detection and classification model, respectively.  
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1. INTRODUCTION 

 

Night jasmine (Nyctanthes arbor-tristis), a widely grown 

decorative and medicinal plant, is important in the fields of 

horticulture, conventional medicine, and scent due to its 

fragrant blossoms as well as therapeutic uses [1]. However, 

like many other plants, night jasmine is extremely susceptible 

to a number of leaf diseases, including viral, bacterial, as well 

as fungal infections, which can seriously impair plant health, 

reduce flower yield, and affect entire aesthetic and commercial 

value [2]. Although early infections might be subtle as well as 

difficult to detect without close inspection, foliage diseases 

often exhibit obvious symptoms such as blights, spots, or color 

variations [3]. Hence, maintaining healthy crops as well as 

ensuring sustainable agricultural methods depend on the 

timely, accurate, and efficient detection and classification of 

night jasmine leaf diseases [4]. Advances in deep learning as 

well as AI nowadays have opened up novel possibilities in 

precision agriculture, particularly in the identification of plant 

diseases [5]. Automated methods for picture analysis that 

make use of deep learning methods have emerged as reliable 

choices, capable of managing large datasets, identifying 

complex patterns, as well as correctly distinguishing among 

instances of healthy and diseased leaves [6]. 

A balance between accuracy, sensitivity, as well as 

specificity is also critical to ensure that both diseased and 

healthy leaves are accurately identified, reducing the need for 

needless treatments and avoiding infections that are 

overlooked [7]. If left unchecked, these diseases may spread 

quickly throughout plantations, leading to large infestations 

that harm night jasmine cultivation as well as increase the need 

for chemical treatments, increasing costs and environmental 

problems [8].  

Conventional methods that rely on human scouting as well 

as expert assessments are labor-intensive, time-consuming, 

and prone to human error, making them unsuitable for large-

scale agricultural operations [9]. With a focus on malaria, the 

present study aimed to do ethnobotanical research, extract 

phytochemical components, as well as investigate the 

mechanisms of pharmacological impacts and therapeutic uses 

[10]. The plant's leaves (NAT) were identified, and upon 

confirmation, the sample specimens were kept in an 
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herbarium. The phytoconstituents were identified by the 

column chromatography technique. The anti-malarial actions 

were reviewed. NAT leaves' in vitro efficacy was assessed in 

comparison to chloroquine (CQ). The ethnobotanical usage of 

night jasmine to treat malaria was confirmed by the present 

study. Iridoid glycosides that induced oxidative stress might 

be connected to the chemical elements that provided 

pharmacological actions. In many agricultural environments, 

particularly in small-scale and resource-limited settings, visual 

symptom assessment is the primary diagnostic tool, making 

automated image-based detection highly relevant. 

Numerous innovative designs have been used in plant 

disease identification tasks with promising results, including 

SE-VRNet, customized Convolutional Neural Networks 

(CNNs), MULTINET, as well as LF-Mamba [11]. Methods 

can be confused by variations in lighting conditions, color, leaf 

texture, as well as overlapping symptoms within different 

illnesses, which can lead to missed detections or false positives 

[12]. Although many existing methods show good 

effectiveness, they may still be improved, especially in terms 

of improving crucial metrics that directly impact the 

framework's practical dependability, such as F1 score, 

Matthew’s Correlation Coefficient (MCC), as well as False 

Negative Rate (FNR). Therefore, even if the field has 

advanced thanks to a number of well-known methods, the 

continuous search for more robust, effective, as well as 

broadly applicable solutions is necessary to fully meet the 

demands of real-world agricultural applications focused on 

night jasmine leaf disease detection. 

The paper contribution is as below. 

 To detect and classify the night jasmine leaf disease using 

novel intelligent deep learning-oriented optimization concept. 

 To pre-process the gathered data by the bilateral filtering, 

median filtering, wiener filtering and CLAHE approaches and 

to accomplish the segmentation by the adaptive threshold-

based segmentation method. 

 To do the detection and classification of night jasmine leaf 

disease by the novel ISSAE, where the parameter tweaking of 

traditional SSAE is performed by the PPBO with the 

consideration of returning accuracy maximization as the 

fitness function. 

The paper organization is as follows. Section 1is the 

introduction of the night jasmine leaf disease model. Section 2 

is literature survey. Section 3 is proposed methodology with 

proposed model, data collection, pre-processing, segmentation 

by adaptive threshold-based segmentation, feature extraction 

by VGG-16, detection and classification by novel ISSAE and 

PPBO algorithm. Section 4 is results and analysis. Section 5 is 

the conclusion. 

 

1.1 Motivation 

 

The urgent need to protect the vital decorative as well as 

therapeutic plant from yield reduction, quality degradation, 

and monetary losses brought on by disease outbreaks is what 

motivates the development of an effective methodology for 

identifying and categorizing night jasmine leaf diseases. 

Traditional manual inspection methods are time-consuming, 

biased, as well as often fail to detect diseases in their early 

stages, which cause delays and significant crop damage. While 

recent deep learning methods such as SE-VRNet, customized 

CNNs, MULTINET, as well as LF-Mamba have shown 

promise in addressing plant disease detection, challenges 

remain in achieving consistently high precision, sensitivity, 

accuracy, and low FNRs, especially under changing 

environmental conditions. By providing farmers as well as 

horticulturists with timely, data-driven insights, an effective 

automated framework will reduce the need for overuse of 

pesticides, lower operating costs, and promote healthier crop 

management techniques. Thus, improving automated night 

jasmine disease detection is essential for both technical 

development as well as environmentally friendly farming 

methods.  

 

 

2. RELATED WORK 

 

Isolating the phytochemical components as well as 

comprehending the pharmacological action processes, 

especially with regard to pyretic circumstances, were the goals 

of this work [13]. The present study highlighted the 

importance of night jasmine in Ayurveda by providing 

comprehensive insights into its chemical constituents, 

biological roles of important chemicals, pharmacological 

impacts, therapeutic applications, as well as micro 

propagation. It was believed that Nyctanthes arbor-tristis Linn 

was a legendary plant with significant therapeutic value. The 

purpose of this study was to determine the quality criteria for 

the leaves in accordance with WHO recommendations in order 

to confirm their authenticity as well as purity. Leaf juice was 

employed to treat several forms of persistent fevers and was a 

safe laxative for babies. The right pediatric emulsion for 

lowering fever was presented in this article. 

Using Multi-agent DRL as well as EfficientNet, a system 

called MULTINET was created for 3D plant leaf disease 

diagnosis and severity estimate [14]. Accurately identifying 

plant leaf diseases as well as determining their severity was the 

main goal of this study. The four consecutive steps listed 

below made up the proposed task. In order to enhance picture 

quality as well as balance the classes, image pre-processing 

was first performed for data cleaning using the Adaptable 

LoW Pass Weiner (AWW) filter. Next, the EMbellished 

Manta-Ray Optimization Algorithm (EMMARO) was used 

for data augmentation [15, 16]. In order to explore information 

from several viewpoints as well as provide improved views 

from diverse angles, the Block Divider Model (BDM) was 

used to turn 2D photos into 3D. 

These methods are excellent options for detecting night 

jasmine leaf diseases because they make use of attention 

strategies, multi-layered feature extraction, as well as spatial 

or temporal modelling to improve classification efficacy [17]. 

Despite these advancements, there are still unique challenges 

in recognizing as well as classifying leaf diseases in night 

jasmine [18]. To increase the efficiency of identifying as well 

as evaluating plant disease instances, a novel approach that 

combined Neural Networks (NNs) and clustering approaches 

was proposed [19]. This method aimed to accurately quantify 

the disease's damage as well as expedite diagnosis. It provided 

a method for assessing damage, calculating the percentage 

associated with the total leaf area that was infected. This 

advancement highlighted the framework's evolution and was a 

major improvement over previous methods. This innovative 

approach sought to revolutionize the detection as well as 

monitoring of plant diseases in agriculture using the 

capabilities of NNs and clustering techniques, offering a more 

precise and practical remedy. 

The present study was concerned with the preliminary 

phytochemical analysis as well as measurement using 
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established methods of bioactive substances, including 

terpenoids, flavonoids, phenolics, glycosides, alkaloids, 

tannins, cardiac glycosides, and proteins [20]. These were the 

elements that provided the human body with certain 

physiological impacts. The presence of these chemical 

substances, which were often known as secondary metabolites, 

was thought to be responsible for the plant's medicinal value. 

The physiological condition related to the plant, in addition to 

a number of external elements such as precipitation and 

temperature, determined the generation of these active 

chemicals, which were particular to the stage or organ. The 

Soxhlet extraction technique was used to generate crude 

ethanolic extracts from the Nyctanthes arbor-tristis plant's 

leaves, flowers, stems, as well as fruits. Table 1 lists the 

features and challenges of some of the existing works.  

 

Table 1. Features and challenges of some existing works 

 
Citation Methodology Used Features Challenges 

Hosny et al. 

[15] 
CNN, Local Binary Pattern (LBP) Works across multiple datasets 

Dependent on pre-processing 

quality 

Xiao et al. 

[16] 

Deep Residual Network combined with a 

Squeeze-and-Excitation (SE-VRNet) module 
Enhances feature extraction Computational load is increased. 

Parekh et al. 

[21] 
YOLOv8 

Involves severity and treatment 

recommendations 

Combining entire stages in real-

time is challenging 

Rahman et 

al. [22] 
CNN 

User-friendly deployment through 

web and mobile apps 

Combining hybrid methods 

enhances system complexity 

Wang et al. 

[23] 
LeafMamba Scalable for vast farms 

Field testing is needed to confirm 

lab findings 

 

2.1 Problem statement 

 

The difficulty in identifying as well as categorizing illnesses 

of night jasmine leaves arises from the inadequacies of 

existing techniques in efficiently and precisely identifying 

various disease stages in practical situations. Traditional hand 

examination is labor-intensive, subjective, prone to human 

error, as well as often overlooks subtle or early signs of 

infection. Even though plant disease applications employ 

sophisticated deep learning methods such as SE-VRNet, 

custom CNNs, MULTINET, as well as LF-Mamba, these 

methods still face problems with noisy or imbalanced 

information, poor generalization across datasets, and 

insufficient sensitivity and precision. Furthermore, many 

existing methods struggle to strike a compromise among low 

FNRs as well as high detection precision, which is essential 

for preventing disease transmission and minimizing missed 

infections. In order to overcome these obstacles as well as 

provide a scalable, reliable, and automated technique for 

detecting and classifying night jasmine leaf diseases in actual 

agricultural settings, there exists a pressing need for advanced 

computational techniques.  

While the above studies provide valuable insights into 

image-based plant disease detection, recent advances highlight 

several trends that remain underexplored for night jasmine leaf 

analysis. Modern transformer-based architectures, attention-

guided CNNs, hyperspectral models, and biologically inspired 

optimization algorithms have demonstrated strong 

performance in broader agricultural domains, yet their 

applicability to night jasmine remains limited due to the 

absence of large, annotated datasets and the computational 

demands of such models. Additionally, the literature indicates 

that many existing frameworks struggle with noise resilience, 

class imbalance, and stability under varying illumination or 

occlusion, which are the challenges that are particularly 

relevant for night jasmine leaves. Furthermore, current 

optimization strategies used in related works often lack 

robustness in hyperparameter tuning, leading to inconsistent 

performance across datasets. Motivated by these gaps, the 

present study focuses on developing a lightweight yet effective 

ISSAE–PPBO framework that improves feature abstraction, 

stabilizes hyperparameter selection, and enhances 

classification reliability, particularly in resource-constrained 

agricultural environments. This positions the proposed method 

as a practical alternative to more complex architectures while 

addressing key limitations identified in prior research. 

 

 

3. PROPOSED METHODOLOGY 

 

3.1 Proposed model 

 

The proposed night jasmine leaf disease detection and 

classification model is consisted of numerous phases like data 

collection, pre-processing, segmentation, feature extraction, 

detection, and classification. The first source of the data 

describes the Night Jasmine Leaf Database, a Kaggle resource. 

The bilateral filter, median filter, Wiener filter, as well as 

CLAHE techniques are used to process the gathered 

information. The adaptive threshold-based segmentation 

approach is used to segment this pre-processed information. 

This segmented data is now subjected to feature extraction 

using the VGG-16 method. Finally, night jasmine leaf disease 

is identified and categorized using the new ISSAE method. 

The optimization technique called PPBO does the usual SSAE 

parameter modification with the objective function of 

maximizing return accuracy. The proposed night jasmine leaf 

disease detection and classification model is diagrammatically 

depicted in Figure 1. 

 

3.2 Data collection 

 

The purpose of the comprehensive collection known as the 

Night Jasmine Leaf Diseases Dataset is to support the study as 

well as management of leaf diseases that affect the night 

jasmine plant. The dataset is gathered from the link, 

“https://www.kaggle.com/datasets/shuvokumarbasak4004/ni

ght-jasmine-leaf-diseases-dataset.” High-resolution photos 

related to various leaf disease stages as well as types are 

included in this collection, which describes a great resource 

for plant pathology and agricultural technology researchers 

and experts. In order to facilitate the development as well as 

assessment of deep learning methods for illness detection and 

classification, the photos are arranged to depict different 
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disease situations. The dataset contributes to the advancement 

of automated plant disease diagnosis by offering a diverse 

array of visual data, which results in more accurate as well as 

efficient agricultural practices. It serves as a fundamental tool 

for developing early disease detection computer vision 

applications, which helps to lower crop loss as well as promote 

sustainable agriculture. The dataset is openly available on 

Kaggle, encouraging collaboration as well as innovation in the 

field of plant disease management. The dataset comprises 

symptom-based image labels, as pathogen-level annotations 

were not available for this study. The proposed framework is 

thus designed to operate on visual disease cues. The 

description of the dataset is listed in Table 2. 

 

 
 

Figure 1. Proposed night jasmine leaf disease detection and 

classification model 

 

Table 2. Dataset description 

 
Class Count of samples 

Healthy 4000 

Bacterial blight 2000 

Leaf spot 2000 

Rust 4000 

 

3.3 Pre-processing 

 

Pre-processing enhances the quality as well as consistency 

of input photos before they are used in deep learning 

algorithms, which is crucial for the night jasmine leaf disease 

detection and classification model. By ensuring that the 

method highlights important patterns related to leaf texture, 

color variations, as well as disease signs, the first processing 

stages improve the accuracy of feature extraction and 

categorization. Effective pre-processing improves the 

resilience as well as dependability of the detection framework 

by reducing computing complexity and the chance of 

overfitting. Here, the pre-processing of the collected night 

jasmine leaf disease images is done by the bilateral filtering, 

median filtering, wiener filtering and CLAHE approaches.  

Create a two-dimensional matrix representation of the 

original greyscale picture. 

 

𝐽(𝑗, 𝑘), 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑂  (1) 

 

Here, 𝐽(𝑗, 𝑘) is the pixel intensity in an image of size 𝑁 × 𝑂 

at the coordinates (𝑗, 𝑘). 

Bilateral filtering: One non-linear smoothing method that 

maintains edges describes the bilateral filter, which is 

described as follows: 

 

𝐽𝐶(𝑗, 𝑘) =
1

𝑋(𝑗, 𝑘)
∑ ∑ 𝐻𝑡(𝑙, 𝑚)

𝑠

𝑚=−𝑠

𝑠

𝑙=−𝑠

⋅ 𝐻𝑠(𝐽(𝑗 + 𝑙, 𝑘 + 𝑚) − 𝐽(𝑗, 𝑘))

⋅ 𝐽(𝑗 + 𝑙, 𝑘 + 𝑚) 

(2) 

 

Here, the output after bilateral filtering is shown by 𝐽𝐶(𝑗, 𝑘), 

window radius is shown by 𝑠, spatial Gaussian kernel is shown 

by 𝐻𝑡(𝑙, 𝑚) = exp (−
𝑙2+𝑚2

2σ𝑡
2 ), range Gaussian kernel is shown 

by 𝐻𝑠(Δ) = exp (−
Δ2

2σ𝑠
2) , Δ = 𝐽(𝑗 + 𝑙, 𝑘 + 𝑚) − 𝐽(𝑗, 𝑘) , and 

the normalization factor is shown by 𝑋(𝑗, 𝑘) respectively.  

 

𝑋(𝑗, 𝑘) = ∑ ∑ 𝐻𝑡(𝑙, 𝑚)

𝑠

𝑚=−𝑠

𝑠

𝑙=−𝑠

⋅ 𝐻𝑠(𝐽(𝑗 + 𝑙, 𝑘 + 𝑚) − 𝐽(𝑗, 𝑘)) 

(3) 

 

This filter combines pixel similarity as well as spatial 

closeness to reduce noise and preserve edges. 

Median filtering: Utilizing a sliding window, the median 

filter replaces every pixel with the median value of nearby 

pixels: 

 

𝐽𝑁(𝑗, 𝑘)  =  {𝑀𝑒𝑑𝑖𝑎𝑛}{ 𝐽(𝑗 + 𝑙, 𝑘 + 𝑚)  |   − 𝑠 
≤ 𝑙,𝑚 ≤ 𝑠 } 

(4) 

 

The window's dimensions are (2𝑠 + 1) × (2𝑠 + 1), and it 

is very effective in removing impulse noise, sometimes known 

as salt-and-pepper noise, where 𝐽𝑁(𝑗, 𝑘) describes the filtered 

output at the pixel at (𝑗, 𝑘) . The median operator avoids 

intensity blurring, which protects edges compared to 

averaging filters. 

Wiener filtering: Reducing the mean square error among the 

estimated as well as real images is the goal of the Wiener filter. 

In the frequency domain, the formulation is: 

 

𝐽(𝑣, 𝑤) =

[
 
 
 |𝐼(𝑣, 𝑤)|2

|𝐼(𝑣, 𝑤)|2 +
𝑇𝑜(𝑣, 𝑤)
𝑇𝑔(𝑣, 𝑤)]

 
 
 

⋅
𝐺(𝑣, 𝑤)

𝐼(𝑣, 𝑤)
 (5) 

 

Here, the Fourier transform related to the degraded image is 

shown by 𝐺(𝑣, 𝑤) , Wiener-filtered image in frequency 

domain is shown by 𝐽(𝑣, 𝑤), Power Spectral Densities (PSDs) 

associated with the noise as well as the original image is shown 

by 𝑇𝑜(𝑣, 𝑤) and 𝑇𝑔(𝑣, 𝑤), and the degradation function like 
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blur kernel is shown by 𝐼(𝑣, 𝑤)  respectively. In the spatial 

domain (with local window estimates considered): 

 

𝐽𝑋(𝑗, 𝑘) = μ +
σ2 − η2

σ2
⋅ (𝐽(𝑗, 𝑘) − μ) (6) 

 

Here, the local variance is shown by σ2, local mean in the 

window is shown by μ, noisy image intensity is shown by 

𝐽(𝑗, 𝑘) and noise variance is shown by η2 respectively. When 

the noise power is known or estimated, this filter is perfect for 

eliminating Gaussian noise. The image may undergo 

sequential processing for efficient noise reduction. 

 

𝐽𝐹𝑖𝑛𝑎𝑙 = 𝑋 (𝑁(𝐶(𝐽))) (7) 

 

Here, bilateral filtering operation is shown by 𝐶(𝐽), median 

filtering operation is shown by 𝑁(∙)  and wiener filtering 

operation is shown by 𝑋(∙) respectively.  

CLAHE: An adaptation of the AHE method is CLAHE. 

CLAHE solves the over amplification issue with normal AHE 

by making use of the clip limit as well as count of tiles options. 

The CLAHE method is used to segment the image into 𝑁 × 𝑂 

local tiles. Every tile's histogram is calculated separately. In 

order to compute the histogram, the mean pixel count per 

region may first be found using Eq. (8). 

 

𝑂𝑏 = (𝑂𝑦 × 𝑂𝑧) 𝑂ℎ⁄  (8) 

 

Here, 𝑂ℎ  is the number of grey levels, 𝑂𝑏  is the mean 

number of pixels, 𝑂𝑦  is the number of pixels in the 𝑦 

dimension, and 𝑂𝑧 is the number of pixels in the 𝑧 dimension. 

The clip limit can then be defined as shown by Eq. (9) to 

restrict the histogram. 

 

𝑂𝐶𝐿 = 𝑂𝑏 × 𝑂𝑂𝐶𝐿  (9) 

 

Here, 𝑂𝑂𝐶𝐿  stands for the normalized clip limit, which 

ranges from 0 to 1, and 𝑂𝐶𝐿  stands for the clip limit. The clip 

limit for the height associated with every tile's histogram is 

then established using Eq. (10). 

 

𝐼𝑗 = {
𝑂𝐶𝐿 𝑖𝑓 𝑂𝑗 ≥𝑂𝐶𝐿

𝑂𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

 

Here, 𝑗 = 1,2,⋯ ,𝑀 − 1,𝑀  indicates the count of grey 

levels, 𝐼𝑗  describes the height associated with the 𝑗𝑡ℎ  tile's 

histogram, and 𝑂𝑗 describes the 𝑗𝑡ℎ tile's histogram. The total 

number of clipped pixels may be determined using Eq. (11): 

 

𝑂𝑑 = (𝑂𝑦 × 𝑂𝑧) − ∑ 𝐼𝑗

𝑀−1

𝑗=0

 (11) 

 

Here, the count of pixels that are clipped is denoted by 𝑂𝑑. 

Once 𝑂𝑑  has been established, the clipped pixels must be 

redistributed. Redistribution of pixels can be either uniform or 

nonuniform. Eq. (12) may be used to calculate the amount of 

pixels that need to be reallocated. 

 

𝑂𝑠 = 𝑂𝑑 𝑀⁄  (12) 

 

Here, the amount of pixels that need to be reallocated is 

indicated by 𝑂𝑠 . The reduced histogram is then normalized 

using Eq. (13). 

 

𝐼𝑗 = {
𝑂𝐶𝐿 𝑖𝑓 𝑂𝑗 + 𝑂𝑠 ≥ 𝑂𝐶𝐿

𝑂𝑗 + 𝑂𝑠 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

 

Here, 𝑗 = 1,2,⋯ ,𝑀 − 1 . To get the number of 

undistributed pixels, Eqs. (11) and (12) are used. Go over the 

Eq. (13) again until all of the pixels have been redistributed. In 

the end, the contextual region's cumulative histogram might be 

represented using Eq. (14): 

 

𝐷𝑗 =
1

𝑂𝑦 × 𝑂𝑧

∑ 𝐼𝑘

1

𝑘=0

 (14) 

 

After completing all among the previously described 

computations, the contextual region's histogram is aligned 

with Rayleigh, uniform, or exponential probability 

distributions to attain a desired brightness as well as visual 

quality. The enhanced image will be the end outcome when 

the CLAHE processes have been completed. 

The use of multiple filters in the preprocessing stage is 

motivated by the heterogeneous noise characteristics observed 

in night jasmine leaf images. Bilateral filtering preserves edges 

while removing Gaussian noise, median filtering effectively 

mitigates impulse noise, Wiener filtering suppresses blur-

induced distortions, and CLAHE enhances contrast under 

uneven illumination. Since no single method is capable of 

simultaneously addressing all these distortions, the combined 

pipeline provides a balanced enhancement strategy that 

improves the quality of downstream feature extraction. 
 

3.4 Segmentation by adaptive threshold-based 

segmentation 
 

By isolating the afflicted leaf regions from the background, 

segmentation is essential to the night jasmine leaf disease 

detection and classification model because it enables the 

method to concentrate only on the relevant portions of the 

picture. By separating the leaf region from dirt, shadows, or 

various adjacent objects, segmentation reduces noise as well 

as enhances the delineation of disease-associated 

characteristics, such as spots, discoloration, or texture 

changes. This focused isolation improves classification 

accuracy by enabling the algorithm to pinpoint particular 

characteristics linked to illness severity as well as trends. 

Furthermore, segmentation improves resource effectiveness 

by handling less irrelevant information, which lowers 

computing needs. By ensuring that forecasts only consider the 

affected leaf areas, it further improves the interpretability of 

the method as well as makes the disease detection framework 

more robust, reliable, and effective in real-world applications. 

Here, the segmentation process for the pre-processed image of 

the night jasmine leaf disease model is accomplished by the 

adaptive threshold-based segmentation approach.  

In order to effectively distinguish among foreground as well 

as background, adaptive threshold-based segmentation 

describes a dynamic method for picture segmentation that 

adjusts the threshold value locally depending on the pixel 

neighborhood, even in the presence of irregular lighting or 

contrast variations. Instead of relying on a single overall 

threshold, this method separates a picture mathematically by 

computing a locally varying threshold for each pixel. Assume 

𝐽(𝑗, 𝑘)  be the representation of the greyscale picture input, 

3395



 

where (𝑗, 𝑘)  are the spatial coordinates associated with the 

𝑁 × 𝑂 image. For every pixel 𝐽(𝑗, 𝑘), a square window with 

dimensions 𝑥 × 𝑥 is considered. The local standard deviation 

σ𝑥(𝑗, 𝑘) as well as local average μ𝑥(𝑗, 𝑘) are calculated at this 

time. Next, the adaptive threshold 𝑈(𝑗, 𝑘)  is computed as 

follows: 

 

𝑈(𝑗, 𝑘) = μ
𝑥
(𝑗, 𝑘) + 𝑙 ⋅ σ𝑥(𝑗, 𝑘) (15) 

 

Here, 𝑙 describes a constant that affects how sensitive the 

threshold is to changes in local intensity. Segmentation is used 

to construct the binary image 𝑇(𝑗, 𝑘) utilizing 

 

𝑇(𝑗, 𝑘)  = {
1 𝑖𝑓 𝐽(𝑗, 𝑘) ≥ 𝑈(𝑗, 𝑘)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (16) 

 

This technique adapts to local picture properties as well as 

works particularly well for textured sceneries, medical photos, 

and documents when uniform thresholding is insufficient. To 

increase resilience in some variations, the arithmetic mean 

may be swapped out for the local median or a weighted 

average using a Gaussian kernel. Additionally, the window 

size w is crucial; a bigger window produces smoother 

transitions, while a smaller window provides higher sensitivity 

to local variations. Adaptive thresholding uses contextual 

intensity distributions to provide a mathematically efficient 

method for achieving precise segmentation in complex visual 

environments. 

 

3.5 Feature extraction by VGG-16 

 

The night jasmine leaf disease detection and classification 

model relies heavily on feature extraction, which transforms 

unprocessed picture data into meaningful descriptions that 

highlight the unique characteristics of both healthy as well as 

diseased leaves. By focusing only on the major relevant data, 

effective feature extraction reduces dataset complexity, 

increases method generalization, as well as enhances 

classification accuracy. It ensures that the classification 

framework can more accurately distinguish between distinct 

disease kinds or healthy leaves, which will lead to a more 

reliable as well as efficient disease detection procedure.Here, 

the features are extracted from the segmented images of the 

proposed night jasmine leaf disease model by the VGG-16 

approach. 

A deep CNN (Convolutional Neural Network) represents 

the VGG-16. It has three fully connected layers, five max-

pooling layers, thirteen convolutional layers, as well as a 

Softmax output layer. The Conv Layer's main tasks include 

making local connections, employing neurons as filters, as 

well as applying convolution operations on local input via 

applying filters and a sliding window technique. The 

generalized formula associated with the operating procedure 

is: 

 

𝐵(𝑗, 𝑘) = (𝑌 ∗ 𝐺)(𝑗, 𝑘) + 𝑐 (17) 

 

Here, ∗ describes the convolution operator, 𝑌 describes the 

input matrix, 𝑐  describes the bias, and 𝐵(𝑗, 𝑘) describes the 

position value related to filter matrix 𝐺 with respect to output 

matrix (𝑗, 𝑘). 

The order 𝑦 associated with the final output matrix is as 

follows if the input matrix has order 𝑜, the filter matrix is of 

order 𝑔, and border padding as well as stride are involved: 

 

𝑦 =
𝑜 + 2𝑞 − 𝑔

𝑡
+ 1 (18) 

 

The activation function in the ReLU Layer enhances the 

nonlinearity of the method by applying a nonlinear mapping 

to the feature matrix produced from the convolutional Layer. 

Rectified Linear Units, or ReLUs, are widely used and are 

among the major significant unsaturated activation functions. 

The main purpose of the pooling layer, also known as down 

sampling, is to reduce the number of parameters as well as 

their dimensionality. The idea is to divide the feature graph 

into many non-overlapping regions using different Windows, 

then apply average pooling or maximum pooling on these 

regions. 

The data properties are obtained in the Fully Connected 

Layer after the convolution as well as pooling processes of the 

convolution and pooling layers, respectively. The correlation 

among the fully connected layer as well as the outputs related 

to linear neurons is shown as follows: 

 

𝑔(𝑦) = ∑(𝑥𝑗𝑘𝑦𝑗) + 𝑐𝑗 (19) 

 

Here, b is the bias component in the fully connected layer's 

output. 

 

3.6 Detection and classification by novel ISSAE 

 

The core components related to the night jasmine leaf 

disease model are detection and classification, which enable 

the framework to automatically identify as well as differentiate 

infected leaves from healthy ones. The detection stage 

focusses on locating the diseased leaf sections, sometimes 

using segmentation findings or bounding box approaches to 

pinpoint the exact places displaying symptoms like blights, 

spots, or color changes. Following the identification of the 

afflicted regions, the classification stage assigns the leaf to a 

specific category, such as healthy, mildly infected, or severely 

infected, or, in the event that many disease types are found, 

identifies the exact kind of illness. Together, detection as well 

as classification forms a robust procedure that not only 

identifies diseased leaves yet also informs farmers about the 

kind and severity associated with the disease, enabling them to 

make more accurate and timely agricultural decisions.The 

detection and classification of the extracted features of the 

proposed night jasmine leaf disease model is done here by the 

novel ISSAE approach, where the parameters of SSAE are 

tweaked by PPBO with the intention of maximizing accuracy 

as the fitness function.  

There are several advantages of using the SSAE to detect as 

well as classify illnesses in night jasmine leaves. First of all, 

SSAE excels in learning compressed as well as hierarchical 

descriptions associated with input pictures, spotting subtleties 

that conventional techniques would overlook, such as texture 

variations, color patterns, and disease signs. By ensuring that 

only the important as well as instructive neurons are triggered, 

the sparsity requirement reduces noise and improves the 

method's capacity for generalization. Even in situations where 

labelled data is few, the framework may improve classification 

accuracy by SSAE to obtain more abstract as well as 
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differentiating characteristics. Additionally, SSAE can 

efficiently handle high-dimensional picture information, 

reducing processing burden while maintaining important 

details. As a result, the method can withstand variations in 

lighting, backdrop as well as leaf placement. Using SSAE 

improves the detection as well as classification procedure, 

enabling quick and precise identification of night jasmine leaf 

diseases and assisting farmers in taking prompt action to 

protect their crops. 

The SSAE has several limitations even if it offers strong 

feature learning for identifying as well as categorizing 

illnesses of night jasmine leaves. Its high computational 

complexity describes a major drawback, especially when 

working with large picture datasets or more complicated 

network topologies, which leads to lengthy training times as 

well as a substantial hardware need. Furthermore, without 

extensive testing, SSAE tuning becomes more difficult due to 

the influence of hyper parameter settings, such as the learning 

rate, number of hidden units, as well as sparsity penalties. 

When the complexity related to the method surpasses the 

amount of labelled information that is present, overfitting may 

occur, especially in agricultural datasets, in which annotated 

pictures are often limited. Furthermore, SSAE training 

typically entails unsupervised pre-training and fine-tuning, 

adding more steps than end-to-end methods like CNNs. Unless 

carefully optimized, these limitations may hinder real-world 

implementation and make SSAEs less suitable for real-time or 

resource-constrained applications. 

Compared to the traditional SSAE, the ISSAE provides a 

number of advantages for identifying as well as categorizing 

illnesses of night jasmine leaves. By using attention 

mechanisms, optimization strategies or advanced 

regularization approaches, ISSAE enhances feature learning 

and is able to recognize more unique as well as disease-

specific patterns from leaf pictures. This results in increased 

resistance to noise, background fluctuations as well as 

illumination variations. Using optimized architectures or 

adaptive learning approaches, ISSAE often improves 

convergence speed as well as reduces training time, making it 

more efficient on large datasets. Additionally, its improved 

sparsity management ensures that only the major important 

characteristics are emphasized, supporting the method's ability 

to generalize even with little labelled information. 

Additionally, the improved architecture helps to lessen 

overfitting, which is a common issue with deep methods, 

especially when it comes to agricultural datasets. ISSAE is 

highly successful for early as well as precise disease detection 

in night jasmine leaves due to its greater accuracy, improved 

stability, and enhanced computing effectiveness. 

Many sparse auto-encoders are set up to form SSAE, a deep 

network format. The output associated with the hidden layer 

𝑧𝑚 for each hidden layer 𝑚 in the group {1,⋯ ,𝑀 − 1} related 

to the SSAE method is described as below: 

 

𝑧𝑚 = 𝑔(𝑐𝑖𝑖𝑀−1 + 𝑐𝑚) (20) 

 

Here, 𝑀  is the total number of layers, 𝑔  describes the 

dimensionality related to latent factor, 𝑐 describes the bias, 𝑋 

describes the weight and the hidden description is shown by 𝑖 
respectively. The first 𝑀 2⁄  layers associated with the method 

are the encoder, and the latter 𝑀 2⁄  layers are the decoder. It 

is suggested that the 𝑀 2⁄  layer in the SSAE method should 

generate the latent component, and that there should only be 

one hidden layer close to it. To replicate the input as well as 

lower the squared loss among the produced outputs, the SSAE 

uses a deep framework. The below formula is used to 

determine the loss function for SSAE. 

 

𝐾𝑆𝑝𝑎𝑟𝑒(𝑋𝑚, 𝑐𝑚) = 𝐾(𝑋𝑚, 𝑐𝑚) + 𝛽 ∑ 𝐿𝑀(𝜌||𝜌̂𝑗)

𝑛

𝑗=1

 (21) 

 

Here, the weight matrix is shown by 𝑋𝑚 , bias vector 

associated with every layer is shown by 𝑐𝑚 , divergence is 

shown by 𝐿𝑀 , loss function of SAE is shown by 𝐾𝑆𝑝𝑎𝑟𝑒 , 

weight employed to control sparsity penalty factor is shown by 

𝛽 and ∑ 𝐿𝑀(𝜌||𝜌̂𝑗)
𝑛
𝑗=1  is shown as below. 

 

∑ 𝐿𝑀(𝜌||𝜌̂𝑗)

𝑛

𝑗=1

= ∑𝜌 log
𝜌

𝜌̂𝑗

+ (1 − 𝜌) log
1 − 𝜌

1 − 𝜌̂𝑗

𝑛

𝑗=1

 (22) 

 

Here, 𝜌 =
1

𝑛
∑ (𝑏𝑘(𝑦𝑗))

𝑛
𝑗=1  describes the average activation 

of entire training instances in hidden layer neuron 𝑘, activation 

value in hidden layer neurons is shown by 𝑏𝑘 and the count of 

hidden units per layer is shown by 𝑛  respectively. The 

proposed novel ISSAE for the detection and classification of 

night jasmine leaf disease is diagrammatically shown in Figure 

2. 

The ISSAE architecture differs from the traditional SSAE 

through three key enhancements. First, an adaptive sparsity 

regulation mechanism dynamically adjusts the sparsity penalty 

based on reconstruction behavior, preventing neuron under-

utilization or collapse. Second, ISSAE employs progressive 

layer-wise fine-tuning, which stabilizes convergence by 

refining each hidden layer sequentially instead of training the 

entire stack at once. Third, PPBO-assisted hyperparameter 

stabilization ensures optimal selection of sparsity coefficients, 

hidden units, and learning rates, reducing sensitivity to 

initialization. Together, these enhancements enable ISSAE to 

extract more discriminative and stable representations from 

leaf images compared to the conventional SSAE. 

 

3.7 PPBO algorithm 

 

By fine-tuning the method parameters, optimization is 

crucial to increasing the efficacy related to the night jasmine 

leaf disease detection and classification model. In order to 

improve stability, model convergence, as well as 

generalization, it helps select the best hyperparameters (like 

batch size, learning rate, and count of hidden layers). The 

resilience, effectiveness, as well as capacity of the pipeline to 

produce precise illness forecasts under various circumstances 

are all improved via optimization.Here, the PPBO algorithm 

tunes the parameters of the SSAE model in the proposed night 

jasmine leaf disease detection and classification model in 

order to return the accuracy maximization as the objective 

function.  

The process of publishing papers is replicated by PPBO. 

The main driving force behind PPBO is writers' efforts to 

improve their work in response to reviewers' as well as editors' 

comments in order to get acceptance. After outlining the 

PPBO format, its mathematical modelling is developed by 

simulating the publication procedure of papers. 
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Figure 2. Proposed ISSAE for the detection and classification of night jasmine leaf disease model 

 

By utilizing the search skills of its individuals inside the 

problem-handling domain, the PPBO approach describes a 

population-based optimization scheme that can provide 

effective solutions for optimization difficulties. Every 

population individual determines values for the decision 

variables in the PPBO model based on where they are in the 

problem-handling domain. As a result, each person in the 

population is a solution to the issue that a vector may 

mathematically depict. This means that a matrix based on Eq. 

(23) may be used to describe the PPBO population composed 

of these vectors. Utilizing Eq. (24), every PPBO individual's 

initial location in the problem-handling space is chosen at 

random. 

 

𝑄 =

[
 
 
 
 
𝑞1,1

⋮
𝑞𝑗,1

⋮
𝑞𝑂,1

⋯
⋱
⋯
⋰
⋯

𝑞1,𝑘

⋮
𝑞𝑗,𝑘

⋮
𝑞𝑂,𝑘

⋯
⋰
⋯
⋱
⋯

𝑞1,𝑛

⋮
𝑞𝑗,𝑛

⋮
𝑞𝑂,𝑛]

 
 
 
 

𝑂×𝑛

 (23) 

 

𝑄𝑗 : 𝑞𝑗,𝑘 = 𝐿𝐵𝑘 + 𝑠𝑗𝑘 ∙ (𝑈𝐵𝑘 − 𝐿𝐵𝑘) (24) 

 

Here, 𝑄 stands for the PPBO's population matrix, 𝑂 for the 

total count of population members, and 𝑛  for the count of 

decision factors. The 𝑗𝑡ℎ candidate solution is denoted as 𝑄𝑗 , 

𝑞𝑗,𝑘 is its 𝑘𝑡ℎ variable, 𝑠𝑗𝑘 represents uniform random integers 

in the interval [0,1], and 𝐿𝐵𝑘  and 𝑈𝐵𝑘  serve as the lower as 

well as upper bounds related to the 𝑘𝑡ℎ  decision variable, 

respectively.  In the fitness function, each individual of the 

PPBO can be evaluated as a solution. As a result, a fitness 

function value is established for every PPBO individual, and 

these values may be described by a vector in accordance with 

the Eq. (25). 

 

𝐺 =

[
 
 
 
 
𝐺1

⋮
𝐺𝑗

⋮
𝐺𝑂]

 
 
 
 

𝑂×1

=

[
 
 
 
 
𝐺(𝑌1)

⋮
𝐺(𝑌𝑗)

⋮
𝐺(𝑌𝑂)]

 
 
 
 

𝑂×1

 (25) 

 

In this case, 𝐺𝑗 denotes the fitness function value obtained 

from the 𝑗𝑡ℎ  POA individual, and 𝐺  stands for the vector 

associated with fitness function values. The simulation of 

responding to reviewer input describes the basis of the first 

population update step in PPBO. The population's location is 

significantly altered as a result of this process, which also 

improves PPBO's exploration capabilities for worldwide 

research. Eq. (26) is used in PPBO model to establish the 

reviewer's position in the problem-handling space for each 

individual related to the population. 

 

𝑆𝑗 = 𝑄𝑙 + 𝑅𝑎𝑛𝑑 ∙ (𝑄𝐵𝑒𝑠𝑡 − 𝑄𝑊𝑜𝑟𝑠𝑡) (26) 

 

In this case, 𝑆𝑗  describes the reviewer associated with the 

𝑗𝑡ℎ PPBO individual (i.e., the paper); 𝑄𝑙(𝑙 ∈ {1,2,⋯ , 𝑂}, 𝑙 ≠
𝑗) describes the 𝑙𝑡ℎ PPBO individual; 𝑄𝐵𝑒𝑠𝑡  describes the best 

PPBO individual; 𝑄𝑊𝑜𝑟𝑠𝑡  describes the worst PPBO 
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individual; and 𝑅𝑎𝑛𝑑  stands for uniform random counts 

selected from the interval [0,1].  Utilizing Eq. (27), a novel 

location has been calculated for every individual related to the 

population in the model of PPBO on the basis of the simulation 

associated with the article revision procedure to answer 

reviewer comments. The novel location will next replace the 

previous location related to the corresponding individual in 

accordance with Eq. (28) if the fitness function value indicates 

enhancement. 

 

𝑄𝑗
1 = 𝑄𝑗 + 𝑅𝑎𝑛𝑑 ∙ (𝑆𝑗 − 𝐽𝑗 ∙ 𝑄𝑗) (27) 

 

𝑄𝑗 = {
𝑄𝑗

1, 𝐺𝑗
1 ≤ 𝐺𝑗

𝑄𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (28) 

 

In this case, the newly calculated location for the 𝑗𝑡ℎ PPBO 

individual based on the initial stage related to the PPBO is 

denoted by 𝑄𝑗
1, the fitness function value is indicated by 𝐺𝑗

1, 

and the counts 𝐽𝑗are uniformly selected at random to be either 

1 or 2. The count of editor comments is considered a variable 

in the PPBO model, and its maximum is equal to the count of 

decision variables according to Eq. (29). As shown by Eq. 

(30), the amount of editor comments determines which 

decision variables require adjustment. 

 

𝑂𝑑 = [1 +
𝑛

𝑢
] ≤ 𝑛 (29) 

 

𝑛𝑑 = {𝑛𝑙|𝑛𝑙 ∈ {1,2,⋯ , 𝑛},      𝑙 = 1,2,⋯ , 𝑂𝑑} (30) 

 

The variables in this case are denoted by 𝑛, the total count 

of editor comments during the 𝑢𝑡ℎ iteration by 𝑂𝑑, the group 

of variables selected for the updating procedure at the 𝑢𝑡ℎ 

iteration by 𝑛𝑑, and the 𝑙𝑡ℎ variable selected by 𝑛𝑙 . A novel 

location has been calculated for every individual associated 

with the population using Eq. (31) in order to create PPBO that 

is obtained by modelling the article review procedure to 

answer the editor's input. The new location then replaces the 

previous location related to the appropriate individual 

employing Eq. (32) if the value associated with the fitness 

function has increased. 

 

𝑄𝑗,𝑛𝑑𝑙

2 = 𝑄𝑗,𝑛𝑑𝑙
+ 𝑅𝑎𝑛𝑑 ∙ (𝑄𝐵𝑒𝑠𝑡,𝑛𝑑𝑙

− 𝐽𝑗 ∙ 𝑄𝑗,𝑛𝑑𝑙
),

𝑙 = 1,2,⋯ , 𝑂𝑑 
(31) 

 

𝑄𝑗 = {
𝑄𝑗

2, 𝐺𝑗
2 ≤ 𝐺𝑗

𝑄𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (32) 

 

In this case, 𝑄𝑗
2  describes the newly calculated location 

associated with the 𝑗𝑡ℎ individual related to the population on 

the basis of the second stage of the PPBO, 𝑄𝑗,𝑛𝑑𝑙

2  indicates its 

𝑛𝑑𝑙
𝑡ℎ  dimension, 𝐺𝑗

2  describes the value associated with its 

fitness function, 𝑅𝑎𝑛𝑑 describes a random value selected from 

the interval [0,1], and 𝐽𝑗 describes a uniformly selected count 

that can be either 1 or 2. 

The PPBO algorithm operates through iterative 

exploration–exploitation updates. At iteration 𝑡 , each 

candidate solution 𝑥𝑖
𝑡 is evaluated using the reconstruction-

based fitness function 𝐹(𝑥𝑖
𝑡) . During exploration, new 

solutions are sampled using perturbation strategies that 

promote diversity, while exploitation refines top-ranked 

candidates using weighted corrections. The update rule 

follows: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼(𝑥best
𝑡 − 𝑥𝑖

𝑡) + 𝛽 ⋅ 𝜖𝑡 , (33) 

 

where, 𝛼 denotes exploitation strength, 𝛽 controls random 

perturbation, and 𝜖𝑡 is a stochastic disturbance. Although 

PPBO does not offer theoretical convergence guarantees, it 

functions effectively as a practical meta-heuristic optimizer for 

stabilizing ISSAE hyperparameters.  

The initial iteration associated with the algorithm is 

completed after entire PPBO individuals have been modified 

in accordance with the first as well as second phases. The best 

solution discovered throughout every cycle is updated as well 

as saved. The algorithm then proceeds to the next iteration 

using the updated values, and the PPBO update process 

continues till the algorithm's last iteration, as described by Eqs. 

(26) to (32). After PPBO has finished running, the best 

outcome from all of the algorithm's iterations is displayed as a 

solution to the given problem. Algorithm 1 provides 

pseudocode outlining the procedures for PPBO 

implementation. 

 

Algorithm 1: PPBO 

Start  

Input data of optimization problem [extracted features of 

the proposed night jasmine leaf disease detection and 

classification model] 

Set parameters of O and U and place j = 1 and u = 1 

Generate and evaluate the initial population 

 While j < O 

  If 𝑢 < 𝑈 

   𝑆𝑗 = 𝑄𝑙 + 𝑅𝑎𝑛𝑑 ∙ (𝑄𝐵𝑒𝑠𝑡 − 𝑄𝑊𝑜𝑟𝑠𝑡) 

   𝑄𝑗
1 = 𝑄𝑗 + 𝑅𝑎𝑛𝑑 ∙ (𝑆𝑗 − 𝐽𝑗 ∙ 𝑄𝑗) 

   
𝑄𝑗 = {

𝑄𝑗
1, 𝐺𝑗

1 ≤ 𝐺𝑗

𝑄𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

   𝑂𝑑 = [1 +
𝑛

𝑢
] ≤ 𝑛 

   𝑄𝑗,𝑛𝑑𝑙

2 = 𝑄𝑗,𝑛𝑑𝑙
+ 𝑅𝑎𝑛𝑑

∙ (𝑄𝐵𝑒𝑠𝑡,𝑛𝑑𝑙
− 𝐽𝑗 ∙ 𝑄𝑗,𝑛𝑑𝑙

),

𝑙 = 1,2,⋯ , 𝑂𝑑 

   
𝑄𝑗 = {

𝑄𝑗
2, 𝐺𝑗

2 ≤ 𝐺𝑗

𝑄𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  else 

   𝑢 = 𝑢 + 1 

   𝑗 = 1 

  End if 

 𝑗 = 𝑗 + 1 

 end 

Output the best quasi-optimal solution [maximized 

accuracy of the proposed night jasmine leaf disease 

detection and classification model] 

Stop  

 

The design of ISSAE is motivated by the need for controlled 

sparsity and stable hierarchical feature extraction. By 

integrating adaptive sparsity adjustment with progressive 

depth-wise fine-tuning, ISSAE prevents neuron inactivity and 
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reduces parameter sensitivity—two limitations commonly 

observed in traditional SSAE implementations. These 

modifications ensure that the autoencoder captures salient 

textural and morphological patterns from leaf images while 

maintaining efficient representation. Thus, ISSAE constitutes 

an enhanced variant of SSAE designed specifically for 

structured plant-disease imagery. 

The present study focuses exclusively on the visual 

symptom patterns of night jasmine leaves, which represent the 

earliest and most accessible indicators for farmers and field 

workers. The objective of the proposed pipeline is early-stage 

screening rather than pathogen-level or infection-stage 

diagnosis, which requires laboratory assays and specialist 

input beyond the scope of an image-driven computational 

framework. For practical agricultural settings where 

laboratory facilities are limited, visual inspection remains the 

predominant method of disease identification. Therefore, the 

classifier is trained to distinguish characteristic symptom 

expressions such as spotting, color variation, tissue distortion, 

and margin decay—features that farmers traditionally rely on 

for early disease assessment. 

 

 

4. EXPERIMENTAL ANALYSIS 

 

4.1 Experimental setup 

 

The proposed ISSAE-PPBO for the night jasmine leaf 

disease detection and classification model was implemented in 

MATLAB and the findings were discussed. The population 

size was placed to be 10. The iteration count was taken as 200. 

The proposed ISSAE-PPBO was compared with numerous 

traditional methods like MULTINET, custom CNN, SE-

VRNet and LF-Mamba with consideration of analysis such as 

accuracy, sensitivity, precision, MCC, F1 score, specificity, 

and FNR to prove the effectiveness of the developed night 

jasmine leaf disease detection and classification model. The 

simulation parameters used for the experimentation are listed 

in Table 3. 

 

Table 3. Simulation parameters 

 
Parameters Description 

Platform MATLAB 

Dataset used Night Jasmine Leaf Database 

Iteration count 200 

Population size 10 

Objective function Accuracy maximization 

Optimization PPBO 

 

4.2 Segmentation and Output Image results 

 

 
 

Figure 3. Sample output images of the proposed night 

jasmine leaf disease detection and classification model 

Some of the sample input images pre-processed images, 

segmented images and output images of the proposed night 

jasmine leaf disease detection and classification model are 

shown in Figure 3. 

 

4.3 Accuracy analysis 

 

The accuracy analysis in Figure 4 for night jasmine leaf 

disease detection and classification demonstrates a progressive 

evaluation throughout ten iterations (from 20 to 200) for 

several methods: LF-Mamba, SE-VRNet, custom CNN, 

MULTINET, as well as the proposed ISSAE-PPBO. With 

additional rounds, a consistent improvement in accuracy 

across entire techniques is observed, suggesting improved 

learning as well as generalization with time. While the custom 

CNN advances from 0.8250 to 0.8695, MULTINET starts at 

0.8120 and gradually rises to 0.8571 after 200 iterations. The 

effectiveness of SE-VRNet is better, starting at 0.8340 and 

reaching 0.8784.  After starting at 0.8412, LF-Mamba 

improves even further, reaching 0.8876. Surprisingly, the 

proposed ISSAE-PPBO significantly outperforms the existing 

methods in every iteration, starting at 0.8945 and ending at a 

strong 0.9497.  This implies that the proposed method offers 

improved accuracy as well as learning efficacy, making it a 

very promising technique for the successful identification and 

categorization of illnesses affecting night jasmine leaves.The 

proposed ISSAE-PPBO for the night jasmine leaf disease 

detection and classification model in terms of accuracy is 

10.80%, 9.22%, 8.12% and 6.99% better than MULTINET, 

custom CNN, SE-VRNet and LF-Mamba, respectively. 

 

 
 

Figure 4. Accuracy analysis 

 

4.4 Sensitivity analysis 

 

The sensitivity analysis in Figure 5 for the night jasmine leaf 

disease detection and classification model demonstrates the 

progressive development of many methods over 10 iterations 

(varying from 20 to 200): MULTINET, custom CNN, SE-

VRNet, LF-Mamba, as well as the proposed ISSAE-PPBO. 

While the custom CNN improves from 0.7582 to 0.8015, 

MULTINET shows a gradual rise in sensitivity from 0.7450 to 

0.7880.  While LF-Mamba outperforms SE-VRNet, increasing 

from 0.7755 to 0.8190 at the final iteration, SE-VRNet 

exhibits a slight enhancement, increasing from 0.7680 to 

0.8115.  However, the proposed ISSAE-PPBO method clearly 

outperforms in sensitivity at every stage, starting at 0.8320 and 

reaching a remarkable 0.8874 after 200 runs. This steady 
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benefit suggests that, in comparison to existing techniques, 

ISSAE-PPBO is more effective at precisely detecting sick 

occurrences, reducing false negatives, as well as enhancing 

early detection abilities. Because of its high sensitivity, it is 

perfect for practical applications in precision farming as well 

as night jasmine disease management.The sensitivity 

associated with the proposed ISSAE-PPBO model for night 

jasmine leaf disease detection and classification is 12.61%, 

10.72%, 9.35% and 8.35% higher than that of MULTINET, 

custom CNN, SE-VRNet, and LF-Mamba, respectively. 

 

 
 

Figure 5. Sensitivity analysis 

 

4.5 Precision analysis 

 

The development of several methods across 10 iterations 

(range from 20 to 200) is shown in the precision analysis in 

Figure 6 for identifying as well as categorizing illnesses of 

night jasmine leaves. While the custom CNN increases from 

0.7820 to 0.8280, showing better precision, MULTINET 

shows steady development, increasing from 0.7705 to 0.8147. 

While LF-Mamba also improves, reaching 0.8465 by the final 

iteration, SE-VRNet does better, going from 0.7922 to 0.8370. 

However, the proposed ISSAE-PPBO method continually 

outperforms entire existing approaches, starting at a strong 

0.8602 and reaching an impressive 0.9203 by the 200th 

iteration. This noteworthy benefit suggests that the proposed 

approach is more effective at lowering false positives as well 

as producing extremely reliable forecasts. Its improved 

precision implies that ISSAE-PPBO is more successful in 

ensuring that only actual disease cases are marked as positive, 

which is important in disease detection jobs, in which a wrong 

classification might lead to needless treatments or missed 

infections. For the detection and classification of night jasmine 

leaf disease, the proposed ISSAE-PPBO model has a precision 

that is 12.96%, 11.15%, 9.95% and 8.72% higher than that of 

MULTINET, custom CNN, SE-VRNet, and LF-Mamba, 

respectively. 

 

4.6 MCC analysis 

 

The enhanced effectiveness associated with several 

methods across ten iterations (range from 20 to 200) is 

displayed in the MCC analysis in Figure 7 for the night 

jasmine leaf disease detection and classification model. From 

0.6850 to 0.7320, MULTINET shows consistent 

improvement, while the custom CNN slightly outperforms it, 

going from 0.6982 to 0.7440.  While LF-Mamba continues on 

its upward trend, rising from 0.7158 to 0.7610 at the final 

iteration, SE-VRNet exhibits improved effectiveness, rising 

from 0.7085 to 0.7540.  However, starting with a significantly 

higher 0.7820 and reaching an amazing 0.8540 by iteration 

200, the proposed ISSAE-PPBO method clearly performs 

exceptionally well in MCC. This continuously high MCC 

demonstrates ISSAE-PPBO's robust as well as reliable 

classification capacity by achieving a more efficient balance 

between true positives, true negatives, false positives, as well 

as false negatives. High MCC values demonstrate the method's 

overall prediction accuracy and make it particularly helpful for 

precisely identifying diseases in night jasmine leaves.The 

ISSAE-PPBO model outperforms MULTINET, custom CNN, 

SE-VRNet, and LF-Mamba in terms of MCC for the detection 

and classification of night jasmine leaf disease by 16.67%, 

14.78%, 13.26% and 12.22%, respectively. 

 

 
 

Figure 6. Precision analysis 

 

 
 

Figure 7. MCC analysis 

 

4.7 F1 score analysis 

 

The night jasmine leaf disease detection and classification 

method's F1 score assessment in Figure 8 shows how every 

method improved across ten iterations (from 20 to 200), 

demonstrating how well it balanced recall as well as precision. 

While custom CNN accomplishes better, moving from 0.7645 

to 0.8095, MULTINET shows steady improvement, 

increasing from 0.7520 to 0.7958.  SE-VRNet achieves better 
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results, increasing from 0.7740 to 0.8185, while LF-Mamba 

improves even more, reaching 0.8270 at the final iteration. 

However, the proposed ISSAE-PPBO method, which starts at 

0.8455 and reaches an impressive 0.8980 by iteration 200, 

significantly outperforms entire existing methods. This 

remarkable F1 score indicates that the ISSAE-PPBO achieves 

a remarkable balance among correctly identifying diseases as 

well as minimizing false positives, making it highly reliable in 

actual disease detection scenarios. Its potential as aninnovative 

method of categorizing night jasmine leaf disease is 

demonstrated by its continuously better F1 score 

effectiveness.In terms of F1 score for identifying and 

categorizing night jasmine leaf disease, the ISSAE-PPBO 

model outperforms MULTINET, custom CNN, SE-VRNet, 

and LF-Mamba by 12.84%, 10.93%, 9.71% and 8.59%, 

respectively. 

 

 
 

Figure 8. F1 score analysis 

 

4.8 Specificity analysis 

 

Every technique's ability to identify healthy (non-diseased) 

leaves across ten iterations (20 to 200) is highlighted in Figure 

9 analyzing specificity for the night jasmine leaf disease 

detection and classification model. While the custom CNN 

improves from 0.8235 to 0.8998, showing better non-disease 

diagnosis, MULTINET shows steady improvement, rising 

from 0.8102 to 0.8935.  LF-Mamba continues to enhance, 

reaching 0.9162 in the most recent version, while SE-VRNet 

shows an even larger effectiveness gain, increasing from 

0.8331 to 0.9060.  However, starting at an excellent 0.9107 

and reaching the maximal specificity of 0.9641 after 200 

iterations, the proposed ISSAE-PPBO method stands out. 

According to this, ISSAE-PPBO is very good at correctly 

ruling out healthy leaves, lowering false positives, as well as 

making sure that only instances that are actually contaminated 

are detected. For agricultural uses, this level of specificity is 

crucial since inflating the availability of a disease might lead 

to unnecessary interventions as well as wasteful resource 

usage. For night jasmine leaf disease detection and 

classification, the ISSAE-PPBO model outperforms 

MULTINET, custom CNN, SE-VRNet, and LF-Mamba by 

7.90%, 7.15%, 6.41% and 5.23%, respectively, in terms of the 

specificity. 
 

4.9 FNR analysis 

 

The effectiveness related to every strategy in reducing 

missed detections (diseased leaves mistakenly labelled as 

healthy) across ten iterations (varying from 20 to 200) is 

shown in the FNR analysis in Figure 10 for the detection and 

classification model of night jasmine leaf disease. While 

MULTINET begins with a FNR of 0.1898 and progressively 

lowers it to 0.1205, custom CNN improves from 0.1784 to 

0.1102, demonstrating better control over false negatives. 

While LF-Mamba continues this trend, falling FNR from 

0.1587 to 0.0919, SE-VRNet performs better, dropping from 

0.1679 to 0.1024.  However, starting at a significantly lesser 

0.0893 as well as reaching just 0.0359 by the final iteration, 

the proposed ISSAE-PPBO method achieves the largest drop. 

The suggested method's improved capacity to precisely detect 

diseased leaves, lowering the frequency of missed instances, 

is highlighted by its consistently minimal FNR. Since missed 

infections can spread rapidly, a minimal FNR is crucial for 

identifying agricultural diseases. The efficacy related to 

ISSAE-PPBO emphasizes its usefulness in safeguarding crop 

health.The ISSAE-PPBO model outperforms MULTINET, 

custom CNN, SE-VRNet, and LF-Mamba in terms of FNR for 

identifying and categorizing night jasmine leaf disease by 

70.21%, 67.42%, 64.94% and 60.94%, respectively. 

 

 
 

Figure 9. Specificity analysis 

 

 
 

Figure 10. FNR analysis 

 

4.10 Confusion matrix analysis 

 

The night jasmine leaf disease detection model's 
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performance in 3-class and 4-class classifications is illustrated 

by the confusion matrices in Figure 11. Although some healthy 

leaves are mistakenly classified as rust, the method shows 

good accuracy in the three-class configuration (healthy, rust, 

multiple), mostly properly categorizing healthy as well as 

multiple classes. The method generates strong predictions for 

healthy as well as rust in the 4-class configuration (healthy, 

rust, bacterial blight, and leaf spot); however, the 

misclassifications show that there exists more 

misunderstanding among bacterial blight as well as leaf spot. 

The 4-class approach does a good job of handling the added 

complexity, but it causes greater misunderstanding within 

classes, especially when it comes to comparable disease 

categories. 

 

  

3 Class 4 Class 

 

Figure 11. Confusion matrix analysis 

 

4.11 Precision recall curve analysis 

 

In both the 3-class and 4-class setups, the precision-recall 

curves for the night jasmine leaf disease detection model show 

exceptional effectiveness as in Figure 12. Every class in the 

three-class model (healthy, rust, and multiple) has high 

Average Precision (AP) ratings of greater than 0.97, indicating 

a strong balance among recall as well as precision. In the four-

class method (healthy, rust, bacterial blight, and leaf spot), rust 

as well as healthy both have almost ideal APs (~0.99), while 

bacterial blight has a good score of 0.9667, but leaf spot has a 

lesser AP of 0.8892, suggesting that this class is more difficult 

to distinguish.  In general, even as categorization complexity 

increases, the method continuously exhibits high precision-

recall efficacy. 

4.12 ROC curve analysis 

 

The night jasmine leaf disease detection model's ROC curve 

study shows excellent discriminative abilities in both 3-class 

and 4-class tasks, as in Figure 13. The AUC values in the three-

class setup (healthy, rust, multiple) are higher than 0.987, 

indicating almost perfect classification having minimal false 

positives. Healthy as well as rust achieve exceptionally high 

AUCs (\~0.995–0.9975) in the complex 4-class arrangement 

(bacterial blight, leaf spot, rust, and healthy), whereas bacterial 

blight (0.9852) and leaf spot (0.9698) show fewer but strong 

effectiveness. Despite the rise in classification complexity, the 

method exhibits high True Positive Rates (TPRs) while 

keeping very few False Positive Rates (FPRs). 

 

  
3 Class 4 Class 

 

Figure 12. Precision recall curve analysis 
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3 Class 4 Class 

 

Figure 13. ROC curve analysis 

 

4.13 Ablation analysis of the proposed ISSAE–PPBO 

framework  

 

To demonstrate the contribution of each module within the 

proposed classification pipeline, an ablation study was 

conducted by evaluating three configurations: 

(i) Baseline SSAE, 

(ii) ISSAE without PPBO tuning, and 

(iii) Full ISSAE–PPBO model. 

The baseline SSAE was trained with fixed sparsity and 

learning parameters, representing the conventional stacked 

sparse autoencoder. In the ISSAE variant, the adaptive sparsity 

adjustment and progressive fine-tuning were enabled, while 

the optimization stage was disabled. The final configuration 

integrated PPBO-driven hyperparameter refinement. The 

results in Table 4 indicate that ISSAE alone provides improved 

feature separation due to adaptive sparsity enforcement and 

layer-wise refinement.  

When PPBO optimization is introduced, further 

improvement is achieved in classification accuracy, recall, and 

training stability. These findings confirm that each component 

contributes independently to the overall performance and that 

the complete ISSAE–PPBO framework provides the best 

detection capability. The baseline SSAE achieves moderate 

performance due to its fixed sparsity constraint and sensitivity 

to initial parameter selection. When adaptive sparsity control 

and progressive layer-wise refinements are introduced 

(ISSAE), the model shows clear improvement across all 

metrics, indicating enhanced feature learning. The complete 

ISSAE–PPBO model achieves the highest performance, 

confirming that PPBO-driven hyperparameter tuning further 

stabilizes learning, minimizes reconstruction errors, and 

enhances the classifier’s ability to separate healthy and 

diseased leaf classes. 

 

4.14 PPBO effectiveness analysis 

 

To validate the role of the Paper Publishing Based 

Optimization (PPBO) algorithm in improving the stability and 

discriminative capability of ISSAE, an additional experiment 

was conducted by comparing manually tuned ISSAE with 

PPBO-optimized ISSAE. Manual tuning relied on trial-and-

error selection of sparsity penalty, learning rate, and hidden 

neuron count, while PPBO automatically identified optimal 

values through its exploration–exploitation mechanism. The 

comparison results are summarized in Table 5. 

The manually tuned ISSAE baseline achieves good 

performance but remains sensitive to hyperparameters, 

resulting in lower recall and higher training variance. The 

PPBO-optimized model consistently outperforms manual 

tuning across all metrics, with notable improvements in 

accuracy (+2.25%), precision (+3.20%), and recall (+3.22%). 

Additionally, the significant reduction in training variance 

(from 0.021 to 0.008) demonstrates that PPBO provides more 

stable convergence by guiding ISSAE toward well-

generalized hyperparameter configurations. These results 

confirm that PPBO contributes meaningfully to enhancing 

model robustness and classification reliability. 

 

Table 4. Ablation experimentation analysis 

 
Model Variant Accuracy (%) Precision (%) Recall (%) F1 score (%) 

Baseline SSAE (No improvements) 91.84 90.92 89.77 90.34 

ISSAE without PPBO (Adaptive sparsity + fine-tuning only) 94.27 93.88 93.11 93.49 

Proposed ISSAE–PPBO (Full model) 96.52 97.08 96.33 96.70 

 

Table 5. Manual tuning vs. PPBO optimization 

 
Model Configuration Accuracy (%) Precision (%) Recall (%) F1 score (%) Training Variance* 

ISSAE (Manual tuning) 94.27 93.88 93.11 93.49 0.021 

ISSAE-PPBO (Optimized) 96.52 97.08 96.33 96.70 0.008 
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4.15 Parameter sensitivity analysis 

 

The robustness of the ISSAE–PPBO model was further 

examined by analysing the sensitivity of three key 

hyperparameters: sparsity penalty (λ), learning rate (η), and 

the number of hidden neurons (H). Each parameter was varied 

around its PPBO-selected optimal value while keeping the 

others fixed. Table 6 summarises the variations tested and their 

corresponding accuracy values. 

 

Table 6. Sensitivity of ISSAE–PPBO to key hyperparameters 

 
Parameter Varied Value Tested Accuracy (%) 

Sparsity Penalty (λ) 

0.005 94.81 

0.010 (optimal) 96.52 

0.020 95.37 

0.040 93.92 

Learning Rate (η) 

0.0005 94.26 

0.001 (optimal) 96.52 

0.005 95.03 

0.010 92.74 

Hidden Neurons (H) 

64 94.58 

128 (optimal) 96.52 

256 95.49 

512 93.68 

 

The results show that the ISSAE–PPBO model achieves 

peak performance at the PPBO-identified hyperparameter 

settings. Deviations from the optimal sparsity penalty cause 

either excessive neuron activation (λ too low) or loss of 

meaningful features (λ too high), both reducing accuracy. 

Similarly, learning rates smaller than the optimal slow 

convergence, while higher values destabilize training. The 

hidden neuron count demonstrates a threshold effect in which 

both under-parameterization (H = 64) and over-

parameterization (H ≥ 256) degrade performance due to 

insufficient feature representation or overfitting. This analysis 

confirms that PPBO plays a critical role in selecting balanced 

hyperparameters that maximize classification accuracy and 

training stability. 

 

4.16 Computational feasibility 

 

The ISSAE–PPBO model was benchmarked on two 

hardware platforms to assess its suitability for on-site 

agricultural screening and results are provided in Table 7.  

 

Table 7. Computational evaluation results 

 

Metric 
Laptop CPU 

(i5-8250U) 

Mobile SoC 

(Snapdragon 720G) 

Model Size 7.4 MB 7.4 MB 

FLOPs per 

Inference 

11.2 

MFLOPs 
11.2 MFLOPs 

Avg. Inference 

Time 
23.8 ms 41.5 ms 

Frames Per Second 42 FPS 24 FPS 

 

The results confirm that the model is computationally 

lightweight and capable of real-time or near–real-time 

processing on standard CPU and smartphone hardware. 

 

4.17 Robustness towards simulated agricultural conditions 

 

To approximate real field variability, synthetic distortions 

were applied, including illumination shifts, shadow masks, 

and partial leaf occlusion and results are provided in Table 8. 

The model demonstrates strong resilience to common 

environmental disturbances such as uneven lighting and 

background interference, supporting its potential for field-

level use. 

 

Table 8. Robustness evaluation 

 
Condition Accuracy (%) F1 score (%) 

Normal dataset 96.52 96.70 

Low light 93.41 93.88 

High light 94.26 94.74 

Leaf occlusion (15%) 92.37 92.84 

Background clutter 94.88 95.03 

 

4.18 Edge-device deployment feasibility 

 

The model was further tested on a low-cost edge device to 

assess its practicality in farm environments and results 

depicted in Table 9. 

 

Table 9. Raspberry Pi deployment results 

 
Metric Result 

Inference Time 79.2 ms 

Frames Per Second 12.6 FPS 

CPU Utilization 78% 

 

The model operates at usable speed (>10 FPS) even on 

resource-limited edge hardware, suggesting feasibility for 

farm-side kiosks or portable detection units. 

 

4.19 Diagnostic evaluation of the proposed ISSAE–PPBO 

model 

 

To ensure reliable performance evaluation under class-

imbalance conditions, additional diagnostic metrics—

sensitivity, specificity, and AUC—were computed alongside 

precision, recall, and F1 score. Sensitivity quantifies the 

model’s ability to correctly detect diseased leaves, whereas 

specificity measures its ability to correctly identify healthy 

samples. AUC provides a threshold-independent estimate of 

the system’s discrimination capability. The results for the 

ISSAE–PPBO model are presented in Table 10.  
 

Table 10. Diagnostic evaluation of the proposed ISSAE–

PPBO model 
 

Metric Value (%) 

Accuracy 96.52 

Precision 97.08 

Recall (Sensitivity) 96.33 

Specificity 95.87 

F1 score 96.70 

AUC 0.972 
 

As seen from Table 10, the proposed model achieves high 

sensitivity (96.33%), indicating strong capability in 

identifying diseased leaves even under class-imbalance 

conditions. The specificity of 95.87% confirms that healthy 

leaves are also reliably classified, minimizing unnecessary 

alarms. The AUC value of 0.972 further demonstrates strong 

threshold-independent discrimination. Together, these 

diagnostic metrics validate that the ISSAE–PPBO framework 

maintains balanced performance across all classes despite 

variations in disease prevalence. 
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4.20 Discussion 

 
The comprehensive performance evaluation in terms of 

MCC, F1 score, specificity, accuracy, sensitivity, precision, as 

well as FNR amply demonstrates the superiority related to the 

proposed ISSAE-PPBO technique for identifying and 

categorizing diseases of night jasmine leaves. ISSAE-PPBO 

continuously outperforms MULTINET, custom CNN, SE-

VRNet, as well as LF-Mamba by significant margins in entire 

ten iterations (20–200), achieving higher accuracy (up to 

0.9497), enhanced sensitivity (0.8874), enhanced precision 

(0.9203), and higher MCC (0.8540), as well as superior F1 

scores (0.8980) and specificity (0.9641).  Most significantly, 

its exceptionally minimal FNR (as low as 0.0359) 

demonstrates its exceptional capacity to avoid missed 

detections, which is essential for controlling the spread of 

disease in agricultural settings. ISSAE-PPBO has good 

learning as well as generalization capabilities, with 

improvement ranges of around 5% to 17% across many 

measures when compared to alternative approaches. These 

results highlight ISSAE-PPBO as a very promising as well as 

successful precision agricultural tool, offering accurate, 

reliable, and effective detection to safeguard crop health and 

improve disease control strategies 

 

 
5. CONCLUSIONS 

 

This research used a novel optimization technique centered 

on deep learning to detect as well as classify night jasmine leaf 

disease. The first source of the data was the Night Jasmine 

Leaf Database, a Kaggle resource. Bilateral filtering, median 

filtering, wiener filtering, as well as CLAHE methods were 

used to pre-process the collected data. This pre-processed data 

was segmented utilizing the adaptive threshold-based 

segmentation approach. This segmented data was now 

subjected to feature extraction by the VGG-16 method. 

Finally, night jasmine leaf disease was identified and 

categorized using the new ISSAE method. The optimization 

technique known as PPBO, which considered the 

maximization of returning accuracy as the fitness function, 

was used to change the parameters of standard SSAE. 

According to the experimental findings, the recommended 

approach provided a more efficient way to recognize as well 

as classify illnesses of night jasmine leaves. For the diagnosis 

as well as classification of night jasmine leaf disease, the 

proposed ISSAE-PPBO model performed 10.80% and 12.61% 

better than remaining existing techniques, respectively. Since 

the study uses only publicly available image datasets, no 

personal or farmer-specific information is collected, and all 

data usage complies with standard research permissions. 

Future deployment of the model will require formal data-usage 

agreements, clear accountability frameworks for AI-assisted 

decisions, and ethical safeguards to mitigate risks associated 

with misdiagnosis in agricultural settings. Future work will 

integrate pathogen-specific labels, infection-stage 

information, and expert annotations through collaboration 

with plant-pathology specialists to enhance biological 

interpretability and clinical relevance. Also, Future work will 

incorporate cost-sensitive evaluation frameworks where false 

negatives—posing higher agricultural risk—are penalized 

more heavily than false positives to better reflect real-world 

disease management priorities. 

 

REFERENCES 
 

[1] Lu, J., Tan, L., Jiang, H. (2021). Review on 

Convolutional Neural Network (CNN) applied to plant 

leaf disease classification. Agriculture, 11(8): 707-715. 

https://doi.org/10.3390/agriculture1108070 

[2] Atila, Ü., Uçar, M., Akyol, K., Uçar, E. (2021). Plant leaf 

disease classification using EfficientNet deep learning 

model. Ecological Informatics, 61: 101182. 

https://doi.org/10.1016/j.ecoinf.2020.101182 

[3] Bankina, B., Bimšteine, G., Kaņeps, J., Plūduma-

Pauniņa, I., Gaile, Z., Paura, L., Stoddard, F.L. (2021). 

Discrimination of leaf diseases affecting faba bean (Vicia 

faba). Acta Agriculturae Scandinavica, Section B—Soil 

& Plant Science, 71(5): 399-407. 

https://doi.org/10.1080/09064710.2021.1903985 

[4] Islam, A., Islam, R., Haque, S.R., Islam, S.M., Khan, 

M.A.I. (2021). Rice leaf disease recognition using local 

threshold based segmentation and deep CNN. 

International Journal of Intelligent Systems and 

Applications, 14(5): 35-45. 

https://doi.org/10.5815/ijisa.2021.05.04 

[5] Metre, V.A., Sawarkar, S.D. (2021). Research review on 

plant leaf disease detection utilizing swarm intelligence. 

Turkish Journal of Computer and Mathematics 

Education, 12(10): 177-185. 

https://turcomat.org/index.php/turkbilmat/article/view/4

075 

[6] Zhou, C., Zhang, Z., Zhou, S., Xing, J., Wu, Q., Song, J. 

(2021). Grape leaf spot identification under limited 

samples by fine grained-GAN. IEEE Access, 9: 100480-

100489. 

https://doi.org/10.1109/ACCESS.2021.3097050 

[7] Manoharan, J.S., Braveen, M., Subramanian, G.G. 

(2021). A hybrid approach to accelerate the classification 

accuracy of cervical cancer data with class imbalance 

problems. International Journal of data mining and 

Bioinformatics, 25(3-4): 234-261. 

https://doi.org/10.1504/IJDMB.2021.12286 

[8] Malik, A., Vaidya, G., Jagota, V., Eswaran, S., et al. 

(2022). Design and evaluation of a hybrid technique for 

detecting sunflower leaf disease using deep learning 

approach. Journal of Food Quality, 2022(1): 9211700. 

https://doi.org/10.1155/2022/9211700 

[9] Storey, G., Meng, Q., Li, B. (2022). Leaf disease 

segmentation and detection in apple orchards for precise 

smart spraying in sustainable agriculture. Sustainability, 

14(3): 1458. https://doi.org/10.3390/su14031458 

[10] Ashokkumar, K., Dharshini, M., Janani, T., Shrravani 

Sri, V., Subhasidha, R. (2024). Nyctanthes arbor-tristis 

Linn.(Night Jasmine): Extraction techniques, 

phytochemical constituents, and biological impacts of 

extracts and essential oil. Future Journal of 

Pharmaceutical Sciences, 10(1): 117. 

https://doi.org/10.1186/s43094-024-00694-2 

[11] Yogeshwari, M., Thailambal, G. (2023). Automatic 

feature extraction and detection of plant leaf disease 

using GLCM features and convolutional neural 

networks. Materials Today: Proceedings, 81: 530-536. 

https://doi.org/10.1016/j.matpr.2021.03.700. 

[12] Uğuz, S., Uysal, N. (2021). Classification of olive leaf 

diseases using deep Convolutional Neural Networks. 

Neural Computing and Applications, 33(9): 4133-4149. 

https://doi.org/10.1007/s00521-020-05235-5 

3406



[13] Thorat, Y.S., Tiwari, B.D., Paralkar, S.D., Lokhande,

D.S. et al. (2023). Studies of antipyretic activity of leaf

extract of nyctanthesarbor-tristis linn. (night jasmine).

International Journal of Novel Research and

Development (IJNRD), 8(11): 66-69.

https://ijnrd.org/papers/IJNRD2311307.pdf.

[14] Chelloug, S.A., Alkanhel, R., Muthanna, M.S.A., Aziz,

A., Muthanna, A. (2023). Multinet: A multi-agent DRL

and efficientnet assisted framework for 3d plant leaf

disease identification and severity quantification. IEEE

Access, 11: 86770-86789.

https://doi.org/10.1109/ACCESS.2023.3303868

[15] Hosny, K.M., El-Hady, W.M., Samy, F.M., Vrochidou,

E., Papakostas, G.A. (2023). Multi-class classification of

plant leaf diseases using feature fusion of deep

convolutional neural network and local binary pattern.

IEEE Access, 11:  62307-62317.

https://doi.org/10.1109/ACCESS.2023.3286730

[16] Xiao, Z., Shi, Y., Zhu, G., Xiong, J., Wu, J. (2023). Leaf

disease detection based on lightweight deep residual

network and attention mechanism. IEEE Access, 11:

48248-48258.

https://doi.org/10.1109/ACCESS.2023.3272985

[17] Vijayalakshmi, S., Manoharan, J.S., Nivetha, B., Sathiya,

A. (2025). Multi-task deep learning framework

combining CNN: Vision transformers and PSO for

accurate diabetic retinopathy diagnosis and lesion

localization. Scientific Reports, 15(1): 35076.

https://doi.org/10.1038/s41598-025-18742-z

[18] Arivumani, S.S., Nagarajan, M. (2024). Adaptive

convolutional-LSTM neural network with NADAM 

optimization for intrusion detection in underwater IoT 

wireless sensor networks. Engineering Research 

Express, 6(3): 035243. https://doi.org/10.1088/2631-

8695/ad7935 

[19] Shrotriya, A., Sharma, A.K., Prabhu, S., Bairwa, A.K.

(2024). An approach toward classifying plant-leaf

diseases and comparisons with the conventional

classification. IEEE Access, 12: 117379-117398.

https://doi.org/10.1109/ACCESS.2024.3411013

[20] Polly, R., Devi, E.A. (2024). Semantic segmentation for

plant leaf disease classification and damage detection: A

deep learning approach. Smart Agricultural Technology,

9: 100526. https://doi.org/10.1016/j.atech.2024.100526.

[21] Parekh, S., Soni, A., Soni, A., Sharma, P. (2018).

Preliminary phytochemical screening and quantitative

analysis of crude extracts of nyctanthes arbor-tristis

indigenous to South Gujarat region. International Journal

of Life Sciences Research. 6(3): 25-33.

http://doi.org/10.2139/ssrn.5280376

[22] Rahman, K.N., Banik, S.C., Islam, R., Al Fahim, A.

(2025). A real time monitoring system for accurate plant

leaves disease detection using deep learning. Crop

Design, 4(1): 100092.

https://doi.org/10.1016/j.cropd.2024.100092

[23] Wang, X., Tang, S.H., Ariffin, M.K.A.B.M., Ismail, M.

I.S.B., Zhao, R. (2025). LeafMamba: A novel IoT-

integrated network for accurate and efficient plant leaf

disease detection. Alexandria Engineering Journal, 123:

415-424. https://doi.org/10.1016/j.aej. 2025.03.033 

3407




