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Efficient modeling of soil water infiltration is essential for sustainable furrow irrigation,
particularly in semi-arid regions with limited water resources. This study aims to
simulate transient infiltration in trapezoidal irrigation channels with layered Pima clay
loam soil, where boundary heterogeneity and hydraulic complexity make numerical
modeling challenging. The Dual Reciprocity Boundary Element Method (DRBEM)
was applied to the Richards equation, which was transformed into a modified Helmholtz
form and solved numerically using MATLAB. Simulations were performed at four soil
depths beneath the furrow base (0.15, 0.25, 0.35, and 0.45 cm), where 0 represents the
water content at each depth, and these fixed values represent the spatial observation
points of the of the matric flux potential (¢m). Results show that increasing boundary
discretization improves numerical accuracy and stability up to an optimal range of N =
160 - 200, while a slight non-monotonic fluctuation at N = 320 is attributed to numerical
over-refinement rather than a physical anomaly. The findings confirm that DRBEM
accurately captures the hydraulic potential gradients in fine-textured soils and
efficiently models unsaturated flow dynamics under semi-arid conditions. This study
provides the first application of DRBEM for transient infiltration modeling in
trapezoidal furrow irrigation with layered Pima clay loam soil, offering a robust and
computationally efficient framework for improving irrigation management and water

use efficiency.

1. INTRODUCTION

Efficient irrigation water management is a global priority
for ensuring food security and agricultural sustainability,
particularly in semi-arid and drought-prone regions where
precipitation is limited, and evapotranspiration is high.
Agriculture accounts for more than 70% of global freshwater
withdrawals, yet inefficiencies in irrigation practices result in
substantial water losses, groundwater depletion, and declining
crop productivity [1-3]. As climatic variability intensifies,
improving infiltration modeling and water distribution
efficiency has become a cornerstone in addressing agricultural
vulnerability and ensuring long-term sustainability [4].

At the national level, Indonesia faces comparable
challenges in optimizing irrigation performance. Although
surface irrigation remains the most widely used system due to
its simplicity and low cost, it often suffers from substantial
conveyance losses through infiltration and evaporation. The
absence of real-time monitoring, coupled with limited
technical capacity in rural areas, exacerbates inefficiencies in
water allocation and soil moisture retention [5, 6]. These
challenges are particularly evident in regions characterized by
heterogeneous soils and inadequate canal maintenance, where
infiltration behavior is difficult to predict and control.

At the regional scale, East Nusa Tenggara (NTT)
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exemplifies these issues. The province experiences a semi-arid
climate with short rainy seasons, prolonged droughts, and
stratified clay loam soils that complicate infiltration dynamics
[7-9]. Farmers in NTT predominantly use trapezoidal furrow
irrigation channels, which, while easy to construct, often lead
to uneven infiltration, lateral seepage losses, and suboptimal
water distribution. These limitations underscore the urgent
need for site-specific, physically based infiltration models
capable of capturing the complex interaction between soil
layering, geometry, and boundary conditions under semi-arid
environments.

Globally, numerous integrated irrigation management
approaches—such as regulated deficit irrigation, rainwater
harvesting, and soil-moisture-based automation—have
significantly enhanced water-use efficiency in comparable
semi-arid contexts [10-14]. However, the adoption of such
precision technologies in NTT remains limited due to
economic and infrastructural constraints. Consequently,
numerical modeling represents a viable and cost-effective
alternative to improve irrigation design, allowing researchers
to simulate transient soil-water interactions and optimize
infiltration performance [15, 16].

Infiltration, defined as the downward and lateral movement
of water from the surface into the subsurface soil profile, has
traditionally been represented through empirical models such
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as the Kostiakov and Philip equations [17, 18]. While
computationally simple, these models assume homogeneous
soil texture and steady-state flow, which limits their
applicability in layered and anisotropic soils [19, 20]. To
overcome these limitations, semi-analytical approaches—
notably the modified Green-AMPT equation—introduce
additional parameters for hydraulic conductivity contrasts
between soil layers [21, 22]. However, these formulations
remain inadequate under transient and spatially variable
conditions typical of semi-arid environments [23, 24].

To address the shortcomings of empirical and semi-
analytical formulations, numerical models have been
increasingly employed to capture complex soil-water
interactions. Among these, the Dual Reciprocity Boundary
Element Method (DRBEM) offers distinct advantages by
converting domain integrals into boundary-only computations
using Radial Basis Functions (RBFs). This transformation
substantially reduces computational cost while maintaining
high numerical precision [25-29]. DRBEM has proven
effective in solving nonlinear, time-dependent infiltration
problems in heterogeneous soils, and when integrated with
field soil-moisture data, it significantly improves infiltration
prediction accuracy [4, 30].

Recent advances have expanded the DRBEM to simulate
diverse geometries, soil textures, and boundary conditions,
demonstrating its flexibility in hydrological modeling [31-35].
However, most studies remain idealized, rarely addressing
trapezoidal channels, layered anisotropic soils, or transient
boundary effects typical of semi-arid irrigation. Comparative

assessments of DRBEM with conventional numerical methods
are also limited [36].

This gap underscores the need for models capable of
simulating transient infiltration from trapezoidal surface
channels into stratified soils, where lateral seepage and
heterogeneous conductivity significantly affect water
movement. This study proposes a novel DRBEM-based
transient infiltration model that integrates trapezoidal
geometry, layered Pima clay loam soil, and semi-arid
conditions. To the authors’ knowledge, it represents the first
application of DRBEM in this context, offering both
methodological and practical contributions to irrigation
modeling.

The model is developed from Richards’ equation,
transformed into the modified Helmholtz equation, and used
to examine the effects of boundary discretization and soil
depth on accuracy and computational efficiency. By
leveraging DRBEM’s boundary-only formulation, this study
provides a robust and efficient framework for simulating
transient infiltration under realistic semi-arid conditions.

2. LITERATURE REVIEW
2.1 Comparative analysis of modeling approaches
To contextualize the current study, Table 1 compares

DRBEM with conventional numerical and empirical methods
regarding computational cost, accuracy, and flexibility.

Table 1. Comparison of infiltration modeling approaches

Computational Flexibility e el e
Method Key Features Cost Accuracy (Geometry/Boundary) Main Limitations References
Empirical Simple equations Moderate Cannot handle
Models . Low — assumes .
) derived from Very low (steady- . transient or layered [17,18]
(Kostiakov, homogeneity ..
Philip) observed data state only) conditions
Finite . . .
Difference . D.mn.am . . ngh (for Low — limited to . Inefficient for
discretization using High simple . irregular or open [37-39]
Method . . rectangular domains .
(FDM) grid-based schemes geometries) boundaries
Finite Domain Requires extensive
Element dlscr.etlzatlon with High Very high Moderate — ﬂex1b1§ for meshing and high [36]
Method triangular or complex geometries computational effort
(FEM) quadrilateral meshes p
Boundary .
Element B(.)undgry-gnly . High for simple lelte.d to problems
discretization; Moderate High . with known [40-43]
Method . . boundaries .
(BEM) integral formulation fundamental solutions
Converts domain Very high — handles Still underutilized for
DRBEM integrals using Low—moderate Very high complex and transient real-field soil [25, 26, 31]
RBFs boundaries efficiently infiltration modeling
2.2 BEM and Viscous Flow Equations, and Electrostatic and

The BEM is a numerical technique for solving problems
involving partial differential equations (PDEs). The method
works by transforming the fundamental solution of Laplace’s
equation [44, 45] into boundary integral equations.

BEM converts the governing differential equation into an
integral equation, and the method involves discretizing the
boundaries into interconnected segments to approximate the
boundary integral equations [46]. This method can be applied
to a variety of equations, including Helmholtz’s Equation,
Diffusion-Convection Equation, Laplace’s Equation, Potential
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Electrodynamic Linear. The boundary integral equation is then
discretized into several elements, either in the form of cells or
segments. Since BEM discretizes the boundary directly from
the governing differential equation, it requires fewer elements
than other methods. As a result, the linear algebraic system’s
matrix is smaller, enabling faster computational solutions [18].

2.3 DRBEM

The DRBEM is an extension of the BEM. While the
Helmholtz equation requires a solution, its fundamental



solution is difficult to obtain and is non-singular. To address
this, DRBEM was developed to solve PDEs for which
fundamental solutions are challenging to find. DRBEM
modifies BEM to handle such cases effectively, providing a
method to solve these complex equations.

2.4 Boundary integral equation

The Laplace solution of Laplace’s equation is
D(x,y;¢,m) = —=In[Cx, )2, m)?] (1
Domain modification is performed for (¢,17) € R and

(¢,m) € C, which is analogous to the boundary element
method yielding the equation.

oD(x, y;&,1)

AEmHEm =] (P ) ——=

—o(x, 5 &, U)MdS )
on
[ @Cr. i) (g(e, ) ~K*g(x, y)ddy
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L, if (£,77) on R
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Eq. (2) represents a boundary integral equation for the
Helmbholtz Equation.

2.4 Domain integral approach

In Eq. (2), the domain integral over R is still present. To
address this, the domain integral is approximated using a linear
combination of RBFs specifically g(x,y — k2¢(x,y) is
approximated by the sum RBFs centered at collocation points:

M
900 y) — KpGey) = Y B™p(x,ya®,bm)

m=1
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0¢(x,
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This expression in (4) is used to compute the
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¢(a, b),(a,b) € C UR. Thus, we have:

N+L
A(a,b)p(a,b) = Z uO[g(xD,79) - k2G0]
W = 6
+ gg[6W P @ b) - 5P £ (@ b)]
k=1

In this section, we will discuss the results obtained for the
problem of infiltration of furrow irrigation water with the
reciprocity boundary element method for the Pima clay loam
soil type.

3. RESEARCH DESIGN

This study utilizes a numerical simulation approach to
address the complex problem of transient water infiltration in
unsaturated soils. The methodology revolves around solving
Richards’ equation, which is widely accepted as the governing
model for unsaturated soil water movement. However, due to
its strong non-linearity, simplification is often required for
practical computation. Recent research shows that
linearization techniques, when paired with advanced
numerical methods such as the DRBEM, can enhance
computational efficiency and maintain solution accuracy
under transient conditions [31]. These improvements allow for
better modeling of the dynamic interactions between soil
texture, moisture, and infiltration rate in semi-arid irrigation
systems. Surface irrigation is one of the oldest and most
commonly used water application techniques, where water
flows over the land surface, with some infiltrating into the soil
and the rest either running off or being stored.

Taken together, these studies provide a strong foundation
for applying DRBEM in solving complex infiltration
problems, especially where traditional analytical or empirical
methods fall short. However, there remains a need for context-
specific validation and refinement of these models in semi-arid
environments like NTT, where real-world variables—such as
clay-loam stratification and irregular flow—require more
robust, efficient, and adaptive numerical solutions. If
embankments are constructed, the water will infiltrate the soil.
The furrow irrigation system is designed to meet agricultural
needs in regions with low or inconsistent rainfall, ensuring that
rows of crops receive sufficient water. On dry soil, pressure is
used to draw water from small pores. Suction potential or
capillary potential, denoted as v, is closely related to suction
pressure, p, where p = pgi. In this equation, p represents the
density of water, g is the gravitational acceleration, and p is
negative, indicating the suction pressure. When the soil is
saturated, i = 0. Through capillarity action, plants can collect
water up to a height, H [47]. The mathematical formulation
adopted in this study aligns with theoretical assumptions
regarding exponential functions of hydraulic conductivity in
relation to soil water potential, as previously detailed [48].

This study implements the DRBEM to solve the modified
Helmholtz equation derived from the linearized Richards’
equation. DRBEM transforms domain integrals into boundary
integrals using RBFs, allowing the governing equations to be
solved through boundary-only discretization.

The general DRBEM formulation is expressed as:

V2o - 2 ¢ = f(x2),



where, f(x,z) represents the non-homogeneous term

approximated using a series expansion of RBFs:

M

< S pm e,

m=1

f(x,2)

and v =/(x —x,,)% + (z—zy)? is the radial distance
from each collocation point.

In this study, the multiquadric (MQ) radial basis function
was selected, defined as:

pM(r) = 12 + c?,

where, ¢ is a shape parameter optimized to balance accuracy
and numerical stability. The MQ-RBF was chosen because it
provides smooth approximations and stable interpolation,
even with irregular node distributions—beneficial for
modeling infiltration in trapezoidal domains with curved or
sloped boundaries. The coefficients ™ were determined by
solving the system of linear equations from collocation at
boundary and interior points, implemented in MATLAB
R2017. The algorithm follows the classical DRBEM scheme
proposed by for non-linear transient problems [49-51].

4. RESULT AND DISCUSSION

In this section, we will discuss the results obtained for the
problem of infiltration of furrow irrigation water with the
Reciprocity Boundary Element Method for the Pima clay loam
soil type.

4.1 Governing equation

DRBEM is an effective and stable approach for solving the
modified Helmholtz equation, supporting its use in modeling
the transformed Richards equation in this study [27]. We
obtain

% —V<K(9) [ﬁﬂf((z)_w_l)]]) 6)
- (k@) + (k0 ) - alfﬁ(zg)

Richard’s equation is transformed into an equation in the

form linear differential equation using the Kirchhoff
transform. Instance:
K =K,e®™,a>0;0 = f_wool((s)ds 7

K is the hydraulic conductivity, represented in an
exponential model of the suction potential y [31] with the
dimensions [length]. Those of K are [length][time]™! and
those of [@] are [length]?[time]™!. a is a measure of gravity
relative to the capillarity particular porous material [52].

When 6 forms Matric Flux Potential (MFP), so as

K(s)ds = K%

a0

ax X J_ ®

later on,

3786

2 2 kas =k ©)
0z ﬁf 9065 =R ox
Step down toward Z, obtain
JK 6(0:0) a6 a6 (10)
0z~ a0 oz "oz
Substitute Eqgs. (8)-(10) into Eq. (7) to get
00 0%0 09?%6 a6
R R Vil 11
aT “oxz a7z %oz (n
. . .. a0
Due to constant water infiltration conditions, (5 = 0) then

generates Eq. (11) is a modified Helmholtz equation that
shows water infiltration in a saturated irrigation channel Eq.
(11) is what will be solved. When getting the value of ¢,
transform it back into

0%0 0%6 006
— g 12
ox2 Taz2 = %% (12)
obtained
0%¢p 0%
v 13
J0x? + 0z2 ¢ (13)

where, ¢ is a transformed potential function introduced for
numerical stability and solvability within the DRBEM
framework. Eq. (13) is the modified Helmholtz equation
which shows water infiltration in a saturated irrigation
channel. Eq. (13) will be resolved. When getting ¢ value,
transform it back to the initial form. Eq. (13) was solved
numerically using DRBEM, yielding the potential distribution
#(X,Z) across the infiltration domain. However, to relate the
mathematical solution to physical soil parameters, a two-step
transformation was applied. First, the suction potential y was
reconstructed from ¢ using the logarithmic relationship
derived from the exponential hydraulic conductivity model:

¥ = _1 (w;kVOL)

Next, the corresponding volumetric matric flux potential ()
was computed from i using the Van Genuchten soil-water
retention model:

(14)

1

6= (1+(ay)")m (6; — 6;

where, 0, and 6, represent the saturated and residual matric
flux potentials, respectively, and a, n, m are soil-specific
empirical parameters obtained from laboratory calibration for
Pima clay loam. In the numerical implementation, ¢ values
were computed at all boundary and internal nodes using the
DRBEM algorithm in MATLAB. These ¢ values were then
transformed into y using Eq. (14), and subsequently into 6
using Eq. (15). The resulting & values represent the spatial
distribution of soil moisture at different infiltration depths and
positions along the furrow channel. Physically, higher ¢
corresponds to a greater suction potential () and therefore a
lower matric flux potential (6). Conversely, smaller ¢ values
indicate zones of higher saturation. This transformation chain
¢—y—0 ensures that the numerical potential obtained from

)+ 6 (15)



the Modified Helmholtz Equation can be directly interpreted
in terms of soil moisture dynamics.

4.2 Boundary conditions

The shape of the irrigation channel used is trapezoidal
because this shape is usually used by farmers. Due to the
nature of symmetry, where the coordinates are OXYZ, where
O is the center of the channel, and OZ represents the
appropriate depth for the area to be analyzed is 0 < X < L +
D and Z > 0, where the domains are a semi-infinite region
0 <X <L+ DandZ > 0 which is assumed to be R [53].

Then the domain limitation is done by taking z = c, where
c is a positive real number on the boundary condition because
solving the Boundary Condition Problem (BCP) with a semi-
infinite domain is difficult to obtain because this known
domain is a semi-infinite region (semi-infinite) R, so the line
segments can be defined with C;, C,, Cs, C,, Cs, where,

(1) C1: Upper Infiltration Surface

This segment represents the water-soil interface at the base

of the trapezoidal furrow where infiltration begins.

The term %L corresponds to the horizontal projection of the

wetted length, derived from the normalized transformation of
the real channel width using the DRBEM’s dimensionless
mapping parameter a.

(2) C2: Right Trapezoidal Wall
This section extends along the sloping side of the channel,
where lateral infiltration occurs.

al
—<
T

a
xSE(L+D), z

The slope angle relates to the physical trapezoidal geometry

tan(f), where, [ is the side-wall angle.

through the ratio %

This configuration ensures continuous hydraulic potential
along the wall, allowing for proper flux computation.

(3) C3: Right Vertical Boundary
Represents the lateral limit of the infiltration domain, where
the hydraulic gradient becomes negligible.

a
x E(L+D), 0<z<c

This boundary is treated as hydraulically closed, assuming
no lateral flux beyond this distance.

(4) C4: Left Symmetric Boundary

The left wall of the trapezoidal channel is defined as the
mirror image of the right wall relative to the vertical axis at
x = 0. The lower limit of this boundary, z = %, arises
from the geometric projection of the left trapezoidal wall when
mapping the physical channel into DRBEM’s dimensionless
coordinate system.

The derivation proceeds as follows: Let the physical depth
of the channel be h, and the side slope ratio be tan(f) = %

The mapping between the physical coordinates (x, z) and the
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transformed DRBEM coordinates (x',z") is given by:

At the left wall, the intersection of the inclined wall and the
lower truncation plane (z = c) satisfies:

. 3al

_3aL
Z_4n'

T o4m

This scaling ensures the angular projection of the left
boundary corresponds to 75% of the wetted perimeter’s
vertical projection, a geometric approximation validated in
previous DRBEM infiltration models [54].

Hence, the segment is defined as:

3al <, <
S Zsc
(5) C5: Bottom Truncation Boundary
This boundary closes the domain at finite depth and
represents the lower limit of water penetration.

a
OSXSE(L'FD),

It assumes negligible hydraulic gradient d¢ /dz = 0
beyond this depth, implying no downward flux.

Suppose € =C, UC,UC3UC,UCs so that it can be
obtained BPC for water infiltration in channel irrigation
channels in a dimensionless variable with an R domain that is

closed and limited by a C curve, namely

P(n) 3pG7)
oz T oz

¢(x,2)

With boundary conditions,

g—i = ¢n, + Z—’Ze‘z, for C;
¢
W e,
N
ag—n_= 0, for C,
P —¢, for Cg

Therefore, the water infiltration model can be formed in
channel irrigation which has a BCP with a governing equation
of the form Modified Helmholtz [54].

4.3 Boundary conditions

DRBEM will be used to solve water infiltration in furrow
irrigation, according to the form of the equation that has been
given for this problem, namely the modified Helmholtz
equation of the form

Substitute the boundary conditions into the boundary
integral equation that has been given, namely



_ 9P (x,7;§,m)
aEmocm = <¢(x, Dpae L
. 2” —Z
—®(x,2;¢,m) <Ee
+ ngk')¢(x, z)>> d(x,z)
N <¢(x’ 2 6<I>(xéi; $,m) (16)
C,UCs
- CD(X, Z,; f, n)(_d)(x' Z))ds(x, Z)
+ fc » (qb(x, 2) W) ds(x,z))

+ -}[f D (x,z;¢,n)p(x,z)dxdz

where, ®(x, z; €,1) is the fundamental solution of the two-
dimensional Laplace equation, then it can be formed in the
Linear Equation System (LES) by discretizing the domain
boundaries in a finite number of line segments with several
interior points, then with the value ¢(a®, b®) you can find
the value ¢(a, b), where, a, b is any point on R U C with:

N
2ab)pab) = ) W [£P(a,b) - v® £ b)
k=1

N
_ zfl(k)ez fl(k)(a' b) (17)
k=1

N+L

+ Z y(a,b; a®, b(j))¢(j)
j=1

Then DRBEM is implemented in MATLAB R2017 to solve
the problem of furrow infiltration of irrigation water in
trapezoidal for Pima clay loam soil type [55], with detailed
component values required as follows.

(1)  The soil pH of Pima clay loam is approximately 7.7,
value a of Pima clay loam = 0.014 cm™1,

(2) k, Pima clay loam = 1.115x10"*cm/s =
9.9 cm/day, 8, = 0.14, 6, = 0.095,n = 1.31, value of L =
50 cm, value of D =50 cm, where, K, is the hydraulic
conductivity, 6, is the residual matric flux potential.

At this stage, the process using MATLAB for the Pima clay
loam soil type. Following the conceptual correction that 6
represents the matric flux potential (8) rather than volumetric
water content, the results presented in Tables 1-5 were
reinterpreted in terms of hydraulic energy distribution and
infiltration dynamics within the Pima clay loam profile. The
Ourp values express the integrated hydraulic energy driving
unsaturated flow, with higher magnitudes indicating zones of
higher potential infiltration flux.

Table 1 presents the computed matric flux potential (6)
values for Pima clay loam using a coarse boundary
discretization (N = 40, M = 225). The 6 ranges between 17.30
and 17.38 cm?/s, indicating a relatively high and spatially non-
uniform hydraulic potential across the domain. The variation
along both the x- and z-directions suggests the presence of
unresolved boundary gradients, a typical behavior in low-
resolution DRBEM meshes. These results demonstrate that
coarse discretization leads to overestimated infiltration
potentials and limited numerical stability, emphasizing the
need for finer boundary resolution to capture the true
infiltration energy distribution.
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Table 1. Theta value on Pima clay loam with N =40 and M =

225
(x,2) 4 (x,2) [/
0.15,2 17.37752245 0.35,2 17.37744347
0.15,4 17.36971442 0.35,4 17.36963549
0.15,6 17.36192342 0.35,6 17.36184452
0.15,8 17.35414914 0.35,8 17.35407027
0.15,10 17.34639119 0.35,10 17.34631232
0.15,12 17.33864902 0.35,12 17.33857013
0.15, 14 17.33092171 0.35, 14 17.33084275
0.15, 16 17.32320764 0.35,16 17.32312847
0.15,18 17.31550375 0.35,18 17.31542399
0.15,20 17.30780385 0.35,20 17.30772224
0.25,2 17.37748295 0.45,2 17.37740398
0.25,4 17.36967495 0.45,4 17.36959603
0.25,6 17.36188397 0.45,6 17.36180508
0.25,8 17.35414914 0.45,8 17.35403084
0.25,10 17.34635175 045,10 17.3462729
0.25,12 17.33860957 045,12 17.33853071
0.25, 14 17.33088222 045, 14 17.33080329
0.25, 16 17.32316805 0.45,16 17.32308892
0.25,18 17.31546386 045,18 17.31538417
0.25,20 17.30776301 0.45, 20 17.30768155

Table 2. Theta value on Pima clay loam with N =80 and M =

225
(x’ z) 0 (X, Z) 0

0.15,2 16.89771715 0.35,2 16.89768803
0.15,4 16.89093642 0.35,4 16.8909073

0.15,6 16.88416968 0.35,6 16.88414055
0.15, 8 16.87741686 0.35,8 16.87738772
0.15, 10 16.87067788 0.35,10 16.87064873
0.15,12 16.86395267 0.35,12 16.86392351
0.15, 14 16.85724111 0.35, 14 16.85721193
0.15, 16 16.85054302 0.35,16 16.85051383
0.15, 18 16.84385805 0.35, 18 16.84382883
0.15,20 16.83718515 0.35,20 16.83715585
0.25,2 16.89770259 0.45,2 16.89767348
0.25,4 16.89092186 0.45,4 16.89089274
0.25,6 16.88415512 0.45,6 16.88412599
0.25,8 16.87740229 0.45,8 16.87737315
0.25,10 16.87066331 0.45,10 16.87063416
0.25,12 16.86393809 0.45,12 16.86390893
0.25,14 16.85722652 0.45, 14 16.85719734
0.25,16 16.85052843 0.45,16 16.85049924
0.25,18 16.84384344 0.45,18 16.84381423
0.25, 20 16.8371705 0.45, 20 16.83714122

Table 2 presents the calculated matric flux potential (0)
values for Pima clay loam using an increased boundary
discretization of N = 80. The furp values range between 16.84
and 16.89 cm?’s, showing a noticeable reduction compared
with the N =40 configuration. This decrease reflects improved
numerical stability and spatial resolution, resulting in
smoother and more uniform hydraulic energy distribution
throughout the infiltration domain. The more consistent
vertical (z-direction) gradients of indicate enhanced accuracy
in capturing infiltration potential variations across the soil
depth up to 20 cm. These results confirm that a moderate
increase in boundary nodes significantly improves the
precision of DRBEM simulations without introducing
computational instability.

Table 3 displays the matric flux potential () values for Pima
clay loam obtained using a finer boundary discretization (N =
160, M = 225). The 0 values range from 16.17 to 16.23 cm?/s,
indicating further numerical convergence compared with the



previous cases (N = 40 and N = 80). The reduction in Gyrp
variability across both the x- and z-directions demonstrates
that the model achieves higher spatial precision and smoother
hydraulic gradients at this resolution. The nearly uniform
distribution of 6 suggests that the DRBEM solution begins to
approach steady-state behavior, reflecting a stable infiltration
potential throughout the simulated soil depth. This result
highlights that increasing the boundary nodes up to N = 160
provides an optimal balance between computational cost and
numerical accuracy.

Table 3. Theta value on Pima clay loam with N =160 and M

=225
(x, 2) 0 (x, 2) 0

0.15,2 16.22589704 0.35,2 16.22589603
0.15,4 16.22037337 0.35,4 16.22037236
0.15, 6 16.2148595 0.35, 6 16.21485849
0.15, 8 16.2093554 0.35, 8 16.20935439
0.15, 10 16.20386104 0.35,10 16.20386003
0.15, 12 16.19837638 0.35,12 16.19837537
0.15, 14 16.1929014 0.35, 14 16.19290038
0.15, 16 16.18743606 0.35,16 16.18743504
0.15,18 16.18198032 0.35, 18 16.18197931
0.15, 20 16.17653416 0.35,20 16.17653315
0.25,2 16.22589653 0.45,2 16.225895502
0.25,4 16.22037287 0.45, 4 16.22037185
0.25,6 16.214859 0.45, 6 16.21485798
0.25,8 16.2093549 0.45, 8 16.20935388
0.25, 10 16.20386053 0.45,10 16.20385952
0.25, 12 16.19837587 0.45, 12 16.19837486
0.25, 14 16.19290089 0.45, 14 16.19289988
0.25,16 16.18743555 0.45,16 16.18743454
0.25,18 16.18197982 0.45, 18 16.1819788

0.25,20 16.17653366 0.45,20 16.17653264

Table 4. Theta value on Pima clay loam with N =200 and M

=225
(x, 2) 0 (x, 2) 0
0.15,2 16.05406431 0.35,2 16.05406413
0.15,4 16.04883805 0.35,4 16.04883786
0.15, 6 16.04362067 0.35, 6 16.04362049
0.15, 8 16.03841215 0.35, 8 16.03841197
0.15, 10 16.03321247 0.35,10 16.03321229
0.15, 12 16.02802159 0.35,12 16.0280214
0.15, 14 16.02283948 0.35, 14 16.0228393
0.15, 16 16.01766613 0.35,16 16.01766595
0.15, 18 16.01250151 0.35, 18 16.01250133
0.15,20 16.00734558 0.35,20 16.0073454
0.25,2 16.05406422 0.45,2 16.05406403
0.25,4 16.04883796 0.45,4 16.04883777
0.25, 6 16.04362058 0.45, 6 16.0436204
0.25, 8 16.03841206 0.45, 8 16.03841188
0.25, 10 16.03321238 0.45,10 16.03321219
0.25, 12 16.0280215 0.45,12 16.02802131
0.25, 14 16.02283939 0.45, 14 16.02283921
0.25, 16 16.01766604 0.45,16 16.01766586
0.25,18 16.01250142 0.45, 18 16.01250124
0.25,20 16.007345'49  0.45,20 16.05406403

Table 4 reports the matric flux potential (¢) values
computed for Pima clay loam with N = 200 boundary nodes
and M =225 interior points. The & values range between 16.02
and 16.05 cm?s, showing a consistent downward trend
compared with the coarser meshes (N =80 and N = 160). This
indicates that the solution has achieved near-convergence,
with minimal variation across the spatial domain. The uniform
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Ourp distribution across both lateral (x) and vertical (z)
directions suggests that the DRBEM formulation effectively
stabilizes under this discretization density. These results
confirm that N = 200 represents an optimal resolution,
providing accurate and computationally efficient infiltration
modeling performance without numerical oscillations.

Table 5. Theta value on Pima clay loam with N =320 and M

=225
x,2) 0 (x, 2) 0
0.15,2 16.6388 0.35,2 16.6388
0.15,4 16.6325 0.35,4 16.6324
0.15,6 16.6261 0.35,6 16.6261
0.15,8 16.6198 0.35,8 16.6198
0.15, 10 16.6135 0.35,10 16.6135
0.15, 12 16.6072 0.35,12 16.6072
0.15, 14 16.6010 0.35, 14 16.6010
0.15, 16 16.5947 0.35,16 16.5947
0.15,18 16.5885 0.35, 18 16.5884
0.15,20 16.5822 0.35,20 16.5822
0.25,2 16.6388 0.45,2 16.6388
0.25,4 16.6325 0.45,4 16.6324
0.25,6 16.6261 0.45,6 16.6261
0.25,8 16.6198 0.45,8 16.6198
0.25, 10 16.6135 0.45,10 16.6135
0.25, 12 16.6072 0.45,12 16.6072
0.25,14 16.6010 045, 14 16.6010
0.25,16 16.5947 045,16 16.5947
0.25,18 16.5884 045,18 16.5884
0.25, 20 16.5822 0.45, 20 16.5822

Table 5 presents the results for N =320, where § values vary
between 16.58 and 16.64 cm?s. Interestingly, this
configuration shows a slight increase in fyrp compared with N
= 200, indicating a minor numerical fluctuation or over-
refinement effect. Such an anomaly suggests that excessively
dense boundary discretization may amplify rounding or
interpolation errors within the DRBEM framework,
particularly when the radial basis function parameters are not
adaptively tuned. Despite this deviation, the Gyrp distribution
remains generally smooth, implying overall model stability.
However, the non-monotonic convergence between N = 200
and N = 320 highlights the practical limitation of over-
discretization, reinforcing that N = 200 provides the most
balanced trade-off between accuracy and computational cost.

Figures 1-4 compare the 8 values in Pima clay loam with
the corresponding water content obtained from varying
numbers of boundary points (N = 40, 80, 160, 200; M = 225).
The results, presented graphically along the evaluation points
X=0.15,0.25,0.35, and 0.45 cm, show the variation of water
content with soil depth (Z = 0-20 cm), where the 6 value
obtained shows the value of matric flux potential or humidity
(unit or length square per unit time (cm)). Based on the
fluctuations shown by each graph, from Figure 4, the graph of
theta value at X = 0.15 to the graph of theta value at X = 0.45,
it can be seen that there is a decrease in the theta value for each
theta value at different N. This behavior when observed for
each graph has similarities. The values are obtained from
Tables 1-5, which can then be presented in both the distance
from the point X (cm) and the depth indicated by Z cm 0-20
cm.

The pattern of decreasing the matric flux potential value at
each evaluation point X(cm) = 0.15, 0.25, 0.35, 0.45 (cm) is
shown in Figures 5-10.
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Figure 1. The value of theta at X = 0.15 with a value of N
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Figure 2. The value of theta at X = 0.25 with a value of N
different from M = 225 on Pima clay loam
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Figure 3. The value of theta at X = 0.35 with a value of N
different from M = 225 on Pima clay loam
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Figure 6. The value of theta at N = 80 with M = 225 on Pima
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Figure 7. The value of theta at N = 160 with M =225 on

Pima clay loam
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Figure 4. The value of theta at X = 0.45 with a value of N
different from M = 225 on Pima clay loam
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Figure 8. The value of theta at N = 200 with M =225 on

Pima clay loam
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That can be noticed based on Figures 5-10 graphs of theta
value a N =40, 80, 160, 200, 320 with M =225 on Pima clay
loam which shows the change in value at points X(cm) = 0.15
(cm), 0.25 (cm), 0.35(cm) 0.45(cm) for each of these points. It
is noted that there is a pattern of decreasing the value of matric
flux potential or humanity as the depth increases Z (cm), which
leads to the point of convergence.

5. DISCUSSION

5.1 Influence of boundary point discretization (N) on 0
values

The analysis across Tables 1-5 demonstrates that the
number of boundary discretization points (N) plays a central
role in determining the accuracy and stability of the simulated
matric flux potential (6) for Pima clay loam under furrow
irrigation. At coarse resolutions (e.g., N = 40), 0 values were
clearly overestimated, indicating that the model was unable to
capture steep hydraulic gradients near the wetting front. This
behavior is consistent with findings [56], which illustrated that
insufficient boundary refinement in BEM applications can
lead to numerical diffusion and inflated transient flow
estimates. Similar limitations have been reported in other
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boundary-based modeling fields, where coarse meshes distort
stress or flux gradients and reduce local solution fidelity [57].

As the boundary resolution increased, 6 values
progressively decreased and stabilized, suggesting enhanced
representation of infiltration dynamics and reduced
interpolation errors within the DRBEM framework. This trend
agrees with the results [58, 59], who demonstrated that finer
boundary discretization improves DRBEM accuracy in
modeling nonlinear soil-water interactions. Comparable
improvements with boundary refinement have been observed
in computational acoustics [33], thin-structure mechanics [60],
and piezoelectric systems [34], underscoring that the accuracy
of boundary-based numerical methods is highly sensitive to
boundary density across different scientific disciplines.

However, at the highest refinement level (N = 320), a slight
increase in 0 values was observed compared with N =160 and
N =200, breaking the expected monotonic convergence trend.
This deviation is not attributed to a physical inconsistency in
the infiltration process but rather to numerical over-
refinement. When the boundary mesh becomes excessively
dense, the influence matrix in DRBEM may suffer from ill-
conditioning, amplifying rounding and interpolation errors
associated with the RBF approximation. As a result, minor
oscillations appear in the computed 0 values, even though the
underlying hydraulic behavior remains physically stable. This
effect has been similarly documented in advanced BEM
applications, where excessive node densities reduce numerical
robustness rather than enhance it [43, 61, 62]. Hence, the
anomaly observed at N = 320 is interpreted as a numerical
artifact rather than a modeling error.

From a practical perspective, the results indicate that a
boundary discretization within the range of N = 160 - 200
offers the most effective balance between computational
efficiency and numerical precision. At this level, the model
achieves sufficient spatial resolution to capture infiltration
gradients without introducing unnecessary computational
overhead. This finding supports the use of DRBEM as a
computationally efficient and physically consistent tool for
modeling infiltration processes in fine-textured, semi-arid
soils, where hydraulic properties are often heterogeneous and

spatially variable [63].
5.2 Numerical stabilization and optimal N range

The numerical response of the model to increasing
boundary discretization indicates a phase of numerical
stabilization, where further refinement of the boundary
structure no longer yields significant variations in 0 values.
This behavior is characteristic of BEM formulations, including
the DRBEM, in which an equilibrium state is reached between
element density and solution accuracy [25, 64-68]. Once this
equilibrium is attained, additional boundary nodes contribute
only marginal improvements. Similar stabilization effects
have been reported in isogeometric BEM simulations for
fluid—structure interaction [57] and in dual transformation
techniques [69], where refinement beyond a certain spatial
threshold produced diminishing computational returns.

Interestingly, at N = 320, the model exhibits a nonlinear
response, with a slight increase in # compared to N = 200,
breaking the earlier smooth stabilization pattern. This
fluctuation does not imply a physical inconsistency but rather
a numerical artifact arising from over-refinement. Excessive
boundary density tends to produce an ill-conditioned influence
matrix, amplifying round-off and interpolation errors inherent



to the RBF approximation [70-76]. Similar effects have been
documented in large-scale acoustic scattering and peridynamic
fracture analyses using BEM, where overly fine meshes added
computational cost without proportional gains in accuracy
[33].

From a practical standpoint, this finding highlights the
trade-off between precision and computational efficiency,
particularly in arid-region irrigation modeling, where multiple
water management scenarios must be simulated rapidly [21,
77]. Physically, the stabilization of 6 reflects the resolution
limit of the soil-water system in Pima clay loam, where
infiltration behavior is governed by pore-scale heterogeneity
and capillary control. Once the mesh resolution surpasses the
representative scale of hydraulic conductivity variation,
further discretization fails to add meaningful predictive value
[63, 78]. Comparable trends were observed in transient heat
conduction studies employing radial integration BEM, in
which mesh refinement beyond the optimal range produced
identical thermal fields but considerably higher computational
demands.

Considering both numerical and physical constraints, an
optimal operational range of N = 160 - 200 is recommended
for DRBEM-based infiltration modeling. This range provides
a balanced compromise between accuracy, numerical stability,
and computational efficiency. The recommendation is
consistent with efficiency principles established in classical
BEM literature [79] and particularly advantageous for large-
scale irrigation networks in heterogeneous soils, where
excessive refinement can render simulations computationally
prohibitive [18].

5.3 Physical interpretation for Pima clay loam

Pima clay loam is a fine-textured soil characterized by a
high clay fraction, low hydraulic conductivity, and strong
capillary suction, all of which fundamentally control its
infiltration dynamics. These soil properties create steep
gradients in matric flux potential (0) near the wetting front,
where the transition from saturated to unsaturated flow occurs
rapidly. Within this region, water movement is predominantly
governed by capillary rather than gravitational forces,
resulting in slow, non-uniform infiltration that is highly
sensitive to pore connectivity and local suction potential.

The spatial pattern of 6 obtained from the DRBEM
simulation reveals that higher 0 values are concentrated near
the channel base, where water first enters the soil, and the
hydraulic head is largest. As the distance from the infiltration
source increases—both laterally and vertically—0 values
gradually decline, illustrating the attenuation of hydraulic
energy due to the combined effects of pore friction, air
entrapment, and reduced hydraulic conductivity. This
behavior reflects the actual physical mechanism of infiltration
in clay-rich soils, where strong capillary forces resist rapid
percolation, leading to shallow wetting fronts and slower
moisture redistribution. The numerical outcome, therefore,
captures the characteristic infiltration signature of Pima clay
loam: an initial rapid intake followed by a marked decline in
infiltration rate as the soil approaches hydraulic equilibrium.

Physically, this pattern signifies that most of the infiltrated
water remains concentrated near the furrow base, contributing
primarily to lateral rather than vertical moisture spread. Such
lateral dominance explains the frequent observation of shallow
wetting profiles in furrow-irrigated systems under semi-arid
conditions [48, 80]. The DRBEM results are consistent with
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this mechanism, demonstrating that once the capillary barrier
forms within the fine-textured layer, the infiltration flux
transitions from a predominantly vertical to a quasi-horizontal
direction. This shift has important implications for irrigation
efficiency: beyond a certain infiltration depth, additional
application time or water volume yields diminishing returns,
as most water redistributes laterally rather than infiltrating
deeper into the root zone.

The simulation also emphasizes the nonlinear coupling
between suction potential and hydraulic conductivity. In Pima
clay loam, even small reductions in 6 correspond to large
decreases in K(y), reinforcing the soil’s low permeability
under unsaturated conditions. This explains the sharp
curvature of infiltration profiles observed in the results and
highlights the critical importance of representing 0 accurately
to predict field-scale infiltration rates. Such insights are
valuable for irrigation design, as they indicate that optimizing
furrow spacing and irrigation duration requires models capable
of capturing this nonlinear soil-water interaction [63, 78].

Beyond numerical convergence, the DRBEM outcomes
illustrate a physically meaningful trend: finer boundary
discretization allows the model to reproduce the actual
hydraulic structure of infiltration fronts. The refinement from
N = 80 to N =200 improves the resolution of local suction
gradients, thereby yielding more realistic hydraulic potential
distributions that align with expected soil behavior.
Conversely, excessive refinement (N = 320) introduces small
oscillations unrelated to the infiltration physics—an indication
of numerical sensitivity rather than a deviation in soil
behavior. The underlying infiltration process remains stable
and consistent with the physical constraints of capillarity and
hydraulic resistance inherent in fine-textured soils.

These physical interpretations clarify that infiltration in
Pima clay loam is not a uniform diffusion process but an
energy-limited phenomenon governed by pore-scale
interactions and capillary retention. The DRBEM framework
effectively resolves these dynamics by concentrating
computational resolution along boundaries where the most
significant hydraulic gradients occur. This boundary-based
representation provides an efficient and physically grounded
method to simulate unsaturated infiltration without relying on
excessive domain discretization typical of finite element or
finite difference approaches.

In summary, the DRBEM results bridge numerical
modeling and soil physics by linking 0 variations directly to
infiltration mechanisms within the Pima clay loam profile. The
analysis reveals that accurate prediction of infiltration
behavior requires capturing both the capillary-controlled
hydraulic gradients near the furrow and the rapid decline in
conductivity with depth. By representing these nonlinearities
explicitly, DRBEM provides not only a mathematically stable
but also a physically coherent framework for simulating
infiltration in fine-textured, semi-arid soils.

The physical interpretation of the DRBEM results for Pima
clay loam offers valuable insights for improving the design
and operation of surface irrigation systems in semi-arid
agricultural environments. The model outcomes indicate that
infiltration in fine-textured soils is primarily limited by
capillary retention and low hydraulic conductivity, which
confines water redistribution to shallow depths. This suggests
that traditional long-duration irrigation practices may result in
inefficient water use, as a significant portion of the applied
water remains near the surface rather than reaching the deeper
root zone.



From a hydraulic management perspective, the pronounced
lateral movement of water observed in the simulation implies
that furrow spacing and inflow rate must be optimized to
ensure uniform wetting between adjacent furrows.
Excessively wide spacing can lead to dry inter-row zones,
while overly narrow spacing increases water loss through
surface evaporation and runoff. Model-based calibration using
DRBEM can therefore assist in determining the optimal
geometric configuration of furrow systems, balancing
infiltration depth, lateral spread, and irrigation uniformity.

The strong dependence of infiltration on capillary suction
also underscores the importance of soil preparation and
surface management. Practices such as soil leveling,
maintaining fine aggregates, and reducing crust formation can
improve the hydraulic connectivity of surface pores,
enhancing initial infiltration rates without altering the intrinsic
hydraulic conductivity of the soil. Conversely, compacted or
crusted layers at the surface can amplify capillary resistance,
delaying infiltration and promoting runoff even under optimal
irrigation flow conditions.

From a modeling standpoint, the DRBEM framework
provides a practical advantage for adaptive irrigation
scheduling. By efficiently resolving transient infiltration
dynamics with minimal computational demand, the method
can be integrated into decision-support systems that predict
infiltration behavior under varying soil moisture and climatic
conditions. Such integration would enable farmers and
irrigation managers to determine the precise duration and
volume of irrigation required for specific field conditions,
minimizing losses due to deep percolation and surface
evaporation.

Furthermore, the energy-based interpretation of 0 offers a
physically consistent foundation for coupling infiltration
models with evapotranspiration and root-water uptake
processes. This coupling could yield a more holistic
representation of the soil-plant—atmosphere continuum,
improving predictive capabilities under fluctuating climatic
and crop conditions. When applied to semi-arid regions such
as NTT, where water availability is highly seasonal, such
predictive precision is essential for sustainable irrigation
management and long-term soil conservation.

In practical terms, the findings advocate for the use of
DRBEM as a design and diagnostic tool for furrow irrigation
systems. Its ability to capture complex infiltration behavior in
layered, fine-textured soils allow for scenario testing—such as
varying furrow geometries, soil textures, or infiltration
durations—without requiring extensive field trials. This
capability can significantly reduce design costs while
improving the resilience and efficiency of irrigation networks
in water-limited environments.

5.4 Spatial distribution of 0 across depth and distance

The spatial analysis from Figures 1-4 demonstrates that 0
decreases with both depth (z) and horizontal distance (x) from
the irrigation channel. Near the source (x = 0.15), 0 values are
highest across all depths, reflecting rapid saturation in the
upper layers. This pattern mirrors physical infiltration
behavior, where gravitational and capillary forces are
strongest near the water source. Similar proximity effects have
been documented in BEM simulations of local stress
concentrations in fracture mechanics [32] and in near-field
acoustic propagation [33], where field variable magnitudes
decay sharply with distance from the source.
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As x increases to 0.25 and 0.35, 0 values decline steadily,
especially at greater depths, indicating reduced lateral
movement of water. This lateral attenuation effect is consistent
with empirical furrow irrigation studies in fine-textured soils,
where water infiltration efficiency drops sharply with distance
from the furrow [81]. From a modeling perspective, the
DRBEM captures this decline by accurately resolving the
coupled lateral-vertical infiltration flow, similar to how
isogeometric BEM captures coupled structural—fluid
responses in engineering contexts [57].

At the farthest distance examined (x = 0.45), 6 values are
lowest across all depths, with moisture penetration minimal
beyond the shallow layers. This is indicative of significant
water loss to both evaporation and preferential flow near the
furrow, leaving distal areas under-irrigated. Such behavior
underscores the importance of optimal furrow spacing to
ensure uniform water distribution—an insight supported by
DRBEM-based infiltration studies for heterogencous and
layered soils.

The combined depth-distance patterns highlight the
DRBEM’s strength in resolving multi-dimensional infiltration
dynamics in anisotropic and heterogeneous soils. This mirrors
BEM’s versatility in capturing multi-scale field variations in
applications as diverse as thermal conduction for irrigation
management. These results emphasize the need to integrate
spatially explicit infiltration models into planning tools,
enabling optimized scheduling and spacing to maximize water
use efficiency in water-scarce environments.

6. IMPLICATIONS OF FINDINGS BASED ON
THEORETICAL AND EMPIRICAL EVIDENCE

The convergence behavior observed in 6 values across
increasing N aligns with established theoretical principles of
the DRBEM, which emphasize the relationship between
boundary discretization and the accuracy of numerical
solutions to partial differential equations. Theoretically, finer
boundary discretization improves the approximation of
boundary integrals, reduces interpolation errors, and enhances
the stability of solutions [45, 48]. This is consistent with the
mathematical foundations of BEM in other contexts, such as
isogeometric modeling and peridynamic formulations, where
increasing boundary element resolution leads to rapid
improvements in accuracy up to a point of diminishing returns.
The current results reinforce these theoretical principles,
demonstrating that beyond N ~ 200, improvements in model
precision are negligible, which is in line with convergence
thresholds documented in multi-physics simulations.

From an empirical standpoint, the observed trends in 0
distribution with depth and horizontal distance mirror field
measurements in furrow irrigation systems on fine-textured
soils. Studies in both homogeneous [30] and heterogeneous
soils [63] consistently report that moisture content decreases
sharply with both increasing depth and distance from the water
source, due to gravitational drainage, capillary effects, and
lateral flow resistance. The DRBEM results in this study
reproduce these field patterns with high fidelity, suggesting
that the model is capable of capturing both vertical infiltration
dynamics and the lateral redistribution of water in a realistic
manner. This empirical validation is critical because it bridges
the gap between numerical model predictions and practical
irrigation performance assessments in real-world agricultural
settings.



These findings have direct practical implications for
irrigation management in arid and semi-arid regions. The
optimal N range of 160—320 identified here allows for accurate
yet computationally efficient simulations, enabling iterative
scenario testing for different furrow spacings, irrigation
durations, and soil types. Field-based irrigation optimization
studies, such as studies [31, 81], highlight the importance of
coupling accurate infiltration modeling with operational
decision-making to reduce water losses and improve
uniformity of moisture distribution. The DRBEM framework,
when parameterized within the optimal discretization range,
can serve as a predictive tool to determine irrigation schedules
that minimize evaporation and percolation losses, particularly
in soils like Pima clay loam with slow infiltration rates and
high water-holding capacities.

Theoretically, the broader implication of this study is that
the convergence patterns observed are not unique to
infiltration problems but rather represent a generalizable
numerical characteristic of the DRBEM and related Boundary
Element Method (BEM) formulations. These principles can be
extended to various environmental and engineering systems
governed by diffusion—advection mechanisms, including
contaminant transport, heat conduction, and groundwater
recharge modeling. This notion aligns with the development
of advanced fuzzy-stochastic numerical frameworks, such as
those employing dual-Wiener processes to address uncertainty
and randomness in differential equation systems [82].
Similarly, comparative numerical analyses of torpedo-shaped
and cubic symmetrical autonomous underwater vehicles under
variable marine hydrodynamic conditions [83] highlight the
adaptability of numerical modeling strategies when confronted
with nonlinear and environment-dependent behaviors. These
studies collectively reinforce the methodological flexibility
and robustness that DRBEM offers when simulating complex,
spatially heterogeneous infiltration domains. Empirically, the
present work demonstrates the capability of DRBEM to
generate spatially explicit predictions of soil moisture
distribution that align with measured field behavior, thereby
validating its potential as a reliable decision-support tool for
precision irrigation management. The synthesis of theoretical
rigor and empirical validation established herein provides a
sound foundation for the broader application of DRBEM-
based infiltration modeling in both research and practical
water resource management contexts.

7. CONCLUSION

This study employed the DRBEM to simulate transient
water infiltration from trapezoidal furrow channels into Pima
clay loam soil, emphasizing the effects of boundary
discretization density, numerical convergence, and spatial
distribution of the matric flux potential (68). The principal
conclusions are summarized as follows.

First, boundary discretization strongly influenced model
precision. Increasing the number of boundary nodes (N) from
40 to 200 improved numerical stability and reduced Ourp
values, indicating smoother hydraulic potential gradients and
enhanced representation of infiltration dynamics. However,
when N was further increased to 320, a slight rise in Gurp
values was observed, deviating from the previously monotonic
convergence trend. This anomaly likely arises from over-
refinement, where excessive boundary discretization amplifies
interpolation and rounding errors inherent to the RBF
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approximation. Thus, N = 160-200 was identified as the
optimal range, balancing computational cost and numerical
accuracy.

Second, the refined DRBEM configuration successfully
represented the infiltration characteristics of fine-textured
soils such as Pima clay loam, which exhibit slow, non-linear
water movement governed by strong capillary suction.
Spatially, 6 decreased consistently with both soil depth and
lateral distance from the water source, confirming the
method’s ability to reproduce realistic unsaturated flow
patterns under semi-arid soil conditions.

The results collectively suggest that DRBEM, when applied
with moderate boundary refinement, offers a computationally
efficient and physically consistent framework for infiltration
modeling in semi-arid agricultural systems. Its boundary-only
formulation provides flexibility in handling irregular
geometries and variable boundary conditions, making it a
promising numerical tool for irrigation design and
optimization.

Despite the encouraging outcomes of this study, several
limitations should be acknowledged. The simulations assumed
layer-wise homogeneity within the Pima clay loam profile,
whereas real field conditions typically display vertical and
horizontal variability in hydraulic conductivity, which can
significantly influence infiltration behavior. Furthermore, the
boundary conditions were considered static and time-
invariant, excluding the effects of variable inflow rates,
evaporation, and transpiration that occur under natural
irrigation cycles. Another key limitation is the absence of
experimental or field validation, meaning that the simulated
matric flux potential values were not directly compared with
measured infiltration data. Additionally, the RBF used in the
DRBEM formulation was fixed rather than adaptively
optimized, which may have contributed to the minor numerical
fluctuation observed at N = 320. Acknowledging these
constraints provides a constructive foundation for refining the
model and guiding future improvements in both numerical
implementation and field applicability.

Future studies should extend the DRBEM framework to
incorporate dynamic boundary conditions, root-water uptake,
and temporal soil moisture variation to enhance physical
realism. Further, coupling DRBEM with climate-responsive
evapotranspiration models and validating its predictions
through field-scale monitoring will be critical to establishing
its practical applicability. Exploring multi-layered and
heterogeneous soil structures with spatially variable
parameters will also help generalize the method for broader
agricultural use. Ultimately, integrating DRBEM  into
decision-support systems for irrigation management could
enable more accurate water allocation, reduce conveyance
losses, and improve sustainability in water-scarce regions.
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