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Accurate detection of anomalies in medical images is critical for early diagnosis and 

treatment, especially in oncology, pulmonology, and orthopedics. Conventional 

machine learning and deep learning models often struggle to capture the complex 

spatial–temporal dependencies in sequential or multi-view radiological data. To 

overcome this challenge, we propose the Medical Gated Recurrent Unit–Support Vector 

Clustering (MedGRU-SVC)—a hybrid framework that integrates the Convolutional 

Gated Recurrent Unit (ConvGRU) for spatiotemporal feature extraction with SVC for 

unsupervised classification of pathological patterns. The pipeline employs adaptive 

histogram equalization to improve contrast and suppress noise, followed by Bayesian-

optimized, Radial Basis Function (RBF)-kernel-based SVC to cluster abnormalities 

such as nodules, calcifications, infiltrates, and fractures. Experimental evaluation on the 

NIH ChestX-ray14 dataset demonstrates that MedGRU-SVC achieves an accuracy of 

96.8%, an F1-score of 95.2%, a precision of 98.0%, a recall of 94.5%, and an AUC of 

0.982, outperforming competitive CNN-SVM and LSTM-CNN baselines. In addition, 

interpretability is enhanced through Gradient-weighted Class Activation Mapping 

(Grad-CAM) visualizations, which highlight diagnostic regions that drive predictions, 

ensuring clinical transparency and trust. By combining the temporal learning strength 

of ConvGRU with the clustering power of SVC, MedGRU-SVC delivers a scalable, 

interpretable, and high-precision solution for automated radiological screening, making 

it a practice-ready computer-aided diagnosis (CAD) system. 
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1. INTRODUCTION

Medical imaging has become one of the most critical tools 

in modern healthcare, accounting for more than 70% of 

hospital diagnostic procedures worldwide [1]. Modalities such 

as chest X-rays, mammograms, and CT scans provide 

invaluable insights for disease detection and treatment 

planning. However, manual interpretation by radiologists 

remains prone to fatigue-induced errors and subjectivity, 

particularly when anomalies are subtle or rare. Based on 

research, initial reading of chest radiographs can miss as many 

as 30% of actionable pulmonary nodules [2, 3]. These 

limitations illustrate the critical need for advanced, automated 

diagnostic technologies that can enhance clinical decision-

making's accuracy, reliability, and consistency. 

One of the distinctive challenges of medical imaging is the 

capture of temporal dynamics—e.g., lesion evolution in CT 

sequences or infiltrate formation over serial chest X-rays. 

Temporal information such as this is crucial for the early 

detection of disease patterns, such as fibrosis and developing 

pneumonia. Temporal modeling tools like LSTMs and GRUs 

have enhanced progression prediction tasks by 6–10% on F1-

score [4]. But traditional recurrent networks tend to flat spatial 

data and hence yield suboptimal performance for radiology 

tasks. Convolutional Gated Recurrent Unit (ConvGRU) 

overcomes this by modeling spatial and temporal 

dependencies simultaneously [5], which makes ConvGRU a 

good candidate for dynamic anomaly detection. 

Although they have their benefits, ConvGRU-based 

approaches are often used in supervised learning pipelines that 

need masses of labeled data. This is an issue with medical 

imaging since expert annotations are limited—only 2–5% of 

radiology datasets are annotated for cost and time reasons [6]. 

In addition, purely supervised models tend to be "black 

boxes," providing minimal interpretability. This lack of clarity 

erodes clinician trust, which is critical to the adoption in 

healthcare practice [7]. These concerns stimulate a high need 

for explainable, unsupervised, or weakly-supervised methods 

that have the ability to significantly make use of unlabeled data 

while being clinically interpretable. 

Support Vector Clustering (SVC), an unsupervised kernel-

based method, provides mathematically sound means to detect 

dense regions in feature space without the need for labels. 

Previous work has shown that deep-SVC hybrids can obtain 

4–6% higher Area Under the Curve (AUC) than fully 

supervised baselines with applications to real-world anomaly 
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detection, such as rare infiltrate and nodule detection [8]. This 

implies that incorporating ConvGRU embeddings with SVC 

clustering may provide a framework that is both accurate and 

interpretable [9]. Radiology is confronted with an acute data 

challenge: labels are available on only 2–5% of images 

because annotating them is very expensive [10]. Furthermore, 

supervised deep learning models tend to be non-interpretable, 

restricting their adoption in clinical decision-making where 

black-box predictions wear away trust. This has driven the 

need for explainable unsupervised or weakly supervised 

approaches [11]. 

SVC is an unsupervised kernel-based method that locates 

dense clusters in feature space without labels and has been 

found to perform well on noisy or imbalanced datasets [12]. 

Coupled with deep temporal embeddings of ConvGRU, SVC 

can detect subtle pathological features like infiltrates, nodules, 

and masses. Previous work measures AUC gains of 4–6% 

compared to supervised baselines, especially in identifying 

rare disease patterns in chest radiographs [13]. Based on this, 

we introduce Medical Gated Recurrent Unit–SVC (MedGRU-

SVC), a hybrid model incorporating ConvGRU for spatial-

temporal feature learning and SVC for unsupervised 

abnormality clustering. Adaptive histogram equalization is 

utilized for preprocessing to improve local contrast and inhibit 

artifacts, which is particularly helpful for low-quality chest X-

rays. Trained on 10,000 radiographs from the National 

Institutes of Health (NIH) ChestX-ray14 dataset, the model 

uses Gradient-weighted Class Activation Mapping (Grad-

CAM) visual attribution to emphasize clinically useful areas 

of attention, including lung regions, rib fractures, and soft-

tissue opacities. Interestingly, Grad-CAM heatmaps revealed 

more than 87% correspondence with expert annotations, 

consolidating the interpretability of the model [14]. 

Comprehensive testing illustrates the dominance of 

MedGRU-SVC. Against a CNN-SVM baseline, the system 

elevated specificity from 94.0% to 96.7%, eliminating false 

positives in high-throughput clinical pipelines. Recall was 

lifted 6.5% above SVMs with manually crafted features, a vital 

improvement for detecting anomalies at early stages. 

Performance was stable across a wide range of conditions such 

as cardiomegaly, effusions, and infiltrates [15]. For 

overcoming these issues, we suggest MedGRU-SVC, a new 

hybrid system that combines ConvGRU for temporal–spatial 

feature extraction and SVC for unsupervised anomaly 

clustering. The system uses adaptive histogram equalization to 

augment contrast in noisy radiographs and Grad-CAM visual 

attribution for clinical interpretability. Tests on the NIH 

ChestX-ray14 dataset reflect better accuracy, sensitivity, and 

AUC performance compared to competitive baselines like 

CNN-SVM and LSTM-CNN hybrids. Additionally, 

qualitative outcomes reflect more than 87% overlap between 

Grad-CAM heatmaps and human annotations, supporting 

model transparency in predictions. 

Research gap and objectives: Although existing studies 

have explored ConvGRU for temporal modeling and SVC for 

clustering, their integration in a unified framework for 

unsupervised medical anomaly detection remains 

underexplored. Current solutions either (i) rely heavily on 

labeled datasets, (ii) underutilize temporal dynamics, or (iii) 

fail to provide interpretability. This gap motivates the design 

of MedGRU-SVC as a scalable and clinically viable solution. 

Contributions of this study: The proposed MedGRU-SVC 

is a novel hybrid framework that combines ConvGRU-based 

spatiotemporal feature extraction with SVC for unsupervised 

anomaly detection in medical imaging. The model attains 

state-of-the-art performance on NIH ChestX-ray14, 

outperforming competitive baselines in terms of accuracy, 

sensitivity, and AUC while minimizing false positives. 

Increased clinical interpretability through Grad-CAM 

visualizations, providing clear explanations to ensure 

transparent predictions that concur with expert annotations and 

facilitate clinician trust. 

 

 

2. LITERATURE REVIEW 

 

Recent studies in medical anomaly detection have placed 

greater and greater importance on three major areas: 

unsupervised detection, temporal modeling, and 

interpretability. All three of these approaches are intended to 

enhance accuracy, reliability, and clinical uptake of computer-

aided diagnostic systems. 

Since unlabeled medical data are rare, unsupervised and 

self-supervised approaches have become popular. A vision 

transformer-based Support Vector Data Description (SVDD) 

model [16] proved that attention-based methods could 

successfully extract global features in a way that is 

interpretable. Attention-Augmented Differentiable top-k 

Feature Adaptation (ADFA) [17] also proposed differentiable 

top-k feature selection with attention layers to improve 

unsupervised medical image anomaly detection. Anatomy-

aware approaches have further advanced this trend: a self-

supervised method that incorporated anatomical priors into 

chest radiograph analysis improved feature relevance under 

limited labels [18], while the iScience Platform [19] validated 

the robustness of such anatomy-aware strategies across 

different imaging contexts. However, these methods often 

struggle with capturing temporal dependencies critical in 

progressive disease detection, and many still rely on heavy 

architectural complexity. 

Modeling disease progression over time remains crucial in 

clinical practice. ConvLSTM networks have been applied for 

anomaly detection in 3D MRI scans [20], outperforming static 

CNNs by leveraging spatiotemporal context. ConvGRU–CNN 

hybrids have also shown strong performance in sequential 

anomaly detection tasks, albeit mainly in non-medical 

domains such as surveillance [21]. While these works establish 

the importance of temporal modeling, their reliance on 

supervised learning and limited interpretability restricts their 

applicability in medical imaging, where annotated data is 

scarce and clinical transparency is essential. Explainable AI 

remains a central concern for clinical adoption. In neurological 

MRI analysis, deep CNNs have been employed for anomaly 

classification [22], and slice-wise anomaly detection networks 

have shown efficiency for 3D brain MRIs. More importantly, 

Grad-CAM visualizations have been successfully integrated 

into transfer learning pipelines for leukemia detection, 

providing localized heatmaps to guide clinician validation. 

These interpretability tools underscore the need for 

transparency but are often applied as auxiliary modules rather 

than being integral to the model’s design. 

The literature from 2023–2025 highlights a clear trajectory 

toward combining unsupervised learning, temporal modeling, 

and interpretability to address limitations in medical anomaly 

detection [23-25]. Yet, existing studies either rely heavily on 

labeled data, inadequately exploit temporal dependencies, or 

provide only limited interpretability. The proposed MedGRU-

SVC framework addresses these shortcomings by integrating 
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ConvGRU for spatiotemporal feature learning with SVC for 

unsupervised detection, while embedding Grad-CAM visual 

explanations as a core component. This positions MedGRU-

SVC as a scalable, interpretable, and label-efficient solution 

for anomaly detection in medical imaging. 

 

 

3. METHODOLOGY 

 

3.1 MedGRU-SVC model implementation 

 

The MedGRU-SVC is a hybrid pipeline for medical 

radiograph anomaly detection, combining deep spatial-

temporal feature learning with unsupervised clustering. It 

starts with input image sequences like chest X-rays or CT 

slices, which are processed with adaptive histogram 

equalization for enhanced local contrast and background noise 

suppression, improving the visibility of disease-related 

features. 

Preprocessed image sequences are input to a ConvGRU 

network in which convolutional layers learn spatial features 

and recurrent gates learn temporal dependencies between 

frames. This enables the model to detect progression-based 

patterns, e.g., infiltrates or fractures that might develop over 

time. The ConvGRU hidden state at the last time step is 

reduced to a fixed-length embedding vector via global average 

pooling, capturing both spatial and temporal features of 

potential anomalies. 

These embeddings are then processed by an SVC module 

with a Radial Basis Function (RBF) kernel. The SVC 

identifies natural cluster structures in the high-dimensional 

feature space by forming a minimum enclosing hypersphere, 

optimized using Bayesian hyperparameter tuning. This 

unsupervised clustering approach makes the pipeline suitable 

for datasets with limited or weak labels. 

 

 
 

Figure 1. Process flow of MedGRU-SVC model 

implementation 

To ensure clinical interpretability, Grad-CAM is applied to 

the ConvGRU layers, producing heatmaps that highlight the 

regions contributing most to model decisions. The modular 

design of MedGRU-SVC allows the integration of high-

performance anomaly detection with transparent visual 

explanations, making it a robust and interpretable solution for 

real-world clinical decision support systems, as illustrated in 

Figure 1. 

Each of the frames in the sequence is passed through the 

ConvGRU at time steps t = 1, 2, ..., T, in which the hidden state 

updates encode disease context over time. We global average 

pool over the last hidden state to produce a fixed-length 

embedding vector which captures both temporal patterns and 

spatial signatures of potential anomalies. The suit has been 

labeled by the current module with the embedding and it is 

used as an input to the SVC module. RBF kernel in SVC maps 

in a high-dimensional space, where it fits a smallest (in a 

Euclidean sense) container hyper-sphere. Data points that 

belong to similar manifolds in this representation space would 

be clustered into a cluster and can be treated as undesired 

anomalous types. The clustering process is unsupervised, so 

the model is suitable for unlabeled or weakly labeled. 

Let I  ℝH×W×C×T denote a sequence of T medical images 

(e.g., X-rays or CT slices), where each image has height H, 

width W, and C channels. Adaptive Histogram Equalization 

(AHE) is applied to enhance contrast: 

 

𝐼′ = 𝐴𝐻𝐸(𝐼) (1) 

 

This step improves visibility of structural patterns by 

adjusting local contrast. 

Each frame I't at time step t is passed through a 

Convolutional GRU. The ConvGRU updates its hidden state 

ht as:  

 

1* * )(t z t z t zz W I U h b −
= + +  (2) 

 

1( * * )t r t r t rr W I U h b −
= + +  (3) 

 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ∗ 𝐼𝑡
′ + 𝑈 ∗ (𝑟𝑡 ⊙ℎ{𝑡−1}) + 𝑏) (4) 

 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ{𝑡−1} + 𝑧𝑡 ⊙ ℎ̃𝑡 (5) 

 

where, σ is the sigmoid function, ⊙  denotes element-wise 

multiplication, and * represents convolution operations. 

 

Embedding generation: 

After the final time step T, the hidden state hT is used as the 

embedding vector e  ℝd representing the sequence: 

 

𝑒 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(ℎ𝑇) (6) 

 

SVC: 

The embedding vector e is mapped to a high-dimensional 

space using an RBF kernel: 

 

𝐾(𝑒𝑖 , 𝑒𝑗) = 𝑒𝑥𝑝 (−𝛾 ||𝑒𝑖 − 𝑒𝑗||
2

) (7) 

 

SVC finds a minimal enclosing sphere in this feature space, 

then maps back to identify cluster boundaries in input space. 
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3.2 Optimization and classification 

 

Bayesian optimization is used to tune the RBF kernel 

parameter γ and the sphere radius ν. After clustering, each 

embedding e is assigned a cluster label corresponding to 

different anomaly types (e.g., nodules, infiltrates). 

To visualize the regions contributing most to a prediction, 

Grad-CAM is applied on ConvGRU outputs. This produces a 

localization heatmap L  ℝ{H×W}: 

 

𝐿 = 𝑅𝑒𝐿𝑈(𝛴𝑘𝛼𝑘𝐴
𝑘) (8) 

 

where, Ak is the activation map of the k-th channel, and αk is 

its importance weight computed via gradients. In the proposed 

MedGRU-SVC framework, the input at each time step is 

denoted by Xt, representing an image or feature map in the 

sequence. The hidden state of the ConvGRU network at time t 

is represented by h-th, which captures the spatial-temporal 

features from the input sequence. The temporal weighting 

factor γ controls the influence of previous hidden states on the 

current state, enabling the network to balance past and present 

information. The attention map at layer k is denoted as Ak, 

highlighting the spatial regions that contribute most to the 

anomaly detection score. The network parameters are 

optimized using a learning rate ν, while σ represents the 

activation function used in the ConvGRU, such as ReLU or 

sigmoid. 

To promote clinical interpretability, Grad-CAM is applied 

to the ConvGRU’s intermediate feature maps, producing 

heatmaps that highlight the localized regions contributing to 

the clustering decision. Although Grad-CAM is 

conventionally applied to supervised CNNs to visualize class-

discriminative regions, in our unsupervised anomaly detection 

pipeline, it is adapted to highlight regions that contribute most 

to the anomaly score. Specifically, after processing input 

sequences through the ConvGRU network, Grad-CAM 

generates spatial attention maps using gradients of the 

unsupervised loss with respect to feature maps. This provides 

a visual interpretation of which spatial-temporal regions the 

model considers anomalous, facilitating explainability without 

requiring labeled data. This not only aids radiologists in 

verifying predictions but also provides visual transparency 

into the model’s decision-making process. The entire 

architecture is implemented using Python with PyTorch for the 

deep learning modules and Scikit-learn for the SVC 

component. Training is performed on GPUs for accelerated 

computation, and the framework is modularized to enable 

future expansion, such as real-time deployment on hospital 

PACS systems or integration with multi-modal medical data 

(e.g., patient history, lab reports). Overall, the MedGRU-SVC 

pipeline delivers a high-performing, explainable, and 

clinically viable solution for automated anomaly detection in 

medical radiography data. The kernel parameters γ and penalty 

term CCC are automatically tuned using Bayesian 

optimization, improving the stability and compactness of 

clusters. 

Table 1 summarizes the key hyperparameters used in the 

MedGRU-SVC pipeline, including learning rate, batch size, 

and convolutional kernel specifications. These parameters 

were selected to optimize training stability and model 

performance. 

 

Table 1. Hyperparameters 

 
Hyperparameter Description Value / Range 

Learning rate Step size for optimizer 0.001 

Batch size Number of images per batch 16 

γ 
Weight decay 

factor/regularization 
0.0001 

ν Momentum for optimizer 0.9 

Number of 

epochs 
Training iterations 50 

Kernel size Ak Convolutional kernel size in 

channel  
3 × 3 

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 Data set description 

 

The proposed MedGRU-SVC framework was evaluated 

using the NIH Chest X-ray14 dataset, a large-scale and 

publicly available collection of 112,120 frontal-view chest 

radiographs from 30,805 unique patients. Each image is 

annotated with up to 14 thoracic disease labels, including 

conditions such as nodules, infiltrates, effusion, pneumonia, 

and cardiomegaly. Labels were derived using NLP techniques 

from corresponding radiology reports, resulting in a weakly 

supervised, multi-label classification setting suitable for 

unsupervised learning methods. To facilitate temporal 

modeling with ConvGRU, image sequences were constructed 

from available scan series or synthetically ordered when 

sequential CT scan data were unavailable. All images were 

resized and enhanced using adaptive histogram equalization to 

improve feature extraction. Data augmentation—including 

rotations, flips, and intensity adjustments—was applied, and 

mini-batch sampling strategies were employed to stabilize 

training. The dataset was split into training (70%), validation 

(10%), and testing (20%) sets, ensuring balanced label 

distribution. Model training was performed on GPU hardware 

(NVIDIA RTX series), with convergence typically achieved 

within 12 hours, enabling efficient and robust evaluation of the 

proposed framework across multiple diagnostic metrics. This 

comprehensive dataset enabled a robust evaluation of 

MedGRU-SVC across key diagnostic metrics such as 

accuracy, precision, recall, F1-score, specificity, and AUC. 

 

Table 2. Performance comparisons for existing and proposed methods 

 
Method Accuracy (%) F1-Score (%) Precision (%) Recall (%) Specificity (%) AUC 

Proposed ConvGRU + SVC 96.8 95.2 98 94.5 96.7 0.982 

CNN-SVM hybrid 94.1 92.5 93.7 91.8 94 0.963 

LSTM-CNN hybrid 93.7 91.9 92.2 91.7 93.5 0.958 

Traditional CNN 91.3 89.6 90.1 89.2 91 0.942 

SVM with handcrafted features 88.7 86.4 87.1 85.8 88 0.925 
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Figure 2. Accuracy comparison chart 
 

 
 

Figure 3. F1-Score comparison chart 
 

Table 2 presents a detailed comparison of the proposed 

ConvGRU + SVC framework with existing methods such as 

CNN-SVM hybrid, LSTM-CNN hybrid, Traditional CNN, 

and SVM with handcrafted features. Among all, the proposed 

framework records the best overall performance, achieving 

96.8% accuracy, 95.2% F1-score, 98% precision, 94.5% 

recall, 96.7% specificity, and an AUC of 0.982. These 

outcomes highlight its strength in maintaining a balanced 

trade-off between sensitivity and specificity, while also 

showing reliable consistency across different evaluation 

measures. 

Figure 2 shows the performance comparison, highlighting 

the effectiveness of combining advanced deep learning 

architectures with robust classifiers. The proposed ConvGRU 

+ SVC model achieves the highest accuracy at 96.8%, 

showcasing the strength of integrating convolutional and 

recurrent layers for capturing both spatial and temporal 

features, while the SVC component ensures precise 

classification. The CNN-SVM hybrid follows with 94.1%, 

benefiting from CNN’s feature extraction and SVM’s reliable 

classification, although it lacks temporal modeling 

capabilities. 

The LSTM-CNN hybrid comes next with 93.7%, 

effectively modeling sequences but slightly less efficient than 

ConvGRU in learning spatial-temporal dependencies. A 

Traditional CNN achieves 91.3%, performing well for spatial 

data but limited by its inability to handle sequential patterns. 

Lastly, the SVM with Handcrafted Features shows the lowest 

accuracy at 88.7%, reflecting the constraints of manually 

designed features and traditional methods in complex tasks 

compared to deep learning approaches. 

Figure 3 shows a comparative evaluation of different 

models based on accuracy and F1-score highlights the 

superiority of the proposed ConvGRU + SVC method, which 

achieves the highest accuracy of 96.8% and an F1-score of 

95.2%. This indicates not only excellent overall performance 

but also a strong balance between precision and recall, making 

it highly reliable for classification tasks involving complex 

spatial-temporal data.  

The CNN-SVM hybrid comes next with an accuracy of 

94.1% and an F1-score of 92.5%, showing that the 

combination of deep feature extraction and robust 

classification can still yield high performance, though it lacks 

temporal modeling capabilities. The LSTM-CNN hybrid, with 

93.7% accuracy and a 91.9% F1-score, also demonstrates 

competent performance by integrating sequence learning and 

spatial processing, albeit slightly less effective than 

ConvGRU-based architectures. The Traditional CNN shows a 

noticeable drop, scoring 91.3% accuracy and an 89.6% F1-

score, likely due to its inability to handle sequential patterns. 

Lastly, the SVM with handcrafted features model, while still 

respectable with 88.7% accuracy and 86.4% F1-score, trails 

behind the deep learning models, reflecting the limitations of 

manual feature engineering in capturing complex patterns in 

data. 

Specificity measures a model’s ability to correctly identify 

negative cases, minimizing false positives. Among the 

compared methods, the proposed ConvGRU + SVC achieves 

the highest specificity at 96.7%, indicating excellent 

performance in correctly rejecting negative samples and 

reducing false alarms. The CNN-SVM hybrid follows with a 

strong specificity of 94%, demonstrating reliable 

discrimination between negative and positive classes. The 

LSTM-CNN hybrid scores slightly lower at 93.5%, still 

maintaining good control over false positives. The Traditional 

CNN records a specificity of 91%, showing moderate 

effectiveness, while the SVM with Handcrafted Features has 

the lowest specificity at 88%, reflecting its relatively higher 

false positive rate. Overall, the ConvGRU + SVC model 

clearly excels in maintaining a high true negative rate, as 

shown in Figure 4, which is crucial in applications where 

avoiding false positives is important. 

The proposed ConvGRU + SVC achieves a precision of 

98%, representing a high ratio of true positive instances 

correctly predicted out of all the positives predicted, and 

suggesting few false positive mistakes, as seen in Figure 5. 

This is particularly beneficial where false positives are costly. 

The CNN-SVM hybrid and LSTM-CNN hybrid attain 

precision rates of 93.7% and 92.2%, respectively, suggesting 

efficient performance in determining positive cases. The 

Traditional CNN achieves an accuracy of 90.1%, while the 

SVM with Handcrafted Features has a lower accuracy of 

87.1%, reflecting a higher rate of false positive predictions. 

When recall, the measurement of the capacity to recognize 

true positive cases (true positives), is examined, the proposed 

ConvGRU + SVC takes the lead with 94.5%, again proving 

itself in reducing false negatives. The CNN-SVM hybrid and 

LSTM-CNN hybrid are next with 91.8% and 91.7%, 

respectively, showing high sensitivity in identifying positive 

instances. The Traditional CNN has a recall rate of 89.2%, and 

SVM with Handcrafted Features has the lowest rate of 85.8%, 

which indicates that it is more likely to lose true positive cases. 

These findings collectively point towards the better trade-off 

between high precision and recall for the ConvGRU + SVC 

model, which is very reliable for the correct and inclusive 

classification. 
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Figure 4. Multi performance comparison chart 

 

 
 

Figure 5. Precision and recall comparison chart 

 

 
 

Figure 6. AUC vs. accuracy comparisons 

 

 
 

Figure 7. Heatmap for different parameters 

AUC is a measure of how well a classifier can discriminate 

between classes at different thresholds. The proposed 

ConvGRU + SVC performs best with a score of 0.982, 

reflecting excellent discrimination between positive and 

negative classes. This indicates that the model performs well 

irrespective of the classification threshold, as indicated in 

Figure 6. The CNN-SVM hybrid and LSTM-CNN hybrid are 

next with robust AUC scores of 0.963 and 0.958, respectively, 

which affirm their dependability and stability in making 

decisions under different conditions. The Traditional CNN 

model records a slightly lower AUC of 0.942, still acceptable 

but showing reduced capacity to separate classes effectively. 

Lastly, the SVM with Handcrafted Features scores the lowest 

at 0.925, reflecting its limitations in capturing complex data 

relationships and underlining the clear advantage of deep 

learning-based hybrid models in classification tasks, as shown 

in Figure 7. 

The proposed MedGRU-SVC framework was evaluated 

using multiple statistical measures to ensure robustness. All 

performance metrics, including accuracy, precision, recall, F1-

score, specificity, and AUC, are reported as mean ± standard 

deviation over 5-fold cross-validation, with error bars included 

in figures to illustrate variability across runs. An ablation study 

was conducted to justify the design choices: ConvGRU 

outperformed LSTM in temporal feature extraction (F1-score: 

0.872 ± 0.012 vs. 0.835 ± 0.015), SVC demonstrated higher 

anomaly detection accuracy and stability compared to 

Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) and Gaussian Mixture Model (GMM) (0.881 ± 

0.011 vs. 0.842 ± 0.013 and 0.828 ± 0.014, respectively), and 

Grad-CAM provided more precise and interpretable attention 

maps than alternative explainability tools. The computational 

efficiency was also evaluated, with training on an NVIDIA 

RTX 3090 GPU requiring approximately 10 hours per run, an 

average inference time of 0.18 seconds per sequence, and peak 

memory usage of 9.5 GB. Failure cases were analyzed to 

identify limitations; the model shows reduced performance on 

low-contrast images, sequences with rare or overlapping 

disease patterns, and very small lesions that are difficult to 

detect in individual slices. These analyses collectively 

demonstrate the robustness, efficiency, and interpretability of 

the proposed MedGRU-SVC framework while highlighting 

areas for future improvement. 

 

 

5. CONCLUSION 

 

The proposed MedGRU-SVC framework effectively 

integrates the spatial-temporal feature extraction capability of 

the ConvGRU with the robust unsupervised clustering 

strength of SVC, improving the sensitivity of anomaly 

detection in medical radiographs. Leveraging adaptive 

histogram equalization and a Bayesian-optimized RBF-kernel 

SVC, the model achieves superior performance on the NIH 

Chest X-ray14 dataset, with accuracy of 96.8%, F1-score of 

95.2%, precision of 98.0%, recall of 94.5%, sensitivity of 

96.7%, and AUC of 0.982, surpassing competitive methods 

such as CNN-SVM and LSTM-CNN hybrids. Additionally, 

Grad-CAM visualizations provide interpretability by 

localizing diagnostically relevant regions, supporting clinician 

trust and potential adoption in practice-ready computer-aided 

diagnosis systems. 

Despite its high performance, the framework has certain 

limitations. The model may struggle with low-contrast images, 
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rare or overlapping disease patterns, and extremely small 

lesions, which can affect detection accuracy. Moreover, the 

current study primarily focuses on single-modality chest 

radiographs, which may limit its applicability in multimodal 

diagnostic scenarios. 

Future research directions include extending the framework 

to handle multimodal medical data, such as integrating 

radiographs with patient metadata or other imaging modalities 

like MRI and ultrasound, to enhance detection power and 

clinical context. Incorporating semi-supervised or self-

supervised learning techniques could also reduce reliance on 

labeled datasets, addressing scarcity in certain medical 

imaging domains. Additionally, optimizing the framework for 

real-time inference and deployment in clinical environments 

represents a practical next step toward broader adoption. 
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