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Foliar diseases pose a major threat to sugarcane productivity, but timely detection and 

management remain difficult for farmers. This work presents a real-time decision-support 

approach that integrates a hybrid CNN-Transformer model with NSGA-II for precision 

spraying recommendation, based on disease detection and severity estimation. The 

combination of the CNN and the Transformer module is used to capture fine-grained local 

lesion features and global disease patterns, respectively. A two-head design of the 

Transformer module predicts disease type and severity. The proposed hybrid model is 

benchmarked with a dataset comprising 21,637 sugarcane leaf images, achieving a higher 

classification accuracy of 98.8% and a better MSE of 0.072 than the CNN-only (89.5%) and 

Transformer-only (91.2%) models. The proposed hybrid model also outperformed the 

models including ResNet50, DenseNet201, EfficientNet-B7, and ViT-B/16, with an 

accuracy of 98.8%, and F1-score of 98.7% respectively, confirming its robustness against 

11 disease categories. The NSGA-II module uses disease severity and weather conditions to 

suggest if spraying is needed, which pesticide to use, dosage level, and the best time to apply 

it. Thus, making the system useful for farmers as a mobile tool for sugarcane health 

management. 
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1. INTRODUCTION

Sugarcane, a principal global crop, significantly contributed 

21% to sugar production globally between 2000 and 2020 [1] 

and is essential for many rural livelihoods, particularly in India 

where it is cultivated on over 5 million hectares. Though the 

sugarcane has a high economic importance [2], it faces serious 

risks from various diseases namely the red rot, grassy shoot, 

yellow leaf disease, rust, and smut, which can decrease the 

yield by more than 50% if not dealt properly [3]. The 

conventional approach to the disease management requires the 

use of manual inspections and chemical treatment, which may 

be inefficient, expensive and harmful to the environment [4]. 

Although precision agriculture tools have emerged, their 

adoption is limited due to high costs, lack of infrastructure, and 

insufficient technical expertise among farmers [5]. 

To identify sugarcane disease accurately from field images, 

recent developments in deep learning, especially 

convolutional neural networks (CNNs) and transformer 

architectures, have found to offer satisfying results [6]. But the 

current systems mostly concentrate on classification [7] and 

do not consider other vital aspects like the severity of the 

disease, environmental conditions, and decision-making based 

on the factors that are important in disease management. A 

disease management system should be able not only to identify 

diseases but also offer recommendations on how the pesticides 

should be used, their dosage and timing. 

In order to overcome these challenges, the work proposes 

an interconnected decision-support system, which includes a 

hybrid CNN-Transformer model to detect the diseases and 

evaluate their severity, as well as a multi-objective optimizer 

of NSGA-II to create effective spraying recommendations. Its 

objective is to establish a system that combines visual analysis 

and decision-making system in order to promote the control of 

sugarcane diseases. 

Management of sugarcane diseases in the field have huge 

gaps such as the restriction of manual scouting which is not 

able to identify early-stage infections. There is a lack of a 

unified disease management system to detect and give 

treatment recommendations, which is inhibiting effective 

responses. Also, the necessity to reduce the use of chemicals 

is acute due to environmental issues and regulations. These 

issues underscore the need to have a holistic framework that 

will facilitate accurate diagnosis and environmentally friendly 

treatment to farmers. 

A Hybrid CNN-Transformer architecture has been 

presented in the proposed work as an effective deep learning 

model, a combination of CNN as a local lesion feature 

extractor and Transformer as a global context modeler, this 

hybrid model can be used to classify diseases and estimate 

their severity.   

The hybrid model uses one image of a leaf to predict both 

the type and severity of a disease at the same time.  Training 

and validation have been done using an expert-validated data 
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set (21,637 images) which is a large and various data set and 

has been manually validated with geographic, temporal and 

climatic supplementary metadata to achieve better 

generalization.  An NSGA-II multi-objective optimization 

engine has a spraying recommendation module, which 

estimates trade-offs between yield, treatment efficiency, and 

environmental risk to come up with actionable solutions. 
 

 

2. RELATED WORK 
 

Detection of plant disease, such as sugarcane leaf infection, 

is now possible by using deep learning, in particular, by the 

CNN models such as EfficientNet-B7 and DenseNet201. 

Nevertheless, these models are more likely to utilize small 

datasets and are difficult to apply in different field conditions 

[8]. Vision Transformers Fine-tuned Vision Transformers 

(ViTs) on larger datasets have demonstrated excellent 

performance, with 96.5% accuracy when compared to 

ResNet50 and VGG16 [9]. Hybrid CNN-Transformer can 

classify images with added local and global features, and some 

of the lightweight architectures can run on a mobile platform 

[10, 11]. In spite of developments, current systems are more 

concerned with prediction of diseases and not the severity 

meaning that a combined model can offer a holistic, severity-

informed decision support. 

Accurate estimation of disease severity is essential in good 

spraying recommendations since it is more related with yield 

loss compared to type of disease. To evaluate the area of 

lesions on plant leaves, research has used different 

segmentation techniques, including SLIC super-pixels [12, 13], 

K-Means clustering [14], Watershed [15], U-net [16], and 

Mask R-CNN [17]. However, most of the studies are based on 

small datasets and are not validated in the field, which 

compromises the reliability. 

The temperature and humidity are the crucial factors that 

determine the outbreak of sugarcane diseases. The maximum 

temperature, morning humidity, and sunshine are positively 

related to brown spot disease whereas minimum temperature, 

evening humidity, and wind speed have a negative correlation 

[18]. In the case of brown rust, the afternoon humid thermal 

ratio and the time span of the temperature are important 

predictors of the severity with a predictive accuracy of 

between 73-85% [19]. Sugarcane smut is favored by hot and 

dry environments (30-35℃), where wind assists in spreading 

the fungal spores, and dry soil improves the survival of the 

spores [20]. Moreover, steam and humidity enlarge infections 

by stem borers and improper rain falls interfere with the pest 

cycles [21]. 

The use of multi-objective evolutionary algorithms and in 

particular NSGA-II is critical to the optimization of 

agricultural systems, combining the economic, ecological, and 

operational aspects. NSGA-II utilizes fast nondominated 

sorting process, superior selection and parameter-free 

comparative operator to help locate a wide variety of solutions 

that are Pareto-optimal even when confined [22]. The use of 

the Fuzzy-Expert-NSGA-II even enhances the agricultural 

planting strategies by integrating expert rule-based approaches 

in managing the constraints, fuzzy mathematics in the 

representation of the objectives, and adaptive searching 

approaches, which provides better results in the uncertain and 

complex environment in agriculture [23]. 

Most systems used to diagnose sugarcane diseases provide 

only basic classification of the disease and do not provide 

accurate estimates of the severity of the disease, which limits 

farmers' ability to manage their fields efficiently. Many of 

these systems do not validate their results based on expert 

opinions, and most of them do not use any form of deep 

learning models to improve the recommendations for the best 

spray options based on the current disease state. Therefore, an 

integrated system that provides disease detection with a high 

degree of accuracy, disease severity assessments, and 

optimum spray recommendations as a complete package has 

yet to be developed. 

Building upon these limitations, this work proposes an 

integrated, real-time decision-support system that brings 

disease detection, severity estimation, and spraying 

recommendations into one unified framework. The key 

contributions of this study are as follows: 

• A hybrid CNN-Transformer model is developed to not 

only identify the disease but also estimate how severe it is, 

offering more meaningful guidance than approaches that stop 

with classification alone. 

• The model is trained on a large and diverse collection of 

21,637 leaf images gathered from real fields, helping it 

performs reliably under practical farming conditions. 

• An NSGA-II–based recommendation module uses both 

the severity level and prevailing weather conditions to suggest 

whether spraying is needed, the suitable pesticide, and the best 

time to apply it. 

• Finally, the designed system is made to work in real time 

on mobile devices, giving farmers a tool that can support 

timely and informed decisions in their daily field activities. 

The rest of this work is organized as follows. The 

methodology section explains the design of the hybrid CNN-

Transformer model, the dataset preparation, and the 

integration of the NSGA-II module. The results and discussion 

highlight the performance of the proposed system and its 

advantages under real field conditions. Finally, the conclusion 

summarizes the key findings and outlines possible directions 

for future work. 
 
 

3. MATERIALS AND METHODS 

 

3.1 System overview 

 

The proposed workflow of the proposed system which 

combines image-based disease detection, severity estimation, 

climate metadata and selective spraying recommendations 

through optimization techniques, is represented in Figure 1. 

 

 
 

Figure 1. Overview of proposed system 
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3.2 Datasets 

 

3.2.1 Sugarcane image dataset 

The dataset used in this work consist of images from five 

Mendeley Data repositories [23-27], which ensures the variety 

in leaf appearance, disease stages, lighting, and backgrounds. 

The dataset comprises 11 categories (Banded Chlorosis, 

Mosaic, Ring Spot, Viral Disease, Grassy Shoot, Pokkah 

Boeng, Rust, Yellow Leaf, Red Rot, Sett Rot), including 10 

sugarcane diseases and healthy leaves, totaling 21,715 images. 

Images were manually reviewed to eliminate duplicates and 

low-quality samples, and disease labels were verified against 

published descriptors. The selected dataset provides a 

representative sample of sugarcane leaves in natural 

environments, making them suitable for training a robust 

multimodal classification-severity model. Sample sugarcane 

leaf images used for this work is shown in Figure 2. 

 

 
 

Figure 2. Sample sugarcane images used for this work 

 

3.2.2 Climatic dataset 

Important variables like wind speed, temperature, weather, 

and humidity are included in the climate data used in this study, 

which was obtained from a public dataset [28]. It offers a 

representative sample of environmental patterns in important 

sugarcane-growing regions over a wide geographic and 

temporal range. The dataset was chosen because it closely 

reflects the conditions and information that farmers use when 

deciding how to apply pesticides. This makes it suitable for 

building a system that also considers environmental factors, 

which are essential for giving accurate and practical spraying 

recommendations. 

 

3.3 Data pre-processing 

 

A standardized pre-processing pipeline was used ensuring 

reliable and uniform quality across the disease datasets and the 

climatic inputs. The images of sugarcane leaves were resized 

to 224 × 224, the intensity was normalized, and the lighting 

variations were improved using CLAHE [29].  

 

Table 1. Number of images per class in training, testing and 

validation sets 

 

Class 
Total  

Count 

Training  

(70%) 

Testing 

(15%) 

Validation  

(15%) 

Banded chlorosis 1600 1120 240 240 

Grassy shoot 1600 1120 240 240 

Healthy 2258 1581 338 339 

Mosaic 2099 1469 315 315 

Pokkah boeng 1600 1120 240 240 

Red rot 1736 1215 261 260 

Ring spot 2072 1450 311 311 

Rust 1600 1120 240 240 

Sett rot 1613 1129 242 242 

Viral disease 1638 1147 245 246 

Yellow leaf 3899 2729 585 585 

Total 21,715 15,201 3,257 3,257 

To improve variability and reduce overfitting, data 

augmentation methods such as rotation, flipping, scaling, and 

color jittering were employed. Temperature, humidity, wind 

speed, and disease severity were all synchronized hourly for 

analysis after the Kaggle climatic dataset was cleaned and 

aligned by interpolating missing values and eliminating 

unnecessary data [30]. Min-Max normalization was applied to 

continuous climatic variables to ensure model compatibility 

[31]. The image dataset was split into training (70%), testing 

(15%), and validation (15%) sets, while maintaining class 

proportions to avoid bias [32] (Table 1). Controlled 

augmentation and stratified sampling helped balance strategies 

and ensure stable learning across sugarcane disease classes. 

 

3.4 Disease severity estimation model 

 

3.4.1 Model architecture overview 

The proposed disease assessment framework takes 

advantage of a dual-head CNN-Transformer architecture [33, 

34] to effectively capture fine-grained lesion patterns and 

broader structural cues from the leaves of sugarcane. While the 

CNN backbone captures local texture variation such as the 

necrotic spot and chlorotic patch. The Transformer model 

captures the global relationships across the leaf surface. This 

combination increases the model's ability in recognizing early 

symptoms and distinguishing visually very similar diseases. 

Figure 3 gives the system-level block diagram showing the 

process for disease severity estimation. 
 

3.4.2 CNN backbone 

To detect the various types of lesions on sugarcane leaves 

and their colors, the CNN serves as a primary feature 

extraction method. The images have been resized to a 

224×224×3-pixel resolution to ensure that all input images 

will have equal image quality. The CNN structure consists of 

five blocks of convolutional layers, which follow a standard 

sequencing of Conv2D, Batch Normalization, ReLU and 
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MaxPooling [35]. The backbone uses ResNet skip connections 

between layers to further help with the improvement of the 

gradient flow within the network. The network also uses both 

3 × 3  and 5 × 5 convolutional kernels at different scales, 

making it easier to identify lesions of varying sizes and shapes. 

The features collected at this local spatial level are enhanced, 

using a global context through the Transformer block module 

of the architecture. The parameters used in the CNN are given 

in Table 2. 

 

 
 

Figure 3. System level block diagram for disease severity estimation model 

 

Table 2. CNN parameters 

 
Parameter Description / Value 

Input Size 224 × 224 × 3 

Pre-processing Lighting normalization (CLAHE), Gaussian noise removal, resizing 

Data Augmentation Rotation, flipping, scaling, color jittering 

Number of Convolutional Blocks 5 

Block Structure Conv2D → BatchNorm → ReLU → MaxPooling 

Residual Connections Enabled (to enhance gradient flow) 

Kernel Sizes Multi-scale: 3×3 and 5×5 

Channel Dimensions [64, 128, 256, 512, 512] 

Feature Focus Fine-grained local features, lesion and necrotic areas 

 

3.4.3 Transformer module 

The CNN architecture combined with the transformer 

module, models long-range spatial relationships across leaf 

surfaces, offering a wider understanding on lesions. Unlike 

conventional CNNs that capture lesions locally, the 

transformer addresses lesions distributed over larger areas or 

with overlapping characteristics. It segments lesions into 

patches and uses patch embeddings to create individual 

representations. Comprising four stacked encoder layers with 

multi-head self-attention (MHA) and feedforward sub-layers, 

the Transformer learns global interactions within lesions, 

enabling identification of infection stages and enhancing 

contextual understanding beyond local feature extraction. 

The CNN model generates a feature map with multiple 

layers of depth, which is then divided into patches that do not 

overlap, and the patches are converted into tokens. After the 

tokenizing of the patches, each of them is processed through 4 

layers of multi-head attention for global context modelling. 

The improved feature representation is then fused with the 

CNN feature presentation and passed into both the softmax 

classification output head and the regression output head that 

is used to determine the severity of the disease. 

The Transformer uses the scaled dot-product attention 

mechanism [36], computed as given in Eq. (1) 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾

√𝑑𝑘
) 𝑉  (1) 

 

where, 𝑄 , 𝐾 , and 𝑉  represent the query, key, and value 

matrices generated from the patch embeddings, and 𝑑𝑘  

denotes the key dimensionality. 

The multi-head attention (MHA) mechanism extends this 

by performing several attention operations in parallel as given 

in Eq. (2) allowing the network to simultaneously focus on 

different lesion features such as color variation, margin 

sharpness, and necrotic spread. Transformer parameters used 

in this work is shown in Table 3. 

 

𝑀𝐻𝐴 (𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, ⋯ ⋯ , ℎ𝐻)𝑊𝑜 (2) 

 

Table 3. Transformer parameters 

 
Component Parameter / Value 

CNN Feature Maps Partitioned into 16 × 16 patches 

Patch Embedding 512-dimensional vectors 

Transformer Layers 4 

Multi-Head Attention 8 heads 

Feed-Forward Network GELU activation 

Transformer Feature Focus 
Global leaf context, vein-aligned 

and elongated lesion patterns 

Fusion Mechanism Cross-attention 

Output Integration 
Fused features fed to dual-head 

prediction (classification + severity) 

 

3.4.4 Feature fusion and dual-head output 

A framework using both CNN and transformer features can 

improve recognition of lesions and provide an estimation of 

lesion discrimination. A lightweight cross attention system 

allows the global token from the transformer to focus the 

important CNN features [37], which allows subtle signs of the 

early stages of infection to be highlighted. The fused image is 

then passed through two heads. The classification head 

contains a softmax classifying 11 categories of diseases while 
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reducing overfitting through dropout; the regression head 

produces continuous values from 0 to 1 to indicating the 

severity of an affected leaf. The dual head structure allows the 

model to assess both disease diagnosis and severity, helping 

improve performance through two-way connectivity with 

agronomy in pesticide application decisions. 

 

3.4.5 Model validation 

Five-fold cross-validation was used for model validation on 

21,637 images, guaranteeing balanced representation for 

precise performance metrics. Various architectures such as the 

ResNet50, DenseNet201, EfficientNet-B7, and ViT-B/16 was 

trained under consistent conditions and the performance was 

evaluated. The F1-scores showed clear and consistent 

improvements, confirming that the model’s gains are reliable. 

 

3.4.6 SLIC super-pixel severity estimation 

For estimating disease severity, we employed SLIC super-

pixel segmentation using 500 super-pixels and a compactness 

of 20 [12]. The purpose of this module is to generate a 

lightweight and interpretable measure of disease intensity 

without requiring pixel-level masks or heavy segmentation 

models. Compared with Watershed and K-Means, SLIC 

produced cleaner lesion boundaries and showed fewer failures 

under challenging conditions such as uneven illumination or 

background clutter. 

SLIC was specifically chosen because it remains reliable 

under real field constraints such as variable lighting, 

overlapping leaves, dust, and complex scenes where 

conventional pixel-wise annotations or fully supervised 

segmentation networks become impractical to deploy. This 

makes SLIC a field-ready solution that supports robust 

severity estimation for downstream decision-making.  

 

3.5 Environmental metadata integration 

 

3.5.1 Climatic variables  

The four climatic factors (temperature, relative humidity, 

wind speed and weather condition) were used as 

environmental metadata to support in determining the disease 

severity and to make the recommended spraying decisions. 

Previous studies [38, 39] have observed that these climatic 

factors influence the growth of pathogens, movement of spores, 

development of leaf wetness, and progression of pathogens. 

 

3.5.2 Multimodal data fusion 

The integration of climate data and sugarcane images (by 

linking location) allowed the analysis of disease-related 

factors to include the environment. This is important to know 

how temperature, humidity, and wind speed affect disease 

spread and efficacy of pesticides, are critical for generating a 

model for accurate spray recommendations. Spearman 

correlation is used to determine time-dependent relationships 

between disease severity and climate variables and therefore 

address the issue of nonlinear biological responses. 

 

3.6 Multi-objective optimization for spray 

recommendation 

 

To formalize the spray recommendation strategy, a multi-

objective optimization (MOO) framework was developed that 

integrates agronomic constraints, approved chemical 

guidelines, and disease-yield relationships. The decision 

vector was structured following standard MOO formulations 

[40], ensuring that each variable reflects a practical and 

controllable field parameter: 
 

𝑆 = {𝑇, 𝐷, 𝐶} (3) 
 

where, 𝑇 is the timing of spray after disease detection (hours), 

𝐷 is the dosage level (L ha⁻¹ or % solution), 𝐶 is the chemical 

type (active ingredient/formulation). 

The optimization problem now follows the canonical MOO 

form: 
 

min 𝐹(𝑆) = [𝑓1(𝑠) , 𝑓2(𝑠), 𝑓3(𝑠)] , 𝑠 ∈ 𝑆 (4) 
 

This fixes earlier uncertainties and making sure that the 

method aligns with standard MOO procedures. 

(1) Yield Protection: 𝑓1(𝑠) 

Instead of using approximate measures, yield protection is 

estimated from a yield-loss curve based on the predicted 

disease severity (DS). 
 

𝑓1(𝑠) = 1 − 𝑌(𝐷𝑆, 𝐷, 𝑇) (5) 
 

where, 𝑌(𝐷𝑆, 𝐷, 𝑇)  represents yield preserved under a 

specific dose timing strategy. This method matches the way 

disease severity and yield loss are related, as shown in plant 

pathology research [41]. 

(2) Treatment Efficiency: 𝑓2(𝑠) 

Treatment efficiency represents suppression of lesion 

progression as mentioned in the previous works [42]. 

 

𝑓2(𝑠) = 𝐸(𝐷, 𝑇) (6) 

 

where, 𝐸(𝐷, 𝑇) captures fungicide effectiveness as influenced 

by dosage and spray timing.  

(3) Chemical Load: 𝑓3(𝑠) 

Directly measurable and widely accepted metric to measure 

chemical load [43] has been used in this study. 

 

𝑓3(𝑠) = 𝐷 (7) 
 

This allows the optimization to minimize chemical input 

without relying on unvalidated ecological models. This 

practice aligns with previous NSGA-II agricultural 

optimization studies [22]. Yield protection serves as the 

primary agronomic goal, implicitly capturing the trade-off: 

higher doses (higher cost) must produce proportionally higher 

yield benefits [21]. 
 

3.6.1 Incorporation of approved chemical types and dosage 

ranges 

For each disease predicted by the CNN-Transformer model, 

the system automatically maps to a valid treatment option 

defined by previous studies [44, 45]: 

C: ICAR-recommended chemical 

D: label-approved dosage 

T: recommended timing window 

This ensures that optimization operates strictly within 

realistic and legally compliant boundaries. 

Table 4 presents all chemical types and dosage ranges used. 
 

3.6.2 NSGA-II optimization and pareto-optimal outputs 

The NSGA-II method has been used to find optimal trade-

offs between yield protection, treatment effectiveness and 

chemical loads through an iterative process of non-dominated 

sorts and selecting spray schedules by crowding distance, 
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resulting in a set of Pareto optimal spray schedules. These 

spray schedules account for climate conditions, disease 

severity, amount of chemicals allowed, as well as their timing, 

therefore providing farmers with context relevant and practical 

spray schedules that provide maximum agronomic value with 

the least amount of chemicals needed. The workflow for the 

NSGA-II is given in Figure 4 and Table 5 gives the settings 

for the NSGA II. 

 

Table 4. Disease and recommended chemical types and dosage ranges used 

 
Disease Recommended Chemical  Dosage Range Used in Model 

Rust  Propiconazole 25 EC / Tebuconazole 25 EC 0.05-0.1% (or 250-500 mL/ha) 

Pokkah Boeng  Carbendazim 50 WP / Propiconazole 25 EC 
0.1% (Carbendazim) or 0.1-

0.2% (Propiconazole) 

Red Rot  Carbendazim 50 WP (prophylaxis) 1 g/L for sett treatment 

Smut  Hot water treatment + fungicide dip (Carbendazim/Thiram) 0.1% fungicide dip 

Mosaic, Yellow Leaf Virus Vector control (Imidacloprid 17.8 SL / Thiamethoxam 25 WG) 0.3-0.5 mL/L (Imidacloprid) 

Grassy Shoot  Vector insecticide (Imidacloprid/ Thiamethoxam) 0.3-0.5 mL/L 

Ring Spot  Vector control 0.3-0.5 mL/L 

Banded Chlorosis Nutrient spray 0.5-1% 

Sett Rot  Carbendazim 1 g/L sett treatment 

 

 
 

Figure 4. NSGA-II workflow for generating spray 

recommendations 

 

Table 5. NSGA II Configuration parameters 

 
Parameter Value 

Population size 100 

Number of generations 200 

Crossover probability (Pc) 0.9 

Mutation probability (Pm) 0.01  

Distribution index for crossover (ηc) 20 

Distribution index for mutation (ηm) 20 

Selection method Binary tournament 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Model performance and generalization 

 

Figure 5 gives the training and validation accuracy for 100 

epochs and demonstrate convergence that is stable and 

generalization capabilities that are favorable. The sharp 

fluctuations have been reduced by modifying the learning rate 

and adding more extensive data preprocessing; it is evident 

from the results achieved that there were final validation 

accuracies of 94-96% and a corresponding training accuracy 

of 99%. 

The hybrid CNN-Transformer model was trained to 

improve the reliability of the model. The model can provide 

high classification accuracy across all 11 diseases as illustrated 

in the confusion matrix given in Figure 6. The primary reasons 

for misclassifications of diseases such as red rot and rust or 

grassy shoot and sett rot are based on visual characteristics that 

are similar for those particular types of plant disease. 

Nevertheless, there is evidence from prior research on CNN 

and transformer models that provide an affirmation to the 

hybrid model as a current diagnostic tool that can generalize 

effectively, perform highly reliably during field deployment. 

 

 
 

Figure 5. Training and validation curves 

 

During the five-fold cross-validation process, the CNN-

transformer model achieved a consistently high level of 

performance with overall accuracies ranging from 98.4% to 

99.1%, producing an average accuracy of 98.8 ± 0.27%. There 

was a high level of stability across the metrics of mean 

precision (98.9 ± 0.22%), mean recall (98.6 ± 0.28%) and 

mean F1-score (98.7 ± 0.27%), indicating that the model 

developed strong generalizable representation of multiple 

types of sugarcane disease symptoms through the 

architecture's stability and level of performance across 

multiple data sets as indicated by the results in Table 6. 

The performance comparison in Figure 7 highlights the 

superior classification performance of the CNN-Transformer 

hybrid architecture compared to four common models 

(ResNet50, DenseNet201, EfficientNet-B7 and ViT-B/16). 

All of these baseline models produced high levels of average 
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accuracy (in the 92% to 95% range) and consistent 

performance through their respective precision, F1 and recall 

metrics. This is a result of a more pronounced use of 

discriminative features from each backbone model in 

conjunction with global context from the Transformer 

encoder's attention weights.  

 

 
 

Figure 6. Confusion matrix - Sugarcane disease classification 

 

Table 6. Five-fold cross-validation performance 

 

Fold 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

1 98.4 98.6 98.3 98.4 

2 99.0 99.1 98.8 98.9 

3 98.6 98.7 98.4 98.6 

4 99.1 99.2 99.0 99.1 

5 98.7 98.8 98.6 98.7 

Mean ± SD 98.8± 0.27 98.9± 0.22 98.6± 0.28 98.7 ± 0.27 

 

 
 

Figure 7. Comparison of performance results between the 

CNN-transformer and other CNN models 
 

4.2 Ablation and significance testing 

 

The results from the ablation study present in Table 7 

indicate that a hybrid CNN-Transformer outperforms stand-

alone models in disease classification and severity estimation. 

Specifically, the CNN model reached an accuracy of 89.5% 

with an F1-score of 0.86 and the Transformer model achieved 

an accuracy of 91.2% with a lower F1-score and greater MSE 

than the CNN model. Conversely, the hybrid method produced 

an accuracy of 98.8%, an F1score of 0.987, and the lowest 

mean squared error (MSE) of 0.072. This demonstrates that 

the combination of CNNs' ability to capture local detail, and 

the global context provided by transformers, is highly effective. 

 

Table 7. Ablation study of CNN, transformer, and hybrid 

CNN-transformer models for sugarcane disease classification 

and severity estimation 

 
Model Accuracy (%) F1-score MSE 

CNN-only 89.5 0.86 0.092 

Transformer-only 91.2 0.84 0.108 

Hybrid CNN-Transformer 98.8 0.987 0.072 

 

Table 8. Paired t-test results comparing mean F1-scores of 

the hybrid model with baselines 

 

Comparison 
Hybrid 

F1 

Baseline 

F1 

t-

statistic 

p-

value 

Hybrid vs ResNet50 98.7 92.8 7.12 < 0.01 

Hybrid vs DenseNet201 98.7 93.4 6.94 < 0.01 

Hybrid vs EfficientNet-

B7 
98.7 94.1 6.21 < 0.01 

Hybrid vs ViT-B/16 98.7 94.0 6.33 < 0.01 

 

To ensure the performance gains of the hybrid CNN-

Transformer model's performance compared to the 

benchmarked models, statistical analysis was performed using 

paired t-tests comparing four benchmarked models against the 

hybrid CNN-Transformer as stated in Table 8. Based on the 

results of these analyses, it was determined that the hybrid 

architecture provides a statistical advantage and a verified 

increase in the hybrid model's F1-score of 98.7% when 

compared with the other models, which had F1-scores between 

92.8%-94.1%. Additionally, t-statistics were produced that 

ranged from 6.21 to 7.12 with corresponding p-values below 

p < 0.01 confirming that the hybrid model provides a 
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statistically significant improvement compared with the other 

models. Therefore, it can be concluded that there are true and 

statistically significant advantages associated with this Hybrid 

CNN-Transformer architect compared to traditional deep 

CNNs and standalone Transformer's architectures. 

Such tests confirm the statistically significant nature of 

observed performance gains as opposed to the effect of 

sampling noise or data partitioning. 

 

4.3 Segmentation evaluation 

 

Figure 8 represents performance measures of the SLIC 

super-pixel decompositions and subsequent clustering of 11 

sugarcane disease classes. The SLIC grids closely align with 

the actual lesion boundaries, demonstrate good continuity 

along the edges and have captured sufficient structural 

information to reflect similar findings of earlier research on 

plant phenotyping with super-pixel methods [13]. The K-

Means clustered masks of the diseased areas effectively mark 

the discoloured or necrotic regions, providing precise 

estimates of lesion area that may be used to estimate levels of 

severity. The streaky shapes of the red rot, rust and pokkah 

boeng disease lesions were correctly segmented and the patch-

like characteristics associated with periodicity of virus-like 

diseases are well represented, while healthy samples were 

minimally misclassified.  

The comparative results for pokkah boeng and red rot 

showcase the superior capability of the SLIC-based 

segmentation approach. The SLIC method consistently 

generated coherent, anatomically aligned super-pixels that 

accurately outlined lesion edges, allowing for reliable 

identification of symptomatic tissue. In contrast, K-Means, 

implemented on its own, generated noisy and spatially 

inconsistent clusters, while Watershed was seen to over-

segment to a more severe degree due to its sensitivity to texture 

and illumination. These findings demonstrate that SLIC can 

maintain interpretability and robustness under field conditions. 

The two class examples presented herein Figure 9 are known 

to be representative of the full set of eleven analyzed disease 

classes for this study. 

 

4.4 Multimodal effects 

 

Figure 10 illustrates the classification of 11 different 

sugarcane disease types and shows that the majority of the 

diseases can be classified accurately, with healthy, yellow leaf, 

and mosaic diseases receiving the highest classification ratings. 

Grassy shoot and pokkah boeng received lower classification 

ratings because these two disease types are the least visually 

similar and thus difficult to differentiate by the computer 

model. The accompanying boxplot of the absolute severity 

estimation error indicates fairly consistent results across the 

different classes, as all classes have median error values less 

than 0.12. However, the high variance in the error rates for the 

classes red rot and viral diseases is likely caused by the typical 

patterns across lesions for both classes, which may hinder 

effective segmentation. 

 

 
 

Figure 8. SLIC super-pixel Segmentation of 11 sugarcane disease classes 
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Figure 9. Segmentation comparison between SLIC, K-Means and Water Shed 

 

 
 

Figure 10. Classification accuracy per sugarcane disease and severity estimation error per disease class 

 

 
 

Figure 11. Correlation matrix between disease severity and 

weather parameters 

 

The correlation analysis of disease severity and weather 

parameters shown in Figure 11, revealed a very strong positive 

relationship with relative humidity, temperature, and a weak 

negative relationship with wind speed. This supports 

established agronomic observations that high humidity and 

warm temperatures accelerate the progression of fungal 

diseases while wind speed can limit fungal establishment and 

spore retention on leaves. 

As can be seen in Figure 11, there was a very strong 

correlation observed between the severity and weather 

parameters and weather. There was a very strong correlation 

between severity and relative humidity, temperature, and a 

weak negative correlation with wind speed, this is in 

agreement with agricultural research where high humidity and 

warm temperatures have been proven to accelerate the 

progression of fungal diseases and wind speed has been shown 

to negatively impact the establishment and retention of fungal 

spores on plant leaf surface. The analysis demonstrates the 

value of field-based monitoring for microclimatic conditions 

to high degree the importance of monitoring the microclimate 

of the field, as environmental conditions will influence both 

the disease severity and efficiency implementation of disease 

control strategies. 

 

4.5 Optimization results 

 

The NSGA-II algorithm has generated a three-dimensional 

Pareto front, in Figure 12, which is well distributed, and it 

indicates the trade-offs between yield preservation, treatment 

efficiency, and environmental risk. In accordance with the 

developed theory of multi-objective optimization [21, 22], 

there was no dominant solution within the range of solutions, 

which highlights the fact that agronomic and ecological goals 

should be considered in decisions regarding sprays. The 
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general trend in sustainable crop protection studies indicated 

that high-yield and high-efficiency solutions needed more 

chemical doses making them more hazardous to the 

environment. On the contrary, low-risk solutions accumulated 

on the low-dose region at the expense of yield preservation. 

The continuous and rounded-off Pareto surface and lack of 

discontinuities suggests that the optimization frame fully 

searched the decision space and generated agronomically 

representative and constant options. The interpretability of the 

3D visualization is also enhanced because it demonstrates the 

response of each axis to the dosage intensity change thus 

directly responding to the reviewer questions about 

transparency and model rationality. 

 
 

Figure 12. Severity-driven selection with NSGA-II 

 

Instead of using a fixed rule threshold, Figure 13 shows the 

dynamical nature of disease severity in determining the 

recommended strategy in the Pareto surface. The point that 

was selected changed to areas that best preserved yield and 

treated as severity escalated as an indication of the necessity 

of more hard-treatment [44]. When the severity was low (less 

than 20%), the system repeatedly tended to favour low-risk 

low-dose zone (which represented preventive or delayed 

spraying policies). In the case of moderate severity (20-50%), 

the optimum location was at the midpoint Pareto surface, with 

moderate-dose spraying providing the most favorable trade-

off between efficiency and environmental protection. High-

efficiency, high-yield points were also favored in high-

severity (> 50%), and therefore, high dose or immediate 

treatment was encouraged as the best option. Another scenario 

that contained severe weather constraints saw the system reject 

the Pareto surface and the decision was categorized as the one 

that was not appropriate and this showed appropriate 

integration of operational limits as well as the concerns of the 

reviewers regarding weather-aware decision-making. In 

general, this severity-based traversal of the Pareto front offers 

a systematic rationale of a quantitative nature of spray 

suggestions, with data-driven decision support being 

transparent and clear. 

 
 

Figure 13. Disease severity with NSGA-II 

 

4.6 Deployment output 

 

Based on the optimization defined in Section 4.5, a web-

based dashboard was created to convert the outputs of the 

model into useful decision support. Although the optimization 

module creates Pareto-optimal dose-timing strategies that are 

modified according to the severity of the disease, the 

conditions of the weather, and the limitations of the risk, the 

dashboard allows an easy interface to comprehend the results 

(Figure 14). 

 

 
 

Figure 14. Web-based dashboard implementing the proposed framework 
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The user is able to input a leaf image and a set of 

environmental parameters and the system will show four 

important outputs: (i) the predicted disease type, (ii) severity 

estimate, (iii) weather suitability, and (iv) the recommended 

spraying action based on the results of NSGA-II. The 

dashboard is not a change in the optimization logic, but it is 

merely a display of the calculated strategies in the form of 

actionable labels, e.g., low-dose delayed spraying, moderate-

dose spraying, and high-dose immediate spraying. 

Such implementation shows the operational preparedness of 

the framework and proves it to be practical application of the 

framework in decision support in the real world. 

 

 

5. CONCLUSION 

 

This paper presents a framework that provides an 

integration of image-based disease detection, severity 

estimation, climate metadata, and multi-objective 

optimization to protect sugarcane crop. The suggested CNN-

Transformer architecture allows the use of fine-grained lesion 

textures and global context of the whole leaf to improve the 

recognition performance, which was more accurate than 

traditional techniques. To calculate severity, the framework 

uses an effective SLIC based segmentation model, which is 

suitable in real field scenarios where there is limited access to 

computational resources. 

The environmental parameters such as temperature, 

humidity, wind speed, and the general weather conditions are 

incorporated into the system which allows climate conscious 

measurements that will guide the effective and safer use of 

pesticides. The NSGA-II module also assists in decision-

making by producing Pareto-optimal spray programs that 

strike a balance between the application of chemicals and the 

effectiveness of the treatment and follow realistic agronomic 

requirements. 

In general, the framework represents a realistic way of 

achieving smart and sustainable disease management. In the 

future, the system will be expanded to include soil parameters, 

temporal disease modeling, and autonomous drone-powered 

spraying in order to increase the scale and predictive potential 

of the system when used in practice. 
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