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Fundus images induced through computer-aided processing are useful in the detection, 

prediction, and diagnosis of Diabetic Retinopathy (DR). Fundamental image processing 

with refined computing and image features is useful in identifying flaws in fundus inputs. 

In this article, a Differentiation-Responsive Feature Selection (DRFS) method is proposed 

to improve DR detection precision. The computations for detections are formulated by 

selecting precise pixels from the non-linear distributions. In this computing process, a graph 

neural network with a differentiation function is employed. The differentiation part is 

responsible for filtering features that result in less distribution detection. This detection is 

flexible for pixel distributions with high false rates, through which the graph neural network 

is trained. Therefore, the feature for detecting DR through the comparative decision is 

increased by identifying sufficient distributions. The selected features are comparatively 

computed with the training images to detect DR from input images irrespective of their size. 

The proposed method improves accuracy by 14.92%, precision by 13.68%, and reduces the 

false positive rate by 9.72% for the varying features. 
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1. INTRODUCTION

Diabetic retinopathy is the leading cause of vision loss 

worldwide, caused by diabetes-related damage to retinal blood 

vessels. Fundus imaging is a non-invasive approach for 

capturing detailed images of the retina, which allows for the 

detection of microaneurysms, hemorrhages, and other disease-

related abnormalities [1, 2]. Recent advances in imaging 

technology, such as ultra-widefield and handheld fundus 

cameras, have improved the ability to detect central and 

peripheral retinal lesions. Such devices enable thorough retinal 

evaluations, facilitating early diagnosis and intervention [3, 4]. 

High-resolution imaging has enhanced the clarity and 

precision of detecting small retinal changes. The use of fundus 

imaging in routine screenings allows for better disease 

progression tracking and treatment efficacy evaluation [5]. 

Early diagnosis using fundus inputs reduces the chance of 

blindness through precautionary medications. The availability 

of portable fundus cameras has increased screening capacity, 

especially in remote and underserved areas, hence improving 

overall healthcare outcomes for diabetic patients [4, 6]. 

Machine learning (ML) methods have become essential for 

automating diabetic retinopathy identification using fundus 

pictures. Such algorithms, particularly convolutional neural 

networks, are highly effective at detecting microaneurysms, 

exudates, and neovascularization [7, 8]. Advanced models 

combine standard image processing with deep learning, which 

increases detection accuracy while decreasing computational 

complexity [9]. Transfer learning techniques increase 

efficiency by adapting pre-trained models to specific datasets 

and reducing the requirement for substantial training data. 

Automated systems allow uniform and objective grading of 

retinal anomalies, which overcomes the limitations of manual 

examinations [10, 11]. ML is useful for large-scale screening 

programs because it can process data in real time. The 

algorithms improve diagnostic precision while decreasing 

false positives, which leads to dependable and scalable 

solutions for early detection. ML in diabetic retinopathy 

screening promotes effective healthcare delivery, especially 

for resource-constrained areas, and aids in preventing vision 

loss through timely interventions [8, 12]. The contributions of 

the article are: 

• Proposal and description of the novel Differentiation-

Responsive Feature Selection (DRFS) method for improving 

the accuracy of the diabetic retinopathy detection process 

using fundus images. 

• The implication and discussion of the graph neural

network for responsive feature identification by analyzing the 

linear and non-linear pixel distributions is presented. 

• The presentation of the performance assessment using

experimental results and comparative metrics to evaluate and 

validate the proposed method’s performance. 
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The article is organized as follows: The related works are 

discussed in Section 2, with the problem identified, and in 

Section 3, the proposed method is described with 

mathematical equations, diagrammatic illustrations, and 

explanations. In Section 4, the experimental and comparative 

performance assessments are described, followed by the 

conclusion, limitations, and future inclusions in Section 5. 

 

 

2. RELATED WORKS 

 

Mohanty et al. [13] considered an improved robust fuzzy 

local information k-means (RFLICM) clustering algorithm for 

diabetic retinopathy (DR) detection. The clustering approach 

is employed here to localize the information parameters for 

detection services. The designed algorithm analyzes the 

parameters and detects the exact cause and location of DR in 

patients. The designed algorithm maximizes the overall 

accuracy of DR detection. 

Wang et al. [14] introduced an early DR detection model 

using deep learning (DL) and explainable artificial intelligence 

(XAI). A convolutional neural network (CNN) algorithm is 

used in the model that extracts important patterns from 

datasets. The extracted patterns and features are used to detect 

and predict the DR for healthcare applications. The introduced 

model elevates the precision and accuracy level of DR 

detection. 

An improved version of the model proposed by Mohanty et 

al. [13] was developed by Nazir et al. [15] using a deep neural 

network (DNN). The proposed model was employed as an 

early-stage diabetic retinopathy (DR) detection model for 

healthcare systems. The model uses retinal fundus images as 

inputs that produce specialized information for DR detection 

services. The developed model increases the accuracy and 

precision parameters. 

Shamrat et al. [16] proposed an advanced DNN model for 

DR detection using fundus images. An analysis technique is 

implemented in the model to analyze the necessary features 

from fundus images. A median filter is used here to filter the 

important data from the dataset, which reduces the detection 

complexity. Experimental results show that the proposed 

model improves the accuracy and reliability level of the DR 

detection process. 

Atta et al. [17] introduced a hybrid intelligent approach for 

DR detection. A support vector machine (SVM) and k-nearest 

neighbor (KNN) algorithms are employed in the approach to 

evaluating the exact cause of DR. The approach examines the 

fundus images that produce significant information for DR 

detection services. The introduced approach achieves a high 

precision. 

Özbay [18] designed an active DL method for DR detection 

via segmented fundus images. An artificial bee colony (ABC) 

algorithm is used in the method to analyze the histogram 

features from the given images. Complex retinal features that 

are presented in the images are analyzed to produce relevant 

data for further processes. The designed method elevates the 

performance and efficiency of DR detection. 

Liu et al. [19] proposed a transfer learning (TL) based DR 

detection method. The method is used as an early screening 

method that reduces the computational complexity of the 

disease diagnosis process. The grayscale features of the 

images are identified, which produces relevant data for disease 

detection. When compared with others, the proposed method 

enhances the specificity, efficiency, and accuracy of the 

method. 

Naz et al. [20] developed a deep convolutional generative 

adversarial network (DCGAN) algorithm for DR recognition 

systems. A deep embedded clustering (DEC) technique is used 

in the algorithm to evaluate the features and patterns from 

given input images. The algorithm reduces the computational 

cost and latency rate of the systems. The developed DCGAN 

algorithm improves the performance and accuracy level of the 

systems. 

Mahmood et al. [21] proposed an enhanced hybrid approach 

for fundus images based on Liu et al. [19]. The introduced 

approach is also used for abnormal lesion detection, which is 

used during screening services. The approach is used to 

classify the exact types and classes of DR in healthcare 

systems. 

Jian et al. [22] proposed a triple cascade CNN model 

(Triple-DRNet) for DR detection. The traditional CNN 

algorithm is used here that extract important features and 

patterns from fundus images. The extracted features are used 

as input, which minimizes the computational cost of the 

proposed CNN model. When compared with others, the 

proposed model enhances the accuracy and effectiveness of 

detection systems. 

Jabbar et al. [23] developed a deep transfer learning-based 

automated DR detection in remote areas. Retinal fundus 

images are used here as inputs that produce feasible 

information for DR detection. The model uses a processing 

unit to process the data that is presented in the images. The 

model also eliminates the unwanted features from the dataset 

and improves accuracy. 

Liu and Chi [24] designed a cross-lesion attention network 

for DR grading using fundus images. The designed method 

uses an adaptive lesion-aware (ALA) module that filters the 

spatial and temporal features from the fundus images. The 

method provides exact grading of DR for early disease 

diagnosis services. 

The pixel distribution analysis of fundus inputs requires 

proper differentiation of textural features. The differentiations 

for minimum and maximum intensities and variable features 

are required to enhance the accuracy of infected region 

detection. In these cases, the linearity is disturbed across 

various pixels to where the switching of features is frequent, 

increasing the computing time. To address these issues due to 

invariable and variable feature classification, a novel 

responsive feature selection method is proposed. This feature 

selection method is reliable by exploiting the differentiation 

and non-differentiation features while processing fundus 

inputs. 

 

 

3. PROPOSED DRFS 

 

Early detection and diagnosis of Diabetic Retinopathy (DR) 

are important to prevent severe infection complications. 

Fundus imaging, which acts as a non-invasive diagnostic tool, 

helps to detect retinal abnormalities. In this paper, refined 

image processing and feature selection techniques accurately 

identify DR-related infection. The incorporation of the DRFS 

method enhances DR detection precision by combining a 

graph neural network with a differentiation function. This 

filters non-linear pixel distributions to identify critical features 

based on flexible pixel detection to ensure high accuracy, 

which is adaptable to various input image sizes. The proposed 

DRFS is presented in Figure 1. 
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The responsive feature selection is performed using a non-

linear pixel distribution from the extracted ones. The 

differentiation output is reliable for detecting pixel distribution 

based on intensity, wherein the responsiveness is accounted 

based on mapping. In the mapping process, the invariant 

feature that distinguishes the pixels is identified for detecting 

infected regions. The responsiveness of a feature is identified 

from its mapping and intensity verification using a similarity 

measure. This turns out to be the novelty of the proposed 

method that clearly differentiates various features that coexist 

with multiple features in normal or overlapping regions. From 

the fundus image, the feature extraction for Diabetic 

Retinopathy includes vascular changes, which are denoted as 

𝑣𝑒𝑠  for 𝑘  number of regions, and  𝑐𝑏  represents the color-

based features that identify abnormalities. The texture of the 

image is termed as 𝑡𝑥, which helps to differentiate the infected 

and non-infected regions. The size of the area is denoted 

as 𝑠𝑧, ich indicates the varying stages of DR. The term size 

refers to the pixel regions that represent the infected part. This 

is represented by the (𝑥, 𝑦) regions of the input image; the 

segmenting region resembles these specific pixels through 

different representations. In the extraction process, the size is 

unknown and it represents the size of the entire image whereas 

the segmentation shrinks the actual representation to maximize 

the infected region detection without false positives. The 

direction is represented as  𝑑𝑟,  which helps to detect the 

boundaries of the image. The following equation  𝑓𝑡𝑒𝑥𝑡  

extracts feature from the fundus image at (𝑥, 𝑦)  pixel 

coordinates. 

 

𝑓𝑡𝑒𝑥𝑡 = ∑ [𝑣𝑒𝑠𝑗(𝑥, 𝑦) × 𝑐𝑏𝑗(𝑥, 𝑦) × 𝑡𝑥𝑗(𝑥, 𝑦)]
𝑘

𝑗=1

+ 𝑠𝑧𝑗(𝑥, 𝑦) + 𝑑𝑟𝑗(𝑥, 𝑦) 

(1) 

 

Here, the identified features help to reduce the impact of the 

relevant infected region, which leads to difficulty in the 

diagnosis of Diabetic Retinopathy. It enables the system to 

adapt to various fundus images that improve the accuracy of 

detection. This enhances the DRFS method to detect Diabetic 

Retinopathy with high precision. The feature direction relies 

on the pixel position from (1, 1) to (𝑥, 𝑦); the extraction from 

definite pixel position is alone considered to identify the 

direction. In particular, the direction factor refers to the pixel 

traversal identified until maximum pixel is reached. Such 

traversal is referred to maximize the feature extraction, region 

detection, and to improve segmentation accuracy. Besides, the 

feature extraction texture and intensity factors are considered 

to identify the pixels and regions. Depending on the different 

image sizes, the direction traversal time varies. In a 

conventional feature extraction method, the available features 

are extracted and processed. This method also follows the 

same with pre-computed extraction. The pre-computation for 

high intensity and low texture (patterns) is the constraint in 

handling features based on the regions. From this feature 

extraction, the following  𝑛𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚  and  𝑛𝑙𝑖𝑛𝑡𝑒𝑟  equations 

evaluate the non-linear transformation and interaction. 

 

𝑛𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑥, 𝑦) = [(𝑠𝑧𝑗−1 × 𝑠𝑧𝑗(𝑥, 𝑦))

+ (𝑑𝑟𝑗−1 × 𝑑𝑟𝑗(𝑥, 𝑦)) + 𝑓𝑡𝑒𝑥𝑡] 
(2) 

 

𝑛𝑙𝑖𝑛𝑡𝑒𝑟 = (
1

(𝑓𝑡𝑒𝑥𝑡−1 − 𝑓𝑡𝑒𝑥𝑡−2)
)

× (1 + (𝑛𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑥, 𝑦) × 𝑐𝑏𝑗(𝑥, 𝑦))) 
(3) 

Eq. (2) focuses on transforming pixels that highlight the 

important features of the retina. The previous regions of size 

and directions are measured as 𝑠𝑧𝑗−1 and 𝑑𝑟𝑗−1 which helps to 

understand the distribution of infected regions from previous 

regions. This normalizes the variations that are prioritized and 

improves the identification of changes in the retina. In Eq. (3), 

the term (
1

(𝑓𝑡𝑒𝑥𝑡−1−𝑓𝑡𝑒𝑥𝑡−2)
) estimates the difference between 

extracted features 𝑓𝑡𝑒𝑥𝑡−1 to 𝑓𝑡𝑒𝑥𝑡−2. It helps to identify the 

relationship between various features that often categorize 

complex and simple variations in the region. The chances for 

(𝑓𝑡𝑒𝑥𝑡−1 − 𝑓𝑡𝑒𝑥𝑡−2) = 0  (least) is less as the pixels exhibit 

multiple features and the resultant is either greater than 0 or 

less than 0. Therefore, the chances of denominator less than 

the numerator are not possible until the pixels exhibit one 

feature and a one-to-one mapping is made. Therefore, the 

interaction in positive side identifies new edges between the 

features whereas a negative interaction reduces a replicated 

edge. This interaction between the retinal images provides an 

accurate classification of detection. This enhances the 

accuracy of the DR detection. 

In DR detection, GNN analyzes complex relationships and 

interactions between various features extracted from fundus 

images by processing these features through a message-

passing mechanism. The complex relationships refer to the 

representation of appropriate features and their regions with 

different shared pixels. Therefore, mapping one-to-one pixels 

and regions is tedious, as a single pixel exhibits different 

features and therefore one-to-many mapping is inferred. 

Besides, the neighbor region also shares the common features 

from different pixels such that the feature filtering relies on 

specific mapping made. Thus, the complexity in identifying 

false rates is high such that the one-to-many representation is 

to be simplified explicitly. In this, each region aggregates 

information from its neighboring region to update its feature 

representation. This captures higher-order interactions and 

correlations between blood vessels and exudates, which are 

indicative of DR. The layers continuously pass messages to 

improve the model's ability to detect infected regions. It filters 

out irrelevant features and concentrates on the most 

distinguishing ones to reduce false positives. The GNN's 

ability to process non-linear relationships between features 

enhances the detection of subtle retinal abnormalities. The 

differentiation part is responsible for filtering features that 

result in less distribution detection, which is expressed 

as 𝑓𝑡𝑑𝑖𝑓𝑓(𝑥, 𝑦) in the equation below: 
 

𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟 = [𝑓𝑡𝑒𝑥𝑡(𝑛𝑙𝑖𝑛𝑡𝑒𝑟 − 𝑛𝑙̂𝑖𝑛𝑡𝑒𝑟)

× (1 − 𝑛𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑥, 𝑦))] 
(4) 

 

𝑓𝑡𝑑𝑖𝑓𝑓(𝑥, 𝑦) = ‖𝑓𝑡𝑒𝑥𝑡−2 − 𝑓𝑡𝑒𝑥𝑡−1‖

+ 𝑒𝑥𝑝(−|𝑑𝑖𝑠𝑓𝑡(𝑥 + 𝑗, 𝑦 + 𝑗)

− 𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟(𝑥, 𝑦)|) 

(5) 

 

The obtained features were filtered as 𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟 based on the 

feature extraction that combines non-linear parts. Here, the 

term  (𝑛𝑙𝑖𝑛𝑡𝑒𝑟 − 𝑛𝑙̂𝑖𝑛𝑡𝑒𝑟)  identifies the difference between 

actual non-linear interaction and the change in non-linear 

interaction, and is denoted as  𝑛𝑙̂𝑖𝑛𝑡𝑒𝑟 . The term  (1 −
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𝑛𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑥, 𝑦))  analyzes the impact of non-linear 

transformation. Together, this process helps to filter features 

that cause significant changes. The term ‖𝑓𝑡𝑒𝑥𝑡−2 − 𝑓𝑡𝑒𝑥𝑡−1‖ 

evaluates the difference between two different extracted 

features for accurate anomaly detection. Feature filtering and 

differentiation referred in equations above are used to define 

the uniform and non-uniform mapping between the features. 

This is performed to reduce the number of transform outputs 

influencing the true rate of the region. Besides, the 

computation identifies differentiable outputs through 

separating erroneous and positive features that illustrates the 

pixels (independent and shared). Therefore, these equations 

are distinct to identify independent features and their 

corresponding differences, if any. The feature filtering process 

is illustrated in Figure 2. 

 

 
 

Figure 1. Proposed DRFS method 

 

 
 

Figure 2. Feature filtering process 

 

The  𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟  the process is diagrammatically presented in 

the above Figure 2. The features extracted are used to 

identify  𝑡𝑥 ∈ 𝑠𝑧 . First,  𝑑𝑖𝑠𝑓𝑡  is computed for  𝑐𝑏  under 

distinguishable differentiation and linear (assumption) 

distributions. However, if  [
1

(𝑓𝑡𝑒𝑥𝑡−1−𝑓𝑡𝑒𝑥𝑡−2)
] > 0 , then the 

normalization process is pursued. If the normalization does not 

fit the  𝑛𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 , then the linearity is disturbed for 

which 𝑓𝑡𝑑𝑖𝑓𝑓(𝑥, 𝑦) estimation is required. Depending on the 

major difference between  (𝑥 + 𝑗, 𝑦 + 𝑗) , the  𝑛̂𝑙𝑖𝑛𝑡𝑒𝑟  is 

detected and therefore  𝑝𝑥𝑓𝑙𝑒𝑥(𝑥, 𝑦)  is only applicable for 

those 𝑓𝑡𝑒𝑥𝑡 . Therefore, the number of 𝑘 ∈ 𝑐𝑏  and 𝑑𝑟 region 

detection is eased through filtering. These features are required 

to concatenate pixel distributions based on intensity. Such 

grouping is useful in identifying invariant features even after 

normalization. The pixel variation between specific regions 

was computed based on dissimilarities in features and is 

expressed as 𝑑𝑖𝑠𝑓𝑡(𝑥 + 𝑗, 𝑦 + 𝑗). It helps to identify regions 

with high variations based on pixel coordinates, which is 

crucial for identifying DR features. In DR detection, the 

differentiation process filters out features that have low 

variance, which contributes less to detecting DR infection. 

This enhances both the accuracy and efficiency of the 

detection process. The following equation 𝑝𝑥𝑓𝑙𝑒𝑥(𝑥, 𝑦) 

computes how the detection is flexible for pixel distributions 

with high false rates. 

 

𝑝𝑥𝑓𝑙𝑒𝑥(𝑥, 𝑦) = ∑ (𝑑𝑟𝑗(𝑥, 𝑦) × 𝑓𝑡𝑒𝑥𝑡)
𝑘

𝑗=1

+ [𝑑𝑖𝑠𝑓𝑡

−
1

(𝑝𝑥𝑖𝑛𝑡𝑒𝑛 − 𝑓𝑡𝑑𝑖𝑓𝑓(𝑥, 𝑦))
] 

(6) 

 

The direction of boundaries with extracted features was 

combined to monitor the changes that depend on the reliability 

of the pixel. The term  [𝑑𝑖𝑠𝑓𝑡 −
1

(𝑝𝑥𝑖𝑛𝑡𝑒𝑛−𝑓𝑡𝑑𝑖𝑓𝑓(𝑥,𝑦))
] 

incorporates pixel intensity, which is denoted as 𝑝𝑥𝑖𝑛𝑡𝑒𝑛  helps 

to analyze how quickly the variations occur based on the 

intensity of pixels. It determines how the features of 

pixels  (𝑥, 𝑦)  contribute to the overall detections. This 

identifies whether the pixels are reliable or unreliable in the 
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particular region that contains high false positive rates. It helps 

to filter the regions that cause high false rates during the 

detection. The system can adjust the regions of feature 

extraction based on the characteristics of pixel distribution that 

highlight high variability and change in the pattern. It 

improves the detection of DR even in the presence of highly 

varying feature regions. The pixel distribution is stable based 

on the pixel intensity that is expressed as  𝑓(𝑝𝑥𝑓𝑙𝑒𝑥) in the 

following. 

 

𝑓(𝑝𝑥𝑓𝑙𝑒𝑥)

= {
(𝑑𝑟𝑗(𝑥, 𝑦) + 𝑑𝑖𝑠𝑓𝑡) ∀𝑝𝑥𝑖𝑛𝑡𝑒𝑛 ≥ 𝑥𝑚𝑎𝑥

(𝑑𝑟𝑗(𝑥, 𝑦) + 𝑑𝑖𝑠𝑓𝑡 − 𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟) ∀𝑝𝑥𝑖𝑛𝑡𝑒𝑛 < 𝑥𝑚𝑖𝑛

 
(7) 

 

The pixel distribution is considered reliable for DR 

detection during 𝑝𝑥𝑖𝑛𝑡𝑒𝑛 ≥ 𝑥𝑚𝑎𝑥  based on (𝑑𝑟𝑗(𝑥, 𝑦) + 𝑑𝑖𝑠𝑓𝑡) 

that indicates the features are similar to DR. A high variation 

in pixel intensity provides a significant change in pixel 

distribution, which helps to indicate the abnormalities in the 

fundus image. An unreliable feature was identified based 

on  𝑝𝑥𝑖𝑛𝑡𝑒𝑛 < 𝑥𝑚𝑖𝑛  with  (𝑑𝑟𝑗(𝑥, 𝑦) + 𝑑𝑖𝑠𝑓𝑡 − 𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟)  which 

indicates false positive regions with uniform pixel distribution. 

This unreliable region was filtered out from the DR detection. 

The reliable and unreliable regions were analyzed based on the 

maximum and minimum threshold values, which are termed 

as  𝑥𝑚𝑎𝑥  and  𝑥𝑚𝑖𝑛 . This helps to minimize the irrelevant 

features and regions that do not contain any DR infections. The 

GNN trains the features at the layer 𝑙 based on the pixel data, 

which is computed in the equation below. 

 

𝑓𝑡𝑙+1(𝑥, 𝑦) = 𝑓𝑡𝑙(𝑥, 𝑦)

+ ∑ (𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟 + 𝑓𝑡𝑑𝑖𝑓𝑓)

𝑘∈(𝑥,𝑦)

× (𝑝𝑥𝑓𝑙𝑒𝑥(𝑥, 𝑦) − 𝑑𝑖𝑠𝑓𝑡) 

(8) 

 

The extracted feature information from layer 𝑙  is trained 

using pixels in each region. The new layer is updated from the 

previous information and is denoted as  𝑓𝑡𝑙+1(𝑥, 𝑦) . The 

continuous iteration of GNN updates each layer based on its 

existing feature with the neighboring feature values. It allows 

the system to capture the relationship between features of 

different regions, which is important for the accurate detection 

of DR-related abnormalities in the retina. The following 

equation 𝐸𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥, 𝑦) analyzes how the feature for detecting 

DR through the comparative decision is increased by 

identifying sufficient distributions. 

 
𝐸𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥, 𝑦)

= {

                      

= (𝑓𝑡𝑑𝑖𝑓𝑓 + 𝑓𝑡𝑙(𝑥, 𝑦)) × |
𝑛𝑙𝑖𝑛𝑡𝑒𝑟

−𝑛𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
| + 𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟

= 𝑓𝑡𝑒𝑥𝑡(𝑝𝑥𝑓𝑙𝑒𝑥(𝑥, 𝑦) + 𝑑𝑖𝑠𝑓𝑡)∀(𝑥, 𝑦) ∈ (1,2, … , 𝑘)

 
(9) 

 

The above equation compares the distribution of various 

extracted features in the fundus image with their pixels. The 

feature is considered sufficient with  𝐸𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1 ∀(𝑥, 𝑦) ∈
(1,2, … , 𝑘) and ensures it is reliable in detecting DR-related 

abnormalities. It prioritizes the features based on their 

importance, which is learned during the training. This enables 

the system to adjust based on the features that meet the 

requirement. It enhances the performance of the system when 

sufficient discriminative features increase. This decision helps 

to classify DR and on-DR regions from various features. The 

decision model represented in Eq. (9) considers the filtering 

and distribution flexibility across various pixels. The one-to-

one and one-to-many mapping using the GNN requires the 

precise classification of differentiated features and extracted 

features through pixel to region detection. For an overlapping 

pixel, the region differentiation is mandatory whereas for an 

independent feature, one-to-one mapping is alone required. 

These differences are highlighted in this equation that is 

required to train the learning model. From the above decision, 

the invariant features were evaluated as  𝑖𝑛𝑣𝑓𝑡(𝑥, 𝑦)  in the 

below equation. 

 
𝑖𝑛𝑣𝑓𝑡(𝑥, 𝑦) = 𝑝𝑥𝑓𝑙𝑒𝑥(𝑥, 𝑦)

+ (
𝑝𝑥𝑖𝑛𝑡𝑒𝑛

𝑓𝑡𝑑𝑖𝑓𝑓 − 𝑑𝑖𝑠𝑓𝑡
)

× (𝑓𝑡𝑒𝑥𝑡−2 − 𝑓𝑡𝑒𝑥𝑡−1) ∀𝐸𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0 

(10) 

 

𝐷𝑅𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛(𝑥, 𝑦) = 𝑓𝑡𝑒𝑥𝑡

+ (𝑛𝑙𝑖𝑛𝑡𝑒𝑟 + 𝑝𝑥𝑓𝑙𝑒𝑥(𝑥, 𝑦))

× 𝐸𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑖𝑛𝑣𝑓𝑡(𝑥, 𝑦) 

(11) 

 

Eq. (10) focuses on patterns that indicate the DR regions 

rather than the irrelevant regions. It combines features that are 

consistent and reliable, even in varying input image conditions. 

The GNN model for invariable feature detection is presented 

in Figure 3. 

In Figure 3, 𝑖𝑛𝑉𝑓𝑡  detection process is described 

using  (𝑥, 𝑦, 𝑗)  variants. The  𝑝𝑥𝑖𝑛𝑡𝑒𝑛  using  (𝑥, 𝑦)  is the first 

assumed intensity for categorizing  𝑥𝑚𝑖𝑛  and  𝑥𝑚𝑎𝑥 . This 

categorization is required to perform  𝐸𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥, 𝑦)  under 

multiple  𝑑𝑖𝑠𝑓𝑡  identified. The first mapping 

using  𝑘∀(𝑓𝑡𝑑𝑖𝑓𝑓 , 𝑑𝑖𝑠𝑓𝑡)  is useful in identifying  𝑥𝑚𝑎𝑥  based 

on (𝑓𝑡𝑒𝑥𝑡−1 − 𝑓𝑡𝑒𝑥𝑡−2) provided the 𝑓(𝑝𝑥𝑓𝑙𝑒𝑥) is defined as 

either high/low. These output cases are matched with 𝑖 and 𝑗 

until (𝑥 + 𝑗) = (𝑦 + 𝑗) is true, and therefore the mapping is 

repeated without (𝑑𝑖𝑠𝑓𝑡 > 0). Therefore the (𝑖 = 𝑗) cases are 

used to update the  𝑝𝑥𝑖𝑛𝑡𝑒𝑛  for  𝑥𝑚𝑖𝑛  or  𝑥𝑚𝑎𝑥  classification. 

Using the consecutive mapping, the graph neural network 

layers for  𝑖𝑛𝑉𝑓𝑡  are defined. Features with small variations 

were considered stable, and large variations may lower the 

value for an invariable feature that leads to instability. In a 

graph representation, the features, pixels, and 𝑥𝑚𝑖𝑛 constitutes 

the structure. These elements form the nodes and the mapping 

(one-to-one or one-to-many) forms the edges based on 

different regions occupied. Besides, the final edges are 

formulated based on similarity index. The similarity index 

represents the intensity and invariable detection identified 

between the nodes. It enhances the system’s ability to detect 

DR based on stable features. Eq. (11) identifies the infected 

regions by integrating the previous factors. A high value 

of 𝐷𝑅𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛(𝑥, 𝑦) indicate the region as an infected region, 

and a lower value ensures a healthy and non-infected region. 

The confusion matrix for differences in feature detection 

monitors the performance of the features considered. In the 

proposed method, how it classifies pixels or regions in fundus 

images as infected or non-infected is described. The proposed 

DRFS ensures that only discriminative features are utilized to 

achieve higher True positives and True negatives. It minimizes 

the false positives and false negatives. The existing methods 

often rely on linear distributions, whereas the proposed 

method reduces false negatives by accurately identifying 

subtle abnormalities in early detection (Figure 4). 
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Figure 3. GNN model for invariable feature detection 

 

 
 

Figure 4. Confusion matrix for difference detection 

 

  
 

Figure 5. ROC for invariable feature detection 

 
The ROC identifies the true positive rate against the false 

positive rate based on the evaluation of the specificity of 
invariable feature detection. The ROC indicates high 
performance by the proposed method in distinguishing DR-
infected regions from healthy areas. The invariable features 
were extracted through differentiation 𝑖𝑛𝑣𝑓𝑡(𝑥, 𝑦)∀𝐸𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∈
(1,2, … , 𝑘) that allowed the proposed method to maintain a 

consistent True positive rate even at low false positive rates. 
The existing methods often suffer from a high false rate due to 
their inability to adapt to non-linear distributions, leading to an 
inconsistent ROC curve. The proposed approach shows 
significant improvements in detecting invariable features 
across varied image conditions when compared to the existing 
methods (Figure 5).
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4. PERFORMANCE ASSESSMENT 
 
4.1 Dataset and experimental results 

 

The performance assessment is presented using the 

MATLAB outputs extracted using specific dataset inputs. The 

input fundus images are fetched from the dataset named 

APTOS 2019 Blindness Detection [25]. The dataset is used for 

early diagnosis of diabetic retinopathy that results in vision 

blindness. The input images are collected from different 

clinics and devices constituting 13K+ images of size 20 GB. 

The dataset used in this article provides 3662 images for 

training and 180 images for testing. DR is categorized under 

no infection (1805 images), mild infection (370 images), 

moderate (370 images), severe (193 images), and proliferate 

(295 images). The image size is 224 × 224 pixels, with a 

resolution for which the maximum number of extractable 

features is 14. The proposed GNN is modeled for a maximum 

of 1300 iterations and 3 complete epochs, wherein the learning 

rate is varied from 0.8 to 1.0 to complete a single epoch. This 

experimental setup is deployed in a standalone computer with 

a 2.1 GHz processor unit with 8 GB of physical storage, and a 

standard 15.6” output device. The sample outputs obtained are 

presented in Table 1 for the inputs considered from the dataset. 
 

Table 1. Sample input and output 
 

Input 𝒕𝒙 𝒑𝒙𝒊𝒏𝒕𝒆𝒏 𝒅𝒊𝒔𝒇𝒕 𝑫𝑹𝒊𝒏𝒇𝒆𝒄𝒕𝒊𝒐𝒏 

     

     

     

     

4.2 Comparative assessment 

 

The comparative performance assessments are discussed 

using accuracy, precision, specificity, false positive rate, and 

computing time metrics. The number of features (1-14) and the 

different methods are the variables used in this comparative 

assessment. The proposed DRFS method is compared with the 

existing EDCGAN [20], MaFCM [13], and WE-DNN [15] 

methods. The selection of the above baseline methods is due 

to their heterogeneous method application for DR detection 

and segmentation. The method employs adversarial learning 

and clustering to identify pattern variations. The second 

proposal uses a deep learning-based clustering approach to 

locate maximum feature differences avoiding false rates. In the 

third proposal, deep neural network is employed to maximize 

detection and segmentation accuracy by training the network 

using differentiation factor. The functions suggested in these 

proposals are identified with individual flaws mentioned 

earlier. The proposed method uses these functions deliberately 

with modifications as described in the proposed section. Some 

functions such as differentiation and grouping are similar to 

some extent of the proposed method. Therefore, the purpose 

for selecting these methods is to mitigate the errors identified 

and to maximize the infected region detection precision. 

Besides, the problem in pattern differentiation and feature 

representation is mitigated using pre-representation using the 

GNN. Such representations are useful in classifying feature-

based pixels and their regions regardless of their overlapping 

nature. 

 

4.2.1 Accuracy 

The overall accurate detection of the infected region by 

comparing the ratio of correctly classified true positives and 

true negatives to the total number of infected DR. A higher 

accuracy demonstrates how the DRFS method identifies DR 

features from the fundus images. The pixel relationships based 

on continuous training  𝑓𝑡𝑙+1(𝑥, 𝑦) = 𝑓𝑡𝑙(𝑥, 𝑦) +
∑ (𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟 + 𝑓𝑡𝑑𝑖𝑓𝑓)𝑘∈(𝑥,𝑦)  were evaluated using GNN to 

ensure reliable decisions. It focused on refining its decision-

making process by precise pixel selection from non-linear 

distributions. The analysis of invariable features contributes to 

high accuracy even in varying complex scenarios, which helps 

to detect subtle abnormalities in the fundus image. The 

abnormalities detected with these steps improve the region 
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(infected) detection with high accuracy (Figure 6). 

 

 

 
 

Figure 6. Accuracy 

 

 

 
 

Figure 7. Precision 
 

4.2.2 Precision 

The proportion of true positive detections as correctly 

identified DR regions among all positive detections by a 

proposed method ensures a high precision score. It indicates 

how the DRFS method minimizes false positives by filtering 

irrelevant pixel distributions. The differentiation 

function 𝑓𝑡𝑑𝑖𝑓𝑓(𝑥, 𝑦) = ‖𝑓𝑡𝑒𝑥𝑡−2 − 𝑓𝑡𝑒𝑥𝑡−1‖ within the graph 

neural network, within identifies features that indicate pixels 

contain DR-related abnormalities. This high precision focuses 

on relevant features and avoids non-infected regions to 

enhance the performance of the system and reduce the 

misclassification of healthy regions as infected. The 

misclassification reduction is pursued in all the iterations until 

a maximum us achieved. Such a trail using the training 

iterations retains the accuracy achieving high precision (Figure 

7). 

 

4.2.3 Specificity 

The ability of the model to correctly identify non-infected 

regions by the proportion of infected regions out of all features 

from the fundus image. The high specificity in the proposed 

DRFS method reflects its capability to ignore non-DR features 

that accurately classify healthy regions. It maximizes the 

correctly classified non-DR regions. This 𝐷𝑅𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛(𝑥, 𝑦) =

𝑓𝑡𝑒𝑥𝑡 + (𝑛𝑙𝑖𝑛𝑡𝑒𝑟 + 𝑝𝑥𝑓𝑙𝑒𝑥(𝑥, 𝑦)) is achieved from the feature 

filtering process in the graph neural network, which reduces 

false detections in areas with high variability. High specificity 

ensures the reliability of the proposed method in how it screens 

a large number of images with accuracy. This enhances 

accurate classification and reduces misclassifying infected 

regions in complex images. As the classification increases, the 

mapping and feature representation factors are reliable to 

uphold the specificity by identifying true positives (Figure 8). 

 

 

 
 

Figure 8. Specificity 

 

4.2.4 False positive rate 

The false positive rate was analyzed based on the proportion 

of healthy regions that were incorrectly classified as infected. 
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The proposed method ensures a lower false positive rate, 

which is highly reliable in avoiding false alarms (𝑑𝑟𝑗(𝑥, 𝑦) +

𝑑𝑖𝑠𝑓𝑡 − 𝑓𝑡𝑓𝑖𝑙𝑡𝑒𝑟) ∀𝑝𝑥𝑖𝑛𝑡𝑒𝑛 < 𝑥𝑚𝑖𝑛  that lead to unnecessary 

deviations in detection. The incorporation of invariant features 

with dynamic pixel selection from non-linear distributions 

helps to ensure that ambiguous regions are not mistakenly 

flagged as infected. The features were compared and trained 

using the graph neural network to reduce the inclusion of 

irrelevant features that lead to fewer false positives (Figure 9). 

 

 

 
 

Figure 9. False positive rate 

 

4.2.5 Computing time 

The time taken by the system to process the input and 

deliver predictions during DR detection is its computing 

requirement. The proposed method ensures a low computing 

time, which indicates its computational efficiency. The DRFS 

method achieves this by optimizing feature selection and 

reducing redundant computations. It combines the pixels 

based on filtering non-essential distributions from the 

neighboring regions. The graph neural network can train on 

high-pixel feature distributions by minimizing unnecessary 

computations. It makes the detection faster and maintains its 

robustness with limited time requirement. This requirement is 

set as target for the increasing iterations even after a new 

feature is extracted (Figure 10). The performance assessment 

results are summarized in Table 2 for the varying features. 

 

Table 2. Performance assessment results for features 

 
Metrics EDCGAN MaFCM WE-DNN DRFS 

Accuracy 0.898 0.911 0.932 0.9634 

Precision 0.901 0.923 0.948 0.9696 

Specificity 0.902 0.924 0.941 0.9551 

False Positive Rate 0.106 0.088 0.076 0.0657 

Computing  

Time (s) 
2.65 2.04 1.239 0.9059 

The proposed method improves accuracy by 14.92%, 

precision by 13.68% and specificity by 13.11%. This method 

reduces the false positive rate by 9.72% and the computing 

time by 9.01%. 

 

 
 

Figure 10. Computing time 

 

 

5. CONCLUSION 

 

Using a graph neural network, the DRFS method enhances 

the detection of Diabetic Retinopathy (DR) with a 

differentiation function. It significantly improves detection 

precision and minimizes false positives, even for images with 

high distribution variability. This innovative approach not 

only improves the detection process but also provides reliable 

diagnostic support for healthcare with high accuracy and 

precision. The DRFS method improves the detection of 

infected and non-infected regions with high patient outcomes. 

The proposed method is found to achieve 15.7% high accuracy, 

16.7% high precision, and 11.2% fewer false positives 

compared to the other existing methods. 

The textural pattern differentiation relies on multiple color 

and contour features for which pre-processing using 

differentiated pixels is required. This requirement is 

considered a lag in this proposed DRFS method, and therefore, 

the pre-processing is augmented with contour classification in 

future work. The trails of limited feature and pattern 

differentiation required more training iterations and target 

epochs vary based on the iterations. Therefore, the trials 

resulted in more training time with memory consumption. 
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