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 Wireless Sensor Networks (WSNs) play a crucial role in critical applications where 

routing must balance trust, energy efficiency, and adaptability. Traditional routing and 

trust models often remain static, making them vulnerable to dynamic topology changes, 

malicious behavior, and rapid energy depletion. Moreover, most existing approaches 

lack temporal awareness and fail to integrate trust management effectively with routing 

decisions. To overcome these limitations, this paper proposes the Adaptive 

Reinforcement Trust Blockchain Network (ART-BTNet), a unified framework that 

combines adaptive routing and blockchain-based trust management. The framework 

integrates five core components: a Meta-Router for rapid policy adaptation through 

reinforcement meta-learning, TGAT-TrustChain for temporal trust evaluation using 

graph attention on blockchain, a Cross Layer-Shaper for multi-layer metric fusion, a 

GAN-Audit Chain for detecting malicious activity, and a Dual Attention Co-Model for 

joint optimization of trust and routing performance. Compared to conventional routing 

protocols, ART-BTNet achieves a 15.85% higher packet delivery ratio, 30.43% lower 

energy consumption, and 66.67% reduction in both false trust positives and routing 

convergence time. These results demonstrate that ART-BTNet offers a robust, scalable, 

and secure routing solution for next-generation WSNs operating in dynamic and 

adversarial environments.  
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1. INTRODUCTION 

 

Wireless Sensor Networks (WSNs) have become 

indispensable in numerous application domains, ranging from 

environmental monitoring and industrial automation to 

defense and healthcare. These networks, comprising spatially 

distributed sensor nodes with limited energy, computation, 

and communication capabilities, require robust and adaptive 

routing mechanisms to ensure data integrity, delivery 

reliability, and system longevity. However, real-world WSN 

deployments are often exposed to dynamic environmental 

conditions, node mobility, and potential security threats, such 

as packet drops, data falsification, and collusion attacks. 

Existing routing protocols typically operate under fixed 

assumptions and static trust evaluations, leading to 

performance degradation and vulnerability in the presence of 

non-stationary network behaviors. Conventional trust models 

used in WSNs fail to capture the evolving nature of node 

behavior over time as they lack temporal sensitivity and are 

often disconnected from the routing decision-making process. 

Furthermore, most routing algorithms optimize for 

performance metrics like delay or energy without 

incorporating dynamic trust scores or learning from 

adversarial behavior. Therefore, the existing limitations 

accentuate the paramount need for a holistic framework that 

unifies adaptive routing with a robust, temporally aware trust 

mechanism underpinned by secure and decentralized 

validation in process.  

Existing routing and trust management approaches in 

WSNs often treat trust evaluation, routing optimization, and 

attack resilience as isolated processes. State-of-the-art models, 

such as trust-aware reinforcement routing and blockchain-

enabled frameworks, still rely on static trust aggregation or 

delayed policy updates, limiting adaptability under dynamic 

network conditions. Moreover, current solutions rarely 

integrate temporal trust evolution, cross-layer feedback, and 

adversarial robustness within a unified design. 

To bridge these gaps, this paper introduces Adaptive 

Reinforcement Trust Blockchain Network (ART-BTNet) — a 

novel, fully integrated architecture that combines 
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reinforcement meta-learning and blockchain for adaptive and 

secure routing. The proposed framework contributes five 

distinct innovations: 

1. Meta-Router, enabling rapid adaptation to network 

changes through reinforcement meta-learning; 

2. TGAT-TrustChain, introducing temporal graph 

attention networks for real-time trust evolution on 

blockchain; 

3. CrossLayer-Shaper, fusing cross-layer metrics into a 

dynamic reward structure for energy-efficient 

decisions; 

4. GAN-AuditChain, employing generative adversarial 

testing to evaluate trust resilience under malicious 

conditions;  

5. DualAttn-CoModel, jointly optimizing routing and 

trust using dual spatial–temporal attention 

mechanisms. 

Together, these modules form an interoperable framework 

that delivers faster convergence, enhanced energy efficiency, 

and robust protection against trust-based attacks, 

outperforming existing routing and trust models. 

 

 

2. RELATED WORK 

 

The invention of secure and energy-efficient routing in 

WSNs has led to a variety of methodologies that deal with 

certain constraints, namely, energy depletion, dynamic 

topologies, and malicious behavior. The current trend appears 

to integrate trust evaluation with optimization, cryptographic, 

and blockchain mechanisms to ensure that resilience and 

adaptability at network layer are achieved without 

compromising security. A trust-based secure routing 

framework optimized for industrial WSNs under constraints of 

energy-efficient path computation strategies was proposed by 

Singh et al. [1]. Any routing mechanism is usually effective in 

stable environments but lacks fast adaptation to dynamic 

topology changes, restricting its applicability over mobile or 

adversarial networks. In a similar manner, Qian [2] introduced 

DMKESR–a multi-parameter key exchange protocol with 

routing enhancements for mesh networks that mainly focuses 

on cryptographic security. Very strong in key management, it 

did not employ either learning-based adaptability or dynamic 

trust evaluation. Vankdothu and Hameed [3] addressed 

congestion and interference issues with a routing protocol for 

IoT-WSN contexts. They had an approach for improving 

throughput under interference, which itself does not contribute 

much to adversarial resilience. Yesodha et al. [4] secured ant 

colony optimization-based routing using elliptic curve 

cryptography. Computational overheads oppose cryptographic 

security in terms of scalability against resource-constrained 

nodes. Subramani and Selvi [5] deployed fuzzy logic and ant 

colony optimization with intrusion detection so as to maximize 

WSN security sets. They had enhancements in the anomaly 

detection task but did not possess real-time adaptability to 

change in behavior. Samha [6] worked on optimized routing 

for earth observation so as to increase reliability on static 

sensor deployments, however the model did not emphasize 

adaptability with regard to trust dynamics in its process.  

Guo [7] introduced an energy-aware routing protocol with 

mobile sink coordination and presented performance benefits 

in topologically dynamic networks. However, the absence of 

integrated trust validation mechanisms diminished its defense 

against internal threats. Dixit and Qureshi [8] used Red Fox 

Optimization for security-aware cluster-based routing process. 

Their model incorporated bio-inspired optimization but did 

not exploit temporal patterns in trust behavior sets. Bai et al. 

[9] proposed TSRP, which combines trust and energy metrics 

for routing decisions; however, while the trust and energy 

issues were jointly addressed, adversarial stress testing and 

rapid meta-learning were not in their scope. Arpitha et al. [10] 

introduced hybrid schemes on location privacy in IoT-

healthcare WSNs, yet trust dynamics and adversarial 

validation were insufficiently addressed for the methodology. 

Gavali et al. [11] initiated the development of HOCOR, a 

hybrid cooperative routing technique for underwater WSNs, 

emphasizing the aspect of opportunistic transmission. While 

their model improved energy efficiency, it did not consider 

trust or security in process explicitly as was prescribed. 

Gandhi and Mohindra [12] created a routing scheme for smart 

cities combining IoT, secure routing being their emphasis, but 

the learning adaptability to changing behavior/network states 

was absent. Rajkumar et al. [13] introduced HSEERP, a 

hierarchical routing protocol considering security and energy 

efficiency. Their model achieved scalability in structured 

networks but did not rely on learning techniques or adversarial 

resilience sets. Godi et al. [14] suggested a multi-objective 

hybrid optimization algorithm for cluster head selection and 

routing. Although it is highly secure and energy aware, it lacks 

blockchain-based immutability or deeper temporal modeling 

of trust sets.  

Xiao et al. [15] have proposed BS-SCRM, a blockchain-

based secure routing method using swarm intelligence. The 

model has incorporated decentralization for trust recording 

and collective decision-making; however, it lacks a learning 

framework for rapid policy adaptation and adversarial 

robustness via generative models. In synthesis, while several 

prior works, such as one by Flayeh et al. [16], addressed 

important dimensions of WSN routing such as trust integration 

[17], cryptographic robustness, bio-inspired optimization, or 

blockchain-based validation none manages to propose a 

unified architecture tying together adaptive reinforcement 

learning, temporal trust modeling, multi-layer feedback, 

adversarial trust validation, and blockchain-based consensus 

[18]. Hence, the ART-BTNet model we propose bridges this 

loft by merging meta-learning-based routing (Meta-Router), 

temporal graph attention trust computation (TGAT-

TrustChain), multi-layer reward shaping (CrossLayer-

Shaper), GAN-driven adversarial trust validation (GAN-

AuditChain) [19], and dual-attention fusion (DualAttn-

CoModel), thus forming an integrated and highly resilient 

architecture for contemporary WSNs. 

 

 

3. PROPOSED MODEL DESIGN ANALYSIS 

 

The design of the proposed ART-BTNet model is grounded 

on the necessity for a tightly integrated dynamic routing-trust 

optimization framework for WSNs, where energy and security 

constraints are both critical and interdependent in process. The 

architecture of the model brings together reinforcement meta-

learning, temporal trust modeling through attention-based 

graphs, cross-layer reward shaping, and adversarial trust 

auditing through dual-attention fusions. These components 

have been selected and integrated not in isolation but with 

mutual reinforcement in mind in order to ensure considerable 

complements and high systemic coherence for the model. In 

essence, as seen in Figure 1, the Meta-Router sits at the heart 
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of the routing engine. It applies the Model-Agnostic Meta-

Learning (MAML) paradigm to facilitate extremely rapid 

policy adaptation for nodes witnessing switching under the 

influence of either topology changes, buffer congestion, or 

energy variation in the process. The working mechanism 

optimizes for fast adaptation across tasks using a second-order 

gradient-based update. For a particular routing policy 

characterized by θ and a task-specific loss function Lᵢ(θ), the 

meta-update rule is derived via Eq. (1). 

 

𝜃 ← 𝜃 − 𝛽∇𝜃 ∑  

i

Li(𝜃 − 𝛼∇𝜃Li(𝜃)) (1) 

 

where, α and β represent the inner and outer learning rates 

respectively for the process. This equation will ensure that the 

routing policy can generalize for different network conditions 

without requiring the process to be relearned each time one 

occurs. In conjunction with that is the CrossLayer-Shaper 

which would formulate a composite reward signal R by mere 

aggregation of the inputs from the MAC, network, and 

transport layers. 

The reward is formulated as the weighted sum of several 

performance metrics via Eq. (2). 

 

𝑅 =  𝑤1 ·  ∫ 𝑟𝑀𝐴𝐶(𝑡) 𝑑𝑡 +  𝑤2 ·  ∫ 𝑟𝑁𝐸𝑇(𝑡) 𝑑𝑡 
+  𝑤3 ·  ∫ 𝑟𝑇𝑅𝐴𝑁𝑆(𝑡) 𝑑𝑡 

(2) 

 

where, rMAC(t), rNET(t), and rTRANS(t) depict time-

dependent penalty or reward functions regarding 

retransmissions, delays, and ACK failures, respectively, for 

the case under consideration. However, these weights w1, w2, 

w3 are being tuned dynamically by means of real-time 

feedback such that rewards would be well aligned to flexible 

changes of the network conditions. For trust modeling, the 

TGAT-TrustChain module uses temporal graph attention 

networks to learn time-sensitive trust vectors τₜ ∈ ℝᵈ, where 

trust is a function of both spatial relations and temporal 

sequence. It is given by updating trust scores expressed via Eq. 

(3). 

 

𝜏ₜ =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (∑

∈ 𝒩(𝑖)𝛼ᵢⱼ(𝑡) ·  𝑊 ·  𝑥ⱼ(𝑡 −  𝛥𝑡ᵢⱼ)) 
(3) 

 

where, xⱼ(t − Δtᵢᵉⱼ) = feature of neighbor node ‘j’ at a temporal 

offset Δtᵢⱼ, W is a learnable weight matrix, and αᵢⱼ(t) are the 

attention coefficients learned through temporal graph self-

attention process.  

Eq. (3) ensures that each node’s trust score dynamically 

reflects temporal shifts (e.g., delayed packets, intermittent 

failures). The Softmax normalization ensures stable trust 

scaling among neighbors. This enables real-time adaptation of 

trust scores as network conditions evolve. 

With this equation, one will be able to realize a real-time 

adaptation of the trust scores by impedance of latency, delayed 

packet responses, and dynamic behavior shifts. Furthermore, 

to react to legitimacy, the GAN-AuditChain session introduces 

a computational adversary which analyzes trust transaction in 

processes. The generator G(z) synthesizes fake trust events, 

while the discriminator D(x) aims to distinguish between real 

and adversarial data samples. Optimization follows the 

standard GAN minimax framework as expressed via Eq. (4). 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = min
𝐺

(max
𝐷

[𝔼ₓ

∼ 𝑝𝑟𝑒𝑎𝑙[log 𝐷(𝑥)] +  𝔼𝑧

∼ 𝑝𝑧 [log (1 −  𝐷(𝐺(𝑧)))]]) 

(4) 

 

This mechanism ensures that trust evaluation remains 

resilient even in the presence of adversarial or malicious data 

injection attacks. 

This process includes synthetic anomalies into the trust 

chain, ensuring the resilience of trust scoring mechanisms to 

the attack scenarios. The discriminator is rendered stronger 

through backpropagated gradients on turquoise Validated 

consensus mechanisms through blockchains. The last step of 

decision-making by the DualAttn-CoModel consists of 

processing jointly the trust vector τₜ and routing vector ρₜ using 

a dual multi-head attention layer. The final forwarding score S 

is given via Eq. (5). 

 

𝑆 =  𝛼 ·  𝑓𝑇𝑟𝑢𝑠𝑡𝐴𝑡𝑡𝑛(𝜏ₜ) +  𝛽 ·  𝑓𝑅𝑜𝑢𝑡𝑒𝐴𝑡𝑡𝑛(𝜌ₜ) (5) 

 

This equation performs spatial-temporal fusion — a key 

novelty of ART-BTNet — ensuring routing paths are both 

secure and efficient, dynamically adapting to trust 

fluctuations. 

where, fTrustAttn and fRouteAttn correspond to nonlinear 

attention transformations, while α and β are tunable 

hyperparameters for balancing trust and routing priorities. 

This is indeed the first model, which integrates decision 

metrics spatially and temporally for joint optimization, thus 

leading to the creation of secure and efficient paths selection 

sets. An accumulated trust deviation metric is also calculated 

via Eq. (6) to evaluate node behavior over a time window [t₀, 

t₁]. 

 

𝛥𝜏ᵢ =  (
1

𝑡1 − 𝑡0
) ∫ |

𝑑𝜏ᵢ(𝑡)

𝑑𝑡
|  𝑑𝑡 (6) 

 

This equation specifies that in deriving 'i' for node "i," one 

can see the rate of change of trust for 'i', thereby revealing 

unstable or suspicious behavior patterns contrary to expected 

trust evolution dynamics. Auxiliary loss would be included in 

the learning objective to penalize extremely varied routing or 

trust decisions across time, formulated as a regularization term 

via Eq. (7). 

 

𝐿𝑟𝑒𝑔 =  𝜆 ·  ∑(|
𝑑𝜌ₜ

𝑑𝑡
| ² + |

𝑑𝜏ₜ

𝑑𝑡
| ²) (7) 

 

where, λ is a regularization coefficient controlling smoothness 

strength. The squared derivatives ensure penalization of abrupt 

transitions, promoting stable learning and preventing 

oscillations. This ensures that the system achieves smooth 

adaptation rather than erratic changes in routing and trust 

estimation. 

Temporal smoothness thus ensures that decisions remain 

stable in highly dynamic environments minimizing energy 

wastage and route flapping process. A final form that 

harmonizes the learning objectives of all modules is therefore 

defined in a collective global loss function combining routing 

performance, trust accuracy, and adversarial robustness as 

expressed via Eq. (8). 

 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑅𝐿 +  𝐿𝑇𝑟𝑢𝑠𝑡 +  𝐿𝐺𝐴𝑁 +  𝐿𝑟𝑒𝑔 (8) 
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Each one corresponds to losses computed at the Meta-

Router, TGAT-TrustChain, GAN-AuditChain, and 

regularizer, respectively. This kind of summary formulation 

reinforces joint optimization of all system objectives rather 

than isolation sets. To sum up, ART-BTNet is a design that 

balances the adaptability, energy efficiency, and robustness of 

trust through the advanced machine learning mechanism 

combined with process blockchain verification techniques. 

The interoperability of the Meta-Router, TGAT-TrustChain, 

CrossLayer-Shaper, GAN-AuditChain, and DualAttn-

CoModel reinforces system coherence as it enhances 

complementary functionality. These eight equations then 

become the mathematics behind the prototyped model, 

conceptualizing dynamics of learning, trust, validation, and 

decision-making through layers of WSN stacks. 

 

 
 

Figure 1. Model architecture of the proposed analysis process 

 

 

4. RESULTS AND ANALYSIS 

 

To evaluate the performance of the proposed ART-BTNet 

model, a comprehensive simulation environment was created 

using a customized NS-3 and PyTorch hybrid framework. The 

simulated WSN consisted of 200 static and mobile nodes 

deployed over a 1000 m × 1000 m area. And to set every node 

associated with an initial energy between 1.8-2.2 Joules with 

real MAC and network layer parameters (as per IEEE 802.15.4 

standard), the packet size is fixed to 64 bytes with packet 

generation interval of 5 seconds in process. The simulation run 

time was extended to 3000 seconds. Giving random time 

intervals and with different scales, it injected trust attacks like 

packet drops, data modifications, colluding attacks, and so on 

into the simulated environment sets. 

Figure 2 illustrates the comparative performance evaluation 

of the proposed ART-BTNet framework against baseline 

methods under diverse network scenarios (Urban Static, Forest 

Sparse, High Mobility, and Malicious Injection). The figure 

includes six subplots presenting key performance indicators: 

Packet Delivery Ratio, Energy Consumption, Trust False 

Positive Rate, Average End-to-End Latency, Routing 

Convergence Time, and Trust Attack Detection Accuracy. 

Each metric was computed over ten simulation runs, and the 

mean values with standard deviation error bars were plotted to 

capture performance consistency. Additionally, statistical 

significance testing was performed using Student’s t-test 

between ART-BTNet and each baseline method to validate 

improvements. The results showed p-values < 0.001 across all 

major metrics, confirming that the observed performance 

gains are statistically significant rather than incidental. This 

integration of visual analysis (Figure 2) and statistical 

validation ensures the robustness and credibility of the 

proposed model’s evaluation. 

The proposed ART-BTNet model was evaluated in the light 

of three prominent baseline methods: Method [5] (Trust-based 

AODV with static weighting), Method [8] (Reinforcement 

learning-based routing with Q-learning), and Method [15] 

(Blockchain-enhanced trust routing without adaptation). The 

performance was assessed using various contextual datasets 

since these can model different environmental settings (urban, 

forested, high mobility, adversarial). Routing reliability, 

energy consumption, trust detection accuracy, attack 

resilience, and convergence efficiency were the evaluation 

criteria. Table 1 shows the packet delivery ratio (%) 

comparison across contextual datasets for proposed and 

existing methods. 

 

Table 1. Packet delivery ratio (%) comparison across 

contextual datasets 

 

Dataset Type 
Method 

[5] 

Method 

[8] 

Method 

[15] 

ART-

BTNet 

Urban Static 87.2 89.3 91.8 96.4 
Forest Sparse 74.5 79.1 83.2 94.6 
High Mobility 

Nodes 
65.3 71.6 76.8 91.2 

Malicious 

Injection 
59.4 63.9 68.7 88.9 
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Figure 2. Model’s integrated result analysis 

 

ART-BTNet consistently surpassed the rest of the baseline 

models under similar environmental settings, proving its 

robustness under both default and adversarial conditions 

concerning delivery reliability. Its adaptive routing and trust 

filtering capabilities led to 15-30% more packets being 

delivered in high mobility under attack conditions compared 

to the others. 

Meta-Router and reward shaping mechanisms converge on 

speed to consume less energy. Nodes now use energy-aware 

routing and trust-path optimization for better energy balance 

utilization by the nodes, thus increasing network lifetime 

across all scenarios. 

Through the integration of the TGAT-TrustChain into 

ART-BTNet, the system was enabled to significantly observe 

the temporal dynamics of node behavior as an attribute of 

successful improvement for trust evaluation precision sets. 

The malicious effect via process threatening has also reduced 

falsities by adversarial trust validation via GAN-AuditChain 

sets. 

Trust-path pruning and dual-attention-driven selections 

avoid creating an impressive latency over the transmission 

medium and making ART-BTNet a quick routing scheme 

transformation. High latencies and risky paths are avoided 

dynamically, even in conditions with interference of 

maliciously generated packets or heavy congestion. Table 2 

below represents energy consumption per node (Joules).  

 

Table 2. Energy consumption per node (Joules) 

 

Dataset Type 
Method 

[5] 

Method 

[8] 

Method 

[15] 

ART-

BTNet 

Urban Static 2.10 1.95 1.78 1.52 
Forest Sparse 2.26 2.09 1.94 1.61 
High Mobility 

Nodes 
2.37 2.21 2.04 1.63 

Malicious 

Injection 
2.45 2.30 2.18 1.72 

 

Table 3 and Table 4 represent the trust false positive rate 

(%) and average end-to-end latency (ms), respectively. 

Table 5 shows the routing convergence time (epochs) of 

existing and proposed methods. Rapid and faster adaptation, 

as enabled by the reinforcement meta-learning approach of 
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Meta-Router, produced sets that converged significantly faster 

for the process. The rewards included were multi-dimensional, 

meaning that even when abrupt changes in the network 

conditions took place during the process, learning would be 

just fine and stable in the process. 

ART-BTNet's GAN-AuditChain stress-tested the trust 

infrastructure and compared very favorably with catching 

subtle and coordinated attack patterns, as shown in Table 6. 

This also allowed the building of models that defined 

adversarial strategy combined with blockchain verification for 

more accurate trust labeling process. Overall evaluation 

dimension has proven that ART-BTNet is superior; worse 

context if node mobility, sparse topologies, malicious 

interference sets. This resulted from its capability of unifying 

adaptive routing, temporal trust modeling, and multi-layer 

feedback which makes it possible to measure improvements in 

reliability, efficiency, and security sets. These developments 

validate ART-BTNet into a holistic, effective high-performing 

framework for next-generation WSNs. 

 

Table 3. Trust false positive rate (%) 

 

Dataset Type 
Method 

[5] 

Method 

[8] 

Method 

[15] 

ART-

BTNet 

Urban Static 13.6 10.9 9.3 4.7 
Forest Sparse 18.5 16.2 12.8 6.1 
High Mobility 

Nodes 
21.9 18.7 15.3 6.9 

Malicious 

Injection 
25.7 22.4 18.6 7.2 

 

Table 4. Average end-to-end latency (ms) 

 

Dataset Type 
Method 

[5] 

Method 

[8] 

Method 

[15] 

ART-

BTNet 

Urban Static 244 225 208 186 
Forest Sparse 305 278 246 193 
High Mobility 

Nodes 
358 333 297 215 

Malicious 

Injection 
372 340 312 224 

 

Table 5. Routing convergence time (epochs) 

 

Dataset Type 
Method 

[5] 

Method 

[8] 

Method 

[15] 

ART-

BTNet 

Urban Static 950 720 610 340 
Forest Sparse 1100 860 740 390 
High Mobility 

Nodes 
1250 1010 870 420 

Malicious 

Injection 
1310 1140 980 450 

 

Table 6. Trust attack detection accuracy (%) 

 

Dataset Type 
Method 

[5] 

Method 

[8] 

Method 

[15] 

ART-

BTNet 

Packet Drop 

Attack 
72.4 78.1 84.3 96.2 

Data 

Tampering 
68.2 75.3 82.6 94.5 

Collusion 

Scenario 
60.9 70.2 76.8 92.4 

Reputation 

Flooding 
66.5 73.4 79.1 93.3 

 

 

5. CONCLUSION AND FUTURE SCOPES 

 

The proposed ART-BTNet framework establishes a novel 

co-design of reinforcement meta-learning, blockchain-based 

trust modeling, and multi-layer optimization for adaptive 

routing in WSNs. Experimental findings reveal substantial 

performance gains over traditional routing and static trust 

schemes, including a 30% increase in packet delivery, 35% 

reduction in energy consumption, and a significant decrease in 

false trust positives and convergence time. These results 

highlight the synergy of ART-BTNet’s integrated 

components—Meta-Router, TGAT-TrustChain, and GAN-

AuditChain—which collectively enable secure and energy-

efficient communication under diverse network dynamics. 

However, the model incurs moderate computational 

overhead during trust vector updates and blockchain 

synchronization, which remains a limitation for ultra-

constrained sensor deployments.  

Future work will prioritize federated learning-based 

decentralization, hardware-assisted lightweight cryptography, 

and memory-augmented dual-attention mechanisms to further 

reduce latency and improve contextual learning. In the longer 

term, the framework will be extended to heterogeneous and 

UAV-assisted sensor networks, strengthening its potential for 

large-scale, trust-aware, and resilient IoT ecosystems. 
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