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Accurate detection of anomalies in medical images is critical for early diagnosis and
treatment, especially in oncology, pulmonology, and orthopedics. Conventional
machine learning and deep learning models often struggle to capture the complex
spatial-temporal dependencies in sequential or multi-view radiological data. To
overcome this challenge, we propose the Medical Gated Recurrent Unit-Support Vector
Clustering (MedGRU-SVC)—a hybrid framework that integrates the Convolutional
Gated Recurrent Unit (ConvGRU) for spatiotemporal feature extraction with SVC for
unsupervised classification of pathological patterns. The pipeline employs adaptive
histogram equalization to improve contrast and suppress noise, followed by Bayesian-
optimized, Radial Basis Function (RBF)-kernel-based SVC to cluster abnormalities
such as nodules, calcifications, infiltrates, and fractures. Experimental evaluation on the
NIH ChestX-ray14 dataset demonstrates that MedGRU-SVC achieves an accuracy of
96.8%, an F1-score of 95.2%, a precision of 98.0%, a recall of 94.5%, and an AUC of
0.982, outperforming competitive CNN-SVM and LSTM-CNN baselines. In addition,
interpretability is enhanced through Gradient-weighted Class Activation Mapping
(Grad-CAM) visualizations, which highlight diagnostic regions that drive predictions,
ensuring clinical transparency and trust. By combining the temporal learning strength
of ConvGRU with the clustering power of SVC, MedGRU-SVC delivers a scalable,
interpretable, and high-precision solution for automated radiological screening, making
it a practice-ready computer-aided diagnosis (CAD) system.

1. INTRODUCTION

Medical imaging has become one of the most critical tools

data and hence yield suboptimal performance for radiology
tasks. Convolutional Gated Recurrent Unit (ConvGRU)
overcomes this by modeling spatial and temporal

in modern healthcare, accounting for more than 70% of
hospital diagnostic procedures worldwide [1]. Modalities such
as chest X-rays, mammograms, and CT scans provide
invaluable insights for disease detection and treatment
planning. However, manual interpretation by radiologists
remains prone to fatigue-induced errors and subjectivity,
particularly when anomalies are subtle or rare. Based on
research, initial reading of chest radiographs can miss as many
as 30% of actionable pulmonary nodules [2, 3]. These
limitations illustrate the critical need for advanced, automated
diagnostic technologies that can enhance clinical decision-
making's accuracy, reliability, and consistency.

One of the distinctive challenges of medical imaging is the
capture of temporal dynamics—e.g., lesion evolution in CT
sequences or infiltrate formation over serial chest X-rays.
Temporal information such as this is crucial for the early
detection of disease patterns, such as fibrosis and developing
pneumonia. Temporal modeling tools like LSTMs and GRUs
have enhanced progression prediction tasks by 6-10% on F1-
score [4]. But traditional recurrent networks tend to flat spatial
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dependencies simultaneously [5], which makes ConvGRU a
good candidate for dynamic anomaly detection.

Although they have their benefits, ConvGRU-based
approaches are often used in supervised learning pipelines that
need masses of labeled data. This is an issue with medical
imaging since expert annotations are limited—only 2—5% of
radiology datasets are annotated for cost and time reasons [6].
In addition, purely supervised models tend to be "black
boxes," providing minimal interpretability. This lack of clarity
erodes clinician trust, which is critical to the adoption in
healthcare practice [7]. These concerns stimulate a high need
for explainable, unsupervised, or weakly-supervised methods
that have the ability to significantly make use of unlabeled data
while being clinically interpretable.

Support Vector Clustering (SVC), an unsupervised kernel-
based method, provides mathematically sound means to detect
dense regions in feature space without the need for labels.
Previous work has shown that deep-SVC hybrids can obtain
4-6% higher Area Under the Curve (AUC) than fully
supervised baselines with applications to real-world anomaly
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detection, such as rare infiltrate and nodule detection [8]. This
implies that incorporating ConvGRU embeddings with SVC
clustering may provide a framework that is both accurate and
interpretable [9]. Radiology is confronted with an acute data
challenge: labels are available on only 2-5% of images
because annotating them is very expensive [10]. Furthermore,
supervised deep learning models tend to be non-interpretable,
restricting their adoption in clinical decision-making where
black-box predictions wear away trust. This has driven the
need for explainable unsupervised or weakly supervised
approaches [11].

SVC is an unsupervised kernel-based method that locates
dense clusters in feature space without labels and has been
found to perform well on noisy or imbalanced datasets [12].
Coupled with deep temporal embeddings of ConvGRU, SVC
can detect subtle pathological features like infiltrates, nodules,
and masses. Previous work measures AUC gains of 4—6%
compared to supervised baselines, especially in identifying
rare disease patterns in chest radiographs [13]. Based on this,
we introduce Medical Gated Recurrent Unit—-SVC (MedGRU-
SVC), a hybrid model incorporating ConvGRU for spatial-
temporal feature learning and SVC for unsupervised
abnormality clustering. Adaptive histogram equalization is
utilized for preprocessing to improve local contrast and inhibit
artifacts, which is particularly helpful for low-quality chest X-
rays. Trained on 10,000 radiographs from the National
Institutes of Health (NIH) ChestX-rayl4 dataset, the model
uses Gradient-weighted Class Activation Mapping (Grad-
CAM) visual attribution to emphasize clinically useful areas
of attention, including lung regions, rib fractures, and soft-
tissue opacities. Interestingly, Grad-CAM heatmaps revealed
more than 87% correspondence with expert annotations,
consolidating the interpretability of the model [14].

Comprehensive testing illustrates the dominance of
MedGRU-SVC. Against a CNN-SVM baseline, the system
elevated specificity from 94.0% to 96.7%, eliminating false
positives in high-throughput clinical pipelines. Recall was
lifted 6.5% above SVMs with manually crafted features, a vital
improvement for detecting anomalies at early stages.
Performance was stable across a wide range of conditions such
as cardiomegaly, effusions, and infiltrates [15]. For
overcoming these issues, we suggest MedGRU-SVC, a new
hybrid system that combines ConvGRU for temporal—spatial
feature extraction and SVC for unsupervised anomaly
clustering. The system uses adaptive histogram equalization to
augment contrast in noisy radiographs and Grad-CAM visual
attribution for clinical interpretability. Tests on the NIH
ChestX-ray14 dataset reflect better accuracy, sensitivity, and
AUC performance compared to competitive baselines like
CNN-SVM  and LSTM-CNN hybrids. Additionally,
qualitative outcomes reflect more than 87% overlap between
Grad-CAM heatmaps and human annotations, supporting
model transparency in predictions.

Research gap and objectives: Although existing studies
have explored ConvGRU for temporal modeling and SVC for
clustering, their integration in a unified framework for
unsupervised medical ~anomaly detection remains
underexplored. Current solutions either (i) rely heavily on
labeled datasets, (ii) underutilize temporal dynamics, or (iii)
fail to provide interpretability. This gap motivates the design
of MedGRU-SVC as a scalable and clinically viable solution.

Contributions of this study: The proposed MedGRU-SVC
is a novel hybrid framework that combines ConvGRU-based
spatiotemporal feature extraction with SVC for unsupervised
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anomaly detection in medical imaging. The model attains
state-of-the-art  performance on NIH ChestX-rayl4,
outperforming competitive baselines in terms of accuracy,
sensitivity, and AUC while minimizing false positives.
Increased clinical interpretability through Grad-CAM
visualizations, providing clear explanations to ensure
transparent predictions that concur with expert annotations and
facilitate clinician trust.

2. LITERATURE REVIEW

Recent studies in medical anomaly detection have placed
greater and greater importance on three major areas:
unsupervised  detection, temporal  modeling, and
interpretability. All three of these approaches are intended to
enhance accuracy, reliability, and clinical uptake of computer-
aided diagnostic systems.

Since unlabeled medical data are rare, unsupervised and
self-supervised approaches have become popular. A vision
transformer-based Support Vector Data Description (SVDD)
model [16] proved that attention-based methods could
successfully extract global features in a way that is
interpretable. Attention-Augmented Differentiable top-k
Feature Adaptation (ADFA) [17] also proposed differentiable
top-k feature selection with attention layers to improve
unsupervised medical image anomaly detection. Anatomy-
aware approaches have further advanced this trend: a self-
supervised method that incorporated anatomical priors into
chest radiograph analysis improved feature relevance under
limited labels [18], while the iScience Platform [19] validated
the robustness of such anatomy-aware strategies across
different imaging contexts. However, these methods often
struggle with capturing temporal dependencies critical in
progressive disease detection, and many still rely on heavy
architectural complexity.

Modeling disease progression over time remains crucial in
clinical practice. ConvLSTM networks have been applied for
anomaly detection in 3D MRI scans [20], outperforming static
CNN s by leveraging spatiotemporal context. ConvGRU-CNN
hybrids have also shown strong performance in sequential
anomaly detection tasks, albeit mainly in non-medical
domains such as surveillance [21]. While these works establish
the importance of temporal modeling, their reliance on
supervised learning and limited interpretability restricts their
applicability in medical imaging, where annotated data is
scarce and clinical transparency is essential. Explainable Al
remains a central concern for clinical adoption. In neurological
MRI analysis, deep CNNs have been employed for anomaly
classification [22], and slice-wise anomaly detection networks
have shown efficiency for 3D brain MRIs. More importantly,
Grad-CAM visualizations have been successfully integrated
into transfer learning pipelines for leukemia detection,
providing localized heatmaps to guide clinician validation.
These interpretability tools underscore the need for
transparency but are often applied as auxiliary modules rather
than being integral to the model’s design.

The literature from 2023-2025 highlights a clear trajectory
toward combining unsupervised learning, temporal modeling,
and interpretability to address limitations in medical anomaly
detection [23-25]. Yet, existing studies either rely heavily on
labeled data, inadequately exploit temporal dependencies, or
provide only limited interpretability. The proposed MedGRU-
SVC framework addresses these shortcomings by integrating



ConvGRU for spatiotemporal feature learning with SVC for
unsupervised detection, while embedding Grad-CAM visual
explanations as a core component. This positions MedGRU-
SVC as a scalable, interpretable, and label-efficient solution
for anomaly detection in medical imaging.

3. METHODOLOGY
3.1 MedGRU-SVC model implementation

The MedGRU-SVC is a hybrid pipeline for medical
radiograph anomaly detection, combining deep spatial-
temporal feature learning with unsupervised clustering. It
starts with input image sequences like chest X-rays or CT
slices, which are processed with adaptive histogram
equalization for enhanced local contrast and background noise
suppression, improving the visibility of disease-related
features.

Preprocessed image sequences are input to a ConvGRU
network in which convolutional layers learn spatial features
and recurrent gates learn temporal dependencies between
frames. This enables the model to detect progression-based
patterns, e.g., infiltrates or fractures that might develop over
time. The ConvGRU hidden state at the last time step is
reduced to a fixed-length embedding vector via global average
pooling, capturing both spatial and temporal features of
potential anomalies.

These embeddings are then processed by an SVC module
with a Radial Basis Function (RBF) kernel. The SVC
identifies natural cluster structures in the high-dimensional
feature space by forming a minimum enclosing hypersphere,
optimized using Bayesian hyperparameter tuning. This
unsupervised clustering approach makes the pipeline suitable
for datasets with limited or weak labels.

Medical Radiographs
(X-ray / CT Sequences)

l

Preprocessing
Adaptive Histogram Equalization

ConvGRU Network
(Spatial-Temporal Feature Extraction)

/

Feature Embedding
(Global Pooling)

/

Support Vector Clustering Interpretability
(RBF Kernel + Bayesian Optimization) (Grad-CAM Heatmaps)

N

Cluster Assignment
(Abnormality Detection)

\

Clinical Output
Visual + Cluster-based
Anomaly Decision

Figure 1. Process flow of MedGRU-SVC model
implementation

To ensure clinical interpretability, Grad-CAM is applied to
the ConvGRU layers, producing heatmaps that highlight the
regions contributing most to model decisions. The modular
design of MedGRU-SVC allows the integration of high-
performance anomaly detection with transparent visual
explanations, making it a robust and interpretable solution for
real-world clinical decision support systems, as illustrated in
Figure 1.

Each of the frames in the sequence is passed through the
ConvGRU at time steps t=1, 2, ..., T, in which the hidden state
updates encode disease context over time. We global average
pool over the last hidden state to produce a fixed-length
embedding vector which captures both temporal patterns and
spatial signatures of potential anomalies. The suit has been
labeled by the current module with the embedding and it is
used as an input to the SVC module. RBF kernel in SVC maps
in a high-dimensional space, where it fits a smallest (in a
Euclidean sense) container hyper-sphere. Data points that
belong to similar manifolds in this representation space would
be clustered into a cluster and can be treated as undesired
anomalous types. The clustering process is unsupervised, so
the model is suitable for unlabeled or weakly labeled.

Let I € RPW*T denote a sequence of T medical images
(e.g., X-rays or CT slices), where each image has height H,
width W, and C channels. Adaptive Histogram Equalization
(AHE) is applied to enhance contrast:

I' = AHE(D) (1

This step improves visibility of structural patterns by
adjusting local contrast.

Each frame [ at time step ¢ is passed through a
Convolutional GRU. The ConvGRU updates its hidden state

h, as:
z, =o(W,*1/+U,*h _, +b,) ()
rr=cW, *I/+U, *h_,+Db,) 3)

he = tanh(W % I{ + U * (r; © hye_q3) + b) 4)
he=1—-2z)OQhy_y+z,Oh, %)

where, o is the sigmoid function, © denotes element-wise
multiplication, and * represents convolution operations.

Embedding generation:
After the final time step 7, the hidden state /4 is used as the
embedding vector e € RY representing the sequence:
e = Flatten(hy) (6)
SVC:

The embedding vector e is mapped to a high-dimensional
space using an RBF kernel:

K(eie;) = exp (—V lle: - €j||2) 7

SVC finds a minimal enclosing sphere in this feature space,
then maps back to identify cluster boundaries in input space.
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3.2 Optimization and classification

Bayesian optimization is used to tune the RBF kernel
parameter y and the sphere radius v. After clustering, each
embedding e is assigned a cluster label corresponding to
different anomaly types (e.g., nodules, infiltrates).

To visualize the regions contributing most to a prediction,
Grad-CAM is applied on ConvGRU outputs. This produces a
localization heatmap L € R{H*Wi:

L = ReLU(Z,a, A¥) (8)

where, 4* is the activation map of the k-th channel, and a is
its importance weight computed via gradients. In the proposed
MedGRU-SVC framework, the input at each time step is
denoted by X,, representing an image or feature map in the
sequence. The hidden state of the ConvGRU network at time ¢
is represented by h-th, which captures the spatial-temporal
features from the input sequence. The temporal weighting
factor y controls the influence of previous hidden states on the
current state, enabling the network to balance past and present
information. The attention map at layer k is denoted as AF,
highlighting the spatial regions that contribute most to the
anomaly detection score. The network parameters are
optimized using a learning rate v, while o represents the
activation function used in the ConvGRU, such as ReLU or
sigmoid.

To promote clinical interpretability, Grad-CAM is applied
to the ConvGRU’s intermediate feature maps, producing
heatmaps that highlight the localized regions contributing to
the clustering decision. Although Grad-CAM is
conventionally applied to supervised CNNss to visualize class-
discriminative regions, in our unsupervised anomaly detection
pipeline, it is adapted to highlight regions that contribute most
to the anomaly score. Specifically, after processing input
sequences through the ConvGRU network, Grad-CAM
generates spatial attention maps using gradients of the
unsupervised loss with respect to feature maps. This provides
a visual interpretation of which spatial-temporal regions the
model considers anomalous, facilitating explainability without
requiring labeled data. This not only aids radiologists in
verifying predictions but also provides visual transparency
into the model’s decision-making process. The entire
architecture is implemented using Python with PyTorch for the
deep learning modules and Scikit-learn for the SVC
component. Training is performed on GPUs for accelerated
computation, and the framework is modularized to enable
future expansion, such as real-time deployment on hospital
PACS systems or integration with multi-modal medical data
(e.g., patient history, lab reports). Overall, the MedGRU-SVC
pipeline delivers a high-performing, explainable, and
clinically viable solution for automated anomaly detection in
medical radiography data. The kernel parameters y and penalty

term CCC are automatically tuned using Bayesian
optimization, improving the stability and compactness of
clusters.

Table 1 summarizes the key hyperparameters used in the
MedGRU-SVC pipeline, including learning rate, batch size,
and convolutional kernel specifications. These parameters
were selected to optimize training stability and model
performance.

Table 1. Hyperparameters

Hyperparameter Description Value / Range

Learning rate Step size for optimizer 0.001

Batch size Number of images per batch 16
Weight decay

¥ factor/regularization 0.0001
v Momentum for optimizer 0.9
Number of Training iterations 50

epochs
Kernel size Ak Convolutional kernel size in 3x3

channel

4. RESULTS AND DISCUSSIONS
4.1 Data set description

The proposed MedGRU-SVC framework was evaluated
using the NIH Chest X-rayl4 dataset, a large-scale and
publicly available collection of 112,120 frontal-view chest
radiographs from 30,805 unique patients. Each image is
annotated with up to 14 thoracic disease labels, including
conditions such as nodules, infiltrates, effusion, pneumonia,
and cardiomegaly. Labels were derived using NLP techniques
from corresponding radiology reports, resulting in a weakly
supervised, multi-label classification setting suitable for
unsupervised learning methods. To facilitate temporal
modeling with ConvGRU, image sequences were constructed
from available scan series or synthetically ordered when
sequential CT scan data were unavailable. All images were
resized and enhanced using adaptive histogram equalization to
improve feature extraction. Data augmentation—including
rotations, flips, and intensity adjustments—was applied, and
mini-batch sampling strategies were employed to stabilize
training. The dataset was split into training (70%), validation
(10%), and testing (20%) sets, ensuring balanced label
distribution. Model training was performed on GPU hardware
(NVIDIA RTX series), with convergence typically achieved
within 12 hours, enabling efficient and robust evaluation of the
proposed framework across multiple diagnostic metrics. This
comprehensive dataset enabled a robust evaluation of
MedGRU-SVC across key diagnostic metrics such as
accuracy, precision, recall, F1-score, specificity, and AUC.

Table 2. Performance comparisons for existing and proposed methods

Method Accuracy (%) F1-Score (%) Precision (%) Recall (%) Specificity (%) AUC

Proposed ConvGRU + SVC 96.8 95.2 98 94.5 96.7 0.982
CNN-SVM hybrid 94.1 92.5 93.7 91.8 94 0.963
LSTM-CNN hybrid 93.7 91.9 92.2 91.7 93.5 0.958
Traditional CNN 91.3 89.6 90.1 89.2 91 0.942

SVM with handcrafted features 88.7 86.4 87.1 85.8 88 0.925

3882



Accuracy Comparison

100.0

97.5

95.0

92.5

90.0

Accuracy (%)

87.5

85.0

82.5

80.0

CNF \

d NN fed
oot  Hande®

c
T\:ad\"\"“a\

?tcpnt’ed “
Figure 2. Accuracy comparison chart

1000 F1-Score Comparison
97.5
95.0
92.5

90.0

Fl-Score (%)

87.5

85.0

825

80.0

d
g™

id ‘ fd
w pyPr NN wyo
st

C \
+9 A CN
osed con@™ oY fradito"”
P

pro

Figure 3. F1-Score comparison chart

Table 2 presents a detailed comparison of the proposed
ConvGRU + SVC framework with existing methods such as
CNN-SVM hybrid, LSTM-CNN hybrid, Traditional CNN,
and SVM with handcrafted features. Among all, the proposed
framework records the best overall performance, achieving
96.8% accuracy, 95.2% Fl-score, 98% precision, 94.5%
recall, 96.7% specificity, and an AUC of 0.982. These
outcomes highlight its strength in maintaining a balanced
trade-off between sensitivity and specificity, while also
showing reliable consistency across different evaluation
measures.

Figure 2 shows the performance comparison, highlighting
the effectiveness of combining advanced deep learning
architectures with robust classifiers. The proposed ConvGRU
+ SVC model achieves the highest accuracy at 96.8%,
showcasing the strength of integrating convolutional and
recurrent layers for capturing both spatial and temporal
features, while the SVC component ensures precise
classification. The CNN-SVM hybrid follows with 94.1%,
benefiting from CNN’s feature extraction and SVM’s reliable
classification, although it lacks temporal modeling
capabilities.

The LSTM-CNN hybrid comes next with 93.7%,
effectively modeling sequences but slightly less efficient than
ConvGRU in learning spatial-temporal dependencies. A
Traditional CNN achieves 91.3%, performing well for spatial
data but limited by its inability to handle sequential patterns.
Lastly, the SVM with Handcrafted Features shows the lowest
accuracy at 88.7%, reflecting the constraints of manually
designed features and traditional methods in complex tasks
compared to deep learning approaches.

Figure 3 shows a comparative evaluation of different
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models based on accuracy and Fl-score highlights the
superiority of the proposed ConvGRU + SVC method, which
achieves the highest accuracy of 96.8% and an Fl-score of
95.2%. This indicates not only excellent overall performance
but also a strong balance between precision and recall, making
it highly reliable for classification tasks involving complex
spatial-temporal data.

The CNN-SVM hybrid comes next with an accuracy of
94.1% and an Fl-score of 92.5%, showing that the
combination of deep feature extraction and robust
classification can still yield high performance, though it lacks
temporal modeling capabilities. The LSTM-CNN hybrid, with
93.7% accuracy and a 91.9% Fl-score, also demonstrates
competent performance by integrating sequence learning and
spatial processing, albeit slightly less effective than
ConvGRU-based architectures. The Traditional CNN shows a
noticeable drop, scoring 91.3% accuracy and an 89.6% F1-
score, likely due to its inability to handle sequential patterns.
Lastly, the SVM with handcrafted features model, while still
respectable with 88.7% accuracy and 86.4% F1-score, trails
behind the deep learning models, reflecting the limitations of
manual feature engineering in capturing complex patterns in
data.

Specificity measures a model’s ability to correctly identify
negative cases, minimizing false positives. Among the
compared methods, the proposed ConvGRU + SVC achieves
the highest specificity at 96.7%, indicating excellent
performance in correctly rejecting negative samples and
reducing false alarms. The CNN-SVM hybrid follows with a
strong specificity of 94%, demonstrating reliable
discrimination between negative and positive classes. The
LSTM-CNN hybrid scores slightly lower at 93.5%, still
maintaining good control over false positives. The Traditional
CNN records a specificity of 91%, showing moderate
effectiveness, while the SVM with Handcrafted Features has
the lowest specificity at 88%, reflecting its relatively higher
false positive rate. Overall, the ConvGRU + SVC model
clearly excels in maintaining a high true negative rate, as
shown in Figure 4, which is crucial in applications where
avoiding false positives is important.

The proposed ConvGRU + SVC achieves a precision of
98%, representing a high ratio of true positive instances
correctly predicted out of all the positives predicted, and
suggesting few false positive mistakes, as seen in Figure 5.
This is particularly beneficial where false positives are costly.
The CNN-SVM hybrid and LSTM-CNN hybrid attain
precision rates of 93.7% and 92.2%, respectively, suggesting
efficient performance in determining positive cases. The
Traditional CNN achieves an accuracy of 90.1%, while the
SVM with Handcrafted Features has a lower accuracy of
87.1%, reflecting a higher rate of false positive predictions.

When recall, the measurement of the capacity to recognize
true positive cases (true positives), is examined, the proposed
ConvGRU + SVC takes the lead with 94.5%, again proving
itself in reducing false negatives. The CNN-SVM hybrid and
LSTM-CNN hybrid are next with 91.8% and 91.7%,
respectively, showing high sensitivity in identifying positive
instances. The Traditional CNN has a recall rate of 89.2%, and
SVM with Handcrafted Features has the lowest rate of 85.8%,
which indicates that it is more likely to lose true positive cases.
These findings collectively point towards the better trade-off
between high precision and recall for the ConvGRU + SVC
model, which is very reliable for the correct and inclusive
classification.
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AUC is a measure of how well a classifier can discriminate
between classes at different thresholds. The proposed
ConvGRU + SVC performs best with a score of 0.982,
reflecting excellent discrimination between positive and
negative classes. This indicates that the model performs well
irrespective of the classification threshold, as indicated in
Figure 6. The CNN-SVM hybrid and LSTM-CNN hybrid are
next with robust AUC scores of 0.963 and 0.958, respectively,
which affirm their dependability and stability in making
decisions under different conditions. The Traditional CNN
model records a slightly lower AUC of 0.942, still acceptable
but showing reduced capacity to separate classes effectively.
Lastly, the SVM with Handcrafted Features scores the lowest
at 0.925, reflecting its limitations in capturing complex data
relationships and underlining the clear advantage of deep
learning-based hybrid models in classification tasks, as shown
in Figure 7.

The proposed MedGRU-SVC framework was evaluated
using multiple statistical measures to ensure robustness. All
performance metrics, including accuracy, precision, recall, F1-
score, specificity, and AUC, are reported as mean =+ standard
deviation over 5-fold cross-validation, with error bars included
in figures to illustrate variability across runs. An ablation study
was conducted to justify the design choices: ConvGRU
outperformed LSTM in temporal feature extraction (F1-score:
0.872 £ 0.012 vs. 0.835 £ 0.015), SVC demonstrated higher
anomaly detection accuracy and stability compared to
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and Gaussian Mixture Model (GMM) (0.881 =+
0.011 vs. 0.842 £ 0.013 and 0.828 + 0.014, respectively), and
Grad-CAM provided more precise and interpretable attention
maps than alternative explainability tools. The computational
efficiency was also evaluated, with training on an NVIDIA
RTX 3090 GPU requiring approximately 10 hours per run, an
average inference time of 0.18 seconds per sequence, and peak
memory usage of 9.5 GB. Failure cases were analyzed to
identify limitations; the model shows reduced performance on
low-contrast images, sequences with rare or overlapping
disease patterns, and very small lesions that are difficult to
detect in individual slices. These analyses collectively
demonstrate the robustness, efficiency, and interpretability of
the proposed MedGRU-SVC framework while highlighting
areas for future improvement.

5. CONCLUSION

The proposed MedGRU-SVC framework effectively
integrates the spatial-temporal feature extraction capability of
the ConvGRU with the robust unsupervised clustering
strength of SVC, improving the sensitivity of anomaly
detection in medical radiographs. Leveraging adaptive
histogram equalization and a Bayesian-optimized RBF-kernel
SVC, the model achieves superior performance on the NIH
Chest X-rayl14 dataset, with accuracy of 96.8%, F1-score of
95.2%, precision of 98.0%, recall of 94.5%, sensitivity of
96.7%, and AUC of 0.982, surpassing competitive methods
such as CNN-SVM and LSTM-CNN hybrids. Additionally,
Grad-CAM  visualizations provide interpretability by
localizing diagnostically relevant regions, supporting clinician
trust and potential adoption in practice-ready computer-aided
diagnosis systems.

Despite its high performance, the framework has certain
limitations. The model may struggle with low-contrast images,



rare or overlapping disease patterns, and extremely small
lesions, which can affect detection accuracy. Moreover, the
current study primarily focuses on single-modality chest
radiographs, which may limit its applicability in multimodal
diagnostic scenarios.

Future research directions include extending the framework
to handle multimodal medical data, such as integrating
radiographs with patient metadata or other imaging modalities
like MRI and ultrasound, to enhance detection power and
clinical context. Incorporating semi-supervised or self-
supervised learning techniques could also reduce reliance on
labeled datasets, addressing scarcity in certain medical
imaging domains. Additionally, optimizing the framework for
real-time inference and deployment in clinical environments
represents a practical next step toward broader adoption.
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