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Mobile Ad-hoc Networks (MANETs) are networks of wireless devices formed from 

mobile nodes that might self-configure and self-healing. They offer scalability and 

independence from fixed infrastructure, making them compatible with a variety of 

applications, including duties in the military, disaster recovery, healthcare, sensor 

networks, and the Internet of Things (IoT). To enhance the effectiveness of software-

defined networking (SDN) and address the challenges of MANETs, SDNs have been 

developed to integrate centralized control with flexible governance. Notwithstanding 

this advancement, MANETs continue to be susceptible to blackhole attacks, where 

malicious nodes sever packet flow to and from them, thus disrupting network 

connectivity. This research proposes a deep learning-based detection approach tailored 

for SDN integrated with MANET-IoT ecosystems. A hybrid DL network architecture 

is proposed in this work, which integrates several one-dimensional convolutional layers 

with Bidirectional LSTM (BiLSTM) and LSTM units, capturing both spatial and 

sequential dependencies from the network traffic data. This was supported by 

constructing a reasonable dataset through blackhole condition simulations with 16 

nodes on the IoT-Lab testbed with varying packet sizes. Critical parameters such as 

round-trip time (RTT), packet loss, and routing anomalies were incorporated into the 

dataset. Experimental findings indicated that the proposed approach surpassed 

comparable state-of-the-art algorithms, achieving an impressive 99.5% detection 

accuracy. This paper illustrates the potential of deep learning in enhancing threat 

detection within SDN-enabled MANET-IoT networks. 
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1. INTRODUCTION

An ad hoc wireless network is the name given to a wireless 

communication network made up of mobile devices like 

smartphones. In the absence of fixed infrastructure, these 

nodes are capable of creating a network that is decentralized 

in nature and can dynamically configure itself. A collection of 

mobile nodes that are capturing and sharing information is 

known as “mesh”. Each node acts autonomously as a router. 

Within a network, membership have the ability to move and 

change their places of residence, which makes it easier for 

them to share resources. Due to its restricted resources, Mobile 

Ad-hoc Network (MANET) has a number of difficulties, 

including power limitations, reduced bandwidth, range, and 

security [1]. One of the primary problems with MANET is its 

shortage of a centralized control and command architecture. 

MANET comprises two phases for mobile node 

communication across multi-hop wireless channels: link layer 

protocol, which ensures one hop connectivity across multiple 

hops, and the protocol of network layer, which extends the 

connectivity to multiple hops [2]. Two of the most significant 

tasks of the network layer are forwarding data packets and 

performing ad hoc routing. They communicate with one 

another for the purpose of carrying packets from where they 

came from to the destination. The ad hoc routing protocol may 

maintain the route configurations of every node up to date by 

transmitting messages regarding routing between them [3]. 

However, each packet forwarding as well as routing activities 

are vulnerable to malicious attacks, which can lead to a variety 

of disruptions in the network layer. These interruptions can be 

caused by a number of different factors. Attackers have the 

ability to bring traffic to certain locations within the network 

by using various routing protocols [4]. 

These networks suffer from two main issues: energy 

conservation and security breaches brought on by attackers. 

The advanced communication system that separates the 

control plane from the system informational plane is called 

software-defined networking (SDN) [5]. It is thought to be a 

dynamic, layered, scalable, and energy-efficient method of 

managing and controlling network topologies, both wired and 
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wireless. In SDN-based MANETs, a logically centralized 

SDN controller is responsible for managing flow rules, 

monitoring network traffic, and updating routing paths in real 

time. The SDN controller and MANET were combined to 

address security-related issues [2]. SDN MANET indicates 

that the structure has been customized to a certain operational 

requirement, ecosystem conditions, and equipment 

performance. Some of the primary benefits of SDN MANET 

are network administration, bandwidth control, improved 

security, and managing energy while routing. This centralized 

control also allows for dynamic mitigation of malicious 

behavior and anomaly detection based on global network state 

[6]. 

In MANET, there are two different types of attacks [7], both 

passive and active. Passive attacks [8] do not change the data 

delivered over the networking; rather, they attempt to harvest 

sensitive data from network communications. A passive 

attacked node might act selfishly in order to steal the 

information that was sent. Passive attacks are challenging for 

detection because they are not disrupting network 

functionality [9]. Typically, encryption is used to defend 

against passive attacks. Active attacks [10] hinder the passage 

of messages between nodes. Intruders inject false information 

into the network. These attacks can occur at any protocol layer, 

including network, transport, application, and others. Active 

attacks are more severe and can be either internal or external 

in nature [11]. Black Hole Attack is one type of active attack 

[12]. The performance of a MANET can be significantly 

affected by a black hole attack, which can be executed by 

either a one independent node or as a collective of malicious 

nodes. In a black hole attack, a node that is malicious uses it is 

routing protocol to advertise itself as the node with the shortest 

path to the target [13]. They present a novel detection scheme 

for active and passive black-hole attacks in MANETs. 

Furthermore, the system is concerned with evaluating a set of 

selected characteristics for every node-based on AdaBoost 

SVM technique. These characteristics are gathered from 

cluster member nodes using Ad hoc On-demand Multi Path 

Distance Vector (OMDV) and Low-Energy Adaptive 

Clustering Hierarchy (LEACH) protocol for routing and 

clustering methods. Since SVM appears to be a stable 

classifier, the AdaBoost weight adaptation technique 

significantly impacts the classification process by enhancing 

the weights of the extracted features. This hybrid approach is 

essential for detecting both passive and active black hole 

threats in MANETs [13]. This aggressive node announces the 

availability of new routes without examining its routing table. 

In this attack, the perpetrator node is always able to respond to 

the route request, so it modifies the data packet and discards it 

[14]. In a protocol dependent on flooding, the requesting node 

will receive the malevolent node's response before receiving a 

response from an actual node; thus, a malicious and bogus 

route will be created. When this route is configured, it is up to 

the node to decide whether to delete packets or forward them 

toward an unknown destination [15]. Mitigates identified 

security threats [16]. Effect of mobility variation to determine 

the accuracy of the detection process, including the routing 

overhead protocol [17]. Implements Dynamic Spectrum 

Resource Control (DSRC) as a mechanism to perform real-

time threat mitigation after threat detection for network 

recovery purposes [18]. Spike neural networks have also been 

shown to classify SDN traffic efficiently [19]. 

To address this issue, we propose a DL-based detection 

model tailored for SDN-based MANET-IoT networks. The 

architecture combines multiple 1D convolutional layers with 

BiLSTM and LSTM units to learn both temporal and spatial 

behavior of network traffic. The second contribution is the 

simulation strategy and dataset generation, performed using 

the IoT-Lab testbed with controlled black hole attack scenarios 

and multiple packet sizes across 16 nodes. In along with 

providing high-accuracy detection, this dataset replicates 

actual IoT traffic behavior. 

2. MACHINE LEARNING TECHNIQUES FOR

DETECTION OF BLACK HOLE ATTACKS IN

MANET-IOT NETWORKS

It is noted that additional research is needed on the 

implementation of machine learning for security purposes in 

MANETs. Attacks within MANET can be effectively 

managed with the help of machine learning resources, which 

are capable of automated attack detection and information on 

specific attack patterns. More recent publications about 

blackhole attack detection on MANETs include. Mahin et al. 

performed a blackhole attack with two infected nodes in 2019. 

They managed through QualNet 7.4v emulator, which was 

building control DYMO routing protocol on the network. 

Some of the metrics in analyzing QualNet statistics data 

include packet delivery ratio (PDR), packet loss rate, 

throughput, and average transmission latency. 

To monitor the system, average transmission latency, as 

well as packet drop rate, are defined. In this study, the authors 

use different machine learning classifiers and compare their 

accuracy for the selected metrics. The DT, KNN, SVV, and 

neural network classifiers were tested in MATLAB. The 

authors believe that SVM is the most accurate classifier when 

compared to other algorithms. 

Effectively diagnosing the black hole attack and mitigating 

it by deactivating the malicious nodes at the appropriate 

moment, the proposed mechanism enables the network to 

achieve peak performance. Later, the work is evaluated against 

a variety of speeds, pause times, and terrain types to validate 

our proposal. After applying the proposed strategy, it is 

perceived that the network's performance has improved, 

resulting in an increase in PDR and throughput and a decrease 

in packet drop rate along with transmission latency. Through 

this endeavor the weaknesses of DYMO routing protocol have 

been successfully bridled. Research results indicated that the 

SVM achieves the highest possible detection accuracy, which 

is 97.5%, while NN gain second best detection value which is 

95%, DT and KNN gain the lower results which are 92.5% and 

85% respectively. 

However, practical deployments of SDN-MANETs face 

real-world limitations. DL-based intrusion detection models 

can be computationally intensive and may not be optimal for 

energy-constrained IoT devices [20]. In addition, our 

experiment is limited to 16 nodes, and further validation is 

needed to ensure scalability. This limitation, while 

representative for controlled testbeds, may affect scalability 

when transitioning to real-world, large-scale deployments 

Finally, adversarial evasion techniques that manipulate input 

data could potentially deceive detection models, posing 

another challenge that future implementations must address. 

Jayakrishna and Prasanth [20] presented an effective 

intrusion identification and prevention model for MANET 

using a hybrid KNN-LSTM classifier with COOT 

optimization for increasing network security. The suggested 

intrusion prevention and detection approach is divided into 
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four phases: separating attack nodes from normal nodes, 

forecasting different sorts of assaults, determining the 

frequency of attacks, and implementing an intrusion 

prevention mechanism. For achieving the highest trust value, 

the attack nodes are differentiated from the normal nodes using 

COOT optimization in the first instance. In the second phase, 

a hybrid LSTM-KNN model for detection of any kind of 

network threat is demonstrated. Preprocessing, feature 

extraction, and classification of different types of attacks are 

all done in the second phase. 

The proposed methodology will be assessed with respect to 

mobility volatility to measure the precision of the detection 

process, including the expenses related to the routing protocol. 

According to the evaluation outcomes, the MANET 

successfully identified both passive and active black hole 

attacks with a 97% accuracy rate and a reasonable time 

complexity across different mobility scenarios. Additionally, 

the strategy proposed accurately differentiates between 

malicious and benign node dropout behavior by using a 

tunable threshold. Different machine learning algorithms were 

applied by Abdan and Seno et al. [21], such as KNN, DT, SVM, 

CNN, NB, and LDA. Moreover, as far as feature extraction in 

the context of MANETs is concerned, we added node 

attributes, especially the node speed, to our extraction features. 

A total of 3997 samples have been gathered, consisting of 

3781 normal samples and 216 attack samples, encompassing 

both normal and malevolent models. The classification results 

show that the SVM achieves 97.1%, KNN achieves 98.2%, DT 

achieves 98.9%, LDA achieves 94.7%, Naive Bayes (NB) 

achieves 95.2%, and CNN techniques achieve 96.4% in 

accuracies. According to the results of their study, the 

accuracy of the DT method achieved 98.9%, which surpasses 

the accuracy of alternative approaches. In the subsequent order, 

LDA, CNN, NB, KNN and SVM show a good level of 

accuracy. 

The third phase carries out assault classification, 

determining if the attack is abnormal or normal. DNA 

encryption algorithm is applied for security, and the final 

phase tries to limit the attack nodes detected in the network 

using a two-stage authentication scheme. More satisfactory 

results were obtained when the suggested hybrid KNN-LSTM 

classification model was compared with a set of measures, 

including 96% inaccuracy, 93% precision, 82% recall, 0.04 

error rate, and 85% F1-score. This proves that the proposed 

security solution successfully reduces severe MANET attacks. 

To further improve attack detection in MANET and SDN-

IoT settings, various recent research works investigated hybrid 

DL and ensemble learning methods in addition to the 

aforementioned works. For example, Altunay and Albayrak 

[22] analyzed machine learning for wireless sensor network

applications, and Alsheikh et al. [23] suggested a hybrid CNN-

LSTM model for IoT-based intrusion detection. Primarily for

MANETs, Alsoufi et al. [24] used anomaly-based deep

learning methods. Pandey and Singh [25] and Rui et al. [26]

have also shown ensemble approaches to carry out black hole

detection, which provide valuable frameworks for malicious

node detection. Other efforts, like made by Abdallah et al. [27]

and Webber et al. [28], are based on trust-aware classification 

models and SDN-based secure routing. Additionally, an 

integrated DL intrusion detection model designed for SDN 

systems was described by Ataa et al. [29]. These approaches 

collectively underscore the growing significance of intelligent, 

adaptive models for securing next-generation ad hoc networks. 

3. METHODOLOGY

3.1 Dataset generation 

To simulate an attack, the first step is to collect data from a 

network. In this experiment, we put up an accessible IPv6 

Wireless Personal Area Network (WPAN) net in Grenoble on 

16 nodes from IOT-Lab with different packets sizes 10, 20, 50, 

100 and 200. The data that we analyze is derived from a series 

of tests on IoT devices, which we performed in a simulator. 

We want to know if we can recognize network attacks inside 

the IoT environment using data from Internet Control Message 

Protocol (ICMP), a particular network layer protocol packet. 

The experiment set includes scenarios involving Black Hole 

attacks, along with typical behavior. To emulate black hole 

attacks, selected nodes were configured to drop all incoming 

packets while falsely advertising optimal routing paths 

through manipulated RPL control messages. This ensured the 

attacker could attract traffic while preventing successful 

delivery. Each experiment is run in a period of 200 ICMP 

pings for each node. This value was chosen as a compromise 

between ensuring sufficient statistical diversity and 

maintaining a manageable experiment runtime on the 

constrained IoT-Lab testbed. The resulting dataset includes 

key features such as round-trip time (RTT), packet loss, hop 

count, and routing anomalies. Outliers were identified by 

applying the Interquartile Range (IQR) method to the RTT 

values, where any RTT below Q1 − 1.5 × IQR or above Q3 + 

1.5 × IQR was labeled as anomalous behavior. These outliers 

are critical in signaling delay-based disruptions caused by 

attack scenarios. The dataset generated involves several 

relevant features that include: 

• Node ID (node id): The ID of each of the 16 nodes.

• Packet Count (pckt_count): Number of packets

received during certain packet time.

• Total RTT (tr_time): The summation of RTT of each

node during test with a specific packet size. RTT

represents the time measured in milliseconds (ms),

required for a connection request to go from its starting

point to its destination and back.

• Hops: The number of routers through which a packet (a

portion of data) travels from the source to its

destination.

• Outliers: Number of anomalies during a specific time.

• Loss: The number of packets lost during a specific time.

• Var: The RTT Variance, which indicates path jitter.

• Mean: The mean (average) RTT.

• Max: The maximum RTT.

• Min: The minimum RTT.

Table 1. Sample of the generated dataset 

Node Tr_time Pckt_count Mean Var Hop Min Max Loss Outliers Label 

aaaa::212:740°:0:0:8 1020.473 181 5.63922 0.13841 4 5.01728 6.67236 19 11 1 

aaaa::212:740°:0:0:4 908.424 195 4.65568 0.17689 2 4.05263 6.81404 5 11 0 

aaaa::212:7407:0:0:7 908.0212 181 5.34815 0.16515 3 4.59145 7.24356 19 10 1 

aaaa::212:7406:0:0:6 703.2819 148 4.75217 0.20704 2 4.13676 6.57697 52 7 0 

aaaa::212:740e:0:0:e 851.6833 127 6.70272 0.13688 5 5.97886 7.62168 73 7 0 
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In addition, it includes a label indicating whether the node 

is part of a black hole attack. Table 1 shows the sample of the 

dataset. 

3.2 Proposed model structure 

Four 1D layers based on convolution, two BiLSTM layers, 

two LSTM layers, an input layer, a permute layer, a 

concatenate layer, a dropout layer, and a dense layer are all 

incorporated in the proposed model. This CNN layout 

combines several types of different functional layers, 

including rectified linear units (ReLU), pooling, and 

convolution. Data from time series provides sequential 

substances that are necessary for interpretation and are 

adequately retrieved by the convolutional layer. In CNNs, 

pooling layers make down sampling less difficult. The CNN 

employs the band combinations generated by the permutation 

layer to create strong classifying features. By combining the 

outputs of multiple disparate layers into a single tensor, the 

pooling layer is essential for multi-task learning. By 

leveraging common features across tasks, this fusion improves 

performance and is best suited for combining features learned 

from different activities. Furthermore, pooling layers improve 

the training efficiency of multi-task models by reducing 

training time and parameters. This efficiency results from the 

application of shared layers, which enables the model to learn 

from more than one task simultaneously. Furthermore, by 

aggregating similar features across tasks, pooling layers 

improve the model's ability to generalize across new data 

points. The model becomes better able to handle new cases 

that are similar to cases learned by transferring knowledge 

from various processes. Below is a representation of the 

presented model, a three-level stacked CNN-BiLSTM-LSTM 

model with an autoencoder architecture: 

• Layer 1: Input layer.

• Layer 2 (permute layer): The dimensions for the input are

modified employing this type of layer.

• Layer 3, or its convolutional 1D layer: This layer is

composed of up to 128 filters, each with a padding of 1

and a kernel size of 3. This layer transports results to the

convolutional layer (Layer 5), resulting from the

collection of input data from the input layer (Layer 1).

• Layer 4 (convolutional 1D layer): This layer, containing

128 filters with a kernel dimension of 3 and padding of 1,

accepts the data input from Layer 2 (permutes layer) and

passes its outcome to Layer 6 (convolutional layer).

• Layer 5: This convolutional 1D layer has 64 filters with

a kernel size of 1 and a padding of 1. For the purpose of

transmitting outputs to the Layer 7 (BiLSTM layer), this

layer receives input data from Layer 3 (convolutional

layer), mirroring Layer 5.

• Layer 6 (convolutional 1D layer): This layer comprises

64 filters with a kernel dimension of 1 and padding of 1.

Furthermore, it collects information from input from the

convolutional layer (Layer 3) and transfers it towards the 

BiLSTM layer (Layer 8). 

• Layer 7: Convolutional Layer 5's incorporated layer, the

BiLSTM layer, has 128 filters. It transfers outputs to the

Layer 9 (LSTM layer) while collecting input data from the

Layer 5 (convolutional layer).

• Layer 8 (BiLSTM layer): The combined layer for

convolutional Layer 6 has 128 filters. It transfers results

to the Layer 9 (LSTM layer) after collecting input data

from the Layer 6 (convolutional layer).

• Layer 9 (LSTM layer): This layer, which is the integrated

layer for BiLSTM Layer 7, consists of 128 filters. It

transfers output to the layer 11 (concatenate layer) after

reading input data from the layer 7 (BiLSTM layer).

• Layer 10 (LSTM layer): This layer connects to BiLSTM

layer 7 and has 128 filters. It transfers results to the layer

11 (concatenate layer) after reading input data from the

Layer 8 (BiLSTM layer).

• Layer 11 (encoded columns): A concatenate layer that

produces a map with several features. It passes the feature

maps to Layer 12 (dropout layer) after concatenating them

from the Layers 9 and 10 (LSTM layers).

• Layer 12 (dropout layer): Randomly sets 20% of the input

units to 0 during training in order to apply a 20% dropout

rate to Layer 11 (encoded columns) and avoid overfitting.

The overall framework of the proposed model is shown in 

Figure 1. 

Figure 1. Structure of 3-layer stacked CNN-BiLSTM-LSTM 

model 

4. RESULTS AND DISCUSSION

4.1 Dataset preparation and analysis 

Data resulting from networks could have different meanings 

and variance due to their different network topologies. This 

could reduce the learning rate of DL algorithms and ML. Thus, 

we apply features normalization, the results are shown in 

Table 2. 

Table 2. Dataset after normalization process 

Node Tr_time Pckt_count Mean Var Hop Min Max Loss Outliers Label 

aaaa::212:7408:8:808 0.885857 0.903553 0.551169 0.096433 0.75 0.584472 0.446894 0.096447 0.6875 1 

aaaa::212:740a:4:404 0.979108 0.974619 0.25959 0.131021 0.25 0.27682 0.332001 0.025381 0.6875 0 

aaaa::212:7407:7:707 0.873129 0.903553 0.454029 0.121016 0.5 0.560327 0.623121 0.096447 0.625 0 

aaaa::212:7406:6:606 0.599682 0.736041 0.286272 0.159708 0.25 0.303937 0.325619 0.263959 0.5625 1 

aaaa::212:740e:ee:0e 0.729583 0.629442 0.836614 0.094571 1 0.891438 0.669655 0.370558 0.4375 0 
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Figure 2. Data correlation results 

Figure 3. Features importance analysis results 

4.2 Selection of features 

Certain features may be more significant than others; 

therefore, selecting a suitable set of features will assist in 

improving the results provided by a learning classifier. Hence, 

we amylase dataset for correlation of features. In this step, the 

data has been analyzed to find the correlated variables. By 

removing highly correlated features, the dimensionality of the 

dataset is decreased, resulting in increased processing 

efficiency. The importance of achieving faster training times 

becomes particularly pronounced in situations that require 

real-time processing or extensive datasets. The Seaborn 

correlation technique is used to investigate data correlation. 

Making a correlation matrix and correlogram is a breeze with 

Seaborn. Because the Seaborn correlograms immediately 

illustrate the relationship between each variable in your matrix, 

they are helpful for exploratory investigation. To find a 

correlation between features, the threshold value of 0.8 is used, 

where the feature is correlated if it is above the threshold value. 

Figure 2 shows the correlation analysis results for each code 

smell dataset. 

From Figure 2, the correlation matrix shows that, with the 

exception of outliers, every feature has a roughly negative 

correlation with the class. This shows that a model may be 

trained to distinguish between networks that are under attack 

and those that are not. Additionally, we choose the most 

important features iteratively using the Random Forest 

Classifier. Hence, the feature with a high importance distorts 

the influence of other features and may lead to overfitting, 

whereas a characteristic with a low importance may cause the 

learning process to slow down or even diverge. Figure 3 shows 

the feature importance analysis results. 

Table 3. Training and validation results for proposed models 

Accuracy (%) N Precision (%) A Precision (%) N Recall (%) A Recall (%) N F1-score (%) A F1-score (%) 

99.557 99.4569 99.4569 99.6525 99.4078 99.6368 99.4323 
*N: normal; ** A: black hole attack
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Table 4. Summarizing the k-fold results 

Fold Accuracy (%) Precision (%) Recall (%) F1-score (%) 

1 99.08 99.01 99.12 99.06 

2 99.14 99.07 99.18 99.12 

3 99.09 98.98 99.15 99.06 

4 99.19 99.10 99.25 99.17 

5 99.11 99.04 99.08 99.06 

Avg 99.12 ± 0.21 99.04 99.16 99.09 

(a) (b) 

(c) 

Figure 4. Classification results of the proposed model (a) train/validate loss per epoch, (b) train/validate accuracy results per 

epoch, and (c) the confusion matrix 

Table 5. Comparative summary of recent black hole attack detection models in MANET environments 

Recent Works Method Results 

[2] 
Decision Tree (DT), KNN, SVM, and 

NN 

The SVM gains the highest detection accuracy, which is 97.5%, while neural 

network gains second-best detection value, which is 95%. DT and KNN gain 

the lower results which are 92.5% and 85% respectively. 

[12] AdaBoost SVM 
The model achieves 97% in detecting accuracy of both passive and active black-

hole attacks in MANET. 

[13] 

K-Nearest Neighbor (KNN) method

for clustering and fuzzy modeling for

choosing the cluster head 

The result shows that the proposed method has an improvement over other 

methods in detection of black hole attacks, reaching up to 192.54%. In addition, 

it can be modified or combined with other techniques to identify additional 

assaults. In addition, other decision-making methods, which include SVM, NN, 

DT, and naïve Bayes methods, can be utilized in the nodes clustering section. 

[17] 

Various ML techniques, including 

KNN, SVM, DT, Linear Discriminant 

Analysis (LDA), Naive Bayes (NB), 

and Convolutional Neural Network 

(CNN) 

The classification results show that the SVM achieved 97.1%, KNN achieved 

98.2%, DT achieved 98.9%, LDA achieved 94.7%, NB achieved 95.2%, and 

CNN techniques achieved 96.4% in accuracies. According to the results of their 

study, the accuracy of the DT method is 98.9%, which surpasses the accuracy of 

alternative approaches. 

[20] 
Hybrid KNN and LSTM classifier 

using COOT optimization 

The tested with several metrics that yielded better results, including accuracy of 

96%, precision of 93%, recall of 82%, error value of 0.04, specificity of 98%, 

F1-score of 85%, Negative Predictive Value (NPV) of 98%. 

Proposed Model 
Hybrid deep stacked CNN-BiLSTM-

LSTM 

Achieved higher validation accuracy reach up to 99.557%. The model is also 

achieving higher results in other metrics which are 99.4569% in precision, 

99.6525% in recall and 99.6368% in F1-score for detect normal behavior and 

99.456% in precision, 999.4078% in recall and 99.4323% in F1-score for 

detecting black hole attacks. 
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The results of both the correlation matrix and important 

features show that the most important elements are the 

maximum and minimum RTTs values, as well as the mean and 

variance. Furthermore, the count of hops and anomalous 

values for a node does not appear to provide significant 

indications about the class to which it is related. Although the 

feature importance analysis in Figure 3 indicates that RTT-

based features max, min, mean, and variance are most 

significant, we initially retained all features, including hops 

and outliers, to evaluate their combined contribution to model 

performance. This decision was based on the possibility that 

even low-importance features may carry complementary 

information when used in DL architectures. We also 

performed a reduced-feature test excluding the lowest-ranked 

features, which showed minimal impact on accuracy. 

Therefore, the final model prioritizes detection performance 

while maintaining feature generality. 

4.3 Training and validation results 

In this part, we test the proposed model for detecting black 

hole attacks in SDN-based MANET-IoT Networks. The data 

has been split into 80% train and 20% validate. The model has 

been trained for 500 epochs, and we use the traditional metrics 

to evaluate the proposed model performance, which are 

accuracy, precision, recall and F1-score. Table 3, Table 4, and 

Figure 4 show the training/validation results. To ensure the 

robustness of the proposed model and reduce the risk of 

overfitting due to the limited dataset size, we also performed a 

5-fold cross-validation. In each fold, the model was trained on

80% of the data and validated on the remaining 20%, with

folds rotated accordingly. The average detection accuracy

across folds was 99.12%, with a standard deviation of ±0.21.

Precision, recall, and F1-score values remained consistently

high across folds, indicating strong generalization ability.

These results support the stability and reliability of the model’s

performance beyond a single train-test split.

Table 3 and Figures 4 demonstrate that the model achieved 

higher results, which gained above 99% over all metrics. The 

model validation and training losses, as shown in Figure 4(a), 

are extremely small, at 0.0153 with training and 0.0061 with 

validation. As seen in Figures 4(b) and Table 3, the models 

achieved higher training and validation accuracy which 

reaching up to 99.56%. The model also achieves higher results 

in other metrics, which are 99.47% in precision, 99.65% in 

recall and 99.6368% in F1-score for detecting normal behavior 

and 99.46% in precision, 99.41% in recall and 99.43% in F1-

score for detecting black hole attacks. 

In the next part, we compared the results with some recent 

related works. The results are shown in Table 5. The results 

presented in Table 5 are for indicative comparison only. The 

referenced studies were conducted using different datasets, 

experimental setups, or simulation environments (e.g., 

QualNet), and therefore, direct performance comparison may 

not be fully equivalent. 

5. CONCLUSION

In MANET, the most significant challenges are on security 

side, the dynamic architecture of MANETs makes 

implementing network security very challenging. There are 

several types of attacks that can affect MANETs, where black 

hole attack is one of the most significant attacks that can affect 

the network performance. Several security methods have been 

proposed to detect such threats; however, defense mechanisms 

were beyond the scope of this study. several types of security 

methods are proposed to detect and defense against this type 

of threats. As macML and DL techniques have the potential to 

detect unknown threats, they have become a popular option 

among researchers. This paper reviews various ML-based 

security approaches for MANETs, which can be categorized 

into three main types: ML-based intrusion detection systems, 

attack detection models, and trust-based models. In this work, 

we proposed a DL model designed to detect black hole attacks 

using a hybrid neural network architecture. The results show 

that the model achieved high performance, exceeding 99% 

across all evaluation metrics. Future work will focus on 

expanding the dataset, exploring adversarial robustness, and 

real-world deployment scenarios for hybrid MANET-SDN 

environments. 
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