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The field of Automatic Speech Recognition (ASR) has advanced significantly. However, 

the accurate recognition of Telugu dialects remains an unsolved challenge. Telugu is a 

Dravidian language with distinct regional dialects, i.e., Telangana, Andhra, and 

Rayalaseema. These dialects exhibit phonetic, lexical, and prosodic variations that degrade 

the performance of conventional ASR systems. Existing Telugu ASR models primarily 

focus on speech-to-text transcription without explicitly handling dialectal differences, 

leading to suboptimal recognition accuracy for dialect-rich speech data. To address this, we 

propose a novel dialect-aware ASR system that enhances speech recognition while 

simultaneously classifying Telugu dialects using deep learning. We construct a new, dialect-

diverse Telugu speech dataset by integrating the Telugu Dialect Dataset with the Mozilla 

Common Voice Dataset, significantly expanding linguistic diversity in training data. Our 

hybrid ASR-NLP framework employs Whisper, Wav2Vec2, and HuBERT models for ASR 

while BERT classifies dialects from transcribed text. Unlike previous Telugu ASR models, 

our approach explicitly incorporates dialectal identification by leveraging deep text 

embeddings and self-attention mechanisms. Our methodology integrates AdamW, Cosine 

Learning Rate Decay, and Gradient Clipping to optimize ASR performance. These 

enhancements reduced WER to 9.8%, outperforming models like Google Chirp (11.8%) and 

NVIDIA NeMo (13.0%), while achieving an F1-score of 94.1%. The experimental results 

show that our approach significantly outperforms existing Telugu ASR models such as 

Google Chirp, NVIDIA NeMo, and Azure Speech-to-Text, establishing a new benchmark 

for low-resource language processing.  
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1. INTRODUCTION

1.1 Speech recognition and Telugu dialects 

Speech recognition technology has revolutionized human-

computer interaction, enabling natural communication 

through voice commands. Automatic Speech Recognition 

(ASR) plays a crucial role in various domains, including 

virtual assistants, transcription services, accessibility tools, 

and language learning applications [1]. ASR systems have 

achieved remarkable success in high-resource languages such 

as English, French, and Chinese, primarily due to the 

availability of large annotated speech datasets and extensive 

computational resources [2]. However, many low-resource 

languages, including Telugu, face significant challenges due 

to limited data availability, phonetic complexity, and dialectal 

variations [3]. 

1.2 Challenges in Telugu speech recognition 

Telugu, a Dravidian language spoken by over 80 million 

people, is widely used in Telangana and Andhra Pradesh [4]. 

The challenge arises from phonetic complexity, dialectal 

variations, and a lack of annotated datasets. Telugu comprises 

three primary dialects: 

(1) Telangana Dialect – Spoken in 33 districts of Telangana,

characterized by distinct intonation patterns, phoneme 

reductions, and nasalization. 

(2) Andhra Dialect – Spoken in 9 districts of Coastal

Andhra, differing in vowel elongation and phoneme stress. 

(3) Rayalaseema Dialect – Spoken in 4 districts (Chittoor,

Anantapur, Kurnool, Kadapa), with consonant shifts and 

unique vocabulary [5]. 

These variations cause ASR systems to struggle with 

transcriptions, as the same word can be pronounced differently 

across dialects. For instance: 

Telangana: "నేను వెళా్లను" 

Andhra: "నేను వెళా్ల ను" 

Rayalaseema: "నేనె వెళా్ల ను" 
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1.3 Challenges in Telugu ASR and dialect identification 

 

1.3.1 Limited generalization of traditional ASR models 

Traditional ASR models trained on standard Telugu 

datasets often fail to generalize well across dialectal variations. 

This is because these models primarily learn from a 

homogeneous dataset, leading to bias towards mainstream 

Telugu while failing to accurately transcribe dialectal 

differences. The existing ASR systems struggle to recognize 

variations in pronunciation, lexical differences, and phonetic 

shifts specific to Telangana, Andhra, and Rayalaseema 

dialects [6]. These dialects exhibit distinct intonation patterns, 

vowel length variations, and regional vocabulary, which 

traditional ASR models, such as Hidden Markov Models 

(HMMs) and hybrid Deep Neural Networks (DNNs), fail to 

capture effectively. 

 

1.3.2 Lack of large annotated datasets 

Unlike English and Hindi, which have extensive annotated 

speech datasets for ASR training, Telugu suffers from a lack 

of large-scale dialect-labeled speech datasets. Most publicly 

available datasets, such as Mozilla Common Voice Telugu, 

contain standard Telugu speech data but lack dialect-specific 

labeling [7]. This scarcity of labeled data poses significant 

challenges for supervised learning-based ASR models. 

Without sufficient dialect-annotated training samples, models 

struggle to distinguish regional variations, leading to poor 

generalization in real-world applications. 

To address this, researchers have recently explored 

advancements in self-supervised learning (SSL). Self-

supervised models, such as Wav2Vec2, HuBERT, and 

Whisper, leverage large amounts of unlabeled speech data and 

learn robust speech representations without requiring 

extensive manual annotations [8]. These models fine-tune 

their feature extraction layers to capture phonetic variations 

across dialects, compensating for the lack of labeled datasets 

to some extent. 

 

1.3.3 Phonetic complexity of Telugu 

The Telugu phonetic system consists of 56 letters (18 

vowels and 38 consonants), including unique retroflex 

consonants, long vowels, and aspirated sounds, which make 

phoneme recognition highly challenging [9]. The presence of 

context-dependent pronunciation changes further complicates 

ASR performance. Certain letters and syllables undergo 

morphophonemic alternations, meaning their pronunciation 

shifts based on preceding or succeeding phonemes, speaker 

accent, and regional influence. 

For instance: 

• The pronunciation of "చ" ("cha") may vary subtly 

between Andhra and Telangana dialects due to vowel length 

differences. 

• Certain nasalized vowels and geminated consonants 

appear in the Rayalaseema dialect but are absent in other 

variants. 

Traditional ASR models trained on fixed phoneme 

dictionaries often struggle with such variations. Deep 

learning-based models, particularly Transformer-based 

architectures like Whisper and BERT, are better suited to 

handle phonetic ambiguity by learning contextual 

dependencies in speech transcriptions. 

 

1.3.4 Real-world noisy environments 

In practical applications, ASR models must function 

effectively in noisy environments with background noise, 

reverberation, and overlapping speech [10]. Traditional ASR 

models, which rely on Mel Frequency Cepstral Coefficients 

(MFCCs) and HMM-based speech recognition, struggle with 

noise robustness and often misinterpret words when speech is 

degraded. 

Deep learning-based ASR models, such as Wav2Vec2 and 

HuBERT, improve noise robustness by learning context-

aware acoustic representations. These models use self-

attention mechanisms and CNN-based feature extractors to 

filter out irrelevant noise components while preserving 

meaningful speech patterns [10]. 

The probability of generating a transcription given an input 

speech signal can be formulated as 

 

P(Y|X) =∏ P(y
t
 | X, y

1:t-1
)T

t=1   (1) 

 

where X represents the raw speech signal and Y the 

corresponding transcription sequence. The Data augmentation 

techniques, such as spectrogram masking, adding synthetic 

noise, and time-stretching, further enhance ASR models’ 

ability to operate in real-world noisy environments. The 

Empirical testing under 0–20 dB SNR conditions showed that 

Wav2Vec2 + BERT maintained 91.7% accuracy, confirming 

strong noise robustness. This validates the proposed model’s 

robustness under real-world acoustic interference. 

The impact of ASR using the proposed solution is illustrated 

in Table 1. 
 

Table 1. Impact of ASR with proposed solution 
 

Challenge Impact on ASR Proposed Solution 

Limited 

Generalization 

Fails to capture 

dialectal variations 

Train dialect-specific ASR 

models (Whisper + BERT, 

Wav2Vec2 + BERT) 

Lack of Annotated 

Data 

Poor dialect 

classification 

Utilize self-supervised 

models (HuBERT, 

Wav2Vec2) 

Phonetic 

Complexity 

Errors in 

transcription 

Use Transformer-based 

ASR for context-aware 

phoneme recognition 

Noisy 

Environments 

Reduced ASR 

accuracy 

Apply CNN-based feature 

extraction, spectrogram 

augmentation 

 

By addressing these challenges, our proposed dialect-aware 

ASR framework significantly improves Telugu ASR 

performance, particularly in dialect-rich speech recognition 

tasks. 
 

1.4 Novelty and synergy among Whisper, Wav2Vec2, 

HuBERT, and BERT 
 

The proposed framework introduces a hybrid architecture 

that integrates Whisper, Wav2Vec2, and HuBERT models for 

ASR, combined with a BERT-based dialect classifier. The 

ensemble fusion mechanism leverages the robustness of 

Whisper for noisy speech, the fine-grained acoustic feature 

learning of Wav2Vec2, and the contextual representation 

capabilities of HuBERT. Their outputs are weighted and 

combined to produce optimized transcriptions, which are 

subsequently processed by BERT for dialect identification. 

This synergy between multiple ASR and NLP models 

represents a novel contribution in Telugu speech processing. 

This hybrid synergy ensures both acoustic robustness (from 

ASR) and linguistic discrimination (from BERT), leading to a 
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3–5% improvement in F1-score compared to any single model. 
 

 

2. LITERATURE SURVEY 
 

Speech recognition has seen significant advancements with 

the emergence of deep learning models, yet challenges remain 

in dialect identification, particularly for low-resource 

languages like Telugu. 
 

2.1 Existing ASR models for Telugu speech recognition 
 

Earlier Telugu ASR systems were predominantly based on 

HMM-GMM (Hidden Markov Model - Gaussian Mixture 

Model) frameworks, which relied on Mel-Frequency Cepstral 

Coefficients (MFCCs) and Linear Predictive Coding (LPC) 

features for phoneme classification. Chiu et al. [11] developed 

an HMM-based Telugu ASR model, achieved an accuracy of 

76.2% on controlled datasets but struggled with dialectal 

variations and spontaneous speech. The HMM-based ASR 

models failed to generalize across dialects, as they assumed a 

static phonetic structure, which was unsuitable for Telugu’s 

context-dependent phoneme variations [6]. Sarma et al. [12] 

focused on developing and evaluating an Automatic Speech 

Recognition (ASR) system for the Assamese language using 

the HTK (HMM-based) toolkit. The study highlighted the 

challenges and performance analysis associated with low-

resource language speech recognition. 
 

2.1.1 Deep learning-based ASR models 

With the evolution of deep learning, DNN-HMM hybrid 

models showed improvements over traditional HMM-based 

systems. A DNN combined with Time-Delay Neural 

Networks (TDNN) was introduced for Telugu ASR, achieving 

a Word Error Rate (WER) of 18% on a small dataset [13]. 

However, hybrid models still required phoneme alignment, 

which limited their scalability. Recent end-to-end ASR 

models, such as Wav2Vec2 and HuBERT, demonstrated state-

of-the-art results in low-resource languages. Fathima et al. 

[14] trained a Wav2Vec2-large model for Telugu ASR, 

achieving a WER of 13.5%. However, their model was trained 

on standard Telugu datasets, ignoring dialectal variations, 

which resulted in reduced accuracy when tested on regional 

accents. 
 

2.2 Dialect identification in speech processing 
 

Dialect identification was a crucial component of speech-

to-text systems for multilingual and dialect-rich languages. 

However, research on Telugu dialect classification remained 

limited. 

 

2.2.1 Dialect identification in other languages 

Several studies explored dialect classification in major 

languages like English, Arabic, and Chinese. Baevski et al. 

[15] implemented a deep learning-based approach for Arabic 

dialect classification, using i-vectors and x-vectors for feature 

extraction. Their system achieved 83.2% accuracy in 

distinguishing Gulf, Levantine, and Egyptian dialects [16]. 

 

2.2.2 Telugu dialect classification 

Unlike Arabic and Chinese, Telugu lacked large-scale 

dialect-labeled datasets for ASR training. Satla and Manchala 

[5] developed a DNN-based system for Telugu dialect 

identification, comparing it with traditional HMM and GMM 

models. Using MFCC and its derivatives as input features, 

their model achieved an accuracy of 84.5% across three 

dialects—Telangana, Coastal Andhra, and Rayalaseema—on 

a dataset of about 5.75 hours of speech. Besacier et al. [17] 

provided a comprehensive overview of Automatic Speech 

Recognition techniques for under-resourced languages, 

highlighting key challenges, datasets, and modeling 

approaches. It served as a foundational reference for 

developing ASR systems in low-resource linguistic settings. A 

deep neural network–based ideal ratio mask estimation was 

proposed to improve robustness in speech recognition under 

noisy conditions. The proposed approach demonstrated 

significant gains in recognition accuracy compared to 

traditional methods [18]. Yadavalli et al. [19] proposed a 

multi-task end-to-end framework for simultaneous Telugu 

dialect identification and speech recognition. Their results 

showed that joint learning improved both dialect classification 

and ASR performance. 

A large-scale weakly supervised training paradigm for 

robust speech recognition, which formed the basis of the 

Whisper model, demonstrated strong generalization across 

diverse languages and acoustic conditions [20]. However, the 

dataset was small and controlled, containing short utterances 

and lacking spontaneous speech, which limited the model’s 

scalability and real-world applicability [20]. Our approach 

addressed this gap by integrating self-supervised ASR models 

(Whisper, Wav2Vec2, HuBERT) with BERT dialect 

classification, leveraging deep learning for automatic feature 

extraction and dialect differentiation. 

 

Table 2. Comparative study of existing Telugu ASR models 
 

Study Approach WER (%) Dataset Used Limitations 

Sarma et al. [12] HTK 3.5 HMM/HTK pipeline 78.05 Small Speech Dataset Limited robustness to noise/dialectal variation 

Sreeraj and 

Rajan [6] 
HMM-based ASR with word models 68.5 

Custom dataset 

(limited) 
Fails in spontaneous speech, no dialect distinction 

Fathima et al 

[14] 
DNN-TDNN Hybrid ASR 18 Telugu Speech Corpus 

No dialect classification requires phoneme 

alignment 

Baevski et al. 

[15] 
Wav2Vec2-large fine-tuned on Telugu 13.5 

Mozilla Common 

Voice Telugu 
Ignores dialect variations; the dataset lacks labels 

Satla and 

Manchala [5] 

DNN (MLP) using 39-dim MFCC + 

ΔMFCC + ΔΔMFCC; compared to 

HMM & GMM 

N/A 
5 hrs 45 min of Telugu 

dialect speech 
No large-scale spontaneous speech 

Shon et al. [16] 
i-vectors & x-vectors (Arabic 

Dialects) 
N/A Arabic Dialect Corpus 

Effective for Arabic, but requires large labeled 

datasets 

Chiu et al. [11] Spectrogram Augmentation for ASR 12.0 Google ASR Dataset Addresses noise but lacks dialect awareness 

Baevski et al. [8] Self-Supervised Wav2Vec2 ASR 10.5 Librispeech (English) 
Non-Telugu model inspires low-resource ASR 

training 
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2.3 Comparative study of existing Telugu ASR models 

 

The comparative analysis with existing ASR models was 

presented in Table 2. 

 

 

3. PROPOSED METHODOLOGY 

 

3.1 Dataset explanation 

 

3.1.1 Dataset pre-processing  

Before training ASR models and dialect classification 

models, the raw dataset needs to be cleaned, processed, and 

structured correctly. The goal is to ensure that the data is high-

quality, noise-free, and suitable for training. The dataset was 

balanced across the three major dialects of Telugu, i.e., 

Telangana, Andhra, and Rayalaseema, each constituting 

approximately one-third of the total samples. Label validation 

was carried out by three native linguists, achieving an inter-

annotator agreement (Cohen’s κ = 0.89). Stratified sampling 

ensured a fair representation of gender, age, and 

environmental diversity. 

 

3.2 Steps in dataset preprocessing 

 

Step 1: Audio Data Collection 

The Telugu dialect dataset was recorded from diverse real-

world environments (colleges, offices, parks, roadside) to 

capture various acoustic conditions. The Mozilla Common 

Voice dataset was also incorporated to enhance robustness. 

Speakers of different age groups, genders, and educational 

backgrounds were included, resulting in 7 hours and 5 minutes 

of speech covering Telangana, Andhra, and Rayalaseema 

dialects. 

Step 2: Audio Cleaning and Preprocessing 

To enhance dataset quality for ASR and dialect 

classification, all audio files were standardized to 16kHz, 

mono-channel WAV format. Noise reduction using spectral 

subtraction and adaptive filtering improved speech clarity, 

while volume normalization ensured consistent loudness. 

Silence removal eliminated unnecessary pauses, optimizing 

efficiency. Finally, segmentation splits long recordings into 3–

10 second clips, aligning with ASR training needs and 

improving transcription accuracy. The complete dataset 

description is given in Table 3. 

 

Table 3. Dataset description 

 

Feature 
Telugu Dialect Dataset 

(Used) 

Mozilla Common Voice 

Telugu 

Size 7 hours 5 minutes 1,300+ hours 

Speakers Limited, dialect-based Large, diverse speakers 

Dialects 

Included 

Telangana, Andhra, 

Rayalaseema 

Mixed dialects (not 

explicitly labeled) 

Audio Format 
.wav files (no 

transcripts) 
.wav files with transcripts 

Usage Dialect classification ASR model pretraining 

 

The relationship between dataset size 𝑁  and model 

accuracy can be approximated as 

 

Accuracy = 𝐴∞ −
𝐵

𝑁
  (2) 

 

𝐴∞ is the asymptotic accuracy and B is the dataset efficiency 

factor. 

 

3.3 Proposed models 

 

3.3.1 Whisper 

Whisper, developed by OpenAI, is a powerful end-to-end 

speech recognition model trained on a large multilingual and 

multitask dataset. It employs a transformer-based encoder-

decoder architecture, where the encoder converts raw speech 

into log-Mel spectrograms, and the decoder generates text 

transcriptions. One of Whisper’s key strengths is its robustness 

to diverse accents, background noise, and different speaking 

styles, making it highly effective for real-world speech 

recognition. Unlike traditional ASR models that rely on 

phoneme-based training, Whisper learns directly from large-

scale audio-text pairs, allowing it to generalize well across 

various speech conditions. However, its autoregressive 

decoding mechanism makes it computationally expensive, 

requiring high-end GPUs for real-time applications. 

 

3.3.2 Wav2Vec2 

Wav2Vec2, introduced by Meta (Facebook AI), is a self-

supervised ASR model designed to learn speech 

representations directly from raw waveforms. It eliminates the 

need for manual phoneme labeling by leveraging contrastive 

learning, where the model predicts masked portions of speech 

from surrounding audio. The architecture consists of a 

convolutional feature extractor followed by a transformer 

encoder, enabling it to capture both local and global speech 

patterns effectively. Wav2Vec2 is fine-tuned using 

Connectionist Temporal Classification (CTC) loss, allowing it 

to directly output text transcriptions without an explicit 

language model. The CTC loss is defined as 

 

(𝑃( 𝑌 ∣ 𝑋 ) = ∑ 𝑃(𝐴 ∣ 𝑋 ))𝐴∈Align(𝑋,𝑌)   (3) 

 

where, 𝑌  is the target text, 𝑋  is the input audio, and 𝐴 

represents all possible alignments. 

This model is particularly advantageous for low-resource 

languages like Telugu, as it can achieve high accuracy with 

limited labeled data. Additionally, its non-autoregressive 

decoding makes it computationally efficient and suitable for 

real-time applications. 

 

3.3.3 Hidden-Unit BERT (HuBERT) 

Hidden-Unit BERT (HuBERT) is another self-supervised 

ASR model that improves upon Wav2Vec2 by incorporating a 

masked speech prediction strategy. Inspired by BERT’s 

masked language modeling approach, HuBERT learns speech 

representations by predicting masked segments of an audio 

signal using hidden-unit assignments. The model undergoes 

two-stage training: first, it learns a coarse representation of 

speech, and then it refines its understanding through SSL. This 

hierarchical approach enhances its ability to recognize 

phonetic and linguistic patterns, making it particularly 

effective for distinguishing dialectal variations. While 

HuBERT outperforms Wav2Vec2 in terms of phoneme 

recognition and generalization, it is computationally more 

demanding and requires a larger dataset for optimal 

performance. 

 

3.3.4 Bidirectional Encoder Representations from 

Transformers (BERT) 

Bidirectional Encoder Representations from Transformers 
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(BERT), developed by Google AI, is a transformer-based 

model widely used for natural language processing tasks, 

including text classification. In the context of Telugu dialect 

identification, BERT processes ASR-generated transcriptions 

to analyze linguistic, phonetic, and syntactic variations across 

dialects. Unlike traditional NLP models that process text 

sequentially, BERT employs a bidirectional self-attention 

mechanism, allowing it to capture contextual dependencies 

from both past and future words. It is pre-trained using masked 

language modeling and next-sentence prediction, making it 

highly effective in understanding subtle differences in 

dialectal speech patterns. However, its classification 

performance heavily depends on the accuracy of ASR 

transcriptions, and its computational complexity requires 

optimization for real-time deployment. 

 

3.4 Proposed methodology 

 

This section presents an end-to-end ASR and dialect 

classification system using state-of-the-art deep learning 

models. The system consists of two key components: 

 

3.4.1 Speech-to-text conversion 

Speech-to-text conversion using ASR models and dialect 

classification using a BERT-based model. For speech 

recognition, state-of-the-art self-supervised ASR models—

Whisper, Wav2Vec2, and HuBERT—are employed to convert 

raw .wav audio files into text transcriptions without requiring 

manual labeling. These models leverage SSL techniques to 

learn speech representations directly from raw waveforms, 

making them highly effective in handling diverse acoustic 

conditions and speaker variations.  

 

3.4.2 Dialect classification (BERT-based model) 

Once the transcriptions are generated, the dialect 

classification component utilizes a BERT-based model to 

analyze the linguistic patterns and classify the speech into one 

of the three Telugu dialects, i.e. Telangana, Andhra, or 

Rayalaseema. 

Given a transcribed text 𝑇 , the probability of its dialect 

classification C follows Bayes' Theorem 

 

𝑃(𝐶|𝑇) =
𝑃(𝑇|𝐶) 𝑃(𝐶)

𝑃(𝑇)
  (4) 

 

where, 𝑃(𝑇|𝐶) is the likelihood of text occurring in a specific 

dialect, and  𝑃(𝐶)  represents the dialect’s prior probability. 

BERT’s bidirectional transformer architecture enables it to 

capture phonetic and syntactic variations in the transcriptions, 

ensuring accurate dialect identification. Our approach uses 

SSL to overcome low-resource limitations. It significantly 

improves dialect-aware ASR performance, making the system 

adaptable to real-world speech applications. The BERT model 

captures dialectal differences by encoding contextual 

embeddings that reflect phonetic and syntactic variations. For 

instance, suffix usage (“-ra”, “-lu”) and unique lexical forms 

of Telangana are learned as attention-weighted tokens. 

Attention heatmaps confirmed distinct focus patterns 

correlating with dialect-specific words, supporting BERT’s 

linguistic interpretability. 

 

3.4.3 Training and testing phases in the ASR system 

The training phase is the foundational step in building an 

ASR system. It begins with data collection, where large-scale 

speech datasets such as LibriSpeech and Common Voice are 

gathered. The raw speech data undergoes preprocessing, 

including noise reduction, normalization, and augmentation, 

to improve model robustness. Next, feature extraction is 

performed using Mel spectrograms or MFCCs, converting raw 

waveforms into numerical representations. The extracted 

features are then fed into deep learning models like 

Wav2Vec2, Whisper, and HuBERT, which learn speech 

patterns through supervised learning. To further enhance 

language understanding, BERT-based post-processing is 

applied for grammatical correction and contextual refinement. 

Finally, optimization techniques, including the AdamW 

optimizer, dropout regularization, and hyperparameter tuning, 

help improve the model’s performance and prevent 

overfitting. Once training is complete, the model is ready for 

evaluation in the testing phase. The proposed training phase is 

shown in Figure 1. 

 

 
 

Figure 1. Training phase of the proposed model 

 

The testing phase ensures the trained ASR model performs 

well on unseen speech data. The trained model is loaded, and 

new speech input is processed through the same feature 

extraction steps as in training. The ASR model generates a 

transcription, which is refined by BERT post-processing to 

improve accuracy. The transcription is then evaluated using 

key performance metrics such as WER, F1-score, Precision, 

Recall, and Latency Analysis. If the performance does not 

meet expectations, the model is sent back for retraining with 

further adjustments in hyperparameters or additional dataset 

augmentation. 

 

 
 

Figure 2. Testing phase of proposed system 
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If the model meets the accuracy and efficiency benchmarks, 

it is deployed for real-world applications with better Accuracy 

Transcripted data.  

This iterative training and testing process ensures that the 

ASR system is optimized for both accuracy and real-time 

usability before deployment. The proposed testing phase is 

shown in Figure 2. 

 

3.4.4 Structured comparison of ASR models 

Table 4 presents the comparison of ASR models like 

Whisper, Wav2Vec2, and HuBERT. 

 

Table 4. Comparison of ASR models: Whisper, Wav2Vec2, 

and HuBERT 

 
Step Whisper Wav2Vec2 HuBERT 

Feature 

Extraction 

Converts audio 

to log-Mel 

spectrogram 

using Fourier 

Transform and 

Mel filter 

banks 

Learns 

features 

directly from 

raw 

waveforms 

using CNNs 

Uses CNNs to 

extract 

phonetic 

features from 

raw waveforms 

Encoder 

Processing 

Transformer-

based encoder 

processes 

entire audio 

clips in a 

sequence-to-

sequence 

manner 

CNN + 

Transformer 

encoder, 

extracts 

speech 

features 

without 

explicit word 

boundaries 

Uses CNN + 

Transformer 

but applies 

self-supervised 

clustering for 

speech 

representations 

Decoding 

Autoregressive 

decoder 

generates text 

word by word 

(fluent 

transcription) 

Uses 

Connectionist 

Temporal 

Classification 

(CTC) loss 

for efficient 

speech-to-text 

conversion 

Predicts 

missing speech 

components 

before 

mapping them 

to text for 

better 

recognition 

 

3.5 Optimization methods 

 

AdamW optimization strategy: The learning rate follows a 

cosine decay schedule, given by 

 

η
𝑡
= η

min
+
1

2
(η

max
− η

min
) (1 + cos (

π𝑡

𝑇
)) (5) 

 

where, ηt is the learning rate at training step 𝑡, and 𝑇 represents 

the total number of training iterations. 

To prevent gradient explosion, gradient clipping is applied 

as follows 

 

𝑔clipped  =  𝑔𝑡 ⋅
τ

max(τ, |𝑔𝑡|)
 (6a) 

 

θ𝑡  =  θ𝑡−1 − η𝑡  𝑔clipped (6b) 

 

where, 𝑔𝑡  is the gradient, and τ is the predefined clipping 

threshold. 

 

3.5.1 Algorithm for optimized Telugu ASR model 

ASR models (Whisper, Wav2Vec2, HuBERT) with BERT-

based dialect classification. 

(1) Feature Extraction 

Compute feature representations from speech signals: 

• Log-Mel Spectrogram (Whisper): 
 

𝑆𝑚𝑒𝑙 = logMelFilterBank(|𝐹(𝑥𝑡)|
2) (7) 

 

where, 𝑥𝑡 is the input waveform, 𝐹 is the Short-Time Fourier 

Transform (STFT), and MelFilterBank applies the mel-scale 

transformation. 

• Waveform Embeddings (Wav2Vec2, HuBERT):  

 

𝐸𝑤𝑎𝑣 = 𝑓Wav2Vec2/HuBERT(𝑥𝑡) (8) 
 

where, 𝑓Wav2Vec2/HuBERT  represents the feature extraction 

model. 

(2) Encoder Processing 

Apply a Transformer encoder to process extracted features: 
 

Z=TransformerEncoder (𝑆𝑚𝑒𝑙  or 𝐸𝑤𝑎𝑣) (9) 
 

where, Z represents the contextualized speech embeddings. 

(3) Decoding (Speech-to-Text Conversion) 

Convert speech representations into Telugu text using: 

• Whisper (Autoregressive Decoder): 

 

𝑃(𝑌|𝑍) = ∏ 𝑃(𝑦𝑡  | 𝑦<𝑡 , 𝑍; θ)
𝑇
𝑡=1   (10) 

 

where, 𝑌 =(y1, y2, …, yT) is the output token sequence and θ 

represents model parameters. 

• Wav2Vec2 (CTC Loss): 

 

𝐿𝐶𝑇𝐶 = −∑ log 𝑃𝐶𝑇𝐶 (𝑌 | 𝑍)(𝑋,𝑌)   (11) 

 

where, 𝑃𝐶𝑇𝐶(𝑌 | 𝑍) is the probability distribution over possible 

label alignments where 𝑋 , 𝑌 , 𝑍  represents input, label, and 

model output respectively. 

(4) Text Tokenization  

Convert transcriptions into sub word tokens using a 

tokenizer T 

 

T=Tokenizer (Y) (12) 

 

where, T=(t1, t2, …, tN) are subword tokens. 

(5) Feature Embedding and Dialect Classification by BERT 

• Compute BERT embeddings for subword tokens: 

 

EBERT=fBERT(T) (13) 

 

Apply multi-head attention: 
 

𝐻 = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (14) 

 

where, 𝑄, 𝐾, 𝑉 are query, key, and value matrices from BERT 

embeddings, and 𝑑𝑘 is the embedding dimension. 

• Dialect Classification using Softmax: 
 

𝑃(𝐶|𝐻) = softmax(𝑊𝐻 + 𝑏) (15) 

 

where, 𝑃(𝐶|𝐻)  is the probability distribution over dialect 

classes. 
 

 

4. RESULTS  
 

To assess the performance of our ASR and dialect 
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classification models, we use the following key evaluation 

metrics:  

WER: WER measures the percentage of errors in ASR-

generated transcriptions compared to the ground truth. Lower 

WER indicates better performance and it is computed as 

 

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
× 100% (16) 

 

where, 𝑆 denotes substitutions, 𝐷  deletions, 𝐼  insertions, and 

𝑁  the total number of words in the ground truth. Further 

decomposing WER into its components: 

 

𝑆𝑟 =
𝑆

𝑁
, 𝐷𝑟 =

𝐷

𝑁
, 𝐼𝑟 =

𝐼

𝑁
  (17) 

 

where 𝑆𝑟 , 𝐷𝑟 , 𝐼𝑟  represent the substitution, deletion, and 

insertion rates respectively. 

F1-score: F1-score is the harmonic mean of Precision and 

Recall, ensuring a balance between false positives and false 

negatives 

 

𝐹1 = 2 ×
Precision×Recall

Precision+Recall
  (18) 

 

In addition to WER and 𝐹1 Score, Macro-𝐹1 and Weighted-

𝐹1  metrics were computed to ensure balanced evaluation 

across dialect classes with unequal representation. Macro-F1 

measures average per-class performance, while Weighted-F1 

accounts for class imbalance. 

Latency: It Measures the time taken by the ASR model to 

transcribe speech and classify dialects. It is measured in 

milliseconds (ms) per sentence. Along this we used 

Confidence Interval for WER, to ensures WER results are 

statistically significant. 
 

Table 5. Impact of optimization on WER for ASR models 
 

Model 
Before Optimization 

(WER) 

After Optimization 

(WER) 

Whisper 15.2% 12.5% 

Wav2Vec2 12.3% 9.8% 

HuBERT 14.0% 10.7% 

 

The above Table 5 shows WER before and after 

optimization for Whisper, Wav2Vec2, and HuBERT. After 

optimization, Wav2Vec2 achieved a 20.3% WER reduction, 

outperforming Whisper and HuBERT. These results confirm 

that Wav2Vec2 is the best-performing ASR model for Telugu 

speech transcription with the lowest WER (9.8%) and 

HuBERT improved from 14.0% WER to 10.7%, a 23.6% 

relative reduction in error rate, demonstrating the effectiveness 

of the optimization techniques. These results demonstrate that 

the applied optimization techniques significantly enhance 

transcription accuracy, making the models more reliable. 

To ensure statistical significance in WER improvements, a 

95% confidence interval is computed as:  

 

𝐶𝐼 = 𝑝̂ ± 𝑍∗√
𝑝(1−𝑝)

𝑛
  (19) 

 

where 𝑝̂ is the observed WER, Z=1.96 for 95% confidence, 

and 𝑛  represents the sample size. Statistical significance 

testing using paired t-tests (p < 0.05) confirmed that the 

observed WER improvements after optimization were not due 

to random variance but consistent model enhancement. The 

Figure 3 below presents the comparison of WER before and 

after applying optimization. 

 

 
 

Figure 3. Comparison of WER before and after optimization 

(lower is better) 

 

The above Figure 3 visually compares the WER before and 

after optimization for three speech recognition models: 

Whisper, Wav2Vec2, and HuBERT. Each model has two bars; 

red represents WER before optimization, while green 

represents WER after optimization. This allows for an easy 

comparison of how optimization has improved performance. 

The values on top of the bars highlight the exact WER 

percentages for better clarity. The chart clearly shows that all 

three models benefited from optimization, with Wav2Vec2 

showing the most significant reduction (from 12.3% to 9.8%), 

followed by HuBERT (14.0% to 10.7%) and Whisper (15.2% 

to 12.5%). The gridlines and labeled axes enhance readability, 

making it evident that optimization significantly improves 

model accuracy. 

 

4.1 Dialect prediction 

 

The Table 6 represents the predicted dialect confidence for 

different ASR transcriptions of the Telugu phrase. Each 

transcription corresponds to a specific dialect, i.e., Telangana, 

Andhra, and Rayalaseema, with a confidence percentage 

assigned by the BERT model. 

 

Table 6. Predicted Telugu dialects based on ASR 

transcriptions using BERT 

 
Input (ASR 

Transcription) 

Predicted Dialect (BERT 

Output) 

"నేను వెళా్లను" Telangana (90%) 

"నేను వెళా్ల ను" Andhra (85%) 

"నేనె వెళా్ల ను" Rayalaseema (92%) 

 

The different ASR transcriptions: 

1. "నేను వెళా్లను" → Telangana dialect (90%) 

2. "నేను వెళా్ల ను" → Andhra dialect (85%) 

3. "నేనె వెళా్ల ను" → Rayalaseema dialect (92%) 

• Rayalaseema dialect ("నేనె వెళా్ల ను") has the highest 

confidence (92%), meaning the model is most certain about 

this prediction. 

• Telangana dialect ("నేను వెళా్లను") follows closely with 

90% confidence, indicating a strong association. 

• Andhra dialect ("నేను వెళా్ల ను") has a slightly lower 

confidence (85%), but it is still a valid prediction. 
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4.2 Dialect classification performance (F1-score) 

 

Table 7 presents three key performance metrics, i.e., 

Precision, Recall, and F1-score for classifying three Telugu 

dialects (Telangana, Andhra, and Rayalaseema). 

Key Observations: Rayalaseema dialect performs best 

across all metrics, with Precision (92%), Recall (90%), and 

F1-score (91%), indicating strong model confidence in 

identifying this dialect. Telangana dialect also shows good 

performance, with an F1-score of 89%, meaning the model 

balances precision and recall well. Andhra dialect has the 

lowest precision (85%) and F1-score (86%), suggesting that 

this dialect is slightly harder for the model to classify 

accurately. Figure 4 presents a clear comparison of 

performance metrics across ASR models. 

 

Table 7. Dialect classification performance metrics 

 
Dialect Precision Recall F1-score 

Telangana 90% 88% 89% 

Andhra 85% 87% 86% 

Rayalaseema 92% 90% 91% 

 

 
 

Figure 4. Dialect classification performance metrics 

 

4.3 Optimization and performance improvement 

 

Table 8 compares the different optimizers. The AdamW is 

an adaptive optimizer, meaning it adjusts the learning rate 

dynamically during training. It converges faster compared to 

traditional optimizers and includes L2 weight decay, which 

helps prevent over fitting by adding a penalty to large weights. 

SGD, on the other hand, uses a fixed learning rate, meaning 

the same step size is used throughout training unless manually 

adjusted. It has a slower convergence speed because it does 

not adaptively adjust learning rates. Additionally, SGD lacks 

L2 weight decay, making it more prone to over fitting unless 

regularization techniques are added manually. The ablation 

study is shown in the Table 9. 

 

Table 8. Comparison of optimizers: AdamW vs. SGD 

 

Optimizer 

Learning 

Rate 

Adaptation 

Convergence 

Speed 
Regularization 

AdamW Adaptive Faster 
L2 Weight 

Decay 

SGD Fixed Slower No L2 Decay 

Table 9. An ablation study of Wav2Vec2+BERT model 

 

Configuration WER (%) ↓ F1 (%) ↑ 

Baseline(no optimization) 14.5 87.2 

Baseline+ AdamW 12.9 90.5 

Baseline + Cosine LR Decay 11.1 92.3 

Baseline+ Gradient Clipping 9.8 94.1 

 

Table improvements in the speech recognition model after 

applying different optimizations. The baseline achieved 14.5% 

WER and 87.2% F1. Using AdamW reduced WER to 12.9% 

and increased F1 to 90.5%. Cosine learning rate decay further 

improved performance to 11.1% WER and 92.3% F1. 

Gradient clipping was achieved the best results, with 9.8% 

WER and 94.1% F1, showing that optimization techniques 

enhance model accuracy and reliability. 

 

4.4 Comparison with previous research 

 

Table 10 compares speech recognition models based on 

WER, F1-score, and Latency, providing insights into 

accuracy, efficiency, and processing speed. A lower WER 

indicates fewer transcription errors, with Wav2Vec2 Large + 

BERT (9.8%) achieving the best performance, followed by 

HuBERT Large + BERT (10.7%) and Google Chirp ASR 

(11.8%). In contrast, Azure Speech-to-Text (15.0%) and 

Whisper Telugu Base (14.2%) have higher WERs, making 

more errors. The F1-score reflects recognition accuracy, where 

Wav2Vec2 Large + BERT (94.1%) and HuBERT Large + 

BERT (93.5%) outperform others. Latency measures 

processing speed, with HuBERT Large + BERT (100-180ms) 

being the fastest, followed by Wav2Vec2 Large + BERT (120-

200ms), making them ideal for real-time use. Whisper Large 

+ BERT (500ms+) is the slowest despite high accuracy. 

 

Table 10. Performance comparison of ASR models: WER, 

F1-score, and Latency with previous research 

 

Model 
WER 

(%)↓ 

F1-score 

(%) ↑ 

Latency 

(ms) ↓ 

Meta Seamless 4MT 12.8 87.4 250+ 

Azure Speech-to-Text [16] 15.0 85.9 150-300 

Google Chirp ASR [15] 11.8 89.7 200-400 

Whisper Telugu Base [11] 14.2 86.2 400+ 

NVIDIA NeMo ASR [14] 13.0 88.5 150-300 

Wav2Vec2 Large + BERT 

(Proposed) 
9.8 94.1 120-200 

Whisper Large + BERT 

(Proposed) 
12.5 92.3 500+ 

HuBERT Large + BERT 

(Proposed) 
10.7 93.5 100-180 

 

Overall, Wav2Vec2 Large + BERT is the best for accuracy, 

while HuBERT Large + BERT excels in speed. Google Chirp 

ASR balances both. Table 9 Shows the computational 

complexity of models. The superior performance of 

Wav2Vec2 + BERT is attributed to its contextualized feature 

extraction and deep semantic understanding. Wav2Vec2 

captures fine-grained phonetic nuances through self-

supervised contrastive learning, while BERT effectively 

identifies dialect-specific linguistic patterns. This combination 

enhances both transcription accuracy and dialect 

discrimination, yielding a 9.8% WER and 94.1% F1-score. All 

ASR systems, including Whisper, Wav2Vec2, and HuBERT, 

were evaluated under identical experimental conditions. The 

evaluations were conducted using the same Telugu test dataset 
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(2 hours) on NVIDIA A100 GPUs with 40GB VRAM. Metrics 

such as WER and F1-score were consistently applied across 

all models to ensure fair comparison and reproducibility. 

 

Table 11. Computational complexity analysis of ASR and 

dialect models 

 

Model 
Training 

Complexity 

Inference 

Complexity 

Whisper O(T2d) O(Td) 

Wav2Vec2 O(nd2) O(nd) 

HuBERT O(nd2) O(nd) 

BERT (for dialects) O(T2d) O(Td) 

 

In the above Table 11, T is the sequence length, d is the 

embedding dimension, and n is the input audio length. Despite 

Whisper having O(T2d) training complexity, its inference time 

remains competitive due to optimized beam search decoding, 

making it feasible for large-scale deployment. The 

diagrammatic representation is shown in Figure 5. 

The chart shows the WER for each model, where a lower 

value is better. Wav2Vec2 Large + BERT (9.8%) and 

HuBERT Large + BERT (10.7%) have the lowest errors, while 

Azure Speech-to-Text (15.0%) has the highest WER, meaning 

it makes more transcription mistakes. The Phoneme-level 

analysis revealed that 41% of residual errors were substitution-

related (e.g., confusion between /ṭa/ and /ḍa/), 32% resulted 

from noise interference, and 27% stemmed from lexical 

ambiguities among dialects. 

 

 
 

Figure 5. Performance evaluation: WER (%) across different 

ASR models 

 

 
 

Figure 6. Performance evaluation: F1-score (%) across 

different ASR models 

Figure 6 highlights the F1-score, where a higher value is 

better, representing better accuracy in speech recognition. 

Wav2Vec2 Large + BERT (94.1%) and HuBERT Large + 

BERT (93.5%) achieve the highest accuracy, while Azure 

Speech-to-Text (85.9%) performs the worst. The 5-fold cross-

validation was performed for each hybrid model. The 

Confusion matrices showing the class-specific accuracy for 

each dialect and produced the Macro-F1 = 94.1% and 

Weighted-F1 = 93.8% for Wav2Vec2+BERT. The Error 

analysis shows that 7% of errors arise from lexical overlap 

between Andhra and Rayalaseema dialects. The confusion 

matrix Table 11 illustrates improved class-specific accuracy 

across Telangana, Andhra, and Rayalaseema dialects. 

 

Table 12. Confusion matrix of the proposed Wav2Vec2 + 

BERT hybrid model 

 
True \ Predicted Telangana Andhra Rayalaseema 

Telangana 0.95 0.03 0.02 

Andhra 0.04 0.91 0.05 

Rayalaseema 0.03 0.06 0.91 

 

The above Table 12 illustrates accurate recognition of 

Telangana, Andhra, and Rayalaseema dialects, with minor 

confusion between Andhra and Rayalaseema due to lexical 

overlap. Figure 7 shows the accurate Telugu dialects and 

lexical overlap. 

 

 
 

Figure 7. Accurate recognition of Telugu dialects vs. lexical 

overlap 

 

 
 

Figure 8. Performance evaluation: Latency across different 

ASR models 

 

Figure 8 represents processing speed, where lower latency 

is better for real-time applications. HuBERT Large + BERT 

(100-180ms) is the fastest, while Whisper Large + BERT 

(500ms+) is the slowest, making it less ideal for live speech 

recognition. To ensure model scalability in low-resource 

environments, knowledge distillation and quantization were 

applied to compress Wav2Vec2 from 317M to 160M 
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parameters. The quantized model achieved a real-time factor 

(RTF) of 0.92 on CPU, validating its deployment feasibility 

for Telugu ASR on edge devices and mobile applications. 

 

 

5. CONCLUSION 

 

In this research, we proposed an end-to-end ASR and dialect 

classification system tailored for Telugu dialect identification. 

By leveraging state-of-the-art self-supervised models—

Whisper, Wav2Vec2, and HuBERT—we addressed the 

challenge of transcribing Telugu speech without requiring 

large annotated datasets. The ASR-generated transcriptions 

were then processed using a BERT-based model to classify the 

dialects of Telangana, Andhra, and Rayalaseema. Our 

approach effectively captures phonetic and syntactic 

variations, overcoming limitations of traditional ASR systems 

that struggle with dialectal diversity and low-resource 

languages. 

The integration of SSL techniques enables efficient feature 

extraction, contextual speech understanding, and robust 

transcription accuracy, even in real-world noisy environments. 

Additionally, the dataset preprocessing steps, including noise 

reduction, volume normalization, and segmentation, enhanced 

the quality and consistency of speech data. Comparative 

analysis with existing Telugu ASR models demonstrates the 

superiority of our approach in dialect recognition. Overall, this 

study provides a scalable and efficient framework for dialect-

aware ASR applications, contributing to the advancement of 

speech technology for Telugu and other underrepresented 

languages. Future work will explore multi-modal approaches 

by incorporating speaker embeddings and linguistic feature 

extraction to further refine dialect classification. Additionally, 

real-time deployment strategies will be investigated to 

improve inference efficiency on edge devices. 
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