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The field of Automatic Speech Recognition (ASR) has advanced significantly. However,
the accurate recognition of Telugu dialects remains an unsolved challenge. Telugu is a
Dravidian language with distinct regional dialects, i.e., Telangana, Andhra, and
Rayalaseema. These dialects exhibit phonetic, lexical, and prosodic variations that degrade
the performance of conventional ASR systems. Existing Telugu ASR models primarily
focus on speech-to-text transcription without explicitly handling dialectal differences,
leading to suboptimal recognition accuracy for dialect-rich speech data. To address this, we
propose a novel dialect-aware ASR system that enhances speech recognition while
simultaneously classifying Telugu dialects using deep learning. We construct a new, dialect-
diverse Telugu speech dataset by integrating the Telugu Dialect Dataset with the Mozilla
Common Voice Dataset, significantly expanding linguistic diversity in training data. Our
hybrid ASR-NLP framework employs Whisper, Wav2Vec2, and HuBERT models for ASR
while BERT classifies dialects from transcribed text. Unlike previous Telugu ASR models,
our approach explicitly incorporates dialectal identification by leveraging deep text
embeddings and self-attention mechanisms. Our methodology integrates AdamW, Cosine
Learning Rate Decay, and Gradient Clipping to optimize ASR performance. These
enhancements reduced WER to 9.8%, outperforming models like Google Chirp (11.8%) and
NVIDIA NeMo (13.0%), while achieving an F1-score of 94.1%. The experimental results
show that our approach significantly outperforms existing Telugu ASR models such as
Google Chirp, NVIDIA NeMo, and Azure Speech-to-Text, establishing a new benchmark
for low-resource language processing.

1. INTRODUCTION

1.1 Speech recognition and Telugu dialects

people, is widely used in Telangana and Andhra Pradesh [4].
The challenge arises from phonetic complexity, dialectal
variations, and a lack of annotated datasets. Telugu comprises
three primary dialects:

Speech recognition technology has revolutionized human-

computer interaction,

enabling natural communication

(1) Telangana Dialect — Spoken in 33 districts of Telangana,

through voice commands. Automatic Speech Recognition
(ASR) plays a crucial role in various domains, including
virtual assistants, transcription services, accessibility tools,
and language learning applications [1]. ASR systems have
achieved remarkable success in high-resource languages such
as English, French, and Chinese, primarily due to the
availability of large annotated speech datasets and extensive
computational resources [2]. However, many low-resource
languages, including Telugu, face significant challenges due
to limited data availability, phonetic complexity, and dialectal
variations [3].

1.2 Challenges in Telugu speech recognition

Telugu, a Dravidian language spoken by over 80 million
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characterized by distinct intonation patterns, phoneme
reductions, and nasalization.

(2) Andhra Dialect — Spoken in 9 districts of Coastal
Andhra, differing in vowel elongation and phoneme stress.

(3) Rayalaseema Dialect — Spoken in 4 districts (Chittoor,
Anantapur, Kurnool, Kadapa), with consonant shifts and
unique vocabulary [5].

These variations cause ASR systems to struggle with
transcriptions, as the same word can be pronounced differently
across dialects. For instance:

Telangana: "R SF° D"
Andhra: "D IF°9D"
Rayalaseema: "R SP°0"


https://orcid.org/0000-0001-6119-3502
https://orcid.org/0000-0003-3187-458X
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1.3 Challenges in Telugu ASR and dialect identification

1.3.1 Limited generalization of traditional ASR models

Traditional ASR models trained on standard Telugu
datasets often fail to generalize well across dialectal variations.
This is because these models primarily learn from a
homogeneous dataset, leading to bias towards mainstream
Telugu while failing to accurately transcribe dialectal
differences. The existing ASR systems struggle to recognize
variations in pronunciation, lexical differences, and phonetic
shifts specific to Telangana, Andhra, and Rayalaseema
dialects [6]. These dialects exhibit distinct intonation patterns,
vowel length variations, and regional vocabulary, which
traditional ASR models, such as Hidden Markov Models
(HMMs) and hybrid Deep Neural Networks (DNNs), fail to
capture effectively.

1.3.2 Lack of large annotated datasets

Unlike English and Hindi, which have extensive annotated
speech datasets for ASR training, Telugu suffers from a lack
of large-scale dialect-labeled speech datasets. Most publicly
available datasets, such as Mozilla Common Voice Telugu,
contain standard Telugu speech data but lack dialect-specific
labeling [7]. This scarcity of labeled data poses significant
challenges for supervised learning-based ASR models.
Without sufficient dialect-annotated training samples, models
struggle to distinguish regional variations, leading to poor
generalization in real-world applications.

To address this, researchers have recently explored
advancements in self-supervised learning (SSL). Self-
supervised models, such as Wav2Vec2, HuBERT, and
Whisper, leverage large amounts of unlabeled speech data and
learn robust speech representations without requiring
extensive manual annotations [8]. These models fine-tune
their feature extraction layers to capture phonetic variations
across dialects, compensating for the lack of labeled datasets
to some extent.

1.3.3 Phonetic complexity of Telugu

The Telugu phonetic system consists of 56 letters (18
vowels and 38 consonants), including unique retroflex
consonants, long vowels, and aspirated sounds, which make
phoneme recognition highly challenging [9]. The presence of
context-dependent pronunciation changes further complicates
ASR performance. Certain letters and syllables undergo
morphophonemic alternations, meaning their pronunciation
shifts based on preceding or succeeding phonemes, speaker
accent, and regional influence.

For instance:

+ The pronunciation of "<d" ("cha") may vary subtly
between Andhra and Telangana dialects due to vowel length
differences.

* Certain nasalized vowels and geminated consonants
appear in the Rayalaseema dialect but are absent in other
variants.

Traditional ASR models trained on fixed phoneme
dictionaries often struggle with such variations. Deep
learning-based models, particularly Transformer-based
architectures like Whisper and BERT, are better suited to
handle phonetic ambiguity by learning contextual
dependencies in speech transcriptions.

1.3.4 Real-world noisy environments
In practical applications, ASR models must function
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effectively in noisy environments with background noise,
reverberation, and overlapping speech [10]. Traditional ASR
models, which rely on Mel Frequency Cepstral Coefficients
(MFCCs) and HMM-based speech recognition, struggle with
noise robustness and often misinterpret words when speech is
degraded.

Deep learning-based ASR models, such as Wav2Vec2 and
HuBERT, improve noise robustness by learning context-
aware acoustic representations. These models use self-
attention mechanisms and CNN-based feature extractors to
filter out irrelevant noise components while preserving
meaningful speech patterns [10].

The probability of generating a transcription given an input
speech signal can be formulated as

P(le):HtTZIP(yt | Xa yl:t-l) (1)
where X represents the raw speech signal and Y the
corresponding transcription sequence. The Data augmentation
techniques, such as spectrogram masking, adding synthetic
noise, and time-stretching, further enhance ASR models’
ability to operate in real-world noisy environments. The
Empirical testing under 0-20 dB SNR conditions showed that
Wav2Vec2 + BERT maintained 91.7% accuracy, confirming
strong noise robustness. This validates the proposed model’s
robustness under real-world acoustic interference.

The impact of ASR using the proposed solution is illustrated
in Table 1.

Table 1. Impact of ASR with proposed solution

Challenge Impact on ASR Proposed Solution
Limited Fails to capture Train dlalect.-spemﬁc ASR
Generalization  dialectal variatio models (Whisper + BERT,
neratiz Vamations - \wav2Vec2 + BERT)
Lack of Annotated Poor dialect Utilize self-supervised
Data classification models (HuBERT,
Wav2Vec2)
. . Use Transformer-based
Phonetic Errors in
. S ASR for context-aware
Complexity transcription .
phoneme recognition
Noisy Reduced ASR Apply QNN-based feature
. extraction, spectrogram
Environments accuracy

augmentation

By addressing these challenges, our proposed dialect-aware
ASR framework significantly improves Telugu ASR
performance, particularly in dialect-rich speech recognition
tasks.

1.4 Novelty and synergy among Whisper, Wav2Vec2,
HuBERT, and BERT

The proposed framework introduces a hybrid architecture
that integrates Whisper, Wav2Vec2, and HuBERT models for
ASR, combined with a BERT-based dialect classifier. The
ensemble fusion mechanism leverages the robustness of
Whisper for noisy speech, the fine-grained acoustic feature
learning of Wav2Vec2, and the contextual representation
capabilities of HuBERT. Their outputs are weighted and
combined to produce optimized transcriptions, which are
subsequently processed by BERT for dialect identification.
This synergy between multiple ASR and NLP models
represents a novel contribution in Telugu speech processing.
This hybrid synergy ensures both acoustic robustness (from
ASR) and linguistic discrimination (from BERT), leading to a



3-5% improvement in F1-score compared to any single model.

2. LITERATURE SURVEY

Speech recognition has seen significant advancements with
the emergence of deep learning models, yet challenges remain
in dialect identification, particularly for low-resource
languages like Telugu.

2.1 Existing ASR models for Telugu speech recognition

Earlier Telugu ASR systems were predominantly based on
HMM-GMM (Hidden Markov Model - Gaussian Mixture
Model) frameworks, which relied on Mel-Frequency Cepstral
Coefficients (MFCCs) and Linear Predictive Coding (LPC)
features for phoneme classification. Chiu et al. [11] developed
an HMM-based Telugu ASR model, achieved an accuracy of
76.2% on controlled datasets but struggled with dialectal
variations and spontaneous speech. The HMM-based ASR
models failed to generalize across dialects, as they assumed a
static phonetic structure, which was unsuitable for Telugu’s
context-dependent phoneme variations [6]. Sarma et al. [12]
focused on developing and evaluating an Automatic Speech
Recognition (ASR) system for the Assamese language using
the HTK (HMM-based) toolkit. The study highlighted the
challenges and performance analysis associated with low-
resource language speech recognition.

2.1.1 Deep learning-based ASR models

With the evolution of deep learning, DNN-HMM hybrid
models showed improvements over traditional HMM-based
systems. A DNN combined with Time-Delay Neural
Networks (TDNN) was introduced for Telugu ASR, achieving
a Word Error Rate (WER) of 18% on a small dataset [13].
However, hybrid models still required phoneme alignment,
which limited their scalability. Recent end-to-end ASR
models, such as Wav2Vec2 and HuBERT, demonstrated state-
of-the-art results in low-resource languages. Fathima et al.
[14] trained a Wav2Vec2-large model for Telugu ASR,
achieving a WER of 13.5%. However, their model was trained
on standard Telugu datasets, ignoring dialectal variations,
which resulted in reduced accuracy when tested on regional
accents.

2.2 Dialect identification in speech processing

Dialect identification was a crucial component of speech-

to-text systems for multilingual and dialect-rich languages.
However, research on Telugu dialect classification remained
limited.

2.2.1 Dialect identification in other languages

Several studies explored dialect classification in major
languages like English, Arabic, and Chinese. Baevski et al.
[15] implemented a deep learning-based approach for Arabic
dialect classification, using i-vectors and x-vectors for feature
extraction. Their system achieved 83.2% accuracy in
distinguishing Gulf, Levantine, and Egyptian dialects [16].

2.2.2 Telugu dialect classification

Unlike Arabic and Chinese, Telugu lacked large-scale
dialect-labeled datasets for ASR training. Satla and Manchala
[5] developed a DNN-based system for Telugu dialect
identification, comparing it with traditional HMM and GMM
models. Using MFCC and its derivatives as input features,
their model achieved an accuracy of 84.5% across three
dialects—Telangana, Coastal Andhra, and Rayalaseema—on
a dataset of about 5.75 hours of speech. Besacier et al. [17]
provided a comprehensive overview of Automatic Speech
Recognition techniques for under-resourced languages,
highlighting key challenges, datasets, and modeling
approaches. It served as a foundational reference for
developing ASR systems in low-resource linguistic settings. A
deep neural network—based ideal ratio mask estimation was
proposed to improve robustness in speech recognition under
noisy conditions. The proposed approach demonstrated
significant gains in recognition accuracy compared to
traditional methods [18]. Yadavalli et al. [19] proposed a
multi-task end-to-end framework for simultaneous Telugu
dialect identification and speech recognition. Their results
showed that joint learning improved both dialect classification
and ASR performance.

A large-scale weakly supervised training paradigm for
robust speech recognition, which formed the basis of the
Whisper model, demonstrated strong generalization across
diverse languages and acoustic conditions [20]. However, the
dataset was small and controlled, containing short utterances
and lacking spontaneous speech, which limited the model’s
scalability and real-world applicability [20]. Our approach
addressed this gap by integrating self-supervised ASR models
(Whisper, Wav2Vec2, HuBERT) with BERT dialect
classification, leveraging deep learning for automatic feature
extraction and dialect differentiation.

Table 2. Comparative study of existing Telugu ASR models

Study Approach WER (%) Dataset Used Limitations
Sarma et al. [12] HTK 3.5 HMM/HTK pipeline 78.05  Small Speech Dataset ~ Limited robustness to noise/dialectal variation
Sree.raj and HMM-based ASR with word models 68.5 Cusu.)m. dataset Fails in spontaneous speech, no dialect distinction
Rajan [6] (limited)
Fathima et al DNN-TDNN Hybrid ASR 13 Telugu Speech Corpus No dialect clasmﬁgatlon requires phoneme
[14] alignment
Baevski et al. Wav2Vec2-large fine-tuned on Telugu  13.5 MOZI.I la Common Ignores dialect variations; the dataset lacks labels
[15] Voice Telugu
DNN (MLP) using 39-dim MFCC + .
Miitclﬁa?;l% 5] AMFCC + AAMFCC; compared to N/A > hrsd?;ggtlr; O;Cezﬁlugu No large-scale spontaneous speech
HMM & GMM P
Shon et al. [16] i-vectors & ).<—vectors (Arabic N/A  Arabic Dialect Corpus Effective for Arabic, but requires large labeled
Dialects) datasets
Chiuetal. [11] Spectrogram Augmentation for ASR 12.0 Google ASR Dataset Addresses noise but lacks dialect awareness
Baevski et al. [8]  Self-Supervised Wav2Vec2 ASR 10.5 Librispeech (English) Non-Telugu model inspires low-resource ASR

training
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2.3 Comparative study of existing Telugu ASR models

The comparative analysis with existing ASR models was
presented in Table 2.

3. PROPOSED METHODOLOGY

3.1 Dataset explanation

3.1.1 Dataset pre-processing

Before training ASR models and dialect classification
models, the raw dataset needs to be cleaned, processed, and
structured correctly. The goal is to ensure that the data is high-
quality, noise-free, and suitable for training. The dataset was
balanced across the three major dialects of Telugu, i.e.,
Telangana, Andhra, and Rayalaseema, each constituting
approximately one-third of the total samples. Label validation
was carried out by three native linguists, achieving an inter-
annotator agreement (Cohen’s k = 0.89). Stratified sampling
ensured a fair representation of gender, age, and
environmental diversity.

3.2 Steps in dataset preprocessing

Step 1: Audio Data Collection

The Telugu dialect dataset was recorded from diverse real-
world environments (colleges, offices, parks, roadside) to
capture various acoustic conditions. The Mozilla Common
Voice dataset was also incorporated to enhance robustness.
Speakers of different age groups, genders, and educational
backgrounds were included, resulting in 7 hours and 5 minutes
of speech covering Telangana, Andhra, and Rayalaseema
dialects.
Step 2: Audio Cleaning and Preprocessing

To enhance dataset quality for ASR and dialect
classification, all audio files were standardized to 16kHz,
mono-channel WAV format. Noise reduction using spectral
subtraction and adaptive filtering improved speech clarity,
while volume normalization ensured consistent loudness.
Silence removal eliminated unnecessary pauses, optimizing
efficiency. Finally, segmentation splits long recordings into 3—
10 second clips, aligning with ASR training needs and
improving transcription accuracy. The complete dataset
description is given in Table 3.

Table 3. Dataset description

Telugu Dialect Dataset Mozilla Common Voice
Feature

(Used) Telugu
Size 7 hours 5 minutes 1,300+ hours
Speakers Limited, dialect-based  Large, diverse speakers
Dialects Telangana, Andhra, Mixed dialects (not
Included Rayalaseema explicitly labeled)
Audio Format wav ﬁlefs (no .wav files with transcripts
transcripts)

Usage Dialect classification  ASR model pretraining

The relationship between dataset size N and model
accuracy can be approximated as

B
Accuracy = Ay, — ™

2

A 1s the asymptotic accuracy and B is the dataset efficiency
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factor.
3.3 Proposed models

3.3.1 Whisper

Whisper, developed by OpenAl, is a powerful end-to-end
speech recognition model trained on a large multilingual and
multitask dataset. It employs a transformer-based encoder-
decoder architecture, where the encoder converts raw speech
into log-Mel spectrograms, and the decoder generates text
transcriptions. One of Whisper’s key strengths is its robustness
to diverse accents, background noise, and different speaking
styles, making it highly effective for real-world speech
recognition. Unlike traditional ASR models that rely on
phoneme-based training, Whisper learns directly from large-
scale audio-text pairs, allowing it to generalize well across
various speech conditions. However, its autoregressive
decoding mechanism makes it computationally expensive,
requiring high-end GPUs for real-time applications.

3.3.2 Wav2Vec2

Wav2Vec2, introduced by Meta (Facebook Al), is a self-
supervised ASR model designed to learn speech
representations directly from raw waveforms. It eliminates the
need for manual phoneme labeling by leveraging contrastive
learning, where the model predicts masked portions of speech
from surrounding audio. The architecture consists of a
convolutional feature extractor followed by a transformer
encoder, enabling it to capture both local and global speech
patterns  effectively. Wav2Vec2 is fine-tuned using
Connectionist Temporal Classification (CTC) loss, allowing it
to directly output text transcriptions without an explicit
language model. The CTC loss is defined as

(P(Y | X) = ZAEAlign(X,Y)P(A | X)) (3)
where, Y is the target text, X is the input audio, and A
represents all possible alignments.

This model is particularly advantageous for low-resource
languages like Telugu, as it can achieve high accuracy with
limited labeled data. Additionally, its non-autoregressive
decoding makes it computationally efficient and suitable for
real-time applications.

3.3.3 Hidden-Unit BERT (HuBERT)

Hidden-Unit BERT (HuBERT) is another self-supervised
ASR model that improves upon Wav2Vec?2 by incorporating a
masked speech prediction strategy. Inspired by BERT’s
masked language modeling approach, HuBERT learns speech
representations by predicting masked segments of an audio
signal using hidden-unit assignments. The model undergoes
two-stage training: first, it learns a coarse representation of
speech, and then it refines its understanding through SSL. This
hierarchical approach enhances its ability to recognize
phonetic and linguistic patterns, making it particularly
effective for distinguishing dialectal variations. While
HuBERT outperforms Wav2Vec2 in terms of phoneme
recognition and generalization, it is computationally more
demanding and requires a larger dataset for optimal
performance.

3.3.4  Bidirectional
Transformers (BERT)
Bidirectional Encoder Representations from Transformers

Encoder  Representations  from



(BERT), developed by Google Al, is a transformer-based
model widely used for natural language processing tasks,
including text classification. In the context of Telugu dialect
identification, BERT processes ASR-generated transcriptions
to analyze linguistic, phonetic, and syntactic variations across
dialects. Unlike traditional NLP models that process text
sequentially, BERT employs a bidirectional self-attention
mechanism, allowing it to capture contextual dependencies
from both past and future words. It is pre-trained using masked
language modeling and next-sentence prediction, making it
highly effective in understanding subtle differences in
dialectal speech patterns. However, its classification
performance heavily depends on the accuracy of ASR
transcriptions, and its computational complexity requires
optimization for real-time deployment.

3.4 Proposed methodology

This section presents an end-to-end ASR and dialect
classification system using state-of-the-art deep learning
models. The system consists of two key components:

3.4.1 Speech-to-text conversion

Speech-to-text conversion using ASR models and dialect
classification using a BERT-based model. For speech
recognition, state-of-the-art self-supervised ASR models—
Whisper, Wav2Vec2, and HuBERT—are employed to convert
raw .wav audio files into text transcriptions without requiring
manual labeling. These models leverage SSL techniques to
learn speech representations directly from raw waveforms,
making them highly effective in handling diverse acoustic
conditions and speaker variations.

3.4.2 Dialect classification (BERT-based model)

Once the transcriptions are generated, the dialect
classification component utilizes a BERT-based model to
analyze the linguistic patterns and classify the speech into one
of the three Telugu dialects, i.e. Telangana, Andhra, or
Rayalaseema.

Given a transcribed text T, the probability of its dialect
classification C follows Bayes' Theorem

P(T|C)pP(0)
P(T)

P(CIT) = “4)

where, P(T|C) is the likelihood of text occurring in a specific
dialect, and P(C) represents the dialect’s prior probability.
BERT’s bidirectional transformer architecture enables it to
capture phonetic and syntactic variations in the transcriptions,
ensuring accurate dialect identification. Our approach uses
SSL to overcome low-resource limitations. It significantly
improves dialect-aware ASR performance, making the system
adaptable to real-world speech applications. The BERT model
captures dialectal differences by encoding contextual
embeddings that reflect phonetic and syntactic variations. For
instance, suffix usage (“-ra”, “-lu”) and unique lexical forms
of Telangana are learned as attention-weighted tokens.
Attention heatmaps confirmed distinct focus patterns
correlating with dialect-specific words, supporting BERT’s
linguistic interpretability.

3.4.3 Training and testing phases in the ASR system
The training phase is the foundational step in building an
ASR system. It begins with data collection, where large-scale
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speech datasets such as LibriSpeech and Common Voice are
gathered. The raw speech data undergoes preprocessing,
including noise reduction, normalization, and augmentation,
to improve model robustness. Next, feature extraction is
performed using Mel spectrograms or MFCCs, converting raw
waveforms into numerical representations. The extracted
features are then fed into deep learning models like
Wav2Vec2, Whisper, and HuBERT, which learn speech
patterns through supervised learning. To further enhance
language understanding, BERT-based post-processing is
applied for grammatical correction and contextual refinement.
Finally, optimization techniques, including the AdamW
optimizer, dropout regularization, and hyperparameter tuning,
help improve the model’s performance and prevent
overfitting. Once training is complete, the model is ready for
evaluation in the testing phase. The proposed training phase is
shown in Figure 1.

| Start Training I Data Collection Preprocessing

[ Feature Extraction ]
[ Wav2Vec2/Whisper/HUuBERT ]—p Apply Model

Training Optimization
Comple{e Techniques
Iy

AdamW/Regularization/
Fine Tuning

1-[ Apply BERT Model ]

Figure 1. Training phase of the proposed model

The testing phase ensures the trained ASR model performs
well on unseen speech data. The trained model is loaded, and
new speech input is processed through the same feature
extraction steps as in training. The ASR model generates a
transcription, which is refined by BERT post-processing to
improve accuracy. The transcription is then evaluated using
key performance metrics such as WER, F1-score, Precision,
Recall, and Latency Analysis. If the performance does not
meet expectations, the model is sent back for retraining with
further adjustments in hyperparameters or additional dataset
augmentation.

l Start Testing l—i- Load Trained Input Speech
Model Data
P v

[ Feature Extraction ]
v
[ Apply BERT Model ]

4——[ Evaluate Performance ]

WERTF1

-Score/
Latency

NO

Best
Maodel

Yes !
Final Transcripted
data

Figure 2. Testing phase of proposed system



If the model meets the accuracy and efficiency benchmarks,
it is deployed for real-world applications with better Accuracy

Transcripted data.

This iterative training and testing process ensures that the
ASR system is optimized for both accuracy and real-time
usability before deployment. The proposed testing phase is

shown in Figure 2.

3.4.4 Structured comparison of ASR models
Table 4 presents the comparison of ASR models like

Whisper, Wav2Vec2, and HuBERT.

Table 4. Comparison of ASR models: Whisper, Wav2Vec2,

and HuBERT
Step Whisper Wav2Vec2 HuBERT
Converts audio Learns
to log-Mel features Uses CNNs to
spectrogram . extract
Feature . . directly from .
. using Fourier phonetic
Extraction raw
Transform and waveforms features from
Mel filter : raw waveforms
banks using CNNs
+
Transformer- CNN
based encoder Transformer Uses CNN +
rocesses encoder, Transformer
pr . extracts but applies
Encoder entire audio X
Processing clips in a speech self-supervised
SeqUEnCe-t0- features clustering for
ge Lence without speech
rr?anner explicit word  representations
boundaries
Uses Predicts
Autoregressive  Connectionist — missing speech
decoder Temporal components
Decodin generates text  Classification before
& word by word (CTC) loss mapping them
(fluent for efficient to text for
transcription)  speech-to-text better
conversion recognition

3.5 Optimization methods

AdamW optimization strategy: The learning rate follows a

cosine decay schedule, given by

1 it
nt = r|min + E (nmax - nmin <1 + cos (?))

where, 1) is the learning rate at training step t, and T represents

the total number of training iterations.

To prevent gradient explosion, gradient clipping is applied

as follows

where, g, is the gradient, and t is the predefined clipping

threshold.

gclipped = Gt

et=

T

"max(t, |ge|)

et—l — Nt Ydlipped

(6a)

(6b)

3.5.1 Algorithm for optimized Telugu ASR model

ASR models (Whisper, Wav2Vec2, HuBERT) with BERT-

based dialect classification.
(1) Feature Extraction

)
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Compute feature representations from speech signals:
* Log-Mel Spectrogram (Whisper):

Smer = log MelFilterBank(|F (x,)|?) @)
where, x; is the input waveform, F is the Short-Time Fourier
Transform (STFT), and MelFilterBank applies the mel-scale
transformation.

» Waveform Embeddings (Wav2Vec2, HuBERT):

®)

where, fywavoveeHuperT represents the feature extraction
model.

(2) Encoder Processing

Apply a Transformer encoder to process extracted features:

©)

where, Z represents the contextualized speech embeddings.
(3) Decoding (Speech-to-Text Conversion)
Convert speech representations into Telugu text using:
* Whisper (Autoregressive Decoder):

Ewav = fwavaveczmuperT (X¢)

Z=TransformerEncoder (Sye; ot Eyqr)

P(Y|Z) = Ti=1 Pe | y<e. Z;0) (10)
where, Y =(y1, y2, ..., yr1) is the output token sequence and 6
represents model parameters.

* Wav2Vec2 (CTC Loss):

Lere = = Zxy log Pere (Y | Z) (11)
where, Pore (Y | Z) is the probability distribution over possible
label alignments where X, Y, Z represents input, label, and
model output respectively.

(4) Text Tokenization
Convert transcriptions into sub word tokens using a
tokenizer T
T=Tokenizer (Y) (12)
where, T=(t,, t2, ..., tx) are subword tokens.
(5) Feature Embedding and Dialect Classification by BERT
» Compute BERT embeddings for subword tokens:

Egerr=faerT(7T) (13)
Apply multi-head attention:
QK™
H = softmax V (14)
Vi

where, Q, K, V are query, key, and value matrices from BERT
embeddings, and dj, is the embedding dimension.
* Dialect Classification using Softmax:

P(C|H) = softmax(WH + b) (15)
where, P(C|H) is the probability distribution over dialect
classes.

4. RESULTS

To assess the performance of our ASR and dialect



classification models, we use the following key evaluation
metrics:

WER: WER measures the percentage of errors in ASR-
generated transcriptions compared to the ground truth. Lower
WER indicates better performance and it is computed as

S+D
WER =

+1

x 100% (16)

where, S denotes substitutions, D deletions, I insertions, and
N the total number of words in the ground truth. Further
decomposing WER into its components:

(17)

where S, D, , I, represent the substitution, deletion, and
insertion rates respectively.

Fl1-score: Fl-score is the harmonic mean of Precision and
Recall, ensuring a balance between false positives and false
negatives

PrecisionXRecall

Fy (18)

Precision+Recall

In addition to WER and F; Score, Macro-F; and Weighted-
F; metrics were computed to ensure balanced evaluation
across dialect classes with unequal representation. Macro-F
measures average per-class performance, while Weighted-F
accounts for class imbalance.

Latency: It Measures the time taken by the ASR model to
transcribe speech and classify dialects. It is measured in
milliseconds (ms) per sentence. Along this we used
Confidence Interval for WER, to ensures WER results are
statistically significant.

Table 5. Impact of optimization on WER for ASR models

Before Optimization After Optimization

Model (WER) (WER)
Whisper 15.2% 12.5%
Wav2Vec2 12.3% 9.8%

HuBERT 14.0% 10.7%

The above Table 5 shows WER before and after
optimization for Whisper, Wav2Vec2, and HuBERT. After
optimization, Wav2Vec2 achieved a 20.3% WER reduction,
outperforming Whisper and HuBERT. These results confirm
that Wav2Vec2 is the best-performing ASR model for Telugu
speech transcription with the lowest WER (9.8%) and
HuBERT improved from 14.0% WER to 10.7%, a 23.6%
relative reduction in error rate, demonstrating the effectiveness
of the optimization techniques. These results demonstrate that
the applied optimization techniques significantly enhance
transcription accuracy, making the models more reliable.

To ensure statistical significance in WER improvements, a
95% confidence interval is computed as:

A * ﬁ(l_ﬁ)
Cl=p+Z / .

where P is the observed WER, Z=1.96 for 95% confidence,
and n represents the sample size. Statistical significance
testing using paired t-tests (p < 0.05) confirmed that the
observed WER improvements after optimization were not due
to random variance but consistent model enhancement. The

(19)
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Figure 3 below presents the comparison of WER before and
after applying optimization.
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Figure 3. Comparison of WER before and after optimization
(lower is better)

The above Figure 3 visually compares the WER before and
after optimization for three speech recognition models:
Whisper, Wav2Vec2, and HuBERT. Each model has two bars;
red represents WER before optimization, while green
represents WER after optimization. This allows for an easy
comparison of how optimization has improved performance.
The values on top of the bars highlight the exact WER
percentages for better clarity. The chart clearly shows that all
three models benefited from optimization, with Wav2Vec2
showing the most significant reduction (from 12.3% to 9.8%),
followed by HUBERT (14.0% to 10.7%) and Whisper (15.2%
to 12.5%). The gridlines and labeled axes enhance readability,
making it evident that optimization significantly improves
model accuracy.

4.1 Dialect prediction

The Table 6 represents the predicted dialect confidence for
different ASR transcriptions of the Telugu phrase. Each
transcription corresponds to a specific dialect, i.e., Telangana,
Andhra, and Rayalaseema, with a confidence percentage
assigned by the BERT model.

Table 6. Predicted Telugu dialects based on ASR
transcriptions using BERT

Input (ASR Predicted Dialect (BERT
Transcription) Output)
" B Telangana (90%)
" JFTYed" Andhra (85%)
"I T Rayalaseema (92%)

The different ASR transcriptions:

1. "R IF°" — Telangana dialect (90%)

2. "D 990" — Andhra dialect (85%)

3. "I IF°9N" — Rayalaseema dialect (92%)

« Rayalaseema dialect ("R 39°90") has the highest
confidence (92%), meaning the model is most certain about
this prediction.

* Telangana dialect ("3&) I follows closely with
90% confidence, indicating a strong association.

« Andhra dialect ("R I¥°9eD") has a slightly lower
confidence (85%), but it is still a valid prediction.



4.2 Dialect classification performance (F1-score)

Table 7 presents three key performance metrics, i.e.,
Precision, Recall, and Fl-score for classifying three Telugu
dialects (Telangana, Andhra, and Rayalaseema).

Key Observations: Rayalaseema dialect performs best
across all metrics, with Precision (92%), Recall (90%), and
Fl-score (91%), indicating strong model confidence in
identifying this dialect. Telangana dialect also shows good
performance, with an Fl-score of 89%, meaning the model
balances precision and recall well. Andhra dialect has the
lowest precision (85%) and Fl-score (86%), suggesting that
this dialect is slightly harder for the model to classify
accurately. Figure 4 presents a clear comparison of
performance metrics across ASR models.

Table 7. Dialect classification performance metrics

Dialect Precision Recall F1-score
Telangana 90% 88% 89%
Andhra 85% 87% 86%
Rayalaseema 92% 90% 91%

Dialect-wise Performance Metrics
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Figure 4. Dialect classification performance metrics
4.3 Optimization and performance improvement

Table 8 compares the different optimizers. The AdamW is
an adaptive optimizer, meaning it adjusts the learning rate
dynamically during training. It converges faster compared to
traditional optimizers and includes L2 weight decay, which
helps prevent over fitting by adding a penalty to large weights.
SGD, on the other hand, uses a fixed learning rate, meaning
the same step size is used throughout training unless manually
adjusted. It has a slower convergence speed because it does
not adaptively adjust learning rates. Additionally, SGD lacks
L2 weight decay, making it more prone to over fitting unless
regularization techniques are added manually. The ablation
study is shown in the Table 9.

Table 8. Comparison of optimizers: AdamW vs. SGD

Learning Convergence
Optimizer Rate Speed Regularization
Adaptation
AdamW Adaptive Faster L2 Weight
Decay
SGD Fixed Slower No L2 Decay

T
Rayalaseema
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Table 9. An ablation study of Wav2Vec2+BERT model

Configuration WER (%) | F1(%)1
Baseline(no optimization) 14.5 87.2
Baseline+ AdamW 12.9 90.5
Baseline + Cosine LR Decay 11.1 923
Baseline+ Gradient Clipping 9.8 94.1

Table improvements in the speech recognition model after
applying different optimizations. The baseline achieved 14.5%
WER and 87.2% F1. Using AdamW reduced WER to 12.9%
and increased F1 to 90.5%. Cosine learning rate decay further
improved performance to 11.1% WER and 92.3% FI.
Gradient clipping was achieved the best results, with 9.8%
WER and 94.1% F1, showing that optimization techniques
enhance model accuracy and reliability.

4.4 Comparison with previous research

Table 10 compares speech recognition models based on
WER, Fl-score, and Latency, providing insights into
accuracy, efficiency, and processing speed. A lower WER
indicates fewer transcription errors, with Wav2Vec2 Large +
BERT (9.8%) achieving the best performance, followed by
HuBERT Large + BERT (10.7%) and Google Chirp ASR
(11.8%). In contrast, Azure Speech-to-Text (15.0%) and
Whisper Telugu Base (14.2%) have higher WERs, making
more errors. The F1-score reflects recognition accuracy, where
Wav2Vec2 Large + BERT (94.1%) and HuBERT Large +
BERT (93.5%) outperform others. Latency measures
processing speed, with HuBERT Large + BERT (100-180ms)
being the fastest, followed by Wav2Vec2 Large + BERT (120-
200ms), making them ideal for real-time use. Whisper Large
+ BERT (500ms+) is the slowest despite high accuracy.

Table 10. Performance comparison of ASR models: WER,
F1-score, and Latency with previous research

WER Fl-score  Latency
Model
(%)) (%) 1 (ms) |
Meta Seamless 4MT 12.8 87.4 250+
Azure Speech-to-Text [16] 15.0 85.9 150-300
Google Chirp ASR [15] 11.8 89.7 200-400
Whisper Telugu Base [11] 14.2 86.2 400+
NVIDIA NeMo ASR [14] 13.0 88.5 150-300
Wav2Vec2 Large + BERT 98 941 120-200
(Proposed)
Whisper Large + BERT 125 923 500+
(Proposed)
HuBERT Large + BERT 107 935 100-180
(Proposed)

Overall, Wav2Vec2 Large + BERT is the best for accuracy,
while HuBERT Large + BERT excels in speed. Google Chirp
ASR balances both. Table 9 Shows the computational
complexity of models. The superior performance of
Wav2Vec2 + BERT is attributed to its contextualized feature
extraction and deep semantic understanding. Wav2Vec2
captures fine-grained phonetic nuances through self-
supervised contrastive learning, while BERT effectively
identifies dialect-specific linguistic patterns. This combination
enhances both transcription accuracy and dialect
discrimination, yielding a 9.8% WER and 94.1% F1-score. All
ASR systems, including Whisper, Wav2Vec2, and HuBERT,
were evaluated under identical experimental conditions. The
evaluations were conducted using the same Telugu test dataset



(2 hours) on NVIDIA A100 GPUs with 40GB VRAM. Metrics
such as WER and F1-score were consistently applied across
all models to ensure fair comparison and reproducibility.

Table 11. Computational complexity analysis of ASR and
dialect models

Training Inference
Model Complexity Complexity
Whisper O(Td) O(Td)
Wav2Vec2 O(nd?) O(nd)
HuBERT O(nd?) O(nd)
BERT (for dialects) O(T?d) O(Td)

In the above Table 11, T is the sequence length, d is the
embedding dimension, and n is the input audio length. Despite
Whisper having O(T2d) training complexity, its inference time
remains competitive due to optimized beam search decoding,
making it feasible for large-scale deployment. The
diagrammatic representation is shown in Figure 5.

The chart shows the WER for each model, where a lower
value is better. Wav2Vec2 Large + BERT (9.8%) and
HuBERT Large + BERT (10.7%) have the lowest errors, while
Azure Speech-to-Text (15.0%) has the highest WER, meaning
it makes more transcription mistakes. The Phoneme-level
analysis revealed that 41% of residual errors were substitution-
related (e.g., confusion between /ta/ and /da/), 32% resulted
from noise interference, and 27% stemmed from lexical
ambiguities among dialects.
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Figure 5. Performance evaluation: WER (%) across different
ASR models

Model vs F1 Score (%)

94.1%

F1 Score (%)

Figure 6. Performance evaluation: F1-score (%) across
different ASR models

Figure 6 highlights the F1-score, where a higher value is
better, representing better accuracy in speech recognition.
Wav2Vec2 Large + BERT (94.1%) and HuBERT Large +
BERT (93.5%) achieve the highest accuracy, while Azure
Speech-to-Text (85.9%) performs the worst. The 5-fold cross-
validation was performed for each hybrid model. The
Confusion matrices showing the class-specific accuracy for
each dialect and produced the Macro-F1 = 94.1% and
Weighted-F1 = 93.8% for Wav2Vec2+BERT. The Error
analysis shows that 7% of errors arise from lexical overlap
between Andhra and Rayalaseema dialects. The confusion
matrix Table 11 illustrates improved class-specific accuracy
across Telangana, Andhra, and Rayalaseema dialects.

Table 12. Confusion matrix of the proposed Wav2Vec2 +

BERT hybrid model
True \ Predicted Telangana  Andhra  Rayalaseema
Telangana 0.95 0.03 0.02
Andhra 0.04 0.91 0.05
Rayalaseema 0.03 0.06 0.91

The above Table 12 illustrates accurate recognition of
Telangana, Andhra, and Rayalaseema dialects, with minor
confusion between Andhra and Rayalaseema due to lexical
overlap. Figure 7 shows the accurate Telugu dialects and
lexical overlap.

H Telangana Andhra Rayalaseema

0.95 0.91 091

0.04p0.03 0.03f 006  (y0.05

Andhra

Telangana Rayalaseema

Figure 7. Accurate recognition of Telugu dialects vs. lexical
overlap

Model vs Latency (ms)

500 ms

Figure 8. Performance evaluation: Latency across different
ASR models

Figure 8 represents processing speed, where lower latency
is better for real-time applications. HuBERT Large + BERT
(100-180ms) is the fastest, while Whisper Large + BERT
(500ms+) is the slowest, making it less ideal for live speech
recognition. To ensure model scalability in low-resource
environments, knowledge distillation and quantization were
applied to compress Wav2Vec2 from 317M to 160M



parameters. The quantized model achieved a real-time factor
(RTF) of 0.92 on CPU, validating its deployment feasibility
for Telugu ASR on edge devices and mobile applications.

5. CONCLUSION

In this research, we proposed an end-to-end ASR and dialect
classification system tailored for Telugu dialect identification.
By leveraging state-of-the-art self-supervised models—
Whisper, Wav2Vec2, and HuBERT—we addressed the
challenge of transcribing Telugu speech without requiring
large annotated datasets. The ASR-generated transcriptions
were then processed using a BERT-based model to classify the
dialects of Telangana, Andhra, and Rayalaseema. Our
approach effectively captures phonetic and syntactic
variations, overcoming limitations of traditional ASR systems
that struggle with dialectal diversity and low-resource
languages.

The integration of SSL techniques enables efficient feature
extraction, contextual speech understanding, and robust
transcription accuracy, even in real-world noisy environments.
Additionally, the dataset preprocessing steps, including noise
reduction, volume normalization, and segmentation, enhanced
the quality and consistency of speech data. Comparative
analysis with existing Telugu ASR models demonstrates the
superiority of our approach in dialect recognition. Overall, this
study provides a scalable and efficient framework for dialect-
aware ASR applications, contributing to the advancement of
speech technology for Telugu and other underrepresented
languages. Future work will explore multi-modal approaches
by incorporating speaker embeddings and linguistic feature
extraction to further refine dialect classification. Additionally,
real-time deployment strategies will be investigated to
improve inference efficiency on edge devices.
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