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Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with mild cognitive 

impairment (MCI) representing an intermediate stage between normal cognitive function 

(NC) and AD. Accurate multistage diagnosis of AD remains a significant challenge due to 

the lack of distinct boundaries between adjacent stages. This study introduces classification 

and segmentation multitask network (CSMT-Net), a novel deep learning framework 

designed to address these challenges by simultaneously performing classification and 

segmentation tasks for AD diagnosis. The proposed network extracts features from 

neuroimaging modalities, including magnetic resonance imaging (MRI) and positron 

emission tomography (PET), and employs a multitask approach to learn AD-related 

pathology through both classification and structural segmentation of the hippocampus, a 

critical biomarker of AD. Principal component analysis (PCA) is applied to the extracted 

features for dimensionality reduction and feature selection, which is further integrated with 

other diagnostic information, such as cerebrospinal fluid (CSF) biomarkers, genetic factors, 

age, gender, and educational background. This integrated feature set is used for multiclass 

diagnosis of AD. An extreme learning machine (ELM) is employed as the classifier to 

predict the likelihood of AD across multiple stages. Evaluation on the AD Neuroimaging 

Initiative (ADNI) dataset shows that the CSMT-Net framework achieves an accuracy of 

69.3% and an F1-score of 69.7% in the multistage diagnosis of AD. The results indicate that 

the multitask approach significantly enhances diagnostic accuracy compared to single-task 

methods. The integration of both classification and segmentation tasks within the CSMT-

Net framework demonstrates its potential to improve the precision of multistage AD 

diagnosis, offering a promising tool for advancing clinical diagnostic capabilities. 
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1. INTRODUCTION

AD is one of the causes of dementia, which is a brain 

disorder caused by damage to nerve cells in the brain, leading 

to mental decline and memory loss. AD is a progressive 

disease, as the nerve cells are damaged, the patient gradually 

experiences changes in memory, language, mood, personality 

or behavior, eventually affecting basic bodily functions such 

as walking and swallowing, and can be life-threatening [1, 2]. 

Studies have shown that the average survival time after 

diagnosis is 4-8 years [3]. The onset of AD can be divided into 

three stages: NC, MCI due to AD, and dementia due to AD. 

Patients with MCI often exhibit mild brain lesions, but do not 

show significant symptoms. Approximately one-third of MCI 

patients will progress to AD within five years. There is no 

effective way or drug to treat AD, but some studies have 

shown that some patients with MCI do not have additional 

cognitive decline or revert to normal cognition [4]. Preventive 

treatment at the MCI stage can be effective in slowing or 

stopping the AD progress. Thus, a multistage diagnosis of AD 

can assist in differentiating these three groups, which is helpful 

in determining appropriate therapeutic interventions. 

Neuroimaging data can be employed as diagnostic data in 

computer-aided diagnostic techniques for AD. For instance, 

AD-related neuronal loss results in anatomical alterations in 

the patient's brain tissue that can be identified by structural 

MRI scans [5, 6]. For this reason, MRI is a frequently used 

image data set. Fluorodeoxyglucose positron emission 

tomography (FDG-PET) is another medical imaging modality 

that can identify abnormalities in glucose metabolism caused 

by AD. As a result, the distinctive pattern of electron glucose 

metabolism in PET images can be used to distinguish between 

patients and NC [7, 8]. Furthermore, aberrant levels of beta-

amyloid and tau in CSF are established biomarkers of AD, 

making beta-amyloid and tau buildup useful information for 

the diagnosis of AD [9]. While these medical data can 

independently diagnose AD, integrating multimodal data 

significantly enhances diagnostic precision [10, 11]. 

Currently, the binary diagnosis of AD has achieved a high 

accuracy rate, however, the multistage diagnosis task, which 

can distinguish AD, MCI and NC simultaneously, has more 

practical value in clinical applications. But the accuracy of 
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computer-aided multistage diagnosis of AD is still low [12-14] 

due to the slight variations in the pathogenesis of AD between 

adjacent stages, particularly in the early stages of MCI where 

the pathological changes are very small in comparison to 

normal individuals. In order to more precisely distinguish the 

different stages of AD, multitask deep learning models have 

been used to improve diagnosis accuracy [15, 16], i.e., to 

acquire the diagnostic results while also outputting additional 

metrics, such as mini-mental state examination (MMSE) and 

clinical dementia rating (CDR). Given that AD results in 

hippocampal atrophy, and the hippocampal regions are 

considered to be the main landmark areas for lesions in 

Alzheimer's studies [17, 18], allowing the neural network 

model to learn the structural features of the hippocampus will 

improve the ability to diagnose AD of different stage. This 

paper proposes a novel multitask deep neural network model 

named Classification and Segmentation Multitask Network 

(CSMT-Net), which adds a segmentation task to segment the 

hippocampal structure along with the MMSE, CDR regression 

and AD classification tasks. The experiments of multistage 

diagnosis (AD vs. MCI vs. CN) were conducted. Based on the 

results of the experiments, the accuracy of AD multistage 

diagnosis can be further enhanced by including the 

hippocampus segmentation task. 

The main highlights of this paper are as follows: 

1) This work proposed a deep learning-based approach for 

AD multistage diagnosis. A multitask deep neural 

network named CSMT-Net was designed for AD-

related feature extraction with neuroimaging, such as 

MRI and FDG-PET. 

2) Hippocampus segmentation was utilized as one task of 

CSMT-Net for structural MRI, so that the network 

could learn about the AD-related structural lesion 

information, which could indicate the progress of AD 

and is useful for AD multistage diagnosis. 

3) A machine learning framework consisting of PCA and 

ELM was developed for AD multistage diagnosis using 

multimodal data, including the neuroimaging features 

produced by CSMT-Net and additional clinical data, 

such as CSF biomarkers, genetic factors, and 

demographic information. 
 

 

2. RELATED WORKS 
 

Using artificial intelligence algorithms based on 

neuroimaging and clinical data, computer-aided diagnosis of 

AD involves grouping individuals into categories. 

Classification approaches include binary classification [19, 

20], multistage classification [13, 21], and AD onset prediction 

[22, 23]. Binary classification involves distinguishing NC vs. 

AD, NC vs. MCI, and MCI vs. AD. On the other hand, 

multistage classification can categorize persons as NC, MCI, 

or AD simultaneously, which is more suitable for clinic 

applications. When predicting the onset of AD, MCI is 

categorized as progressive MCI, which is likely to develop AD 

within a few years, and stable MCI, which is not expected to 

proceed to AD. This prediction process essentially involves a 

binary classification task. Among these AD diagnostic 

approaches, there are mainly machine learning and deep 

learning techniques. 

 

2.1 Machine learning-based AD diagnosis approach 

 

Machine learning techniques provide a methodical way to 

build sophisticated, automatic classification models to handle 

massive volumes of data and identify subtle and complicated 

patterns. Establishing the architectural design is necessary 

when applying these machine learning techniques to the 

classification of AD. Four stages are usually needed: feature 

extraction, feature selection, dimension reduction, and 

classification algorithm implementation. Numerous machine 

learning algorithms have demonstrated efficacy in the 

classification of AD. For example, Dong et al. [24] proposed 

a latent feature fusion-based technique to utilize the 

information contained in multimodal image data. They 

developed a unique projection matrix for every modality, after 

which they projected and fused latent feature representations 

of several modalities onto a low-dimensional target space for 

AD classification. Feng et al. [25] suggested using an ROI-

based contourlet sub-band energy feature to represent the MRI 

image in the frequency domain. Sub-band energy feature 

vectors were created from 90 ROIs in order to record their 

contour data and energy distribution, then these features were 

concatenated and fed into support vector machine (SVM) for 

AD classification. Zhou et al. [26] developed a machine 

learning-based segmentation and classification pipeline for 

AD classification. They firstly segment the hippocampus from 

MRI. Then selected 37 features most relevant to AD by the 

hierarchical clustering method and least absolute shrinkage 

and selection operator algorithm. Ultimately, four classifiers 

were used with selected features to differentiate AD from NCs. 

Although machine learning-based models can diagnose AD 

efficiently, most of them are unable to extract adaptive 

characteristics, so they typically need human-generated 

features. 
 

2.2 Deep learning-based AD diagnosis approach 
 

Deep learning has grown quickly in recent years because of 

the increasing GPU processing capacity, and because it does 

away with the necessity for manual feature extraction, it is now 

frequently employed in medical image-aided diagnosis 

applications. Thus, it became feasible to classify different AD 

stages using deep learning models [27]. For example, an 

ensemble model based on a 3-D convolutional neural network 

and genetic algorithm is proposed in study [28], which can 

differentiate the subjects with AD or MCI and also identify the 

discriminative brain regions significantly contributing to the 

classifications. In study [29], a novel two-stage deep learning 

AD progression detection framework was proposed, this 

method utilized information fusion of different patient 

longitudinal multivariate modalities, so it can predict the 

precise AD onset time of MCI patients. A multiclass 

classification task was utilized in the first stage to estimate a 

patient's diagnosis, and a regression task was used in the 

second stage to predict the precise conversion time of patients 

with MCI. Wang et al. [12] presented an asymmetry-enhanced 

attention network for AD diagnosis, which proficiently 

integrates the cerebral anatomical asymmetry properties to 

enhance the accuracy and stability of classification tasks. 
 

2.3 Multitask deep neural network for AD diagnosis 
 

In order to increase the learning efficiency of the models, 

some deep learning approaches use a multitask strategy to train 

the neural network, where the tasks are typically related to AD. 

This can force the neural network model to learn more AD-

related information from the data, improving the accuracy of 

the classification task. For example, in study [30], a deep 
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multitask multi-channel learning framework was developed 

for simultaneous brain illness categorization and clinical score 

regression, using MRI data and demographic information. 

Dong et al. [31] used a pre-trained deep model as a feature 

extractor to generate high-level feature maps of different tasks. 

However, segmentation has not been studied as a task in the 

multitask AD diagnostic neural network models. Since the 

degree of AD condition can be indicated by lesions in brain 

neural structures on MRI, improving the accuracy of AD 

classification can be facilitated if a neural network can 

simultaneously learn to recognize the structural knowledge of 

regions related to AD lesions in MRI images. Therefore, to 

improve the AD diagnosis accuracy, this paper examined the 

possibility of using multitask neural networks to include 

hippocampal segmentation as one of the tasks. Then, the 

trained deep neural networks will be utilized to extract AD-

related features from multimodal neuroimaging, and these 

multimodal features will then be fed into a machine learning 

model. This approach will effectively use the benefits of 

multimodality and multitasking to improve the accuracy of 

AD classification. 

 

 

3. METHODS 

 

In this section, a multimodal framework for AD multistage 

diagnosis is introduced, Figure 1 displays the architecture of 

this framework. The framework comprises two components: 

the CSMT-Net part and a machine learning part. The CSMT-

Net, which is pre-trained with classification, regression and 

segmentation tasks, extracts deep features from preprocessed 

3D MRI and 3D PET images. Subsequently, the deep 

features of MRI and PET are reduced to 5 features each using 

the PCA algorithm. The neuroimaging deep features are then 

concatenated with hippocampus volume, CSF biomarkers, 

apolipoprotein E4 (APOE4), a genetic risk factor for AD [32], 

and demographic data including age, gender, and education, 

before an ELM classifier is employed with these features to 

generate a multistage diagnosis. 
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Figure 1. The overall framework of the CSMT-Net based multimodal AD multistage diagnosis 

 

3.1 Neuroimaging preprocessing 

 

The images in this paper were acquired from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database (https://ida.loni.usc.edu/). Due to variations in size, 

head position, and orientation of the MRI and PET images, 

preprocessing of these neuroimages was required. 

Preprocessing involves skull stripping and rigid registration. 

The MRI images underwent N4 bias field correction with the 

ANTs tool, skull stripping with FSL software, rigid 

registration to the MNI152 template using the IRTK tool, and 

cropping to produce a 128×160×128-sized 3D brain image. 
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The PET images were initially registered with the raw MRI 

image, skull stripped using the MRI skull stripping mask, 

aligned with the registered MRI, and then cropped to a size of 

128×160×128. Data augmentation techniques were utilized 

during the neural network training phase to expand the training 

dataset. This involved randomly adjusting the cropping center 

point, flipping images along the left/right axis, and applying 

random rotations within a range of ±20 degrees in three 

dimensions. 

 

3.2 The architecture of the CSMT-Net 

 

The architecture of CSMT-Net presented in this paper is 

illustrated in Figure 2. It begins with an input layer that 

processes the input image. This layer includes a 3D 

convolutional layer with a convolutional kernel size of 3×3×3, 

followed by a batch normalization (BN) layer and a Rectified 

Linear Unit (ReLU) activation layer. Subsequently, maximum 

pooling is applied, which decreases the feature map size to 

64×80×64 and generates 16 feature maps. Following the input 

layer, there are four 3D convolution blocks that utilize a 

residual structure. The 3D convolution block consists of three 

sets of convolutions, BN layer, and ReLU layer. The input is 

combined with the output of these convolutions through 

residual linking. The combined feature maps are then sent 

through another set of convolutions, BN layer, ReLU layer, 

and a maximum pooling layer. The feature map size is reduced 

by half in each 3D convolution block, while the number of 

feature maps is doubled. As a result, the fourth residual 

convolution block produces 256 feature maps with dimensions 

of 4×5×4. A global average pooling operation is performed to 

calculate the average values of all feature maps, resulting in a 

1×256 vector. A 256×512 fully connected layer is followed by 

a dropout layer, a ReLU activation layer, and another 512×32 

fully connected layer to produce a 1×32 vector, which 

represents the deep features of the neuroimage. During the 

network training phase, this feature vector is utilized to create 

training targets for the multitask learning, including MMSE, 

CDR, and classification label, through two 32×1 fully 

connected layers and one 32×3 fully connected layer. 
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Figure 2. The architecture of the CSMT-Net 

 

A U-Net-similar up-sampling branch is added to the 

backbone network for the purpose of segmenting the right and 

left hippocampus, for the network designed for MRI feature 

extraction, as depicted in Figure 2. The up-sampling module 

takes the input, up-samples it using an inverse convolution 

layer, and combines it with the relevant feature maps from the 

backbone network using skip links. The resulting output is 

passed through two sets of convolutions, a BN layer, and a 

ReLU activation layer. The up-sampling module produces 

feature maps that are twice the size of the input. After four up-

sampling modules, 16 feature maps of size 64×80×64 are 

generated. These feature maps are further up-sampled by the 

final inverse convolution, resulting in segmentation outputs of 

size 128×160×128. The hippocampus segmentation results 
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will be utilized as one of the tasks in the training of the MRI 

network. As manual segmentation of hippocampal labels is 

difficult to achieve, the segmentation tool in FSL software was 

utilized to segment the hippocampus from the MRI, and the 

segmentation results are then used as the training labels for the 

segmentation task. While training the MRI network for 

segmentation, the network can acquire segmentation skills and 

morphological knowledge similar to the FSL software, 

enhancing its capacity to extract valuable information from 

MRI data. The hippocampal segmentation output is also 

utilized to calculate the hippocampal volume, which can serve 

as an AD biomarker. 

 

3.3 Loss function 

 

When training the CSMT-Net, the loss function of the 

multitask training objective must be combined. The PET 

network has three tasks: multi-classification, regression of 

MMSE and CDR. A fourth task, which is segmenting the 

hippocampus, is included in the MRI network. The loss 

functions for these tasks are built as follows. 

The multi-classification task utilized the multi-margin loss, 

which can enlarge distances of interclass and reduce intra-

class variations simultaneously [33]. The loss function of 

multi-margin loss can be expressed as: 

 

1

0&

0, [ ] (margin1
max

[ ] [ ])
n

p
C

c

i i y

w y
L

x y x iC

−

= 

 
=  

− + 
  (1) 

 

where, C denotes the group number, specifically set to 3. x[y] 

represents the output of the correct group, and x[i] are the 

outputs of other groups. For the situation of sample imbalance, 

w[y] is the weight for each group, which is set to 1. p and 

margin are set to the default value, which is 1. 

For the tasks of MMSE and CDR regression, the loss 

function is squared loss, which can be expressed as: 

 

( ) ( )
2 2

ˆ ˆ,mmse mmse mmse cdr cdr cdrL y y L y y= − = −  (2) 

 

where, y represents the output value, and ŷ represents the true 

value. 

For the task of hippocampus segmentation, the binary cross-

entropy loss for each voxel was calculated and averaged as the 

segmentation loss function, which can be expressed as:  

 

( )

( )1

log ( )1

(1 )log 1 ( )

N
i i

seg

i i i

y p y
L

N y p y=

= −
+ − −

  (3) 

 

where, N represents the number of voxels, y represents the 

ground truth label, and 𝑝(𝑦𝑖) represents the output probability 

of label. 

Finally, we combine the above loss functions by weighting 

to get the final loss function as follows: 

 

c1

4

c mmse mmse

cdr cdr seg seg

w L w L
Loss

w L w L

 +  
=  

+  +  

 (4) 

 

where, wc, wmmse, wcdr, wseg are the weighting coefficients of the 

four loss functions. Take note that the different loss functions 

often operate on vastly different scales, the individual loss 

functions are scaled by these weighting coefficients to bring 

them into a comparable magnitude. This ensures that each 

task's contribution to the overall multitask loss is more 

balanced, preventing one task from overshadowing others 

purely due to its inherent scale. According to the output scale 

of each loss function, wc was set to 1, wmmse was set to 0.03, 

wcdr was set to 0.1, wseg was set to 1. 

 

3.4 Classifier 

 

The proposed method involves extracting MRI and PET 

features using a well-trained CSMT-Net that outputs 32 deep 

features. The features are initially processed using PCA to 

merge the highly correlated features [34]. Five major 

components are kept, while the rest are removed as noise. So 

5 deep features are extracted from each MRI and PET image. 

These neuroimaging features are combined with additional 

biomarkers and demographic data, then inputted into a 

classifier for AD diagnosis. A classifier using ELM with 

Gaussian kernels [35] is created to do multistage classification 

of AD using multimodal data. The ELM algorithm can be 

described as follows: assuming there are N training samples 

[x1, x2, ⋯, xN], in which, xn represents the n-th sample 

consisting of M features. Y∈RN×G is a one hot ground truth 

label matrix for N samples of G classes. Upon receiving a new 

sample x, the label of x can be predicted as 
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 
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x x

x x
Ω I Y

x x

 (5) 

 

where, the variable C is a regularization coefficient set to 1. 

The variable γ is a parameter of the Gaussian kernel, which 

was set to 10 times of M in this study, and K(x, xn) is the 

Gaussian kernel described as: 

 

( ) ( )2
K , exp /= − −u v u v  (6) 

 

and Ω is an N×N kernel matrix that is calculated with N 

training samples: 
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1 1 1 N

2 1 2 N
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 (7) 

 

 

4. EXPERIMENTS AND RESULTS 

 

4.1 Experiment data and implementation details 

 

The data for this study were obtained from the ADNI dataset, 

which has recruited over 1800 participants aged 55 and above. 

Only participants with all necessary modalities were selected 

for validation, resulting in 263 NC, 299 MCI, and 263 AD 

samples. These 825 samples were collected from 560 

participants, indicating that some samples were obtained from 

follow-up examinations of the same participant. It is necessary 

to note that there are samples of 53 participants who had 

changed groups during the follow-up study, that means these 

samples may come from the same participant but belong to 
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different groups, which made the classification more 

challenging. Aside from these 560 patients, the MRI scans of 

the remaining participants were used to train the CSMT-Net 

for MRI. The training dataset consisted of 6189 MRI scans, 

comprising 2080 NC, 2936 MCI, and 1173 AD. Similarly, 

1600 PET images were utilized to train the network for PET, 

comprising 447 NC, 892 MCI, and 261 AD. During the 

network training phase, these 3D images underwent random 

cropping, flipping, and rotation in three axes by ±20 degrees 

for data augmentation. The networks underwent training for 

220 epochs. The initial 120 epochs were trained with a 

learning rate of 0.001, while the subsequent 100 epochs were 

trained with a learning rate of 0.0001. The complexity of the 

proposed neural network model is characterized by 4,449,344 

parameters and a computational cost of 41.44 GFLOPs. For 

the training phase, an NVIDIA RTX 3090 GPU, equipped with 

24GB of video memory, was utilized. Adopting a batch size of 

4, the duration for each training epoch was approximately 850 

seconds. Consequently, the entire training process, spanning 

220 epochs, amounted to a total of about 52 hours. 

Following the training of the CSMT-Net, deep features 

from neuroimaging data were extracted from the MRI and PET 

of the 825 samples previously described. During the validation 

phase, the MRI and PET features were initially processed 

using the PCA technique, and then all modality features were 

combined for classification validation. To prevent data 

leakage, the 825 samples collected from 560 participants were 

divided into training and testing datasets using 5-fold cross-

validation, ensuring that samples from the same participants 

were assigned to either the training or testing dataset. Table 1 

displays the demographic information of these 825 samples. 

 

Table 1. The demographic information of the validation 

samples 
 

 Number Age 
Gender 

(M/F) 

Education 

(Years) 
MMSE CDR 

NC 263 74.8±6.2 129/134 16.6±2.8 29.0±1.2 0.04±0.45 

MCI 299 73.8±7.5 155/144 16.2±2.8 27.5±2.0 1.48±1.0 

AD 263 75.4±7.2 157/106 15.6±2.7 22.6±3.2 4.99±2.19 

 

We assessed the performance of multiclass classification by 

using accuracy, which measures the proportion of correctly 

categorized samples to the total samples, and F1-score. The 

F1-score is determined by combining precision (the ratio of 

correctly classified positive samples for one class to the total 

classified positive samples for one class) and recall (the ratio 

of correctly classified positive samples for one class to the real 

samples for one class) as follows: 
 

Precision Recall
F1-score = 2

Precision Recall




+
 (8) 

 

4.2 The results of AD classification 

 

The CSMT-Net underwent training for 220 epochs, and the 

loss curves can be seen in Figure 3. Following network 

training and feature processing, 5-fold cross-validation was 

performed through a total of 100 runs, and the mean and 

standard deviation of these 100 runs were computed as the 

results. Experiments of binary classifications for NC vs. AD, 

NC vs. MCI, and MCI vs. AD, in addition to the 3-class 

classification of NC vs. MCI vs. AD, were conducted. The 

results are presented in Table 2. 

 

 
 

Figure 3. The training loss of MRI and PET network 

 

Table 2. The performance of the proposed approach 

 
Classification NC F1 MCI F1 AD F1 F1 Average Accuracy 

NC vs. MCI vs. AD 72.7±0.9% 57.8±0.9% 78.6±0.6% 69.7±0.7% 69.3±0.7% 

NC vs. AD 93.7±0.3% - 93.3±0.3% 93.5±0.3% 93.5±0.3% 

NC vs. MCI 72.3±1.1% 74.9±0.9% - 73.6±1% 73.6±1% 

MCI vs. AD - 80.2±0.7% 76.8±0.8% 78.5±0.7% 78.6±0.7% 
Note: In cells, the two number represent the mean and standard deviation of 100 runs. F1 means F1-score 
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Figure 4. The confusion matrix of 3-class classification 

 

As evident from the aforementioned results, the 

classification of NC vs. AD is less challenging, resulting in 

high accuracy. Given that MCI represents an intermediate and 

progressive state between NC and AD, distinguishing between 

early MCI and NC, as well as late MCI and AD, is more 

complex and prone to confusion. So, the accuracy of 

classification for NC vs. MCI and MCI vs. AD is not as well 

as for NC vs. AD. For triple categorization, the accuracy drops 

even further. In order to show more clearly the categorization 

between the different categories, the confusion matrix of the 

3-class classification is shown in Figure 4, from which, it can 

be found that the misdiagnoses of NC and AD were almost 

zero, all the misdiagnosed happened between NC and MCI or 

between MCI and AD. 

 

4.3 Ablation study  
 

To reveal the contributions of different modalities and 

components in the proposed approach, experiments were 

conducted in different settings, and the results are listed in 

Table 3. Row #1 means the complete data and steps of the 

approach, which has the best performance. Row #2 replaces 

the ELM classifier with the SVM classifier, and the accuracy 

drops by 1.3%. Row #3 indicates the contribution of PCA, the 

accuracy would decrease 2.1% without PCA. Rows #4 and 5# 

reveal the importance of the multi-task strategy, especially the 

segmentation task. Without segmentation task, the accuracy 

decreased by 3.8%, and without all multitasking, the decrease 

would be 4.2%. Rows #6 to #8 demonstrate the role of 

different modality data. Without MRI data, the performance 

suffered a great decrease, the accuracy dropped by 4.7%, and 

the other data has a similar contribution as MRI. The PET data 

has less contribution compared with MRI and other data, for 

the accuracy decrease is 1.5% with the absence of PET data. 

Rows #9 and #10 demonstrate the performance of only one 

modality adopted, and the performance is relatively low, 

which indicates the importance of the multi-modal method. 

We used the independent samples t-test to assess the reliability 

of the mean differences between the proposed method and 

other methods, and the p-values are listed in the final column 

of Table 3. These p-values (p-value<0.05) show that the 

proposed approach is highly statistically significant when 

compared to other approaches. 

 

Table 3. The ablation studies of the proposed approach (3-Class classification of NC VS. MCI VS. AD) 

 
Row MRI Data PET Data Other Data MMSE & CDR Task Segmentation Task PCA Classifier F1 Score Accuracy P-Values 

#1 √ √ √ √ √ √ ELM 69.7±0.7% 69.3±0.7% - 

#2 √ √ √ √ √ √ SVM 68.3±0.7% 68±0.7% 0.001 

#3 √ √ √ √ √  ELM 67.6±0.6% 67.2±0.6% <0.001 

#4 √ √ √ √  √ ELM 65.9±0.5% 65.5±0.5% <0.001 

#5 √ √ √   √ ELM 65.5±0.9% 65.1±0.9% <0.001 

#6 √ √  √ √ √ ELM 65.3±0.6% 64.7±0.6% <0.001 

#7 √  √ √ √ √ ELM 68.3±0.7% 67.8±0.7% <0.001 

#8  √ √ √  √ ELM 65.2±0.7% 64.6±0.7% <0.001 

#9 √   √ √ √ ELM 62.0±0.5% 61.4±0.5% <0.001 

#10  √  √  √ ELM 60.9±0.7% 60.5±0.7% <0.001 
Note: The best results are highlighted in bold 

 

Based on the results presented in Table 3, we can find that 

both MRI and PET neuroimaging modalities are effective data 

sources for AD diagnosis. However, using a single 

neuroimaging modality alone does not yield optimal 

performance, combining both MRI and PET can improve 

diagnostic accuracy. Non-neuroimaging data, such as CSF 

biomarkers, genetic information, and demographic data, also 

serve as crucial features for AD diagnosis. Notably, when MRI 

is combined with these non-imaging features, the diagnostic 

accuracy approaches that of the method proposed in this paper, 

highlighting their significant contributions. The hippocampus 

regions typically undergo atrophy as AD progresses, making 

their structural morphology and volume critical diagnostic 

features. Our proposed method explicitly leverages this by 

incorporating hippocampus segmentation as one of the neural 

network's multi-tasks. This not only enhances the 

effectiveness of neural network training but also implicitly 

guides the model to focus on this clinically relevant region. 

Furthermore, we use hippocampal volume as one of the 

features for AD diagnosis, which effectively boosts diagnostic 

accuracy. This directly demonstrates the importance of the 

hippocampus region. 

 

4.4 Sensitivity analysis of multitask loss weights 

 

To further address your point regarding the robustness of 

our approach and the impact of different multitask weighting 

coefficients, we have conducted a comprehensive sensitivity 

analysis on the weighting coefficients. For each weighting 

coefficient, its value was systematically varied using powers 

of two (e.g., 2-2, 2-1, 20, 21, 22) while keeping other coefficients 

at their baseline values. This allows isolating the impact of 

each coefficient. The results of the model's performance of 

each combination of weights are showed in Figure 5. The 
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results of the model’s performance under varying loss function 

weights reveal differential sensitivity. When wc was reduced, 

accuracy significantly dropped to 65.7%, indicating the 

classification task's critical importance. Conversely, 

increasing wc showed less severe degradation. Similarly, 

perturbations to wmmse, wcdr and wseg exhibited remarkable 

robustness. Performance remained within a narrow range, with 

maximum drops from the peak being only 2.2 percentage 

points, respectively. This suggests the model is resilient to 

variations in regression and segmentation task emphasis, but 

more sensitive to the classification objective. 

 

 
 

Figure 5. The impact of multitask weighting coefficients 

 

Table 4. Comparison with previous methods 

 
Studies Methods F1 Score Accuracy 

[12] Asymmetry enhanced attention network - 62.7% 

[36] Gaussian discriminative component analysis - 67.7% 

[37] Multi-atlases multi-layer perceptron approach 68% 67% 

[21] Modified Tresnet neural network - 61.8% 

[38] Multi-diagnostic and generalizable approach - 62.1% 

[13] Multimodal cross-attention AD diagnosis framework 61.85% 64.03% 

[39] Pearson's correlation and empirical cumulative distribution - 65.46% 

[40] Pearson's correlation and gradient boosting classifier 66.32% 68.2% 

[41] Hybrid region and population hypergraph neural network 55.64% 59.95% 

This study CSMT-Net based multimodal approach 69.7% 69.3% 
Note: The best results are highlighted in bold 

 

4.5 Comparison with other methods 

 

We have also evaluated the proposed approach against prior 

3-class multistage AD diagnosis studies. The comparison 

results are listed in Table 4. From these results, it can be found 

that the proposed method surpasses other methods in both F1 

score and accuracy. The F1 score and accuracy of the proposed 

method are higher than previous methods by at least 1.7% and 

1.6%. These results demonstrate the promising performances 

of the proposed method compared to other methods. 

 

 

5. DISCUSSION 

 

In this paper, a multitask deep neural network named 

CSMT-Net is proposed to extract AD-related features from 

MRI and PET data. These features are combined with CSF 

biomarkers, Apoe4 genes, age, gender, and education data to 

enhance the accuracy of AD multistage diagnosis. A U-net up-

sampling branch is incorporated into the convolutional neural 

network backbone framework to perform the hippocampal 

segmentation task in the MRI feature extraction network. The 

segmentation task enables the neural network to acquire 

morphology knowledge about brain tissue structure, 

enhancing the efficacy of MRI deep features. Furthermore, the 

volumes of the hippocampus can also serve as AD-related 

features, enhancing the accuracy of AD diagnosis. Due to the 

unavailability of manual segmentation for the hippocampus, 

the FSL tool was used to generate hippocampus segmentation 

as the segmentation training labels. The FSL segmentation tool, 

despite not relying on manual segmentation by an expert, is an 

algorithm with high segmentation accuracy. It incorporates 

prior knowledge of hippocampal segmentation, enabling the 

deep neural network to acquire significant MRI structure 

knowledge and achieve effective segmentation ability. 

Multiclass AD diagnosis is a challenging task; the 

performance of multiclass diagnosis is significantly lower than 

that of binary diagnosis for AD vs. NC. This is due to the fact 

that the conversion of NC to MCI, as well as the conversion of 

MCI to AD, is a gradual process. In this conversion process, 

there is no obvious boundary between early MCI and NC or 

late MCI and AD. Therefore, MCI and NC or MCI and AD are 

easily confused, and it can also be seen from the confusion 

matrix of the experimental results that most of the 

classification errors occur between MCI and NC or MCI and 

AD. Therefore, it is a difficult task to achieve high-precision 

AD multi-classification. It can also be seen that the key to 

improving the accuracy of AD multi-classification is to 

improve the differentiation between MCI and the other two 

groups, i.e., the classification of NC and MCI and the 
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classification of MCI and AD. For the structure of the 

hippocampal regions gradually changed during AD 

progression; by introducing the hippocampus segmentation 

task, the CSMT-Net could learn information about 

hippocampal alterations, which could indicate the AD 

progression and be helpful for the multistage diagnoses of AD. 

The experiment results in Table 2 and the confusion matrix 

in Figure 4 indicate that the classification accuracy of NC and 

MCI is lower than that of MCI and AD. For this reason, we 

assume that in the stage of NC and early MCI, the degree of 

lesion is slight, and the degree of some brain tissue changes or 

biomarker abnormalities are mild, and these mild changes are 

not easy to distinguish, so the classification accuracy is lower. 

Whereas, in the stages of late MCI to AD, there are more 

lesions, these changes will be more obvious with the increase 

of the disease, so it is relatively easier to distinguish, so the 

classification accuracy is higher. However, discriminating 

MCI patients from the NC cohort is more meaningful because 

AD patients are easier to treat in the early stage, so a high 

performance of NC and MCI classification plays a greater role 

in the prevention of AD. 

MMSE and CDR are not utilized as features directly in this 

paper, because of their substantial correlation with the group 

labels, as they are primarily employed in the clinical diagnosis 

of AD. Utilizing them as features can significantly enhance 

classification accuracy, but it may lead to biased and 

overestimated findings. Thus, in this paper, the scores were 

just utilized as training labels for the neural network and not 

as features. 

The proposed deep learning model integrates MRI and PET 

neuroimaging, CSF features, genetic risk factors, and 

demographic data for the diagnosis of AD and MCI. 

Diagnosing MCI is particularly vital as it represents an early 

stage of AD, enabling timely intervention and preventative 

strategies. To facilitate the integration of the proposed 

approach into clinical workflows, the acquisition of 

multimodal data is most important. Data such as MRI scans, 

genetic risk factors, and demographic information are 

generally more accessible and less invasive for patients in 

routine clinical practice. MRI is a standard neuroimaging 

technique, and genetic testing and demographic data collection 

are common procedures. Conversely, obtaining PET 

neuroimaging and CSF features poses greater challenges. PET 

scans involve radiation exposure and are more costly, while 

CSF collection via lumbar puncture is an invasive procedure 

that carries certain risks and patient discomfort. In a practical 

clinical workflow, a tiered approach could be adopted. Initial 

screening might primarily utilize the more accessible data 

(MRI, genetics, demographics). For cases with inconclusive 

results or higher suspicion, the more invasive but highly 

informative PET and CSF data could then be considered to 

confirm diagnosis or assess disease progression. 

Although the proposed approach demonstrates strong 

predictive performance, it has some limitations. As a deep 

neural network, the proposed model, particularly when 

integrating diverse multi-modal inputs, can present challenges 

in direct interpretability. Understanding the exact contribution 

and interplay of each specific feature to a given prediction can 

be complex. The strategies for post-hoc interpretability could 

be explored in future work to gain deeper insights into the 

model's decision-making process. While ADNI is a high-

quality dataset, real-world clinical data often present greater 

variability and more extensive missingness. The proposed 

model's reliance on a comprehensive set of multi-modal data 

(MRI, PET, CSF, genetic, demographic) means that missing 

data could impact its applicability outside of well-controlled 

research settings. Meanwhile, the potential biases inherent in 

the ADNI cohort, which is predominantly of European descent, 

limit generalizability to more diverse populations. The 

proposed model is primarily designed for multi-stage 

classification based on cross-sectional multi-modal data. 

While ADNI provides longitudinal data, the proposed 

approach does not fully leverage the temporal dynamics and 

progression patterns inherent in these longitudinal 

measurements to predict disease trajectory or conversion risk 

over time. The explicit modeling of longitudinal changes could 

offer a more nuanced understanding of disease progression, 

and it would be a significant area for our future research and 

model development. 

 

 

6. CONCLUSION 

 

In this study, a CSMT-Net-based multimodal approach is 

developed for AD neuroimaging feature extraction. 

Specifically, deep features associated with AD are extracted 

from MRI and PET scans using a well-trained CSMT-Net. 

These features are then subjected to PCA for dimensionality 

reduction and combined with additional data, including CSF 

biomarkers, the APOE4 gene, age, gender, and education. An 

ELM classifier is utilized for multiclass classification using 

these processed features. Based on the experimental results, 

the proposed CSMT-Net significantly improves multiclass 

diagnosis performance. The neuroimaging feature extracted 

by the CSMT-Net contains sufficient AD-related information, 

leading to a notable performance improvement, with an 

accuracy of 69.3% and an F1-score of 69.7% for AD 

multiclass diagnosis, surpassing the performance of previous 

studies such as single-task deep neural networks. To meet the 

requirements of clinical applications and provide more reliable 

technical support in the biomedical field, future work may 

incorporate additional modalities or whole-brain segmentation 

tasks to further improve diagnosis performance. 
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