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Conventional blood glucose monitoring methods, such as finger-prick tests and 

intravenous sampling, are invasive and often cause discomfort, leading to poor 

adherence and psychological stress. Non-invasive prediction offers a more user-friendly 

alternative. This study proposes a non-invasive approach for blood glucose estimation 

via fingertip videos captured by a mobile camera under near-infrared illumination. 

Three regression models were trained using (i) handcrafted photoplethysmography 

(PPG) features, (ii) ResNet-50 deep learning features, and (iii) a hybrid feature set. 

Feature importance analysis guided the selection of the most informative features to 

reduce redundancy and enhance prediction accuracy. The hybrid approach consistently 

outperformed single-feature-based models, achieving a coefficient of determination 

(R²) of 0.88 and a Mean Absolute Error (MAE) of 14.50 mg/dL. Five-fold cross-

validation verified robustness with an average R² of 0.89 and MAE of 15.13 mg/dL, 

while Bland–Altman analysis demonstrated over 90% agreement with reference 

measurements. These findings demonstrate that integrating ResNet-derived features 

with handcrafted PPG features significantly enhances predictive performance, 

validating fingertip video analysis as a feasible, accurate, and low-cost alternative to 

invasive glucose monitoring.  
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1. INTRODUCTION

Diabetes mellitus is a globally prevalent metabolic disorder 

characterized by an impaired ability to regulate blood glucose 

levels (BGLs). Type 1 diabetes develops due to the 

autoimmune destruction of pancreatic β-cells, leading to 

inadequate insulin production [1], while Type 2 diabetes is 

associated with both reduced insulin sensitivity and impaired 

insulin secretion. Insulin is essential for glucose metabolism, 

facilitating the uptake and utilization of glucose by cells. 

Persistent hyperglycemia is the defining feature of diabetes. 

Type 2 diabetes has emerged as a growing public health 

challenge, with its global prevalence rising steadily over recent 

decades. As of 2017, it impacted around 462 million people 

(6.28% of the global population) and contributed to more than 

1 million fatalities yearly, ranked as the ninth leading cause of 

death worldwide. The condition affects both men and women 

equally, with incidence peaking around the age of 55, and is 

strongly associated with aging, sedentary lifestyles, and poor 

dietary habits. Its prevalence is highest among older adults and 

is projected to rise to 7,079 cases per 100,000 by 2030, 

highlighting the urgent need for better prevention and 

management strategies [2]. 

Current glucose monitoring technologies, such as 

continuous glucose monitors (CGMs), rely on subcutaneous 

sensor insertion, making them invasive and prone to 

complications, including skin irritation, infection, and the need 

for periodic recalibration. These limitations highlight the 

critical need for a non-invasive (NI), needle and pain-free 

glucose monitoring approach. Such a method would improve 

convenience, safety, and user compliance, offering a 

transformative shift in diabetes management by reducing 

reliance on invasive techniques. 

In recent years, numerous studies have explored the 

development of NI and minimally invasive devices for glucose 

monitoring. Several approaches have focused on sensors that 

analyze alternative biological fluids, such as saliva [3], tears 

[4], and sweat [5], as well as optical techniques including mid-

infrared spectroscopy, photoacoustic detection [6], and near-

infrared (NIR) spectroscopy [7]. 

Among optical techniques, photoplethysmography (PPG) 

has gained widespread attention as an NI, low-cost approach 

for detecting blood volume changes in peripheral circulation. 

It involves projecting light onto the skin, where a 

photodetector (or camera) captures the reflected or absorbed 

light to assess volumetric changes in blood flow. During 

systole, increased blood volume absorbs more light, while 

during diastole, reduced volume leads to greater light 

reflection. This physiological cycle produces fluctuations in 

light intensity, which are captured as the PPG signal. Previous 

research has demonstrated that glucose exhibits measurable 

absorption characteristics in the NIR spectrum [8], making 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 11, November, 2025, pp. 3829-3840 

Journal homepage: http://iieta.org/journals/mmep 

3829

https://orcid.org/0009-0001-0074-2050
https://orcid.org/0000-0003-2901-8362
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.121108&domain=pdf


 

NIR-based PPG a promising candidate for NI BGL estimation. 

Sensor-driven approaches have employed NIR optocoupler 

pairs to acquire PPG signals, forming the basis for wearable 

systems aimed at continuous, NI BGL monitoring [9, 10]. In 

parallel, modern smartphones have emerged as powerful 

platforms for health monitoring due to their integrated 

cameras, sensors, and processing capabilities. Their versatility 

enables remote, real-time, and NI diagnostics through mobile 

healthcare applications. In this context, the PPG signal can be 

effectively captured using a smartphone camera in conjunction 

with an NIR illumination source [11]. Positioning the fingertip 

on the camera enables video capture, and averaging the pixel 

intensities within the Region of Interest (ROI) across frames 

yields a one-dimensional PPG signal. 

The process of extracting PPG signals from fingertip video 

involves converting high-dimensional spatiotemporal data 

into a one-dimensional physiological waveform. Hence, these 

temporal variations in light intensity that represent the 

physiological blood volume changes can also be exploited for 

deep feature learning. Specifically, each video frame 

represents spatial light absorption patterns, which are 

processed by a pre-trained ResNet-50 model to extract deep 

features per video sample. Deep features are combined with 

handcrafted PPG features to form a hybrid feature dataset, 

which is then used to train the model for robust BGL 

estimation. 

ResNet-based feature extraction has been employed in the 

NI estimation of hemoglobin levels from fingertip videos [12], 

demonstrating its capability to capture meaningful 

representations of underlying blood-related biomarkers. 

In the proposed study, three experimental models were 

developed to evaluate the predictive capability of different 

feature representations. The study evaluates three feature sets: 

handcrafted features derived from PPG waveforms, deep 

features extracted using ResNet-50, and a combined 

multimodal feature set that integrates both PPG and ResNet-

50 features. Each feature set was trained and tested using 

different machine learning models.  

Key contributions of this study include: 

(1). Development of a novel fingertip video dataset 

comprising recordings from 243 subjects. 

(2). Design of a hybrid framework that integrates 

handcrafted PPG features with ResNet-50-based deep features 

for robust NI-BGL estimation. 

(3). Comprehensive evaluation of individual and combined 

feature sets using multiple machine learning models, 

demonstrating the superiority of the multimodal approach.  

 

 

2. RELATED WORK 
 

Prior work has focused on deriving BGL through non-

invasive means, driven by the growing demand for painless 

and user-friendly monitoring solutions. These techniques were 

developed as alternatives to traditional finger-prick methods, 

which are invasive and often uncomfortable for users. 

Broadly, NI glucose estimation techniques can be categorized 

into two primary groups: sensor-driven methods and 

spectroscopy-based approaches. 

Prasad et al. [13] introduced an IoT-enabled system for 

random blood glucose estimation using Photoacoustic 

Spectroscopy (PAS) signals analyzed with a Shallow Dense 

Neural Network (SDNN). With 105 subjects, their system 

achieved Root Mean Square Error (RMSE) = 2.86 mg/dL and 

Mean Absolute Relative Difference (MARD) = 8.49%. Kumar 

et al. [14] employed NIR spectroscopy with a 940 nm LED 

sensor, where ensemble regressors achieved a coefficient of 

determination (R²) = 0.921 and RMSE = 27.36 mg/dL from 

611 measurements. Song et al. [15] proposed Multi-Scale 

Fusion (RBANet), a deep learning model integrating wearable 

physiological data (blood volume pulse, exploratory data 

analysis, heart rate, accelerometry) with nutrition information, 

reporting Mean Square Error (MSE) = 0.22 mmol/L and 

96.75% accuracy for hyperglycemia detection. Chellamani et 

al. [16] used PPG signals with a Deep Sparse Capsule Network 

(DSCNet), obtaining R² = 0.98 and Mean Absolute Percentage 

Error (MAPE) = 3.02%. Further, Piao et al. [17] combined 

Graph Attention Networks with Gated Recurrent Units 

(GRUs) to model multivariate signals from Empatica devices, 

achieving RMSE ≈ 19.86 mg/dL. Mazgouti et al. [18] 

presented a hybrid Long Short-Term Memory (LSTM)–

XGBoost model for Type 1 diabetes prediction, where CGM 

data from 12 patients yielded RMSEs of 7.97–10.93 mg/dL 

with R² up to 0.98. Fathimal et al. [19] designed a dual-

wavelength NIR optical setup (940 nm and 1050 nm) with 

polynomial regression, reporting MAPE = 5.99%. Jian et al. 

[20] employed dual-wavelength PPG signals (660 nm, 880 

nm), where Random Forest achieved MARD = 5.15% and R 

= 0.93. 

Despite significant progress in sensor-based NI BGL 

estimation, many existing methods depend on bulky, costly, or 

specialized hardware and focus predominantly on signal-level 

processing. An alternative line of research has explored video-

based methods, leveraging fingertip or facial recordings to 

derive PPG signals. Golap et al. [11] analyzed fingertip 

recordings with 850 nm LEDs and smartphone cameras, 

extracting 48 features; Multigene Genetic Programming 

achieved R² = 0.881. Nie et al. [8] proposed non-contact 

imaging photoplethysmography (IPPG) from facial NIR 

recordings, where Random Forest Regression reported MAE 

= 1.72 mmol/L. Sridevi et al. [21] explored Quantum Machine 

Learning with NIR-illuminated fingertip videos, achieving 

89.30% accuracy. Chinchanikar and Dale [22] processed 

fingertip videos in Red, Green and Blue (RGB) and Hue, 

Saturation and Value (HSV) color spaces, where XGBoost 

yielded R² = 0.89 (RGB) and 0.84 (HSV). Table 1 summarizes 

representative NI glucose estimation studies, highlighting 

methods, devices, dataset sizes, and reported performance.  

Fingertip videos capture changes in light intensity caused 

by volumetric variations in blood during systole and diastole. 

In most existing video-based approaches for NI BGL, these 

recordings were processed by averaging pixel intensity values 

over selected regions of interest to extract the PPG signal. 

While this reduction facilitates interpretation and 

physiological analysis, it inherently compresses complex 

spatial–temporal data (width × height × time) into a single 

time-series waveform, potentially discarding rich spatial and 

spatiotemporal information that may hold subtle yet valuable 

cues for accurate glucose estimation. Although the potential of 

deep learning to capture such complex patterns has been 

demonstrated in related applications, such as hemoglobin level 

estimation [12], its role in blood glucose prediction remains 

underexplored. This highlights the need for hybrid 

frameworks that integrate physiological signal features with 

deep visual representations to achieve robust, NI BGL 

prediction.  

At the core of this study, PPG waveforms were extracted 

from fingertip videos, from which 46 handcrafted features 
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were computed. In parallel, ResNet-50 was applied to each 

video frame, and after a mean pooling operation, 2,048 deep 

features per video were obtained. Three experimental models 

were developed to evaluate the predictive capability of 

different feature representations: (i) handcrafted PPG features, 

(ii) ResNet-50–based deep features, and (iii) a combined 

multimodal feature set integrating both handcrafted and deep 

representations. Models trained on individual feature sets 

provided useful insights, but the combined approach 

consistently outperformed the others, highlighting the 

complementary nature of handcrafted physiological 

descriptors and deep visual embeddings. 

 

Table 1. Summary of NI BGL estimation studies 

 
Study Method  Device Subjects Performance 

Prasad et al. [13] SDNN 
905 nm pulsed laser with photodiode 

detector 
105  

RMSE = 2.86 mg/dL,  

MAD = 8.77 mg/dL,  

MARD = 8.49% 

Kumar et al. [14] 
Ensemble learning (Voting 

Regressor: RF + ET + XGB) 
940 nm IR LED sensor 611  

R² = 0.921,  

RMSE = 27.36 mg/dL 

Song et al. [15] Multi-scale fusion (RBANet) Multi-signal wearable  
PhysioNet 

dataset 

MSE = 0.22 mmol/L, 

96.75% accuracy 

Chellamani et al. 

[16] 
DSCNet IR + Red light PPG sensor 835  

R² = 0.98, MAPE = 3.02%, 

RMSE = 0.062 

Piao et al. [17] 
GARNNs (GAT + GRU, 

GATv2 + GRU) 
Graph-based PPG fusion architecture 136  

RMSE ≈ 19.86 mg/dL,  

MAE ≈ 13.81 mg/dL 

Mazgouti et al. 

[18] 
LSTM + XGBoost Fusion 

Continuous Glucose Monitoring 

(CGM) data 
12  

RMSE = 7.97–10.93 mg/dL, 

R² up to 0.98 

Fathimal et al. 

[19] 

Polynomial Regression 

(Linear, Quadratic, Cubic) 

Dual NIR LED system (940 and 

1050 nm) 
45  MAPE = 5.99% 

Jian et al. [20] Random Forest and XGBoost MAX86150 sensor (Red + IR PPG) 
1 over 13 

days 

MARD = 5.15%,  

R = 0.93 

Golap et al. [11] 

Video-based, MGGP 

(Multigene Genetic 

Programming) 

850 nm 6 NIR LEDs + 1 flash LED 

board 
111  

R² = 0.881,  

MAE ±0.324 

Nie et al. [8] 
Video-based, PCR, PLS, 

SVR, RFR (best) 
Facial video via 940 nm NIR camera 

8 over 15 

days 
MAE = 1.72 mmol/L 

Sridevi et al. 

[21] 
Video-based, QSVM 

10-second fingertip video using 

smartphone camera and 850 nm and 

940 nm LEDs 

136  
QSVM accuracy = 89.30%, 

CV = 92.50% 

Chinchanikar 

and Dale [22] 

Video-based, XGBoost, 

CatBoost, RFR, GBR 

6 NIR LEDs,1 flash LED, 

Smartphone camera 
234  

R² = 0.89 (RGB),  

0.84 (HSV) 
Note: RF: Random Forest, ET: Extra Trees, GRANN: Graph Attentive Recurrent Neural Network, GAT: Graph Attention Network, GRU: Gated Recurrent Unit, 

MGGP: Multi-Gene Genetic Programming, PCR: Principal Component Regression, PLS: Partial Least Squares, SVR: Support Vector Regression, RFR: Random 

Forest Regression, QSVM: Quantum Support Vector Machine, GBR: Gradient Boost Regression 

 

 

3. SYSTEM FRAMEWORK 
 

The proposed system layout, as shown in Figure 1, 

illustrates the complete operational workflow of the setup. 

Data acquisition was performed using a smartphone camera to 

record fingertip videos. From these videos, PPG signals were 

extracted, and handcrafted features capturing key temporal 

and frequency characteristics were computed. In parallel, 

ResNet-50 was applied to each video frame to extract deep 

features. Three experimental models were then developed and 

trained separately using (i) handcrafted features, (ii) ResNet-

50 features, and (iii) a combined multimodal feature set. To 

enhance robustness and minimize redundancy, an importance-

based feature selection process was applied to retain the most 

informative attributes. The optimized feature set was then used 

to train predictive models for accurate BGL estimation. 

 

3.1 Experimental arrangement 

 

The experimental platform configuration for the BGL 

estimation system consisted of an NIR illumination unit, as 

shown in Figure 2, and a smartphone camera. The NIR 

illumination unit [23] incorporated six peripheral NIR LEDs 

along with a central flash LED, which was used to boost the 

overall illumination intensity. In the present study, a 940 nm 

NIR illumination board was selected, as glucose exhibits 

notable absorption characteristics in the NIR spectrum, 

particularly within the 940–1000 nm range. The video data 

were acquired using a Samsung A51 mobile, powered by 

Android 10 and equipped with a 48-megapixel camera. The 

camera recorded footage at a frame rate of 30 FPS, with a 

screen resolution of 1080 × 2400 pixels, ensuring high-quality 

image capture for accurate signal extraction. 

 

 
 

Figure 1. Model architecture overview 
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Figure 2. Hardware setup 

 

During data collection, subjects placed their right-hand 

fingertip on the NIR illumination board for video acquisition. 

Initial trials revealed instability due to board displacement, 

finger motion, and minor camera shifts from breathing. To 

ensure consistency, a custom stabilization enclosure was 

designed to securely fix both the NIR illumination unit and the 

smartphone [22]. 

Despite this, occasional quality issues (e.g., sneezing, 

coughing, or finger shifts) were observed. A video-quality 

screening step was therefore implemented, where only 

recordings yielding clear PPG signals were retained; 

otherwise, re-acquisition was performed. Reference BGL 

values were obtained using an Accu-Chek® Instant device for 

validation of NI estimates. 
 

3.2 Data acquisition 
 

In the present study, fingertip videos in *.mp4 format were 

recorded from 243 subjects (121 females and 122 males), aged 

18–88 years, with varying weights and health conditions, 

including both diabetic and non-diabetic individuals. Each 

subject placed their right index fingertip on an NIR 

illumination unit, and a 15-second video was recorded using a 

smartphone camera. Subjects were recruited from various 

local institutions in Pune, representing diverse socio-economic 

and lifestyle backgrounds. Before recording, all subjects 

followed hygiene protocols and provided informed consent. 

Figure 3 depicts the structured workflow of the data collection 

method.

 

 
 

Figure 3. Step-by-step process for subject data collection 

 

 

4. SIGNAL PROCESSING AND MULTI-SCALE 

FEATURE EXTRACTION 

 

To establish a robust framework for NI BGL estimation, 

two primary feature sets were generated from fingertip videos: 

handcrafted features derived from PPG signals, and deep 

features extracted using the pre-trained ResNet-50 model. 

Additionally, a hybrid feature set was created by combining 

these two feature sets, leveraging the complementary strengths 

of physiological descriptors and deep visual representations 

for improved predictive performance. 

 

4.1 PPG signal acquisition and characteristic feature 

extraction 

 

Figure 4 depicts the overall framework used for clean PPG 

signal extraction from fingertip videos. For the extraction of 

the PPG signal, the red channel was selected as it exhibited the 

highest pixel intensity among the RGB channels. 

To ensure signal quality and remove potential distortions, 

the initial 3 seconds and concluding 2 seconds of each video 

were excluded. This resulted in 300 usable frames per subject. 

To identify the ROI, K-means clustering was employed on the 

video frames, segmenting pixel values into separate groups.  

Based on the clustering outcome, a 500 × 500 pixel area 

spanning rows 750 to 1250 and columns 0 to 500 was selected 

as the ROI for computing the mean intensity of the red 

channel. The mean red channel values across the defined 

region were used to derive the unprocessed PPG signal. This 

process is described by Eq. (1). 

 

𝑃𝑃𝐺(𝑡) =
1

𝑀𝑁
∑ 

𝑀

𝑖=1

∑𝐼𝑟𝑒𝑑(𝑖, 𝑗, 𝑡)

𝑁

𝑗=1

 (1) 

 

where, M and N indicate the number of rows and columns in 

the region of focus, and Ired (i, j, t) corresponds to the intensity 

of the pixel located at (i, j) at time t. To ensure precise PPG 
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signal analysis, preprocessing was applied to 10-second videos 

(300 frames). A Butterworth band-pass filter (0.5–4 Hz) was 

applied to remove motion artifacts and baseline drift while 

preserving the physiological frequency range of heart rates 

(30–240 bpm). The Butterworth design was chosen over other 

filters (e.g., Chebyshev, elliptic) because it provides a 

maximally flat frequency response in the passband, ensuring 

minimal signal distortion—an important factor for 

maintaining the integrity of the PPG waveform morphology. 

Once the raw PPG signal was filtered, peaks were identified 

using a peak detection method. A single PPG cycle with the 

most distinct systolic peak was identified. 

Figure 5 shows the block diagram of the PPG signal 

processing and feature derivation applied to the filtered PPG 

signal. The process began with the application of a peak 

detection algorithm to identify individual PPG pulses within 

the signal. Among these, the PPG cycle corresponding to the 

maximum peak amplitude was selected as the representative 

waveform, as it was assumed to be the least affected by noise 

and the most physiologically relevant. 

The first and second derivatives of the selected PPG 

waveform were then computed to capture the rate of change 

and acceleration in signal morphology. Additionally, the Fast 

Fourier Transform (FFT) was applied to extract the frequency-

domain characteristics of the waveform. From the original 

waveform, its derivatives, and its frequency representation, a 

total of 46 features were extracted as shown in Table 2. Let h 

denote the derived handcrafted feature vector, as given in Eq. 

(2). 
 

ℎ = [ℎ1, ℎ2, . . ℎ46] ∈ 𝑅46 (2) 

 

 
 

Figure 4. Overview of the PPG signal processing pipeline 
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Figure 5. Schematic representation of the PPG signal processing and feature extraction steps [22] 

 

Table 2. Handcrafted features 

 

Feature Description Feature Description Feature Description 

f1 x f17 t1/tpi f33 tf1/tpi 

f2 y f28 t2/tpi f34 ta2/tpi 

f3 z f19 t3/tpi f35 tb2/tpi 

f4 Tpi f20 Δt/tpi f36 (ta1+ta2)/tpi 

f5 y/x f21 ta1 f37 (tb1+tb2)/tpi 

f6 (x-y)/x f22 tb1 f38 (te1+t2)/tpi 

f7 z/x f23 te1 f39 (Tf1+t3)/tpi 

f8 (y-x)/x f24 tf1 f40 X(f0) 

f9 t1 f25 b2/a2 f41 |X(f0)| 

f10 t2 f26 e2/a2 f42 X(f1) 

f11 t3 f27 (b2+e2)/a2 f43 |X(f1)| 

f12 Δt f28 ta2 f44 X(f2) 

f13 t1/2 f29 tb2 f45 |X(f2)| 

f14 A2/A1 f30 ta1/tpi f46 v2/v1 

f15 t1/x f31 tb1/tpi   

f16 y/(tpi-t3) f32 te1/tpi   

 

 
 

Figure 6. Feature extraction pipeline from fingertip video via ResNet-50 
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4.2 Deep feature extraction from video frames using 

ResNet 

 

To preserve the spatial and textural information that is often 

lost during the transformation of fingertip videos into a 1D 

PPG signal, pretrained ResNet-50 was employed as a deep 

feature extractor. Unlike handcrafted features that rely solely 

on signal morphology, ResNet-50 focuses on learning 

spatiotemporal variations in light absorption, which may be 

indicative of blood volume changes linked to glucose levels. 

Its ability to learn complex representations from raw visual 

data makes it a powerful tool for enhancing model 

performance in NI BGL estimation. 

ResNet-50 is a deep CNN consisting of 50 layers, renowned 

for its use of residual connections that facilitate the training of 

very deep architectures without performance degradation. 

These shortcut connections address the vanishing gradient 

issue and enable efficient learning of both low- and high-level 

features. The architecture consists of multiple convolutional 

blocks, identity mappings, and batch normalization layers. 

ResNet-50 is widely used for feature extraction in image-

based tasks due to its robustness and strong generalization 

capability. Figure 6 shows the block diagram illustrating the 

process of feature extraction from fingertip videos. 

In the proposed work, fingertip video data for each subject 

was processed by extracting frames between the 3rd and 13th 

seconds, resulting in a consistent temporal segment of 

approximately 300 frames per video. The frames were scaled 

to 224 × 224 pixels and standardized using the predefined 

ImageNet mean and standard deviation values [0.485, 0.456, 

0.406] and [0.229, 0.224, 0.225], respectively, to ensure 

alignment with the ResNet-50 framework.  

To derive features, the final fully connected classification 

layer of the ResNet-50 framework was removed. Let fResNet be 

a function that represents the ResNet-50 model’s feature 

extraction process and is given by Eq. (3). 

 

𝑓𝑅𝑒𝑠𝑁𝑒𝑡 = 𝑅224×224×1 = 𝑅2048 (3) 

 

For each frame It, deep feature vector is given by Eq. (4). 

 

𝑥𝑡 = 𝑓𝑅𝑒𝑠𝑁𝑒𝑡(𝐼𝑡) = 𝑅2048 (4) 

 

For t = 1, 2, 3, ...T, where, T = 300, xt represents features 

from one frame and It is the tth red frame of the video. This 

resulted in a feature matrix for the entire video and is given by 

Eq. (5).  

 

𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑇] ∈ 𝑅2048×𝑇 (5) 

 

This configuration enabled access to the 2048-dimensional 

feature vector from the penultimate layer. The model was 

executed in inference mode using PyTorch with GPU 

acceleration where available. Each processed frame was 

passed through the network, and the resulting features were 

stored in separate files for each video to facilitate modular 

analysis. Processing 243 fingertip videos through ResNet-50 

for deep feature extraction required approximately 2 hours and 

32 minutes. 

To convert the frame-level feature matrix X ∈ R2048×T into a 

single, fixed-length representation for each video, temporal 

mean pooling was applied across all frame-level features. This 

operation averaged the ResNet embeddings over 300 frames, 

resulting in a 2048-dimensional vector that compactly 

captured the aggregated spatiotemporal information of the 

entire video, as expressed in Eq. (6). By averaging out 

transient variations, this strategy reduces frame-level noise 

and motion artefacts while emphasizing stable spatial patterns 

that are more likely to reflect underlying physiological 

changes. Mean pooling was employed to obtain a compact and 

robust feature representation suitable for tree-based regression 

models. It reduces the influence of outlier frames that may 

adversely affect performance in max pooling. Furthermore, 

mean pooling lowers dimensionality and computational cost, 

improving the sample-to-parameter ratio and enhancing the 

robustness of subsequent regression modeling. 

 

𝑥 =
1

𝑇
∑𝑥𝑡 ∈ 𝑅2048

𝑇

𝑡=1

 (6) 

 

The resulting pooled vector x̄ captures the average 

spatiotemporal characteristics of the video, serving as its 

compact deep representation. The aggregated dataset was 

compiled into a unified CSV file, with each row corresponding 

to one video sample. 

Thus, two distinct feature sets were derived: the first 

comprising 46 handcrafted PPG features and the second 

consisting of 2048 deep features extracted using ResNet-50. A 

third hybrid feature set was then constructed by concatenating 

the handcrafted and deep features, resulting in a total of 2094 

features. These three feature sets were subsequently employed 

to train and evaluate three experimental models: one based 

solely on handcrafted PPG features, one utilizing ResNet-50 

features, and one leveraging the combined hybrid feature set. 

 

 

5. FEATURE OPTIMIZATION AND MODEL 

CONSTRUCTION 

 

Feature importance-based optimization was utilized to 

identify and retain the most relevant features for NI BGL 

prediction. This method evaluated the significance of every 

feature to the model’s predictive performance, enabling the 

selection of an informative subset while eliminating redundant 

or irrelevant variables. 

The importance of each feature was quantified based on the 

average reduction in the loss function each time it was used to 

split a decision node within the ensemble, as shown in Eq. (7). 

The significance of feature f was evaluated based on its 

influence on the loss function. 

 

𝐼𝑓 = 𝛴
𝑡𝜖𝑇𝑓

△ 𝐿𝑡 (7) 

 

where, Tf is the set of all nodes where feature f is used for 

splitting. ΔLt denotes the reduction in the loss function at node 

t. 

Features were ranked according to their importance scores, 

and only the most informative ones were retained to improve 

generalization, reduce the risk of overfitting, and enhance 

computational efficiency. Feature importance analysis was 

performed independently for each ensemble model (CatBoost, 

Random Forest, XGBoost, and Gradient Boosting) and for 

each feature set.  

After optimization, the final number of selected features 

used for model training was as follows: all 46 features were 

retained for the handcrafted PPG feature set; for the ResNet-

50 deep features, 1153–2048 features were retained depending 
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on the model; and for the hybrid feature set, 793–2094 features 

were retained. 

It should be noted that tree-based feature importance can be 

biased toward features with higher cardinality or larger 

numeric ranges, potentially overestimating their influence. 

Moreover, these importance scores do not explicitly capture 

complex feature interactions, which should be considered 

when interpreting the predictive contribution of individual 

features. Despite these limitations, this approach provides a 

practical and computationally efficient method for identifying 

informative features in moderate-sized datasets. 

 

 

6. RESULTS AND DISCUSSION 

 

A total of 243 subjects, including both diabetic and non-

diabetic individuals, participated in this study, with ages 

ranging from 18 to 88 years. For each subject, a 15-second 

fingertip video was recorded using a mobile camera paired 

with a NIR illumination unit to improve signal fidelity. From 

each video, a PPG waveform was extracted, from which 46 

handcrafted features were computed. Additionally, 2048 deep 

features were extracted from video frames using ResNet-50 

CNN. A third hybrid feature set was then constructed by 

combining the handcrafted and deep features, resulting in a 

2094-dimensional dataset per subject.  

Feature importance-based selection was employed to 

prioritize the most informative variables within the feature 

space. This approach ensured that the most relevant 

information was preserved while reducing redundancy among 

correlated features. By retaining variables that contributed 

most strongly to predictive performance, the method provided 

a refined and balanced feature set for subsequent model 

training. R² quantifies the proportion of the target variable's 

variance explained by the predictions, thereby indicating its 

degree of fit. In contrast, MAE measures the mean of the 

absolute deviation among actual and predicted glucose values, 

serving as an intuitive metric of prediction error that remains 

stable in the presence of outliers. The corresponding 

mathematical definitions are provided in Eqs. (8) and (9). 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑔𝑎𝑐𝑡 − 𝑦𝑔𝑝𝑟𝑒𝑑|

𝑛

𝑖=1

 (8) 

 

𝑅2 = 1 −
∑ (𝑦𝑔𝑎𝑐𝑡 − 𝑦𝑔𝑝𝑟𝑒𝑑)

2𝑛

𝑖=1

∑ (𝑦𝑔𝑎𝑐𝑡 − 𝑦𝑚𝑒𝑎𝑛_𝑜𝑓_𝑔𝑎𝑐𝑡)
2𝑛

𝑖=1

 (9) 

 

where, ygact: Measured BGL, ygpred: Algorithm-generated BGL, 

ymean_of_gact: Average measured BGL.  

An initial 80:20 train-test split was carried out to evaluate 

model generalization on unseen data. A stratified 5-fold CV 

was subsequently applied to the training set by dividing it into 

five equal subsets. In each iteration, four folds were employed 

for training, while the remaining fold was used for validation. 

This process helped assess the model’s robustness, reduce 

variance from individual splits, and ensure more reliable 

performance estimation. 

To predict BGL, several ensemble regression models were 

evaluated, including RFR, GBR, XGBoost, and CatBoost. 

Each model was trained on an optimized subset of features, 

obtained by applying an importance-based feature selection 

method to the PPG dataset, the deep feature dataset, and the 

hybrid dataset. The number of selected features varied across 

datasets and regression models, reflecting the differing 

contributions of features to predictive performance, reducing 

redundancy, and the varying sensitivity of models to feature 

relevance. 

Figures 7(a) and (b) present the prediction performance of 

the evaluated regression models on the test dataset in terms of 

R² and MAE, respectively. CatBoost and Gradient Boosting 

achieved the highest predictive accuracy when trained on 

hybrid features (R² = 0.88 and 0.91, MAE = 14.49 and 13.72, 

respectively), while XGBoost and Random Forest showed 

moderate performance (R² = 0.80 – 0.85). Models trained 

solely on handcrafted PPG features had lower predictive 

power (R² = 0.52 – 0.83), with ResNet-50 features yielding 

intermediate performance. These results highlight the 

complementary nature of hybrid features: deep embeddings 

provide rich abstract representations, whereas handcrafted 

descriptors preserve physiologically interpretable signal 

properties. 5-fold cross-validation further confirmed these 

observations. Hybrid features maintained superior 

generalization performance across all models. Figures 8(a) and 

(b) illustrate the R² and MAE values obtained after 5-fold 

cross-validation, highlighting the comparative performance of 

the three feature sets. CatBoost achieved the highest R2 of 

0.89 and lowest MAE of 15.13 on hybrid features, followed by 

Gradient Boosting (R² = 0.79, MAE = 19.14). XGBoost and 

Random Forest achieved R² = 0.70 – 0.76 and MAE = 18.96 – 

25.02. The superior performance of CatBoost can be attributed 

to its strong ability to model intricate nonlinear interactions 

among heterogeneous features, its inherent robustness to 

outliers, and its efficient handling of high-dimensional hybrid 

feature spaces, thereby making it particularly suitable for 

reliable blood glucose level prediction from fingertip video-

derived data. 
 

 
(a) 

 
(b) 

 

Figure 7. Comparison of (a) R2 and (b) MAE values for 

different regression models across PPG features, ResNet-50 

deep features, and the hybrid feature set 
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(a) 

 
(b) 

 

Figure 8. Comparative (a) R2 and (b) MAE values of 

regression models trained on PPG, ResNet-50, and hybrid 

feature sets under 5-fold cross-validation  

 

To enhance statistical rigor, all experiments were repeated 

ten times using different random seeds. The plots in Figures 7 

and 8 illustrate the distribution of model performance across 

runs, showing mean values along with 95% confidence 

intervals. This approach mitigates the effect of random 

initialization and sampling variations on the reported results. 

Among all ensemble regressors, CatBoost consistently 

achieved the lowest MAE and the highest R2 across repeated 

trials, confirming its robustness and stability. A paired t-test 

was conducted to examine whether the observed improvement 

of CatBoost over other models was statistically significant. 

The analysis revealed that CatBoost’s MAE was significantly 

lower than those of Gradient Boosting (p < 0.05), XGBoost (p 

< 0.01), Bagging Regressor (p < 0.01), and Random Forest (p 

< 0.01), confirming that its superior performance is 

statistically meaningful. 

Error analysis revealed that the largest prediction errors 

were primarily associated with extreme glucose values and 

suboptimal acquisition conditions, such as low ambient 

lighting or slight finger motion. Variability in demographics, 

including age, BMI, and finger thickness, also contributed to 

error differences, with younger subjects with thinner fingers 

exhibiting slightly lower errors due to higher PPG signal 

quality. While the models demonstrated robust performance, 

several limitations may affect generalizability. Skin tone can 

influence PPG signal contrast, BMI and vascular health may 

affect peripheral blood flow, and environmental factors such 

as lighting and motion artifacts can introduce additional noise. 

Furthermore, tree-based feature importance may not fully 

capture complex feature interactions, and the study population 

was limited. 

In addition to predictive performance, the computational 

efficiency of the evaluated models was assessed to consider 

real-time deployment feasibility. Inference time per sample 

was measured on a standard workstation with an Intel i7 CPU 

and 16 GB RAM. CatBoost and Gradient Boosting required 

approximately 5–7 ms per sample, whereas XGBoost and 

Random Forest required 6–9 ms per sample.  

Overall, integrating handcrafted PPG and deep ResNet-50 

features consistently reduced prediction error and enhanced 

generalization across all models. Figure 9 summarizes the final 

hyperparameter settings for each regression model. 

 

 
 

Figure 9. Hyperparameter configurations for evaluated 

regression models 

 

 
(a) 

 
(b) 

 

Figure 10. (a) CatBoost regression and (b) Bland–Altman 

agreement analysis for the hybrid dataset 
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Table 3. Evaluation of the proposed method against current video-based BGL prediction techniques 

 
Reference Device Feature Extraction Subject Count Algorithm Results 

Nie et al. [8] industrial NIR camera PPG 8 RFR R2 = 0.60 

Golap et al. 

[11] 

850 nm NIR LED Nexus- 6p 

smartphone 
PPG 111 MGGP R2 = 0.88 

Sridevi et al. 

[21] 

Pixel-2 smartphone with 

850 nm and 940 nm LEDs 
PPG 136 

Quantum Support 

Vector Machine 

Accuracy = 

89.30% 

Haque et al. 

[24] 

850 nm NIR LED, Nexus- 6p 

smartphone 
PPG 93 

Deep Neural 

Network (DNN) 
R2 = 0.90 

Islam et al. 

[25] 
OnePlus 6T PPG 52 PLS 

prediction errors = 

17.02 mg/dL 

Proposed 

work 

940 nm NIR LED module, 

Samsung A51 smartphone 

Handcrafted PPG + Deep 

Features (ResNet-50) 
243 CatBoost 

R2 = 0.88 and avg. 

CV 

R2 = 0.89 

In terms of computational efficiency, all tree-based 

ensemble models demonstrated sufficiently low inference 

times for near real-time blood glucose estimation from 

fingertip videos. CatBoost combines high predictive accuracy 

with efficient inference, making it a strong candidate for 

practical deployment in mobile or embedded applications. 

Although training with hybrid features required a higher 

computational cost due to increased dimensionality, this is a 

one-time process and does not affect real-time prediction. 

Overall, the results highlight that integrating handcrafted PPG 

features with deep ResNet-50 representations enhances both 

predictive accuracy and error minimization, establishing 

hybrid features as a robust strategy for non-invasive BGL 

estimation from fingertip video data. Figure 9 presents the 

final hyperparameter settings used for each ensemble 

regression model. 

Figure 10(a) presents the regression and (b) Bland–Altman 

plots for the CatBoost model trained on the hybrid feature set, 

evaluated on the 20% test dataset comprising 49 subjects. The 

regression plot shows a strong correlation between predicted 

and reference BGL, indicating high predictive accuracy. In the 

Bland–Altman analysis, 45 out of 49 points (91.84%) were 

located within the 95% limits of agreement (Region 1, 

considered acceptable), while 4 points (8.16%) fell outside 

these limits (Region 2), suggesting minor deviations. These 

findings further validate the clinical reliability of the model, 

with a large majority of predictions exhibiting acceptable 

agreement with reference values. 

Table 3 presents a performance comparison between the 

proposed approach and multiple previously reported contact 

and non-contact methods for estimating BGL using video data. 

All the methods listed above estimate BGL by extracting 

PPG signals from video data. Although Sridevi et al. [21] and 

Haque et al. [24] reported higher R² values (0.89 – 0.90), their 

studies involved relatively small subject counts (136 and 93, 

respectively). The proposed work achieved comparable 

predictive performance (R² = 0.88; average CV R² = 0.89) on 

a larger cohort of 243 subjects, demonstrating improved 

generalizability. Unlike these approaches, the proposed 

method incorporates deep features extracted directly from 

fingertip video frames using a pre-trained ResNet-50 CNN. By 

fusing handcrafted PPG features with high-level CNN-derived 

representations, the model leverages both physiological 

domain knowledge and abstract visual patterns. Specifically, 

ResNet-50 captures spatiotemporal variations in light 

absorption across video frames, reflecting subtle blood volume 

changes associated with glucose levels—information often 

lost during conventional signal extraction. 

 

7. CONCLUSION AND FUTURE SCOPE 

 

The proposed study presented an NI approach for BGL 

estimation using fingertip videos captured via a smartphone 

camera. A hybrid feature set was developed by combining 46 

handcrafted PPG features with 2048 deep features derived 

from a pre-trained ResNet-50 model, resulting in a 2094-

dimensional representation. Feature importance-based 

selection was applied to prioritize the most informative 

variables, preserving relevant information while minimizing 

redundancy. Among the evaluated machine learning models, 

CatBoost outperformed others, achieving a test R² score of 

0.8801 and MAE of 14.50. Five-fold cross-validation further 

validated its robustness, yielding an average R² of 0.8943 and 

MAE of 15.13. Bland–Altman analysis showed that 91.84% of 

the predictions fell within the 95% limits of agreement, 

indicating strong alignment with reference glucose values. 

While the proposed method demonstrated promising 

performance, the dataset used was relatively small for 

developing a highly generalizable model. Expanding the 

dataset to include a larger and more diverse population is 

essential to enhance model robustness and ensure broader 

applicability. Future studies should also consider 

physiological and environmental variations, including skin 

tone, BMI, ambient lighting, temperature, and vascular health, 

which may influence PPG signal quality and system 

performance. 

To facilitate clinical translation, several steps are necessary 

before deployment: rigorous validation on diverse patient 

populations, integration with real-time smartphone 

applications, regulatory compliance, and assessment of 

usability in daily life. Moreover, incorporating adaptive 

modeling techniques that adjust to individual physiological 

differences can enhance prediction accuracy, computational 

efficiency, and user-friendliness. Overall, the proposed 

approach provides a foundation for scalable, real-time NI 

glucose monitoring, and further development could enable 

practical clinical and home-based applications for diabetes 

management. 
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NOMENCLATURE 

 

K Number of clusters 

M Number of rows 

N Number of columns 

Ired Intensity of red pixels 

h Handcrafted PPG feature 

fResNet ResNet feature set 

X ResNet feature matrix per frame 

T Total frames 

x̄ Agree gated feature 

Tf Set of all nodes 

Lt Total loss 

ygact Actual blood glucose value 

ygpred Predicted blood glucose value 

ymean_of_gact Average measured blood glucose value 
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