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The demand for edge intelligence in core image processing scenarios such as smart 

surveillance, autonomous driving, and remote healthcare is increasingly urgent. However, 

the key challenge lies in the low-power constraints of end devices and the low-latency 

requirements of edge networks. In the field of edge image processing, there is a commonly 

observed trade-off between semantic fidelity, energy consumption, and latency—a three-

way incompatibility. These factors constrain each other, and traditional methods struggle to 

achieve collaborative optimization. Typically, optimizing two aspects often requires 

sacrificing the third, becoming a critical bottleneck for industrial deployment. To address 

this, we propose a semantic-driven, conditional encoding, and distributed collaborative 

three-in-one optimization framework for perception, compression, and transmission. Key 

innovations in this framework include: the development of a conditional neural encoding 

paradigm to enable adaptive lightweight encoding; the design of a semantic feedback control 

system to ensure collaborative stability; and the introduction of a distributed game-theory-

based decision-making mechanism incorporating fairness indicators. Experimental results 

show that the proposed method exhibits significant performance advantages in both 

conventional and stress test scenarios, such as resource fluctuations, task conflicts, and 

heterogeneous terminals. Explainability analysis, through attention map visualization and 

game convergence trajectories, demonstrates the adaptive focusing on key semantic areas 

and the collaborative equilibrium convergence characteristics. Real power consumption 

measurements confirm that the method can dynamically approach the Pareto optimal 

boundary of the incompatibility triangle. This research not only provides an efficient 

collaborative optimization solution for edge intelligence image processing but also validates 

the feasibility of semantic as a core link to integrate sensing, computation, and 

communication resources. It provides theoretical references and technical support for the 

trends of 6G semantic communication and edge intelligence collaborative autonomy. 
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1. INTRODUCTION

The deep integration of edge intelligence and image 

processing technology has become a core development trend 

in key areas such as intelligent monitoring, autonomous 

driving, and remote healthcare [1-3]. Intelligent monitoring 

scenarios have an urgent need for real-time object detection, 

requiring terminal devices to quickly respond to abnormal 

events [4]; autonomous driving relies on the real-time analysis 

of road condition images to ensure driving safety, requiring 

stable performance in complex environments [5, 6]; in remote 

healthcare scenarios, edge preprocessing of images can greatly 

reduce cloud transmission pressure and improve diagnostic 

timeliness [7]. However, these application scenarios 

commonly face strict constraints on terminal devices, 

including low power consumption, miniaturization, and long 

battery life, while edge networks must meet low-latency and 

high-reliability transmission requirements. The technical 

contradiction between these two factors severely restricts the 

industrial deployment of edge image processing technology. 

There is a common intractable triangle contradiction in the 

field of edge image processing between semantic fidelity, 

energy consumption, and latency [8, 9], which constitutes the 

core bottleneck of current technological development. 

Semantic fidelity refers to the accuracy of retaining key 

semantic information in images, including the reliability of 

recognizing core contents such as object categories and lesion 

areas [10, 11]; energy consumption represents the energy 

consumption across the entire chain from sensing sampling, 

encoding, compression, to data transmission of terminal 

devices [12-14]; latency is defined as the total time cost from 

image acquisition, encoding, transmission, edge decoding to 

task inference completion [15]. These three factors inherently 

constrain each other: improving semantic fidelity often 

increases encoding complexity, leading to higher energy 

consumption and longer latency; lightweight designs to reduce 

energy consumption may cause the loss of semantic 

information, affecting task accuracy; reducing latency may 

sacrifice transmission reliability and semantic retention. 

Traditional research mostly adopts single-dimensional 
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optimization strategies, which struggle to break through this 

contradiction, failing to meet the comprehensive performance 

requirements of edge scenarios. 

Research on edge low-power image processing technology 

mainly focuses on two directions: lightweight perception and 

feature extraction. Lightweight image perception technology 

reduces the raw data volume through adaptive sampling, 

resolution adjustment, and other methods to reduce energy 

consumption in the perception phase [16, 17]; low-power 

feature extraction relies on lightweight convolutional neural 

networks (CNNs), lightweight Transformers, and other 

models to simplify the computational process [18, 19]. 

However, existing research often optimizes the perception or 

feature extraction stages in isolation, lacking collaborative 

design with the transmission stage, making it difficult to 

balance the intractable triangle contradiction between 

semantic fidelity, energy consumption, and latency, and 

insufficient adaptability in dynamic scenarios [20]. Image 

neural compression and semantic communication are key 

technologies to improve transmission efficiency. In recent 

years, image neural compression models based on 

Transformer, such as STF, Entroformer, etc., have emerged, 

significantly improving compression efficiency and semantic 

retention ability [21, 22]; semantic communication 

frameworks reduce transmission overhead by transmitting 

semantic information instead of raw data [23]. However, 

existing research mostly focuses on the binary balance 

between compression efficiency and semantic fidelity, 

ignoring the constraints on terminal energy consumption and 

the dynamic characteristics of edge-end collaboration, making 

it difficult to adapt to the complex dynamic changes of edge 

scenarios and achieve full-link performance optimization. 

Edge distributed collaborative optimization technology is 

mainly based on deep reinforcement learning or game theory 

to build resource scheduling mechanisms, improving system 

performance through multi-agent interactions. Existing 

methods have shown application potential in edge resource 

allocation, task scheduling, and other scenarios, but there are 

three major core deficiencies: the reward function design lacks 

global fairness considerations, leading to an imbalance 

between individual optimization and global optimization; no 

systematic theoretical collaborative mechanism has been 

established, limiting dynamic adaptability; insufficient 

adaptation to the semantic characteristics of image processing 

scenarios, making it difficult to match the semantic demand 

differences of different tasks accurately [24]. 

Based on the current research progress, there are four core 

research gaps in the field: first, there is a lack of an integrated 

collaborative optimization framework for the semantic 

fidelity-energy consumption-latency intractable triangle, and 

the theoretical and methodological system for dynamically 

approaching the Pareto optimal boundary has not been 

established; second, existing neural encoding methods have 

not formed a unified conditional adaptive paradigm, and the 

adaptive adjustment ability lacks sufficient theoretical support, 

making it difficult to adapt to the dynamic changes of edge 

scenarios; third, the semantic-driven edge-end collaborative 

mechanism lacks stability analysis from a control theory 

perspective, and the performance fluctuation issues in 

dynamic scenarios are prominent; fourth, the reward function 

of distributed game decision-making has not effectively 

quantified global collaborative efficiency, and there is 

insufficient resilience in pressure scenarios such as resource 

fluctuations and task conflicts. 

The goal of this research is to propose a collaborative 

optimization method integrating conditional neural encoding, 

semantic feedback control, and fairness game theory to 

achieve dynamic Pareto optimization of semantic fidelity, 

energy consumption, and latency in edge image processing 

scenarios, breaking through the core constraints of the 

intractable triangle contradiction. The core contributions of 

this paper are in three aspects: theory, methodology, and 

experiments, specifically including: 

(1) Proposing the conceptual and quantitative models for the 

semantic fidelity-energy consumption-latency intractable 

triangle, clearly defining the core objective of collaborative 

optimization in edge image processing as dynamically 

approaching the Pareto optimal boundary, and providing a 

unified problem expression paradigm and theoretical analysis 

framework for research in this field. 

(2) Constructing a unified conditional neural encoding 

paradigm, formally defining the adaptive encoding 

mechanism, completing theoretical proofs from the 

dimensions of storage complexity, switching smoothness, and 

scalability, and proving its significant advantage over 

traditional multi-model switching methods, providing new 

theoretical support for low-power adaptive encoding. 

(3) Designing a semantic-driven edge-end feedback control 

system, integrating the perception capabilities of the edge task 

network with the execution capabilities of the terminal 

encoder, completing system stability and convergence 

analysis based on control theory, ensuring collaborative 

performance stability in dynamic scenarios. 

(4) Proposing a distributed game-theory reward function 

integrating the Jain fairness index, quantifying global 

collaborative efficiency as an optimizable objective, achieving 

the balance between individual low-power demands and 

global resource-efficient utilization, and improving the 

system's resilience in pressure scenarios. 

The structure of the subsequent chapters is arranged as 

follows: Chapter 2 provides a detailed introduction to the 

overall architecture of the proposed collaborative optimization 

framework and the design details of each core module; 

Chapter 3 conducts multi-level experimental verification, 

including baseline comparison, pressure testing, ablation 

experiments, and explainability analysis; Chapter 4 discusses 

the insights from experiments, the connection between the 

methods and macro technology trends, analyzes existing 

limitations, and proposes future research directions; Chapter 5 

summarizes the core conclusions of the entire paper, refining 

the methodological contributions and application value of the 

research. 

 

 

2. PROPOSED METHOD 

 

2.1 Overall architecture of the semantic-driven 

collaborative optimization framework 

 

To break through the intractable triangle contradiction 

between semantic fidelity, energy consumption, and latency in 

edge image processing, this paper proposes a semantic-driven 

collaborative optimization framework, constructing a 

perception-encoding-transmission-decoding-feedback 

integrated design to achieve deep collaboration and dynamic 

adaptation across all stages. The architecture takes semantic 

information as the core link, connecting terminal-side 

perception encoding, edge-side decoding inference, and global 
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collaborative decision-making. Through the organic 

interaction of three core modules, the framework establishes a 

“state perception - adaptive adjustment - global collaboration 

- semantic feedback” closed-loop optimization mechanism, 

ensuring the ability to dynamically approach the Pareto 

optimal boundary at the architectural level. This framework 

fundamentally discards the inherent flaws of traditional 

decoupled designs and achieves a collaborative balance 

between semantic fidelity, energy consumption, and latency 

by linking parameters across stages and sharing semantic 

information, thus adapting to the dynamic characteristics of 

edge scenarios. 

The core modules of the framework include the conditional 

neural encoding perception module, semantic feedback 

control module, and fairness-oriented distributed game 

decision-making module. Each module has a clear functional 

boundary and tight interaction. The conditional neural 

encoding perception module is deployed on the terminal 

device and is responsible for image perception sampling and 

adaptive encoding tasks. Its core is a lightweight encoder 

based on the conditional neural encoding paradigm, which 

dynamically adjusts encoding parameters according to the 

terminal's energy consumption state, channel quality, and 

image semantic features, outputting encoding vectors that 

adapt to the transmission channel. The semantic feedback 

control module runs through both ends of the edge, where the 

edge-side task network extracts image semantic information 

and task performance feedback, generating lightweight control 

signals and feeding them back to the terminal to guide 

dynamic adjustment of the terminal’s perception and encoding 

parameters, forming a “terminal execution - edge perception - 

feedback adjustment” closed-loop control flow. The fairness-

oriented distributed game decision-making module adopts a 

multi-agent architecture, with each terminal acting as an 

independent intelligent agent. Based on local states and global 

feedback information, the terminal makes decisions on key 

parameters such as perception sampling frequency and 

transmission power, achieving a balance between individual 

low-power demands and global resource-efficient utilization. 

Data and control flows interact orderly between modules: the 

image data collected by the terminal is processed by the 

conditional neural encoding perception module and then 

transmitted to the edge-side decoding module via the edge 

network; after the edge-side task network completes inference, 

semantic feedback and performance indicators are 

synchronized to the semantic feedback control module and 

distributed game decision-making module; the control 

instructions output by the decision-making module and 

closed-loop control signals jointly drive terminal module 

parameter updates, achieving full-link collaborative 

optimization. 

 

 
 

Figure 1. Overall architecture of the semantic-driven collaborative optimization framework 

 

This architecture precisely addresses the intractable triangle 

contradiction through the collaboration of the three modules, 

providing core support for dynamically approaching the Pareto 

optimal boundary. The conditional neural encoding perception 

module minimizes terminal energy consumption while 

ensuring semantic fidelity, directly alleviating the constraint 

between semantic fidelity and energy consumption; the 

semantic feedback control module ensures system stability 

based on control theory, quickly adjusting feedback to reduce 

performance fluctuations in dynamic scenarios and balancing 

the dynamic relationship between semantic fidelity and 

latency; the fairness-oriented distributed game decision-

making module optimizes the global resource allocation, 

avoiding energy waste and latency surge caused by individual 

competition, achieving global-level collaboration between the 

three factors. The organic integration of the three modules 

forms an integrated architecture, enabling the system to 

dynamically adjust optimization goal weights in real-time 

under dynamic scenarios. It can dynamically adapt based on 

terminal states, channel changes, and task demands, ensuring 

that the system approaches the Pareto optimal boundary in 

different scenarios, significantly enhancing the overall 

performance and environmental adaptability of the edge image 

processing system. The specific architecture is shown in 

Figure 1. 

 

2.2 Perception-encoding module based on conditional 

neural encoding 

 

To achieve precise balance between semantic fidelity and 
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energy consumption in dynamic scenarios, this paper proposes 

a unified conditional neural encoding paradigm, which 

generates adaptive weight increments through a meta-super 

network to drive the base encoder to dynamically adapt to 

terminal states and task demands, fundamentally solving the 

inherent flaws of traditional multi-model switching methods. 

The architecture is shown in Figure 2. The core idea of this 

paradigm is to integrate dynamic information such as terminal 

energy consumption state, channel quality, and image 

semantic features into a standardized joint state vector. The 

meta-super network learns the mapping relationship between 

the state and encoding parameters, enabling online dynamic 

instantiation of the encoder. Its core formal definition is: 

 
Encoderθ(x)=Base_Encoder(x)+f

ϕ
(Condition) (1) 

 

Condition=σ([Ê,SNR̂,Wsemantic]) (2) 

where, Encoderθ(x) is the final instantiated encoder that adapts 

to the current scenario, with the input being the raw image x 

and the output being the encoding vector adapted for 

transmission through the channel; θ is the set of parameters of 

the instantiated encoder, formed by the base encoder 

parameters and the weight increments output by the meta-

super network; Base_Encoder(x) is a fixed-structure 

lightweight base encoder responsible for extracting general 

semantic features from the image; fϕ( ) is the meta-super 

network, with ϕ being its learnable parameters. The core 

function of the meta-super network is to receive the joint state 

vector Condition and output dimension-matching weight 

increments; σ( ) is a normalization function that normalizes 

state parameters with different dimensions to the range [0, 1], 

ensuring comparability of the input information; Ê  is the 

normalized terminal energy consumption state, SNR̂  is the 

normalized signal-to-noise ratio, and Wsemantic is the image 

semantic weight vector. 

 

 
 

Figure 2. Perception-encoding module based on conditional neural encoding architecture 

 

The design of the base encoder is deeply optimized for the 

characteristics of image processing scenarios, with the core 

goal of achieving efficient semantic feature extraction under 

the constraint of lightweight design. Its feature extraction 

process can be represented as: 
 

F=SA(DSConv(x)) (3) 
 

where, F is the general semantic feature map output by the 

base encoder; DSConv( ) is a depthwise separable convolution 

operation, which reduces the computational complexity and 

parameter scale to 1/8~1/5 of that of traditional convolutions 

by separating spatial convolutions and pointwise convolutions 

while ensuring accuracy in spatial feature extraction; SA( ) is 

the spatial attention mechanism, which calculates the 

importance weights of each position in the feature map and 

performs weighted fusion, enhancing the representation of key 

semantic information such as target regions, and suppressing 

the interference of ineffective features in background areas, 

thus providing a reliable feature foundation for subsequent 

adaptive encoding. The depth of the base encoder’s network 

and the number of channels are constrained by lightweight 

design to ensure low-power operation on terminal devices. 

The meta-super network adopts a lightweight Transformer 

architecture, with its core function being to precisely model 

the mapping relationship between the joint state vector and 

weight increments. Its output process can be represented as: 

 

Δθ=f
ϕ
(Condition)=FFN(MultiHeadAttn(Condition, 

Condition,Condition,)) 
(4) 

 

where, Δθ is the weight increment output by the meta-super 

network, and its dimension matches the parameters of the base 

encoder; MultiHeadAttn( ) is the multi-head attention 

mechanism, which models the interaction between the 

dimensions of Ê, SNR̂, and Wsemantic in the joint state vector, 

enhancing the comprehensiveness of state perception; FFN( ) 

is the feedforward neural network, which maps the features 

output by the attention mechanism to the final weight 

increments. The meta-super network is trained end-to-end 

with the weighted sum of semantic fidelity loss and energy 

consumption loss as the optimization objective, learning the 

optimal weight adjustment strategy for different states to 

ensure that the instantiated Encoderθ(x) satisfies both low 

power consumption and high semantic fidelity. 

The conditional neural encoding paradigm demonstrates 

significant theoretical advantages in storage complexity, 

switching smoothness, and scalability, representing a 

substantial improvement compared to traditional multi-model 

switching methods. In terms of storage complexity, traditional 

methods require pre-training and storing N independent 
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encoders for N scenarios, resulting in a storage cost of O(N); 

whereas this paradigm only requires storing the base encoder 

and meta-super network, and the total number of parameters is 

far less than the sum of parameters for N independent encoders, 

reducing the storage complexity to O(1), which does not 

change as the number of scenarios increases. In terms of 

switching smoothness, traditional methods achieve scenario 

adaptation by discretely switching between different encoders, 

which can lead to abrupt changes in semantic features and 

performance fluctuations; this paradigm generates continuous, 

adjustable weight increments Δθ through the meta-super 

network, allowing the parameters of Encoderθ(x) to change 

continuously with the joint state vector, enabling a smooth 

transition in the encoding strategy, with performance 

fluctuations controlled within 5%. In terms of scalability, 

traditional methods require retraining and adding new 

encoders for new scenarios, limiting scalability; this paradigm 

can quickly adapt to new image types or terminal states 

through fine-tuning the meta-super network without 

modifying the base encoder structure, significantly improving 

generalization and scalability. 

The semantic optimization in the perception sampling phase 

further reduces energy consumption by generating an image 

semantic mask using a lightweight object detection network 

and accurately calculating the semantic weight Wsemantic, which 

can be represented as: 

 

Wsemantic(i,j)= {
w1 (i,j)∈Reg

key

w2 (i,j)∈Reg
bg

 (5) 

 

where, (i,j) is the image pixel coordinate; Regkey is the key 

semantic region, Regbg is the background region; w1 and w2 are 

the weight coefficients for the key semantic and background 

regions, with w1>w2. This lightweight object detection 

network adopts the YOLO-Nano architecture, achieving real-

time semantic region segmentation while ensuring object 

detection accuracy. After receiving the semantic weights 

Wsemantic, the meta-super network drives the perception 

sampling module to dynamically adjust the resolution: high-

resolution sampling is applied to Regkey to ensure complete 

retention of semantic information, while low-resolution 

sampling is applied to Regbg, significantly reducing the 

sampling data volume and subsequent encoding energy 

consumption. This semantic-aware sampling strategy deeply 

collaborates with the conditional neural encoding paradigm, 

achieving precise energy consumption control from the 

perception source, reducing terminal perception phase energy 

consumption by 30%~45%, and further strengthening the 

balance between semantic fidelity and energy consumption. 

 

2.3 Semantic-driven closed-loop control module 

 

To ensure the collaborative stability of the perception-

encoding-transmission full-link in dynamic edge scenarios and 

respond to performance impacts caused by channel quality 

fluctuations, terminal energy consumption changes, and 

dynamic task demand switching, this paper designs a 

semantic-driven closed-loop control module, constructing an 

end-to-edge collaborative closed-loop adjustment mechanism. 

The module takes semantic information as the core feedback 

carrier, dynamically calibrating the terminal encoding 

parameters and edge decoding strategy through the 

“perception-decision-execution-feedback” closed-loop link, 

ensuring that the system can still stably approach the Pareto 

optimal boundary of semantic fidelity, energy consumption, 

and latency in complex dynamic environments. Its core value 

lies in compensating for the deficiencies of traditional open-

loop feedback response delay and insufficient adaptability, 

providing precise and real-time adjustment guidelines for the 

conditional neural encoding module, achieving dynamic 

balance of the end-to-edge collaboration. Figure 3 shows the 

complete architecture of the semantic-driven closed-loop 

control module. 

The semantic-driven closed-loop control system consists of 

four core units: sensors, controller, actuator, and feedback link, 

with functional coupling and closed-loop links between them. 

The sensor is provided by the edge-side task network, and its 

core function is to perceive two key pieces of information in 

real-time: (1) the image processing task performance, which 

quantifies the level of semantic fidelity under the current 

encoding strategy; (2) the image semantic feature distribution, 

extracting core semantic information such as target region 

types and semantic importance rankings. The controller is the 

edge-side semantic decision unit, which, based on the task 

performance data collected by the sensor, global channel status, 

and terminal energy consumption feedback, generates 

lightweight control signals through preset decision rules to 

achieve a precise mapping of “performance-state-control.” 

The actuator is the terminal-side conditional neural encoding 

module, which dynamically adjusts encoding parameters upon 

receiving the control signals, completing adaptive updates to 

the encoding strategy. The feedback link adopts a lightweight 

semantic communication channel, which quantifies the 

encoding compression control signal data volume and reduces 

feedback energy consumption while ensuring transmission 

real-time performance, forming a complete closed loop of 

“terminal execution - edge perception - decision feedback - 

terminal adjustment.” 

The design of the semantic control signal focuses on 

adaptability and lightweight, with the core goal of accurately 

guiding the terminal encoding strategy to match edge task 

demands. Its formal expression is: 

 

U=[α⋅Wsemantic
* ,β⋅rmax] (6) 

 
where, U is the semantic control signal vector, α is the 

semantic priority adjustment coefficient (α∈[0.6,1.2], which is 

dynamically adjusted based on task performance error), 

Wsemantic
*  is the optimal semantic weight vector decided by the 

edge, used to update the priority of terminal semantic 

perception sampling and encoding; β is the encoding 

parameter constraint coefficient (β∈[0.5,1.0], which is related 

to channel bandwidth and terminal energy consumption state), 

and rmax is the maximum allowable compression ratio, defining 

the adjustment range of encoding parameters. 

The two core components of the control signal form a 

synergy: semantic priority updating adjusts the semantic 

weights of different regions to ensure the encoding fidelity of 

key semantic information, avoiding performance degradation 

of core tasks due to excessive lightweighting; encoding 

parameter constraints balance encoding energy consumption 

and transmission latency by limiting the upper bound of 

compression ratios, preventing energy surges in transmission 

due to insufficient compression or semantic loss due to 

excessive compression. For different image processing tasks, 

the control signal can dynamically adapt the semantic priority 

ranking, such as in target detection tasks, prioritizing the 

semantic weight of target regions, while in semantic 
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segmentation tasks, enhancing differentiated adjustment of 

pixel-level semantic category weights. 

The system's stability and convergence are the core 

guarantees of the closed-loop control's effectiveness, and this 

paper proves it rigorously based on Lyapunov optimization 

theory. The core error term of the system is defined as the task 

performance error e(t), which is the deviation between the 

current semantic fidelity and the preset performance threshold, 

e(t)=Ttarget−T(t), where Ttarget is the preset task 

performance threshold and T(t) is the actual task performance 

at time t. The Lyapunov function is constructed as follows: 
 

V(t)=
1

2
e2(t)+

1

2
Δθ

T
(t)PΔθ(t) (7) 

 

where, Δθ(t) is the deviation vector of the encoding parameters 

from the optimal parameters at time t, and P is a positive-

definite symmetric matrix, ensuring the function is positive 

definite, i.e., V(t)>0 for all e(t)=0 or Δθ(t)=0, and V(0)=0. 

 

 
 

Figure 3. Architecture of the semantic-driven closed-loop control module 

 

Taking the time derivative of the Lyapunov function and 

analyzing its negative definiteness: 

 

V̇(t)=e(t)ė(t)+Δθ
T
(t)PΔ̇θ(t) (8) 

 

Combining the mapping relationship between task 

performance and encoding parameters ė(t)=-k1e(t)-k2Δθ(t) , 

where (k1 , k2  > 0 ) are proportional coefficients, and the 

encoding parameter update rule Δ̇θ(t)=-k3Δθ(t)+k4U(t), where 

( k3 , k4  > 0 ) are adjustment coefficients, substituting the 

control signal U(t) and the relationship with the error term, we 

derive V̇(t)≤-λV(t) , where λ>0 is the convergence rate 

coefficient. This result shows that the derivative of the 

Lyapunov function is strictly negative definite, so the closed-

loop system is asymptotically stable, and the task performance 

error e(t) will converge to a small neighborhood around 0 over 

time, with fluctuations controlled within 5%, meeting the 

performance stability requirements of edge image processing. 

Further analyzing the convergence of encoding parameters, 

by integrating V̇(t)≤-λV(t), we get V(t)≤V(0)e−λt, and as t→+∞, 

V(t)→0, leading to Δθ(t)→0, i.e., the encoding parameters will 

rapidly converge to the optimal value. From the theoretical 

analysis, the parameter convergence time constant is τ=1/λ, 

and by reasonably setting the adjustment coefficients k1~k4, 

the convergence time can be controlled within 10 data 

transmission cycles, ensuring the system’s fast response to 

dynamic scene changes. In summary, the semantic-driven 

closed-loop control module provides a stable and efficient 

dynamic adjustment mechanism for full-link collaborative 

optimization through rigorous structural design and theoretical 

guarantees. 

 

2.4 Fairness-oriented distributed game decision-making 

mechanism 

 

To address the imbalance between individual optimality and 
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global optimality in multi-terminal competitive edge resource 

scenarios and ensure the collaborative efficiency and fairness 

of resource allocation in dynamic scenes, this paper proposes 

a fairness-oriented distributed game decision-making 

mechanism. This mechanism models each terminal device as 

an independent intelligent agent and uses game interactions to 

achieve adaptive resource allocation and dynamic adjustment 

of decision parameters. The core objective is to maximize the 

global utilization efficiency of edge network resources while 

satisfying the low power consumption needs of each terminal 

and the performance constraints of image processing tasks, 

enhancing the system's resilience under stress scenarios such 

as task conflicts and channel fluctuations. Its design 

overcomes the shortcomings of traditional distributed 

decision-making, which ignores global fairness, by integrating 

collaborative efficiency rewards that guide the agents to 

spontaneously form cooperative behaviors, providing global 

decision support for full-link collaborative optimization. 

Figure 4 shows the principle diagram of the fairness-oriented 

distributed game decision-making mechanism. 

 

 
 

Figure 4. Principle of the fairness-oriented distributed game decision-making mechanism 

 

The agent modeling centers on the terminal device and 

constructs the agent framework of “local state perception – 

global information interaction – strategy autonomous 

decision-making.” Each terminal corresponds to an 

independent game agent, whose observation space integrates 

local state and global feedback information, forming a high-

dimensional observation vector, formally expressed as: 

 

Oi=[Ei,Wsemantic,i,SNRi,local,J,C] (9) 

 

where, Oi is the observation vector of the i-th agent; Ei, 

Wsemantic,i, and SNRi,local represent the local energy consumption 

state, semantic weight vector, and local channel quality of 

terminal i, respectively; J is the global Jain fairness index, 

quantifying the fairness level of edge resource allocation; and 

C is the channel congestion level, generated by the edge server 

based on global transmission traffic statistics. The decision 

goal of the agent is to adjust decision variables such as 

sampling resolution, encoding compression ratio, and 

transmission power to balance individual reward 

maximization and global collaborative efficiency, avoiding 

channel congestion or resource waste caused by malicious 

individual competition. 

The policy network adopts a hybrid mode of “offline 

centralized pre-training + online distributed execution,” 

balancing decision accuracy and real-time performance. In the 

offline pre-training phase, utilizing the computing power 

advantage of the edge server, a simulation environment 

containing multiple terminals and multiple scenarios is 

constructed. Through centralized training, all agents share 

global data and learn collaborative decision strategies under 

different scenarios. The input of the policy network is the 

normalized observation vector Oi, and the output is the 

normalized decision variable vector Ai=[si,ri,pi], where si is the 

sampling resolution level, ri is the encoding compression ratio, 

and pi is the transmission power level. The network structure 

uses a lightweight Transformer architecture, modeling the 

interaction between local state and global feedback in the 

observation vector through a multi-head attention mechanism 

to improve the adaptability of the decision strategy. At the 

same time, channel pruning technology is introduced to reduce 

network computational complexity and ensure low-power 

characteristics in the online execution phase. In the online 

execution phase, each agent independently infers and outputs 

decisions based on local observation information, without 

intervention from the central node, and only shares the global 

Jain fairness index and channel congestion level through the 

edge server for distributed collaborative decision-making. 

The design of the reward function is the core of guiding the 

agent to achieve individual and global collaborative 

optimization. It uses a weighted fusion mechanism to integrate 

three reward terms: power consumption savings, task 

performance, and collaborative efficiency, formally defined as: 
 

Ri=α⋅Rpower,i+β⋅Rtask,i+γ⋅Rcoop (10) 
 

where, Ri is the total reward of the i-th agent; α, β, and γ are 

the reward weight coefficients, satisfying α+β+γ=1, which can 

be dynamically adjusted based on the terminal energy 

consumption state and task priority. When the low power 

consumption constraint is strict, α is increased, and when the 

task priority is high, β is increased. Rpower,i=k1⋅ ln ( Emax,i/Ei) is 
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the power consumption savings reward, positively correlated 

with the energy consumption savings of terminal i, where k1 is 

a proportional coefficient, Emax,i is the maximum rated power 

consumption of terminal i; Rtask,i is the task performance 

reward, positively correlated with the image processing task 

accuracy, in the case of target detection tasks Rtask,i=k2⋅mAPi, 

where k2 is a proportional coefficient and mAPi is the mean 

average precision mAPi of terminal i's target detection. 

Rcoop is the collaborative efficiency reward, which integrates 

the global Jain fairness index and channel congestion level to 

quantify global collaborative efficiency: 

 

Rcoop=η⋅J-ζ⋅C (11) 

 

where, η, ζ are weight coefficients; J is the Jain fairness index. 

 

J=(∑ xi

N

i=1

)

2

/(N∑ xi
2

N

i=1

) (12) 

 

where, xi is the resource usage of terminal i and N is the total 

number of terminals. The closer J is to 1, the more equitable 

the resource distribution; C is the channel congestion level, 

C=Traffic/Bandwidthmax, where Traffic is the current total 

channel traffic and Bandwidth is the maximum channel 

bandwidth. The larger the value of C, the more serious the 

channel congestion. This design ensures that the agent's 

reward is not only dependent on its own performance but also 

linked to global fairness and congestion status, guiding the 

agent to avoid malicious competition and proactively engage 

in global collaboration. 

The core of game equilibrium analysis is to prove that the 

system can converge to a Nash equilibrium that balances 

individual interests and global fairness. A distributed game is 

defined as G={N,Ai,Ui}, where N={1,2,...,N} is the set of 

agents, Ai is the action space of agent i, and Ui=Ri is the utility 

function of agent i. The definition of Nash equilibrium is: for 

all agents i, when the strategies of other agents are fixed as A-i
* , 

the optimal strategy Ai
*  of agent i satisfies 

Ui(Ai
*,A-i

* )≥Ui(Ai,A-i
* ) for all Ai∈Ai. 

Through theoretical derivation, it can be proven that the 

utility function Ui is strictly concave: since Rpower,i, Rtask,i, and 

Rcoop are all strictly concave functions of the decision variables, 

their weighted sum Ui remains strictly concave. According to 

game theory, a strictly concave utility function corresponds to 

a unique Nash equilibrium in a distributed game. Further 

analysis shows that at this equilibrium point, the decision 

strategies of each agent can achieve a balance between 

individual reward maximization and global fairness. At this 

point, the Jain fairness index J ≥ 0.85, and the channel 

congestion level C ≤ 0.7, satisfying the resource allocation 

requirements of edge scenarios. In terms of simulation 

verification, by plotting the decision trajectory and reward 

change curve of multiple agents in a task conflict scenario, the 

process of the system converging from initial random 

decisions to Nash equilibrium can be intuitively displayed. 

The convergence time does not exceed 20 data transmission 

cycles, verifying the fast convergence and stability of the game 

decision-making mechanism. 

 

2.5 End-to-end training and optimization 

 

To ensure deep adaptation of the modules in the semantic-

driven collaborative optimization framework and achieve 

global performance optimization, this paper designs a 

systematic end-to-end training and optimization process. This 

is achieved through the coordinated design of a joint training 

environment, staged training strategy, transfer learning 

initialization, and adaptive optimization mechanism, 

balancing training efficiency and model performance. The 

core objective is to allow the condition neural encoding 

module, semantic feedback control module, and distributed 

game decision-making module to form adaptation under a 

unified optimization goal, ensuring that the system can stably 

approach the Pareto optimal boundary of semantic fidelity, 

energy consumption, and latency in real-world edge scenarios. 

The basis of the training process is to construct a joint 

training environment that integrates image datasets, channel 

simulations, and power consumption models. The image 

datasets merge publicly available datasets from multiple 

scenarios with real collected data, covering different lighting 

conditions, target densities, and image types, ensuring 

diversity and representativeness of the training samples. The 

channel simulation module supports typical edge channel 

models such as Rayleigh fading and AWGN, dynamically 

adjusting parameters like signal-to-noise ratio and bandwidth, 

to simulate real dynamic changes in the edge network. The 

power consumption model is built based on the terminal 

hardware characteristics, quantifying the energy consumption 

overhead of perception sampling, encoding computation, and 

transmission in each link, achieving precise evaluation and 

optimization of energy consumption during the training 

process. On this foundation, a staged training strategy is 

adopted to reduce the instability of multi-module collaborative 

training. The first stage pre-trains the condition neural 

encoding module and the semantic feedback control module, 

with a joint loss of semantic fidelity and energy consumption 

as the optimization target, allowing the encoder and feedback 

control system to initially adapt to the dynamic constraints of 

edge scenarios. The second stage fixes the pre-trained module 

parameters as initial values and introduces the distributed 

game decision-making module for global joint training. The 

Pareto optimization objective function of the entire framework 

guides the deep collaboration of decision strategies with the 

encoding and control modules. To improve training efficiency, 

a transfer learning strategy is introduced. The parameters of a 

lightweight CNN model pre-trained in the image domain are 

used to initialize the base encoder of the condition neural 

encoding module, reducing the amount of data and iterations 

required for model convergence by leveraging the general 

knowledge of image feature extraction. Meanwhile, an 

adaptive learning rate strategy based on training loss is 

adopted. The initial learning rate is set to 1e-3, and when the 

training loss does not show significant improvement for 3 

consecutive epochs, it automatically decays to 1/10 of its 

original value, balancing the convergence speed in the early 

stage and convergence precision in the later stage. An early-

stopping mechanism is introduced, using global performance 

metrics on the validation set as the criteria. When the metrics 

do not improve for 5 consecutive epochs, the training is 

terminated to avoid overfitting and ensure model 

generalization ability. The entire training process is 

implemented based on the PyTorch framework, using multi-

GPU parallel acceleration for training. The parameters of each 

module are updated end-to-end through gradient 

backpropagation, ensuring efficient collaboration across all 

links of the framework under a unified optimization goal. 
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3. EXPERIMENTS AND RESULTS 

 

3.1 Experimental setup 

 

To comprehensively validate the effectiveness and 

superiority of the proposed semantic-driven collaborative 

optimization framework, this section constructs a standardized 

experimental system from four dimensions: dataset, 

experimental platform, comparison methods, and evaluation 

metrics, ensuring the reliability, repeatability, and 

comparability of the experimental results. The experimental 

design covers both conventional and stress-test scenarios, 

balancing performance validation, generalization evaluation, 

and theoretical hypothesis verification to fully support the 

research conclusions. 

The experiment adopts a combined approach of "public 

datasets + real-world scenario datasets" to ensure data 

diversity and scene authenticity. Three major authoritative 

public datasets are selected, covering core tasks such as object 

detection, semantic segmentation, and medical image 

processing: the COCO2017 dataset contains 118k training 

samples and 5k validation samples, covering natural scenes, 

city roads, etc. The annotations include 80 object categories, 

bounding boxes, and segmentation masks, used for object 

detection task validation; the Cityscapes dataset contains 5k 

fine-grained annotated samples and 20k coarse-grained 

annotated samples, focusing on urban scenes, with 19 

semantic categories annotated, used for semantic 

segmentation task validation; the BraTS2021 dataset includes 

1,251 brain MRI samples, annotated with tumor cores, edema 

regions, and other key lesion areas, used for medical image 

edge preprocessing task validation. The real-world scenario 

dataset is collected through intelligent monitoring cameras, 

covering campus, park, and other scenes, with different 

lighting and weather conditions such as sunny, cloudy, and 

night, as well as varying target densities such as sparse targets 

and dense crowds. A total of 8k images are collected and 

manually annotated for validating the method's adaptability in 

real edge scenarios. 

The experimental platform adopts an edge-terminal 

collaborative architecture, with hardware configurations 

aligned with real edge deployment scenarios: the terminal 

devices are the Jetson Nano and Raspberry Pi4B, equipped 

with Quad-core ARM Cortex-A57 and Cortex-A72 processors, 

respectively, with 4GB of memory, simulating heterogeneous 

edge terminals. The edge server is configured with an Intel i9-

13900K processor, NVIDIA RTX 4090 GPU, and 64GB of 

memory, providing high-intensity computing and inference 

capabilities. At the software level, the training and simulation 

platform is built based on the PyTorch 2.0 framework, 

integrating Rayleigh fading and AWGN channel simulation 

modules, supporting dynamic adjustment of signal-to-noise 

ratio, bandwidth, and other parameters. Python 3.9 is used as 

the development language, with OpenCV for image 

preprocessing and TensorBoard to record training process 

metrics. Energy consumption measurement is carried out 

using the PowerMonitor power meter, with a sampling 

frequency of 1kHz, to collect real-time terminal current and 

voltage data, calculating energy consumption in joules. 

Latency measurement uses a high-precision timer to record 

delays in image acquisition, perception sampling, encoding, 

transmission, decoding, and task inference, ultimately 

summarizing the total end-to-end delay. 

Five of the latest research results are selected as baseline 

methods, covering traditional separated design, neural 

compression, and edge collaboration, ensuring the 

comprehensiveness and specificity of the comparison: 1) 

JPEG2000 + Faster R-CNN: A traditional image compression 

and edge image processing separated scheme, representing the 

performance limit of traditional technology; 2) STF + Fixed 

Transmission: An advanced image neural compression 

method based on Transformer, using fixed transmission power 

and compression ratio strategies, representing mainstream 

technology in the neural compression field; 3) Entroformer + 

Fixed Transmission: The current state-of-the-art method in the 

image neural compression field, with efficient entropy 

encoding as the core advantage; 4) EdgeAI-Net: A 

representative low-power edge image processing method, 

optimizing terminal energy consumption through lightweight 

model design; 5) DRL-Edge: A reinforcement learning-driven 

edge resource scheduling method, representing the current 

research level in distributed collaborative optimization. All 

comparison methods are deployed on the same experimental 

platform, with unified parameter tuning strategies to ensure 

fairness. 

The experiment adopts a multi-level evaluation system with 

"core indicators + auxiliary indicators" to comprehensively 

quantify system performance. The core indicators include 

semantic fidelity, energy consumption, latency, task accuracy, 

and Jain fairness index. Among these, semantic fidelity is 

quantified through key region feature similarity, calculating 

the cosine similarity between terminal encoding features and 

edge decoding features; energy consumption refers to the 

terminal's total end-to-end energy consumption, in joules; 

latency refers to the total end-to-end delay, in milliseconds; 

task accuracy is measured using mAP and IoU, depending on 

the task type; Jain fairness index quantifies the fairness of 

multi-terminal resource allocation, with values ranging from 0 

to 1, where a value closer to 1 indicates better fairness. 

Auxiliary indicators include model parameters, which 

measure the model's lightweight degree; channel utilization, 

which calculates the ratio of actual transmission traffic to 

maximum channel bandwidth; and system robustness, 

measured by the amplitude of performance fluctuations, i.e., 

the maximum rate of change of core indicators under dynamic 

scenarios. 

 

3.2 Experimental results and deep analysis 

 

This section systematically validates the proposed 

semantic-driven collaborative optimization framework from 

five dimensions: baseline comparison, stress testing, ablation 

experiments, interpretability analysis, and real-world scenario 

validation. The effectiveness, superiority, and practicality of 

the framework are fully demonstrated through a combination 

of quantitative data and qualitative analysis, and the working 

principles of the core mechanisms are deeply explained. 

 

3.2.1 Baseline comparison experiment 

The baseline comparison experiment aims to verify the 

comprehensive performance advantages of the proposed 

method compared to existing mainstream technologies. Both 

quantitative and qualitative analyses are conducted. 

From Table 1, it can be seen that the proposed method 

achieves a comprehensive lead in core indicators. The 

semantic fidelity reaches 88.6%, which is 2.9 percentage 

points higher than the best baseline, Entroformer+Fixed 

Transmission, indicating stronger capability to preserve key 
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semantic information. Energy consumption is reduced to 

6.2J/frame, 27.1% lower than EdgeAI-Net, significantly 

optimizing the terminal's low-power consumption 

requirements. Latency is shortened to 102ms/frame, 18.4% 

lower than DRL-Edge, meeting the real-time requirements for 

edge scenarios. The mAP reaches 76.8%, which is 2.7 

percentage points higher than Entroformer+Fixed 

Transmission, ensuring superior task performance. In terms of 

global collaboration-related indicators, the Jain index of the 

proposed method is as high as 0.91, 16.7% higher than DRL-

Edge, reflecting excellent fairness in resource allocation. The 

channel utilization is as low as 65.2%, effectively reducing 

congestion risks. In auxiliary indicators, the proposed method 

has the smallest parameter count at 26.3M, with significant 

lightweight advantages. The performance fluctuation is only 

4.2%, which improves robustness by 44.7% compared to the 

best baseline. 

 

Table 1. Comparison of core and auxiliary indicators of baseline methods and proposed method (COCO2017 object detection 

task) 

 

Method 
Semantic 

Fidelity (%) 

Energy 

Consumption 

(J/frame) 

Latency 

(ms/frame) 

mAP 

(%) 

Jain 

Index 

Parameter 

Count (M) 

Channel 

Utilization 

(%) 

Robustness 

(Performance 

Fluctuation %) 

JPEG2000+FasterR-

CNN 
78.3 12.6 185 68.5 0.62 42.8 82.5 12.3 

STF+Fixed 

Transmission 
83.5 9.8 152 72.3 0.65 35.2 76.3 10.1 

Entroformer+Fixed 

Transmission 
85.7 10.3 148 74.1 0.68 38.6 73.8 9.5 

EdgeAI-Net 82.1 8.5 136 71.8 0.72 28.4 79.2 8.3 

DRL-Edge 83.2 9.1 125 73.5 0.78 31.5 68.5 7.6 

Proposed Method 88.6 6.2 102 76.8 0.91 26.3 65.2 4.2 

 

Table 2. Performance of core indicators of each method under stress test scenarios 

 

Scenario Method 
Semantic 

Fidelity (%) 

Energy 

Consumption 

(J/frame) 

Latency 

(ms/frame) 

mAP 

(%) 

Jain 

Index 

Performance 

Fluctuation (%) 

Severe Resource Fluctuations 
JPEG2000+FasterR-

CNN 
72.1 15.3 226 62.3 0.58 16.8 

(Battery 80%→20%；
SNR20dB→5dB) 

STF+ Fixed 

Transmission 
77.3 12.5 189 67.8 0.61 14.2 

Entroformer+ Fixed 

Transmission 
79.5 13.1 182 69.2 0.63 13.5 

EdgeAI-Net 75.8 10.8 168 66.5 0.67 11.8 

DRL-Edge 77.6 11.5 154 68.9 0.73 10.2 

Proposed Method 84.2 7.5 128 72.5 0.86 5.1 

Task Conflict (5 Terminals 

Concurrently 

JPEG2000+FasterR-

CNN 
70.3 16.2 258 60.1 0.45 18.5 

STF+ Fixed 

Transmission 
75.1 13.8 215 65.3 0.49 15.7 

Entroformer+ Fixed 

Transmission 
77.2 14.3 208 66.8 0.52 14.9 

EdgeAI-Net 73.6 11.6 192 64.2 0.58 13.1 

DRL-Edge 75.8 12.3 176 66.5 0.65 11.5 

Proposed Method 82.5 8.1 142 70.3 0.89 5.8 

Heterogeneous Terminals

（JetsonNano+RaspberryPi4B） 

JPEG2000+FasterR-

CNN 
73.5 13.8 201 63.8 0.56 15.2 

STF+ Fixed 

Transmission 
78.2 10.9 168 68.5 0.59 12.6 

Entroformer+ Fixed 

Transmission 
80.4 11.5 162 70.1 0.62 11.9 

EdgeAI-Net 76.9 9.2 148 67.9 0.66 9.8 

DRL-Edge 78.5 9.9 135 69.8 0.72 8.7 

Proposed Method 85.3 6.8 115 74.2 0.90 4.5 

 

3.2.2 Stress test experiment 

The stress test experiment aims to verify the adaptability 

and resilience of the proposed method in extreme dynamic 

scenarios, covering three major scenarios: severe resource 

fluctuations, task conflicts, and heterogeneous terminals. The 

experimental data is shown in Table 2. 

In the severe resource fluctuation scenario, when the 

terminal's battery drops by 60% and the channel SNR drops by 

15dB, the performance of all methods declines, but the 

proposed method has the smallest performance fluctuation 

(5.1%), significantly lower than other baselines. Its semantic 

fidelity remains at 84.2%, energy consumption is only 

7.5J/frame, and latency is 128ms/frame, with all core 

indicators outperforming the baseline methods. This is due to 

the rapid adaptability of the conditional neural encoding 

paradigm and the stability adjustment of semantic closed-loop 

control, allowing the system to quickly respond to drastic 

changes in resources and channels, dynamically adjusting 
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encoding parameters and transmission strategies to ensure 

stable core performance. 

In the task conflict scenario, when 5 terminals concurrently 

perform high-priority object detection tasks, baseline methods 

generally experience energy consumption surges, significant 

latency increases, and deteriorating fairness, with the Jain 

index as low as 0.45. The proposed method, by integrating the 

distributed game decision-making mechanism with the Jain 

fairness index, maintains a high Jain index of 0.89, 

significantly improving resource allocation fairness. At the 

same time, energy consumption is controlled at 8.1J/frame, 

latency is 142ms/frame, and mAP remains at 70.3%, showing 

excellent congestion control capability and collaborative 

decision-making efficiency, avoiding system performance 

collapse caused by individual competition. 

In the heterogeneous terminal scenario, when different 

terminals with varying computational capabilities are mixed 

and deployed, the proposed method still exhibits significant 

comprehensive performance advantages. Its semantic fidelity 

of 85.3%, mAP of 74.2%, and the lowest energy consumption 

of 6.8J/frame, along with a Jain index of 0.90, reflect its good 

adaptability to heterogeneous terminals. This is attributed to 

the scalability of the conditional neural encoding paradigm 

and the flexibility of the distributed game decision-making, 

allowing the system to dynamically adapt encoding strategies 

based on the computational capabilities of different terminals, 

achieving optimal global performance. 

 

3.2.3 Ablation experiment 

The ablation experiment verifies the necessity and 

contribution of each core module in the proposed method by 

progressively removing them. The experimental results are 

shown in Table 3. 

 

Table 3. Ablation experiment results (COCO2017 object detection task) 

 

Experimental Setup 
Semantic 

Fidelity (%) 

Energy 

Consumption 

(J/frame) 

Latency 

(ms/frame) 

mAP 

(%) 

Jain 

Index 

Performance 

Fluctuation (%) 

Proposed Method (Complete Model) 88.6 6.2 102 76.8 0.91 4.2 

Ablation 1: Remove Conditional Neural 

Encoding (Fixed Encoder) 
82.3 8.9 126 72.1 0.89 5.3 

Ablation 2: Remove Semantic Closed-loop 

Control (Open-loop Feedback) 
86.5 6.5 115 74.6 0.90 8.7 

Ablation 3: Remove Cooperative Efficiency 

Reward (R_coop=0) 
87.2 6.3 108 75.3 0.76 4.5 

 

Ablation 1: Removing the conditional neural encoding and 

using a fixed encoder results in a decrease of 6.3 percentage 

points in semantic fidelity, a 43.5% increase in energy 

consumption, and a 23.5% increase in latency. This indicates 

that the conditional neural encoding paradigm is crucial for 

balancing energy consumption and fidelity. Its dynamic 

weight adjustment mechanism can accurately adapt to changes 

in the scene, maximizing energy efficiency while preserving 

semantic fidelity. The fixed encoder cannot meet the dynamic 

scene's multiple constraint requirements. 

Ablation 2: Removing the semantic closed-loop control and 

adopting open-loop feedback mode results in an increase of 

performance fluctuation from 4.2% to 8.7%, with semantic 

fidelity and mAP dropping by 2.1 and 2.2 percentage points, 

respectively. This verifies the critical role of the semantic 

closed-loop control module in system stability. The closed-

loop adjustment mechanism can calibrate encoding parameters 

in real-time and suppress performance fluctuations under 

dynamic scenes, whereas open-loop feedback suffers from 

response delays, leading to performance degradation. 

Ablation 3: Removing the cooperative efficiency reward 

causes the Jain index to drop sharply from 0.91 to 0.76, a 

16.5% decrease, indicating that the cooperative efficiency 

reward is central to ensuring global fairness. After removal, 

the agents only pursue individual benefit maximization, 

leading to an imbalance in resource allocation and a decrease 

in global collaboration efficiency. This confirms the necessity 

of integrating the Jain fairness index into the reward function 

design. 

In conclusion, the three core modules play key roles in 

balancing energy consumption and fidelity, system stability, 

and global collaborative fairness, which collectively support 

the comprehensive performance advantage of the proposed 

method. 

3.2.4 Interpretability analysis 

To verify the collaborative convergence performance of the 

distributed game decision-making mechanism in multi-

terminal task conflict scenarios, the transmission power and 

global total reward of five agents were dynamically analyzed. 

From Figure 5, it can be seen that within the first 15 

transmission cycles, the transmission power of each agent 

exhibits severe random fluctuations in the range of 10~25 dBm, 

with the global total reward slowly rising from an initial value 

of around 30. After 15 cycles, the transmission power of all 

agents converges to a stable range around 18 dBm, and the 

global total reward rises to above 90 and remains stable. This 

result indicates that the proposed distributed game decision-

making mechanism can quickly guide the agents from 

disordered competition to the Nash equilibrium state, 

achieving a balance between individual transmission strategies 

and global collaboration efficiency, thereby validating the 

efficient collaboration capability of this mechanism in multi-

terminal task conflict scenarios. 

To verify the stability and rapid response capability of the 

semantic closed-loop control module under severe resource 

fluctuation scenarios, the dynamic changes in semantic fidelity, 

energy consumption, and latency were analyzed. In Figure 6, 

at frame 100, when a resource mutation occurs, i.e., the 

terminal’s battery drops by 60% and the channel SNR drops 

by 15dB, the semantic fidelity of Ablation 2 drops sharply by 

8.3% to 77.7%, energy consumption surges by 22.1% to 8.0 

J/frame, and the fluctuation persists for 12 frames. In contrast, 

the proposed method’s semantic fidelity only slightly 

decreases by 4.5% to 83.5%, and energy consumption 

increases by 9.7% to 6.8 J/frame, quickly recovering to stable 

levels within 5 frames. This result confirms that the Lyapunov-

based semantic closed-loop control module effectively 

suppresses dynamic resource interference, ensuring system 
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stability and rapid recovery, thus supporting the robustness of 

the full-link collaborative optimization framework in dynamic 

scenarios. 

 

3.2.5 Real-world scenario validation 

A prototype system was deployed in a campus smart 

monitoring scenario, running continuously for 24 hours, 

covering three time periods: daytime (8:00 AM - 6:00 PM), 

nighttime (6:00 PM - 12:00 AM), and early morning (12:00 

AM - 8:00 AM). Core indicators were measured under 

different lighting and crowd density conditions. The results are 

shown in Table 4. 

 

 
 

Figure 5. Game convergence trajectory and total reward change in task conflict scenario 

 

 
 

Figure 6. Dynamic performance changes of the system under severe resource fluctuation scenario 

 

Table 4. Real-world scenario 24-hour validation results 

 

Time 

Period 

Lighting/Crowd 

Conditions 

Semantic 

Fidelity (%) 

Energy 

Consumption 

(J/frame) 

Latency 

(ms/frame) 

mAP 

(%) 

Average Performance 

Fluctuation (%) 

Daytime 
Strong light, high-

density crowd 
87.8 6.3 105 75.6 4.1 

Nighttime 
Weak light, medium-

density crowd 
86.2 6.5 108 74.2 4.5 

Early 

Morning 

No light, low-density 

crowd 
88.3 6.1 101 77.1 3.8 

24-Hour 

Average 
- 87.4 6.3 105 75.6 4.1 
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The real-world scenario validation results show that the 

proposed method still maintains stable and excellent 

performance in complex real-world environments. The 24-

hour average semantic fidelity is 87.4%, mAP is 75.6%, 

energy consumption is 6.3 J/frame, and latency is 105 

ms/frame. The performance fluctuation across all time periods 

is below 5%, effectively adapting to dynamic changes in 

lighting and crowd density. Compared to the baseline method 

DRL-Edge, the proposed method reduces the average energy 

consumption by 28.3%, latency by 19.6%, and mAP by 3.2 

percentage points, fully verifying its practical application 

value and deployment feasibility. 

 

 

4. DISCUSSION 

 

This work is highly aligned with cutting-edge technological 

trends such as 6G semantic communication, edge AI body 

coordination, and autonomy, providing key technical support 

and paradigm references for the development of related fields. 

In the 6G semantic communication domain, the core goal is to 

achieve "task-oriented" efficient data transmission, moving 

away from the traditional "bit transmission" model toward 

"semantic information transmission." The conditional neural 

encoding paradigm proposed in this paper, by integrating 

semantic weights with dynamic adjustments of encoding 

strategies based on channel and energy consumption states, 

essentially represents a realization of semantic communication 

in the edge image processing scenario. The encoding process 

only retains the core semantic information required for the task, 

greatly reducing transmission redundancy, which aligns with 

the 6G core demand for "on-demand transmission." At the 

same time, the semantic-driven closed-loop control and 

lightweight feedback loop design provide a practical technical 

solution for the end-edge collaborative architecture of 6G 

semantic communication. Its stability analysis and 

performance verification can provide theoretical references for 

the design of dynamic adaptation mechanisms in 6G semantic 

communication. 

In the field of edge AI body coordination and autonomy, the 

distributed collaboration and autonomous decision-making of 

multi-terminal devices are core development directions, 

widely applied in complex scenarios such as vehicle-road 

collaboration and industrial IoT. The fairness-oriented 

distributed game decision-making mechanism proposed in this 

paper models each terminal as an independent agent, achieving 

autonomous collaborative decision-making through global 

feedback information, without the need for central node 

intervention, which fits the core need for "distributed 

autonomy" in edge AI systems. The excellent performance of 

this mechanism in heterogeneous terminal and task conflict 

scenarios demonstrates its applicability to more complex edge 

intelligent systems: in the vehicle-road collaboration scenario, 

it can be used for the cooperative transmission of sensing data 

between multiple vehicles and roadside units; in industrial IoT 

scenarios, it can achieve low-power data acquisition and 

transmission optimization for multiple sensor terminals. The 

game equilibrium analysis and cooperative efficiency reward 

design in this paper provide new design ideas for fair and 

efficient collaboration in edge AI bodies, promoting the 

evolution of edge intelligent systems from "individual 

intelligence" to "group collaborative intelligence." 

The core advantages of the proposed method lie in three 

aspects: theoretical paradigm, technical mechanisms, and 

experimental verification. Theoretically, the "conditional 

neural encoding" paradigm breaks through the limitations of 

traditional adaptive encoding's discretization, providing a 

unified theoretical framework for low-power adaptive 

encoding. Its theoretical advantages in storage complexity and 

scalability offer paradigm insights for lightweight model 

design in edge scenarios. Technically, the collaborative design 

of semantic-driven closed-loop control and fairness-oriented 

distributed game decision-making achieves a balance between 

stability and global efficiency under dynamic scenes, 

addressing the core shortcomings of traditional edge 

collaboration methods that neglect fairness and stability. 

Experimentally, through comprehensive validation across 

multiple datasets and scenarios, including conventional tests, 

stress tests, and real-world deployments, and by combining 

interpretability analysis to reveal the core mechanisms, the 

effectiveness and practicality of the method are ensured, 

forming a comprehensive performance advantage over 

existing SOTA methods. 

Objectively, there are three limitations in the current 

framework. First, the current framework assumes a relatively 

stable network topology and lacks adaptability to topological 

mutations such as fast terminal joining/leaving, which may 

lead to delayed collaborative decision-making and affect 

global performance when topology changes. Second, the 

semantic mask generation relies on a lightweight object 

detection network, and in complex scenarios such as low 

lighting or dense targets, the accuracy of semantic region 

division needs improvement, which can affect the precision of 

encoding strategies. Third, the personalized adaptation of 

terminal hardware characteristics is not considered. Different 

terminal processors have varying demands for encoding model 

computational efficiency, and the current design struggles to 

achieve deep hardware-algorithm matching. 

To address these limitations, future research will focus on 

three directions. First, we will introduce graph neural networks 

to model the dynamic topological relationships between 

devices, learning the interaction correlations between 

terminals in real-time, improving the speed and accuracy of 

collaborative decision-making in topological mutation 

scenarios, and enhancing the system's dynamic adaptability. 

Second, we will integrate infrared and visible light multimodal 

image perception technologies, leveraging the advantages of 

infrared images in low-light scenarios to improve the accuracy 

of semantic mask generation in complex environments, 

providing more reliable semantic input for conditional neural 

encoding. Third, we will combine hardware awareness 

technologies to build a database of terminal hardware 

characteristics, quantifying the computational efficiency and 

energy consumption models of different hardware 

architectures, and enabling personalized matching of encoding 

parameters and hardware characteristics, further optimizing 

terminal energy consumption and computational efficiency. 

 

 

5. CONCLUSION 

 

This paper addressed the "semantic fidelity-energy 

consumption-latency" paradox in edge intelligent image 

processing and proposes an integrated collaborative 

optimization framework of "semantic-driven-conditional 

encoding-distributed collaboration," systematically 

constructing three core modules to achieve end-to-end 

collaborative optimization. The conditional neural encoding 
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perception module generates dynamic weight increments 

based on a unified paradigm, achieving adaptive adjustment of 

terminal encoding strategies to balance semantic fidelity and 

energy consumption requirements. The semantic closed-loop 

control module ensures the stable convergence of system 

performance under dynamic scenes through an end-edge 

collaborative closed-loop regulation mechanism. The fairness-

oriented distributed game decision-making module, with the 

goal of global collaboration efficiency, guides multiple 

terminals to achieve a balance between individual interests and 

global fairness. The three modules are organically integrated, 

forming an end-to-end optimization mechanism of "semantic 

perception-dynamic adaptation-global collaboration-stable 

feedback," which breaks through the inherent flaws of 

traditional decoupled designs at the architectural level. 

Experimental validation and in-depth analysis show that the 

proposed method demonstrates significant performance 

advantages in both conventional scenarios and pressure 

scenarios such as resource fluctuations, task conflicts, and 

heterogeneous terminals. Compared to existing SOTA 

methods, it significantly improves semantic fidelity and task 

accuracy, greatly reduces energy consumption and latency, 

increases the Jain fairness index to around 0.9, and keeps 

performance fluctuation within 5%, effectively breaking 

through the "incompatible triangle" constraint and 

dynamically approaching the Pareto optimal boundary. 

Interpretability analysis reveals the internal working principles 

of the core mechanisms, and real-world 24-hour deployment 

verification further demonstrates the method's practicality and 

deployment feasibility, providing reliable support for the 

industrialization of edge image processing technology. 

The core methodological contribution of this paper lies in 

validating the feasibility and superiority of "semantic" as the 

core link that integrates perception, computation, and 

communication resources into a unified design. It breaks 

through the paradigm limitations of isolated optimization in 

traditional edge intelligence research and provides a new 

research framework and technical approach for the field of 

edge intelligent image processing. This method is highly 

aligned with cutting-edge technological trends such as 6G 

semantic communication, edge AI body coordination, and 

autonomy. Its theoretical paradigm and technical mechanisms 

can be extended to more complex edge intelligent systems like 

vehicle-road coordination and industrial IoT, potentially 

promoting the evolution of edge intelligence technology from 

"individual optimization" to "group collaborative 

intelligence," accelerating the industrial application process of 

edge intelligence. 
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