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Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with mild cognitive
impairment (MCI) representing an intermediate stage between normal cognitive function
(NC) and AD. Accurate multistage diagnosis of AD remains a significant challenge due to
the lack of distinct boundaries between adjacent stages. This study introduces classification
and segmentation multitask network (CSMT-Net), a novel deep learning framework
designed to address these challenges by simultaneously performing classification and
segmentation tasks for AD diagnosis. The proposed network extracts features from
neuroimaging modalities, including magnetic resonance imaging (MRI) and positron
emission tomography (PET), and employs a multitask approach to learn AD-related
pathology through both classification and structural segmentation of the hippocampus, a
critical biomarker of AD. Principal component analysis (PCA) is applied to the extracted
features for dimensionality reduction and feature selection, which is further integrated with
other diagnostic information, such as cerebrospinal fluid (CSF) biomarkers, genetic factors,
age, gender, and educational background. This integrated feature set is used for multiclass
diagnosis of AD. An extreme learning machine (ELM) is employed as the classifier to
predict the likelihood of AD across multiple stages. Evaluation on the AD Neuroimaging
Initiative (ADNI) dataset shows that the CSMT-Net framework achieves an accuracy of
69.3% and an F1-score of 69.7% in the multistage diagnosis of AD. The results indicate that
the multitask approach significantly enhances diagnostic accuracy compared to single-task
methods. The integration of both classification and segmentation tasks within the CSMT-
Net framework demonstrates its potential to improve the precision of multistage AD
diagnosis, offering a promising tool for advancing clinical diagnostic capabilities.

1. INTRODUCTION

in determining appropriate therapeutic interventions.
Neuroimaging data can be employed as diagnostic data in

AD is one of the causes of dementia, which is a brain
disorder caused by damage to nerve cells in the brain, leading
to mental decline and memory loss. AD is a progressive
disease, as the nerve cells are damaged, the patient gradually
experiences changes in memory, language, mood, personality
or behavior, eventually affecting basic bodily functions such
as walking and swallowing, and can be life-threatening [1, 2].
Studies have shown that the average survival time after
diagnosis is 4-8 years [3]. The onset of AD can be divided into
three stages: NC, MCI due to AD, and dementia due to AD.
Patients with MCI often exhibit mild brain lesions, but do not
show significant symptoms. Approximately one-third of MCI
patients will progress to AD within five years. There is no
effective way or drug to treat AD, but some studies have
shown that some patients with MCI do not have additional
cognitive decline or revert to normal cognition [4]. Preventive
treatment at the MCI stage can be effective in slowing or
stopping the AD progress. Thus, a multistage diagnosis of AD
can assist in differentiating these three groups, which is helpful
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computer-aided diagnostic techniques for AD. For instance,
AD-related neuronal loss results in anatomical alterations in
the patient's brain tissue that can be identified by structural
MRI scans [5, 6]. For this reason, MRI is a frequently used
image data set. Fluorodeoxyglucose positron emission
tomography (FDG-PET) is another medical imaging modality
that can identify abnormalities in glucose metabolism caused
by AD. As a result, the distinctive pattern of electron glucose
metabolism in PET images can be used to distinguish between
patients and NC [7, 8]. Furthermore, aberrant levels of beta-
amyloid and tau in CSF are established biomarkers of AD,
making beta-amyloid and tau buildup useful information for
the diagnosis of AD [9]. While these medical data can
independently diagnose AD, integrating multimodal data
significantly enhances diagnostic precision [10, 11].
Currently, the binary diagnosis of AD has achieved a high
accuracy rate, however, the multistage diagnosis task, which
can distinguish AD, MCI and NC simultaneously, has more
practical value in clinical applications. But the accuracy of
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computer-aided multistage diagnosis of AD is still low [12-14]
due to the slight variations in the pathogenesis of AD between
adjacent stages, particularly in the early stages of MCI where
the pathological changes are very small in comparison to
normal individuals. In order to more precisely distinguish the
different stages of AD, multitask deep learning models have
been used to improve diagnosis accuracy [15, 16], i.e., to
acquire the diagnostic results while also outputting additional
metrics, such as mini-mental state examination (MMSE) and
clinical dementia rating (CDR). Given that AD results in
hippocampal atrophy, and the hippocampal regions are
considered to be the main landmark areas for lesions in
Alzheimer's studies [17, 18], allowing the neural network
model to learn the structural features of the hippocampus will
improve the ability to diagnose AD of different stage. This
paper proposes a novel multitask deep neural network model
named Classification and Segmentation Multitask Network
(CSMT-Net), which adds a segmentation task to segment the
hippocampal structure along with the MMSE, CDR regression
and AD classification tasks. The experiments of multistage
diagnosis (AD vs. MCI vs. CN) were conducted. Based on the
results of the experiments, the accuracy of AD multistage
diagnosis can be further enhanced by including the
hippocampus segmentation task.

The main highlights of this paper are as follows:

1) This work proposed a deep learning-based approach for
AD multistage diagnosis. A multitask deep neural
network named CSMT-Net was designed for AD-
related feature extraction with neuroimaging, such as
MRI and FDG-PET.

Hippocampus segmentation was utilized as one task of
CSMT-Net for structural MRI, so that the network
could learn about the AD-related structural lesion
information, which could indicate the progress of AD
and is useful for AD multistage diagnosis.

A machine learning framework consisting of PCA and
ELM was developed for AD multistage diagnosis using
multimodal data, including the neuroimaging features
produced by CSMT-Net and additional clinical data,

2)

3)

such as CSF biomarkers, genetic factors, and
demographic information.
2. RELATED WORKS
Using artificial intelligence algorithms based on
neuroimaging and clinical data, computer-aided diagnosis of
AD involves grouping individuals into categories.

Classification approaches include binary classification [19,
20], multistage classification [13, 21], and AD onset prediction
[22, 23]. Binary classification involves distinguishing NC vs.
AD, NC vs. MCI, and MCI vs. AD. On the other hand,
multistage classification can categorize persons as NC, MCI,
or AD simultaneously, which is more suitable for clinic
applications. When predicting the onset of AD, MCI is
categorized as progressive MCI, which is likely to develop AD
within a few years, and stable MCI, which is not expected to
proceed to AD. This prediction process essentially involves a
binary classification task. Among these AD diagnostic
approaches, there are mainly machine learning and deep
learning techniques.

2.1 Machine learning-based AD diagnosis approach

Machine learning techniques provide a methodical way to
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build sophisticated, automatic classification models to handle
massive volumes of data and identify subtle and complicated
patterns. Establishing the architectural design is necessary
when applying these machine learning techniques to the
classification of AD. Four stages are usually needed: feature
extraction, feature selection, dimension reduction, and
classification algorithm implementation. Numerous machine
learning algorithms have demonstrated efficacy in the
classification of AD. For example, Dong et al. [24] proposed
a latent feature fusion-based technique to utilize the
information contained in multimodal image data. They
developed a unique projection matrix for every modality, after
which they projected and fused latent feature representations
of several modalities onto a low-dimensional target space for
AD classification. Feng et al. [25] suggested using an ROI-
based contourlet sub-band energy feature to represent the MRI
image in the frequency domain. Sub-band energy feature
vectors were created from 90 ROIs in order to record their
contour data and energy distribution, then these features were
concatenated and fed into support vector machine (SVM) for
AD classification. Zhou et al. [26] developed a machine
learning-based segmentation and classification pipeline for
AD classification. They firstly segment the hippocampus from
MRI. Then selected 37 features most relevant to AD by the
hierarchical clustering method and least absolute shrinkage
and selection operator algorithm. Ultimately, four classifiers
were used with selected features to differentiate AD from NCs.
Although machine learning-based models can diagnose AD
efficiently, most of them are unable to extract adaptive
characteristics, so they typically need human-generated
features.

2.2 Deep learning-based AD diagnosis approach

Deep learning has grown quickly in recent years because of
the increasing GPU processing capacity, and because it does
away with the necessity for manual feature extraction, it is now
frequently employed in medical image-aided diagnosis
applications. Thus, it became feasible to classify different AD
stages using deep learning models [27]. For example, an
ensemble model based on a 3-D convolutional neural network
and genetic algorithm is proposed in study [28], which can
differentiate the subjects with AD or MCI and also identify the
discriminative brain regions significantly contributing to the
classifications. In study [29], a novel two-stage deep learning
AD progression detection framework was proposed, this
method utilized information fusion of different patient
longitudinal multivariate modalities, so it can predict the
precise AD onsettime of MCI patients. A multiclass
classification task was utilized in the first stage to estimate a
patient's diagnosis, and a regression task was used in the
second stage to predict the precise conversion time of patients
with MCI. Wang et al. [12] presented an asymmetry-enhanced
attention network for AD diagnosis, which proficiently
integrates the cerebral anatomical asymmetry properties to
enhance the accuracy and stability of classification tasks.

2.3 Multitask deep neural network for AD diagnosis

In order to increase the learning efficiency of the models,
some deep learning approaches use a multitask strategy to train
the neural network, where the tasks are typically related to AD.
This can force the neural network model to learn more AD-
related information from the data, improving the accuracy of
the classification task. For example, in study [30], a deep



multitask multi-channel learning framework was developed
for simultaneous brain illness categorization and clinical score
regression, using MRI data and demographic information.
Dong et al. [31] used a pre-trained deep model as a feature
extractor to generate high-level feature maps of different tasks.
However, segmentation has not been studied as a task in the
multitask AD diagnostic neural network models. Since the
degree of AD condition can be indicated by lesions in brain
neural structures on MRI, improving the accuracy of AD
classification can be facilitated if a neural network can
simultaneously learn to recognize the structural knowledge of
regions related to AD lesions in MRI images. Therefore, to
improve the AD diagnosis accuracy, this paper examined the
possibility of using multitask neural networks to include
hippocampal segmentation as one of the tasks. Then, the
trained deep neural networks will be utilized to extract AD-
related features from multimodal neuroimaging, and these
multimodal features will then be fed into a machine learning
model. This approach will effectively use the benefits of
multimodality and multitasking to improve the accuracy of

AD classification.

3. METHODS

In this section, a multimodal framework for AD multistage
diagnosis is introduced, Figure 1 displays the architecture of
this framework. The framework comprises two components:
the CSMT-Net part and a machine learning part. The CSMT-
Net, which is pre-trained with classification, regression and
segmentation tasks, extracts deep features from preprocessed
3D MRI and 3D PET images. Subsequently, the deep
features of MRI and PET are reduced to 5 features each using
the PCA algorithm. The neuroimaging deep features are then
concatenated with hippocampus volume, CSF biomarkers,
apolipoprotein E4 (APOE4), a genetic risk factor for AD [32],
and demographic data including age, gender, and education,
before an ELM classifier is employed with these features to
generate a multistage diagnosis.
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Figure 1. The overall framework of the CSMT-Net based multimodal AD multistage diagnosis

3.1 Neuroimaging preprocessing

The images in this paper were acquired from the
Alzheimer's Disease Neuroimaging Initiative (ADNI)
database (https://ida.loni.usc.edu/). Due to variations in size,
head position, and orientation of the MRI and PET images,
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preprocessing of these neuroimages was required.
Preprocessing involves skull stripping and rigid registration.
The MRI images underwent N4 bias field correction with the
ANTs tool, skull stripping with FSL software, rigid
registration to the MNI152 template using the IRTK tool, and
cropping to produce a 128x160x128-sized 3D brain image.



The PET images were initially registered with the raw MRI
image, skull stripped using the MRI skull stripping mask,
aligned with the registered MRI, and then cropped to a size of
128x160x128. Data augmentation techniques were utilized
during the neural network training phase to expand the training
dataset. This involved randomly adjusting the cropping center
point, flipping images along the left/right axis, and applying
random rotations within a range of +20 degrees in three
dimensions.

3.2 The architecture of the CSMT-Net

The architecture of CSMT-Net presented in this paper is
illustrated in Figure 2. It begins with an input layer that
processes the input image. This layer includes a 3D
convolutional layer with a convolutional kernel size of 3x3x3,
followed by a batch normalization (BN) layer and a Rectified
Linear Unit (ReLU) activation layer. Subsequently, maximum
pooling is applied, which decreases the feature map size to
64x80x64 and generates 16 feature maps. Following the input

layer, there are four 3D convolution blocks that utilize a
residual structure. The 3D convolution block consists of three
sets of convolutions, BN layer, and ReLU layer. The input is
combined with the output of these convolutions through
residual linking. The combined feature maps are then sent
through another set of convolutions, BN layer, ReLU layer,
and a maximum pooling layer. The feature map size is reduced
by half in each 3D convolution block, while the number of
feature maps is doubled. As a result, the fourth residual
convolution block produces 256 feature maps with dimensions
of 4x5x4. A global average pooling operation is performed to
calculate the average values of all feature maps, resulting in a
1x256 vector. A 256x512 fully connected layer is followed by
a dropout layer, a ReLU activation layer, and another 512x32
fully connected layer to produce a 1x32 vector, which
represents the deep features of the neuroimage. During the
network training phase, this feature vector is utilized to create
training targets for the multitask learning, including MMSE,
CDR, and classification label, through two 32x1 fully
connected layers and one 32x3 fully connected layer.
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Figure 2. The architecture of the CSMT-Net

A U-Net-similar up-sampling branch is added to the
backbone network for the purpose of segmenting the right and
left hippocampus, for the network designed for MRI feature
extraction, as depicted in Figure 2. The up-sampling module
takes the input, up-samples it using an inverse convolution
layer, and combines it with the relevant feature maps from the
backbone network using skip links. The resulting output is
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passed through two sets of convolutions, a BN layer, and a
ReLU activation layer. The up-sampling module produces
feature maps that are twice the size of the input. After four up-
sampling modules, 16 feature maps of size 64x80x64 are
generated. These feature maps are further up-sampled by the
final inverse convolution, resulting in segmentation outputs of
size 128x160x128. The hippocampus segmentation results



will be utilized as one of the tasks in the training of the MRI
network. As manual segmentation of hippocampal labels is
difficult to achieve, the segmentation tool in FSL software was
utilized to segment the hippocampus from the MRI, and the
segmentation results are then used as the training labels for the
segmentation task. While training the MRI network for
segmentation, the network can acquire segmentation skills and
morphological knowledge similar to the FSL software,
enhancing its capacity to extract valuable information from
MRI data. The hippocampal segmentation output is also
utilized to calculate the hippocampal volume, which can serve
as an AD biomarker.

3.3 Loss function

When training the CSMT-Net, the loss function of the
multitask training objective must be combined. The PET
network has three tasks: multi-classification, regression of
MMSE and CDR. A fourth task, which is segmenting the
hippocampus, is included in the MRI network. The loss
functions for these tasks are built as follows.

The multi-classification task utilized the multi-margin loss,
which can enlarge distances of interclass and reduce intra-
class variations simultaneously [33]. The loss function of
multi-margin loss can be expressed as:

_ NP
Lol § w{aMyhummmj "
C oy, —x[y]+x[i])

where, C denotes the group number, specifically set to 3. x[y]
represents the output of the correct group, and x[i] are the
outputs of other groups. For the situation of sample imbalance,
wly] is the weight for each group, which is set to 1. p and
margin are set to the default value, which is 1.

For the tasks of MMSE and CDR regression, the loss
function is squared loss, which can be expressed as:

mese = (ymmve - j}mmse )2 H Lcdr = (ycdr - )acdr )2 (2)

where, y represents the output value, and” represents the true
value.

For the task of hippocampus segmentation, the binary cross-
entropy loss for each voxel was calculated and averaged as the
segmentation loss function, which can be expressed as:

_ 1 &wlog(p(3)

se; - (3)
* NS+1-y)log(1-p(»))

where, N represents the number of voxels, y represents the
ground truth label, and p(y;) represents the output probability
of label.

Finally, we combine the above loss functions by weighting
to get the final loss function as follows:

[

where, We, Wimse, Wear, Wseg are the weighting coefficients of the
four loss functions. Take note that the different loss functions
often operate on vastly different scales, the individual loss
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functions are scaled by these weighting coefficients to bring
them into a comparable magnitude. This ensures that each
task's contribution to the overall multitask loss is more
balanced, preventing one task from overshadowing others
purely due to its inherent scale. According to the output scale
of each loss function, w. was set to 1, Wyms was set to 0.03,
Wear Was set to 0.1, wyee was set to 1.

3.4 Classifier

The proposed method involves extracting MRI and PET
features using a well-trained CSMT-Net that outputs 32 deep
features. The features are initially processed using PCA to
merge the highly correlated features [34]. Five major
components are kept, while the rest are removed as noise. So
5 deep features are extracted from each MRI and PET image.
These neuroimaging features are combined with additional
biomarkers and demographic data, then inputted into a
classifier for AD diagnosis. A classifier using ELM with
Gaussian kernels [35] is created to do multistage classification
of AD using multimodal data. The ELM algorithm can be
described as follows: assuming there are N training samples
[x1, x2, -+, xn], in which, x, represents the n-th sample
consisting of M features. YERYC is a one hot ground truth
label matrix for N samples of G classes. Upon receiving a new
sample x, the label of x can be predicted as

K(x,x,)
K(x',xz)

K(x‘,xN)

f(x)= (@+1/C)"Y (5)

where, the variable C is a regularization coefficient set to 1.
The variable y is a parameter of the Gaussian kernel, which
was set to 10 times of M in this study, and K(x, x,) is the
Gaussian kernel described as:

K(u,v):exp(—Hu—sz/y) (6)

and 2 is an NxN kernel matrix that is calculated with N
training samples:

K(xl,xl) K(x],xN)
P K(x:z,xl) K(xz:’XN) o
K(xN,xl) K(xN,xN)

4. EXPERIMENTS AND RESULTS
4.1 Experiment data and implementation details

The data for this study were obtained from the ADNI dataset,
which has recruited over 1800 participants aged 55 and above.
Only participants with all necessary modalities were selected
for validation, resulting in 263 NC, 299 MCI, and 263 AD
samples. These 825 samples were collected from 560
participants, indicating that some samples were obtained from
follow-up examinations of the same participant. It is necessary
to note that there are samples of 53 participants who had
changed groups during the follow-up study, that means these
samples may come from the same participant but belong to



different groups, which made the -classification more
challenging. Aside from these 560 patients, the MRI scans of
the remaining participants were used to train the CSMT-Net
for MRI. The training dataset consisted of 6189 MRI scans,
comprising 2080 NC, 2936 MCI, and 1173 AD. Similarly,
1600 PET images were utilized to train the network for PET,
comprising 447 NC, 892 MCI, and 261 AD. During the
network training phase, these 3D images underwent random
cropping, flipping, and rotation in three axes by 20 degrees
for data augmentation. The networks underwent training for
220 epochs. The initial 120 epochs were trained with a
learning rate of 0.001, while the subsequent 100 epochs were
trained with a learning rate of 0.0001. The complexity of the
proposed neural network model is characterized by 4,449,344
parameters and a computational cost of 41.44 GFLOPs. For
the training phase, an NVIDIA RTX 3090 GPU, equipped with
24GB of video memory, was utilized. Adopting a batch size of
4, the duration for each training epoch was approximately 850
seconds. Consequently, the entire training process, spanning
220 epochs, amounted to a total of about 52 hours.

Following the training of the CSMT-Net, deep features
from neuroimaging data were extracted from the MRI and PET
of the 825 samples previously described. During the validation
phase, the MRI and PET features were initially processed
using the PCA technique, and then all modality features were
combined for classification validation. To prevent data
leakage, the 825 samples collected from 560 participants were
divided into training and testing datasets using 5-fold cross-
validation, ensuring that samples from the same participants
were assigned to either the training or testing dataset. Table 1
displays the demographic information of these 825 samples.

Loss Curve

0 50 100 150 200
Epochs

(A) MRI network training loss

Table 1. The demographic information of the validation

samples
Gender  Education
Number Age (M/F) (Years) MMSE CDR
NC 263 74.8+6.2 129/134 16.6£2.8  29.0+£1.20.04+0.45
MCI 299 73.847.5 155/144 16.2+2.8  27.542.0 1.48+1.0
AD 263 75.447.2 157/106 15.6+2.7 22.6+3.24.994+2.19

We assessed the performance of multiclass classification by
using accuracy, which measures the proportion of correctly
categorized samples to the total samples, and F1-score. The
F1-score is determined by combining precision (the ratio of
correctly classified positive samples for one class to the total
classified positive samples for one class) and recall (the ratio
of correctly classified positive samples for one class to the real
samples for one class) as follows:

Flscore = 2 x Precision x Recall

)

Precision + Recall

4.2 The results of AD classification

The CSMT-Net underwent training for 220 epochs, and the
loss curves can be seen in Figure 3. Following network
training and feature processing, 5-fold cross-validation was
performed through a total of 100 runs, and the mean and
standard deviation of these 100 runs were computed as the
results. Experiments of binary classifications for NC vs. AD,
NC vs. MCI, and MCI vs. AD, in addition to the 3-class
classification of NC vs. MCI vs. AD, were conducted. The
results are presented in Table 2.

Loss Curve
1.2 —— Loss
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1.0 1 — Lynse
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0 50 100 150 200
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(B) PET network training loss

Figure 3. The training loss of MRI and PET network

Table 2. The performance of the proposed approach

Classification NCF1 MCI F1 AD F1 F1 Average Accuracy
NCvs. MClvs. AD  72.740.9% 57.840.9% 78.6£0.6%  69.7+0.7%  69.3+0.7%
NC vs. AD 93.7+0.3% - 93.3+0.3%  93.5+0.3%  93.5+0.3%

NC vs. MCI 72.3+1.1% 74.9+0.9% - 73.6+1% 73.6+1%
MCI vs. AD - 80.2+0.7% 76.8+0.8%  78.5+0.7%  78.6£0.7%

Note: In cells, the two number represent the mean and standard deviation of 100 runs. F1 means F1-score
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Figure 4. The confusion matrix of 3-class classification

As evident from the aforementioned results, the
classification of NC vs. AD is less challenging, resulting in
high accuracy. Given that MCI represents an intermediate and
progressive state between NC and AD, distinguishing between
early MCI and NC, as well as late MCI and AD, is more
complex and prone to confusion. So, the accuracy of
classification for NC vs. MCI and MCI vs. AD is not as well
as for NC vs. AD. For triple categorization, the accuracy drops
even further. In order to show more clearly the categorization
between the different categories, the confusion matrix of the
3-class classification is shown in Figure 4, from which, it can

be found that the misdiagnoses of NC and AD were almost
zero, all the misdiagnosed happened between NC and MCI or
between MCI and AD.

4.3 Ablation study

To reveal the contributions of different modalities and
components in the proposed approach, experiments were
conducted in different settings, and the results are listed in
Table 3. Row #1 means the complete data and steps of the
approach, which has the best performance. Row #2 replaces
the ELM classifier with the SVM classifier, and the accuracy
drops by 1.3%. Row #3 indicates the contribution of PCA, the
accuracy would decrease 2.1% without PCA. Rows #4 and 5#
reveal the importance of the multi-task strategy, especially the
segmentation task. Without segmentation task, the accuracy
decreased by 3.8%, and without all multitasking, the decrease
would be 4.2%. Rows #6 to #8 demonstrate the role of
different modality data. Without MRI data, the performance
suffered a great decrease, the accuracy dropped by 4.7%, and
the other data has a similar contribution as MRI. The PET data
has less contribution compared with MRI and other data, for
the accuracy decrease is 1.5% with the absence of PET data.
Rows #9 and #10 demonstrate the performance of only one
modality adopted, and the performance is relatively low,
which indicates the importance of the multi-modal method.
We used the independent samples t-test to assess the reliability
of the mean differences between the proposed method and
other methods, and the p-values are listed in the final column
of Table 3. These p-values (p-value<0.05) show that the
proposed approach is highly statistically significant when
compared to other approaches.

Table 3. The ablation studies of the proposed approach (3-Class classification of NC VS. MCI VS. AD)

RowMRI DataPET DataOther DataMMSE & CDR TaskSegmentation TaskPCAClassifier F1 Score Accuracy P-Values

#1 v N N R R v ELM 69.7+0.7%69.3+0.7% -

#2 v N N v v v SVM 68.3+0.7% 68+0.7%  0.001
#3 v N N v v ELM  67.6£0.6% 67.2+0.6% <0.001
#4 v N N v v ELM  65.9£0.5% 65.5+0.5% <0.001
#5 v N N v ELM  65.5+0.9% 65.120.9% <0.001
#6 v N R R v ELM  65.320.6% 64.7+0.6% <0.001
#7 v v R v v ELM 68.320.7%67.8+0.7% <0.001
#8 N N v v ELM  65.240.7% 64.6+0.7% <0.001
#9 v v v v ELM  62.0+0.5%61.4+0.5% <0.001
#10 v v v ELM  60.9£0.7% 60.5+0.7% <0.001

Note: The best results are highlighted in bold

Based on the results presented in Table 3, we can find that
both MRI and PET neuroimaging modalities are effective data
sources for AD diagnosis. However, using a single
neuroimaging modality alone does not yield optimal
performance, combining both MRI and PET can improve
diagnostic accuracy. Non-neuroimaging data, such as CSF
biomarkers, genetic information, and demographic data, also
serve as crucial features for AD diagnosis. Notably, when MRI
is combined with these non-imaging features, the diagnostic
accuracy approaches that of the method proposed in this paper,
highlighting their significant contributions. The hippocampus
regions typically undergo atrophy as AD progresses, making
their structural morphology and volume critical diagnostic
features. Our proposed method explicitly leverages this by
incorporating hippocampus segmentation as one of the neural
network's multi-tasks. This not only enhances the
effectiveness of neural network training but also implicitly
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guides the model to focus on this clinically relevant region.
Furthermore, we use hippocampal volume as one of the
features for AD diagnosis, which effectively boosts diagnostic
accuracy. This directly demonstrates the importance of the
hippocampus region.

4.4 Sensitivity analysis of multitask loss weights

To further address your point regarding the robustness of
our approach and the impact of different multitask weighting
coefficients, we have conducted a comprehensive sensitivity
analysis on the weighting coefficients. For each weighting
coefficient, its value was systematically varied using powers
of two (e.g., 22,271, 29, 2!, 22) while keeping other coefficients
at their baseline values. This allows isolating the impact of
each coefficient. The results of the model's performance of
each combination of weights are showed in Figure 5. The



results of the model’s performance under varying loss function
weights reveal differential sensitivity. When w. was reduced,
accuracy significantly dropped to 65.7%, indicating the
classification task's critical importance. Conversely,
increasing w. showed less severe degradation. Similarly,
perturbations t0 Wpmse, Wear and wyee exhibited remarkable

robustness. Performance remained within a narrow range, with
maximum drops from the peak being only 2.2 percentage
points, respectively. This suggests the model is resilient to
variations in regression and segmentation task emphasis, but
more sensitive to the classification objective.

The Impact of Multitask Weighting Coefficients
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Figure 5. The impact of multitask weighting coefficients
Table 4. Comparison with previous methods
Studies Methods F1 Score Accuracy
[12] Asymmetry enhanced attention network - 62.7%
[36] Gaussian discriminative component analysis - 67.7%
[37] Multi-atlases multi-layer perceptron approach 68% 67%
[21] Modified Tresnet neural network - 61.8%
[38] Multi-diagnostic and generalizable approach - 62.1%
[13] Multimodal cross-attention AD diagnosis framework 61.85% 64.03%
[39] Pearson's correlation and empirical cumulative distribution - 65.46%
[40] Pearson's correlation and gradient boosting classifier 66.32% 68.2%
[41] Hybrid region and population hypergraph neural network 55.64% 59.95%
This study CSMT-Net based multimodal approach 69.7% 69.3%

Note: The best results are highlighted in bold

4.5 Comparison with other methods

We have also evaluated the proposed approach against prior
3-class multistage AD diagnosis studies. The comparison
results are listed in Table 4. From these results, it can be found
that the proposed method surpasses other methods in both F1
score and accuracy. The F1 score and accuracy of the proposed
method are higher than previous methods by at least 1.7% and
1.6%. These results demonstrate the promising performances
of the proposed method compared to other methods.

5. DISCUSSION

In this paper, a multitask deep neural network named
CSMT-Net is proposed to extract AD-related features from
MRI and PET data. These features are combined with CSF
biomarkers, Apoe4 genes, age, gender, and education data to
enhance the accuracy of AD multistage diagnosis. A U-net up-
sampling branch is incorporated into the convolutional neural
network backbone framework to perform the hippocampal
segmentation task in the MRI feature extraction network. The
segmentation task enables the neural network to acquire
morphology knowledge about brain tissue structure,
enhancing the efficacy of MRI deep features. Furthermore, the
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volumes of the hippocampus can also serve as AD-related
features, enhancing the accuracy of AD diagnosis. Due to the
unavailability of manual segmentation for the hippocampus,
the FSL tool was used to generate hippocampus segmentation
as the segmentation training labels. The FSL segmentation tool,
despite not relying on manual segmentation by an expert, is an
algorithm with high segmentation accuracy. It incorporates
prior knowledge of hippocampal segmentation, enabling the
deep neural network to acquire significant MRI structure
knowledge and achieve effective segmentation ability.
Multiclass AD diagnosis is a challenging task; the
performance of multiclass diagnosis is significantly lower than
that of binary diagnosis for AD vs. NC. This is due to the fact
that the conversion of NC to MCI, as well as the conversion of
MCI to AD, is a gradual process. In this conversion process,
there is no obvious boundary between early MCI and NC or
late MCI and AD. Therefore, MCI and NC or MCI and AD are
easily confused, and it can also be seen from the confusion
matrix of the experimental results that most of the
classification errors occur between MCI and NC or MCI and
AD. Therefore, it is a difficult task to achieve high-precision
AD multi-classification. It can also be seen that the key to
improving the accuracy of AD multi-classification is to
improve the differentiation between MCI and the other two
groups, i.e., the classification of NC and MCI and the



classification of MCI and AD. For the structure of the
hippocampal regions gradually changed during AD
progression; by introducing the hippocampus segmentation
task, the CSMT-Net could learn information about
hippocampal alterations, which could indicate the AD
progression and be helpful for the multistage diagnoses of AD.

The experiment results in Table 2 and the confusion matrix
in Figure 4 indicate that the classification accuracy of NC and
MCI is lower than that of MCI and AD. For this reason, we
assume that in the stage of NC and early MCI, the degree of
lesion is slight, and the degree of some brain tissue changes or
biomarker abnormalities are mild, and these mild changes are
not easy to distinguish, so the classification accuracy is lower.
Whereas, in the stages of late MCI to AD, there are more
lesions, these changes will be more obvious with the increase
of the disease, so it is relatively easier to distinguish, so the
classification accuracy is higher. However, discriminating
MCI patients from the NC cohort is more meaningful because
AD patients are easier to treat in the early stage, so a high
performance of NC and MCI classification plays a greater role
in the prevention of AD.

MMSE and CDR are not utilized as features directly in this
paper, because of their substantial correlation with the group
labels, as they are primarily employed in the clinical diagnosis
of AD. Utilizing them as features can significantly enhance
classification accuracy, but it may lead to biased and
overestimated findings. Thus, in this paper, the scores were
just utilized as training labels for the neural network and not
as features.

The proposed deep learning model integrates MRI and PET
neuroimaging, CSF features, genetic risk factors, and
demographic data for the diagnosis of AD and MCI.
Diagnosing MCI is particularly vital as it represents an early
stage of AD, enabling timely intervention and preventative
strategies. To facilitate the integration of the proposed
approach into clinical workflows, the acquisition of
multimodal data is most important. Data such as MRI scans,
genetic risk factors, and demographic information are
generally more accessible and less invasive for patients in
routine clinical practice. MRI is a standard neuroimaging
technique, and genetic testing and demographic data collection
are common procedures. Conversely, obtaining PET
neuroimaging and CSF features poses greater challenges. PET
scans involve radiation exposure and are more costly, while
CSF collection via lumbar puncture is an invasive procedure
that carries certain risks and patient discomfort. In a practical
clinical workflow, a tiered approach could be adopted. Initial
screening might primarily utilize the more accessible data
(MRI, genetics, demographics). For cases with inconclusive
results or higher suspicion, the more invasive but highly
informative PET and CSF data could then be considered to
confirm diagnosis or assess disease progression.

Although the proposed approach demonstrates strong
predictive performance, it has some limitations. As a deep
neural network, the proposed model, particularly when
integrating diverse multi-modal inputs, can present challenges
in direct interpretability. Understanding the exact contribution
and interplay of each specific feature to a given prediction can
be complex. The strategies for post-hoc interpretability could
be explored in future work to gain deeper insights into the
model's decision-making process. While ADNI is a high-
quality dataset, real-world clinical data often present greater
variability and more extensive missingness. The proposed
model's reliance on a comprehensive set of multi-modal data
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(MRI, PET, CSF, genetic, demographic) means that missing
data could impact its applicability outside of well-controlled
research settings. Meanwhile, the potential biases inherent in
the ADNI cohort, which is predominantly of European descent,
limit generalizability to more diverse populations. The
proposed model is primarily designed for multi-stage
classification based on cross-sectional multi-modal data.
While ADNI provides longitudinal data, the proposed
approach does not fully leverage the temporal dynamics and
progression patterns inherent in these longitudinal
measurements to predict disease trajectory or conversion risk
over time. The explicit modeling of longitudinal changes could
offer a more nuanced understanding of disease progression,
and it would be a significant area for our future research and
model development.

6. CONCLUSION

In this study, a CSMT-Net-based multimodal approach is
developed for AD neuroimaging feature extraction.
Specifically, deep features associated with AD are extracted
from MRI and PET scans using a well-trained CSMT-Net.
These features are then subjected to PCA for dimensionality
reduction and combined with additional data, including CSF
biomarkers, the APOE4 gene, age, gender, and education. An
ELM classifier is utilized for multiclass classification using
these processed features. Based on the experimental results,
the proposed CSMT-Net significantly improves multiclass
diagnosis performance. The neuroimaging feature extracted
by the CSMT-Net contains sufficient AD-related information,
leading to a notable performance improvement, with an
accuracy of 69.3% and an Fl-score of 69.7% for AD
multiclass diagnosis, surpassing the performance of previous
studies such as single-task deep neural networks. To meet the
requirements of clinical applications and provide more reliable
technical support in the biomedical field, future work may
incorporate additional modalities or whole-brain segmentation
tasks to further improve diagnosis performance.
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