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Foliar diseases pose a major threat to sugarcane productivity, but timely detection and
management remain difficult for farmers. This work presents a real-time decision-support
approach that integrates a hybrid CNN-Transformer model with NSGA-II for precision
spraying recommendation, based on disease detection and severity estimation. The
combination of the CNN and the Transformer module is used to capture fine-grained local
lesion features and global disease patterns, respectively. A two-head design of the
Transformer module predicts disease type and severity. The proposed hybrid model is
benchmarked with a dataset comprising 21,637 sugarcane leaf images, achieving a higher
classification accuracy of 98.8% and a better MSE of 0.072 than the CNN-only (89.5%) and
Transformer-only (91.2%) models. The proposed hybrid model also outperformed the
models including ResNet50, DenseNet201, EfficientNet-B7, and ViT-B/16, with an
accuracy of 98.8%, and F1-score of 98.7% respectively, confirming its robustness against
11 disease categories. The NSGA-II module uses disease severity and weather conditions to
suggest if spraying is needed, which pesticide to use, dosage level, and the best time to apply
it. Thus, making the system useful for farmers as a mobile tool for sugarcane health

management.

1. INTRODUCTION

Sugarcane, a principal global crop, significantly contributed
21% to sugar production globally between 2000 and 2020 [1]
and is essential for many rural livelihoods, particularly in India
where it is cultivated on over 5 million hectares. Though the
sugarcane has a high economic importance [2], it faces serious
risks from various diseases namely the red rot, grassy shoot,
yellow leaf disease, rust, and smut, which can decrease the
yield by more than 50% if not dealt properly [3]. The
conventional approach to the disease management requires the
use of manual inspections and chemical treatment, which may
be inefficient, expensive and harmful to the environment [4].
Although precision agriculture tools have emerged, their
adoption is limited due to high costs, lack of infrastructure, and
insufficient technical expertise among farmers [5].

To identify sugarcane disease accurately from field images,
recent developments in deep learning, especially
convolutional neural networks (CNNs) and transformer
architectures, have found to offer satisfying results [6]. But the
current systems mostly concentrate on classification [7] and
do not consider other vital aspects like the severity of the
disease, environmental conditions, and decision-making based
on the factors that are important in disease management. A
disease management system should be able not only to identify
diseases but also offer recommendations on how the pesticides
should be used, their dosage and timing.

3357

In order to overcome these challenges, the work proposes
an interconnected decision-support system, which includes a
hybrid CNN-Transformer model to detect the diseases and
evaluate their severity, as well as a multi-objective optimizer
of NSGA-II to create effective spraying recommendations. Its
objective is to establish a system that combines visual analysis
and decision-making system in order to promote the control of
sugarcane diseases.

Management of sugarcane diseases in the field have huge
gaps such as the restriction of manual scouting which is not
able to identify early-stage infections. There is a lack of a
unified disease management system to detect and give
treatment recommendations, which is inhibiting effective
responses. Also, the necessity to reduce the use of chemicals
is acute due to environmental issues and regulations. These
issues underscore the need to have a holistic framework that
will facilitate accurate diagnosis and environmentally friendly
treatment to farmers.

A Hybrid CNN-Transformer architecture has been
presented in the proposed work as an effective deep learning
model, a combination of CNN as a local lesion feature
extractor and Transformer as a global context modeler, this
hybrid model can be used to classify diseases and estimate
their severity.

The hybrid model uses one image of a leaf to predict both
the type and severity of a disease at the same time. Training
and validation have been done using an expert-validated data
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set (21,637 images) which is a large and various data set and
has been manually validated with geographic, temporal and
climatic supplementary metadata to achieve better
generalization. An NSGA-II multi-objective optimization
engine has a spraying recommendation module, which
estimates trade-offs between yield, treatment efficiency, and
environmental risk to come up with actionable solutions.

2. RELATED WORK

Detection of plant disease, such as sugarcane leaf infection,
is now possible by using deep learning, in particular, by the
CNN models such as EfficientNet-B7 and DenseNet201.
Nevertheless, these models are more likely to utilize small
datasets and are difficult to apply in different field conditions
[8]. Vision Transformers Fine-tuned Vision Transformers
(ViTs) on larger datasets have demonstrated excellent
performance, with 96.5% accuracy when compared to
ResNet50 and VGG16 [9]. Hybrid CNN-Transformer can
classify images with added local and global features, and some
of the lightweight architectures can run on a mobile platform
[10, 11]. In spite of developments, current systems are more
concerned with prediction of diseases and not the severity
meaning that a combined model can offer a holistic, severity-
informed decision support.

Accurate estimation of disease severity is essential in good
spraying recommendations since it is more related with yield
loss compared to type of disease. To evaluate the area of
lesions on plant leaves, research has used different
segmentation techniques, including SLIC super-pixels [12, 13],
K-Means clustering [14], Watershed [15], U-net [16], and
Mask R-CNN [17]. However, most of the studies are based on
small datasets and are not validated in the field, which
compromises the reliability.

The temperature and humidity are the crucial factors that
determine the outbreak of sugarcane diseases. The maximum
temperature, morning humidity, and sunshine are positively
related to brown spot disease whereas minimum temperature,
evening humidity, and wind speed have a negative correlation
[18]. In the case of brown rust, the afternoon humid thermal
ratio and the time span of the temperature are important
predictors of the severity with a predictive accuracy of
between 73-85% [19]. Sugarcane smut is favored by hot and
dry environments (30-35°C), where wind assists in spreading
the fungal spores, and dry soil improves the survival of the
spores [20]. Moreover, steam and humidity enlarge infections
by stem borers and improper rain falls interfere with the pest
cycles [21].

The use of multi-objective evolutionary algorithms and in
particular NSGA-II is critical to the optimization of
agricultural systems, combining the economic, ecological, and
operational aspects. NSGA-II utilizes fast nondominated
sorting process, superior selection and parameter-free
comparative operator to help locate a wide variety of solutions
that are Pareto-optimal even when confined [22]. The use of
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the Fuzzy-Expert-NSGA-II even enhances the agricultural
planting strategies by integrating expert rule-based approaches
in managing the constraints, fuzzy mathematics in the
representation of the objectives, and adaptive searching
approaches, which provides better results in the uncertain and
complex environment in agriculture [23].

Most systems used to diagnose sugarcane diseases provide
only basic classification of the disease and do not provide
accurate estimates of the severity of the disease, which limits
farmers' ability to manage their fields efficiently. Many of
these systems do not validate their results based on expert
opinions, and most of them do not use any form of deep
learning models to improve the recommendations for the best
spray options based on the current disease state. Therefore, an
integrated system that provides disease detection with a high
degree of accuracy, disease severity assessments, and
optimum spray recommendations as a complete package has
yet to be developed.

Building upon these limitations, this work proposes an
integrated, real-time decision-support system that brings
disease detection, severity estimation, and spraying
recommendations into one unified framework. The key
contributions of this study are as follows:

* A hybrid CNN-Transformer model is developed to not
only identify the disease but also estimate how severe it is,
offering more meaningful guidance than approaches that stop
with classification alone.

* The model is trained on a large and diverse collection of
21,637 leaf images gathered from real fields, helping it
performs reliably under practical farming conditions.

* An NSGA-II-based recommendation module uses both
the severity level and prevailing weather conditions to suggest
whether spraying is needed, the suitable pesticide, and the best
time to apply it.

* Finally, the designed system is made to work in real time
on mobile devices, giving farmers a tool that can support
timely and informed decisions in their daily field activities.

The rest of this work is organized as follows. The
methodology section explains the design of the hybrid CNN-
Transformer model, the dataset preparation, and the
integration of the NSGA-II module. The results and discussion
highlight the performance of the proposed system and its
advantages under real field conditions. Finally, the conclusion
summarizes the key findings and outlines possible directions
for future work.

3. MATERIALS AND METHODS
3.1 System overview

The proposed workflow of the proposed system which
combines image-based disease detection, severity estimation,
climate metadata and selective spraying recommendations
through optimization techniques, is represented in Figure 1.

Disease Severity
Classification Estimation
NSGA-II
optimization for
spraying schedule
Climatic Data » Correlation
Fusion Analysis

Figure 1. Overview of proposed system
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3.2 Datasets

3.2.1 Sugarcane image dataset

The dataset used in this work consist of images from five
Mendeley Data repositories [23-27], which ensures the variety
in leaf appearance, disease stages, lighting, and backgrounds.
The dataset comprises 11 categories (Banded Chlorosis,
Mosaic, Ring Spot, Viral Disease, Grassy Shoot, Pokkah
Boeng, Rust, Yellow Leaf, Red Rot, Sett Rot), including 10

~ Banded Chlorosis

Ring Spot

sugarcane diseases and healthy leaves, totaling 21,715 images.
Images were manually reviewed to eliminate duplicates and
low-quality samples, and disease labels were verified against
published descriptors. The selected dataset provides a
representative sample of sugarcane leaves in natural
environments, making them suitable for training a robust
multimodal classification-severity model. Sample sugarcane
leaf images used for this work is shown in Figure 2.

| .80 5 N
Yellow Leaf Disease

Viral Disease

Figure 2. Sample sugarcane images used for this work

3.2.2 Climatic dataset

Important variables like wind speed, temperature, weather,
and humidity are included in the climate data used in this study,
which was obtained from a public dataset [28]. It offers a
representative sample of environmental patterns in important
sugarcane-growing regions over a wide geographic and
temporal range. The dataset was chosen because it closely
reflects the conditions and information that farmers use when
deciding how to apply pesticides. This makes it suitable for
building a system that also considers environmental factors,
which are essential for giving accurate and practical spraying
recommendations.

3.3 Data pre-processing

A standardized pre-processing pipeline was used ensuring
reliable and uniform quality across the disease datasets and the
climatic inputs. The images of sugarcane leaves were resized
to 224 X 224, the intensity was normalized, and the lighting
variations were improved using CLAHE [29].

Table 1. Number of images per class in training, testing and
validation sets

Class Total Training Testing Validation

Count  (70%) (15%) (15%)
Banded chlorosis 1600 1120 240 240
Grassy shoot 1600 1120 240 240
Healthy 2258 1581 338 339
Mosaic 2099 1469 315 315
Pokkah boeng 1600 1120 240 240
Red rot 1736 1215 261 260
Ring spot 2072 1450 311 311
Rust 1600 1120 240 240
Sett rot 1613 1129 242 242
Viral disease 1638 1147 245 246
Yellow leaf 3899 2729 585 585

Total 21,715 15,201 3,257 3,257
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To improve variability and reduce overfitting, data
augmentation methods such as rotation, flipping, scaling, and
color jittering were employed. Temperature, humidity, wind
speed, and disease severity were all synchronized hourly for
analysis after the Kaggle climatic dataset was cleaned and
aligned by interpolating missing values and eliminating
unnecessary data [30]. Min-Max normalization was applied to
continuous climatic variables to ensure model compatibility
[31]. The image dataset was split into training (70%), testing
(15%), and validation (15%) sets, while maintaining class
proportions to avoid bias [32] (Table 1). Controlled
augmentation and stratified sampling helped balance strategies
and ensure stable learning across sugarcane disease classes.

3.4 Disease severity estimation model

3.4.1 Model architecture overview

The proposed disease assessment framework takes
advantage of a dual-head CNN-Transformer architecture [33,
34] to effectively capture fine-grained lesion patterns and
broader structural cues from the leaves of sugarcane. While the
CNN backbone captures local texture variation such as the
necrotic spot and chlorotic patch. The Transformer model
captures the global relationships across the leaf surface. This
combination increases the model's ability in recognizing early
symptoms and distinguishing visually very similar diseases.
Figure 3 gives the system-level block diagram showing the
process for disease severity estimation.

3.4.2 CNN backbone

To detect the various types of lesions on sugarcane leaves
and their colors, the CNN serves as a primary feature
extraction method. The images have been resized to a
224x224x3-pixel resolution to ensure that all input images
will have equal image quality. The CNN structure consists of
five blocks of convolutional layers, which follow a standard
sequencing of Conv2D, Batch Normalization, ReLU and



MaxPooling [35]. The backbone uses ResNet skip connections
between layers to further help with the improvement of the
gradient flow within the network. The network also uses both
3 X 3 and 5 X 5 convolutional kernels at different scales,
making it easier to identify lesions of varying sizes and shapes.

Image Acquisition

CNN Backbone

(Local lesion features)

Transformer
(Global leaf context)

Image Pre-processing Feature Fusion

(Resizing, Normalization
Augmentation, Noise removal)

The features collected at this local spatial level are enhanced,
using a global context through the Transformer block module
of the architecture. The parameters used in the CNN are given
in Table 2.

Disease Label

Classification Head (10 classes + Healthy)

SLIC Super-pixel
Severity Estimation

Severity
Regression Head

Figure 3. System level block diagram for disease severity estimation model

Table 2. CNN parameters

Parameter

Description / Value

Input Size
Pre-processing
Data Augmentation
Number of Convolutional Blocks
Block Structure
Residual Connections
Kernel Sizes
Channel Dimensions
Feature Focus

224 x 224 x 3

Lighting normalization (CLAHE), Gaussian noise removal, resizing
Rotation, flipping, scaling, color jittering

Conv2D — BatchNorm — ReLU — MaxPooling

Enabled (to enhance gradient flow)

Multi-scale: 3x3 and 5x5
[64, 128, 256, 512, 512]

Fine-grained local features, lesion and necrotic areas

3.4.3 Transformer module

The CNN architecture combined with the transformer
module, models long-range spatial relationships across leaf
surfaces, offering a wider understanding on lesions. Unlike
conventional CNNs that capture lesions locally, the
transformer addresses lesions distributed over larger areas or
with overlapping characteristics. It segments lesions into
patches and uses patch embeddings to create individual
representations. Comprising four stacked encoder layers with
multi-head self-attention (MHA) and feedforward sub-layers,
the Transformer learns global interactions within lesions,
enabling identification of infection stages and enhancing
contextual understanding beyond local feature extraction.

The CNN model generates a feature map with multiple
layers of depth, which is then divided into patches that do not
overlap, and the patches are converted into tokens. After the
tokenizing of the patches, each of them is processed through 4
layers of multi-head attention for global context modelling.
The improved feature representation is then fused with the
CNN feature presentation and passed into both the softmax
classification output head and the regression output head that
is used to determine the severity of the disease.

The Transformer uses the scaled dot-product attention
mechanism [36], computed as given in Eq. (1)

Attention (Q,K,V) = softmax (ﬂ) |4 €))

N

where, Q, K, and V represent the query, key, and value
matrices generated from the patch embeddings, and dj
denotes the key dimensionality.
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The multi-head attention (MHA) mechanism extends this
by performing several attention operations in parallel as given
in Eq. (2) allowing the network to simultaneously focus on
different lesion features such as color variation, margin
sharpness, and necrotic spread. Transformer parameters used
in this work is shown in Table 3.

MHA (X) = Concat(hq, - , 2)

Table 3. Transformer parameters

Component Parameter / Value
CNN Feature Maps Partitioned into 16 x 16 patches
Patch Embedding 512-dimensional vectors
Transformer Layers 4
Multi-Head Attention 8 heads
Feed-Forward Network GELU activation

Global leaf context, vein-aligned
and elongated lesion patterns
Cross-attention
Fused features fed to dual-head
prediction (classification + severity)

Transformer Feature Focus
Fusion Mechanism

Output Integration

3.4.4 Feature fusion and dual-head output

A framework using both CNN and transformer features can
improve recognition of lesions and provide an estimation of
lesion discrimination. A lightweight cross attention system
allows the global token from the transformer to focus the
important CNN features [37], which allows subtle signs of the
early stages of infection to be highlighted. The fused image is
then passed through two heads. The classification head
contains a softmax classifying 11 categories of diseases while



reducing overfitting through dropout; the regression head
produces continuous values from 0 to 1 to indicating the
severity of an affected leaf. The dual head structure allows the
model to assess both disease diagnosis and severity, helping
improve performance through two-way connectivity with
agronomy in pesticide application decisions.

3.4.5 Model validation

Five-fold cross-validation was used for model validation on
21,637 images, guaranteeing balanced representation for
precise performance metrics. Various architectures such as the
ResNet50, DenseNet201, EfficientNet-B7, and ViT-B/16 was
trained under consistent conditions and the performance was
evaluated. The Fl-scores showed clear and consistent
improvements, confirming that the model’s gains are reliable.

3.4.6 SLIC super-pixel severity estimation

For estimating disease severity, we employed SLIC super-
pixel segmentation using 500 super-pixels and a compactness
of 20 [12]. The purpose of this module is to generate a
lightweight and interpretable measure of disease intensity
without requiring pixel-level masks or heavy segmentation
models. Compared with Watershed and K-Means, SLIC
produced cleaner lesion boundaries and showed fewer failures
under challenging conditions such as uneven illumination or
background clutter.

SLIC was specifically chosen because it remains reliable
under real field constraints such as variable lighting,
overlapping leaves, dust, and complex scenes where
conventional pixel-wise annotations or fully supervised
segmentation networks become impractical to deploy. This
makes SLIC a field-ready solution that supports robust
severity estimation for downstream decision-making.

3.5 Environmental metadata integration

3.5.1 Climatic variables

The four climatic factors (temperature, relative humidity,
wind speed and weather condition) were used as
environmental metadata to support in determining the disease
severity and to make the recommended spraying decisions.
Previous studies [38, 39] have observed that these climatic
factors influence the growth of pathogens, movement of spores,
development of leaf wetness, and progression of pathogens.

3.5.2 Multimodal data fusion

The integration of climate data and sugarcane images (by
linking location) allowed the analysis of disease-related
factors to include the environment. This is important to know
how temperature, humidity, and wind speed affect disease
spread and efficacy of pesticides, are critical for generating a
model for accurate spray recommendations. Spearman
correlation is used to determine time-dependent relationships
between disease severity and climate variables and therefore
address the issue of nonlinear biological responses.

3.6 Multi-objective
recommendation

optimization for spray

To formalize the spray recommendation strategy, a multi-
objective optimization (MOQO) framework was developed that
integrates agronomic constraints, approved chemical
guidelines, and disease-yield relationships. The decision
vector was structured following standard MOO formulations
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[40], ensuring that each variable reflects a practical and
controllable field parameter:
S={T,D,C} 3)

where, T is the timing of spray after disease detection (hours),
D is the dosage level (L ha™ or % solution), C is the chemical
type (active ingredient/formulation).

The optimization problem now follows the canonical MOO
form:

min F(S) = [f1(s), f2(s), fs(s)],s €S “4)

This fixes earlier uncertainties and making sure that the
method aligns with standard MOO procedures.

(1) Yield Protection: f;(s)

Instead of using approximate measures, yield protection is
estimated from a yield-loss curve based on the predicted
disease severity (DS).

fi(s)=1-Y(DS,D,T) (5)
where, Y(DS,D,T) represents yield preserved under a
specific dose timing strategy. This method matches the way
disease severity and yield loss are related, as shown in plant
pathology research [41].

(2) Treatment Efficiency: f,(s)

Treatment efficiency represents suppression of lesion
progression as mentioned in the previous works [42].

fo(s) = E(D,T) ©)
where, E (D, T) captures fungicide effectiveness as influenced
by dosage and spray timing.

(3) Chemical Load: f5(s)

Directly measurable and widely accepted metric to measure
chemical load [43] has been used in this study.

fs(s) =D (7

This allows the optimization to minimize chemical input
without relying on unvalidated ecological models. This
practice aligns with previous NSGA-II agricultural
optimization studies [22]. Yield protection serves as the
primary agronomic goal, implicitly capturing the trade-off:
higher doses (higher cost) must produce proportionally higher
yield benefits [21].

3.6.1 Incorporation of approved chemical types and dosage
ranges

For each disease predicted by the CNN-Transformer model,
the system automatically maps to a valid treatment option
defined by previous studies [44, 45]:

C: ICAR-recommended chemical

D: label-approved dosage

T: recommended timing window

This ensures that optimization operates strictly within
realistic and legally compliant boundaries.

Table 4 presents all chemical types and dosage ranges used.

3.6.2 NSGA-II optimization and pareto-optimal outputs

The NSGA-II method has been used to find optimal trade-
offs between yield protection, treatment effectiveness and
chemical loads through an iterative process of non-dominated
sorts and selecting spray schedules by crowding distance,



resulting in a set of Pareto optimal spray schedules. These
spray schedules account for climate conditions, disease
severity, amount of chemicals allowed, as well as their timing,
therefore providing farmers with context relevant and practical

spray schedules that provide maximum agronomic value with
the least amount of chemicals needed. The workflow for the
NSGA-II is given in Figure 4 and Table 5 gives the settings
for the NSGA 11.

Table 4. Disease and recommended chemical types and dosage ranges used

Disease Recommended Chemical Dosage Range Used in Model
Rust Propiconazole 25 EC / Tebuconazole 25 EC 0.05-0.1% (or 250-500 mL/ha)
0 .

Pokkah Boeng Carbendazim 50 WP / Propiconazole 25 EC 0.1 (f] 2((5) a{ﬁ:;ﬁiiﬁglglre?'l_
Red Rot Carbendazim 50 WP (prophylaxis) 1 g/L for sett treatment
Smut Hot water treatment + fungicide dip (Carbendazim/Thiram) 0.1% fungicide dip

Mosaic, Yellow Leaf Virus Vector control (Imidacloprid 17.8 SL / Thiamethoxam 25 WG) 0.3-0.5 mL/L (Imidacloprid)
Grassy Shoot Vector insecticide (Imidacloprid/ Thiamethoxam) 0.3-0.5 mL/L
Ring Spot Vector control 0.3-0.5 mL/L
Banded Chlorosis Nutrient spray 0.5-1%
Sett Rot Carbendazim 1 g/L sett treatment
 Start from the results achieved that there were final validation
NSGA-II C

|

Crossover & Mutation
Generate New Population

}

Combine Populations &
Select Next Gen

!

Convergence Check
Max generations
reached?

Pareto front stabilized?

Initialize Population (Ps)
§={T.D,C} forall i

Evaluate Fitness for each :
fi = Yield Protection
f2 = Treatment Efficiency

fs = Chemical Load

Non-dominated Sorting
Rank Individuals (Fronts)

!

Crowding-Distance
Assignment

i

No

1 Yes

Output Pareto-Optimal

S Strategi
Selection pray Strategies
(Binary Tournament) l
l End

C

Figure 4. NSGA-II workflow for generating spray
recommendations

Table 5. NSGA II Configuration parameters

Parameter Value
Population size 100
Number of generations 200
Crossover probability (Pc) 0.9
Mutation probability (Pm) 0.01
Distribution index for crossover (1c) 20
Distribution index for mutation (nm) 20

Selection method Binary tournament

4. RESULTS AND DISCUSSION
4.1 Model performance and generalization

Figure 5 gives the training and validation accuracy for 100
epochs and demonstrate convergence that is stable and
generalization capabilities that are favorable. The sharp
fluctuations have been reduced by modifying the learning rate
and adding more extensive data preprocessing; it is evident
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accuracies of 94-96% and a corresponding training accuracy
0f 99%.

The hybrid CNN-Transformer model was trained to
improve the reliability of the model. The model can provide
high classification accuracy across all 11 diseases as illustrated
in the confusion matrix given in Figure 6. The primary reasons
for misclassifications of diseases such as red rot and rust or
grassy shoot and sett rot are based on visual characteristics that
are similar for those particular types of plant disease.
Nevertheless, there is evidence from prior research on CNN
and transformer models that provide an affirmation to the
hybrid model as a current diagnostic tool that can generalize
effectively, perform highly reliably during field deployment.

100
95
90
85
80

75

Accuracy (%)

70

Training Accuracy

65 R |
Validation Accuracy

60

20 40 60

Epochs

80 100

Figure 5. Training and validation curves

During the five-fold cross-validation process, the CNN-
transformer model achieved a consistently high level of
performance with overall accuracies ranging from 98.4% to
99.1%, producing an average accuracy of 98.8 £ 0.27%. There
was a high level of stability across the metrics of mean
precision (98.9 + 0.22%), mean recall (98.6 + 0.28%) and
mean Fl-score (98.7 £ 0.27%), indicating that the model
developed strong generalizable representation of multiple
types of sugarcane disease symptoms through the
architecture's stability and level of performance across
multiple data sets as indicated by the results in Table 6.

The performance comparison in Figure 7 highlights the
superior classification performance of the CNN-Transformer
hybrid architecture compared to four common models
(ResNet50, DenseNet201, EfficientNet-B7 and ViT-B/16).
All of these baseline models produced high levels of average



accuracy (in the 92% to 95% range) and consistent
performance through their respective precision, F1 and recall
metrics. This is a result of a more pronounced use of

Banded Chilorosis
Grassy Shoot
Healthy

Mosaic 0.00

Pokkah Boeng 0.00
Red Rot

0.00

Ring spot- 0.00 0.00

True Label

Rust

0.00
Sett Rot 0.00
Viral Disease- 0.00 0.00

Yellow Leaf Disease 0.00

jR0[e} 0.00 0.00 0.00 0.00 0.00 0.00

0.00
0.00

0.00

0.00
0.00
0.00

0.00

discriminative features from each backbone model in
conjunction with global context from the Transformer
encoder's attention weights.

0.00 0.00 0.00 0.00

0.00 0.00 0.10 0.00 0.00

0.00 0.00 0.00 0.12 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.14 0.00 0.00 o

0.00 0.00 0.00

0.14 0.00 0.00

0.00

0.00

Predicted Label

Figure 6. Confusion matrix - Sugarcane disease classification

Table 6. Five-fold cross-validation performance

Fold Ac:},}:)acy Prif/f)“’n Recall %) 1 (OS/:;’“
1 98.4 98.6 983 98.4
2 99.0 99.1 98.8 98.9
3 98.6 98.7 98.4 98.6
4 99.1 99.2 99.0 99.1
5 98.7 98.8 98.6 98.7
Mean £SD  98.8+0.27 98.9+0.22 98.6£0.28 98.7 £0.27

Performance (%)

ResNet50 DenseNet201 EffNet-B7 ViT-B/16

Hybrid CNN-Trans

B Accuracy (%) mm Precision (%) mmm Recall (%) Emm Fl-Score (%)

Figure 7. Comparison of performance results between the
CNN-transformer and other CNN models

4.2 Ablation and significance testing

The results from the ablation study present in Table 7
indicate that a hybrid CNN-Transformer outperforms stand-
alone models in disease classification and severity estimation.
Specifically, the CNN model reached an accuracy of 89.5%
with an F1-score of 0.86 and the Transformer model achieved
an accuracy of 91.2% with a lower F1-score and greater MSE
than the CNN model. Conversely, the hybrid method produced

3363

an accuracy of 98.8%, an Flscore of 0.987, and the lowest
mean squared error (MSE) of 0.072. This demonstrates that
the combination of CNNs' ability to capture local detail, and
the global context provided by transformers, is highly effective.

Table 7. Ablation study of CNN, transformer, and hybrid
CNN-transformer models for sugarcane disease classification
and severity estimation

Model Accuracy (%) Fl-score MSE
CNN-only 89.5 0.86  0.092
Transformer-only 91.2 0.84  0.108
Hybrid CNN-Transformer 98.8 0.987 0.072

Table 8. Paired t-test results comparing mean F1-scores of
the hybrid model with baselines

Comparison Hybrid  Baseline t- p-
P F1 F1 statistic value
Hybrid vs ResNet50 98.7 92.8 7.12  <0.01
Hybrid vs DenseNet201 98.7 93.4 6.94 <0.01
Hybrid vs ggﬁ“enmet' 98.7 94.1 621  <0.01
Hybrid vs ViT-B/16 98.7 94.0 633 <0.01

To ensure the performance gains of the hybrid CNN-
Transformer model's performance compared to the
benchmarked models, statistical analysis was performed using
paired t-tests comparing four benchmarked models against the
hybrid CNN-Transformer as stated in Table 8. Based on the
results of these analyses, it was determined that the hybrid
architecture provides a statistical advantage and a verified
increase in the hybrid model's Fl-score of 98.7% when
compared with the other models, which had F1-scores between
92.8%-94.1%. Additionally, t-statistics were produced that
ranged from 6.21 to 7.12 with corresponding p-values below
p < 0.01 confirming that the hybrid model provides a



statistically significant improvement compared with the other
models. Therefore, it can be concluded that there are true and
statistically significant advantages associated with this Hybrid
CNN-Transformer architect compared to traditional deep
CNNs and standalone Transformer's architectures.

Such tests confirm the statistically significant nature of
observed performance gains as opposed to the effect of
sampling noise or data partitioning.

4.3 Segmentation evaluation

Figure 8 represents performance measures of the SLIC
super-pixel decompositions and subsequent clustering of 11
sugarcane disease classes. The SLIC grids closely align with
the actual lesion boundaries, demonstrate good continuity
along the edges and have captured sufficient structural
information to reflect similar findings of earlier research on
plant phenotyping with super-pixel methods [13]. The K-
Means clustered masks of the diseased areas effectively mark
the discoloured or necrotic regions, providing precise
estimates of lesion area that may be used to estimate levels of
severity. The streaky shapes of the red rot, rust and pokkah
boeng disease lesions were correctly segmented and the patch-
like characteristics associated with periodicity of virus-like
diseases are well represented, while healthy samples were
minimally misclassified.

The comparative results for pokkah boeng and red rot
showcase the superior capability of the SLIC-based
segmentation approach. The SLIC method consistently

Banded chlorosis
SLIC Infected Mask

Original

W

generated coherent, anatomically aligned super-pixels that
accurately outlined lesion edges, allowing for reliable
identification of symptomatic tissue. In contrast, K-Means,
implemented on its own, generated noisy and spatially
inconsistent clusters, while Watershed was seen to over-
segment to a more severe degree due to its sensitivity to texture
and illumination. These findings demonstrate that SLIC can
maintain interpretability and robustness under field conditions.
The two class examples presented herein Figure 9 are known
to be representative of the full set of eleven analyzed disease
classes for this study.

4.4 Multimodal effects

Figure 10 illustrates the classification of 11 different
sugarcane disease types and shows that the majority of the
diseases can be classified accurately, with healthy, yellow leaf,
and mosaic diseases receiving the highest classification ratings.
Grassy shoot and pokkah boeng received lower classification
ratings because these two disease types are the least visually
similar and thus difficult to differentiate by the computer
model. The accompanying boxplot of the absolute severity
estimation error indicates fairly consistent results across the
different classes, as all classes have median error values less
than 0.12. However, the high variance in the error rates for the
classes red rot and viral diseases is likely caused by the typical
patterns across lesions for both classes, which may hinder
effective segmentation.

Grassy shoot

Figure 8. SLIC super-pixel Segmentation of 11 sugarcane disease classes
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Pokkah boeng

K-Means

Red rot

Watershed

Figure 9. Segmentation comparison between SLIC, K-Means and Water Shed
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Figure 11. Correlation matrix between disease severity and
weather parameters

The correlation analysis of disease severity and weather
parameters shown in Figure 11, revealed a very strong positive
relationship with relative humidity, temperature, and a weak
negative relationship with wind speed. This supports
established agronomic observations that high humidity and
warm temperatures accelerate the progression of fungal
diseases while wind speed can limit fungal establishment and
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spore retention on leaves.

As can be seen in Figure 11, there was a very strong
correlation observed between the severity and weather
parameters and weather. There was a very strong correlation
between severity and relative humidity, temperature, and a
weak negative correlation with wind speed, this is in
agreement with agricultural research where high humidity and
warm temperatures have been proven to accelerate the
progression of fungal diseases and wind speed has been shown
to negatively impact the establishment and retention of fungal
spores on plant leaf surface. The analysis demonstrates the
value of field-based monitoring for microclimatic conditions
to high degree the importance of monitoring the microclimate
of the field, as environmental conditions will influence both
the disease severity and efficiency implementation of disease
control strategies.

4.5 Optimization results

The NSGA-II algorithm has generated a three-dimensional
Pareto front, in Figure 12, which is well distributed, and it
indicates the trade-offs between yield preservation, treatment
efficiency, and environmental risk. In accordance with the
developed theory of multi-objective optimization [21, 22],
there was no dominant solution within the range of solutions,
which highlights the fact that agronomic and ecological goals
should be considered in decisions regarding sprays. The



general trend in sustainable crop protection studies indicated
that high-yield and high-efficiency solutions needed more
chemical doses making them more hazardous to the
environment. On the contrary, low-risk solutions accumulated
on the low-dose region at the expense of yield preservation.
The continuous and rounded-off Pareto surface and lack of
discontinuities suggests that the optimization frame fully
searched the decision space and generated agronomically
representative and constant options. The interpretability of the
3D visualization is also enhanced because it demonstrates the
response of each axis to the dosage intensity change thus

directly responding to the reviewer questions about
transparency and model rationality.
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Figure 12. Severity-driven selection with NSGA-II

Instead of using a fixed rule threshold, Figure 13 shows the
dynamical nature of disease severity in determining the
recommended strategy in the Pareto surface. The point that
was selected changed to areas that best preserved yield and
treated as severity escalated as an indication of the necessity
of more hard-treatment [44]. When the severity was low (less
than 20%), the system repeatedly tended to favour low-risk
low-dose zone (which represented preventive or delayed
spraying policies). In the case of moderate severity (20-50%),
the optimum location was at the midpoint Pareto surface, with
moderate-dose spraying providing the most favorable trade-

off between efficiency and environmental protection. High-
efficiency, high-yield points were also favored in high-
severity (> 50%), and therefore, high dose or immediate
treatment was encouraged as the best option. Another scenario
that contained severe weather constraints saw the system reject
the Pareto surface and the decision was categorized as the one
that was not appropriate and this showed appropriate
integration of operational limits as well as the concerns of the
reviewers regarding weather-aware decision-making. In
general, this severity-based traversal of the Pareto front offers
a systematic rationale of a quantitative nature of spray

suggestions, with data-driven decision support being
transparent and clear.
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Figure 13. Disease severity with NSGA-II

4.6 Deployment output

Based on the optimization defined in Section 4.5, a web-
based dashboard was created to convert the outputs of the
model into useful decision support. Although the optimization
module creates Pareto-optimal dose-timing strategies that are
modified according to the severity of the disease, the
conditions of the weather, and the limitations of the risk, the
dashboard allows an easy interface to comprehend the results
(Figure 14).
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Figure 14. Web-based dashboard implementing the proposed framework
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The user is able to input a leaf image and a set of
environmental parameters and the system will show four
important outputs: (i) the predicted disease type, (ii) severity
estimate, (iii) weather suitability, and (iv) the recommended
spraying action based on the results of NSGA-II. The
dashboard is not a change in the optimization logic, but it is
merely a display of the calculated strategies in the form of
actionable labels, e.g., low-dose delayed spraying, moderate-
dose spraying, and high-dose immediate spraying.

Such implementation shows the operational preparedness of
the framework and proves it to be practical application of the
framework in decision support in the real world.

5. CONCLUSION

This paper presents a framework that provides an
integration of image-based disease detection, severity
estimation, climate  metadata, and multi-objective
optimization to protect sugarcane crop. The suggested CNN-
Transformer architecture allows the use of fine-grained lesion
textures and global context of the whole leaf to improve the
recognition performance, which was more accurate than
traditional techniques. To calculate severity, the framework
uses an effective SLIC based segmentation model, which is
suitable in real field scenarios where there is limited access to
computational resources.

The environmental parameters such as temperature,
humidity, wind speed, and the general weather conditions are
incorporated into the system which allows climate conscious
measurements that will guide the effective and safer use of
pesticides. The NSGA-II module also assists in decision-
making by producing Pareto-optimal spray programs that
strike a balance between the application of chemicals and the
effectiveness of the treatment and follow realistic agronomic
requirements.

In general, the framework represents a realistic way of
achieving smart and sustainable disease management. In the
future, the system will be expanded to include soil parameters,
temporal disease modeling, and autonomous drone-powered
spraying in order to increase the scale and predictive potential
of the system when used in practice.
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