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Numerous real-time applications, such as underwater object detection, security and 

surveillance, autonomous underwater vehicles, and marine life monitoring, have 

benefited from newly developed methods for enhancing the quality of images. This 

research focuses on Low Light Underwater Images (LLUWIs) during processing. Light 

absorption in water causes most underwater images to exhibit low-level illuminations, 

color distortion, and noise. New deep learning-based methods have been developed to 

improve image quality. To address this issue, this research presents a model called Dark 

Lighter Pro-Net (DLPN). For the purpose of improving low-light images, DLPN is a 

model based on CNN. A unique feature of DLPN is its hybrid design, which integrates 

attention modules to improve darker areas, physics-driven restoration to fix color 

distortions, and residual refinement to maintain small details throughout the process. 

This integration ensures an improvement process that outperforms both traditional and 

deep learning-based methods for improving underwater images. The proposed model 

outperforms both raw LLUWI and previous models in terms of the Structural Similarity 

Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). The specific PSNR gain 

achieved by DLPN is 31.6 dB (from 5.28 dB to 36.92 dB), and the SSIM improvement 

is 63.5% (from 0.262 to 0.90). With its perceptual quality and consistently higher 

quantitative results, DLPN outperforms state-of-the-art approaches like WaterNet, 

Physical model Guided Generative Adversarial Networks (PUGAN), and Ard-GAN. 

The proposed model outperforms the current model, confirming the algorithm's 

robustness. The proposed enhancement model significantly improves the visual quality 

of the images. 
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1. INTRODUCTION

The water holds a wealth of useful materials. vice 

maintenance, object detection, search and salvage, and image 

processing are all operations that rely on underwater images 

[1]. Due to the presence of suspended particles and the 

attenuation of light under water, the underwater optical images 

exhibit poor quality. These defects include color distortion, 

low contrast, and blurred details [2]. Improving and restoring 

the deteriorating underwater pictures is necessary to acquire 

more underwater information [3]. 

Nevertheless, capturing clear, detailed underwater images 

isn't without its challenges. Color shifts, distorted details, and 

reduced contrast are common complaints from underwater 

images as a result of light dispersion and the challenging 

underwater conditions [4]. Clearness, color accuracy, and 

sharpness are all negatively affected, especially in murky or 

deep water conditions [5]. Consequently, Underwater Image 

Enhancement (UIE) techniques are vital for improving 

underwater image quality, providing clearer pictures for uses 

like monitoring and inspections. 

There was a time, over a decade ago, when most methods 

for improving underwater images relied on physical models or 

did not use physical models at all [6]. But when convolutional 

neural networks first came out, researchers started to pay more 

attention to deep learning-based UIE techniques. Using 

historical data to estimate the parameters utilized in image 

generation, physical-model-based approaches can increase the 

quality of underwater images by turning the physical process 

backwards [7]. However, due to the ever-changing nature of 

the marine environment, these stated traits may not be 

applicable in all situations [8]. To increase features like 

brightness, saturation, and contrast, most non-physical model-

based techniques use image processing to change the pixel 

values [9]. 

Although these methods work, they have numerous 

drawbacks, such as being very conditional, losing information, 

experiencing color shifts, and having trouble restoring visual 

attributes that have been lost [10]. Improved underwater 

photography is a direct result of the widespread use of deep 

learning techniques, which have proven effective in fields such 

as high-resolution images, segmentation, and object 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 11, November, 2025, pp. 3939-3948 

Journal homepage: http://iieta.org/journals/mmep 

3939

https://orcid.org/0000-0002-8044-1863
https://orcid.org/0000-0003-4734-5594
https://orcid.org/0000-0002-9680-2897
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.121120&domain=pdf


 

recognition [11]. In this domain, Generative Adversarial 

Network (GAN) and Convolutional Neural Network (CNN) 

architectures are king when it comes to deep learning models 

[12]. In order to directly comprehend the connection between 

real and degraded images from training data, they make use of 

their powerful fitting skills [13]. Many issues remain 

unresolved in UIE that relies on deep learning, despite 

considerable progress in this area [14]. Uneven augmentation 

may result from the fact that most existing approaches focus 

on improving images in the spatial domain, which is where 

most underwater images are degraded [15]. As a result, there 

may be cases where the image's brightness is increased at the 

cost of noise, or where the image's clarity is diminished to 

improve color restoration [16]. The capturing of underwater 

images is a difficult task, and the process of underwater image 

capturing and its effects are shown in Figure 1. 

 

 
 

Figure 1. Underwater image capturing 

 

Based on the study, this work uses CNN's deep learning 

design to present a UWI improvement technique based on 

enhanced DarkLighter Pro-Net. Low-quality underwater 

photos are fed into the end-to-end framework of the approach, 

which produces processed, enhanced underwater photos as 

output. The following is a summary of the study's main 

contributions: 

• An underwater image enhancement structure is designed, 

and a Dark Lighter Pro Net (DLPN) framework is 

proposed.  

• The network model is processed on the standard 

Underwater Image Enhancement Benchmark (UIEB) 

dataset. The images in this dataset are captured under 

different environmental conditions underwater. 

• Attention Guided Enhancement Network (AGE) is 

designed to perform enhancement on darker areas utilizing 

the channel and spatial network. 

• After processing the images using the DLPN model, the 

metric is evaluated to prove the effectiveness of the 

designed model. 

The proposed DLPN is unique since it is a CNN framework 

that integrates attention-guided enhancement, physics-based 

color restoration, and multi-stage residual refinement. Instead 

of using uniform enhancement like traditional models do, 

DLPN incorporates an AGE module that uses spatial and 

channel attention to specifically improve darker parts while 

preventing overexposure in brighter areas. Also, the Physics-

Guided Color Restoration (PGCR) part is great for restoring 

natural colors that get messed up in low-light underwater 

settings since it precisely models water's light absorption and 

wavelength-dependent dispersion. Using skip connections, a 

Multi-Stage Residual Refinement (MRR) technique 

progressively refines tiny features over various scales, further 

preserving structural integrity. Unlike previous approaches, 

DLPN takes a holistic view, allowing it to tackle light loss, 

color distortion, and texture deterioration all at once. 

 

 

2. RELATED WORK 

 

Both physics-based and non-physics-based approaches are 

mostly part of traditional methodologies. The goal of physics-

based approaches is to restore images by estimating 

characteristics like attenuation and scattering, which turn the 

imaging process backwards. Some methods that have been 

utilized to restore natural looks include attenuation priors and 

color correction models. Although these techniques work well 

in lab settings, they don't apply to the wide variety of 

underwater situations. Histogram equalization, fusion-based 

methods, and relative global histogram stretching are 

examples of pixel-level changes used by non-physics-based 

approaches. Even though these techniques enhance contrast, 

they frequently cause color changes, artifacts, and the loss of 

structural details, particularly in low-light situations. 

Research into using deep learning for UIE tasks started 

when CNNs were popular. Models that learn mappings 

between degraded and augmented pictures utilize 

convolutional layers. Examples of such models are Under 

Water Convolution Neural Networks (UWCNNs) and UIEC²-

Net. By accurately capturing intricate non-linear correlations 

in picture attributes, these CNN-based approaches surpass 

conventional methods. While some of these models do a good 

job in well-lit environments, others aren't great at restoring 

natural colors or fine details when the lighting is really dim. 

Underwater picture augmentation has also seen extensive 

research into GANs. By learning distributions of real-world 

underwater imagery, models like WaterGAN, F-GAN, and 

PUGAN produce aesthetically pleasing outcomes. Although 

GAN-based methods are great at making realistic images, they 

can be unstable during training, sometimes show details that 

don't really exist, and do a poor job of maintaining the input 

images' structural integrity. Also, GAN models are 

computationally costly and typically necessitate a lot of 

training data. 

In order to develop and use marine resources, underwater 

imaging systems have become important hardware equipment. 

Unfortunately, underwater visual perception has frequently 

suffered from a significant decline in quality due to the 

complicated physical environment beneath the sea. In 

response to these concerns, we developed Principal 

Component Fusion of Foreground and Background (PCFB), 

an underwater image enhancement method based on principal 

component fusion of foreground and background. In order to 

fix color distortion and make the a and b channel pixel values 

equal in the CIELab color model, Zhang et al. [1] offered a 

color balance-guided color correction method. After that, the 

author took the color-corrected image and applied a contrast 

enhancement approach based on the percentile maximum and 

a dehazing strategy calculated by a multilayer transmission 

map [2]. 

In order to capture photos and aid in a variety of marine 
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research activities, optical imaging cameras are currently 

utilized on underwater vehicles. There have been numerous 

strategies suggested for improving the signal-to-noise ratio 

and reducing backscattering noise in underwater photographs 

in recent years. Nevertheless, these algorithms are primarily 

designed for jobs involving underwater picture augmentation 

in well-lit environments. Therefore, the performance of these 

algorithms on low-light underwater scene photos remains 

unknown. Images captured in low-light underwater 

environments often have poor visual clarity and higher noise, 

making them more prone to artifacts when enhanced. Xie et al. 

[3] proposed a new underwater image enhancement network 

to address the issue of significant degradation of underwater 

image quality in low illumination environments after 

conducting a comprehensive study of existing methods for 

underwater image enhancement and low illumination image 

enhancement based on deep learning. This will help bridge the 

gap in existing solutions.  

The transmission of light through water is a significant 

challenge to autonomous underwater robotic image 

processing. Although image restoration methods can 

successfully eliminate haze from a damaged image, they 

require numerous photographs taken from the same spot, 

which precludes their usage in a real-time system. Perez et al. 

[4] recommended a deep learning approach because of the 

impressive track record of these methods in solving other 

image processing challenges, like object detection and 

colorization. By using image restoration techniques to train a 

convolutional neural network, it is possible to dehaze 

individual photos more effectively than existing methods of 

image improvement. In order to demonstrate the neural 

network's generalizability, it is trained using photos from 

various places and with diverse attributes. 

Underwater, image capture devices aren't very good at 

capturing high-resolution photographs, and the gear is pricey. 

It is feasible to restore and enhance picture quality using image 

processing algorithms instead of expensive and dependable 

picture-capturing software. The challenging but increasingly 

popular endeavor of creating and reconstructing an underwater 

image has been gaining steam in recent years. The objective is 

to enhance underwater photographs by utilizing deep learning 

models to eliminate graininess, fine-tune, and sharpen the 

images. Kumar et al. [5] employed GAN-augmented datasets, 

namely Enhancing Underwater Visual Perception (EUVP) and 

Underwater Image Enhancement Benchmark (UIEB), to train 

four CNN-based models: two with three layers and two with 

two layers. 

Severe illumination degradation makes low-light 

underwater image enhancement a difficult problem to solve, 

even using state-of-the-art deep-learning techniques. We 

introduce a Retinex-guided Mamba network for low-light 

underwater image enhancement (RM-UIE) with two paths for 

rectification of reflectance and illumination maps to solve this 

problem. To be more specific, Yan et al. [6] created a Multi-

scale Retinex Estimator (MRE) to split the input picture into 

two intermediate spaces that roughly match the target 

illumination and reflectance maps. After that, we come up with 

an 8-Direction Mamba Block (8D-MB) to improve lighting 

and reflectance maps. Enhanced spatial connection extraction 

is possible because of the 8D-MB's central operator, a new 

eight-direction Mamba scanning technology. Lastly, the 

suggested strategy proves to be much superior to current 

methods in terms of illumination and detail restoration, as 

shown by thorough quantitative and qualitative trials 

conducted on popular datasets. 

Color distortion, reduced contrasts, and fuzzy details are 

common visual degradation issues with underwater 

photographs captured with underwater cameras. The present 

research trend treats each of these problems independently, 

which makes it hard to consistently increase the sharpness of 

underwater images. Uneven coloring in the texture of the 

photos, over-enhancement, and over-saturation of certain 

areas are all common results of this method. In order to 

improve the brightness, sharpness, and reduction of over-

contrast amplification of underwater images while preserving 

their structure, Priyadharshini et al. [7] aimed to present an 

ensemble deep learning approach, a spatial approach, and a 

deep learning method. Through comparison with other models 

and testing on several datasets, including the UEIB and EUVP 

datasets, we demonstrate the generalizability of the suggested 

CNN model. 

Due to factors such as light scattering, color distortion, and 

reduced visibility, underwater imaging is an intricate process. 

Kumar et al. [8] introduced a new framework called Hybrid 

Transformer Network optimized using Particle Swarm 

Optimization (HTN-PSO), which is built on a hybrid 

transformer network to improve underwater image quality and 

solve these challenges. For efficient feature capturing and 

long-range dependency modeling, the HTN-PSO framework 

merges the advantages of transformer models with 

convolutional neural networks. Concurrently, PSO enhances 

underwater photos to their fullest potential by optimizing the 

transformer's parameters. The four primary steps of the 

suggested framework are as follows: data enhancement, pre-

processing, feature extraction with HTN-PSO, and improved 

picture reconstruction. Evaluations of HTN-PSO's 

performance include both subjective evaluations and objective 

quality indicators like Underwater Image Quality Measure 

(UIQM), Naturalness Image Quality Evaluator (NIQE), 

Blind/Referenceless Image Spatial Quality Evaluator 

(BRISQUE). 

Further, to improve the efficiency and effectiveness of the 

enhancement of underwater images, a DLPN model is 

designed in this paper. The DLPN utilizes the CNN structure 

and is specifically designed for underwater images. The 

methodology is discussed in Section 3. 

Both physical-model-based and non-physical-model-based 

methods of improving underwater images have their limits. 

Underwater light propagation can be inverted using physical-

model-based approaches that estimate environmental factors 

[17]; however, these assumptions are not universal and 

frequently fail in different underwater environments [18]. 

While methods that don't rely on physical models can enhance 

visibility, they often result in information loss, false color 

changes, and problems with retrieving small details due to 

their reliance on pixel values like brightness, contrast, and 

saturation. 

 

 

3. METHODOLOGY 

 

To circumvent these restrictions, the proposed DLPN 

framework incorporates three supplementary techniques. To 

avoid overexposing lighter areas, AGE adaptively brightens 

darker ones. In contrast to earlier deep learning methods, 

PGCR takes absorption and scattering effects into account 

while restoring natural hues [19]. Last but not least, MRR 

solves the problem of texture degradation that often occurs in 
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CNN and GAN-based approaches by gradually refining tiny 

details across scales. Through this integration, DLPN can 

tackle illumination loss, color distortion, and structural detail 

preservation all at once, outperforming state-of-the-art 

methods [20]. 

The images captured underwater suffer from a lower level 

of illumination [21], distortion in the colour of the image due 

to water scattering, and the noise present in the water 

environment [22]. Some of the traditional enhancement 

algorithms discussed in Section 2 failed to perform in 

extremely low-light conditions. The improvement in contrast 

and visibility is achieved successfully using a deep learning 

enhancement model. The darker lighter pro net model focuses 

on lower light and illumination-degraded images. The 

framework and design structure of DLPN are shown in Figure 

2.  

 

 
 

Figure 2. Framework of the proposed model 

 

The mathematical notations are discussed here: 

I[0,1]H×W×3 indicates an observed low-light underwater 

RGB image (input). 

J[0,1]H×W×3J indicates a restored/enhanced RGB image 

(ground truth or target). 

J represents network output (enhanced image). 

X indicates pixel location, xΩ, where Ω indexes the H × 

W grid. 

F(l)RHl×Wl×Cl indicates the feature tensor at layer l. 

As(x)[0,1] represents the spatial attention scalar at pixel x. 

Ac[0,1]C represents the channel attention vector (per-

channel gating). 

A(x) indicates combined attention applied to features 

(explained below). 

d(x) represents the depth/scene distance at pixel x (meters 

or relative scale). 

βλ and αλ indicate the wavelength-dependent attenuation 

coefficient for color channel λ{R,G,B}. 

Bλ represents the global background. 

L indicates the total training loss. 

 

3.1 Preprocessing 

 

In this stage, the noise in the input data is reduced, and the 

values of the pixels are normalized for robust enhancement. 

The underwater images have noise because of absorption in 

water and the scattering problem. A non-local mean denoising 

filter is used to remove the noise in the image, and the structure 

of the image is preserved. The denoising of the image is 

performed using Eq. (1). 

 

𝐼𝐷(𝑥, 𝑦) = ∑ 𝑤(𝑥, 𝑦, 𝑝) 𝐼(𝑝)

𝑝∈𝒩(𝑥,𝑦)

 (1) 

 

Here, the term 𝒩(𝑥, 𝑦) is the neighbour pixel of the image, 

and the term 𝑤(𝑥, 𝑦, 𝑝) is the similar range of weights between 

the pixels. 

The normalization helps the value of pixels to fall in a 

specific area for further processing of the image and ensures 

to have a consistent progress when working with a neural 

network. The pixel values are normalized between the range 

of 0 to 1, which allows the training process in networks to be 

stable. The normalization of the image given in Eq. (2). 

 

𝐼𝑁 =
𝐼𝐷 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

 (2) 

 

3.2 Design of DLPN  

 

The DLPN model is designed utilizing many aspects, like 

attention, physics-based restoration, and residual refinement 

for improving the quality of the enhanced image. 

A. Hybrid Multiscale Feature Extraction (HMFE) 

In this process, the hierarchical features are extracted using 

the convolutional layers and transformer layers. This stage 

extracts fine features and coarse structure of the image by 

preserving the global structure of the image. The convolution 

extraction of the feature process utilizes three layers and is 

defined as Eqs. (3)-(5): 

 

𝐹1 = 𝜎(𝑊1 × 𝐼𝑁 + 𝑏1) (3) 

 

𝐹2 = 𝜎(𝑊2 × 𝐹1 + 𝑏2) (4) 

 

𝐹3 = 𝜎(𝑊3 × 𝐹2 + 𝑏3) (5) 

 

The transformer extraction of features helps in capturing of 

global illumination patterns of the image. The use of self-

attention enhances the global structure of the image without 

losing the spatial details. The delf-attention factor is given in 

Eq. (6). 

 

𝐴(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (6) 

 

The final features in this stage are a combination of CNN 

and the transformer features and are given in Eq. (7). 
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𝐹𝑖𝑛𝑎𝑙𝐹 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹3, 𝐴(𝑄, 𝐾, 𝑉)) (7) 

 

B. Adaptive Dual Batch Normalization (ADBN) 

The contrast of the input image is normalized adaptively 

using ADBN. This improves the training process of 

underwater images in the network. This allows us to normalize 

the contrast of the image by applying a specific batch 

normalization for the regions that are darker and for brighter 

regions. By this process, the over-enhancement of the bright 

region is prevented by enhancing the dark regions. The ADBN 

is evaluated using Eq. (8). 

 

𝐼𝑁𝑜𝑟𝑚 = 𝛾𝑑
(𝐼−𝜇𝑑)

𝜎𝑑
+ 𝛽𝑑 + 𝛾𝑑

(𝐼−𝜇𝑏)

𝜎𝑏
+ 𝛽𝑏  (8) 

 

C. AGE 

In this stage, the regions of the image are darker and 

enhanced with the help of attention. Two attention models are 

considered, one is spatial attention (𝑆𝐴), which improves the 

darker region of the image, and the other one is channel 

attention (𝐶𝐴) which enhances the colour contrast of the image. 

The combination of spatial and channel attention provides a 

final attention map. 

 

𝑆𝐴 = 𝜎(𝑊𝑠 ∗ 𝐼𝑛𝑜𝑟𝑚 + 𝑏𝑠) (9) 

 

𝐶𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐 ∗ 𝐺𝐴𝑃(𝐼𝑛𝑜𝑟𝑚)) (10) 

 

The final enhanced attention model is given in Eq. (11). 

 

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝑆𝐴. 𝐶𝐴. 𝐼𝑛𝑜𝑟𝑚 (11) 

 

D. Physics Guided Colour Restoration (PGCR) 

The PGCR allows a model of physics in evaluating factors 

like light absorption and scattering. This helps in restoring the 

natural colour in the image by understanding the concept of 

physics in the underwater conditions. The restoration of true 

colours of the underwater image is given in Eq. (12). 

 

𝐼𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 = 𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 × 𝑒𝑑.𝜆 (12) 

 

where, the term 𝑑 is said to be the depth attenuation factor and 

term 𝜆 is the wavelength-dependent coefficient of absorption. 

The colours of the image restoration underwater will be 

performed depending on the physics. 

E. MRR 

The details of the image are refined using residual learning. 

The MRR uses a three-level residual learning, which provides 

a higher scope of detailed enhancement. At every level, a skip 

connection in the residual network refines the details of the 

image. The final output of the enhanced image is given by Eq. 

(13). 

 

𝐼𝑓𝑖𝑛𝑎𝑙 = 𝐼𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 + 𝑅1 + 𝑅2 + 𝑅3 (13) 

 

Here, the terms 𝑅1, 𝑅2, 𝑅3 are the residual enhancement at 

different scales. 

 

3.3 Loss function 

 

The loss function is evaluated to minimize the errors in the 

enhancements. The loss function is a measure of the output 

image obtained from the model with respect to the ground 

truth image results. The loss function in this model is evaluated 

using L1 loss, SSIM, and perceptual loss and is given in Eq. 

(14). 

 
𝐿𝑜𝑠𝑠 = 𝜆1 × 𝐿1 + 𝜆2 × 𝑆𝑆𝐼𝑀 + 𝜆3 × 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑙𝑜𝑠𝑠 (14) 

 

L1 is given as L1 = Mean [abs(true output-predicted 

output)], and SSIM is given as SSIM = 1 - SSIM (true output, 

predicted output). 

Here the terms 𝜆1, 𝜆2, and 𝜆3 are the constant values. In our 

design the term 𝜆1 = 0.6, 𝜆2 = 0.3  and  𝜆3 = 0.1  are 

considered to evaluate the loss function. 

At different spatial dimensions, degradations occur 

underwater in different ways. On one hand, ambient lighting 

and color casts are large-scale processes, whereas small 

suspended particles induce local dispersion. Both global 

illumination patterns and fine texture may go unnoticed by a 

CNN operating on a single scale. By merging convolutional 

multi-scale features with a transformer/self-attention branch 

that records long-range lighting patterns, HMFE can extract 

both local (fine) and global (coarse) information. This makes 

the correction of colors and lighting more consistent 

worldwide while also improving local detail recovery (edges, 

textures). 

Because degradations under the water might manifest on 

both a local and global scale, the first part, HMFE, is crucial. 

Local scattering is caused by suspended particles, while global 

color shifts and illumination loss are caused by light 

attenuation. By utilizing transformer-based self-attention [23], 

HMFE can simulate global lighting patterns and extract local 

texture features using convolutional layers. This synergy 

strikes a good balance between regional sharpness and general 

aesthetic cohesion by restoring fine details to the improved 

image without sacrificing global color uniformity [24]. 

In order to fix the issue of underwater photographs having 

inconsistent lighting, the ADBN module is used. When using 

a traditional batch normalization method, just one 

normalization is applied to the entire image. This can cause 

some parts to be too enhanced while others are under-

normalized [25]. With the use of a learnt mask, ADBN 

introduces independent normalization statistics for light and 

dark areas, allowing for adaptive normalization to take place. 

This guarantees steady training and better contrast 

preservation by preventing over-exposure of already bright 

areas and allowing effective correction of darker portions. 

To fix the areas that need it the most, the AGE module 

applies enhancements selectively. Global amplification can 

make previously clear parts of an underwater picture noisier, 

and not all parts of the image require equal improvement. AGE 

prevents the network from excessively amplifying noise while 

still prioritizing crucial structures and color adjustments. A 

composite loss function is used to train DLPN in an end-to-

end fashion. Losses at the pixel level (L) are a part of the 

overall loss. Rather than relying on individual supervision, the 

attention modules improve their weights with the rest of the 

network through backpropagation. This guarantees that both 

the spatial and channel attention adjust dynamically to the 

data. 

The PGCR module is a crucial component of the DLPN 

framework because it corrects colour distortions by explicitly 

modeling underwater light absorption and scattering. In this 

model, the observed pixel intensity is expressed as Iλ(x) = 

Jλ(x)tλ(x) + Bλ(1 − tλ(x)) is the captured intensity in channel 

λ{R,G,B} is the true scene radiance, Bλ is the global 

background light, and tλ(x) = exp(−βλd(x)) is the transmission 
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that depends on the scene depth d(x) and the wavelength-

dependent attenuation coefficient βλ. By inverting this model, 

the true colour values Jλ(x) can be recovered. A central 

challenge in PGCR is estimating the depth d(x) or transmission 

tλ(x), since ground-truth depth maps are rarely available for 

real underwater datasets. To address this, several strategies are 

employed. One approach is to train a small CNN sub-network 

to estimate relative depth maps directly, enabling the network 

to learn depth cues in a weakly supervised way. Alternatively, 

the model can bypass explicit depth estimation by directly 

predicting transmission maps for each channel through a 

lightweight prediction head, ensuring differentiability and 

physical interpretability. Depth can also be approximated 

using priors such as the red-channel or dark-channel 

assumptions, which exploit the faster attenuation of red light 

as a depth cue. In some cases, external monocular depth 

estimators trained on large-scale natural datasets can provide 

approximate depth maps that serve as additional guidance. 

Hybrid methods that combine learned predictions with 

physics-inspired priors or smoothness regularization often 

achieve the most robust performance. By integrating these 

strategies, PGCR ensures physically consistent colour 

correction, avoids unrealistic over-saturation, and generalizes 

effectively across diverse underwater environments. 

 

 

4. RESULTS AND DISCUSSIONS 

 

This section provides the platform utilized for UWIE and 

forecasts the parameters evaluated for assessing the designed 

model. The comparison of evaluated parameters is tabularized 

and compared with existing techniques. 

 

4.1 System environment 

 

The underwater image dataset is processed utilizing an Intel 

Core i10 processor, with an NVIDIA GeForce 4090 graphics 

card, 32GB RAM, and 1TB of space. A MATLAB deep 

learning framework is designed for processing the images in 

the dataset. The neural network tools and imaging tools 

available in MATLAB made the work easier to understand and 

process the Low Light Underwater Images (LLUWIs) 

effectively with the designed model. 

 

4.2 Parameters evaluated 

 

Evaluation of parameters is very important to identify the 

effectiveness of the suggested model. The improvement in the 

value of parameters helps the author to judge the efficiency of 

the presented work. Some of the parameters evaluated are 

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 

Index (SSIM), Entropy, Absolute Brightness (AB), Visual 

Information Fidelity (VIF), Underwater Image Quality 

Measure (UIQM), and Universal Image Quality Index (UIQI). 

The detailed version of the parameters is discussed below. 

A. PSNR 

The metric PSNR measures the quality of an image by 

comparing it with the ground-truth image. The PSNR 

evaluates the amount of distortion introduced and is improved 

in the image. It is calculated using the mean square error and 

is given in Eq. (15): 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
) (15) 

where, the term max is the high pixel value, which is 255 for 

an image with 8-bit. 

 

𝑀𝑆𝐸 =
1

𝑚 × 𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛

𝑗=1

𝑚

𝑖=1

 (16) 

 

The first term 𝐼(𝑖, 𝑗) is the value of pixels in the original 

image and the second term 𝐾(𝑖, 𝑗) is the value of pixels in the 

distorted image. The dimensions of the image are termed as 

𝑚, 𝑛. 

B. SSIM 

The similarity level of achieved output w.r.t to the ground-

truth image need to be evaluated to check the luminance level 

and contrast level of image. If the SSIM value is high then the 

quality of the output image is said to be effective. The SSIM 

is evaluated using Eq. (17): 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (17) 

 

The mean value of the image is termed as 𝜇𝑥 and 𝜇𝑦. The 

variance value of the image is termed as 𝜎𝑥  and 𝜎𝑦 . The 

covariance is given as 𝜎𝑥𝑦. 

C. Entropy 

The measure of uncertainty of an image is said to be 

entropy. The information present in the image is validated 

using the entropy metric in analysis of images. The evaluation 

of entropy is given in Eq. (18): 

 

𝐸𝑛 = − ∑ 𝐼𝑝(𝑖)𝑙𝑜𝑔2𝐼𝑝(𝑖)

𝐼𝑙−1

𝑖=0

 (18) 

 

Here, 𝐼𝑙  is the number of intensity levels, and its probability 

is termed as 𝐼𝑝. If the entropy of a processed image is high, 

then the image is said to be a detailed and quality image.  

D. AB 

The overall brightness of the enhanced image is measured. 

It can be evaluated as the average intensity of pixels among 

the colour channels. 

E. VIF 

The information between the original image and the 

processed image is measured using this metric. The quality of 

the image will be assessed using Eq. (19): 

 

𝑉𝐼𝐹 =
∑ 𝑀𝐼 𝑏/𝑤 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

∑ 𝑀𝐼 𝑏/𝑤 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑛𝑜𝑖𝑠𝑒
 (19) 

 

The value of VIF states the information present in the image 

that is processed. When its value is equal to one, then the 

image is said to be perfectly reconstructed. 

F. UIQM 

This parameter is different from measure metrics. UIQM 

helps in quantifying the visual perception of humans for the 

image, which is processed and enhanced. The UIQM values 

are evaluated using the colour measure, sharpness measure, 

and contrast measure, and are given in Eq. (20): 

 
𝑈𝐼𝑄𝑀 = 𝑤1 × 𝑈𝐼𝐶𝑀 + 𝑤2 × 𝑈𝐼𝑆𝑀 + 𝑤3 × 𝑈𝐼𝐶𝑜𝑛𝑀 (20) 

 

where, 𝑤1, 𝑤2, 𝑤3 are the weight factors to be adjusted based 

on the significance of the requirement. Each metric in equation 
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6 is computed separately, and the final UIQM is evaluated. 

The quality of the image is said to be effective when the value 

of UIQM is high. 

G. UIQI 

The degree to which a distorted image resembles its original 

reference is measured by this evaluation metric. It assesses an 

image's contrast loss, brightness variations, and structural 

deformation. The value of UIQI is evaluated using Eq. (21): 

 

𝑈𝐼𝑄𝐼 =  
4. 𝜎𝑥𝑦 . 𝜇𝑥. 𝜇𝑦

(𝜎𝑥
2 + 𝜎𝑦

2). (𝜇𝑥
2 + 𝜇𝑦

2)
 (21) 

 

Here, factor 𝑥  refers to the original image and factor 𝑦 

refers to the distorted image. All the above metrics are 

evaluated and discussed in the following. 

 

4.3 Experimental findings 

 

This study takes into consideration a UIEB that contains 

950 real-world underwater photographs, 890 of which have the 

associated reference images. The remaining 60 underwater 

photos for which adequate reference photographs are not 

available are treated as problematic data. The dataset offers a 

realistic basis for creating and evaluating improvement 

algorithms since it contains photos taken in a variety of 

underwater settings. The examination of underwater image 

enhancement techniques using this dataset and assessing the 

relevant metrics. 

 

 
 

Figure 3. LLUWIs enhancement results (a) Input image (b) Output using Ard-GAN network (c) Proposed output using DLPN 
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Table 1. Results of parameters evaluated 

 
Input / Parameter PSNR MAE SSIM VIF AB Entropy UIQM UIQI 

I1 35.15 0.61 0.895 0.761 161.4 6.94 2.336 0.610 

I2 36.64 0.62 0.881 0.771 157.3 6.9 2.330 0.612 

I3 37.18 0.614 0.884 0.775 158.8 6.97 2.389 0.612 

I4 36.92 0.653 0.890 0.791 158.34 6.96 2.37 0.616 

 

Table 2. Comparison of parameters evaluated 

 
Parameter / Technique Ard-GAN Net DLPN 

PSNR 35.52 36.92 

MAE 0.647 0.624 

SSIM 0.86 0.90 

VIF 0.791 0.745 

AB 157.8 158.34 

Entropy 6.84 6.94 

UIQM 2.31 2.35 

UIQI 0.60 0.616 

 

Table 3. Parametric comparison with input 

 

Image / Parameter 
Input (LLUWI) Output (DLPN) 

SSIM PSNR UIQM SSIM PSNR UIQM 

I1 0.262 5.28 0.024 0.895 35.15 2.336 

I2 0.139 6.21 0.032 0.88 36.64 2.330 

I3 0.218 6.56 0.021 0.884 37.18 2.389 

I4 0.184 5.66 0.042 0.890 36.92 2.37 

 

Table 4. Comparison of metrics with existing methods 

 

Method and References PSNR 
SSIM 

(%) 

Relative Global Histogram Stretching [12] 19.72 83.9 

Underwater Light Attenuation Prior [14] 16.33 75.8 

Minimal Loss and Locally Contrast 

Enhancement [16] 
19.82 83.5 

Lite Enhance Net [18] 23.82 88 

Physical Model GANs [19] 18.22 72.7 

Physically Guided Network with 

Frequency–Spatial Attention [20] 
22.50 81.6 

Fast GAN [23] 23.89 81.8 

Water Net [25] 27.74 89 

Proposed: DLPN 36.92 90 
 

The underwater images have lower light illumination, and 

there is a need to enhance the images for better understanding 

and visual quality. In Figure 3, the input LLUWI is considered 

and processing. The obtained enhanced output result using two 

different models is shown in Figure 3. The parameters 

evaluated in the process of enhancing the different images in 

the dataset are shown in Table 1. 

The proposed dark lighter pro net achieves better results 

when compared to the existing Ard-GAN Net model, and is 

shown in Table 2. The results shown in Table 2 are the average 

of the results achieved after performing enhancement on 

different types of images. The proposed DLPN model achieves 

a PSNR of 36.2 and an SSIM of 89.9%. 

The value of SSIM and PSNR obtained using the proposed 

Darker pro net model is compared with the input LLUWI. The 

images in the dataset are of low intensity, and the PSNR and 

SSIM are evaluated to compare with the enhancement model. 

By this comparison, the level of enhancement performed using 

the proposed model can be identified. The values are shown in 

Table 3. 

The input image in the dataset has a PSNR of 5.28 and is 

improved to 35.15 using DLPN, and the SSIM of 26% 

improved to 89.5% using DLPN. The higher the value of 

PSNR and SSIM, the better the visual quality of the image. 

There is an improvement of 63.5% in SSIM, which showcases 

the efficiency of the proposed model. Table 4 showcases the 

comparative analysis of existing models with proposed 

models. 

From Table 4, the designed DLPN has a higher PSNR of 

36.92 and SSIM of 90% when compared to other existing 

models. 

DLPN still has trouble processing images taken in highly 

murky seas or at extremely low depths, when the red channel 

data is practically nonexistent. The need for powerful 

computers also makes it difficult to deploy in real time on 

embedded underwater devices. A fairer image will emerge 

from the results section after these issues are addressed. 

 

 

5. CONCLUSION 

 

A CNN-based low-light improvement model called DLPN 

was created especially for processing images underwater. To 

increase visibility and colour accuracy, it makes use of 

residual learning, contrast enhancement, and lighting 

adjustment. In low light, images maintain their structural 

integrity while increasing details attributable to the model's 

hybrid function of loss and learning through perception. When 

it came to improving underwater images taken in low light, the 

proposed DLPN was far better. With a PSNR of 36.92 dB, 

DLPN outperformed the next-best approach, PCAFANet, 

which had a PSNR of 27.74 dB, by more than 9 dB. Similarly, 

DLPN achieved a 90% SSIM, surpassing previous models like 

WaterNet (88% accuracy) and FGAN (83.5%), and improved 

from input photos with SSIM as low as 0.18–0.26. From 

almost nil in raw inputs to 2.33–2.39 after refinement, UIQM 

showed significant improvement in visual quality metrics. 

These findings demonstrate that DLPN can effectively 

improve visibility in underwater settings with degradation, 

while also retaining fine picture structures and increasing color 

fidelity. Limitations persist notwithstanding these 

advancements. The hybrid feature extraction and multi-stage 

residual refinement design of DLPN makes real-time 

processing on low-power devices hard because of the 

significant computational resources it requires. In addition, 

processing speed and scalability to high-resolution, 

continuous video streams are limited, even though structural 

fidelity is kept. Furthermore, AUVs and ROVs might be 

enhanced in real-time using DLPN by compressing models or 

redesigning networks to make them lightweight. This would 

allow for DLPN to be scaled for deployment on embedded 

devices. This shows the efficiency of the proposed model in 

improving the visual quality of the image. The limitation of 

the proposed model is that it requires high computational 

power due to the lower speed of processing. The model 

improves the speed on high-end devices. There is a further 

need to improve the value of PSNR and SSIM, for which meta-

heuristics algorithms need to be incorporated with a deep 

learning model. The involvement of optimization techniques 
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can help deep tuning of pixels in the image to enhance the 

quality. The model can be extended to other image processing 

applications where low-light, weak contrast images are 

achieved. Future research should automate hyperparameter 

tuning using metaheuristic optimization to increase PSNR and 

SSIM values, use temporal coherence across frames to extend 

DLPN to real-time video enhancement, create lightweight 

variants by pruning, quantization, or knowledge distillation to 

make the model suitable for embedded hardware, and 

investigate multi-modal fusion to overcome visibility 

limitations in particularly turbid waters. Following these steps 

would make DLPN a more flexible tool for future underwater 

vision systems, as its uses would be broadened beyond only 

improving static images. 
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