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Wireless Sensor Networks (WSNs) play a crucial role in critical applications where
routing must balance trust, energy efficiency, and adaptability. Traditional routing and
trust models often remain static, making them vulnerable to dynamic topology changes,
malicious behavior, and rapid energy depletion. Moreover, most existing approaches
lack temporal awareness and fail to integrate trust management effectively with routing
decisions. To overcome these limitations, this paper proposes the Adaptive
Reinforcement Trust Blockchain Network (ART-BTNet), a unified framework that
combines adaptive routing and blockchain-based trust management. The framework
integrates five core components: a Meta-Router for rapid policy adaptation through
reinforcement meta-learning, TGAT-TrustChain for temporal trust evaluation using
graph attention on blockchain, a Cross Layer-Shaper for multi-layer metric fusion, a
GAN-Audit Chain for detecting malicious activity, and a Dual Attention Co-Model for
joint optimization of trust and routing performance. Compared to conventional routing
protocols, ART-BTNet achieves a 15.85% higher packet delivery ratio, 30.43% lower
energy consumption, and 66.67% reduction in both false trust positives and routing
convergence time. These results demonstrate that ART-BTNet offers a robust, scalable,
and secure routing solution for next-generation WSNs operating in dynamic and
adversarial environments.

1. INTRODUCTION Furthermore, most routing algorithms optimize for
performance metrics like delay or energy without
Wireless Sensor Networks (WSNs) have become incorporating dynamic trust scores or learning from

indispensable in numerous application domains, ranging from
environmental monitoring and industrial automation to
defense and healthcare. These networks, comprising spatially
distributed sensor nodes with limited energy, computation,
and communication capabilities, require robust and adaptive
routing mechanisms to ensure data integrity, delivery
reliability, and system longevity. However, real-world WSN
deployments are often exposed to dynamic environmental
conditions, node mobility, and potential security threats, such
as packet drops, data falsification, and collusion attacks.
Existing routing protocols typically operate under fixed
assumptions and static trust evaluations, leading to
performance degradation and vulnerability in the presence of
non-stationary network behaviors. Conventional trust models
used in WSNs fail to capture the evolving nature of node
behavior over time as they lack temporal sensitivity and are
often disconnected from the routing decision-making process.
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adversarial behavior. Therefore, the existing limitations
accentuate the paramount need for a holistic framework that
unifies adaptive routing with a robust, temporally aware trust
mechanism underpinned by secure and decentralized
validation in process.

Existing routing and trust management approaches in
WSNs often treat trust evaluation, routing optimization, and
attack resilience as isolated processes. State-of-the-art models,
such as trust-aware reinforcement routing and blockchain-
enabled frameworks, still rely on static trust aggregation or
delayed policy updates, limiting adaptability under dynamic
network conditions. Moreover, current solutions rarely
integrate temporal trust evolution, cross-layer feedback, and
adversarial robustness within a unified design.

To bridge these gaps, this paper introduces Adaptive
Reinforcement Trust Blockchain Network (ART-BTNet) — a
novel, fully integrated architecture that combines
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reinforcement meta-learning and blockchain for adaptive and
secure routing. The proposed framework contributes five
distinct innovations:

1. Meta-Router, enabling rapid adaptation to network
changes through reinforcement meta-learning;
TGAT-TrustChain, introducing temporal graph
attention networks for real-time trust evolution on
blockchain;

CrossLayer-Shaper, fusing cross-layer metrics into a
dynamic reward structure for energy-efficient
decisions;

GAN-AuditChain, employing generative adversarial
testing to evaluate trust resilience under malicious
conditions;

DualAttn-CoModel, jointly optimizing routing and
trust using dual spatial-temporal attention
mechanisms.

Together, these modules form an interoperable framework
that delivers faster convergence, enhanced energy efficiency,
and robust protection against trust-based attacks,
outperforming existing routing and trust models.

2.

2. RELATED WORK

The invention of secure and energy-efficient routing in
WSNs has led to a variety of methodologies that deal with
certain constraints, namely, energy depletion, dynamic
topologies, and malicious behavior. The current trend appears
to integrate trust evaluation with optimization, cryptographic,
and blockchain mechanisms to ensure that resilience and
adaptability at network layer are achieved without
compromising security. A trust-based secure routing
framework optimized for industrial WSNs under constraints of
energy-efficient path computation strategies was proposed by
Singh et al. [1]. Any routing mechanism is usually effective in
stable environments but lacks fast adaptation to dynamic
topology changes, restricting its applicability over mobile or
adversarial networks. In a similar manner, Qian [2] introduced
DMKESR-a multi-parameter key exchange protocol with
routing enhancements for mesh networks that mainly focuses
on cryptographic security. Very strong in key management, it
did not employ either learning-based adaptability or dynamic
trust evaluation. Vankdothu and Hameed [3] addressed
congestion and interference issues with a routing protocol for
[oT-WSN contexts. They had an approach for improving
throughput under interference, which itself does not contribute
much to adversarial resilience. Yesodha et al. [4] secured ant
colony optimization-based routing using elliptic curve
cryptography. Computational overheads oppose cryptographic
security in terms of scalability against resource-constrained
nodes. Subramani and Selvi [5] deployed fuzzy logic and ant
colony optimization with intrusion detection so as to maximize
WSN security sets. They had enhancements in the anomaly
detection task but did not possess real-time adaptability to
change in behavior. Samha [6] worked on optimized routing
for earth observation so as to increase reliability on static
sensor deployments, however the model did not emphasize
adaptability with regard to trust dynamics in its process.

Guo [7] introduced an energy-aware routing protocol with
mobile sink coordination and presented performance benefits
in topologically dynamic networks. However, the absence of
integrated trust validation mechanisms diminished its defense
against internal threats. Dixit and Qureshi [8] used Red Fox
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Optimization for security-aware cluster-based routing process.
Their model incorporated bio-inspired optimization but did
not exploit temporal patterns in trust behavior sets. Bai et al.
[9] proposed TSRP, which combines trust and energy metrics
for routing decisions; however, while the trust and energy
issues were jointly addressed, adversarial stress testing and
rapid meta-learning were not in their scope. Arpitha et al. [10]
introduced hybrid schemes on location privacy in IoT-
healthcare WSNs, yet trust dynamics and adversarial
validation were insufficiently addressed for the methodology.
Gavali et al. [11] initiated the development of HOCOR, a
hybrid cooperative routing technique for underwater WSN,
emphasizing the aspect of opportunistic transmission. While
their model improved energy efficiency, it did not consider
trust or security in process explicitly as was prescribed.
Gandhi and Mohindra [12] created a routing scheme for smart
cities combining IoT, secure routing being their emphasis, but
the learning adaptability to changing behavior/network states
was absent. Rajkumar et al. [13] introduced HSEERP, a
hierarchical routing protocol considering security and energy
efficiency. Their model achieved scalability in structured
networks but did not rely on learning techniques or adversarial
resilience sets. Godi et al. [14] suggested a multi-objective
hybrid optimization algorithm for cluster head selection and
routing. Although it is highly secure and energy aware, it lacks
blockchain-based immutability or deeper temporal modeling
of trust sets.

Xiao et al. [15] have proposed BS-SCRM, a blockchain-
based secure routing method using swarm intelligence. The
model has incorporated decentralization for trust recording
and collective decision-making; however, it lacks a learning
framework for rapid policy adaptation and adversarial
robustness via generative models. In synthesis, while several
prior works, such as one by Flayeh et al. [16], addressed
important dimensions of WSN routing such as trust integration
[17], cryptographic robustness, bio-inspired optimization, or
blockchain-based validation none manages to propose a
unified architecture tying together adaptive reinforcement
learning, temporal trust modeling, multi-layer feedback,
adversarial trust validation, and blockchain-based consensus
[18]. Hence, the ART-BTNet model we propose bridges this
loft by merging meta-learning-based routing (Meta-Router),
temporal graph attention trust computation (TGAT-
TrustChain), multi-layer reward shaping (CrossLayer-
Shaper), GAN-driven adversarial trust validation (GAN-
AuditChain) [19], and dual-attention fusion (DualAttn-
CoModel), thus forming an integrated and highly resilient
architecture for contemporary WSNs.

3. PROPOSED MODEL DESIGN ANALYSIS

The design of the proposed ART-BTNet model is grounded
on the necessity for a tightly integrated dynamic routing-trust
optimization framework for WSNs, where energy and security
constraints are both critical and interdependent in process. The
architecture of the model brings together reinforcement meta-
learning, temporal trust modeling through attention-based
graphs, cross-layer reward shaping, and adversarial trust
auditing through dual-attention fusions. These components
have been selected and integrated not in isolation but with
mutual reinforcement in mind in order to ensure considerable
complements and high systemic coherence for the model. In
essence, as seen in Figure 1, the Meta-Router sits at the heart



of the routing engine. It applies the Model-Agnostic Meta-
Learning (MAML) paradigm to facilitate extremely rapid
policy adaptation for nodes witnessing switching under the
influence of either topology changes, buffer congestion, or
energy variation in the process. The working mechanism
optimizes for fast adaptation across tasks using a second-order
gradient-based update. For a particular routing policy
characterized by 6 and a task-specific loss function Li(0), the
meta-update rule is derived via Eq. (1).

60— ﬁvez: Li(6 — aVoL,(8)) )

where, a and S represent the inner and outer learning rates
respectively for the process. This equation will ensure that the
routing policy can generalize for different network conditions
without requiring the process to be relearned each time one
occurs. In conjunction with that is the CrossLayer-Shaper
which would formulate a composite reward signal R by mere
aggregation of the inputs from the MAC, network, and
transport layers.

The reward is formulated as the weighted sum of several
performance metrics via Eq. (2).

R = wl - [rMAC(t)dt + w2 - [ rNET(t) dt 2
+ w3 - [rTRANS(t) dt
where, rMAC(t), rNET(t), and rTRANS(t) depict time-
dependent penalty or reward functions regarding
retransmissions, delays, and ACK failures, respectively, for
the case under consideration. However, these weights wl, w2,
w3 are being tuned dynamically by means of real-time
feedback such that rewards would be well aligned to flexible
changes of the network conditions. For trust modeling, the
TGAT-TrustChain module uses temporal graph attention
networks to learn time-sensitive trust vectors 1, € R4, where
trust is a function of both spatial relations and temporal
sequence. It is given by updating trust scores expressed via Eq.

3).

T, = Softmax (Z

3
€N Day(t) - W - xi(t — Aty)) @
where, x;(t — At4) = feature of neighbor node ‘j* at a temporal
offset At;, W is a learnable weight matrix, and o;(?) are the
attention coefficients learned through temporal graph self-
attention process.

Eq. (3) ensures that each node’s trust score dynamically
reflects temporal shifts (e.g., delayed packets, intermittent
failures). The Softmax normalization ensures stable trust
scaling among neighbors. This enables real-time adaptation of
trust scores as network conditions evolve.

With this equation, one will be able to realize a real-time
adaptation of the trust scores by impedance of latency, delayed
packet responses, and dynamic behavior shifts. Furthermore,
to react to legitimacy, the GAN-AuditChain session introduces
a computational adversary which analyzes trust transaction in
processes. The generator G(z) synthesizes fake trust events,
while the discriminator D(x) aims to distinguish between real
and adversarial data samples. Optimization follows the
standard GAN minimax framework as expressed via Eq. (4).
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This mechanism ensures that trust evaluation remains
resilient even in the presence of adversarial or malicious data
injection attacks.

This process includes synthetic anomalies into the trust
chain, ensuring the resilience of trust scoring mechanisms to
the attack scenarios. The discriminator is rendered stronger
through backpropagated gradients on turquoise Validated
consensus mechanisms through blockchains. The last step of
decision-making by the DualAttn-CoModel consists of
processing jointly the trust vector 1, and routing vector p; using
a dual multi-head attention layer. The final forwarding score S
is given via Eq. (5).

“4)

S = a - fTrustAttn(z) + B - fRouteAttn(p) (5)
This equation performs spatial-temporal fusion — a key
novelty of ART-BTNet — ensuring routing paths are both
secure and efficient, dynamically adapting to trust
fluctuations.
where, fTrustAttn and fRouteAttn correspond to nonlinear
attention transformations, while a and f are tunable
hyperparameters for balancing trust and routing priorities.
This is indeed the first model, which integrates decision
metrics spatially and temporally for joint optimization, thus
leading to the creation of secure and efficient paths selection
sets. An accumulated trust deviation metric is also calculated
via Eq. (6) to evaluate node behavior over a time window [to,
t].

1 dTi(t)
! t1— to I dt ©
This equation specifies that in deriving 'i' for node "i," one

can see the rate of change of trust for 'i', thereby revealing
unstable or suspicious behavior patterns contrary to expected
trust evolution dynamics. Auxiliary loss would be included in
the learning objective to penalize extremely varied routing or
trust decisions across time, formulated as a regularization term
via Eq. (7).

dt,

ey, | |4%
dt

It (7

2 4+

Lreg = 1+ % %)
where, 1 is a regularization coefficient controlling smoothness
strength. The squared derivatives ensure penalization of abrupt
transitions, promoting stable learning and preventing
oscillations. This ensures that the system achieves smooth
adaptation rather than erratic changes in routing and trust
estimation.

Temporal smoothness thus ensures that decisions remain
stable in highly dynamic environments minimizing energy
wastage and route flapping process. A final form that
harmonizes the learning objectives of all modules is therefore
defined in a collective global loss function combining routing
performance, trust accuracy, and adversarial robustness as
expressed via Eq. (8).

Ltotal = LRL + LTrust + LGAN + Lreg (8)



Each one corresponds to losses computed at the Meta-
Router, TGAT-TrustChain, GAN-AuditChain, and
regularizer, respectively. This kind of summary formulation
reinforces joint optimization of all system objectives rather
than isolation sets. To sum up, ART-BTNet is a design that
balances the adaptability, energy efficiency, and robustness of
trust through the advanced machine learning mechanism
combined with process blockchain verification techniques.
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’ - : - T MAC Layer
Energy Monitor | ‘ Buffer Status ‘ | Link Quality Estimator ‘ | Retransmission Counter
Topology Manager

The interoperability of the Meta-Router, TGAT-TrustChain,
CrossLayer-Shaper, GAN-AuditChain, and DualAttn-
CoModel reinforces system coherence as it enhances
complementary functionality. These eight equations then
become the mathematics behind the prototyped model,
conceptualizing dynamics of learning, trust, validation, and
decision-making through layers of WSN stacks.
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Figure 1. Model architecture of the proposed analysis process

4. RESULTS AND ANALYSIS

To evaluate the performance of the proposed ART-BTNet
model, a comprehensive simulation environment was created
using a customized NS-3 and PyTorch hybrid framework. The
simulated WSN consisted of 200 static and mobile nodes
deployed over a 1000 m x 1000 m area. And to set every node
associated with an initial energy between 1.8-2.2 Joules with
real MAC and network layer parameters (as per IEEE 802.15.4
standard), the packet size is fixed to 64 bytes with packet
generation interval of 5 seconds in process. The simulation run
time was extended to 3000 seconds. Giving random time
intervals and with different scales, it injected trust attacks like
packet drops, data modifications, colluding attacks, and so on
into the simulated environment sets.

Figure 2 illustrates the comparative performance evaluation
of the proposed ART-BTNet framework against baseline
methods under diverse network scenarios (Urban Static, Forest
Sparse, High Mobility, and Malicious Injection). The figure
includes six subplots presenting key performance indicators:
Packet Delivery Ratio, Energy Consumption, Trust False
Positive Rate, Average End-to-End Latency, Routing
Convergence Time, and Trust Attack Detection Accuracy.
Each metric was computed over ten simulation runs, and the
mean values with standard deviation error bars were plotted to
capture performance consistency. Additionally, statistical
significance testing was performed using Student’s t-test
between ART-BTNet and each baseline method to validate
improvements. The results showed p-values < 0.001 across all
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major metrics, confirming that the observed performance
gains are statistically significant rather than incidental. This
integration of visual analysis (Figure 2) and statistical
validation ensures the robustness and credibility of the
proposed model’s evaluation.

The proposed ART-BTNet model was evaluated in the light
of three prominent baseline methods: Method [5] (Trust-based
AODV with static weighting), Method [8] (Reinforcement
learning-based routing with Q-learning), and Method [15]
(Blockchain-enhanced trust routing without adaptation). The
performance was assessed using various contextual datasets
since these can model different environmental settings (urban,
forested, high mobility, adversarial). Routing reliability,
energy consumption, trust detection accuracy, attack
resilience, and convergence efficiency were the evaluation
criteria. Table 1 shows the packet delivery ratio (%)
comparison across contextual datasets for proposed and
existing methods.

Table 1. Packet delivery ratio (%) comparison across
contextual datasets

Dataset Type Method Method Method ART-
P [5] [8] [15] BTNet
Urban Static 87.2 89.3 91.8 96.4
Forest Sparse 74.5 79.1 83.2 94.6
High Mobility ¢ 5 716 76.8 91.2
Nodes
Malicious 59.4 63.9 68.7 88.9
Injection
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Figure 2. Model’s integrated result analysis

ART-BTNet consistently surpassed the rest of the baseline
models under similar environmental settings, proving its
robustness under both default and adversarial conditions
concerning delivery reliability. Its adaptive routing and trust
filtering capabilities led to 15-30% more packets being
delivered in high mobility under attack conditions compared
to the others.

Meta-Router and reward shaping mechanisms converge on
speed to consume less energy. Nodes now use energy-aware
routing and trust-path optimization for better energy balance
utilization by the nodes, thus increasing network lifetime
across all scenarios.

Through the integration of the TGAT-TrustChain into
ART-BTNet, the system was enabled to significantly observe
the temporal dynamics of node behavior as an attribute of
successful improvement for trust evaluation precision sets.
The malicious effect via process threatening has also reduced
falsities by adversarial trust validation via GAN-AuditChain
sets.

Trust-path pruning and dual-attention-driven selections
avoid creating an impressive latency over the transmission

medium and making ART-BTNet a quick routing scheme
transformation. High latencies and risky paths are avoided
dynamically, even in conditions with interference of
maliciously generated packets or heavy congestion. Table 2
below represents energy consumption per node (Joules).

Table 2. Energy consumption per node (Joules)

Dataset Type Method Method Method ART-
P 5] 18] [15]  BTNet
Urban Static 2.10 1.95 1.78 1.52
Forest Sparse 2.26 2.09 1.94 1.61
High Mobility , 5, 221 2.04 1.63
Nodes
Malicious 2.45 2.30 2.18 1.72
Injection

Table 3 and Table 4 represent the trust false positive rate
(%) and average end-to-end latency (ms), respectively.

Table 5 shows the routing convergence time (epochs) of
existing and proposed methods. Rapid and faster adaptation,
as enabled by the reinforcement meta-learning approach of
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Meta-Router, produced sets that converged significantly faster
for the process. The rewards included were multi-dimensional,
meaning that even when abrupt changes in the network
conditions took place during the process, learning would be
just fine and stable in the process.

ART-BTNet's GAN-AuditChain stress-tested the trust
infrastructure and compared very favorably with catching
subtle and coordinated attack patterns, as shown in Table 6.
This also allowed the building of models that defined
adversarial strategy combined with blockchain verification for
more accurate trust labeling process. Overall evaluation
dimension has proven that ART-BTNet is superior; worse
context if node mobility, sparse topologies, malicious
interference sets. This resulted from its capability of unifying
adaptive routing, temporal trust modeling, and multi-layer
feedback which makes it possible to measure improvements in
reliability, efficiency, and security sets. These developments
validate ART-BTNet into a holistic, effective high-performing
framework for next-generation WSNs.

Table 3. Trust false positive rate (%)

Dataset Tvpe Method Method Method ART-
M 5] 8] [15] BTNet
Urban Static 13.6 10.9 9.3 4.7
Forest Sparse 18.5 16.2 12.8 6.1
High Mobility -, o 18.7 15.3 6.9
Nodes
Malicious 25.7 224 18.6 7.2
Injection

Table 4. Average end-to-end latency (ms)

Dataset Tvpe Method Method Method ART-
yp 5] 8] [15] BTNet
Urban Static 244 225 208 186
Forest Sparse 305 278 246 193
High Mobility 350 333 297 215
Nodes
Malicious 372 340 312 224
Injection

Table 5. Routing convergence time (epochs)

Dataset Tvpe Method Method Method ART-
M 5] 8] [15] BTNet
Urban Static 950 720 610 340
Forest Sparse 1100 860 740 390
High Mobility 5, 1010 870 420
Nodes
Malicious 1310 1140 980 450
Injection

Table 6. Trust attack detection accuracy (%)

Dataset Tvpe Method Method Method ART-
yp 5] 8] [15] BTNet
Packet Drop
Nk 72.4 78.1 84.3 96.2
Data 68.2 75.3 82.6 94.5
Tampering
Collusion 60.9 70.2 76.8 92.4
Scenario
Reputation 66.5 73.4 79.1 93.3
Flooding
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5. CONCLUSION AND FUTURE SCOPES

The proposed ART-BTNet framework establishes a novel
co-design of reinforcement meta-learning, blockchain-based
trust modeling, and multi-layer optimization for adaptive
routing in WSNs. Experimental findings reveal substantial
performance gains over traditional routing and static trust
schemes, including a 30% increase in packet delivery, 35%
reduction in energy consumption, and a significant decrease in
false trust positives and convergence time. These results
highlight the synergy of ART-BTNet’s integrated
components—Meta-Router, TGAT-TrustChain, and GAN-
AuditChain—which collectively enable secure and energy-
efficient communication under diverse network dynamics.

However, the model incurs moderate computational
overhead during trust vector updates and blockchain
synchronization, which remains a limitation for ultra-
constrained sensor deployments.

Future work will prioritize federated learning-based
decentralization, hardware-assisted lightweight cryptography,
and memory-augmented dual-attention mechanisms to further
reduce latency and improve contextual learning. In the longer
term, the framework will be extended to heterogeneous and
UAV-assisted sensor networks, strengthening its potential for
large-scale, trust-aware, and resilient [oT ecosystems.
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