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The demand for edge intelligence in core image processing scenarios such as smart
surveillance, autonomous driving, and remote healthcare is increasingly urgent. However,
the key challenge lies in the low-power constraints of end devices and the low-latency
requirements of edge networks. In the field of edge image processing, there is a commonly
observed trade-off between semantic fidelity, energy consumption, and latency—a three-
way incompatibility. These factors constrain each other, and traditional methods struggle to
achieve collaborative optimization. Typically, optimizing two aspects often requires
sacrificing the third, becoming a critical bottleneck for industrial deployment. To address
this, we propose a semantic-driven, conditional encoding, and distributed collaborative
three-in-one optimization framework for perception, compression, and transmission. Key
innovations in this framework include: the development of a conditional neural encoding
paradigm to enable adaptive lightweight encoding; the design of a semantic feedback control
system to ensure collaborative stability; and the introduction of a distributed game-theory-
based decision-making mechanism incorporating fairness indicators. Experimental results
show that the proposed method exhibits significant performance advantages in both
conventional and stress test scenarios, such as resource fluctuations, task conflicts, and
heterogeneous terminals. Explainability analysis, through attention map visualization and
game convergence trajectories, demonstrates the adaptive focusing on key semantic areas
and the collaborative equilibrium convergence characteristics. Real power consumption
measurements confirm that the method can dynamically approach the Pareto optimal
boundary of the incompatibility triangle. This research not only provides an efficient
collaborative optimization solution for edge intelligence image processing but also validates
the feasibility of semantic as a core link to integrate sensing, computation, and
communication resources. It provides theoretical references and technical support for the
trends of 6G semantic communication and edge intelligence collaborative autonomy.

1. INTRODUCTION

There is a common intractable triangle contradiction in the
field of edge image processing between semantic fidelity,

The deep integration of edge intelligence and image
processing technology has become a core development trend
in key areas such as intelligent monitoring, autonomous
driving, and remote healthcare [1-3]. Intelligent monitoring
scenarios have an urgent need for real-time object detection,
requiring terminal devices to quickly respond to abnormal
events [4]; autonomous driving relies on the real-time analysis
of road condition images to ensure driving safety, requiring
stable performance in complex environments [5, 6]; in remote
healthcare scenarios, edge preprocessing of images can greatly
reduce cloud transmission pressure and improve diagnostic
timeliness [7]. However, these application scenarios
commonly face strict constraints on terminal devices,
including low power consumption, miniaturization, and long
battery life, while edge networks must meet low-latency and
high-reliability transmission requirements. The technical
contradiction between these two factors severely restricts the
industrial deployment of edge image processing technology.

3171

energy consumption, and latency [8, 9], which constitutes the
core bottleneck of current technological development.
Semantic fidelity refers to the accuracy of retaining key
semantic information in images, including the reliability of
recognizing core contents such as object categories and lesion
areas [10, 11]; energy consumption represents the energy
consumption across the entire chain from sensing sampling,
encoding, compression, to data transmission of terminal
devices [12-14]; latency is defined as the total time cost from
image acquisition, encoding, transmission, edge decoding to
task inference completion [15]. These three factors inherently
constrain each other: improving semantic fidelity often
increases encoding complexity, leading to higher energy
consumption and longer latency; lightweight designs to reduce
energy consumption may cause the loss of semantic
information, affecting task accuracy; reducing latency may
sacrifice transmission reliability and semantic retention.
Traditional research mostly adopts single-dimensional
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optimization strategies, which struggle to break through this
contradiction, failing to meet the comprehensive performance
requirements of edge scenarios.

Research on edge low-power image processing technology
mainly focuses on two directions: lightweight perception and
feature extraction. Lightweight image perception technology
reduces the raw data volume through adaptive sampling,
resolution adjustment, and other methods to reduce energy
consumption in the perception phase [16, 17]; low-power
feature extraction relies on lightweight convolutional neural
networks (CNNs), lightweight Transformers, and other
models to simplify the computational process [18, 19].
However, existing research often optimizes the perception or
feature extraction stages in isolation, lacking collaborative
design with the transmission stage, making it difficult to
balance the intractable triangle contradiction between
semantic fidelity, energy consumption, and latency, and
insufficient adaptability in dynamic scenarios [20]. Image
neural compression and semantic communication are key
technologies to improve transmission efficiency. In recent
years, image neural compression models based on
Transformer, such as STF, Entroformer, etc., have emerged,
significantly improving compression efficiency and semantic
retention ability [21, 22]; semantic communication
frameworks reduce transmission overhead by transmitting
semantic information instead of raw data [23]. However,
existing research mostly focuses on the binary balance
between compression efficiency and semantic fidelity,
ignoring the constraints on terminal energy consumption and
the dynamic characteristics of edge-end collaboration, making
it difficult to adapt to the complex dynamic changes of edge
scenarios and achieve full-link performance optimization.
Edge distributed collaborative optimization technology is
mainly based on deep reinforcement learning or game theory
to build resource scheduling mechanisms, improving system
performance through multi-agent interactions. Existing
methods have shown application potential in edge resource
allocation, task scheduling, and other scenarios, but there are
three major core deficiencies: the reward function design lacks
global fairness considerations, leading to an imbalance
between individual optimization and global optimization; no
systematic theoretical collaborative mechanism has been
established, limiting dynamic adaptability; insufficient
adaptation to the semantic characteristics of image processing
scenarios, making it difficult to match the semantic demand
differences of different tasks accurately [24].

Based on the current research progress, there are four core
research gaps in the field: first, there is a lack of an integrated
collaborative optimization framework for the semantic
fidelity-energy consumption-latency intractable triangle, and
the theoretical and methodological system for dynamically
approaching the Pareto optimal boundary has not been
established; second, existing neural encoding methods have
not formed a unified conditional adaptive paradigm, and the
adaptive adjustment ability lacks sufficient theoretical support,
making it difficult to adapt to the dynamic changes of edge
scenarios; third, the semantic-driven edge-end collaborative
mechanism lacks stability analysis from a control theory
perspective, and the performance fluctuation issues in
dynamic scenarios are prominent; fourth, the reward function
of distributed game decision-making has not effectively
quantified global collaborative efficiency, and there is
insufficient resilience in pressure scenarios such as resource
fluctuations and task conflicts.
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The goal of this research is to propose a collaborative
optimization method integrating conditional neural encoding,
semantic feedback control, and fairness game theory to
achieve dynamic Pareto optimization of semantic fidelity,
energy consumption, and latency in edge image processing
scenarios, breaking through the core constraints of the
intractable triangle contradiction. The core contributions of
this paper are in three aspects: theory, methodology, and
experiments, specifically including:

(1) Proposing the conceptual and quantitative models for the
semantic fidelity-energy consumption-latency intractable
triangle, clearly defining the core objective of collaborative
optimization in edge image processing as dynamically
approaching the Pareto optimal boundary, and providing a
unified problem expression paradigm and theoretical analysis
framework for research in this field.

(2) Constructing a unified conditional neural encoding
paradigm, formally defining the adaptive encoding
mechanism, completing theoretical proofs from the
dimensions of storage complexity, switching smoothness, and
scalability, and proving its significant advantage over
traditional multi-model switching methods, providing new
theoretical support for low-power adaptive encoding.

(3) Designing a semantic-driven edge-end feedback control
system, integrating the perception capabilities of the edge task
network with the execution capabilities of the terminal
encoder, completing system stability and convergence
analysis based on control theory, ensuring collaborative
performance stability in dynamic scenarios.

(4) Proposing a distributed game-theory reward function
integrating the Jain fairness index, quantifying global
collaborative efficiency as an optimizable objective, achieving
the balance between individual low-power demands and
global resource-efficient utilization, and improving the
system's resilience in pressure scenarios.

The structure of the subsequent chapters is arranged as
follows: Chapter 2 provides a detailed introduction to the
overall architecture of the proposed collaborative optimization
framework and the design details of each core module;
Chapter 3 conducts multi-level experimental verification,
including baseline comparison, pressure testing, ablation
experiments, and explainability analysis; Chapter 4 discusses
the insights from experiments, the connection between the
methods and macro technology trends, analyzes existing
limitations, and proposes future research directions; Chapter 5
summarizes the core conclusions of the entire paper, refining
the methodological contributions and application value of the
research.

2. PROPOSED METHOD
2.1 Overall architecture of the semantic-driven
collaborative optimization framework

To break through the intractable triangle contradiction
between semantic fidelity, energy consumption, and latency in
edge image processing, this paper proposes a semantic-driven
collaborative optimization framework, constructing a
perception-encoding-transmission-decoding-feedback
integrated design to achieve deep collaboration and dynamic
adaptation across all stages. The architecture takes semantic
information as the core link, connecting terminal-side
perception encoding, edge-side decoding inference, and global



collaborative  decision-making. Through the organic
interaction of three core modules, the framework establishes a
“state perception - adaptive adjustment - global collaboration
- semantic feedback™ closed-loop optimization mechanism,
ensuring the ability to dynamically approach the Pareto
optimal boundary at the architectural level. This framework
fundamentally discards the inherent flaws of traditional
decoupled designs and achieves a collaborative balance
between semantic fidelity, energy consumption, and latency
by linking parameters across stages and sharing semantic
information, thus adapting to the dynamic characteristics of
edge scenarios.

The core modules of the framework include the conditional
neural encoding perception module, semantic feedback
control module, and fairness-oriented distributed game
decision-making module. Each module has a clear functional
boundary and tight interaction. The conditional neural
encoding perception module is deployed on the terminal
device and is responsible for image perception sampling and
adaptive encoding tasks. Its core is a lightweight encoder
based on the conditional neural encoding paradigm, which
dynamically adjusts encoding parameters according to the
terminal's energy consumption state, channel quality, and
image semantic features, outputting encoding vectors that
adapt to the transmission channel. The semantic feedback
control module runs through both ends of the edge, where the
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edge-side task network extracts image semantic information
and task performance feedback, generating lightweight control
signals and feeding them back to the terminal to guide
dynamic adjustment of the terminal’s perception and encoding
parameters, forming a “terminal execution - edge perception -
feedback adjustment” closed-loop control flow. The fairness-
oriented distributed game decision-making module adopts a
multi-agent architecture, with each terminal acting as an
independent intelligent agent. Based on local states and global
feedback information, the terminal makes decisions on key
parameters such as perception sampling frequency and
transmission power, achieving a balance between individual
low-power demands and global resource-efficient utilization.
Data and control flows interact orderly between modules: the
image data collected by the terminal is processed by the
conditional neural encoding perception module and then
transmitted to the edge-side decoding module via the edge
network; after the edge-side task network completes inference,
semantic feedback and performance indicators are
synchronized to the semantic feedback control module and
distributed game decision-making module; the control
instructions output by the decision-making module and
closed-loop control signals jointly drive terminal module
parameter updates, achieving full-link collaborative
optimization.
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Figure 1. Overall architecture of the semantic-driven collaborative optimization framework

This architecture precisely addresses the intractable triangle
contradiction through the collaboration of the three modules,
providing core support for dynamically approaching the Pareto
optimal boundary. The conditional neural encoding perception
module minimizes terminal energy consumption while
ensuring semantic fidelity, directly alleviating the constraint
between semantic fidelity and energy consumption; the
semantic feedback control module ensures system stability
based on control theory, quickly adjusting feedback to reduce
performance fluctuations in dynamic scenarios and balancing
the dynamic relationship between semantic fidelity and
latency; the fairness-oriented distributed game decision-
making module optimizes the global resource allocation,
avoiding energy waste and latency surge caused by individual
competition, achieving global-level collaboration between the
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three factors. The organic integration of the three modules
forms an integrated architecture, enabling the system to
dynamically adjust optimization goal weights in real-time
under dynamic scenarios. It can dynamically adapt based on
terminal states, channel changes, and task demands, ensuring
that the system approaches the Pareto optimal boundary in
different scenarios, significantly enhancing the overall
performance and environmental adaptability of the edge image
processing system. The specific architecture is shown in
Figure 1.

2.2 Perception-encoding module based on conditional
neural encoding

To achieve precise balance between semantic fidelity and



energy consumption in dynamic scenarios, this paper proposes
a unified conditional neural encoding paradigm, which
generates adaptive weight increments through a meta-super
network to drive the base encoder to dynamically adapt to
terminal states and task demands, fundamentally solving the
inherent flaws of traditional multi-model switching methods.
The architecture is shown in Figure 2. The core idea of this
paradigm is to integrate dynamic information such as terminal
energy consumption state, channel quality, and image
semantic features into a standardized joint state vector. The
meta-super network learns the mapping relationship between
the state and encoding parameters, enabling online dynamic
instantiation of the encoder. Its core formal definition is:

Encoderg(x)=8ase_Encoder(x)#fcb(Condition) (1)
Conditi0n=0'([E,SN7?, W omanticl ) (2)
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where, Encodery(x) is the final instantiated encoder that adapts
to the current scenario, with the input being the raw image x
and the output being the encoding vector adapted for
transmission through the channel; 8 is the set of parameters of
the instantiated encoder, formed by the base encoder
parameters and the weight increments output by the meta-
super network; Base Encoder(x) is a fixed-structure
lightweight base encoder responsible for extracting general
semantic features from the image; f3( ) is the meta-super
network, with ¢ being its learnable parameters. The core
function of the meta-super network is to receive the joint state
vector Condition and output dimension-matching weight
increments; o( ) is a normalization function that normalizes
state parameters with different dimensions to the range [0, 1],
ensuring comparability of the input information; E is the
normalized terminal energy consumption state, SNR is the
normalized signal-to-noise ratio, and Wsemanic is the image
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Figure 2. Perception-encoding module based on conditional neural encoding architecture

The design of the base encoder is deeply optimized for the
characteristics of image processing scenarios, with the core
goal of achieving efficient semantic feature extraction under
the constraint of lightweight design. Its feature extraction
process can be represented as:

F=SA(DSConv(x)) 3)
where, F is the general semantic feature map output by the
base encoder; DSConv( ) is a depthwise separable convolution
operation, which reduces the computational complexity and
parameter scale to 1/8~1/5 of that of traditional convolutions
by separating spatial convolutions and pointwise convolutions
while ensuring accuracy in spatial feature extraction; SA( ) is
the spatial attention mechanism, which calculates the
importance weights of each position in the feature map and
performs weighted fusion, enhancing the representation of key
semantic information such as target regions, and suppressing
the interference of ineffective features in background areas,
thus providing a reliable feature foundation for subsequent
adaptive encoding. The depth of the base encoder’s network
and the number of channels are constrained by lightweight
design to ensure low-power operation on terminal devices.
The meta-super network adopts a lightweight Transformer
architecture, with its core function being to precisely model
the mapping relationship between the joint state vector and

weight increments. Its output process can be represented as:

A9=f¢(Condition)=FFN(MultiHeadAttn(Condition,

Condition,Condition,)) @
where, A8 is the weight increment output by the meta-super
network, and its dimension matches the parameters of the base
encoder; MultiHeadAttn( ) is the multi-head attention
mechanism, which models the interaction between the
dimensions of E, SNR, and Wiemanic in the joint state vector,
enhancing the comprehensiveness of state perception; FFN( )
is the feedforward neural network, which maps the features
output by the attention mechanism to the final weight
increments. The meta-super network is trained end-to-end
with the weighted sum of semantic fidelity loss and energy
consumption loss as the optimization objective, learning the
optimal weight adjustment strategy for different states to
ensure that the instantiated Encoderg(x) satisfies both low
power consumption and high semantic fidelity.

The conditional neural encoding paradigm demonstrates
significant theoretical advantages in storage complexity,
switching smoothness, and scalability, representing a
substantial improvement compared to traditional multi-model
switching methods. In terms of storage complexity, traditional
methods require pre-training and storing N independent
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encoders for N scenarios, resulting in a storage cost of O(N);
whereas this paradigm only requires storing the base encoder
and meta-super network, and the total number of parameters is
far less than the sum of parameters for N independent encoders,
reducing the storage complexity to O(1), which does not
change as the number of scenarios increases. In terms of
switching smoothness, traditional methods achieve scenario
adaptation by discretely switching between different encoders,
which can lead to abrupt changes in semantic features and
performance fluctuations; this paradigm generates continuous,
adjustable weight increments A6 through the meta-super
network, allowing the parameters of Encoderg(x) to change
continuously with the joint state vector, enabling a smooth
transition in the encoding strategy, with performance
fluctuations controlled within 5%. In terms of scalability,
traditional methods require retraining and adding new
encoders for new scenarios, limiting scalability; this paradigm
can quickly adapt to new image types or terminal states
through fine-tuning the meta-super network without
modifying the base encoder structure, significantly improving
generalization and scalability.

The semantic optimization in the perception sampling phase
further reduces energy consumption by generating an image
semantic mask using a lightweight object detection network
and accurately calculating the semantic weight Wiemanic, which
can be represented as:

Wi (iJ)ERegkey

%) (iJ)ERegbg ®)

Wsemantic(i :] ): {

where, (i,j) is the image pixel coordinate; Regi, is the key
semantic region, Regyg is the background region; w; and w; are
the weight coefficients for the key semantic and background
regions, with wi>w,. This lightweight object detection
network adopts the YOLO-Nano architecture, achieving real-
time semantic region segmentation while ensuring object
detection accuracy. After receiving the semantic weights
Wemaniic, the meta-super network drives the perception
sampling module to dynamically adjust the resolution: high-
resolution sampling is applied to Regi., to ensure complete
retention of semantic information, while low-resolution
sampling is applied to Regpg, significantly reducing the
sampling data volume and subsequent encoding energy
consumption. This semantic-aware sampling strategy deeply
collaborates with the conditional neural encoding paradigm,
achieving precise energy consumption control from the
perception source, reducing terminal perception phase energy
consumption by 30%~45%, and further strengthening the
balance between semantic fidelity and energy consumption.

2.3 Semantic-driven closed-loop control module

To ensure the collaborative stability of the perception-
encoding-transmission full-link in dynamic edge scenarios and
respond to performance impacts caused by channel quality
fluctuations, terminal energy consumption changes, and
dynamic task demand switching, this paper designs a
semantic-driven closed-loop control module, constructing an
end-to-edge collaborative closed-loop adjustment mechanism.
The module takes semantic information as the core feedback
carrier, dynamically calibrating the terminal encoding
parameters and edge decoding strategy through the
“perception-decision-execution-feedback™ closed-loop link,
ensuring that the system can still stably approach the Pareto
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optimal boundary of semantic fidelity, energy consumption,
and latency in complex dynamic environments. Its core value
lies in compensating for the deficiencies of traditional open-
loop feedback response delay and insufficient adaptability,
providing precise and real-time adjustment guidelines for the
conditional neural encoding module, achieving dynamic
balance of the end-to-edge collaboration. Figure 3 shows the
complete architecture of the semantic-driven closed-loop
control module.

The semantic-driven closed-loop control system consists of
four core units: sensors, controller, actuator, and feedback link,
with functional coupling and closed-loop links between them.
The sensor is provided by the edge-side task network, and its
core function is to perceive two key pieces of information in
real-time: (1) the image processing task performance, which
quantifies the level of semantic fidelity under the current
encoding strategy; (2) the image semantic feature distribution,
extracting core semantic information such as target region
types and semantic importance rankings. The controller is the
edge-side semantic decision unit, which, based on the task
performance data collected by the sensor, global channel status,
and terminal energy consumption feedback, generates
lightweight control signals through preset decision rules to
achieve a precise mapping of “performance-state-control.”
The actuator is the terminal-side conditional neural encoding
module, which dynamically adjusts encoding parameters upon
receiving the control signals, completing adaptive updates to
the encoding strategy. The feedback link adopts a lightweight
semantic communication channel, which quantifies the
encoding compression control signal data volume and reduces
feedback energy consumption while ensuring transmission
real-time performance, forming a complete closed loop of
“terminal execution - edge perception - decision feedback -
terminal adjustment.”

The design of the semantic control signal focuses on
adaptability and lightweight, with the core goal of accurately
guiding the terminal encoding strategy to match edge task
demands. Its formal expression is:

U=[o- W:emantics “Vmax] (6)
where, U is the semantic control signal vector, o is the
semantic priority adjustment coefficient (a€[0.6,1.2], which is
dynamically adjusted based on task performance error),
Wi omaniic 18 the optimal semantic weight vector decided by the
edge, used to update the priority of terminal semantic
perception sampling and encoding; f is the encoding
parameter constraint coefficient (f€[0.5,1.0], which is related
to channel bandwidth and terminal energy consumption state),
and 7qx is the maximum allowable compression ratio, defining
the adjustment range of encoding parameters.

The two core components of the control signal form a
synergy: semantic priority updating adjusts the semantic
weights of different regions to ensure the encoding fidelity of
key semantic information, avoiding performance degradation
of core tasks due to excessive lightweighting; encoding
parameter constraints balance encoding energy consumption
and transmission latency by limiting the upper bound of
compression ratios, preventing energy surges in transmission
due to insufficient compression or semantic loss due to
excessive compression. For different image processing tasks,
the control signal can dynamically adapt the semantic priority
ranking, such as in target detection tasks, prioritizing the
semantic weight of target regions, while in semantic



segmentation tasks, enhancing differentiated adjustment of
pixel-level semantic category weights.

The system's stability and convergence are the core
guarantees of the closed-loop control's effectiveness, and this
paper proves it rigorously based on Lyapunov optimization
theory. The core error term of the system is defined as the task
performance error e(f), which is the deviation between the
current semantic fidelity and the preset performance threshold,
e(t)=Ttarget—1(t), where Ttarget 1is the preset task

performance threshold and 71(¢) is the actual task performance
at time ¢. The Lyapunov function is constructed as follows:

1 1
V(=3¢ (0+ 5 AT (OPAO(D) ()
where, A8(¢) is the deviation vector of the encoding parameters
from the optimal parameters at time #, and P is a positive-
definite symmetric matrix, ensuring the function is positive
definite, i.e., V(£)>0 for all e(¥)=0 or AG(£)=0, and V(0)=0.
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Figure 3. Architecture of the semantic-driven closed-loop control module

Taking the time derivative of the Lyapunov function and
analyzing its negative definiteness:
I(ty=e(0)e(£)+A0" (1) PAO(1) )
Combining the mapping relationship between task
performance and encoding parameters é(f)=-ke(f)-k,A0(?),
where (k;, k, > 0 ) are proportional coefficients, and the
encoding parameter update rule AO(f)=-k;AO(f)+k, U(f), where
( k3, k4 > 0 ) are adjustment coefficients, substituting the
control signal U(¢) and the relationship with the error term, we
derive V(f)<-AV(f), where A>0 is the convergence rate
coefficient. This result shows that the derivative of the
Lyapunov function is strictly negative definite, so the closed-
loop system is asymptotically stable, and the task performance
error e(?) will converge to a small neighborhood around 0 over
time, with fluctuations controlled within 5%, meeting the
performance stability requirements of edge image processing.
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Further analyzing the convergence of encoding parameters,
by integrating F(£)<-AV(f), we get V(£)<V(0)e ™, and as t—+oo,
V(t)—0, leading to AB(£)—0, i.e., the encoding parameters will
rapidly converge to the optimal value. From the theoretical
analysis, the parameter convergence time constant is =1/4,
and by reasonably setting the adjustment coefficients k1~k4,
the convergence time can be controlled within 10 data
transmission cycles, ensuring the system’s fast response to
dynamic scene changes. In summary, the semantic-driven
closed-loop control module provides a stable and efficient
dynamic adjustment mechanism for full-link collaborative
optimization through rigorous structural design and theoretical
guarantees.

2.4 Fairness-oriented distributed game decision-making
mechanism

To address the imbalance between individual optimality and



global optimality in multi-terminal competitive edge resource
scenarios and ensure the collaborative efficiency and fairness
of resource allocation in dynamic scenes, this paper proposes
a fairness-oriented distributed game decision-making
mechanism. This mechanism models each terminal device as
an independent intelligent agent and uses game interactions to
achieve adaptive resource allocation and dynamic adjustment
of decision parameters. The core objective is to maximize the
global utilization efficiency of edge network resources while
satisfying the low power consumption needs of each terminal

and the performance constraints of image processing tasks,
enhancing the system's resilience under stress scenarios such
as task conflicts and channel fluctuations. Its design
overcomes the shortcomings of traditional distributed
decision-making, which ignores global fairness, by integrating
collaborative efficiency rewards that guide the agents to
spontaneously form cooperative behaviors, providing global
decision support for full-link collaborative optimization.
Figure 4 shows the principle diagram of the fairness-oriented
distributed game decision-making mechanism.
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Figure 4. Principle of the fairness-oriented distributed game decision-making mechanism

The agent modeling centers on the terminal device and
constructs the agent framework of “local state perception —
global information interaction — strategy autonomous
decision-making.” Each terminal corresponds to an
independent game agent, whose observation space integrates
local state and global feedback information, forming a high-
dimensional observation vector, formally expressed as:

Oi:[Eia Ws‘emantic,i’SNRi,local’J’C] (9)
where, O; is the observation vector of the i-th agent; E;
Wemantic,i, and SNR; jocai represent the local energy consumption
state, semantic weight vector, and local channel quality of
terminal i, respectively; J is the global Jain fairness index,
quantifying the fairness level of edge resource allocation; and
C is the channel congestion level, generated by the edge server
based on global transmission traffic statistics. The decision
goal of the agent is to adjust decision variables such as
sampling resolution, encoding compression ratio, and
transmission power to balance individual reward
maximization and global collaborative efficiency, avoiding
channel congestion or resource waste caused by malicious
individual competition.

The policy network adopts a hybrid mode of “offline
centralized pre-training + online distributed execution,”
balancing decision accuracy and real-time performance. In the
offline pre-training phase, utilizing the computing power
advantage of the edge server, a simulation environment
containing multiple terminals and multiple scenarios is
constructed. Through centralized training, all agents share
global data and learn collaborative decision strategies under

different scenarios. The input of the policy network is the
normalized observation vector O; and the output is the
normalized decision variable vector A=[s;,7,pi], where s; is the
sampling resolution level, r; is the encoding compression ratio,
and p; is the transmission power level. The network structure
uses a lightweight Transformer architecture, modeling the
interaction between local state and global feedback in the
observation vector through a multi-head attention mechanism
to improve the adaptability of the decision strategy. At the
same time, channel pruning technology is introduced to reduce
network computational complexity and ensure low-power
characteristics in the online execution phase. In the online
execution phase, each agent independently infers and outputs
decisions based on local observation information, without
intervention from the central node, and only shares the global
Jain fairness index and channel congestion level through the
edge server for distributed collaborative decision-making.

The design of the reward function is the core of guiding the
agent to achieve individual and global collaborative
optimization. It uses a weighted fusion mechanism to integrate
three reward terms: power consumption savings, task
performance, and collaborative efficiency, formally defined as:

Ri:a'Rpawer,i+ﬂ’Rta,¥k,i+y'Rcoop (1 0)
where, R; is the total reward of the i-th agent; a, 5, and y are
the reward weight coefficients, satisfying o+f+y=1, which can
be dynamically adjusted based on the terminal energy
consumption state and task priority. When the low power
consumption constraint is strict, o is increased, and when the
task priority is high, £ is increased. R, =ky - In(E,,, i /E;) is

ower,i
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the power consumption savings reward, positively correlated
with the energy consumption savings of terminal 7, where k; is
a proportional coefficient, Eqx,; is the maximum rated power
consumption of terminal 7; Ry, is the task performance
reward, positively correlated with the image processing task
accuracy, in the case of target detection tasks Ry, =k, mAP;,
where k> is a proportional coefficient and mAP; is the mean
average precision mAP; of terminal i's target detection.

Reo0p 1s the collaborative efficiency reward, which integrates
the global Jain fairness index and channel congestion level to
quantify global collaborative efficiency:

Rcoop:r/'J'C'C (1 1)

where, 7, {are weight coefficients; J is the Jain fairness index.

) ()

where, x; is the resource usage of terminal i and N is the total
number of terminals. The closer J is to 1, the more equitable
the resource distribution; C is the channel congestion level,
C=Traffic/Bandwidth,..., where Traffic is the current total
channel traffic and Bandwidth is the maximum channel
bandwidth. The larger the value of C, the more serious the
channel congestion. This design ensures that the agent's
reward is not only dependent on its own performance but also
linked to global fairness and congestion status, guiding the
agent to avoid malicious competition and proactively engage
in global collaboration.

The core of game equilibrium analysis is to prove that the
system can converge to a Nash equilibrium that balances
individual interests and global fairness. A distributed game is
defined as G={N,4,,U;}, where N={1,2,..,N} is the set of
agents, 4; is the action space of agent i, and U=R; is the utility
function of agent i. The definition of Nash equilibrium is: for
all agents i, when the strategies of other agents are fixed as A:,
the optimal strategy 4; of agent i satisfies
Uild; A5)2U(4;.47) for all 4,€4,

Through theoretical derivation, it can be proven that the
utility function U; is strictly concave: since Rpower,i, Riask,i, and
Reoop are all strictly concave functions of the decision variables,
their weighted sum U, remains strictly concave. According to
game theory, a strictly concave utility function corresponds to
a unique Nash equilibrium in a distributed game. Further
analysis shows that at this equilibrium point, the decision
strategies of each agent can achieve a balance between
individual reward maximization and global fairness. At this
point, the Jain fairness index J > 0.85, and the channel
congestion level C < 0.7, satisfying the resource allocation
requirements of edge scenarios. In terms of simulation
verification, by plotting the decision trajectory and reward
change curve of multiple agents in a task conflict scenario, the
process of the system converging from initial random
decisions to Nash equilibrium can be intuitively displayed.
The convergence time does not exceed 20 data transmission
cycles, verifying the fast convergence and stability of the game
decision-making mechanism.

(12)

2.5 End-to-end training and optimization

To ensure deep adaptation of the modules in the semantic-
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driven collaborative optimization framework and achieve
global performance optimization, this paper designs a
systematic end-to-end training and optimization process. This
is achieved through the coordinated design of a joint training
environment, staged training strategy, transfer learning
initialization, and adaptive optimization mechanism,
balancing training efficiency and model performance. The
core objective is to allow the condition neural encoding
module, semantic feedback control module, and distributed
game decision-making module to form adaptation under a
unified optimization goal, ensuring that the system can stably
approach the Pareto optimal boundary of semantic fidelity,
energy consumption, and latency in real-world edge scenarios.
The basis of the training process is to construct a joint
training environment that integrates image datasets, channel
simulations, and power consumption models. The image
datasets merge publicly available datasets from multiple
scenarios with real collected data, covering different lighting
conditions, target densities, and image types, ensuring
diversity and representativeness of the training samples. The
channel simulation module supports typical edge channel
models such as Rayleigh fading and AWGN, dynamically
adjusting parameters like signal-to-noise ratio and bandwidth,
to simulate real dynamic changes in the edge network. The
power consumption model is built based on the terminal
hardware characteristics, quantifying the energy consumption
overhead of perception sampling, encoding computation, and
transmission in each link, achieving precise evaluation and
optimization of energy consumption during the training
process. On this foundation, a staged training strategy is
adopted to reduce the instability of multi-module collaborative
training. The first stage pre-trains the condition neural
encoding module and the semantic feedback control module,
with a joint loss of semantic fidelity and energy consumption
as the optimization target, allowing the encoder and feedback
control system to initially adapt to the dynamic constraints of
edge scenarios. The second stage fixes the pre-trained module
parameters as initial values and introduces the distributed
game decision-making module for global joint training. The
Pareto optimization objective function of the entire framework
guides the deep collaboration of decision strategies with the
encoding and control modules. To improve training efficiency,
a transfer learning strategy is introduced. The parameters of a
lightweight CNN model pre-trained in the image domain are
used to initialize the base encoder of the condition neural
encoding module, reducing the amount of data and iterations
required for model convergence by leveraging the general
knowledge of image feature extraction. Meanwhile, an
adaptive learning rate strategy based on training loss is
adopted. The initial learning rate is set to le-3, and when the
training loss does not show significant improvement for 3
consecutive epochs, it automatically decays to 1/10 of its
original value, balancing the convergence speed in the early
stage and convergence precision in the later stage. An early-
stopping mechanism is introduced, using global performance
metrics on the validation set as the criteria. When the metrics
do not improve for 5 consecutive epochs, the training is
terminated to avoid overfitting and ensure model
generalization ability. The entire training process is
implemented based on the PyTorch framework, using multi-
GPU parallel acceleration for training. The parameters of each
module are wupdated end-to-end through gradient
backpropagation, ensuring efficient collaboration across all
links of the framework under a unified optimization goal.



3. EXPERIMENTS AND RESULTS
3.1 Experimental setup

To comprehensively validate the effectiveness and
superiority of the proposed semantic-driven collaborative
optimization framework, this section constructs a standardized
experimental system from four dimensions: dataset,
experimental platform, comparison methods, and evaluation
metrics, ensuring the reliability, repeatability, and
comparability of the experimental results. The experimental
design covers both conventional and stress-test scenarios,
balancing performance validation, generalization evaluation,
and theoretical hypothesis verification to fully support the
research conclusions.

The experiment adopts a combined approach of "public
datasets + real-world scenario datasets" to ensure data
diversity and scene authenticity. Three major authoritative
public datasets are selected, covering core tasks such as object
detection, semantic segmentation, and medical image
processing: the COCO2017 dataset contains 118k training
samples and 5k validation samples, covering natural scenes,
city roads, etc. The annotations include 80 object categories,
bounding boxes, and segmentation masks, used for object
detection task validation; the Cityscapes dataset contains 5k
fine-grained annotated samples and 20k coarse-grained
annotated samples, focusing on urban scenes, with 19
semantic  categories annotated, wused for semantic
segmentation task validation; the BraTS2021 dataset includes
1,251 brain MRI samples, annotated with tumor cores, edema
regions, and other key lesion areas, used for medical image
edge preprocessing task validation. The real-world scenario
dataset is collected through intelligent monitoring cameras,
covering campus, park, and other scenes, with different
lighting and weather conditions such as sunny, cloudy, and
night, as well as varying target densities such as sparse targets
and dense crowds. A total of 8k images are collected and
manually annotated for validating the method's adaptability in
real edge scenarios.

The experimental platform adopts an edge-terminal
collaborative architecture, with hardware configurations
aligned with real edge deployment scenarios: the terminal
devices are the Jetson Nano and Raspberry Pi4B, equipped
with Quad-core ARM Cortex-A57 and Cortex-A72 processors,
respectively, with 4GB of memory, simulating heterogeneous
edge terminals. The edge server is configured with an Intel i9-
13900K processor, NVIDIA RTX 4090 GPU, and 64GB of
memory, providing high-intensity computing and inference
capabilities. At the software level, the training and simulation
platform is built based on the PyTorch 2.0 framework,
integrating Rayleigh fading and AWGN channel simulation
modules, supporting dynamic adjustment of signal-to-noise
ratio, bandwidth, and other parameters. Python 3.9 is used as
the development language, with OpenCV for image
preprocessing and TensorBoard to record training process
metrics. Energy consumption measurement is carried out
using the PowerMonitor power meter, with a sampling
frequency of 1kHz, to collect real-time terminal current and
voltage data, calculating energy consumption in joules.
Latency measurement uses a high-precision timer to record
delays in image acquisition, perception sampling, encoding,
transmission, decoding, and task inference, ultimately
summarizing the total end-to-end delay.

Five of the latest research results are selected as baseline

3179

methods, covering traditional separated design, neural
compression, and edge collaboration, ensuring the
comprehensiveness and specificity of the comparison: 1)
JPEG2000 + Faster R-CNN: A traditional image compression
and edge image processing separated scheme, representing the
performance limit of traditional technology; 2) STF + Fixed
Transmission: An advanced image neural compression
method based on Transformer, using fixed transmission power
and compression ratio strategies, representing mainstream
technology in the neural compression field; 3) Entroformer +
Fixed Transmission: The current state-of-the-art method in the
image neural compression field, with efficient entropy
encoding as the core advantage; 4) EdgeAl-Net: A
representative low-power edge image processing method,
optimizing terminal energy consumption through lightweight
model design; 5) DRL-Edge: A reinforcement learning-driven
edge resource scheduling method, representing the current
research level in distributed collaborative optimization. All
comparison methods are deployed on the same experimental
platform, with unified parameter tuning strategies to ensure
fairness.

The experiment adopts a multi-level evaluation system with
"core indicators + auxiliary indicators" to comprehensively
quantify system performance. The core indicators include
semantic fidelity, energy consumption, latency, task accuracy,
and Jain fairness index. Among these, semantic fidelity is
quantified through key region feature similarity, calculating
the cosine similarity between terminal encoding features and
edge decoding features; energy consumption refers to the
terminal's total end-to-end energy consumption, in joules;
latency refers to the total end-to-end delay, in milliseconds;
task accuracy is measured using mAP and IoU, depending on
the task type; Jain fairness index quantifies the fairness of
multi-terminal resource allocation, with values ranging from 0
to 1, where a value closer to 1 indicates better fairness.
Auxiliary indicators include model parameters, which
measure the model's lightweight degree; channel utilization,
which calculates the ratio of actual transmission traffic to
maximum channel bandwidth; and system robustness,
measured by the amplitude of performance fluctuations, i.e.,
the maximum rate of change of core indicators under dynamic
scenarios.

3.2 Experimental results and deep analysis

This section systematically validates the proposed
semantic-driven collaborative optimization framework from
five dimensions: baseline comparison, stress testing, ablation
experiments, interpretability analysis, and real-world scenario
validation. The effectiveness, superiority, and practicality of
the framework are fully demonstrated through a combination
of quantitative data and qualitative analysis, and the working
principles of the core mechanisms are deeply explained.

3.2.1 Baseline comparison experiment

The baseline comparison experiment aims to verify the
comprehensive performance advantages of the proposed
method compared to existing mainstream technologies. Both
quantitative and qualitative analyses are conducted.

From Table 1, it can be seen that the proposed method
achieves a comprehensive lead in core indicators. The
semantic fidelity reaches 88.6%, which is 2.9 percentage
points higher than the best baseline, Entroformer+Fixed
Transmission, indicating stronger capability to preserve key



semantic information. Energy consumption is reduced to
6.2)/frame, 27.1% lower than EdgeAl-Net, significantly
optimizing the terminal's low-power consumption
requirements. Latency is shortened to 102ms/frame, 18.4%
lower than DRL-Edge, meeting the real-time requirements for
edge scenarios. The mAP reaches 76.8%, which is 2.7
percentage  points  higher than  Entroformer+Fixed
Transmission, ensuring superior task performance. In terms of
global collaboration-related indicators, the Jain index of the

proposed method is as high as 0.91, 16.7% higher than DRL-
Edge, reflecting excellent fairness in resource allocation. The
channel utilization is as low as 65.2%, effectively reducing
congestion risks. In auxiliary indicators, the proposed method
has the smallest parameter count at 26.3M, with significant
lightweight advantages. The performance fluctuation is only
4.2%, which improves robustness by 44.7% compared to the
best baseline.

Table 1. Comparison of core and auxiliary indicators of baseline methods and proposed method (COCO2017 object detection

task)
. Energy . Channel Robustness
Method Fiscfelgans; ) Consumption (nl;:/tff‘:ge) 1?‘:/4 f Ifli:ll:x IC,?)?HTE;Z; Utilization (Performance
ty (% (J/frame) ’ (%) Fluctuation %)
JPEG2000+FasterR- 783 12.6 185 68.5 0.62 4238 82.5 123
CNN
STF+Fixed 83.5 9.8 152 723 0.65 352 76.3 10.1
Transmission
EntroformerFixed 85.7 10.3 148 741 0.68 386 738 9.5
Transmission
EdgeAl-Net 82.1 8.5 136 71.8 0.72 28.4 79.2 8.3
DRL-Edge 83.2 9.1 125 735 0.78 31.5 68.5 7.6
Proposed Method 88.6 6.2 102 76.8 091 26.3 65.2 4.2
Table 2. Performance of core indicators of each method under stress test scenarios
Scenario Method Semantic Cofszili{ion Latency mAP Jain Performance
3 3 o [ 3 o,
Fidelity (%) (J/frame) (ms/frame) (%) Index Fluctuation (%)
Severe Resource Fluctuations L 2 Gzog?vf‘mm' 72.1 153 226 623 0.58 16.8
ST Fixed 773 125 189 678 0.6l 14.2
Transmission
(Battery 80%—20%: E”’;‘;J; o ’frig isr‘l"ed 79.5 13.1 182 692 0.63 13.5
SNR20dB—5dB) EdgeAL-Net 75.8 10.8 168 66.5 0.67 11.8
DRL-Edge 77.6 11.5 154 689 0.73 10.2
Proposed Method 84.2 7.5 128 72.5 0.86 5.1
JPEG2000+FasterR-
CNN 70.3 16.2 258 60.1 045 18.5
TSer :m}j:;fjn 75.1 13.8 215 653 0.49 15.7
Task Conflict (5 Terminals Entroformer+ Fixed
Concurrently .. 77.2 143 208 66.8 0.52 14.9
Transmission
EdgeAl-Net 73.6 11.6 192 642 0.58 13.1
DRL-Edge 75.8 12.3 176 66.5 0.65 11.5
Proposed Method 82.5 8.1 142 70.3  0.89 5.8
JPEG2000+FasterR-
CNN 73.5 13.8 201 63.8 0.56 15.2
STE Fixed 782 10.9 168 685 0.59 12.6
. Transmission
Heterogeneous Terminals Entrofe -+ Fixed
(JetsonNano+RaspberryPi4B) nirojormer ¥1xe 80.4 115 162 701 0.62 11.9
Transmission
EdgeAl-Net 76.9 9.2 148 67.9 0.66 9.8
DRL-Edge 78.5 9.9 135 69.8 0.72 8.7
Proposed Method 85.3 6.8 115 742 0.90 4.5

3.2.2 Stress test experiment

The stress test experiment aims to verify the adaptability
and resilience of the proposed method in extreme dynamic
scenarios, covering three major scenarios: severe resource
fluctuations, task conflicts, and heterogeneous terminals. The
experimental data is shown in Table 2.

In the severe resource fluctuation scenario, when the
terminal's battery drops by 60% and the channel SNR drops by
15dB, the performance of all methods declines, but the
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proposed method has the smallest performance fluctuation
(5.1%), significantly lower than other baselines. Its semantic
fidelity remains at 84.2%, energy consumption is only
7.5)/frame, and latency is 128ms/frame, with all core
indicators outperforming the baseline methods. This is due to
the rapid adaptability of the conditional neural encoding
paradigm and the stability adjustment of semantic closed-loop
control, allowing the system to quickly respond to drastic
changes in resources and channels, dynamically adjusting



encoding parameters and transmission strategies to ensure
stable core performance.

In the task conflict scenario, when 5 terminals concurrently
perform high-priority object detection tasks, baseline methods
generally experience energy consumption surges, significant
latency increases, and deteriorating fairness, with the Jain
index as low as 0.45. The proposed method, by integrating the
distributed game decision-making mechanism with the Jain
fairness index, maintains a high Jain index of 0.89,
significantly improving resource allocation fairness. At the
same time, energy consumption is controlled at 8.1J/frame,
latency is 142ms/frame, and mAP remains at 70.3%, showing
excellent congestion control capability and collaborative
decision-making efficiency, avoiding system performance
collapse caused by individual competition.

In the heterogeneous terminal scenario, when different
terminals with varying computational capabilities are mixed

and deployed, the proposed method still exhibits significant
comprehensive performance advantages. Its semantic fidelity
of 85.3%, mAP of 74.2%, and the lowest energy consumption
of 6.8J/frame, along with a Jain index of 0.90, reflect its good
adaptability to heterogeneous terminals. This is attributed to
the scalability of the conditional neural encoding paradigm
and the flexibility of the distributed game decision-making,
allowing the system to dynamically adapt encoding strategies
based on the computational capabilities of different terminals,
achieving optimal global performance.

3.2.3 Ablation experiment

The ablation experiment verifies the necessity and
contribution of each core module in the proposed method by
progressively removing them. The experimental results are
shown in Table 3.

Table 3. Ablation experiment results (COCO2017 object detection task)

Energy

Experimental Setup Semantic Consumption Latency mAP  Jain Performance
31 M o, 0, 3 o,
Fidelity (%) (J/frame) (ms/frame) (%) Index Fluctuation (%)
Proposed Method (Complete Model) 88.6 6.2 102 76.8 091 4.2
Ablation 1: Remove Conditional Neural
Encoding (Fixed Encoder) 82.3 8.9 126 72.1  0.89 53
Ablation 2: Remove Semantic Closed-loop

Control (Open-loop Feedback) 86.5 6.5 115 74.6 090 8.7
Ablation 3: Remove Cooperative Efficiency 372 63 108 753 076 45

Reward (R_coop=0)

Ablation 1: Removing the conditional neural encoding and
using a fixed encoder results in a decrease of 6.3 percentage
points in semantic fidelity, a 43.5% increase in energy
consumption, and a 23.5% increase in latency. This indicates
that the conditional neural encoding paradigm is crucial for
balancing energy consumption and fidelity. Its dynamic
weight adjustment mechanism can accurately adapt to changes
in the scene, maximizing energy efficiency while preserving
semantic fidelity. The fixed encoder cannot meet the dynamic
scene's multiple constraint requirements.

Ablation 2: Removing the semantic closed-loop control and
adopting open-loop feedback mode results in an increase of
performance fluctuation from 4.2% to 8.7%, with semantic
fidelity and mAP dropping by 2.1 and 2.2 percentage points,
respectively. This verifies the critical role of the semantic
closed-loop control module in system stability. The closed-
loop adjustment mechanism can calibrate encoding parameters
in real-time and suppress performance fluctuations under
dynamic scenes, whereas open-loop feedback suffers from
response delays, leading to performance degradation.

Ablation 3: Removing the cooperative efficiency reward
causes the Jain index to drop sharply from 0.91 to 0.76, a
16.5% decrease, indicating that the cooperative efficiency
reward is central to ensuring global fairness. After removal,
the agents only pursue individual benefit maximization,
leading to an imbalance in resource allocation and a decrease
in global collaboration efficiency. This confirms the necessity
of integrating the Jain fairness index into the reward function
design.

In conclusion, the three core modules play key roles in
balancing energy consumption and fidelity, system stability,
and global collaborative fairness, which collectively support
the comprehensive performance advantage of the proposed
method.
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3.2.4 Interpretability analysis

To verify the collaborative convergence performance of the
distributed game decision-making mechanism in multi-
terminal task conflict scenarios, the transmission power and
global total reward of five agents were dynamically analyzed.
From Figure 5, it can be seen that within the first 15
transmission cycles, the transmission power of each agent
exhibits severe random fluctuations in the range of 10~25 dBm,
with the global total reward slowly rising from an initial value
of around 30. After 15 cycles, the transmission power of all
agents converges to a stable range around 18 dBm, and the
global total reward rises to above 90 and remains stable. This
result indicates that the proposed distributed game decision-
making mechanism can quickly guide the agents from
disordered competition to the Nash equilibrium state,
achieving a balance between individual transmission strategies
and global collaboration efficiency, thereby validating the
efficient collaboration capability of this mechanism in multi-
terminal task conflict scenarios.

To verify the stability and rapid response capability of the
semantic closed-loop control module under severe resource
fluctuation scenarios, the dynamic changes in semantic fidelity,
energy consumption, and latency were analyzed. In Figure 6,
at frame 100, when a resource mutation occurs, i.e., the
terminal’s battery drops by 60% and the channel SNR drops
by 15dB, the semantic fidelity of Ablation 2 drops sharply by
8.3% to 77.7%, energy consumption surges by 22.1% to 8.0
J/frame, and the fluctuation persists for 12 frames. In contrast,
the proposed method’s semantic fidelity only slightly
decreases by 4.5% to 83.5%, and energy consumption
increases by 9.7% to 6.8 J/frame, quickly recovering to stable
levels within 5 frames. This result confirms that the Lyapunov-
based semantic closed-loop control module effectively
suppresses dynamic resource interference, ensuring system



stability and rapid recovery, thus supporting the robustness of monitoring scenario, running continuously for 24 hours,

the full-link collaborative optimization framework in dynamic covering three time periods: daytime (8:00 AM - 6:00 PM),
scenarios. nighttime (6:00 PM - 12:00 AM), and early morning (12:00
AM - 8:00 AM). Core indicators were measured under
3.2.5 Real-world scenario validation different lighting and crowd density conditions. The results are
A prototype system was deployed in a campus smart shown in Table 4.
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Figure 5. Game convergence trajectory and total reward change in task conflict scenario
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Figure 6. Dynamic performance changes of the system under severe resource fluctuation scenario
Table 4. Real-world scenario 24-hour validation results
. C e . Energy
Time Lighting/Crowd Semantic Consumption Latency mAP Average Performance
. ", e o N N
Period Conditions Fidelity (%) (J/frame) (ms/frame) (%) Fluctuation (%)
Daytime Strong light, high- 87.8 6.3 105 75.6 4.1
density crowd
Nighttime " cak light, medium- 86.2 6.5 108 742 45
density crowd
Early No light, low-density 883 61 101 771 33
Morning crowd
24-Hour - 87.4 6.3 105 75.6 4.1
Average
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The real-world scenario validation results show that the
proposed method still maintains stable and excellent
performance in complex real-world environments. The 24-
hour average semantic fidelity is 87.4%, mAP is 75.6%,
energy consumption is 6.3 J/frame, and latency is 105
ms/frame. The performance fluctuation across all time periods
is below 5%, effectively adapting to dynamic changes in
lighting and crowd density. Compared to the baseline method
DRL-Edge, the proposed method reduces the average energy
consumption by 28.3%, latency by 19.6%, and mAP by 3.2
percentage points, fully verifying its practical application
value and deployment feasibility.

4. DISCUSSION

This work is highly aligned with cutting-edge technological
trends such as 6G semantic communication, edge Al body
coordination, and autonomy, providing key technical support
and paradigm references for the development of related fields.
In the 6G semantic communication domain, the core goal is to
achieve "task-oriented" efficient data transmission, moving
away from the traditional "bit transmission" model toward
"semantic information transmission." The conditional neural
encoding paradigm proposed in this paper, by integrating
semantic weights with dynamic adjustments of encoding
strategies based on channel and energy consumption states,
essentially represents a realization of semantic communication
in the edge image processing scenario. The encoding process
only retains the core semantic information required for the task,
greatly reducing transmission redundancy, which aligns with
the 6G core demand for "on-demand transmission." At the
same time, the semantic-driven closed-loop control and
lightweight feedback loop design provide a practical technical
solution for the end-edge collaborative architecture of 6G
semantic communication. Its stability analysis and
performance verification can provide theoretical references for
the design of dynamic adaptation mechanisms in 6G semantic
communication.

In the field of edge Al body coordination and autonomy, the
distributed collaboration and autonomous decision-making of
multi-terminal devices are core development directions,
widely applied in complex scenarios such as vehicle-road
collaboration and industrial IoT. The fairness-oriented
distributed game decision-making mechanism proposed in this
paper models each terminal as an independent agent, achieving
autonomous collaborative decision-making through global
feedback information, without the need for central node
intervention, which fits the core need for "distributed
autonomy" in edge Al systems. The excellent performance of
this mechanism in heterogeneous terminal and task conflict
scenarios demonstrates its applicability to more complex edge
intelligent systems: in the vehicle-road collaboration scenario,
it can be used for the cooperative transmission of sensing data
between multiple vehicles and roadside units; in industrial IoT
scenarios, it can achieve low-power data acquisition and
transmission optimization for multiple sensor terminals. The
game equilibrium analysis and cooperative efficiency reward
design in this paper provide new design ideas for fair and
efficient collaboration in edge AI bodies, promoting the
evolution of edge intelligent systems from "individual
intelligence" to "group collaborative intelligence."

The core advantages of the proposed method lie in three
aspects: theoretical paradigm, technical mechanisms, and
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experimental verification. Theoretically, the "conditional
neural encoding" paradigm breaks through the limitations of
traditional adaptive encoding's discretization, providing a
unified theoretical framework for low-power adaptive
encoding. Its theoretical advantages in storage complexity and
scalability offer paradigm insights for lightweight model
design in edge scenarios. Technically, the collaborative design
of semantic-driven closed-loop control and fairness-oriented
distributed game decision-making achieves a balance between
stability and global efficiency under dynamic scenes,
addressing the core shortcomings of traditional edge
collaboration methods that neglect fairness and stability.
Experimentally, through comprehensive validation across
multiple datasets and scenarios, including conventional tests,
stress tests, and real-world deployments, and by combining
interpretability analysis to reveal the core mechanisms, the
effectiveness and practicality of the method are ensured,
forming a comprehensive performance advantage over
existing SOTA methods.

Objectively, there are three limitations in the current
framework. First, the current framework assumes a relatively
stable network topology and lacks adaptability to topological
mutations such as fast terminal joining/leaving, which may
lead to delayed collaborative decision-making and affect
global performance when topology changes. Second, the
semantic mask generation relies on a lightweight object
detection network, and in complex scenarios such as low
lighting or dense targets, the accuracy of semantic region
division needs improvement, which can affect the precision of
encoding strategies. Third, the personalized adaptation of
terminal hardware characteristics is not considered. Different
terminal processors have varying demands for encoding model
computational efficiency, and the current design struggles to
achieve deep hardware-algorithm matching.

To address these limitations, future research will focus on
three directions. First, we will introduce graph neural networks
to model the dynamic topological relationships between
devices, learning the interaction correlations between
terminals in real-time, improving the speed and accuracy of
collaborative decision-making in topological mutation
scenarios, and enhancing the system's dynamic adaptability.
Second, we will integrate infrared and visible light multimodal
image perception technologies, leveraging the advantages of
infrared images in low-light scenarios to improve the accuracy
of semantic mask generation in complex environments,
providing more reliable semantic input for conditional neural
encoding. Third, we will combine hardware awareness
technologies to build a database of terminal hardware
characteristics, quantifying the computational efficiency and
energy consumption models of different hardware
architectures, and enabling personalized matching of encoding
parameters and hardware characteristics, further optimizing
terminal energy consumption and computational efficiency.

5. CONCLUSION

This paper addressed the "semantic fidelity-energy
consumption-latency" paradox in edge intelligent image
processing and proposes an integrated collaborative
optimization framework of "semantic-driven-conditional
encoding-distributed collaboration," systematically
constructing three core modules to achieve end-to-end
collaborative optimization. The conditional neural encoding



perception module generates dynamic weight increments
based on a unified paradigm, achieving adaptive adjustment of
terminal encoding strategies to balance semantic fidelity and
energy consumption requirements. The semantic closed-loop
control module ensures the stable convergence of system
performance under dynamic scenes through an end-edge
collaborative closed-loop regulation mechanism. The fairness-
oriented distributed game decision-making module, with the
goal of global collaboration efficiency, guides multiple
terminals to achieve a balance between individual interests and
global fairness. The three modules are organically integrated,
forming an end-to-end optimization mechanism of "semantic
perception-dynamic adaptation-global collaboration-stable
feedback," which breaks through the inherent flaws of
traditional decoupled designs at the architectural level.

Experimental validation and in-depth analysis show that the
proposed method demonstrates significant performance
advantages in both conventional scenarios and pressure
scenarios such as resource fluctuations, task conflicts, and
heterogeneous terminals. Compared to existing SOTA
methods, it significantly improves semantic fidelity and task
accuracy, greatly reduces energy consumption and latency,
increases the Jain fairness index to around 0.9, and keeps
performance fluctuation within 5%, effectively breaking
through the ‘"incompatible triangle" constraint and
dynamically approaching the Pareto optimal boundary.
Interpretability analysis reveals the internal working principles
of the core mechanisms, and real-world 24-hour deployment
verification further demonstrates the method's practicality and
deployment feasibility, providing reliable support for the
industrialization of edge image processing technology.

The core methodological contribution of this paper lies in
validating the feasibility and superiority of "semantic" as the
core link that integrates perception, computation, and
communication resources into a unified design. It breaks
through the paradigm limitations of isolated optimization in
traditional edge intelligence research and provides a new
research framework and technical approach for the field of
edge intelligent image processing. This method is highly
aligned with cutting-edge technological trends such as 6G
semantic communication, edge Al body coordination, and
autonomy. Its theoretical paradigm and technical mechanisms
can be extended to more complex edge intelligent systems like
vehicle-road coordination and industrial IoT, potentially
promoting the evolution of edge intelligence technology from
"individual  optimization" to  "group collaborative
intelligence," accelerating the industrial application process of
edge intelligence.
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