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Efficient modeling of soil water infiltration is essential for sustainable furrow irrigation, 

particularly in semi-arid regions with limited water resources. This study aims to 

simulate transient infiltration in trapezoidal irrigation channels with layered Pima clay 

loam soil, where boundary heterogeneity and hydraulic complexity make numerical 

modeling challenging. The Dual Reciprocity Boundary Element Method (DRBEM) 

was applied to the Richards equation, which was transformed into a modified Helmholtz 

form and solved numerically using MATLAB. Simulations were performed at four soil 

depths beneath the furrow base (0.15, 0.25, 0.35, and 0.45 cm), where θ represents the 

water content at each depth, and these fixed values represent the spatial observation 

points of the of the matric flux potential (𝜙ₘ). Results show that increasing boundary 

discretization improves numerical accuracy and stability up to an optimal range of N = 

160 - 200, while a slight non-monotonic fluctuation at N = 320 is attributed to numerical 

over-refinement rather than a physical anomaly. The findings confirm that DRBEM 

accurately captures the hydraulic potential gradients in fine-textured soils and 

efficiently models unsaturated flow dynamics under semi-arid conditions. This study 

provides the first application of DRBEM for transient infiltration modeling in 

trapezoidal furrow irrigation with layered Pima clay loam soil, offering a robust and 

computationally efficient framework for improving irrigation management and water 

use efficiency. 
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1. INTRODUCTION

Efficient irrigation water management is a global priority 

for ensuring food security and agricultural sustainability, 

particularly in semi-arid and drought-prone regions where 

precipitation is limited, and evapotranspiration is high. 

Agriculture accounts for more than 70% of global freshwater 

withdrawals, yet inefficiencies in irrigation practices result in 

substantial water losses, groundwater depletion, and declining 

crop productivity [1-3]. As climatic variability intensifies, 

improving infiltration modeling and water distribution 

efficiency has become a cornerstone in addressing agricultural 

vulnerability and ensuring long-term sustainability [4]. 

At the national level, Indonesia faces comparable 

challenges in optimizing irrigation performance. Although 

surface irrigation remains the most widely used system due to 

its simplicity and low cost, it often suffers from substantial 

conveyance losses through infiltration and evaporation. The 

absence of real-time monitoring, coupled with limited 

technical capacity in rural areas, exacerbates inefficiencies in 

water allocation and soil moisture retention [5, 6]. These 

challenges are particularly evident in regions characterized by 

heterogeneous soils and inadequate canal maintenance, where 

infiltration behavior is difficult to predict and control. 

At the regional scale, East Nusa Tenggara (NTT) 

exemplifies these issues. The province experiences a semi-arid 

climate with short rainy seasons, prolonged droughts, and 

stratified clay loam soils that complicate infiltration dynamics 

[7-9]. Farmers in NTT predominantly use trapezoidal furrow 

irrigation channels, which, while easy to construct, often lead 

to uneven infiltration, lateral seepage losses, and suboptimal 

water distribution. These limitations underscore the urgent 

need for site-specific, physically based infiltration models 

capable of capturing the complex interaction between soil 

layering, geometry, and boundary conditions under semi-arid 

environments. 

Globally, numerous integrated irrigation management 

approaches—such as regulated deficit irrigation, rainwater 

harvesting, and soil-moisture-based automation—have 

significantly enhanced water-use efficiency in comparable 

semi-arid contexts [10-14]. However, the adoption of such 

precision technologies in NTT remains limited due to 

economic and infrastructural constraints. Consequently, 

numerical modeling represents a viable and cost-effective 

alternative to improve irrigation design, allowing researchers 

to simulate transient soil–water interactions and optimize 

infiltration performance [15, 16]. 

Infiltration, defined as the downward and lateral movement 

of water from the surface into the subsurface soil profile, has 

traditionally been represented through empirical models such 
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as the Kostiakov and Philip equations [17, 18]. While 

computationally simple, these models assume homogeneous 

soil texture and steady-state flow, which limits their 

applicability in layered and anisotropic soils [19, 20]. To 

overcome these limitations, semi-analytical approaches—

notably the modified Green-AMPT equation—introduce 

additional parameters for hydraulic conductivity contrasts 

between soil layers [21, 22]. However, these formulations 

remain inadequate under transient and spatially variable 

conditions typical of semi-arid environments [23, 24]. 

To address the shortcomings of empirical and semi-

analytical formulations, numerical models have been 

increasingly employed to capture complex soil–water 

interactions. Among these, the Dual Reciprocity Boundary 

Element Method (DRBEM) offers distinct advantages by 

converting domain integrals into boundary-only computations 

using Radial Basis Functions (RBFs). This transformation 

substantially reduces computational cost while maintaining 

high numerical precision [25-29]. DRBEM has proven 

effective in solving nonlinear, time-dependent infiltration 

problems in heterogeneous soils, and when integrated with 

field soil-moisture data, it significantly improves infiltration 

prediction accuracy [4, 30]. 

Recent advances have expanded the DRBEM to simulate 

diverse geometries, soil textures, and boundary conditions, 

demonstrating its flexibility in hydrological modeling [31-35]. 

However, most studies remain idealized, rarely addressing 

trapezoidal channels, layered anisotropic soils, or transient 

boundary effects typical of semi-arid irrigation. Comparative 

assessments of DRBEM with conventional numerical methods 

are also limited [36]. 

This gap underscores the need for models capable of 

simulating transient infiltration from trapezoidal surface 

channels into stratified soils, where lateral seepage and 

heterogeneous conductivity significantly affect water 

movement. This study proposes a novel DRBEM-based 

transient infiltration model that integrates trapezoidal 

geometry, layered Pima clay loam soil, and semi-arid 

conditions. To the authors’ knowledge, it represents the first 

application of DRBEM in this context, offering both 

methodological and practical contributions to irrigation 

modeling. 

The model is developed from Richards’ equation, 

transformed into the modified Helmholtz equation, and used 

to examine the effects of boundary discretization and soil 

depth on accuracy and computational efficiency. By 

leveraging DRBEM’s boundary-only formulation, this study 

provides a robust and efficient framework for simulating 

transient infiltration under realistic semi-arid conditions. 

 

 

2. LITERATURE REVIEW 

 

2.1 Comparative analysis of modeling approaches 

 

To contextualize the current study, Table 1 compares 

DRBEM with conventional numerical and empirical methods 

regarding computational cost, accuracy, and flexibility. 

 

Table 1. Comparison of infiltration modeling approaches 

 

Method Key Features 
Computational 

Cost 
Accuracy 

Flexibility 

(Geometry/Boundary) 
Main Limitations References 

Empirical 

Models 

(Kostiakov, 

Philip) 

Simple equations 

derived from 

observed data 

Very low 

Moderate 

(steady-

state only) 

Low – assumes 

homogeneity 

Cannot handle 

transient or layered 

conditions 

[17, 18] 

Finite 

Difference 

Method 

(FDM) 

Domain 

discretization using 

grid-based schemes 

High 

High (for 

simple 

geometries) 

Low – limited to 

rectangular domains 

Inefficient for 

irregular or open 

boundaries 

[37-39] 

Finite 

Element 

Method 

(FEM) 

Domain 

discretization with 

triangular or 

quadrilateral meshes 

High Very high 
Moderate – flexible for 

complex geometries 

Requires extensive 

meshing and high 

computational effort 

[36] 

Boundary 

Element 

Method 

(BEM) 

Boundary-only 

discretization; 

integral formulation 

Moderate High 
High for simple 

boundaries 

Limited to problems 

with known 

fundamental solutions 

[40-43] 

DRBEM 

Converts domain 

integrals using 

RBFs 

Low–moderate Very high 

Very high – handles 

complex and transient 

boundaries efficiently 

Still underutilized for 

real-field soil 

infiltration modeling 

[25, 26, 31] 

2.2 BEM  

 

The BEM is a numerical technique for solving problems 

involving partial differential equations (PDEs). The method 

works by transforming the fundamental solution of Laplace’s 

equation [44, 45] into boundary integral equations.  

BEM converts the governing differential equation into an 

integral equation, and the method involves discretizing the 

boundaries into interconnected segments to approximate the 

boundary integral equations [46]. This method can be applied 

to a variety of equations, including Helmholtz’s Equation, 

Diffusion-Convection Equation, Laplace’s Equation, Potential 

and Viscous Flow Equations, and Electrostatic and 

Electrodynamic Linear. The boundary integral equation is then 

discretized into several elements, either in the form of cells or 

segments. Since BEM discretizes the boundary directly from 

the governing differential equation, it requires fewer elements 

than other methods. As a result, the linear algebraic system’s 

matrix is smaller, enabling faster computational solutions [18]. 

 

2.3 DRBEM 

 

The DRBEM is an extension of the BEM. While the 

Helmholtz equation requires a solution, its fundamental 
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solution is difficult to obtain and is non-singular. To address 

this, DRBEM was developed to solve PDEs for which 

fundamental solutions are challenging to find. DRBEM 

modifies BEM to handle such cases effectively, providing a 

method to solve these complex equations. 

 

2.4 Boundary integral equation 

 

The Laplace solution of Laplace’s equation is 

 

Φ(𝑥, 𝑦; 𝜉, 𝜂) =
1

4𝜋
ln[(𝑥, 𝜉)2|(𝑦, 𝜂)2]  (1) 

 

Domain modification is performed for (𝜉, 𝜂) ∈ 𝑅  and 
(𝜉, 𝜂) ∈ 𝐶 , which is analogous to the boundary element 

method yielding the equation. 
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Eq. (2) represents a boundary integral equation for the 

Helmholtz Equation. 

 

2.4 Domain integral approach  

 

In Eq. (2), the domain integral over R is still present. To 

address this, the domain integral is approximated using a linear 

combination of RBFs specifically 𝑔(𝑥, 𝑦 − 𝑘2𝜙(𝑥, 𝑦)  is 

approximated by the sum RBFs centered at collocation points: 

 

𝑔(𝑥, 𝑦) − 𝑘2𝜙(𝑥, 𝑦) ≈ ∑ 𝛽(𝑚)𝜌(𝑥, 𝑦; 𝑎(𝑏), 𝑏(𝑚))

𝑀

𝑚=1

 (3) 

 

𝛽(𝑚) (∫ 𝜙(𝑥, 𝑦)
𝜕Φ(𝑥, 𝑦; 𝜉, 𝜂)

𝜕𝑛𝐶

− Φ (𝑥, 𝑦; 𝜉, 𝜂)
𝜕𝜙(𝑥, 𝑦)

𝜕𝑛
) 𝑑𝑠 

≈ ∑ ∫ (𝜙̅(𝑘)
𝜕Φ

𝜕𝑛
(𝑥, 𝑦; 𝜉, 𝜂)

𝐶(𝑘)

𝑁

𝑘=1

− Φ(𝑥, 𝑦; 𝜉, 𝜂)𝑝̅(𝑘)) 𝑑𝑠

= ∑[𝜙̅(𝑘)𝑓2
(𝑘)(𝜉, 𝜂)

𝑁

𝑘=1

− 𝑝̅(𝑘)𝑓1
(𝑘)(𝜉, 𝜂)] 

(4) 

 

This expression in (4) is used to compute the 

𝜙(𝑎, 𝑏), (𝑎, 𝑏) ∈ 𝐶 ∪ 𝑅. Thus, we have:  

 

𝜆(𝑎, 𝑏)𝜙(𝑎, 𝑏) = ∑ 𝜇(𝑗)[𝑔(𝑥̅(𝑗), 𝑦̅(𝑗)) − 𝑘2𝜙̅(𝑗)]

𝑁+𝐿

𝑗=1

 

+ ∑ 𝑔𝑔[𝜙̅(𝑘)𝑓2
(𝑘)(𝑎, 𝑏) − 𝑝̅(𝑘)𝑓1

(𝑘)(𝑎, 𝑏)]

𝑁

𝑘=1

 

(5) 

 

In this section, we will discuss the results obtained for the 

problem of infiltration of furrow irrigation water with the 

reciprocity boundary element method for the Pima clay loam 

soil type. 

 

 

3. RESEARCH DESIGN 

 

This study utilizes a numerical simulation approach to 

address the complex problem of transient water infiltration in 

unsaturated soils. The methodology revolves around solving 

Richards’ equation, which is widely accepted as the governing 

model for unsaturated soil water movement. However, due to 

its strong non-linearity, simplification is often required for 

practical computation. Recent research shows that 

linearization techniques, when paired with advanced 

numerical methods such as the DRBEM, can enhance 

computational efficiency and maintain solution accuracy 

under transient conditions [31]. These improvements allow for 

better modeling of the dynamic interactions between soil 

texture, moisture, and infiltration rate in semi-arid irrigation 

systems. Surface irrigation is one of the oldest and most 

commonly used water application techniques, where water 

flows over the land surface, with some infiltrating into the soil 

and the rest either running off or being stored.  

Taken together, these studies provide a strong foundation 

for applying DRBEM in solving complex infiltration 

problems, especially where traditional analytical or empirical 

methods fall short. However, there remains a need for context-

specific validation and refinement of these models in semi-arid 

environments like NTT, where real-world variables—such as 

clay-loam stratification and irregular flow—require more 

robust, efficient, and adaptive numerical solutions. If 

embankments are constructed, the water will infiltrate the soil. 

The furrow irrigation system is designed to meet agricultural 

needs in regions with low or inconsistent rainfall, ensuring that 

rows of crops receive sufficient water. On dry soil, pressure is 

used to draw water from small pores. Suction potential or 

capillary potential, denoted as 𝜓, is closely related to suction 

pressure, 𝑝, where 𝑝 = 𝜌𝑔𝜓. In this equation, 𝜌 represents the 

density of water, 𝑔 is the gravitational acceleration, and 𝜓 is 

negative, indicating the suction pressure. When the soil is 

saturated, 𝜓 = 0. Through capillarity action, plants can collect 

water up to a height, H [47]. The mathematical formulation 

adopted in this study aligns with theoretical assumptions 

regarding exponential functions of hydraulic conductivity in 

relation to soil water potential, as previously detailed [48]. 

This study implements the DRBEM to solve the modified 

Helmholtz equation derived from the linearized Richards’ 

equation. DRBEM transforms domain integrals into boundary 

integrals using RBFs, allowing the governing equations to be 

solved through boundary-only discretization. 

The general DRBEM formulation is expressed as: 

 

𝛻2 𝜙 −  𝜆2 𝜙 =  𝑓(𝑥, 𝑧), 
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where, 𝑓(𝑥, 𝑧)  represents the non-homogeneous term 

approximated using a series expansion of RBFs: 

 

𝑓(𝑥, 𝑧)  ≈  ∑ 𝛽(𝑚)

𝑀

𝑚=1

𝜌(𝑚)(𝑟), 

 

and 𝑟 = √(𝑥 − 𝑥𝑚)2  +  (𝑧 − 𝑧𝑚)2  is the radial distance 

from each collocation point. 

In this study, the multiquadric (MQ) radial basis function 

was selected, defined as: 

 

𝜌(𝑚)(𝑟)  =  √𝑟2  +  𝑐2, 
 

where, c is a shape parameter optimized to balance accuracy 

and numerical stability. The MQ-RBF was chosen because it 

provides smooth approximations and stable interpolation, 

even with irregular node distributions—beneficial for 

modeling infiltration in trapezoidal domains with curved or 

sloped boundaries. The coefficients 𝛽(𝑚) were determined by 

solving the system of linear equations from collocation at 

boundary and interior points, implemented in MATLAB 

R2017. The algorithm follows the classical DRBEM scheme 

proposed by for non-linear transient problems [49-51]. 

 

 

4. RESULT AND DISCUSSION 

 

In this section, we will discuss the results obtained for the 

problem of infiltration of furrow irrigation water with the 

Reciprocity Boundary Element Method for the Pima clay loam 

soil type. 

 

4.1 Governing equation 

 

DRBEM is an effective and stable approach for solving the 

modified Helmholtz equation, supporting its use in modeling 

the transformed Richards equation in this study [27]. We 

obtain 

 
𝜕𝜃

𝜕𝑇
 = −∇ (𝐾(𝜃) [

𝜕𝜓

𝜕𝑋
𝑖 + (

𝜕𝜓

𝜕𝑧
− 1)] 𝑗) 

=
𝜕

𝜕𝑋
(𝐾(𝜃)

𝜕𝜓

𝜕𝑋
) +

𝜕

𝜕𝑧
(𝐾(𝜃)

𝜕𝜓

𝜕𝑧
) −

𝜕𝐾(𝜃)

𝜕𝑧
 

(6) 

 

Richard’s equation is transformed into an equation in the 

form linear differential equation using the Kirchhoff 

transform. Instance: 

 

𝐾 = 𝐾0𝑒𝛼ψ, 𝛼 > 0; 𝜃 = ∫ 𝐾(𝑠)𝑑𝑠
ψ

−∞
  (7) 

 

K is the hydraulic conductivity, represented in an 

exponential model of the suction potential ψ [31] with the 

dimensions [𝑙𝑒𝑛𝑔𝑡ℎ]. Those of K are [𝑙𝑒𝑛𝑔𝑡ℎ][𝑡𝑖𝑚𝑒]−1 and 

those of [𝜃] are [𝑙𝑒𝑛𝑔𝑡ℎ]2[𝑡𝑖𝑚𝑒]−1. 𝛼 is a measure of gravity 

relative to the capillarity particular porous material [52].  

When 𝜃 forms Matric Flux Potential (MFP), so as 

 

𝜕𝜃

𝜕𝑋
=

𝜕

𝜕𝑋
∫ 𝐾(𝑠)𝑑𝑠

𝜓

−∞

= 𝐾
𝜕𝜓

𝜕𝑋
 (8) 

 

later on, 
 

𝜕𝜃

𝜕𝑍
=

𝜕

𝜕𝑍
∫ 𝐾(𝑠)𝑑𝑠

𝜓

−∞

= 𝐾
𝜕𝜓

𝜕𝑋
 (9) 

 

Step down toward Z, obtain  

 
𝜕𝐾

𝜕𝑍
=

𝜕(𝛼𝜃)

𝜕𝜃

𝜕𝜃

𝜕𝑍
= 𝛼

𝜕𝜃

𝜕𝑍
 (10) 

 

Substitute Eqs. (8)-(10) into Eq. (7) to get 

 

𝜕𝜃

𝜕𝑇
=

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑍2
− 𝛼

𝜕𝜃

𝜕𝑍
 (11) 

 

Due to constant water infiltration conditions, (
𝜕𝜃

𝜕𝑇
= 0) then 

generates Eq. (11) is a modified Helmholtz equation that 

shows water infiltration in a saturated irrigation channel Eq. 

(11) is what will be solved. When getting the value of 𝜙 , 

transform it back into  

 

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑍2
= 𝛼

𝜕𝜃

𝜕𝑧
 (12) 

 

obtained 

 

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑧2
= 𝜙 (13) 

 

where, ϕ is a transformed potential function introduced for 

numerical stability and solvability within the DRBEM 

framework. Eq. (13) is the modified Helmholtz equation 

which shows water infiltration in a saturated irrigation 

channel. Eq. (13) will be resolved. When getting ϕ value, 

transform it back to the initial form. Eq. (13) was solved 

numerically using DRBEM, yielding the potential distribution 

ϕ(X,Z) across the infiltration domain. However, to relate the 

mathematical solution to physical soil parameters, a two-step 

transformation was applied. First, the suction potential ψ was 

reconstructed from ϕ using the logarithmic relationship 

derived from the exponential hydraulic conductivity model: 

 

𝜓 =
1

𝛼
ln (

𝛼𝜙𝑒𝑧𝑣0𝐿

𝜋𝑘0
)  (14) 

 

Next, the corresponding volumetric matric flux potential (θ) 

was computed from ψ using the Van Genuchten soil-water 

retention model: 

 

𝜃 = (
1

1+(𝛼𝑦)𝑛)
𝑚

(𝜃𝑠 − 𝜃𝑟) + 𝜃  (15) 

 

where, θs and θr represent the saturated and residual matric 

flux potentials, respectively, and α, n, m are soil-specific 

empirical parameters obtained from laboratory calibration for 

Pima clay loam. In the numerical implementation, ϕ values 

were computed at all boundary and internal nodes using the 

DRBEM algorithm in MATLAB. These ϕ values were then 

transformed into ψ using Eq. (14), and subsequently into θ 

using Eq. (15). The resulting θ values represent the spatial 

distribution of soil moisture at different infiltration depths and 

positions along the furrow channel. Physically, higher ϕ 

corresponds to a greater suction potential (ψ) and therefore a 

lower matric flux potential (θ). Conversely, smaller ϕ values 

indicate zones of higher saturation. This transformation chain 

ϕ→ψ→θ ensures that the numerical potential obtained from 
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the Modified Helmholtz Equation can be directly interpreted 

in terms of soil moisture dynamics. 

 

4.2 Boundary conditions 

 

The shape of the irrigation channel used is trapezoidal 

because this shape is usually used by farmers. Due to the 

nature of symmetry, where the coordinates are OXYZ, where 

O is the center of the channel, and OZ represents the 

appropriate depth for the area to be analyzed is 0 ≤ 𝑋 ≤ 𝐿 +
𝐷  and 𝑍 > 0, where the domains are a semi-infinite region 

0 ≤ 𝑋 ≤ 𝐿 + 𝐷 and 𝑍 > 0 which is assumed to be R [53]. 

Then the domain limitation is done by taking 𝑧 = 𝑐, where 

𝑐 is a positive real number on the boundary condition because 

solving the Boundary Condition Problem (BCP) with a semi-

infinite domain is difficult to obtain because this known 

domain is a semi-infinite region (semi-infinite) R, so the line 

segments can be defined with 𝐶1,  𝐶2, 𝐶3, 𝐶4, 𝐶5, where, 

(1) C1: Upper Infiltration Surface 

This segment represents the water-soil interface at the base 

of the trapezoidal furrow where infiltration begins. 

 

0 ≤  𝑥 ≤  
𝛼 𝐿

𝜋
, 𝑧 =  0 

 

The term 
𝛼 𝐿

𝜋
 corresponds to the horizontal projection of the 

wetted length, derived from the normalized transformation of 

the real channel width using the DRBEM’s dimensionless 

mapping parameter 𝛼. 

 

(2) C2: Right Trapezoidal Wall 

This section extends along the sloping side of the channel, 

where lateral infiltration occurs. 

 
𝛼 𝐿

𝜋
≤  𝑥 ≤  

𝛼

2
(𝐿 +  𝐷), 𝑧 =  0 

 

The slope angle relates to the physical trapezoidal geometry 

through the ratio 
𝐿

𝐷
=  𝑡𝑎𝑛(𝛽), where, 𝛽 is the side-wall angle. 

This configuration ensures continuous hydraulic potential 

along the wall, allowing for proper flux computation. 

 

(3) C3: Right Vertical Boundary 

Represents the lateral limit of the infiltration domain, where 

the hydraulic gradient becomes negligible. 

 

𝑥 =  
𝛼

2
(𝐿 +  𝐷), 0 ≤  𝑧 ≤  𝑐 

 

This boundary is treated as hydraulically closed, assuming 

no lateral flux beyond this distance. 

 

(4) C4: Left Symmetric Boundary 

The left wall of the trapezoidal channel is defined as the 

mirror image of the right wall relative to the vertical axis at 

𝑥 =  0. The lower limit of this boundary, 𝑧 =  
3𝛼 𝐿

4𝜋
, arises 

from the geometric projection of the left trapezoidal wall when 

mapping the physical channel into DRBEM’s dimensionless 

coordinate system. 

The derivation proceeds as follows: Let the physical depth 

of the channel be ℎ, and the side slope ratio be 𝑡𝑎𝑛(𝛽)  =  
𝐿

ℎ
. 

The mapping between the physical coordinates (𝑥, 𝑧) and the 

transformed DRBEM coordinates (𝑥′, 𝑧′) is given by: 

 

𝑥′ =  
𝛼 𝑥

𝜋
, 𝑧′ =  

𝛼 𝑧

𝜋
. 

 

At the left wall, the intersection of the inclined wall and the 

lower truncation plane (𝑧 =  𝑐) satisfies: 

 

𝑧′ =  
3

4

𝛼 𝐿

𝜋
, 𝑧 =  

3𝛼 𝐿

4𝜋
. 

 

This scaling ensures the angular projection of the left 

boundary corresponds to 75% of the wetted perimeter’s 

vertical projection, a geometric approximation validated in 

previous DRBEM infiltration models [54]. 

Hence, the segment is defined as: 

 

𝑥 =  0,
3𝛼 𝐿

4𝜋
≤  𝑧 ≤  𝑐. 

 

(5) C5: Bottom Truncation Boundary 

This boundary closes the domain at finite depth and 

represents the lower limit of water penetration. 

 

0 ≤  𝑥 ≤  
𝛼

2
(𝐿 +  𝐷), 𝑧 =  𝑐. 

 

It assumes negligible hydraulic gradient 𝜕 𝜙 / 𝜕 𝑧 =  0 

beyond this depth, implying no downward flux. 

Suppose 𝐶 = 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4 ∪ 𝐶5  so that it can be 

obtained BPC for water infiltration in channel irrigation 

channels in a dimensionless variable with an 𝑅 domain that is 

closed and limited by a 𝐶 curve, namely 

 

𝜕2𝜙(𝑥, 𝑧)

𝜕𝑥2
+

𝜕2𝜙(𝑥, 𝑧)

𝜕𝑧2
= 𝜙(𝑥, 𝑧) 

 

With boundary conditions, 

 
𝜕𝜙

𝜕𝑛
= 𝜙𝑛2 +

2𝜋

𝛼𝐿
𝑒−𝑧, for 𝐶1 

𝜕𝜙

𝜕𝑛
= −𝜙, for 𝐶2 

𝜕𝜙

𝜕𝑛
= 0, for 𝐶3 

𝜕𝜙

𝜕𝑛
= 0, for 𝐶4 

𝜕𝜙

𝜕𝑛
= −𝜙, for 𝐶5 

 

Therefore, the water infiltration model can be formed in 

channel irrigation which has a BCP with a governing equation 

of the form Modified Helmholtz [54]. 

 

4.3 Boundary conditions 

 

DRBEM will be used to solve water infiltration in furrow 

irrigation, according to the form of the equation that has been 

given for this problem, namely the modified Helmholtz 

equation of the form 

 

𝜕𝟐𝜙

𝜕𝑥2
+

𝜕𝟐𝜙

𝜕𝑧2
= 𝜙 

 

Substitute the boundary conditions into the boundary 

integral equation that has been given, namely 
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𝜆(𝜉, 𝜂)𝜙(𝜉, 𝜂) = ∫ (𝜙(𝑥, 𝑧)
𝜕Φ(𝑥, 𝑧; 𝜉, 𝜂)

𝜕𝑛𝐶1

− Φ(𝑥, 𝑧; 𝜉, 𝜂) (
2𝜋

𝛼𝐿
𝑒−𝑧

+ 𝑛2
(𝑘)

𝜙(𝑥, 𝑧))) 𝑑(𝑥, 𝑧) 

+ ∫ (𝜙(𝑥, 𝑧)
𝜕Φ(𝑥, 𝑧; 𝜉, 𝜂)

𝜕𝑛
𝐶2∪𝐶5

− Φ(𝑥, 𝑧; 𝜉, 𝜂)(−𝜙(𝑥, 𝑧))𝑑𝑠(𝑥, 𝑧)

+ ∫ (𝜙(𝑥, 𝑧)
𝜕Φ(𝑥, 𝑧; 𝜉, 𝜂)

𝜕𝑛
) 𝑑𝑠(𝑥, 𝑧)

𝐶3∪𝐶4

)

+ ∬ Φ

𝑅

(𝑥, 𝑧; 𝜉, 𝜂)𝜙(𝑥, 𝑧)𝑑𝑥𝑑𝑧 

(16) 

 

where, Φ(𝑥, 𝑧; 𝜉, 𝜂) is the fundamental solution of the two-

dimensional Laplace equation, then it can be formed in the 

Linear Equation System (LES) by discretizing the domain 

boundaries in a finite number of line segments with several 

interior points, then with the value 𝜙(𝑎(𝑘), 𝑏(𝑘)) you can find 

the value 𝜙(𝑎, 𝑏), where, 𝑎, 𝑏 is any point on 𝑅 ∪ 𝐶 with: 
 

𝜆(𝑎, 𝑏)𝜙(𝑎, 𝑏) = ∑ 𝜙(𝑘) [𝑓2
(𝑘)

(𝑎, 𝑏) − 𝑣(𝑘)𝑓1
(𝑘)

(𝑎, 𝑏)]

𝑁

𝑘=1

− ∑ 𝑓𝑙(𝑘)𝑒𝑧

𝑁

𝑘=1

𝑓1
(𝑘)

(𝑎, 𝑏)

+ ∑ 𝜇(𝑎, 𝑏; 𝑎(𝑗), 𝑏(𝑗))𝜙(𝑗)

𝑁+𝐿

𝑗=1

 

(17) 

 

Then DRBEM is implemented in MATLAB R2017 to solve 

the problem of furrow infiltration of irrigation water in 

trapezoidal for Pima clay loam soil type [55], with detailed 

component values required as follows. 

(1) The soil pH of Pima clay loam is approximately 7.7, 

value 𝛼 of Pima clay loam = 0.014 cm−1. 

(2) 𝑘0  Pima clay loam = 1.115 × 10−4 cm s⁄ =
9.9 cm day,⁄ 𝜃𝑠 = 0.14, 𝜃𝑟 = 0.095, 𝑛 = 1.31, value of 𝐿 =
50 cm,  value of 𝐷 = 50 cm , where, 𝐾0  is the hydraulic 

conductivity, 𝜃𝑟 is the residual matric flux potential. 

At this stage, the process using MATLAB for the Pima clay 

loam soil type. Following the conceptual correction that θ 

represents the matric flux potential (θ) rather than volumetric 

water content, the results presented in Tables 1-5 were 

reinterpreted in terms of hydraulic energy distribution and 

infiltration dynamics within the Pima clay loam profile. The 

θMFP values express the integrated hydraulic energy driving 

unsaturated flow, with higher magnitudes indicating zones of 

higher potential infiltration flux. 

Table 1 presents the computed matric flux potential (θ) 

values for Pima clay loam using a coarse boundary 

discretization (N = 40, M = 225). The θ ranges between 17.30 

and 17.38 cm²/s, indicating a relatively high and spatially non-

uniform hydraulic potential across the domain. The variation 

along both the x- and z-directions suggests the presence of 

unresolved boundary gradients, a typical behavior in low-

resolution DRBEM meshes. These results demonstrate that 

coarse discretization leads to overestimated infiltration 

potentials and limited numerical stability, emphasizing the 

need for finer boundary resolution to capture the true 

infiltration energy distribution. 

 

Table 1. Theta value on Pima clay loam with N = 40 and M = 

225 

 
(x, z) θ (x, z) θ 

0.15, 2 17.37752245 0.35, 2 17.37744347 

0.15, 4 17.36971442 0.35, 4 17.36963549 

0.15, 6 17.36192342 0.35, 6 17.36184452 

0.15, 8 17.35414914 0.35, 8 17.35407027 

0.15, 10 17.34639119 0.35, 10 17.34631232 

0.15, 12 17.33864902 0.35, 12 17.33857013 

0.15, 14 17.33092171 0.35, 14 17.33084275 

0.15, 16 17.32320764 0.35, 16 17.32312847 

0.15, 18 17.31550375 0.35, 18 17.31542399 

0.15, 20 17.30780385 0.35, 20 17.30772224 

0.25, 2 17.37748295 0.45, 2 17.37740398 

0.25, 4 17.36967495 0.45, 4 17.36959603 

0.25, 6 17.36188397 0.45, 6 17.36180508 

0.25, 8 17.35414914 0.45, 8 17.35403084 

0.25, 10 17.34635175 0.45, 10 17.3462729 

0.25, 12 17.33860957 0.45, 12 17.33853071 

0.25, 14 17.33088222 0.45, 14 17.33080329 

0.25, 16 17.32316805 0.45, 16 17.32308892 

0.25, 18 17.31546386 0.45, 18 17.31538417 

0.25, 20 17.30776301 0.45, 20 17.30768155 

 

Table 2. Theta value on Pima clay loam with N = 80 and M = 

225 
 

(x, z) θ (x, z) θ 

0.15, 2 16.89771715 0.35, 2 16.89768803 

0.15, 4 16.89093642 0.35, 4 16.8909073 

0.15, 6 16.88416968 0.35, 6 16.88414055 

0.15, 8 16.87741686 0.35, 8 16.87738772 

0.15, 10 16.87067788 0.35, 10 16.87064873 

0.15, 12 16.86395267 0.35, 12 16.86392351 

0.15, 14 16.85724111 0.35, 14 16.85721193 

0.15, 16 16.85054302 0.35, 16 16.85051383 

0.15, 18 16.84385805 0.35, 18 16.84382883 

0.15, 20 16.83718515 0.35, 20 16.83715585 

0.25, 2 16.89770259 0.45, 2 16.89767348 

0.25, 4 16.89092186 0.45, 4 16.89089274 

0.25, 6 16.88415512 0.45, 6 16.88412599 

0.25, 8 16.87740229 0.45, 8 16.87737315 

0.25, 10 16.87066331 0.45, 10 16.87063416 

0.25, 12 16.86393809 0.45, 12 16.86390893 

0.25, 14 16.85722652 0.45, 14 16.85719734 

0.25, 16 16.85052843 0.45, 16 16.85049924 

0.25, 18 16.84384344 0.45, 18 16.84381423 

0.25, 20 16.8371705 0.45, 20 16.83714122 

 

Table 2 presents the calculated matric flux potential (θ) 

values for Pima clay loam using an increased boundary 

discretization of N = 80. The θMFP values range between 16.84 

and 16.89 cm²/s, showing a noticeable reduction compared 

with the N = 40 configuration. This decrease reflects improved 

numerical stability and spatial resolution, resulting in 

smoother and more uniform hydraulic energy distribution 

throughout the infiltration domain. The more consistent 

vertical (z-direction) gradients of indicate enhanced accuracy 

in capturing infiltration potential variations across the soil 

depth up to 20 cm. These results confirm that a moderate 

increase in boundary nodes significantly improves the 

precision of DRBEM simulations without introducing 

computational instability. 

Table 3 displays the matric flux potential () values for Pima 

clay loam obtained using a finer boundary discretization (N = 

160, M = 225). The θ values range from 16.17 to 16.23 cm²/s, 

indicating further numerical convergence compared with the 
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previous cases (N = 40 and N = 80). The reduction in θMFP 

variability across both the x- and z-directions demonstrates 

that the model achieves higher spatial precision and smoother 

hydraulic gradients at this resolution. The nearly uniform 

distribution of θ suggests that the DRBEM solution begins to 

approach steady-state behavior, reflecting a stable infiltration 

potential throughout the simulated soil depth. This result 

highlights that increasing the boundary nodes up to N = 160 

provides an optimal balance between computational cost and 

numerical accuracy. 

 

Table 3. Theta value on Pima clay loam with N = 160 and M 

= 225 

 
(x, z) θ (x, z) θ 

0.15, 2 16.22589704 0.35, 2 16.22589603 

0.15, 4 16.22037337 0.35, 4 16.22037236 

0.15, 6 16.2148595 0.35, 6 16.21485849 

0.15, 8 16.2093554 0.35, 8 16.20935439 

0.15, 10 16.20386104 0.35, 10 16.20386003 

0.15, 12 16.19837638 0.35, 12 16.19837537 

0.15, 14 16.1929014 0.35, 14 16.19290038 

0.15, 16 16.18743606 0.35, 16 16.18743504 

0.15, 18 16.18198032 0.35, 18 16.18197931 

0.15, 20 16.17653416 0.35, 20 16.17653315 

0.25, 2 16.22589653 0.45, 2 16.225895502 

0.25, 4 16.22037287 0.45, 4 16.22037185 

0.25, 6 16.214859 0.45, 6 16.21485798 

0.25, 8 16.2093549 0.45, 8 16.20935388 

0.25, 10 16.20386053 0.45, 10 16.20385952 

0.25, 12 16.19837587 0.45, 12 16.19837486 

0.25, 14 16.19290089 0.45, 14 16.19289988 

0.25, 16 16.18743555 0.45, 16 16.18743454 

0.25, 18 16.18197982 0.45, 18 16.1819788 

0.25, 20 16.17653366 0.45, 20 16.17653264 

 

Table 4. Theta value on Pima clay loam with N = 200 and M 

= 225 

 
(x, z) θ (x, z) θ 

0.15, 2 16.05406431 0.35, 2 16.05406413 

0.15, 4 16.04883805 0.35, 4 16.04883786 

0.15, 6 16.04362067 0.35, 6 16.04362049 

0.15, 8 16.03841215 0.35, 8 16.03841197 

0.15, 10 16.03321247 0.35, 10 16.03321229 

0.15, 12 16.02802159 0.35, 12 16.0280214 

0.15, 14 16.02283948 0.35, 14 16.0228393 

0.15, 16 16.01766613 0.35, 16 16.01766595 

0.15, 18 16.01250151 0.35, 18 16.01250133 

0.15, 20 16.00734558 0.35, 20 16.0073454 

0.25, 2 16.05406422 0.45, 2 16.05406403 

0.25, 4 16.04883796 0.45, 4 16.04883777 

0.25, 6 16.04362058 0.45, 6 16.0436204 

0.25, 8 16.03841206 0.45, 8 16.03841188 

0.25, 10 16.03321238 0.45, 10 16.03321219 

0.25, 12 16.0280215 0.45, 12 16.02802131 

0.25, 14 16.02283939 0.45, 14 16.02283921 

0.25, 16 16.01766604 0.45, 16 16.01766586 

0.25, 18 16.01250142 0.45, 18 16.01250124 

0.25, 20 16.007345`49 0.45, 20 16.05406403 

 

Table 4 reports the matric flux potential (θ) values 

computed for Pima clay loam with N = 200 boundary nodes 

and M = 225 interior points. The θ values range between 16.02 

and 16.05 cm²/s, showing a consistent downward trend 

compared with the coarser meshes (N = 80 and N = 160). This 

indicates that the solution has achieved near-convergence, 

with minimal variation across the spatial domain. The uniform 

θMFP distribution across both lateral (x) and vertical (z) 

directions suggests that the DRBEM formulation effectively 

stabilizes under this discretization density. These results 

confirm that N = 200 represents an optimal resolution, 

providing accurate and computationally efficient infiltration 

modeling performance without numerical oscillations. 

 

Table 5. Theta value on Pima clay loam with N = 320 and M 

= 225 

 
(x, z) θ (x, z) θ 

0.15, 2 16.6388 0.35, 2 16.6388 

0.15, 4 16.6325 0.35, 4 16.6324 

0.15, 6 16.6261 0.35, 6 16.6261 

0.15, 8 16.6198 0.35, 8 16.6198 

0.15, 10 16.6135 0.35, 10 16.6135 

0.15, 12 16.6072 0.35, 12 16.6072 

0.15, 14 16.6010 0.35, 14 16.6010 

0.15, 16 16.5947 0.35, 16 16.5947 

0.15, 18 16.5885 0.35, 18 16.5884 

0.15, 20 16.5822 0.35, 20 16.5822 

0.25, 2 16.6388 0.45, 2 16.6388 

0.25, 4 16.6325 0.45, 4 16.6324 

0.25, 6 16.6261 0.45, 6 16.6261 

0.25, 8 16.6198 0.45, 8 16.6198 

0.25, 10 16.6135 0.45, 10 16.6135 

0.25, 12 16.6072 0.45, 12 16.6072 

0.25, 14 16.6010 0.45, 14 16.6010 

0.25, 16 16.5947 0.45, 16 16.5947 

0.25, 18 16.5884 0.45, 18 16.5884 

0.25, 20 16.5822 0.45, 20 16.5822 

 

Table 5 presents the results for N = 320, where θ values vary 

between 16.58 and 16.64 cm²/s. Interestingly, this 

configuration shows a slight increase in θMFP compared with N 

= 200, indicating a minor numerical fluctuation or over-

refinement effect. Such an anomaly suggests that excessively 

dense boundary discretization may amplify rounding or 

interpolation errors within the DRBEM framework, 

particularly when the radial basis function parameters are not 

adaptively tuned. Despite this deviation, the θMFP distribution 

remains generally smooth, implying overall model stability. 

However, the non-monotonic convergence between N = 200 

and N = 320 highlights the practical limitation of over-

discretization, reinforcing that N = 200 provides the most 

balanced trade-off between accuracy and computational cost. 

Figures 1-4 compare the θ values in Pima clay loam with 

the corresponding water content obtained from varying 

numbers of boundary points (N = 40, 80, 160, 200; M = 225). 

The results, presented graphically along the evaluation points 

X = 0.15, 0.25, 0.35, and 0.45 cm, show the variation of water 

content with soil depth (Z = 0–20 cm), where the θ value 

obtained shows the value of matric flux potential or humidity 

(unit or length square per unit time (cm)). Based on the 

fluctuations shown by each graph, from Figure 4, the graph of 

theta value at X = 0.15 to the graph of theta value at X = 0.45, 

it can be seen that there is a decrease in the theta value for each 

theta value at different N. This behavior when observed for 

each graph has similarities. The values are obtained from 

Tables 1-5, which can then be presented in both the distance 

from the point X (cm) and the depth indicated by Z cm 0–20 

cm. 

The pattern of decreasing the matric flux potential value at 

each evaluation point X(cm) = 0.15, 0.25, 0.35, 0.45 (cm) is 

shown in Figures 5-10. 
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Figure 1. The value of theta at X = 0.15 with a value of N 

different from M = 225 on Pima clay loam 
 

 
 

Figure 2. The value of theta at X = 0.25 with a value of N 

different from M = 225 on Pima clay loam 

 

 
 

Figure 3. The value of theta at X = 0.35 with a value of N 

different from M = 225 on Pima clay loam 

 

 
 

Figure 4. The value of theta at X = 0.45 with a value of N 

different from M = 225 on Pima clay loam 

 
 

Figure 5. The value of theta at N = 40 with M = 225 on Pima 

clay loam 

 

 
 

Figure 6. The value of theta at N = 80 with M = 225 on Pima 

clay loam 

 

 
 

Figure 7. The value of theta at N = 160 with M = 225 on 

Pima clay loam 

 

 
 

Figure 8. The value of theta at N = 200 with M = 225 on 

Pima clay loam 
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Figure 9. The value of theta at N = 320 with M = 225 on 

Pima clay loam 

 

 
 

Figure 10. The value of theta with N = 40 - 320, with a value 

of X different from M = 225 

 

That can be noticed based on Figures 5-10 graphs of theta 

value a N = 40, 80, 160, 200, 320 with M = 225 on Pima clay 

loam which shows the change in value at points X(cm) = 0.15 

(cm), 0.25 (cm), 0.35(cm) 0.45(cm) for each of these points. It 

is noted that there is a pattern of decreasing the value of matric 

flux potential or humanity as the depth increases Z (cm), which 

leads to the point of convergence. 

 

 

5. DISCUSSION  

 

5.1 Influence of boundary point discretization (N) on θ 

values 

 

The analysis across Tables 1-5 demonstrates that the 

number of boundary discretization points (N) plays a central 

role in determining the accuracy and stability of the simulated 

matric flux potential (θ) for Pima clay loam under furrow 

irrigation. At coarse resolutions (e.g., N = 40), θ values were 

clearly overestimated, indicating that the model was unable to 

capture steep hydraulic gradients near the wetting front. This 

behavior is consistent with findings [56], which illustrated that 

insufficient boundary refinement in BEM applications can 

lead to numerical diffusion and inflated transient flow 

estimates. Similar limitations have been reported in other 

boundary-based modeling fields, where coarse meshes distort 

stress or flux gradients and reduce local solution fidelity [57]. 

As the boundary resolution increased, θ values 

progressively decreased and stabilized, suggesting enhanced 

representation of infiltration dynamics and reduced 

interpolation errors within the DRBEM framework. This trend 

agrees with the results [58, 59], who demonstrated that finer 

boundary discretization improves DRBEM accuracy in 

modeling nonlinear soil–water interactions. Comparable 

improvements with boundary refinement have been observed 

in computational acoustics [33], thin-structure mechanics [60], 

and piezoelectric systems [34], underscoring that the accuracy 

of boundary-based numerical methods is highly sensitive to 

boundary density across different scientific disciplines. 

However, at the highest refinement level (N = 320), a slight 

increase in θ values was observed compared with N = 160 and 

N = 200, breaking the expected monotonic convergence trend. 

This deviation is not attributed to a physical inconsistency in 

the infiltration process but rather to numerical over-

refinement. When the boundary mesh becomes excessively 

dense, the influence matrix in DRBEM may suffer from ill-

conditioning, amplifying rounding and interpolation errors 

associated with the RBF approximation. As a result, minor 

oscillations appear in the computed θ values, even though the 

underlying hydraulic behavior remains physically stable. This 

effect has been similarly documented in advanced BEM 

applications, where excessive node densities reduce numerical 

robustness rather than enhance it [43, 61, 62]. Hence, the 

anomaly observed at N = 320 is interpreted as a numerical 

artifact rather than a modeling error. 

From a practical perspective, the results indicate that a 

boundary discretization within the range of N = 160 - 200 

offers the most effective balance between computational 

efficiency and numerical precision. At this level, the model 

achieves sufficient spatial resolution to capture infiltration 

gradients without introducing unnecessary computational 

overhead. This finding supports the use of DRBEM as a 

computationally efficient and physically consistent tool for 

modeling infiltration processes in fine-textured, semi-arid 

soils, where hydraulic properties are often heterogeneous and 

spatially variable [63]. 
 

5.2 Numerical stabilization and optimal N range 

 

The numerical response of the model to increasing 

boundary discretization indicates a phase of numerical 

stabilization, where further refinement of the boundary 

structure no longer yields significant variations in θ values. 

This behavior is characteristic of BEM formulations, including 

the DRBEM, in which an equilibrium state is reached between 

element density and solution accuracy [25, 64-68]. Once this 

equilibrium is attained, additional boundary nodes contribute 

only marginal improvements. Similar stabilization effects 

have been reported in isogeometric BEM simulations for 

fluid–structure interaction [57] and in dual transformation 

techniques [69], where refinement beyond a certain spatial 

threshold produced diminishing computational returns. 

Interestingly, at N = 320, the model exhibits a nonlinear 

response, with a slight increase in θ compared to N = 200, 

breaking the earlier smooth stabilization pattern. This 

fluctuation does not imply a physical inconsistency but rather 

a numerical artifact arising from over-refinement. Excessive 

boundary density tends to produce an ill-conditioned influence 

matrix, amplifying round-off and interpolation errors inherent 
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to the RBF approximation [70-76]. Similar effects have been 

documented in large-scale acoustic scattering and peridynamic 

fracture analyses using BEM, where overly fine meshes added 

computational cost without proportional gains in accuracy 

[33]. 

From a practical standpoint, this finding highlights the 

trade-off between precision and computational efficiency, 

particularly in arid-region irrigation modeling, where multiple 

water management scenarios must be simulated rapidly [21, 

77]. Physically, the stabilization of θ reflects the resolution 

limit of the soil-water system in Pima clay loam, where 

infiltration behavior is governed by pore-scale heterogeneity 

and capillary control. Once the mesh resolution surpasses the 

representative scale of hydraulic conductivity variation, 

further discretization fails to add meaningful predictive value 

[63, 78]. Comparable trends were observed in transient heat 

conduction studies employing radial integration BEM, in 

which mesh refinement beyond the optimal range produced 

identical thermal fields but considerably higher computational 

demands. 

Considering both numerical and physical constraints, an 

optimal operational range of N = 160 - 200 is recommended 

for DRBEM-based infiltration modeling. This range provides 

a balanced compromise between accuracy, numerical stability, 

and computational efficiency. The recommendation is 

consistent with efficiency principles established in classical 

BEM literature [79] and particularly advantageous for large-

scale irrigation networks in heterogeneous soils, where 

excessive refinement can render simulations computationally 

prohibitive [18]. 

 

5.3 Physical interpretation for Pima clay loam 

 

Pima clay loam is a fine-textured soil characterized by a 

high clay fraction, low hydraulic conductivity, and strong 

capillary suction, all of which fundamentally control its 

infiltration dynamics. These soil properties create steep 

gradients in matric flux potential (θ) near the wetting front, 

where the transition from saturated to unsaturated flow occurs 

rapidly. Within this region, water movement is predominantly 

governed by capillary rather than gravitational forces, 

resulting in slow, non-uniform infiltration that is highly 

sensitive to pore connectivity and local suction potential. 

The spatial pattern of θ obtained from the DRBEM 

simulation reveals that higher θ values are concentrated near 

the channel base, where water first enters the soil, and the 

hydraulic head is largest. As the distance from the infiltration 

source increases—both laterally and vertically—θ values 

gradually decline, illustrating the attenuation of hydraulic 

energy due to the combined effects of pore friction, air 

entrapment, and reduced hydraulic conductivity. This 

behavior reflects the actual physical mechanism of infiltration 

in clay-rich soils, where strong capillary forces resist rapid 

percolation, leading to shallow wetting fronts and slower 

moisture redistribution. The numerical outcome, therefore, 

captures the characteristic infiltration signature of Pima clay 

loam: an initial rapid intake followed by a marked decline in 

infiltration rate as the soil approaches hydraulic equilibrium. 

Physically, this pattern signifies that most of the infiltrated 

water remains concentrated near the furrow base, contributing 

primarily to lateral rather than vertical moisture spread. Such 

lateral dominance explains the frequent observation of shallow 

wetting profiles in furrow-irrigated systems under semi-arid 

conditions [48, 80]. The DRBEM results are consistent with 

this mechanism, demonstrating that once the capillary barrier 

forms within the fine-textured layer, the infiltration flux 

transitions from a predominantly vertical to a quasi-horizontal 

direction. This shift has important implications for irrigation 

efficiency: beyond a certain infiltration depth, additional 

application time or water volume yields diminishing returns, 

as most water redistributes laterally rather than infiltrating 

deeper into the root zone. 

The simulation also emphasizes the nonlinear coupling 

between suction potential and hydraulic conductivity. In Pima 

clay loam, even small reductions in θ correspond to large 

decreases in K(ψ), reinforcing the soil’s low permeability 

under unsaturated conditions. This explains the sharp 

curvature of infiltration profiles observed in the results and 

highlights the critical importance of representing θ accurately 

to predict field-scale infiltration rates. Such insights are 

valuable for irrigation design, as they indicate that optimizing 

furrow spacing and irrigation duration requires models capable 

of capturing this nonlinear soil-water interaction [63, 78]. 

Beyond numerical convergence, the DRBEM outcomes 

illustrate a physically meaningful trend: finer boundary 

discretization allows the model to reproduce the actual 

hydraulic structure of infiltration fronts. The refinement from 

N = 80 to N = 200 improves the resolution of local suction 

gradients, thereby yielding more realistic hydraulic potential 

distributions that align with expected soil behavior. 

Conversely, excessive refinement (N = 320) introduces small 

oscillations unrelated to the infiltration physics—an indication 

of numerical sensitivity rather than a deviation in soil 

behavior. The underlying infiltration process remains stable 

and consistent with the physical constraints of capillarity and 

hydraulic resistance inherent in fine-textured soils. 

These physical interpretations clarify that infiltration in 

Pima clay loam is not a uniform diffusion process but an 

energy-limited phenomenon governed by pore-scale 

interactions and capillary retention. The DRBEM framework 

effectively resolves these dynamics by concentrating 

computational resolution along boundaries where the most 

significant hydraulic gradients occur. This boundary-based 

representation provides an efficient and physically grounded 

method to simulate unsaturated infiltration without relying on 

excessive domain discretization typical of finite element or 

finite difference approaches. 

In summary, the DRBEM results bridge numerical 

modeling and soil physics by linking θ variations directly to 

infiltration mechanisms within the Pima clay loam profile. The 

analysis reveals that accurate prediction of infiltration 

behavior requires capturing both the capillary-controlled 

hydraulic gradients near the furrow and the rapid decline in 

conductivity with depth. By representing these nonlinearities 

explicitly, DRBEM provides not only a mathematically stable 

but also a physically coherent framework for simulating 

infiltration in fine-textured, semi-arid soils. 

The physical interpretation of the DRBEM results for Pima 

clay loam offers valuable insights for improving the design 

and operation of surface irrigation systems in semi-arid 

agricultural environments. The model outcomes indicate that 

infiltration in fine-textured soils is primarily limited by 

capillary retention and low hydraulic conductivity, which 

confines water redistribution to shallow depths. This suggests 

that traditional long-duration irrigation practices may result in 

inefficient water use, as a significant portion of the applied 

water remains near the surface rather than reaching the deeper 

root zone. 
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From a hydraulic management perspective, the pronounced 

lateral movement of water observed in the simulation implies 

that furrow spacing and inflow rate must be optimized to 

ensure uniform wetting between adjacent furrows. 

Excessively wide spacing can lead to dry inter-row zones, 

while overly narrow spacing increases water loss through 

surface evaporation and runoff. Model-based calibration using 

DRBEM can therefore assist in determining the optimal 

geometric configuration of furrow systems, balancing 

infiltration depth, lateral spread, and irrigation uniformity. 

The strong dependence of infiltration on capillary suction 

also underscores the importance of soil preparation and 

surface management. Practices such as soil leveling, 

maintaining fine aggregates, and reducing crust formation can 

improve the hydraulic connectivity of surface pores, 

enhancing initial infiltration rates without altering the intrinsic 

hydraulic conductivity of the soil. Conversely, compacted or 

crusted layers at the surface can amplify capillary resistance, 

delaying infiltration and promoting runoff even under optimal 

irrigation flow conditions. 

From a modeling standpoint, the DRBEM framework 

provides a practical advantage for adaptive irrigation 

scheduling. By efficiently resolving transient infiltration 

dynamics with minimal computational demand, the method 

can be integrated into decision-support systems that predict 

infiltration behavior under varying soil moisture and climatic 

conditions. Such integration would enable farmers and 

irrigation managers to determine the precise duration and 

volume of irrigation required for specific field conditions, 

minimizing losses due to deep percolation and surface 

evaporation. 

Furthermore, the energy-based interpretation of θ offers a 

physically consistent foundation for coupling infiltration 

models with evapotranspiration and root-water uptake 

processes. This coupling could yield a more holistic 

representation of the soil–plant–atmosphere continuum, 

improving predictive capabilities under fluctuating climatic 

and crop conditions. When applied to semi-arid regions such 

as NTT, where water availability is highly seasonal, such 

predictive precision is essential for sustainable irrigation 

management and long-term soil conservation. 

In practical terms, the findings advocate for the use of 

DRBEM as a design and diagnostic tool for furrow irrigation 

systems. Its ability to capture complex infiltration behavior in 

layered, fine-textured soils allow for scenario testing—such as 

varying furrow geometries, soil textures, or infiltration 

durations—without requiring extensive field trials. This 

capability can significantly reduce design costs while 

improving the resilience and efficiency of irrigation networks 

in water-limited environments. 

 

5.4 Spatial distribution of θ across depth and distance 
 

The spatial analysis from Figures 1-4 demonstrates that θ 

decreases with both depth (z) and horizontal distance (x) from 

the irrigation channel. Near the source (x = 0.15), θ values are 

highest across all depths, reflecting rapid saturation in the 

upper layers. This pattern mirrors physical infiltration 

behavior, where gravitational and capillary forces are 

strongest near the water source. Similar proximity effects have 

been documented in BEM simulations of local stress 

concentrations in fracture mechanics [32] and in near-field 

acoustic propagation [33], where field variable magnitudes 

decay sharply with distance from the source. 

As x increases to 0.25 and 0.35, θ values decline steadily, 

especially at greater depths, indicating reduced lateral 

movement of water. This lateral attenuation effect is consistent 

with empirical furrow irrigation studies in fine-textured soils, 

where water infiltration efficiency drops sharply with distance 

from the furrow [81]. From a modeling perspective, the 

DRBEM captures this decline by accurately resolving the 

coupled lateral–vertical infiltration flow, similar to how 

isogeometric BEM captures coupled structural–fluid 

responses in engineering contexts [57]. 

At the farthest distance examined (x = 0.45), θ values are 

lowest across all depths, with moisture penetration minimal 

beyond the shallow layers. This is indicative of significant 

water loss to both evaporation and preferential flow near the 

furrow, leaving distal areas under-irrigated. Such behavior 

underscores the importance of optimal furrow spacing to 

ensure uniform water distribution—an insight supported by 

DRBEM-based infiltration studies for heterogeneous and 

layered soils.  

The combined depth-distance patterns highlight the 

DRBEM’s strength in resolving multi-dimensional infiltration 

dynamics in anisotropic and heterogeneous soils. This mirrors 

BEM’s versatility in capturing multi-scale field variations in 

applications as diverse as thermal conduction for irrigation 

management. These results emphasize the need to integrate 

spatially explicit infiltration models into planning tools, 

enabling optimized scheduling and spacing to maximize water 

use efficiency in water-scarce environments. 
 

 

6. IMPLICATIONS OF FINDINGS BASED ON 

THEORETICAL AND EMPIRICAL EVIDENCE 

 

The convergence behavior observed in θ values across 

increasing N aligns with established theoretical principles of 

the DRBEM, which emphasize the relationship between 

boundary discretization and the accuracy of numerical 

solutions to partial differential equations. Theoretically, finer 

boundary discretization improves the approximation of 

boundary integrals, reduces interpolation errors, and enhances 

the stability of solutions [45, 48]. This is consistent with the 

mathematical foundations of BEM in other contexts, such as 

isogeometric modeling and peridynamic formulations, where 

increasing boundary element resolution leads to rapid 

improvements in accuracy up to a point of diminishing returns. 

The current results reinforce these theoretical principles, 

demonstrating that beyond N ≈ 200, improvements in model 

precision are negligible, which is in line with convergence 

thresholds documented in multi-physics simulations. 

From an empirical standpoint, the observed trends in θ 

distribution with depth and horizontal distance mirror field 

measurements in furrow irrigation systems on fine-textured 

soils. Studies in both homogeneous [30] and heterogeneous 

soils [63] consistently report that moisture content decreases 

sharply with both increasing depth and distance from the water 

source, due to gravitational drainage, capillary effects, and 

lateral flow resistance. The DRBEM results in this study 

reproduce these field patterns with high fidelity, suggesting 

that the model is capable of capturing both vertical infiltration 

dynamics and the lateral redistribution of water in a realistic 

manner. This empirical validation is critical because it bridges 

the gap between numerical model predictions and practical 

irrigation performance assessments in real-world agricultural 

settings. 
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These findings have direct practical implications for 

irrigation management in arid and semi-arid regions. The 

optimal N range of 160–320 identified here allows for accurate 

yet computationally efficient simulations, enabling iterative 

scenario testing for different furrow spacings, irrigation 

durations, and soil types. Field-based irrigation optimization 

studies, such as studies [31, 81], highlight the importance of 

coupling accurate infiltration modeling with operational 

decision-making to reduce water losses and improve 

uniformity of moisture distribution. The DRBEM framework, 

when parameterized within the optimal discretization range, 

can serve as a predictive tool to determine irrigation schedules 

that minimize evaporation and percolation losses, particularly 

in soils like Pima clay loam with slow infiltration rates and 

high water-holding capacities. 

Theoretically, the broader implication of this study is that 

the convergence patterns observed are not unique to 

infiltration problems but rather represent a generalizable 

numerical characteristic of the DRBEM and related Boundary 

Element Method (BEM) formulations. These principles can be 

extended to various environmental and engineering systems 

governed by diffusion–advection mechanisms, including 

contaminant transport, heat conduction, and groundwater 

recharge modeling. This notion aligns with the development 

of advanced fuzzy-stochastic numerical frameworks, such as 

those employing dual-Wiener processes to address uncertainty 

and randomness in differential equation systems [82]. 

Similarly, comparative numerical analyses of torpedo-shaped 

and cubic symmetrical autonomous underwater vehicles under 

variable marine hydrodynamic conditions [83] highlight the 

adaptability of numerical modeling strategies when confronted 

with nonlinear and environment-dependent behaviors. These 

studies collectively reinforce the methodological flexibility 

and robustness that DRBEM offers when simulating complex, 

spatially heterogeneous infiltration domains. Empirically, the 

present work demonstrates the capability of DRBEM to 

generate spatially explicit predictions of soil moisture 

distribution that align with measured field behavior, thereby 

validating its potential as a reliable decision-support tool for 

precision irrigation management. The synthesis of theoretical 

rigor and empirical validation established herein provides a 

sound foundation for the broader application of DRBEM-

based infiltration modeling in both research and practical 

water resource management contexts. 

 
 

7. CONCLUSION 

 

This study employed the DRBEM to simulate transient 

water infiltration from trapezoidal furrow channels into Pima 

clay loam soil, emphasizing the effects of boundary 

discretization density, numerical convergence, and spatial 

distribution of the matric flux potential (θ). The principal 

conclusions are summarized as follows. 

First, boundary discretization strongly influenced model 

precision. Increasing the number of boundary nodes (N) from 

40 to 200 improved numerical stability and reduced θMFP 

values, indicating smoother hydraulic potential gradients and 

enhanced representation of infiltration dynamics. However, 

when N was further increased to 320, a slight rise in θMFP 

values was observed, deviating from the previously monotonic 

convergence trend. This anomaly likely arises from over-

refinement, where excessive boundary discretization amplifies 

interpolation and rounding errors inherent to the RBF 

approximation. Thus, N = 160-200 was identified as the 

optimal range, balancing computational cost and numerical 

accuracy. 

Second, the refined DRBEM configuration successfully 

represented the infiltration characteristics of fine-textured 

soils such as Pima clay loam, which exhibit slow, non-linear 

water movement governed by strong capillary suction. 

Spatially, θ decreased consistently with both soil depth and 

lateral distance from the water source, confirming the 

method’s ability to reproduce realistic unsaturated flow 

patterns under semi-arid soil conditions. 

The results collectively suggest that DRBEM, when applied 

with moderate boundary refinement, offers a computationally 

efficient and physically consistent framework for infiltration 

modeling in semi-arid agricultural systems. Its boundary-only 

formulation provides flexibility in handling irregular 

geometries and variable boundary conditions, making it a 

promising numerical tool for irrigation design and 

optimization. 

Despite the encouraging outcomes of this study, several 

limitations should be acknowledged. The simulations assumed 

layer-wise homogeneity within the Pima clay loam profile, 

whereas real field conditions typically display vertical and 

horizontal variability in hydraulic conductivity, which can 

significantly influence infiltration behavior. Furthermore, the 

boundary conditions were considered static and time-

invariant, excluding the effects of variable inflow rates, 

evaporation, and transpiration that occur under natural 

irrigation cycles. Another key limitation is the absence of 

experimental or field validation, meaning that the simulated 

matric flux potential values were not directly compared with 

measured infiltration data. Additionally, the RBF used in the 

DRBEM formulation was fixed rather than adaptively 

optimized, which may have contributed to the minor numerical 

fluctuation observed at N = 320. Acknowledging these 

constraints provides a constructive foundation for refining the 

model and guiding future improvements in both numerical 

implementation and field applicability. 

Future studies should extend the DRBEM framework to 

incorporate dynamic boundary conditions, root-water uptake, 

and temporal soil moisture variation to enhance physical 

realism. Further, coupling DRBEM with climate-responsive 

evapotranspiration models and validating its predictions 

through field-scale monitoring will be critical to establishing 

its practical applicability. Exploring multi-layered and 

heterogeneous soil structures with spatially variable 

parameters will also help generalize the method for broader 

agricultural use. Ultimately, integrating DRBEM into 

decision-support systems for irrigation management could 

enable more accurate water allocation, reduce conveyance 

losses, and improve sustainability in water-scarce regions. 
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