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Conventional blood glucose monitoring methods, such as finger-prick tests and
intravenous sampling, are invasive and often cause discomfort, leading to poor
adherence and psychological stress. Non-invasive prediction offers a more user-friendly
alternative. This study proposes a non-invasive approach for blood glucose estimation
via fingertip videos captured by a mobile camera under near-infrared illumination.
Three regression models were trained using (i) handcrafted photoplethysmography
(PPQG) features, (ii) ResNet-50 deep learning features, and (iii) a hybrid feature set.
Feature importance analysis guided the selection of the most informative features to
reduce redundancy and enhance prediction accuracy. The hybrid approach consistently
outperformed single-feature-based models, achieving a coefficient of determination
(R?) of 0.88 and a Mean Absolute Error (MAE) of 14.50 mg/dL. Five-fold cross-
validation verified robustness with an average R? of 0.89 and MAE of 15.13 mg/dL,
while Bland—Altman analysis demonstrated over 90% agreement with reference
measurements. These findings demonstrate that integrating ResNet-derived features
with handcrafted PPG features significantly enhances predictive performance,
validating fingertip video analysis as a feasible, accurate, and low-cost alternative to

invasive glucose monitoring.

1. INTRODUCTION

Diabetes mellitus is a globally prevalent metabolic disorder
characterized by an impaired ability to regulate blood glucose
levels (BGLs). Type 1 diabetes develops due to the
autoimmune destruction of pancreatic B-cells, leading to
inadequate insulin production [1], while Type 2 diabetes is
associated with both reduced insulin sensitivity and impaired
insulin secretion. Insulin is essential for glucose metabolism,
facilitating the uptake and utilization of glucose by cells.
Persistent hyperglycemia is the defining feature of diabetes.

Type 2 diabetes has emerged as a growing public health
challenge, with its global prevalence rising steadily over recent
decades. As of 2017, it impacted around 462 million people
(6.28% of the global population) and contributed to more than
1 million fatalities yearly, ranked as the ninth leading cause of
death worldwide. The condition affects both men and women
equally, with incidence peaking around the age of 55, and is
strongly associated with aging, sedentary lifestyles, and poor
dietary habits. Its prevalence is highest among older adults and
is projected to rise to 7,079 cases per 100,000 by 2030,
highlighting the urgent need for better prevention and
management strategies [2].

Current glucose monitoring technologies, such as
continuous glucose monitors (CGMs), rely on subcutaneous
sensor insertion, making them invasive and prone to
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complications, including skin irritation, infection, and the need
for periodic recalibration. These limitations highlight the
critical need for a non-invasive (NI), needle and pain-free
glucose monitoring approach. Such a method would improve
convenience, safety, and user compliance, offering a
transformative shift in diabetes management by reducing
reliance on invasive techniques.

In recent years, numerous studies have explored the
development of NI and minimally invasive devices for glucose
monitoring. Several approaches have focused on sensors that
analyze alternative biological fluids, such as saliva [3], tears
[4], and sweat [5], as well as optical techniques including mid-
infrared spectroscopy, photoacoustic detection [6], and near-
infrared (NIR) spectroscopy [7].

Among optical techniques, photoplethysmography (PPG)
has gained widespread attention as an NI, low-cost approach
for detecting blood volume changes in peripheral circulation.
It involves projecting light onto the skin, where a
photodetector (or camera) captures the reflected or absorbed
light to assess volumetric changes in blood flow. During
systole, increased blood volume absorbs more light, while
during diastole, reduced volume leads to greater light
reflection. This physiological cycle produces fluctuations in
light intensity, which are captured as the PPG signal. Previous
research has demonstrated that glucose exhibits measurable
absorption characteristics in the NIR spectrum [8], making


https://orcid.org/0009-0001-0074-2050
https://orcid.org/0000-0003-2901-8362
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.121108&domain=pdf

NIR-based PPG a promising candidate for NI BGL estimation.

Sensor-driven approaches have employed NIR optocoupler
pairs to acquire PPG signals, forming the basis for wearable
systems aimed at continuous, NI BGL monitoring [9, 10]. In
parallel, modern smartphones have emerged as powerful
platforms for health monitoring due to their integrated
cameras, sensors, and processing capabilities. Their versatility
enables remote, real-time, and NI diagnostics through mobile
healthcare applications. In this context, the PPG signal can be
effectively captured using a smartphone camera in conjunction
with an NIR illumination source [11]. Positioning the fingertip
on the camera enables video capture, and averaging the pixel
intensities within the Region of Interest (ROI) across frames
yields a one-dimensional PPG signal.

The process of extracting PPG signals from fingertip video
involves converting high-dimensional spatiotemporal data
into a one-dimensional physiological waveform. Hence, these
temporal variations in light intensity that represent the
physiological blood volume changes can also be exploited for
deep feature learning. Specifically, each video frame
represents spatial light absorption patterns, which are
processed by a pre-trained ResNet-50 model to extract deep
features per video sample. Deep features are combined with
handcrafted PPG features to form a hybrid feature dataset,
which is then used to train the model for robust BGL
estimation.

ResNet-based feature extraction has been employed in the
NI estimation of hemoglobin levels from fingertip videos [12],
demonstrating its capability to capture meaningful
representations of underlying blood-related biomarkers.

In the proposed study, three experimental models were
developed to evaluate the predictive capability of different
feature representations. The study evaluates three feature sets:
handcrafted features derived from PPG waveforms, deep
features extracted using ResNet-50, and a combined
multimodal feature set that integrates both PPG and ResNet-
50 features. Each feature set was trained and tested using
different machine learning models.

Key contributions of this study include:

(1). Development of a novel fingertip video dataset
comprising recordings from 243 subjects.

(2). Design of a hybrid framework that integrates
handcrafted PPG features with ResNet-50-based deep features
for robust NI-BGL estimation.

(3). Comprehensive evaluation of individual and combined
feature sets using multiple machine learning models,
demonstrating the superiority of the multimodal approach.

2. RELATED WORK

Prior work has focused on deriving BGL through non-
invasive means, driven by the growing demand for painless
and user-friendly monitoring solutions. These techniques were
developed as alternatives to traditional finger-prick methods,
which are invasive and often uncomfortable for users.
Broadly, NI glucose estimation techniques can be categorized
into two primary groups: sensor-driven methods and
spectroscopy-based approaches.

Prasad et al. [13] introduced an IoT-enabled system for
random blood glucose estimation using Photoacoustic
Spectroscopy (PAS) signals analyzed with a Shallow Dense
Neural Network (SDNN). With 105 subjects, their system
achieved Root Mean Square Error (RMSE) = 2.86 mg/dL and
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Mean Absolute Relative Difference (MARD) = 8.49%. Kumar
et al. [14] employed NIR spectroscopy with a 940 nm LED
sensor, where ensemble regressors achieved a coefficient of
determination (R?) = 0.921 and RMSE = 27.36 mg/dL from
611 measurements. Song et al. [15] proposed Multi-Scale
Fusion (RBANet), a deep learning model integrating wearable
physiological data (blood volume pulse, exploratory data
analysis, heart rate, accelerometry) with nutrition information,
reporting Mean Square Error (MSE) = 0.22 mmol/L and
96.75% accuracy for hyperglycemia detection. Chellamani et
al. [16] used PPG signals with a Deep Sparse Capsule Network
(DSCNet), obtaining R? = 0.98 and Mean Absolute Percentage
Error (MAPE) = 3.02%. Further, Piao et al. [17] combined
Graph Attention Networks with Gated Recurrent Units
(GRUs) to model multivariate signals from Empatica devices,
achieving RMSE 19.86 mg/dL. Mazgouti et al. [18]
presented a hybrid Long Short-Term Memory (LSTM)-
XGBoost model for Type 1 diabetes prediction, where CGM
data from 12 patients yielded RMSEs of 7.97-10.93 mg/dL
with R? up to 0.98. Fathimal et al. [19] designed a dual-
wavelength NIR optical setup (940 nm and 1050 nm) with
polynomial regression, reporting MAPE = 5.99%. Jian et al.
[20] employed dual-wavelength PPG signals (660 nm, 880
nm), where Random Forest achieved MARD = 5.15% and R
=0.93.

Despite significant progress in sensor-based NI BGL
estimation, many existing methods depend on bulky, costly, or
specialized hardware and focus predominantly on signal-level
processing. An alternative line of research has explored video-
based methods, leveraging fingertip or facial recordings to
derive PPG signals. Golap et al. [11] analyzed fingertip
recordings with 850 nm LEDs and smartphone cameras,
extracting 48 features; Multigene Genetic Programming
achieved R?> = 0.881. Nie et al. [8] proposed non-contact
imaging photoplethysmography (IPPG) from facial NIR
recordings, where Random Forest Regression reported MAE
= 1.72 mmol/L. Sridevi et al. [21] explored Quantum Machine
Learning with NIR-illuminated fingertip videos, achieving
89.30% accuracy. Chinchanikar and Dale [22] processed
fingertip videos in Red, Green and Blue (RGB) and Hue,
Saturation and Value (HSV) color spaces, where XGBoost
yielded R?=0.89 (RGB) and 0.84 (HSV). Table 1 summarizes
representative NI glucose estimation studies, highlighting
methods, devices, dataset sizes, and reported performance.

Fingertip videos capture changes in light intensity caused
by volumetric variations in blood during systole and diastole.
In most existing video-based approaches for NI BGL, these
recordings were processed by averaging pixel intensity values
over selected regions of interest to extract the PPG signal.
While this reduction facilitates interpretation and
physiological analysis, it inherently compresses complex
spatial-temporal data (width x height X time) into a single
time-series waveform, potentially discarding rich spatial and
spatiotemporal information that may hold subtle yet valuable
cues for accurate glucose estimation. Although the potential of
deep learning to capture such complex patterns has been
demonstrated in related applications, such as hemoglobin level
estimation [12], its role in blood glucose prediction remains
underexplored. This highlights the need for hybrid
frameworks that integrate physiological signal features with
deep visual representations to achieve robust, NI BGL
prediction.

At the core of this study, PPG waveforms were extracted
from fingertip videos, from which 46 handcrafted features



were computed. In parallel, ResNet-50 was applied to each
video frame, and after a mean pooling operation, 2,048 deep
features per video were obtained. Three experimental models
were developed to evaluate the predictive capability of
different feature representations: (i) handcrafted PPG features,
(i1) ResNet-50-based deep features, and (iii) a combined

multimodal feature set integrating both handcrafted and deep
representations. Models trained on individual feature sets
provided useful insights, but the combined approach
consistently outperformed the others, highlighting the
complementary nature of handcrafted physiological
descriptors and deep visual embeddings.

Table 1. Summary of NI BGL estimation studies

Study Method Device Subjects Performance
. . RMSE = 2.86 mg/dL,
Prasad et al. [13] SDNN 905 nm pulsed Cf:tie;(‘:fth photodiode 105 MAD = 8.77 mg/dL,
MARD = 8.49%
Ensemble learning (Voting R2=0.921,
Kumar et al. [14] Regressor: RF + ET + XGB) 940 nm IR LED sensor 611 RMSE = 27.36 mg/dL
. . . PhysioNet MSE = 0.22 mmol/L,
Song et al. [15] Multi-scale fusion (RBANet) Multi-signal wearable dataset 96.75% accuracy
Chellamani et al. . R?=0.98, MAPE = 3.02%,
[16] DSCNet IR + Red light PPG sensor 835 RMSE = 0.062
. GARNNSs (GAT + GRU, . . RMSE =~ 19.86 mg/dL,
Piao et al. [17] GATv2 + GRU) Graph-based PPG fusion architecture 136 MAE = 13.81 mg/dL
Mazgouti et al. . Continuous Glucose Monitoring RMSE =7.97-10.93 mg/dL,
[18] LSTM + XGBoost Fusion (CGM) data 12 R” up t0 0.98
Fathimal et al. Polynomial Regression Dual NIR LED system (940 and _ o
[19] (Linear, Quadratic, Cubic) 1050 nm) 4 MAPE =5.99%
= 0,
Jianetal. [20]  Random Forest and XGBoost ~ MAX86150 sensor (Red + IR PPG) ! (2;6;513 MA%D: 0 5931 5%,
Golap et al. [11] V(iii?t}bifed’cﬁfg 850 nm 6 NIR LEDs + 1 flash LED " R2 = 0.881,
p et al. gene board MAE +0.324
Programming)
. Video-based, PCR, PLS, L . 8 over 15 _
Nie et al. [8] SVR, RFR (best) Facial video via 940 nm NIR camera days MAE = 1.72 mmol/L
S 10-second fingertip video using _ o
Sridevi et al. Video-based, QSVM smartphone camera and 850 nm and 136 QSVM accEracy 89.30%,
[21] CV =92.50%
940 nm LEDs
Chinchanikar Video-based, XGBoost, 6 NIR LEDs,1 flash LED, 234 R2=10.89 (RGB),
and Dale [22] CatBoost, RFR, GBR Smartphone camera 0.84 (HSV)

Note: RF: Random Forest, ET: Extra Trees, GRANN: Graph Attentive Recurrent Neural Network, GAT: Graph Attention Network, GRU: Gated Recurrent Unit,
MGGP: Multi-Gene Genetic Programming, PCR: Principal Component Regression, PLS: Partial Least Squares, SVR: Support Vector Regression, RFR: Random
Forest Regression, QSVM: Quantum Support Vector Machine, GBR: Gradient Boost Regression

3. SYSTEM FRAMEWORK

The proposed system layout, as shown in Figure 1,
illustrates the complete operational workflow of the setup.
Data acquisition was performed using a smartphone camera to
record fingertip videos. From these videos, PPG signals were
extracted, and handcrafted features capturing key temporal
and frequency characteristics were computed. In parallel,
ResNet-50 was applied to each video frame to extract deep
features. Three experimental models were then developed and
trained separately using (i) handcrafted features, (ii) ResNet-
50 features, and (iii) a combined multimodal feature set. To
enhance robustness and minimize redundancy, an importance-
based feature selection process was applied to retain the most
informative attributes. The optimized feature set was then used
to train predictive models for accurate BGL estimation.

3.1 Experimental arrangement

The experimental platform configuration for the BGL
estimation system consisted of an NIR illumination unit, as
shown in Figure 2, and a smartphone camera. The NIR
illumination unit [23] incorporated six peripheral NIR LEDs
along with a central flash LED, which was used to boost the
overall illumination intensity. In the present study, a 940 nm
NIR illumination board was selected, as glucose exhibits
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notable absorption characteristics in the NIR spectrum,
particularly within the 940—1000 nm range. The video data
were acquired using a Samsung AS51 mobile, powered by
Android 10 and equipped with a 48-megapixel camera. The
camera recorded footage at a frame rate of 30 FPS, with a
screen resolution of 1080 x 2400 pixels, ensuring high-quality
image capture for accurate signal extraction.

AN

Multimodal Feature
Extraction
(ResNet + PPG)

Feature
Selection

Recording
fingertip video

Machine Learning
Model

Evaluation

[ Actual Blood Glucose ]

Figure 1. Model architecture overview



Figure 2. Hardware setup

During data collection, subjects placed their right-hand
fingertip on the NIR illumination board for video acquisition.
Initial trials revealed instability due to board displacement,
finger motion, and minor camera shifts from breathing. To
ensure consistency, a custom stabilization enclosure was

designed to securely fix both the NIR illumination unit and the
smartphone [22].

Despite this, occasional quality issues (e.g., sneezing,
coughing, or finger shifts) were observed. A video-quality
screening step was therefore implemented, where only
recordings yielding clear PPG signals were retained;
otherwise, re-acquisition was performed. Reference BGL
values were obtained using an Accu-Chek® Instant device for
validation of NI estimates.

3.2 Data acquisition

In the present study, fingertip videos in *.mp4 format were
recorded from 243 subjects (121 females and 122 males), aged
18-88 years, with varying weights and health conditions,
including both diabetic and non-diabetic individuals. Each
subject placed their right index fingertip on an NIR
illumination unit, and a 15-second video was recorded using a
smartphone camera. Subjects were recruited from various
local institutions in Pune, representing diverse socio-economic
and lifestyle backgrounds. Before recording, all subjects
followed hygiene protocols and provided informed consent.
Figure 3 depicts the structured workflow of the data collection

[ 4 -2 [ 4 fr—
Problem statement
explained to subjects

signed

:> Consent form :

i

method.
E
SN (2
<&

Clean, dry hands
‘With no nail polish

Subject history
documented

Iy

)

Blood glucose
measured using
glucometer

(=

15 second fingertip

Smartphone Camera

c"‘}cg

video recorded using

Cleaned hands

with sanitizer Relaxed sitting

before recording

Figure 3. Step-by-step process for subject data collection

4. SIGNAL PROCESSING AND
FEATURE EXTRACTION

MULTI-SCALE

To establish a robust framework for NI BGL estimation,
two primary feature sets were generated from fingertip videos:
handcrafted features derived from PPG signals, and deep
features extracted using the pre-trained ResNet-50 model.
Additionally, a hybrid feature set was created by combining
these two feature sets, leveraging the complementary strengths
of physiological descriptors and deep visual representations
for improved predictive performance.

4.1 PPG signal acquisition and characteristic feature
extraction

Figure 4 depicts the overall framework used for clean PPG
signal extraction from fingertip videos. For the extraction of
the PPG signal, the red channel was selected as it exhibited the
highest pixel intensity among the RGB channels.
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To ensure signal quality and remove potential distortions,
the initial 3 seconds and concluding 2 seconds of each video
were excluded. This resulted in 300 usable frames per subject.
To identify the ROI, K-means clustering was employed on the
video frames, segmenting pixel values into separate groups.

Based on the clustering outcome, a 500 x 500 pixel area
spanning rows 750 to 1250 and columns 0 to 500 was selected
as the ROI for computing the mean intensity of the red
channel. The mean red channel values across the defined
region were used to derive the unprocessed PPG signal. This
process is described by Eq. (1).

M N
1
PPG®) =72 > D heaij1) ()
i=1 j=1

where, M and N indicate the number of rows and columns in
the region of focus, and /... (i, j, ) corresponds to the intensity
of the pixel located at (7, j) at time ¢. To ensure precise PPG



signal analysis, preprocessing was applied to 10-second videos
(300 frames). A Butterworth band-pass filter (0.5-4 Hz) was
applied to remove motion artifacts and baseline drift while
preserving the physiological frequency range of heart rates
(30-240 bpm). The Butterworth design was chosen over other
filters (e.g., Chebyshev, elliptic) because it provides a
maximally flat frequency response in the passband, ensuring
minimal signal distortion—an important factor for
maintaining the integrity of the PPG waveform morphology.
Once the raw PPG signal was filtered, peaks were identified
using a peak detection method. A single PPG cycle with the

most distinct systolic peak was identified.
Figure 5 shows the block diagram of the PPG signal

the signal. Among these, the PPG cycle corresponding to the
maximum peak amplitude was selected as the representative
waveform, as it was assumed to be the least affected by noise
and the most physiologically relevant.

The first and second derivatives of the selected PPG
waveform were then computed to capture the rate of change
and acceleration in signal morphology. Additionally, the Fast
Fourier Transform (FFT) was applied to extract the frequency-
domain characteristics of the waveform. From the original
waveform, its derivatives, and its frequency representation, a
total of 46 features were extracted as shown in Table 2. Let 4
denote the derived handcrafted feature vector, as given in Eq.

Q).

processing and feature derivation applied to the filtered PPG »
signal. The process began with the application of a peak h = [hy, ha, .. hy] ER (2)
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Table 2. Handcrafted features
Feature Description Feature Description Feature Description
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4 Tpi 20 At/tpi f36 (ta1tta2)/tpi
5 y/x 21 tal 37 (to1+to2)/tpi
fo (x-y)/x 22 tol 38 (ter+t2)/tpi
7 7/X 23 tel 39 (Tei+t3)/tpi
8 (y-x)/x 24 tel 40 X(fo)
9 t1 25 ba/az f41 [X(fo)]
f10 t2 26 e2/az 42 X(f1)
f11 t3 27 (bate2)/az 43 [X(f1)|
f12 At 28 ta2 f44 X(f2)
f13 t1/2 29 th2 45 IX(£2)|
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4.2 Deep feature extraction from video frames using
ResNet

To preserve the spatial and textural information that is often
lost during the transformation of fingertip videos into a 1D
PPG signal, pretrained ResNet-50 was employed as a deep
feature extractor. Unlike handcrafted features that rely solely
on signal morphology, ResNet-50 focuses on learning
spatiotemporal variations in light absorption, which may be
indicative of blood volume changes linked to glucose levels.
Its ability to learn complex representations from raw visual
data makes it a powerful tool for enhancing model
performance in NI BGL estimation.

ResNet-50 is a deep CNN consisting of 50 layers, renowned
for its use of residual connections that facilitate the training of
very deep architectures without performance degradation.
These shortcut connections address the vanishing gradient
issue and enable efficient learning of both low- and high-level
features. The architecture consists of multiple convolutional
blocks, identity mappings, and batch normalization layers.
ResNet-50 is widely used for feature extraction in image-
based tasks due to its robustness and strong generalization
capability. Figure 6 shows the block diagram illustrating the
process of feature extraction from fingertip videos.

In the proposed work, fingertip video data for each subject
was processed by extracting frames between the 3rd and 13th
seconds, resulting in a consistent temporal segment of
approximately 300 frames per video. The frames were scaled
to 224 x 224 pixels and standardized using the predefined
ImageNet mean and standard deviation values [0.485, 0.456,
0.406] and [0.229, 0.224, 0.225], respectively, to ensure
alignment with the ResNet-50 framework.

To derive features, the final fully connected classification
layer of the ResNet-50 framework was removed. Let fresner be
a function that represents the ResNet-50 model’s feature
extraction process and is given by Eq. (3).
, = R224X224X1 — p2048

A3)

fResNe

For each frame /,, deep feature vector is given by Eq. (4).

X = fresnet(It) = R?048 4)

Fort=1, 2, 3, ..T, where, T = 300, x; represents features
from one frame and I, is the t" red frame of the video. This
resulted in a feature matrix for the entire video and is given by

Eq. (5).

X =[x,%p,...,%p] € R2048XT (5)

This configuration enabled access to the 2048-dimensional
feature vector from the penultimate layer. The model was
executed in inference mode using PyTorch with GPU
acceleration where available. Each processed frame was
passed through the network, and the resulting features were
stored in separate files for each video to facilitate modular
analysis. Processing 243 fingertip videos through ResNet-50
for deep feature extraction required approximately 2 hours and
32 minutes.

To convert the frame-level feature matrix X € into a
single, fixed-length representation for each video, temporal
mean pooling was applied across all frame-level features. This
operation averaged the ResNet embeddings over 300 frames,
resulting in a 2048-dimensional vector that compactly

R2048><T
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captured the aggregated spatiotemporal information of the
entire video, as expressed in Eq. (6). By averaging out
transient variations, this strategy reduces frame-level noise
and motion artefacts while emphasizing stable spatial patterns
that are more likely to reflect underlying physiological
changes. Mean pooling was employed to obtain a compact and
robust feature representation suitable for tree-based regression
models. It reduces the influence of outlier frames that may
adversely affect performance in max pooling. Furthermore,
mean pooling lowers dimensionality and computational cost,
improving the sample-to-parameter ratio and enhancing the
robustness of subsequent regression modeling.

T
1
;o _ € R2048
x TZ Xt
t=1

The resulting pooled vector X captures the average
spatiotemporal characteristics of the video, serving as its
compact deep representation. The aggregated dataset was
compiled into a unified CSV file, with each row corresponding
to one video sample.

Thus, two distinct feature sets were derived: the first
comprising 46 handcrafted PPG features and the second
consisting of 2048 deep features extracted using ResNet-50. A
third hybrid feature set was then constructed by concatenating
the handcrafted and deep features, resulting in a total of 2094
features. These three feature sets were subsequently employed
to train and evaluate three experimental models: one based
solely on handcrafted PPG features, one utilizing ResNet-50
features, and one leveraging the combined hybrid feature set.

(6)

5. FEATURE OPTIMIZATION AND MODEL
CONSTRUCTION

Feature importance-based optimization was utilized to
identify and retain the most relevant features for NI BGL
prediction. This method evaluated the significance of every
feature to the model’s predictive performance, enabling the
selection of an informative subset while eliminating redundant
or irrelevant variables.

The importance of each feature was quantified based on the
average reduction in the loss function each time it was used to
split a decision node within the ensemble, as shown in Eq. (7).
The significance of feature f was evaluated based on its
influence on the loss function.

Ir= XY AL
f teTf t

(7
where, Tf is the set of all nodes where feature f is used for
splitting. 4L, denotes the reduction in the loss function at node
t.

Features were ranked according to their importance scores,
and only the most informative ones were retained to improve
generalization, reduce the risk of overfitting, and enhance
computational efficiency. Feature importance analysis was
performed independently for each ensemble model (CatBoost,
Random Forest, XGBoost, and Gradient Boosting) and for
each feature set.

After optimization, the final number of selected features
used for model training was as follows: all 46 features were
retained for the handcrafted PPG feature set; for the ResNet-
50 deep features, 11532048 features were retained depending



on the model; and for the hybrid feature set, 793—-2094 features
were retained.

It should be noted that tree-based feature importance can be
biased toward features with higher cardinality or larger
numeric ranges, potentially overestimating their influence.
Moreover, these importance scores do not explicitly capture
complex feature interactions, which should be considered
when interpreting the predictive contribution of individual
features. Despite these limitations, this approach provides a
practical and computationally efficient method for identifying
informative features in moderate-sized datasets.

6. RESULTS AND DISCUSSION

A total of 243 subjects, including both diabetic and non-
diabetic individuals, participated in this study, with ages
ranging from 18 to 88 years. For each subject, a 15-second
fingertip video was recorded using a mobile camera paired
with a NIR illumination unit to improve signal fidelity. From
each video, a PPG waveform was extracted, from which 46
handcrafted features were computed. Additionally, 2048 deep
features were extracted from video frames using ResNet-50
CNN. A third hybrid feature set was then constructed by
combining the handcrafted and deep features, resulting in a
2094-dimensional dataset per subject.

Feature importance-based selection was employed to
prioritize the most informative variables within the feature
space. This approach ensured that the most relevant
information was preserved while reducing redundancy among
correlated features. By retaining variables that contributed
most strongly to predictive performance, the method provided
a refined and balanced feature set for subsequent model
training. R? quantifies the proportion of the target variable's
variance explained by the predictions, thereby indicating its
degree of fit. In contrast, MAE measures the mean of the
absolute deviation among actual and predicted glucose values,
serving as an intuitive metric of prediction error that remains
stable in the presence of outliers. The corresponding
mathematical definitions are provided in Egs. (8) and (9).

n
1
MAE = EZlygact - ygpred| (8)
i=1
n
i1 gact = Ygprea)®
RZ —1_ Zl—l gact gpred (9)

n
Z izl(ygact - ymean_of_gact)z

where, yqaci: Measured BGL, ygprea: Algorithm-generated BGL,
Vimean_of gact: Average measured BGL.

An initial 80:20 train-test split was carried out to evaluate
model generalization on unseen data. A stratified 5-fold CV
was subsequently applied to the training set by dividing it into
five equal subsets. In each iteration, four folds were employed
for training, while the remaining fold was used for validation.
This process helped assess the model’s robustness, reduce
variance from individual splits, and ensure more reliable
performance estimation.

To predict BGL, several ensemble regression models were
evaluated, including RFR, GBR, XGBoost, and CatBoost.
Each model was trained on an optimized subset of features,
obtained by applying an importance-based feature selection
method to the PPG dataset, the deep feature dataset, and the
hybrid dataset. The number of selected features varied across
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datasets and regression models, reflecting the differing
contributions of features to predictive performance, reducing
redundancy, and the varying sensitivity of models to feature
relevance.

Figures 7(a) and (b) present the prediction performance of
the evaluated regression models on the test dataset in terms of
R? and MAE, respectively. CatBoost and Gradient Boosting
achieved the highest predictive accuracy when trained on
hybrid features (R>=0.88 and 0.91, MAE = 14.49 and 13.72,
respectively), while XGBoost and Random Forest showed
moderate performance (R? = 0.80 — 0.85). Models trained
solely on handcrafted PPG features had lower predictive
power (R? = 0.52 — 0.83), with ResNet-50 features yielding
intermediate performance. These results highlight the
complementary nature of hybrid features: deep embeddings
provide rich abstract representations, whereas handcrafted
descriptors preserve physiologically interpretable signal
properties. 5-fold cross-validation further confirmed these
observations. Hybrid features maintained superior
generalization performance across all models. Figures 8(a) and
(b) illustrate the R* and MAE values obtained after 5-fold
cross-validation, highlighting the comparative performance of
the three feature sets. CatBoost achieved the highest R2 of
0.89 and lowest MAE of 15.13 on hybrid features, followed by
Gradient Boosting (R? = 0.79, MAE = 19.14). XGBoost and
Random Forest achieved R?=0.70 — 0.76 and MAE = 18.96 —
25.02. The superior performance of CatBoost can be attributed
to its strong ability to model intricate nonlinear interactions
among heterogeneous features, its inherent robustness to
outliers, and its efficient handling of high-dimensional hybrid
feature spaces, thereby making it particularly suitable for
reliable blood glucose level prediction from fingertip video-
derived data.
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Figure 7. Comparison of (a) R?and (b) MAE values for
different regression models across PPG features, ResNet-50
deep features, and the hybrid feature set
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Figure 8. Comparative (a) R and (b) MAE values of
regression models trained on PPG, ResNet-50, and hybrid
feature sets under 5-fold cross-validation

To enhance statistical rigor, all experiments were repeated
ten times using different random seeds. The plots in Figures 7
and 8 illustrate the distribution of model performance across
runs, showing mean values along with 95% confidence
intervals. This approach mitigates the effect of random
initialization and sampling variations on the reported results.
Among all ensemble regressors, CatBoost consistently
achieved the lowest MAE and the highest R2 across repeated
trials, confirming its robustness and stability. A paired t-test
was conducted to examine whether the observed improvement
of CatBoost over other models was statistically significant.
The analysis revealed that CatBoost’s MAE was significantly
lower than those of Gradient Boosting (p < 0.05), XGBoost (p
< 0.01), Bagging Regressor (p < 0.01), and Random Forest (p
< 0.01), confirming that its superior performance is
statistically meaningful.

Error analysis revealed that the largest prediction errors
were primarily associated with extreme glucose values and
suboptimal acquisition conditions, such as low ambient
lighting or slight finger motion. Variability in demographics,
including age, BMI, and finger thickness, also contributed to
error differences, with younger subjects with thinner fingers
exhibiting slightly lower errors due to higher PPG signal
quality. While the models demonstrated robust performance,
several limitations may affect generalizability. Skin tone can
influence PPG signal contrast, BMI and vascular health may
affect peripheral blood flow, and environmental factors such
as lighting and motion artifacts can introduce additional noise.
Furthermore, tree-based feature importance may not fully
capture complex feature interactions, and the study population
was limited.

In addition to predictive performance, the computational
efficiency of the evaluated models was assessed to consider
real-time deployment feasibility. Inference time per sample
was measured on a standard workstation with an Intel i7 CPU
and 16 GB RAM. CatBoost and Gradient Boosting required
approximately 5-7 ms per sample, whereas XGBoost and
Random Forest required 6—9 ms per sample.

Overall, integrating handcrafted PPG and deep ResNet-50
features consistently reduced prediction error and enhanced
generalization across all models. Figure 9 summarizes the final
hyperparameter settings for each regression model.

| Regression Models |
L1

| | ! !

XGBoost
n_estimators: 300
learning rate: 0.07
max_depth=5

Random Forest
n_estimators: 100
max_depth=7

Gradient
Boosting
n estimators: 300
learning_rate: 0.09

CatBoost
iterations: 1000
learning-rate: 0.07

depth=7

Figure 9. Hyperparameter configurations for evaluated
regression models
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Figure 10. (a) CatBoost regression and (b) Bland—Altman
agreement analysis for the hybrid dataset



Table 3. Evaluation of the proposed method against current video-based BGL prediction techniques

Reference Device Feature Extraction Subject Count Algorithm Results
Nie et al. [8] industrial NIR camera PPG 8 RFR R?=0.60
Golap et al. 850 nm NIR LED Nexus- 6p PPG 111 MGGP R2=088
[11] smartphone
Sridevi et al. Pixel-2 smartphone with PPG 136 Quantum Support Accuracy =
[21] 850 nm and 940 nm LEDs Vector Machine 89.30%
Haque et al. 850 nm NIR LED, Nexus- 6p Deep Neural 2
[24] smartphone PPG 93 Network (DNN) R*=0.90
Islam et al. prediction errors =
[25] OnePlus 6T PPG 52 PLS 17.02 mg/dL
R?=0.88 and avg
Proposed 940 nm NIR LED module, Handcrafted PPG + Deep 3 CatBoost ’ cv ’
work Samsung A51 smartphone Features (ResNet-50) R2=0.89

In terms of computational efficiency, all tree-based
ensemble models demonstrated sufficiently low inference
times for near real-time blood glucose estimation from
fingertip videos. CatBoost combines high predictive accuracy
with efficient inference, making it a strong candidate for
practical deployment in mobile or embedded applications.
Although training with hybrid features required a higher
computational cost due to increased dimensionality, this is a
one-time process and does not affect real-time prediction.
Overall, the results highlight that integrating handcrafted PPG
features with deep ResNet-50 representations enhances both
predictive accuracy and error minimization, establishing
hybrid features as a robust strategy for non-invasive BGL
estimation from fingertip video data. Figure 9 presents the
final hyperparameter settings used for each ensemble
regression model.

Figure 10(a) presents the regression and (b) Bland—Altman
plots for the CatBoost model trained on the hybrid feature set,
evaluated on the 20% test dataset comprising 49 subjects. The
regression plot shows a strong correlation between predicted
and reference BGL, indicating high predictive accuracy. In the
Bland—Altman analysis, 45 out of 49 points (91.84%) were
located within the 95% limits of agreement (Region 1,
considered acceptable), while 4 points (8.16%) fell outside
these limits (Region 2), suggesting minor deviations. These
findings further validate the clinical reliability of the model,
with a large majority of predictions exhibiting acceptable
agreement with reference values.

Table 3 presents a performance comparison between the
proposed approach and multiple previously reported contact
and non-contact methods for estimating BGL using video data.

All the methods listed above estimate BGL by extracting
PPG signals from video data. Although Sridevi et al. [21] and
Haque et al. [24] reported higher R? values (0.89 — 0.90), their
studies involved relatively small subject counts (136 and 93,
respectively). The proposed work achieved comparable
predictive performance (R? = 0.88; average CV R? =0.89) on
a larger cohort of 243 subjects, demonstrating improved
generalizability. Unlike these approaches, the proposed
method incorporates deep features extracted directly from
fingertip video frames using a pre-trained ResNet-50 CNN. By
fusing handcrafted PPG features with high-level CNN-derived
representations, the model leverages both physiological
domain knowledge and abstract visual patterns. Specifically,
ResNet-50 captures spatiotemporal variations in light
absorption across video frames, reflecting subtle blood volume
changes associated with glucose levels—information often
lost during conventional signal extraction.
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7. CONCLUSION AND FUTURE SCOPE

The proposed study presented an NI approach for BGL
estimation using fingertip videos captured via a smartphone
camera. A hybrid feature set was developed by combining 46
handcrafted PPG features with 2048 deep features derived
from a pre-trained ResNet-50 model, resulting in a 2094-
dimensional representation. Feature importance-based
selection was applied to prioritize the most informative
variables, preserving relevant information while minimizing
redundancy. Among the evaluated machine learning models,
CatBoost outperformed others, achieving a test R? score of
0.8801 and MAE of 14.50. Five-fold cross-validation further
validated its robustness, yielding an average R? of 0.8943 and
MAE of 15.13. Bland—Altman analysis showed that 91.84% of
the predictions fell within the 95% limits of agreement,
indicating strong alignment with reference glucose values.

While the proposed method demonstrated promising
performance, the dataset used was relatively small for
developing a highly generalizable model. Expanding the
dataset to include a larger and more diverse population is
essential to enhance model robustness and ensure broader
applicability. Future studies should also consider
physiological and environmental variations, including skin
tone, BMI, ambient lighting, temperature, and vascular health,
which may influence PPG signal quality and system
performance.

To facilitate clinical translation, several steps are necessary
before deployment: rigorous validation on diverse patient
populations, integration with real-time smartphone
applications, regulatory compliance, and assessment of
usability in daily life. Moreover, incorporating adaptive
modeling techniques that adjust to individual physiological
differences can enhance prediction accuracy, computational
efficiency, and user-friendliness. Overall, the proposed
approach provides a foundation for scalable, real-time NI
glucose monitoring, and further development could enable
practical clinical and home-based applications for diabetes
management.
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