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Numerous real-time applications, such as underwater object detection, security and
surveillance, autonomous underwater vehicles, and marine life monitoring, have
benefited from newly developed methods for enhancing the quality of images. This
research focuses on Low Light Underwater Images (LLUWIs) during processing. Light
absorption in water causes most underwater images to exhibit low-level illuminations,
color distortion, and noise. New deep learning-based methods have been developed to
improve image quality. To address this issue, this research presents a model called Dark
Lighter Pro-Net (DLPN). For the purpose of improving low-light images, DLPN is a
model based on CNN. A unique feature of DLPN is its hybrid design, which integrates
attention modules to improve darker areas, physics-driven restoration to fix color
distortions, and residual refinement to maintain small details throughout the process.
This integration ensures an improvement process that outperforms both traditional and
deep learning-based methods for improving underwater images. The proposed model
outperforms both raw LLUWI and previous models in terms of the Structural Similarity
Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). The specific PSNR gain
achieved by DLPN is 31.6 dB (from 5.28 dB to 36.92 dB), and the SSIM improvement
is 63.5% (from 0.262 to 0.90). With its perceptual quality and consistently higher
quantitative results, DLPN outperforms state-of-the-art approaches like WaterNet,
Physical model Guided Generative Adversarial Networks (PUGAN), and Ard-GAN.
The proposed model outperforms the current model, confirming the algorithm's
robustness. The proposed enhancement model significantly improves the visual quality
of the images.

1. INTRODUCTION

The water holds a wealth of useful materials.

There was a time, over a decade ago, when most methods
for improving underwater images relied on physical models or

vice did not use physical models at all [6]. But when convolutional

maintenance, object detection, search and salvage, and image
processing are all operations that rely on underwater images
[1]. Due to the presence of suspended particles and the
attenuation of light under water, the underwater optical images
exhibit poor quality. These defects include color distortion,
low contrast, and blurred details [2]. Improving and restoring
the deteriorating underwater pictures is necessary to acquire
more underwater information [3].

Nevertheless, capturing clear, detailed underwater images
isn't without its challenges. Color shifts, distorted details, and
reduced contrast are common complaints from underwater
images as a result of light dispersion and the challenging
underwater conditions [4]. Clearness, color accuracy, and
sharpness are all negatively affected, especially in murky or
deep water conditions [5]. Consequently, Underwater Image
Enhancement (UIE) techniques are vital for improving
underwater image quality, providing clearer pictures for uses
like monitoring and inspections.
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neural networks first came out, researchers started to pay more
attention to deep learning-based UIE techniques. Using
historical data to estimate the parameters utilized in image
generation, physical-model-based approaches can increase the
quality of underwater images by turning the physical process
backwards [7]. However, due to the ever-changing nature of
the marine environment, these stated traits may not be
applicable in all situations [8]. To increase features like
brightness, saturation, and contrast, most non-physical model-
based techniques use image processing to change the pixel
values [9].

Although these methods work, they have numerous
drawbacks, such as being very conditional, losing information,
experiencing color shifts, and having trouble restoring visual
attributes that have been lost [10]. Improved underwater
photography is a direct result of the widespread use of deep
learning techniques, which have proven effective in fields such
as high-resolution images, segmentation, and object
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recognition [11]. In this domain, Generative Adversarial
Network (GAN) and Convolutional Neural Network (CNN)
architectures are king when it comes to deep learning models
[12]. In order to directly comprehend the connection between
real and degraded images from training data, they make use of
their powerful fitting skills [13]. Many issues remain
unresolved in UIE that relies on deep learning, despite
considerable progress in this area [14]. Uneven augmentation
may result from the fact that most existing approaches focus
on improving images in the spatial domain, which is where
most underwater images are degraded [15]. As a result, there
may be cases where the image's brightness is increased at the
cost of noise, or where the image's clarity is diminished to
improve color restoration [16]. The capturing of underwater
images is a difficult task, and the process of underwater image
capturing and its effects are shown in Figure 1.

Refraction

Figure 1. Underwater image capturing

Based on the study, this work uses CNN's deep learning
design to present a UWI improvement technique based on
enhanced DarkLighter Pro-Net. Low-quality underwater
photos are fed into the end-to-end framework of the approach,
which produces processed, enhanced underwater photos as
output. The following is a summary of the study's main
contributions:

e An underwater image enhancement structure is designed,
and a Dark Lighter Pro Net (DLPN) framework is
proposed.

The network model is processed on the standard
Underwater Image Enhancement Benchmark (UIEB)
dataset. The images in this dataset are captured under
different environmental conditions underwater.

Attention Guided Enhancement Network (AGE) is
designed to perform enhancement on darker areas utilizing
the channel and spatial network.

After processing the images using the DLPN model, the
metric is evaluated to prove the effectiveness of the
designed model.

The proposed DLPN is unique since it is a CNN framework
that integrates attention-guided enhancement, physics-based
color restoration, and multi-stage residual refinement. Instead
of using uniform enhancement like traditional models do,
DLPN incorporates an AGE module that uses spatial and
channel attention to specifically improve darker parts while
preventing overexposure in brighter areas. Also, the Physics-
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Guided Color Restoration (PGCR) part is great for restoring
natural colors that get messed up in low-light underwater
settings since it precisely models water's light absorption and
wavelength-dependent dispersion. Using skip connections, a
Multi-Stage  Residual Refinement (MRR) technique
progressively refines tiny features over various scales, further
preserving structural integrity. Unlike previous approaches,
DLPN takes a holistic view, allowing it to tackle light loss,
color distortion, and texture deterioration all at once.

2. RELATED WORK

Both physics-based and non-physics-based approaches are
mostly part of traditional methodologies. The goal of physics-
based approaches is to restore images by estimating
characteristics like attenuation and scattering, which turn the
imaging process backwards. Some methods that have been
utilized to restore natural looks include attenuation priors and
color correction models. Although these techniques work well
in lab settings, they don't apply to the wide variety of
underwater situations. Histogram equalization, fusion-based
methods, and relative global histogram stretching are
examples of pixel-level changes used by non-physics-based
approaches. Even though these techniques enhance contrast,
they frequently cause color changes, artifacts, and the loss of
structural details, particularly in low-light situations.

Research into using deep learning for UIE tasks started
when CNNs were popular. Models that learn mappings
between degraded and augmented pictures utilize
convolutional layers. Examples of such models are Under
Water Convolution Neural Networks (UWCNNSs) and UIEC?-
Net. By accurately capturing intricate non-linear correlations
in picture attributes, these CNN-based approaches surpass
conventional methods. While some of these models do a good
job in well-lit environments, others aren't great at restoring
natural colors or fine details when the lighting is really dim.

Underwater picture augmentation has also seen extensive
research into GANs. By learning distributions of real-world
underwater imagery, models like WaterGAN, F-GAN, and
PUGAN produce aesthetically pleasing outcomes. Although
GAN-based methods are great at making realistic images, they
can be unstable during training, sometimes show details that
don't really exist, and do a poor job of maintaining the input
images' structural integrity. Also, GAN models are
computationally costly and typically necessitate a lot of
training data.

In order to develop and use marine resources, underwater
imaging systems have become important hardware equipment.
Unfortunately, underwater visual perception has frequently
suffered from a significant decline in quality due to the
complicated physical environment beneath the sea. In
response to these concerns, we developed Principal
Component Fusion of Foreground and Background (PCFB),
an underwater image enhancement method based on principal
component fusion of foreground and background. In order to
fix color distortion and make the a and b channel pixel values
equal in the CIELab color model, Zhang et al. [1] offered a
color balance-guided color correction method. After that, the
author took the color-corrected image and applied a contrast
enhancement approach based on the percentile maximum and
a dehazing strategy calculated by a multilayer transmission
map [2].

In order to capture photos and aid in a variety of marine



research activities, optical imaging cameras are currently
utilized on underwater vehicles. There have been numerous
strategies suggested for improving the signal-to-noise ratio
and reducing backscattering noise in underwater photographs
in recent years. Nevertheless, these algorithms are primarily
designed for jobs involving underwater picture augmentation
in well-lit environments. Therefore, the performance of these
algorithms on low-light underwater scene photos remains
unknown. Images captured in low-light underwater
environments often have poor visual clarity and higher noise,
making them more prone to artifacts when enhanced. Xie et al.
[3] proposed a new underwater image enhancement network
to address the issue of significant degradation of underwater
image quality in low illumination environments after
conducting a comprehensive study of existing methods for
underwater image enhancement and low illumination image
enhancement based on deep learning. This will help bridge the
gap in existing solutions.

The transmission of light through water is a significant
challenge to autonomous underwater robotic image
processing. Although image restoration methods can
successfully eliminate haze from a damaged image, they
require numerous photographs taken from the same spot,
which precludes their usage in a real-time system. Perez et al.
[4] recommended a deep learning approach because of the
impressive track record of these methods in solving other
image processing challenges, like object detection and
colorization. By using image restoration techniques to train a
convolutional neural network, it is possible to dehaze
individual photos more effectively than existing methods of
image improvement. In order to demonstrate the neural
network's generalizability, it is trained using photos from
various places and with diverse attributes.

Underwater, image capture devices aren't very good at
capturing high-resolution photographs, and the gear is pricey.
It is feasible to restore and enhance picture quality using image
processing algorithms instead of expensive and dependable
picture-capturing software. The challenging but increasingly
popular endeavor of creating and reconstructing an underwater
image has been gaining steam in recent years. The objective is
to enhance underwater photographs by utilizing deep learning
models to eliminate graininess, fine-tune, and sharpen the
images. Kumar et al. [5] employed GAN-augmented datasets,
namely Enhancing Underwater Visual Perception (EUVP) and
Underwater Image Enhancement Benchmark (UIEB), to train
four CNN-based models: two with three layers and two with
two layers.

Severe illumination degradation makes low-light
underwater image enhancement a difficult problem to solve,
even using state-of-the-art deep-learning techniques. We
introduce a Retinex-guided Mamba network for low-light
underwater image enhancement (RM-UIE) with two paths for
rectification of reflectance and illumination maps to solve this
problem. To be more specific, Yan et al. [6] created a Multi-
scale Retinex Estimator (MRE) to split the input picture into
two intermediate spaces that roughly match the target
illumination and reflectance maps. After that, we come up with
an 8-Direction Mamba Block (8D-MB) to improve lighting
and reflectance maps. Enhanced spatial connection extraction
is possible because of the 8D-MB's central operator, a new
eight-direction Mamba scanning technology. Lastly, the
suggested strategy proves to be much superior to current
methods in terms of illumination and detail restoration, as
shown by thorough quantitative and qualitative trials
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conducted on popular datasets.

Color distortion, reduced contrasts, and fuzzy details are
common visual degradation issues with underwater
photographs captured with underwater cameras. The present
research trend treats each of these problems independently,
which makes it hard to consistently increase the sharpness of
underwater images. Uneven coloring in the texture of the
photos, over-enhancement, and over-saturation of certain
areas are all common results of this method. In order to
improve the brightness, sharpness, and reduction of over-
contrast amplification of underwater images while preserving
their structure, Priyadharshini et al. [7] aimed to present an
ensemble deep learning approach, a spatial approach, and a
deep learning method. Through comparison with other models
and testing on several datasets, including the UEIB and EUVP
datasets, we demonstrate the generalizability of the suggested
CNN model.

Due to factors such as light scattering, color distortion, and
reduced visibility, underwater imaging is an intricate process.
Kumar et al. [8] introduced a new framework called Hybrid
Transformer Network optimized using Particle Swarm
Optimization (HTN-PSO), which is built on a hybrid
transformer network to improve underwater image quality and
solve these challenges. For efficient feature capturing and
long-range dependency modeling, the HTN-PSO framework
merges the advantages of transformer models with
convolutional neural networks. Concurrently, PSO enhances
underwater photos to their fullest potential by optimizing the
transformer's parameters. The four primary steps of the
suggested framework are as follows: data enhancement, pre-
processing, feature extraction with HTN-PSO, and improved
picture  reconstruction.  Evaluations of HTN-PSO's
performance include both subjective evaluations and objective
quality indicators like Underwater Image Quality Measure
(UIQM), Naturalness Image Quality Evaluator (NIQE),
Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE).

Further, to improve the efficiency and effectiveness of the
enhancement of underwater images, a DLPN model is
designed in this paper. The DLPN utilizes the CNN structure
and is specifically designed for underwater images. The
methodology is discussed in Section 3.

Both physical-model-based and non-physical-model-based
methods of improving underwater images have their limits.
Underwater light propagation can be inverted using physical-
model-based approaches that estimate environmental factors
[17]; however, these assumptions are not universal and
frequently fail in different underwater environments [18].
While methods that don't rely on physical models can enhance
visibility, they often result in information loss, false color
changes, and problems with retrieving small details due to
their reliance on pixel values like brightness, contrast, and
saturation.

3. METHODOLOGY

To circumvent these restrictions, the proposed DLPN
framework incorporates three supplementary techniques. To
avoid overexposing lighter areas, AGE adaptively brightens
darker ones. In contrast to earlier deep learning methods,
PGCR takes absorption and scattering effects into account
while restoring natural hues [19]. Last but not least, MRR
solves the problem of texture degradation that often occurs in



CNN and GAN-based approaches by gradually refining tiny
details across scales. Through this integration, DLPN can
tackle illumination loss, color distortion, and structural detail
preservation all at once, outperforming state-of-the-art
methods [20].

The images captured underwater suffer from a lower level
of illumination [21], distortion in the colour of the image due
to water scattering, and the noise present in the water
environment [22]. Some of the traditional enhancement
algorithms discussed in Section 2 failed to perform in
extremely low-light conditions. The improvement in contrast
and visibility is achieved successfully using a deep learning
enhancement model. The darker lighter pro net model focuses
on lower light and illumination-degraded images. The
framework and design structure of DLPN are shown in Figure
2.

Image Dataset

Preprocessing (Noise Reduction

and Normalization)

Loss Function Evaluation

|

Parametric Evaluation

Figure 2. Framework of the proposed model

The mathematical notations are discussed here:

1€[0,1]1%W*3 indicates an observed low-light underwater
RGB image (input).

Je[0,177%3 indicates a restored/enhanced RGB image
(ground truth or target).

J represents network output (enhanced image).

X indicates pixel location, xeQ, where Q indexes the H x
W grid.

FOeRIWICl indicates the feature tensor at layer 1.

Aq(x)€[0,1] represents the spatial attention scalar at pixel x.

Ac€[0,1]¢ represents the channel attention vector (per-
channel gating).

A(x) indicates combined attention applied to features
(explained below).
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d(x) represents the depth/scene distance at pixel x (meters
or relative scale).

Bx and oy indicate the wavelength-dependent attenuation
coefficient for color channel L€ {R,G,B}.

B.. represents the global background.

L indicates the total training loss.

3.1 Preprocessing

In this stage, the noise in the input data is reduced, and the
values of the pixels are normalized for robust enhancement.
The underwater images have noise because of absorption in
water and the scattering problem. A non-local mean denoising
filter is used to remove the noise in the image, and the structure
of the image is preserved. The denoising of the image is
performed using Eq. (1).

w(x,y,p) I(p)
PEN (x,y)

Iy(x,y) = (1)

Here, the term V' (x, y) is the neighbour pixel of the image,
and the term w(x, y, p) is the similar range of weights between
the pixels.

The normalization helps the value of pixels to fall in a
specific area for further processing of the image and ensures
to have a consistent progress when working with a neural
network. The pixel values are normalized between the range
of 0 to 1, which allows the training process in networks to be
stable. The normalization of the image given in Eq. (2).

IN — ID - Imin

2)

Imax - Imin

3.2 Design of DLPN

The DLPN model is designed utilizing many aspects, like
attention, physics-based restoration, and residual refinement
for improving the quality of the enhanced image.

A. Hybrid Multiscale Feature Extraction (HMFE)

In this process, the hierarchical features are extracted using
the convolutional layers and transformer layers. This stage
extracts fine features and coarse structure of the image by
preserving the global structure of the image. The convolution
extraction of the feature process utilizes three layers and is
defined as Egs. (3)-(5):

Fi =o(W; X Iy + by) 3)
F, =o0(W, X F{ + b,) @)
F3=0(W;3; X F, + b3) 5)

The transformer extraction of features helps in capturing of
global illumination patterns of the image. The use of self-
attention enhances the global structure of the image without
losing the spatial details. The delf-attention factor is given in

Eq. (6).

QK
A(Q,K,V) = Softmax( (6)

T
) v
vk
The final features in this stage are a combination of CNN
and the transformer features and are given in Eq. (7).



Finalp = Concat (F5,A(Q,K,V)) @)

B. Adaptive Dual Batch Normalization (ADBN)

The contrast of the input image is normalized adaptively
using ADBN. This improves the training process of
underwater images in the network. This allows us to normalize
the contrast of the image by applying a specific batch
normalization for the regions that are darker and for brighter
regions. By this process, the over-enhancement of the bright
region is prevented by enhancing the dark regions. The ADBN
is evaluated using Eq. (8).

(I—up)
)

Inorm = Ya " 2+ Ba + Ya " 22+ By (8)

C. AGE

In this stage, the regions of the image are darker and
enhanced with the help of attention. Two attention models are
considered, one is spatial attention (S,), which improves the
darker region of the image, and the other one is channel
attention (C4) which enhances the colour contrast of the image.
The combination of spatial and channel attention provides a

final attention map.

Sa = 0(Ws * Lngym + bs) €)
C, = Softmax(W, * GAP (Iyorm)) (10)

The final enhanced attention model is given in Eq. (11).
Ienhancea = Sa- Ca- lnorm (1)

D. Physics Guided Colour Restoration (PGCR)

The PGCR allows a model of physics in evaluating factors
like light absorption and scattering. This helps in restoring the
natural colour in the image by understanding the concept of
physics in the underwater conditions. The restoration of true
colours of the underwater image is given in Eq. (12).

— d.A
Irestored - Ienhanced xXe

(12)
where, the term d is said to be the depth attenuation factor and
term A is the wavelength-dependent coefficient of absorption.

The colours of the image restoration underwater will be
performed depending on the physics.

E. MRR

The details of the image are refined using residual learning.
The MRR uses a three-level residual learning, which provides
a higher scope of detailed enhancement. At every level, a skip
connection in the residual network refines the details of the
image. The final output of the enhanced image is given by Eq.
(13).

Itinar = Irestorea + R1 + Ry + R3 (13)

Here, the terms R4, R, R; are the residual enhancement at

different scales.

3.3 Loss function

The loss function is evaluated to minimize the errors in the
enhancements. The loss function is a measure of the output
image obtained from the model with respect to the ground
truth image results. The loss function in this model is evaluated
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using L1 loss, SSIM, and perceptual loss and is given in Eq.
(14).

Loss = Ay X L1 + A, X SSIM + A5 X Perceptual loss (14)

L1 is given as L1 = Mean [abs(true output-predicted
output)], and SSIM is given as SSIM = 1 - SSIM (true output,
predicted output).

Here the terms 44, 4,, and 45 are the constant values. In our
design the term 4, =0.6, 1, =0.3 and A; =0.1 are
considered to evaluate the loss function.

At different spatial dimensions, degradations occur
underwater in different ways. On one hand, ambient lighting
and color casts are large-scale processes, whereas small
suspended particles induce local dispersion. Both global
illumination patterns and fine texture may go unnoticed by a
CNN operating on a single scale. By merging convolutional
multi-scale features with a transformer/self-attention branch
that records long-range lighting patterns, HMFE can extract
both local (fine) and global (coarse) information. This makes
the correction of colors and lighting more consistent
worldwide while also improving local detail recovery (edges,
textures).

Because degradations under the water might manifest on
both a local and global scale, the first part, HMFE, is crucial.
Local scattering is caused by suspended particles, while global
color shifts and illumination loss are caused by light
attenuation. By utilizing transformer-based self-attention [23],
HMEFE can simulate global lighting patterns and extract local
texture features using convolutional layers. This synergy
strikes a good balance between regional sharpness and general
aesthetic cohesion by restoring fine details to the improved
image without sacrificing global color uniformity [24].

In order to fix the issue of underwater photographs having
inconsistent lighting, the ADBN module is used. When using
a traditional batch normalization method, just one
normalization is applied to the entire image. This can cause
some parts to be too enhanced while others are under-
normalized [25]. With the use of a learnt mask, ADBN
introduces independent normalization statistics for light and
dark areas, allowing for adaptive normalization to take place.
This guarantees steady training and better contrast
preservation by preventing over-exposure of already bright
areas and allowing effective correction of darker portions.

To fix the areas that need it the most, the AGE module
applies enhancements selectively. Global amplification can
make previously clear parts of an underwater picture noisier,
and not all parts of the image require equal improvement. AGE
prevents the network from excessively amplifying noise while
still prioritizing crucial structures and color adjustments. A
composite loss function is used to train DLPN in an end-to-
end fashion. Losses at the pixel level (L) are a part of the
overall loss. Rather than relying on individual supervision, the
attention modules improve their weights with the rest of the
network through backpropagation. This guarantees that both
the spatial and channel attention adjust dynamically to the
data.

The PGCR module is a crucial component of the DLPN
framework because it corrects colour distortions by explicitly
modeling underwater light absorption and scattering. In this
model, the observed pixel intensity is expressed as IMx) =
JIAMX)tM(x) + BAM(1 — tA(x)) is the captured intensity in channel
Ae{R,G,B} is the true scene radiance, B; is the global
background light, and ty(x) = exp(—BAd(x)) is the transmission



that depends on the scene depth d(x) and the wavelength-
dependent attenuation coefficient ;. By inverting this model,
the true colour values Ji(x) can be recovered. A central
challenge in PGCR is estimating the depth d(x) or transmission
t(x), since ground-truth depth maps are rarely available for
real underwater datasets. To address this, several strategies are
employed. One approach is to train a small CNN sub-network
to estimate relative depth maps directly, enabling the network
to learn depth cues in a weakly supervised way. Alternatively,
the model can bypass explicit depth estimation by directly
predicting transmission maps for each channel through a
lightweight prediction head, ensuring differentiability and
physical interpretability. Depth can also be approximated
using priors such as the red-channel or dark-channel
assumptions, which exploit the faster attenuation of red light
as a depth cue. In some cases, external monocular depth
estimators trained on large-scale natural datasets can provide
approximate depth maps that serve as additional guidance.
Hybrid methods that combine learned predictions with
physics-inspired priors or smoothness regularization often
achieve the most robust performance. By integrating these
strategies, PGCR ensures physically consistent colour
correction, avoids unrealistic over-saturation, and generalizes
effectively across diverse underwater environments.

4. RESULTS AND DISCUSSIONS

This section provides the platform utilized for UWIE and
forecasts the parameters evaluated for assessing the designed
model. The comparison of evaluated parameters is tabularized
and compared with existing techniques.

4.1 System environment

The underwater image dataset is processed utilizing an Intel
Core 110 processor, with an NVIDIA GeForce 4090 graphics
card, 32GB RAM, and 1TB of space. A MATLAB deep
learning framework is designed for processing the images in
the dataset. The neural network tools and imaging tools
available in MATLAB made the work easier to understand and
process the Low Light Underwater Images (LLUWIs)
effectively with the designed model.

4.2 Parameters evaluated

Evaluation of parameters is very important to identify the
effectiveness of the suggested model. The improvement in the
value of parameters helps the author to judge the efficiency of
the presented work. Some of the parameters evaluated are
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index (SSIM), Entropy, Absolute Brightness (AB), Visual
Information Fidelity (VIF), Underwater Image Quality
Measure (UIQM), and Universal Image Quality Index (UIQI).
The detailed version of the parameters is discussed below.

A. PSNR

The metric PSNR measures the quality of an image by
comparing it with the ground-truth image. The PSNR
evaluates the amount of distortion introduced and is improved
in the image. It is calculated using the mean square error and
is given in Eq. (15):

MAX?

PSNR = 10 log,, (W) (15)
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where, the term max is the high pixel value, which is 255 for

an image with 8-bit.
> UG - K@HP

i=1j=1

1
MSE = v (16)

mXxn

The first term I(i, j) is the value of pixels in the original
image and the second term K (i, j) is the value of pixels in the
distorted image. The dimensions of the image are termed as
m,n.

B. SSIM

The similarity level of achieved output w.r.t to the ground-
truth image need to be evaluated to check the luminance level
and contrast level of image. If the SSIM value is high then the
quality of the output image is said to be effective. The SSIM
is evaluated using Eq. (17):

(Z.Ux.uy + Cl)(Zny + CZ)
(U2 + u3 + C)(0f +0f + ()

SSIM(x,y) = (17)

The mean value of the image is termed as u, and . The
variance value of the image is termed as g, and oy, . The
covariance is given as 0y,,.

C. Entropy

The measure of uncertainty of an image is said to be
entropy. The information present in the image is validated
using the entropy metric in analysis of images. The evaluation
of entropy is given in Eq. (18):

-1

E, = — ; L, (D)logsl, (@) (18)

Here, I; is the number of intensity levels, and its probability
is termed as I,,. If the entropy of a processed image is high,
then the image is said to be a detailed and quality image.

D. AB

The overall brightness of the enhanced image is measured.
It can be evaluated as the average intensity of pixels among
the colour channels.

E. VIF

The information between the original image and the
processed image is measured using this metric. The quality of
the image will be assessed using Eq. (19):

VIF = Y. MI b/w original image and distorted image

Y. MI b/w original and noise (19)

The value of VIF states the information present in the image
that is processed. When its value is equal to one, then the
image is said to be perfectly reconstructed.

F. UIQM

This parameter is different from measure metrics. UIQM
helps in quantifying the visual perception of humans for the
image, which is processed and enhanced. The UIQM values
are evaluated using the colour measure, sharpness measure,
and contrast measure, and are given in Eq. (20):

UIQM = wy X UICM + wy X UISM + w3 X UIConM ~ (20)
where, wy, w,, ws are the weight factors to be adjusted based
on the significance of the requirement. Each metric in equation



6 is computed separately, and the final UIQM is evaluated.
The quality of the image is said to be effective when the value
of UIQM is high.

G. UIQI

The degree to which a distorted image resembles its original
reference is measured by this evaluation metric. It assesses an
image's contrast loss, brightness variations, and structural
deformation. The value of UIQI is evaluated using Eq. (21):

4. Oy Uy Uy
(02 +02). (43 + 1)

UIQI = 1)

Here, factor x refers to the original image and factor y
refers to the distorted image. All the above metrics are

evaluated and discussed in the following.
4.3 Experimental findings

This study takes into consideration a UIEB that contains
950 real-world underwater photographs, 890 of which have the
associated reference images. The remaining 60 underwater
photos for which adequate reference photographs are not
available are treated as problematic data. The dataset offers a
realistic basis for creating and evaluating improvement
algorithms since it contains photos taken in a variety of
underwater settings. The examination of underwater image
enhancement techniques using this dataset and assessing the
relevant metrics.

Figure 3. LLUWIs enhancement results (a) Input image (b) Output using Ard-GAN network (c) Proposed output using DLPN
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Table 1. Results of parameters evaluated

Input / Parameter PSNR MAE SSIM VIF AB Entropy UIQM UIQI
Il 35.15 0.61 0.895 0.761 161.4 6.94 2.336 0.610
12 36.64 0.62 0.881 0.771 157.3 6.9 2.330 0.612
13 37.18 0.614 0.884 0.775 158.8 6.97 2.389 0.612
14 36.92 0.653 0.890 0.791 158.34 6.96 2.37 0.616
Table 2. Comparison of parameters evaluated improved to 89.5% using DLPN. The higher the value of
PSNR and SSIM, the better the visual quality of the image.
Parameter / Technique Ard-GAN Net DLPN There is an improvement of 63.5% in SSIM, which showcases
PSNR 35.52 36.92 the efficiency of the proposed model. Table 4 showcases the
MAE 0.647 0.624 comparative analysis of existing models with proposed
SSIM 0.86 0.90 models.
VIF 0.791 0.745 From Table 4, the designed DLPN has a higher PSNR of
AB 1578 158.34 36.92 and SSIM of 90% when compared to other existing
Entropy 6.84 6.94 )
UIQM 231 235 models. o o
UIQI 0.60 0.616 DLPN still has trouble processing images taken in highly
murky seas or at extremely low depths, when the red channel
Table 3. Parametric comparison with input data is practically nonexistent. The need for powerful
computers also makes it difficult to deploy in real time on
Input (LLUWI) Output (DLPN) embedded underwater devices. A fairer image will emerge

Image / Parameter “cory™5oNR UIQM SSIM PSNR UIQM

Il 0.262 5.28 0.024 0.895 35.15 2.336
12 0.139 6.21 0.032 0.88 36.64 2.330
I3 0.218 6.56 0.021 0.884 37.18 2.389

14 0.184 5.66 0.042 0.890 36.92 2.37

Table 4. Comparison of metrics with existing methods

SSIM
PSNR (%)
Relative Global Histogram Stretching [12] 19.72 83.9
Underwater Light Attenuation Prior [14] 16.33 75.8
Minimal Loss and Locally Contrast

Method and References

Enhancement [16] 19.82 83.5

Lite Enhance Net [18] 23.82 88
Physical Model GANs [19] 18.22 72.7

Physically Guided Network with

Frequency—Spatial Attention [20] 22.50 81.6
Fast GAN [23] 23.89 81.8

Water Net [25] 27.74 89

Proposed: DLPN 36.92 90

The underwater images have lower light illumination, and
there is a need to enhance the images for better understanding
and visual quality. In Figure 3, the input LLUWTI is considered
and processing. The obtained enhanced output result using two
different models is shown in Figure 3. The parameters
evaluated in the process of enhancing the different images in
the dataset are shown in Table 1.

The proposed dark lighter pro net achieves better results
when compared to the existing Ard-GAN Net model, and is
shown in Table 2. The results shown in Table 2 are the average
of the results achieved after performing enhancement on
different types of images. The proposed DLPN model achieves
a PSNR of 36.2 and an SSIM of 8§9.9%.

The value of SSIM and PSNR obtained using the proposed
Darker pro net model is compared with the input LLUWI. The
images in the dataset are of low intensity, and the PSNR and
SSIM are evaluated to compare with the enhancement model.
By this comparison, the level of enhancement performed using
the proposed model can be identified. The values are shown in
Table 3.

The input image in the dataset has a PSNR of 5.28 and is
improved to 35.15 using DLPN, and the SSIM of 26%
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from the results section after these issues are addressed.

5. CONCLUSION

A CNN-based low-light improvement model called DLPN
was created especially for processing images underwater. To
increase visibility and colour accuracy, it makes use of
residual learning, contrast enhancement, and lighting
adjustment. In low light, images maintain their structural
integrity while increasing details attributable to the model's
hybrid function of loss and learning through perception. When
it came to improving underwater images taken in low light, the
proposed DLPN was far better. With a PSNR of 36.92 dB,
DLPN outperformed the next-best approach, PCAFANet,
which had a PSNR of 27.74 dB, by more than 9 dB. Similarly,
DLPN achieved a 90% SSIM, surpassing previous models like
WaterNet (88% accuracy) and FGAN (83.5%), and improved
from input photos with SSIM as low as 0.18-0.26. From
almost nil in raw inputs to 2.33-2.39 after refinement, UIQM
showed significant improvement in visual quality metrics.
These findings demonstrate that DLPN can effectively
improve visibility in underwater settings with degradation,
while also retaining fine picture structures and increasing color
fidelity.  Limitations  persist notwithstanding these
advancements. The hybrid feature extraction and multi-stage
residual refinement design of DLPN makes real-time
processing on low-power devices hard because of the
significant computational resources it requires. In addition,
processing speed and scalability to high-resolution,
continuous video streams are limited, even though structural
fidelity is kept. Furthermore, AUVs and ROVs might be
enhanced in real-time using DLPN by compressing models or
redesigning networks to make them lightweight. This would
allow for DLPN to be scaled for deployment on embedded
devices. This shows the efficiency of the proposed model in
improving the visual quality of the image. The limitation of
the proposed model is that it requires high computational
power due to the lower speed of processing. The model
improves the speed on high-end devices. There is a further
need to improve the value of PSNR and SSIM, for which meta-
heuristics algorithms need to be incorporated with a deep
learning model. The involvement of optimization techniques



can help deep tuning of pixels in the image to enhance the
quality. The model can be extended to other image processing
applications where low-light, weak contrast images are
achieved. Future research should automate hyperparameter
tuning using metaheuristic optimization to increase PSNR and
SSIM values, use temporal coherence across frames to extend
DLPN to real-time video enhancement, create lightweight
variants by pruning, quantization, or knowledge distillation to
make the model suitable for embedded hardware, and

investigate multi-modal

fusion to overcome visibility

limitations in particularly turbid waters. Following these steps
would make DLPN a more flexible tool for future underwater
vision systems, as its uses would be broadened beyond only
improving static images.
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