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Mobile Ad-hoc Networks (MANETS) are networks of wireless devices formed from
mobile nodes that might self-configure and self-healing. They offer scalability and
independence from fixed infrastructure, making them compatible with a variety of
applications, including duties in the military, disaster recovery, healthcare, sensor
networks, and the Internet of Things (IoT). To enhance the effectiveness of software-
defined networking (SDN) and address the challenges of MANETSs, SDNs have been
developed to integrate centralized control with flexible governance. Notwithstanding
this advancement, MANETSs continue to be susceptible to blackhole attacks, where
malicious nodes sever packet flow to and from them, thus disrupting network
connectivity. This research proposes a deep learning-based detection approach tailored
for SDN integrated with MANET-IoT ecosystems. A hybrid DL network architecture
is proposed in this work, which integrates several one-dimensional convolutional layers
with Bidirectional LSTM (BiLSTM) and LSTM units, capturing both spatial and
sequential dependencies from the network traffic data. This was supported by
constructing a reasonable dataset through blackhole condition simulations with 16
nodes on the IoT-Lab testbed with varying packet sizes. Critical parameters such as
round-trip time (RTT), packet loss, and routing anomalies were incorporated into the
dataset. Experimental findings indicated that the proposed approach surpassed
comparable state-of-the-art algorithms, achieving an impressive 99.5% detection
accuracy. This paper illustrates the potential of deep learning in enhancing threat
detection within SDN-enabled MANET-IoT networks.

1. INTRODUCTION

connectivity to multiple hops [2]. Two of the most significant
tasks of the network layer are forwarding data packets and

An ad hoc wireless network is the name given to a wireless
communication network made up of mobile devices like
smartphones. In the absence of fixed infrastructure, these
nodes are capable of creating a network that is decentralized
in nature and can dynamically configure itself. A collection of
mobile nodes that are capturing and sharing information is
known as “mesh”. Each node acts autonomously as a router.
Within a network, membership have the ability to move and
change their places of residence, which makes it easier for
them to share resources. Due to its restricted resources, Mobile
Ad-hoc Network (MANET) has a number of difficulties,
including power limitations, reduced bandwidth, range, and
security [1]. One of the primary problems with MANET is its
shortage of a centralized control and command architecture.
MANET comprises two phases for mobile node
communication across multi-hop wireless channels: link layer
protocol, which ensures one hop connectivity across multiple
hops, and the protocol of network layer, which extends the
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performing ad hoc routing. They communicate with one
another for the purpose of carrying packets from where they
came from to the destination. The ad hoc routing protocol may
maintain the route configurations of every node up to date by
transmitting messages regarding routing between them [3].
However, each packet forwarding as well as routing activities
are vulnerable to malicious attacks, which can lead to a variety
of disruptions in the network layer. These interruptions can be
caused by a number of different factors. Attackers have the
ability to bring traffic to certain locations within the network
by using various routing protocols [4].

These networks suffer from two main issues: energy
conservation and security breaches brought on by attackers.
The advanced communication system that separates the
control plane from the system informational plane is called
software-defined networking (SDN) [5]. It is thought to be a
dynamic, layered, scalable, and energy-efficient method of
managing and controlling network topologies, both wired and
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wireless. In SDN-based MANETSs, a logically centralized
SDN controller is responsible for managing flow rules,
monitoring network traffic, and updating routing paths in real
time. The SDN controller and MANET were combined to
address security-related issues [2]. SDN MANET indicates
that the structure has been customized to a certain operational
requirement, ecosystem conditions, and equipment
performance. Some of the primary benefits of SDN MANET
are network administration, bandwidth control, improved
security, and managing energy while routing. This centralized
control also allows for dynamic mitigation of malicious
behavior and anomaly detection based on global network state
[6].

In MANET, there are two different types of attacks [7], both
passive and active. Passive attacks [8] do not change the data
delivered over the networking; rather, they attempt to harvest
sensitive data from network communications. A passive
attacked node might act selfishly in order to steal the
information that was sent. Passive attacks are challenging for
detection because they are not disrupting network
functionality [9]. Typically, encryption is used to defend
against passive attacks. Active attacks [10] hinder the passage
of messages between nodes. Intruders inject false information
into the network. These attacks can occur at any protocol layer,
including network, transport, application, and others. Active
attacks are more severe and can be either internal or external
in nature [11]. Black Hole Attack is one type of active attack
[12]. The performance of a MANET can be significantly
affected by a black hole attack, which can be executed by
either a one independent node or as a collective of malicious
nodes. In a black hole attack, a node that is malicious uses it is
routing protocol to advertise itself as the node with the shortest
path to the target [13]. They present a novel detection scheme
for active and passive black-hole attacks in MANETsS.
Furthermore, the system is concerned with evaluating a set of
selected characteristics for every node-based on AdaBoost
SVM technique. These characteristics are gathered from
cluster member nodes using Ad hoc On-demand Multi Path
Distance Vector (OMDV) and Low-Energy Adaptive
Clustering Hierarchy (LEACH) protocol for routing and
clustering methods. Since SVM appears to be a stable
classifier, the AdaBoost weight adaptation technique
significantly impacts the classification process by enhancing
the weights of the extracted features. This hybrid approach is
essential for detecting both passive and active black hole
threats in MANETS [13]. This aggressive node announces the
availability of new routes without examining its routing table.
In this attack, the perpetrator node is always able to respond to
the route request, so it modifies the data packet and discards it
[14]. In a protocol dependent on flooding, the requesting node
will receive the malevolent node's response before receiving a
response from an actual node; thus, a malicious and bogus
route will be created. When this route is configured, it is up to
the node to decide whether to delete packets or forward them
toward an unknown destination [15]. Mitigates identified
security threats [16]. Effect of mobility variation to determine
the accuracy of the detection process, including the routing
overhead protocol [17]. Implements Dynamic Spectrum
Resource Control (DSRC) as a mechanism to perform real-
time threat mitigation after threat detection for network
recovery purposes [18]. Spike neural networks have also been
shown to classify SDN traffic efficiently [19].

To address this issue, we propose a DL-based detection
model tailored for SDN-based MANET-IoT networks. The
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architecture combines multiple 1D convolutional layers with
BiLSTM and LSTM units to learn both temporal and spatial
behavior of network traffic. The second contribution is the
simulation strategy and dataset generation, performed using
the IoT-Lab testbed with controlled black hole attack scenarios
and multiple packet sizes across 16 nodes. In along with
providing high-accuracy detection, this dataset replicates
actual IoT traffic behavior.

2. MACHINE LEARNING TECHNIQUES FOR
DETECTION OF BLACK HOLE ATTACKS IN
MANET-IOT NETWORKS

It is noted that additional research is needed on the
implementation of machine learning for security purposes in
MANETSs. Attacks within MANET can be effectively
managed with the help of machine learning resources, which
are capable of automated attack detection and information on
specific attack patterns. More recent publications about
blackhole attack detection on MANETS include. Mahin et al.
performed a blackhole attack with two infected nodes in 2019.
They managed through QualNet 7.4v emulator, which was
building control DYMO routing protocol on the network.
Some of the metrics in analyzing QualNet statistics data
include packet delivery ratio (PDR), packet loss rate,
throughput, and average transmission latency.

To monitor the system, average transmission latency, as
well as packet drop rate, are defined. In this study, the authors
use different machine learning classifiers and compare their
accuracy for the selected metrics. The DT, KNN, SVV, and
neural network classifiers were tested in MATLAB. The
authors believe that SVM is the most accurate classifier when
compared to other algorithms.

Effectively diagnosing the black hole attack and mitigating
it by deactivating the malicious nodes at the appropriate
moment, the proposed mechanism enables the network to
achieve peak performance. Later, the work is evaluated against
a variety of speeds, pause times, and terrain types to validate
our proposal. After applying the proposed strategy, it is
perceived that the network's performance has improved,
resulting in an increase in PDR and throughput and a decrease
in packet drop rate along with transmission latency. Through
this endeavor the weaknesses of DYMO routing protocol have
been successfully bridled. Research results indicated that the
SVM achieves the highest possible detection accuracy, which
is 97.5%, while NN gain second best detection value which is
95%, DT and KNN gain the lower results which are 92.5% and
85% respectively.

However, practical deployments of SDN-MANETSs face
real-world limitations. DL-based intrusion detection models
can be computationally intensive and may not be optimal for
energy-constrained IoT devices [20]. In addition, our
experiment is limited to 16 nodes, and further validation is
needed to ensure scalability. This limitation, while
representative for controlled testbeds, may affect scalability
when transitioning to real-world, large-scale deployments
Finally, adversarial evasion techniques that manipulate input
data could potentially deceive detection models, posing
another challenge that future implementations must address.

Jayakrishna and Prasanth [20] presented an effective
intrusion identification and prevention model for MANET
using a hybrid KNN-LSTM classifier with COOT
optimization for increasing network security. The suggested
intrusion prevention and detection approach is divided into
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four phases: separating attack nodes from normal nodes,
forecasting different sorts of assaults, determining the
frequency of attacks, and implementing an intrusion
prevention mechanism. For achieving the highest trust value,
the attack nodes are differentiated from the normal nodes using
COOT optimization in the first instance. In the second phase,
a hybrid LSTM-KNN model for detection of any kind of
network threat is demonstrated. Preprocessing, feature
extraction, and classification of different types of attacks are
all done in the second phase.

The proposed methodology will be assessed with respect to
mobility volatility to measure the precision of the detection
process, including the expenses related to the routing protocol.
According to the evaluation outcomes, the MANET
successfully identified both passive and active black hole
attacks with a 97% accuracy rate and a reasonable time
complexity across different mobility scenarios. Additionally,
the strategy proposed accurately differentiates between
malicious and benign node dropout behavior by using a
tunable threshold. Different machine learning algorithms were
applied by Abdan and Seno et al. [21], such as KNN, DT, SVM,
CNN, NB, and LDA. Moreover, as far as feature extraction in
the context of MANETSs is concerned, we added node
attributes, especially the node speed, to our extraction features.
A total of 3997 samples have been gathered, consisting of
3781 normal samples and 216 attack samples, encompassing
both normal and malevolent models. The classification results
show that the SVM achieves 97.1%, KNN achieves 98.2%, DT
achieves 98.9%, LDA achieves 94.7%, Naive Bayes (NB)
achieves 95.2%, and CNN techniques achieve 96.4% in
accuracies. According to the results of their study, the
accuracy of the DT method achieved 98.9%, which surpasses
the accuracy of alternative approaches. In the subsequent order,
LDA, CNN, NB, KNN and SVM show a good level of
accuracy.

The third phase carries out assault classification,
determining if the attack is abnormal or normal. DNA
encryption algorithm is applied for security, and the final
phase tries to limit the attack nodes detected in the network
using a two-stage authentication scheme. More satisfactory
results were obtained when the suggested hybrid KNN-LSTM
classification model was compared with a set of measures,
including 96% inaccuracy, 93% precision, 82% recall, 0.04
error rate, and 85% F1-score. This proves that the proposed
security solution successfully reduces severe MANET attacks.

To further improve attack detection in MANET and SDN-
IoT settings, various recent research works investigated hybrid
DL and ensemble learning methods in addition to the
aforementioned works. For example, Altunay and Albayrak
[22] analyzed machine learning for wireless sensor network
applications, and Alsheikh et al. [23] suggested a hybrid CNN-
LSTM model for IoT-based intrusion detection. Primarily for
MANETs, Alsoufi et al. [24] used anomaly-based deep
learning methods. Pandey and Singh [25] and Rui et al. [26]
have also shown ensemble approaches to carry out black hole
detection, which provide valuable frameworks for malicious
node detection. Other efforts, like made by Abdallah et al. [27]

and Webber et al. [28], are based on trust-aware classification
models and SDN-based secure routing. Additionally, an
integrated DL intrusion detection model designed for SDN
systems was described by Ataa et al. [29]. These approaches
collectively underscore the growing significance of intelligent,
adaptive models for securing next-generation ad hoc networks.

3. METHODOLOGY
3.1 Dataset generation

To simulate an attack, the first step is to collect data from a
network. In this experiment, we put up an accessible IPv6
Wireless Personal Area Network (WPAN) net in Grenoble on
16 nodes from IOT-Lab with different packets sizes 10, 20, 50,
100 and 200. The data that we analyze is derived from a series
of tests on IoT devices, which we performed in a simulator.
We want to know if we can recognize network attacks inside
the IoT environment using data from Internet Control Message
Protocol (ICMP), a particular network layer protocol packet.
The experiment set includes scenarios involving Black Hole
attacks, along with typical behavior. To emulate black hole
attacks, selected nodes were configured to drop all incoming
packets while falsely advertising optimal routing paths
through manipulated RPL control messages. This ensured the
attacker could attract traffic while preventing successful
delivery. Each experiment is run in a period of 200 ICMP
pings for each node. This value was chosen as a compromise
between ensuring sufficient statistical diversity and
maintaining a manageable experiment runtime on the
constrained IoT-Lab testbed. The resulting dataset includes
key features such as round-trip time (RTT), packet loss, hop
count, and routing anomalies. Outliers were identified by
applying the Interquartile Range (IQR) method to the RTT
values, where any RTT below Q1 — 1.5 x IQR or above Q3 +
1.5 x IQR was labeled as anomalous behavior. These outliers
are critical in signaling delay-based disruptions caused by
attack scenarios. The dataset generated involves several
relevant features that include:

Node ID (node id): The ID of each of the 16 nodes.
Packet Count (pckt count): Number of packets
received during certain packet time.

Total RTT (tr_time): The summation of RTT of each
node during test with a specific packet size. RTT
represents the time measured in milliseconds (ms),
required for a connection request to go from its starting
point to its destination and back.

Hops: The number of routers through which a packet (a
portion of data) travels from the source to its
destination.

Outliers: Number of anomalies during a specific time.
Loss: The number of packets lost during a specific time.
Var: The RTT Variance, which indicates path jitter.
Mean: The mean (average) RTT.

Max: The maximum RTT.

Min: The minimum RTT.

Table 1. Sample of the generated dataset

Node Tr_time Pckt count Mean Var Hop Min Max Loss Outliers Label
aaaa::212:740°:0:0:8  1020.473 181 5.63922  0.13841 4 5.01728 6.67236 19 11 1
aaaa::212:740°:0:0:4  908.424 195 4.65568 0.17689 2 4.05263 6.81404 5 11 0
aaaa::212:7407:0:0:7 908.0212 181 5.34815 0.16515 3 459145 7.24356 19 10 1
aaaa::212:7406:0:0:6  703.2819 148 4.75217  0.20704 2 4.13676  6.57697 52 7 0
aaaa::212:740e:0:0:e  851.6833 127 6.70272  0.13688 5 5.97886 7.62168 73 7 0
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In addition, it includes a label indicating whether the node
is part of a black hole attack. Table 1 shows the sample of the
dataset.

3.2 Proposed model structure

Four 1D layers based on convolution, two BiLSTM layers,
two LSTM layers, an input layer, a permute layer, a
concatenate layer, a dropout layer, and a dense layer are all
incorporated in the proposed model. This CNN layout
combines several types of different functional layers,
including rectified linear units (ReLU), pooling, and
convolution. Data from time series provides sequential
substances that are necessary for interpretation and are
adequately retrieved by the convolutional layer. In CNNs,
pooling layers make down sampling less difficult. The CNN
employs the band combinations generated by the permutation
layer to create strong classifying features. By combining the
outputs of multiple disparate layers into a single tensor, the
pooling layer is essential for multi-task learning. By
leveraging common features across tasks, this fusion improves
performance and is best suited for combining features learned
from different activities. Furthermore, pooling layers improve
the training efficiency of multi-task models by reducing
training time and parameters. This efficiency results from the
application of shared layers, which enables the model to learn
from more than one task simultaneously. Furthermore, by
aggregating similar features across tasks, pooling layers
improve the model's ability to generalize across new data
points. The model becomes better able to handle new cases
that are similar to cases learned by transferring knowledge
from various processes. Below is a representation of the
presented model, a three-level stacked CNN-BILSTM-LSTM
model with an autoencoder architecture:

e Layer 1: Input layer.

e Layer 2 (permute layer): The dimensions for the input are
modified employing this type of layer.

e Layer 3, or its convolutional 1D layer: This layer is
composed of up to 128 filters, each with a padding of 1
and a kernel size of 3. This layer transports results to the
convolutional layer (Layer 5), resulting from the
collection of input data from the input layer (Layer 1).

e Layer 4 (convolutional 1D layer): This layer, containing
128 filters with a kernel dimension of 3 and padding of 1,
accepts the data input from Layer 2 (permutes layer) and
passes its outcome to Layer 6 (convolutional layer).

e Layer 5: This convolutional 1D layer has 64 filters with
a kernel size of 1 and a padding of 1. For the purpose of
transmitting outputs to the Layer 7 (BiLSTM layer), this
layer receives input data from Layer 3 (convolutional
layer), mirroring Layer 5.

e Layer 6 (convolutional 1D layer): This layer comprises
64 filters with a kernel dimension of 1 and padding of 1.
Furthermore, it collects information from input from the

convolutional layer (Layer 3) and transfers it towards the
BiLSTM layer (Layer 8).

e Layer 7: Convolutional Layer 5's incorporated layer, the
BiLSTM layer, has 128 filters. It transfers outputs to the
Layer 9 (LSTM layer) while collecting input data from the
Layer 5 (convolutional layer).

e Layer 8 (BiLSTM layer): The combined layer for
convolutional Layer 6 has 128 filters. It transfers results
to the Layer 9 (LSTM layer) after collecting input data
from the Layer 6 (convolutional layer).

e Layer 9 (LSTM layer): This layer, which is the integrated
layer for BiLSTM Layer 7, consists of 128 filters. It
transfers output to the layer 11 (concatenate layer) after
reading input data from the layer 7 (BiLSTM layer).

e Layer 10 (LSTM layer): This layer connects to BILSTM
layer 7 and has 128 filters. It transfers results to the layer
11 (concatenate layer) after reading input data from the
Layer 8 (BiLSTM layer).

e Layer 11 (encoded columns): A concatenate layer that
produces a map with several features. It passes the feature
maps to Layer 12 (dropout layer) after concatenating them
from the Layers 9 and 10 (LSTM layers).

e Layer 12 (dropout layer): Randomly sets 20% of the input
units to 0 during training in order to apply a 20% dropout
rate to Layer 11 (encoded columns) and avoid overfitting.

The overall framework of the proposed model is shown in

Figure 1.

x_train, y_train, x_test, y_test

|

. SoftMax
CNN BiLSTM LSTM Q
- QO
S'o
O.
Weights
Updated

Classification

Figure 1. Structure of 3-layer stacked CNN-BiLSTM-LSTM
model

4. RESULTS AND DISCUSSION
4.1 Dataset preparation and analysis

Data resulting from networks could have different meanings
and variance due to their different network topologies. This
could reduce the learning rate of DL algorithms and ML. Thus,
we apply features normalization, the results are shown in
Table 2.

Table 2. Dataset after normalization process

Hop Min Max Loss Outliers Label

Node Tr time Pckt count Mean
aaaa::212:7408:8:808 0.885857 0.903553
aaaa::212:740a:4:404 0.979108 0.974619 0.25959
aaaa::212:7407:7:707 0.873129 0.903553
aaaa::212:7406:6:606  0.599682 0.736041
aaaa::212:740e:ee:0e  0.729583 0.629442

0.551169 0.096433 0.75 0.584472 0.446894 0.096447  0.6875 1
0.131021 0.25
0.454029 0.121016 0.5
0.286272  0.159708 0.25 0.303937 0.325619 0.263959  0.5625
0.836614  0.094571 1

0.27682  0.332001
0.560327 0.623121

0.025381  0.6875 0
0.096447 0.625 0
1
0

0.891438 0.669655 0.370558  0.4375
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Figure 3. Features importance analysis results

4.2 Selection of features

Certain features may be more significant than others;
therefore, selecting a suitable set of features will assist in
improving the results provided by a learning classifier. Hence,
we amylase dataset for correlation of features. In this step, the
data has been analyzed to find the correlated variables. By
removing highly correlated features, the dimensionality of the
dataset is decreased, resulting in increased processing
efficiency. The importance of achieving faster training times
becomes particularly pronounced in situations that require
real-time processing or extensive datasets. The Seaborn
correlation technique is used to investigate data correlation.
Making a correlation matrix and correlogram is a breeze with
Seaborn. Because the Seaborn correlograms immediately
illustrate the relationship between each variable in your matrix,

they are helpful for exploratory investigation. To find a
correlation between features, the threshold value of 0.8 is used,
where the feature is correlated if it is above the threshold value.
Figure 2 shows the correlation analysis results for each code
smell dataset.

From Figure 2, the correlation matrix shows that, with the
exception of outliers, every feature has a roughly negative
correlation with the class. This shows that a model may be
trained to distinguish between networks that are under attack
and those that are not. Additionally, we choose the most
important features iteratively using the Random Forest
Classifier. Hence, the feature with a high importance distorts
the influence of other features and may lead to overfitting,
whereas a characteristic with a low importance may cause the
learning process to slow down or even diverge. Figure 3 shows
the feature importance analysis results.

Table 3. Training and validation results for proposed models

Accuracy (%) N Precision (%) A Precision (%)

N Recall (%) A Recall (%) N Fl-score (%) A Fl-score (%)

99.557

99.4569

99.4569

99.6525

99.4078

99.6368

99.4323

*N: normal; ** A: black hole attack
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Table 4. Summarizing the k-fold results

Fold Accuracy (%)

Precision (%) Recall (%) F1-score (%)

Loss

0.2 4

ol

0.0 4

1 99.08 99.01 99.12 99.06
2 99.14 99.07 99.18 99.12
3 99.09 98.98 99.15 99.06
4 99.19 99.10 99.25 99.17
5 99.11 99.04 99.08 99.06
Avg 99.12 £0.21 99.04 99.16 99.09
—— Train 1001 OO0,
valid M~
0.95 4 }
)
0.90
g 0.85 -
& \
\ 0.80 1
\\'\-u 0.75 -
—— Train
A I valid
o 20 20 &0 a0 100 0.70 0 20 20 60 80 100
Epochs Epochs
(a) (b)

Confusion Matrix for Attack Detection

Predicted
Attack

Normal

1.0

0.8

0.6

= 0.4

-0.2

-0.0

Normal

Actual

(©)

Figure 4. Classification results of the proposed model (a) train/validate loss per epoch, (b) train/validate accuracy results per
epoch, and (¢) the confusion matrix

Table 5. Comparative summary of recent black hole attack detection models in MANET environments

Recent Works Method Results
- The SVM gains the highest detection accuracy, which is 97.5%, while neural
[2] Decision Tree (DI]\B\’IKNN’ SVM, and network gains second-best detection value, which is 95%. DT and KNN gain
the lower results which are 92.5% and 85% respectively.
. o . . . i
[12] AdaBoost SVM The model achieves 97% in detecting accuracy of both passive and active black

[17]

Proposed Model

K-Nearest Neighbor (KNN) method
for clustering and fuzzy modeling for
choosing the cluster head

Various ML techniques, including
KNN, SVM, DT, Linear Discriminant
Analysis (LDA), Naive Bayes (NB),
and Convolutional Neural Network
(CNN)

Hybrid KNN and LSTM classifier
using COOT optimization

Hybrid deep stacked CNN-BiLSTM-
LSTM

hole attacks in MANET.

The result shows that the proposed method has an improvement over other
methods in detection of black hole attacks, reaching up to 192.54%. In addition,
it can be modified or combined with other techniques to identify additional
assaults. In addition, other decision-making methods, which include SVM, NN,
DT, and naive Bayes methods, can be utilized in the nodes clustering section.
The classification results show that the SVM achieved 97.1%, KNN achieved
98.2%, DT achieved 98.9%, LDA achieved 94.7%, NB achieved 95.2%, and
CNN techniques achieved 96.4% in accuracies. According to the results of their
study, the accuracy of the DT method is 98.9%, which surpasses the accuracy of
alternative approaches.

The tested with several metrics that yielded better results, including accuracy of
96%, precision of 93%, recall of 82%, error value of 0.04, specificity of 98%,
F1-score of 85%, Negative Predictive Value (NPV) of 98%.

Achieved higher validation accuracy reach up to 99.557%. The model is also
achieving higher results in other metrics which are 99.4569% in precision,
99.6525% in recall and 99.6368% in F1-score for detect normal behavior and
99.456% in precision, 999.4078% in recall and 99.4323% in F1-score for
detecting black hole attacks.
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The results of both the correlation matrix and important
features show that the most important elements are the
maximum and minimum RTTs values, as well as the mean and
variance. Furthermore, the count of hops and anomalous
values for a node does not appear to provide significant
indications about the class to which it is related. Although the
feature importance analysis in Figure 3 indicates that RTT-
based features max, min, mean, and variance are most
significant, we initially retained all features, including hops
and outliers, to evaluate their combined contribution to model
performance. This decision was based on the possibility that
even low-importance features may carry complementary
information when used in DL architectures. We also
performed a reduced-feature test excluding the lowest-ranked
features, which showed minimal impact on accuracy.
Therefore, the final model prioritizes detection performance
while maintaining feature generality.

4.3 Training and validation results

In this part, we test the proposed model for detecting black
hole attacks in SDN-based MANET-IoT Networks. The data
has been split into 80% train and 20% validate. The model has
been trained for 500 epochs, and we use the traditional metrics
to evaluate the proposed model performance, which are
accuracy, precision, recall and F1-score. Table 3, Table 4, and
Figure 4 show the training/validation results. To ensure the
robustness of the proposed model and reduce the risk of
overfitting due to the limited dataset size, we also performed a
5-fold cross-validation. In each fold, the model was trained on
80% of the data and validated on the remaining 20%, with
folds rotated accordingly. The average detection accuracy
across folds was 99.12%, with a standard deviation of +0.21.
Precision, recall, and F1-score values remained consistently
high across folds, indicating strong generalization ability.
These results support the stability and reliability of the model’s
performance beyond a single train-test split.

Table 3 and Figures 4 demonstrate that the model achieved
higher results, which gained above 99% over all metrics. The
model validation and training losses, as shown in Figure 4(a),
are extremely small, at 0.0153 with training and 0.0061 with
validation. As seen in Figures 4(b) and Table 3, the models
achieved higher training and validation accuracy which
reaching up to 99.56%. The model also achieves higher results
in other metrics, which are 99.47% in precision, 99.65% in
recall and 99.6368% in F1-score for detecting normal behavior
and 99.46% in precision, 99.41% in recall and 99.43% in F1-
score for detecting black hole attacks.

In the next part, we compared the results with some recent
related works. The results are shown in Table 5. The results
presented in Table 5 are for indicative comparison only. The
referenced studies were conducted using different datasets,
experimental setups, or simulation environments (e.g.,
QualNet), and therefore, direct performance comparison may
not be fully equivalent.

5. CONCLUSION

In MANET, the most significant challenges are on security
side, the dynamic architecture of MANETs makes
implementing network security very challenging. There are
several types of attacks that can affect MANETS, where black
hole attack is one of the most significant attacks that can affect
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the network performance. Several security methods have been
proposed to detect such threats; however, defense mechanisms
were beyond the scope of this study. several types of security
methods are proposed to detect and defense against this type
of threats. As macML and DL techniques have the potential to
detect unknown threats, they have become a popular option
among researchers. This paper reviews various ML-based
security approaches for MANETSs, which can be categorized
into three main types: ML-based intrusion detection systems,
attack detection models, and trust-based models. In this work,
we proposed a DL model designed to detect black hole attacks
using a hybrid neural network architecture. The results show
that the model achieved high performance, exceeding 99%
across all evaluation metrics. Future work will focus on
expanding the dataset, exploring adversarial robustness, and
real-world deployment scenarios for hybrid MANET-SDN
environments.
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