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In modern data-driven ecosystems, platforms such as Apache Kafka are essential for 

handling continuous, high-volume event streams across domains including IoT, 

finance, e-commerce, and industrial monitoring. These applications rely on real-time 

processing for tasks such as anomaly detection, fraud analysis, recommendation 

systems, and predictive maintenance. As workloads vary widely, multiple specialized 

pipelines are often required, adding complexity and increasing operational overhead. 

Tuning such systems is challenging, as parameters related to memory, concurrency, 

replication, and batching must be balanced to maintain high throughput, low latency, 

and stable performance under dynamic conditions. Misconfigurations can trigger fast 

failures, making automated, adaptive tuning essential. The study proposes a machine 

learning framework that dynamically adjusts real-time streaming platforms to achieve 

better performance. By analyzing garbage collection (GC) logs and broker logs, the 

method employs regression models to detect bottlenecks and predict optimal 

configuration settings. Key metrics are extracted from logs, used to train regression 

models, and applied to adjust parameters dynamically. Experimental evaluation shows 

that Linear and Ridge Regression achieved an R² of 0.9999 with a Mean Squared Error 

(MSE) of 4.84E-06, delivering over 99% accuracy in predicting throughput trends. The 

method dynamically optimizes performance, cutting manual tuning and enabling more 

intelligent, self-managing streaming systems. 
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1. INTRODUCTION

The need for real-time data streaming and processing has 

significantly increased in today's data-driven society. 

Platforms designed for these tasks must efficiently and reliably 

handle a vast amount of data. Apache Kafka, a widely used 

distributed event streaming platform, has emerged as a key 

technology for building real-time data pipelines and streaming 

applications [1]. It remains quite challenging to optimize 

Kafka's performance to meet the demands of a changing 

workload, despite its robust design. 

Recent studies comparing manual, heuristic, and machine 

learning–based tuning methods in distributed systems are 

supported by several journal articles and surveys. Manual 

tuning of Kafka parameters generally shows only modest 

throughput improvements, whereas heuristic methods achieve 

stronger results, and machine learning approaches often 

provide the largest performance gains while also reducing 

latency variability [2-4]. Manual tuning in distributed systems 

like Apache Kafka generally results in limited performance 

improvements due to its static adjustment nature. The studies 

[3, 4] presented that manual tuning requires administrators to 

change distributions and configurations directly and typically 

only achieves around a 10% improvement in throughput, as 

changes are not adaptive to dynamic workload conditions. 

Heuristic-based methods, using rules or profiling to guide 

tuning, can deliver higher throughput gains (up to 25%) but 

still struggle to adapt under fluctuating workloads [4-6]. 

Whereas Machine learning techniques, such as reinforcement 

learning and regression-based optimization, routinely surpass 

manual and heuristic methods in both throughput and latency 

stability (with throughput improvements of 40–50%) [2, 6-8]. 

Performance tuning of Kafka involves adjusting numerous 

configuration parameters that influence throughput, latency, 

and stability. These parameters, such as heap size, buffer sizes, 

and concurrency settings, can interact in complex ways, 

making manual tuning a daunting and often inefficient task 

[9]. Moreover, the dynamic nature of workloads in production 

environments necessitates continuous and adaptive tuning to 

maintain optimal performance [10]. The problem has a 

promising answer in machine learning. Machine learning 

models can find patterns and correlations in operational logs, 

particularly garbage collection (GC) logs and broker logs, 

which are not immediately visible using conventional 

techniques. These insights can then be used to predict the 

effects of various configurations on performance metrics and 

to identify optimal settings [11]. 

The selection of GC logs and broker logs as primary 

indicators is motivated by their direct impact on system 

performance. GC logs capture information about memory 

allocation, collection frequency, and pause durations [12]. A 

high frequency of GC events or long GC pauses can 
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significantly reduce throughput by interrupting message 

processing and increasing latency due to stalled threads. 

Similarly, broker logs provide operational metrics such as 

message throughput, request latency, error counts, and 

partition reassignments [10], all of which directly reflect 

system stability and responsiveness. For example, sustained 

error rates or rising latencies in broker logs indicate declining 

stability under load, while steady throughput values reflect 

efficient resource utilization. By analyzing both GC and 

broker logs together, the study establishes a holistic view: GC 

behavior explains memory-level bottlenecks, while broker 

metrics capture system-level performance outcomes. This 

dual-log perspective ensures that the machine learning 

framework links configuration parameters to the most critical 

performance dimensions. 

The dependent variables that represent performance are 

explicitly defined as throughput (MB/sec), latency 

(milliseconds), and stability (measured through error rates and 

consistency under varying workloads). These metrics capture 

efficiency, responsiveness, and robustness in distributed 

streaming. The independent variables are the Kafka 

configuration parameters, such as heap size, buffer size, 

concurrency levels, and GC behavior that directly influence 

performance outcomes. To connect these inputs with 

measurable system behavior, the study leverages GC logs, 

which provide details on memory allocation, pause times, and 

heap utilization, as well as broker logs, which record 

throughput, request latency, and error statistics. This explicit 

mapping of independent and dependent variables strengthens 

the analytical foundation of the proposed machine learning 

framework, ensuring that the research targets the most relevant 

and impactful performance indicators. 

We utilize the publicly available JVM Logs Dataset from 

Kaggle [13], which provides GC and Kafka broker logs under 

diverse workload conditions and serves as a reproducible 

benchmark for performance modeling studies. which 

comprises 471 files and 2,880 features derived from GC and 

Kafka broker logs. This rich dataset captures diverse workload 

conditions, providing a robust foundation for machine 

learning–based performance modeling and auto-tuning. 

Through a series of experiments, the model shows the 

effectiveness of the strategy, exhibiting notable gains in 

performance stability and throughput. In addition to increasing 

system efficiency, the automated tuning process eliminates the 

need for significant manual intervention, which lowers 

complexity and operating costs. Given the complexity and 

non-linearity of distributed system behavior, relying on a 

single regression technique may not adequately capture the 

diverse relationships between configuration parameters and 

performance outcomes. For instance, while linear regression 

offers interpretability, it oversimplifies non-linear effects; 

conversely, tree-based models such as decision trees or 

gradient boosting can capture non-linear patterns but may risk 

overfitting [14]. To address these limitations, an ensemble of 

regression algorithms is often more effective, as it combines 

the strengths of multiple models to improve predictive 

accuracy and generalizability. Approaches such as Random 

Forest Regression and Gradient Boosting Regression have 

shown significant promise in prior system optimization studies 

[15], reducing variance and bias while delivering more reliable 

performance predictions. Incorporating ensemble regression 

methods into auto-tuning frameworks thus provides a fine-

tuned and adaptive means of modeling system performance 

under dynamic workloads. The objective of this research is to 

develop a machine learning-based auto-tuning framework that 

improves Kafka's throughput and stability while reducing 

manual intervention. 

The paper proposes an automated, machine learning-based 

approach to fine-tune real-time data streaming platforms for 

better throughput and overall performance. The method 

involves collecting and preprocessing log data, extracting 

relevant features, and training regression models to predict 

performance outcomes. The models are then used to adjust 

configuration parameters dynamically, ensuring the system 

operates at peak efficiency under varying conditions. 

The remainder of the paper is structured as follows: Section 

2 reviews related work in the field of performance tuning using 

machine learning. Section 3 describes the methodology, 

including data collection, feature engineering, and model 

training. Section 4 presents the experimental setup and results. 

Section 5 concludes the paper with a discussion of the 

findings, and finally, Section 6 presents potential future work 

in the area. 

 

 

2. RELATED WORK 

 

The challenge of optimizing performance in distributed 

systems [16], particularly real-time data streaming platforms, 

has been the focus of extensive research. The section reviews 

existing literature on performance tuning using machine 

learning, with a specific focus on the analysis of operational 

logs and the application of regression techniques. 

 

2.1 Performance tuning of distributed systems 

 

Traditional approaches to performance tuning in distributed 

systems often involve heuristic methods and rule-based 

configurations [17]. These methods require significant 

expertise and manual intervention, making them labor-

intensive and less adaptable to dynamic workloads. Recent 

advances have shifted towards more automated solutions, 

leveraging statistical and machine learning techniques to 

address these limitations [18]. 

 

2.2 Machine learning for system optimization 

 

Performance tuning is essential for ensuring system 

efficiency and stability, and automating this process 

minimizes manual effort while enabling adaptive optimization 

in dynamic workloads. Machine learning has shown 

considerable promise in optimizing system performance [19]. 

Approaches such as reinforcement learning [20], supervised 

learning, and unsupervised learning have been applied to 

various tuning problems. For instance, reinforcement learning 

has been applied to resource management in cluster 

computing, resulting in improved resource utilization and 

faster job completion times [11]. Similarly, deep learning 

models have been employed to predict performance 

bottlenecks in cloud services, thereby enabling more effective 

resource allocation [12].  

 

2.3 Log analysis for performance tuning 

 

Log analysis is a critical aspect of performance tuning, 

providing insights into system behavior and performance 

metrics. Logs from GC and broker activities offer valuable 

data for understanding and predicting system performance. It 
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is demonstrated that the use of log mining techniques to 

diagnose performance issues in distributed systems highlights 

the potential of logs as a rich source of information for 

optimization tasks [21]. 

While log analysis provides the raw behavioral data, it must 

be coupled with predictive modeling to translate these signals 

into actionable tuning decisions. 

 

2.4 Regression techniques in performance prediction 

 

Regression techniques are particularly effective in modeling 

the relationships between configuration parameters and 

performance metrics [22]. In the context of system tuning, 

regression models have been used to predict the impact of 

configuration changes on performance metrics. Using 

regression trees to model the performance of database queries 

provides a basis for automatic tuning of query parameters. In 

this way, log analysis and regression complement each other: 

logs supply the empirical evidence of system behavior, and 

regression translates this evidence into predictive insights for 

tuning. 

There are multiple measures to find the effectiveness of 

machine learning models, as in Eq. (1).  

Mean Squared Error (MSE): MSE is a metric used to 

measure the average squared difference between predicted and 

actual values in a dataset. It quantifies the error by squaring 

the differences to ensure both positive and negative errors 

contribute equally, and then averaging these squared 

differences. 

Mean Absolute Error (MAE): MAE is a metric that 

calculates the error by taking the absolute value of the 

differences between predicted and actual values, and then 

averaging these absolute differences. It is less sensitive to 

outliers than MSE and provides a linear measure of average 

error [23]. However, it does not emphasize larger errors, which 

can be critical in some applications. 

Root Mean Squared Error (RMSE): RMSE is the square 

root of MSE, making it interpretable in the same units as the 

target variable [23]. However, it carries the same information 

as MSE on a different scale. 

Mean Absolute Percentage Error (MAPE): MAPE 

measures error as a percentage, which can be helpful in 

interpretability in business contexts [24]. However, it is 

undefined for zero values and can be biased by small actual 

values. 

Adjusted R-squared (R²): Adjusted R² adjusts for the 

number of predictors in the model, preventing overfitting. 

While helpful, it is more complex to interpret compared to the 

standard R² for an initial comparison [25]. 
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With n observations, where 𝑥𝑖 represents the feature vector 

and 𝑦𝑖  the target variable. The goal is to predict the target 

variable 𝑦 ̂using the regression model as depicted in Eq. (2): 

 

ˆ ( )y f x=
 (2) 

 

MSE emphasizes large errors; sensitivity is particularly 

crucial for throughput predictions, where large prediction 

errors can lead to misleading conclusions. Given a dataset of 

observations where the goal is to predict Throughput MB/sec 

using a regression model, MSE and R² are proven to be 

effective metrics for model evaluation. MSE emphasizes 

larger errors more heavily [26], ensuring the model minimizes 

significant deviations, which is crucial for accurate throughput 

predictions. R² provides a clear measure of the model's 

explanatory power and facilitates comparison across different 

models [25]. In contrast, MAE, which measures the average 

magnitude of errors without considering their direction, does 

not penalize larger errors as heavily, making it less suitable 

when large errors have significant impacts. RMSE offers 

similar benefits to MSE but with added complexity due to the 

square root transformation, without additional interpretative 

value [27]. Therefore, MSE and R² are preferred for their 

ability to provide both absolute and relative measures of model 

performance [23], ensuring accurate and reliable assessments 

for predicting throughput MB/sec. 

Several frameworks have been proposed for the auto-tuning 

of distributed systems using machine learning [7]. Machine 

learning is used to automatically tune database configurations, 

demonstrating significant performance improvements [28]. 

Similarly, new frameworks were employed with a 

combination of supervised learning and Bayesian optimization 

to tune cloud services, highlighting the potential for machine 

learning in automated system tuning [29]. 

 

2.5 Application to Apache Kafka 

 

A comprehensive framework that leverages log analysis and 

regression-based modeling for dynamic, machine learning–

driven tuning of Kafka remains largely unrealized. Specific to 

Apache Kafka, research has explored various aspects of 

performance optimization, though there is limited work on 

comprehensive auto-tuning solutions [1]. There are 

experiments that examined the impact of different 

configuration settings on Kafka's performance, suggesting that 

machine learning could be beneficial in automating these 

adjustments [11]. However, a complete framework leveraging 

machine learning to analyze Kafka’s GC and broker logs for 

dynamic tuning has not been fully realized. 

The reviewed literature underscores the potential of 

machine learning techniques, particularly regression models, 

in automating the performance tuning of distributed systems 

[30]. While significant progress has been made in general 

system optimization, the specific application to Apache Kafka 

remains an open area for further research [31]. The aim is to 

bridge the gap by proposing a novel approach that integrates 

machine learning-based log analysis for the auto-tuning of 

Kafka, thereby enhancing its throughput and overall 

performance. 
 

 

3. METHODOLOGY 
 

The section outlines the methodology for using machine 

learning techniques to auto-tune real-time data streaming 

platforms by analyzing GC and broker logs [1]. The approach 

involves several key steps: data collection and preprocessing, 

feature extraction, model training, and the application of 

regression models for dynamic configuration tuning [32]. 

Specifically, the study evaluates multiple regression 

algorithms, including Linear Regression, Ridge Regression, 

Lasso Regression, Support Vector Regression (SVR), 

Decision Tree Regression, Random Forest Regression, and 

Gradient Boosting Regression, to capture both linear and non-

linear relationships in the data. The dataset, constructed from 
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GC and broker logs collected from AWS EC2-based Kafka 

deployments, comprises several thousand log entries that 

encapsulate throughput, latency, memory usage, and garbage 

collection metrics. By benchmarking a diverse set of 

algorithms on this dataset, the methodology ensures not only 

robust model selection but also provides a plug-and-play 

framework where different regression techniques can be 

substituted depending on workload characteristics and 

prediction requirements. 

A comprehensive collection of 471 files, including 226 raw 

log files, 244 structured CSV files, and 1 Python preprocessing 

script, comprised the publicly accessible JVM Logs Dataset on 

Kaggle [13], from which the experimental data were sourced. 

The dataset yields 2,880 columns of features after translation, 

comprising 1,204 decimal-valued metrics (such as latency, 

throughput, and memory utilisation) and 1,676 integer-valued 

parameters (such as counts and frequencies). By capturing 

crucial data from Kafka broker logs (throughput, latency, and 

error counts) and GC logs (heap consumption, halt periods, 

and collection frequency), these capabilities allow for the 

methodical modelling of configuration–performance 

interactions under various workloads. 

 

 
 

Figure 1. AWS EC2 instances 

 

Table 1. The installation steps on AWS EC2 

 
Steps Description 

Launch EC2 Instance 
Launch an EC2 instance from the AWS Management Console. Select an Amazon Linux 2 AMI and a t2.micro 

instance type to stay within the Free Tier limits. 

Connect to EC2 via SSH Once the instance is running, connect to it via SSH using a terminal or an SSH client. 

Update Package List Update the package list using the package manager for the Linux distribution installed on the EC2 instance. 

Install Java Install Java, as Kafka requires it to run. 

Download Kafka Binaries Download the latest Kafka binaries from the official Apache Kafka website. 

Extract Kafka Files Extract the downloaded Kafka files to a directory on the EC2 instance. 

Configure Kafka 
Edit the server properties file to configure the Kafka server settings, such as broker ID, log directories, and 

Zookeeper connection string. 

Start Zookeeper Service Start the Zookeeper service, which Kafka depends on for coordination. 

Start Kafka Broker Start the Kafka broker, which will begin listening for incoming connections and processing messages. 

Verify Installation Verify the installation by creating a topic and sending test messages to ensure Kafka is functioning correctly. 

Configure Security  

Groups 

Configure security groups in the AWS Management Console to allow necessary inbound and outbound traffic 

for Kafka communication, ensuring appropriate network access. 

 

 
 

Figure 2. Zookeeper and Kafka broker running on AWS EC2 
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3.1 Data collection and preprocessing 

 

Log collection: The first step involves collecting logs from 

the data streaming platform [33]. Specifically, gather garbage 

collection (GC) logs and broker logs. GC logs provide insights 

into memory management and garbage collection events, 

while broker logs contain information about broker activities, 

including message throughput, latency, and error rates. Figure 

1 shows the AWS EC2 [34] instances that were provisioned 

with the steps mentioned in Table 1. 

Preprocessing: Raw logs are often noisy and unstructured. 

Preprocess these logs to extract relevant data points. After the 

EC2 instances are up, Figure 2 shows the zookeeper [21] and 

Kafka broker running, which is used to capture the logs for 

further processing. 

Data integration: The preprocessed data from GC and 

broker logs are integrated into a unified dataset. The dataset 

captures the system’s state and performance metrics over time, 

providing a comprehensive view necessary for model training. 

 

 
 

Figure 3. Optimized feature selection 

 

3.2 Feature extraction 

 

Metric selection: As shown in Figure 3, identified key 

performance metrics that influence the throughput and 

stability of the system. For GC logs, important metrics include 

GC pause times, heap usage, and frequency of garbage 

collection events [35]. For broker logs, the primary focus is on 

metrics such as message throughput, request latency, and error 

rates [10]. 

 

3.3 Model training 

 

Regression models: Regression techniques are utilized to 

model the relationship between the extracted features and the 

performance metrics. Various regression models are 

considered, including linear regression, ridge regression, and 

more complex models like Random Forests and Gradient 

Boosting Machines [32]. For feature selection, we have 

adopted the OptiFeat approach, as detailed in prior work [36]. 

OptiFeat combines subject matter expertise with Recursive 

Feature Elimination (RFE) to ensure optimal feature selection, 

enhancing model interpretability and performance. The 

feature engineering process aligns with the methodology 

outlined in OptiFeat, providing only the most relevant features 

are retained for model training. 

Training and validation: The dataset is split into training 

and validation sets (70:30). The training set is used to train the 

regression models. In contrast, the validation set is used to 

evaluate their performance [37]. Key steps include: 

- Hyperparameter tuning using cross-validation to optimize 

model performance. 

- Evaluating model accuracy using metrics such as R2, 

MAE, and RMSE. 

- Selecting the best-performing model based on validation 

results. The complete process is depicted in Figure 4. 

 

 
 

Figure 4. Procedure chart 
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3.4 Dynamic configuration tuning 

 

Predictive analysis: The trained regression models are used 

to predict the impact of different configuration settings on 

system performance. By simulating various configurations, we 

identified settings that maximize throughput and minimize 

latency [9]. 

Automated tuning: Developed an automated tuning 

mechanism that adjusts the system’s configuration parameters 

based on model predictions. The mechanism continuously 

monitors system performance and logs, dynamically updating 

configurations to maintain optimal performance. The steps 

involved are: 

- Monitoring: Continuously collect and preprocess GC and 

broker logs. 

- Prediction: Use regression models to predict performance 

under current settings. 

- Adjustment: Automatically adjust configuration 

parameters based on predictions. 

- Feedback Loop: Implement a feedback loop where the 

effects of configuration changes are monitored, and models are 

retrained periodically to adapt to evolving workloads. 

Clear criteria, such as performance deterioration thresholds, 

prediction confidence ratings, and historical trend analysis, 

control the auto-tuning process. The model is guided by these 

measurements to determine the best time and way to make 

configuration changes, guaranteeing the system performance 

stays stable and adaptable to shifting workloads. 

Implementation: The auto-tuning mechanism is 

implemented as a modular system that can be integrated with 

existing data streaming platforms. It includes components for 

log collection, feature extraction, model inference, and 

configuration management. The relatively poor performance 

of SVR and Decision Tree models can be attributed to both the 

characteristics of the dataset and model sensitivity. Since the 

underlying relationship between configuration parameters and 

throughput is largely linear, simpler regression models are 

better suited. In contrast, non-linear methods such as SVR and 

Decision Trees underperform without extensive 

hyperparameter tuning. This reinforces the importance of the 

proposed plug-and-play framework, which allows such 

models to be tested in baseline form while enabling future 

integration of optimized or alternative regression techniques. 

 

 

4. EXPERIMENTAL SETUP 

 

To validate the methodology, set up a series of experiments 

using a representative real-time data streaming environment. 

As the AWS t2.micro EC2 instance comes with 1 GB of RAM, 

we have to reduce the memory size of brokers. 

Adopted methodology leverages machine learning 

techniques to provide an automated solution for tuning real-

time data streaming platforms. By analyzing GC and broker 

logs and employing regression models, which can dynamically 

adjust configuration settings to optimize performance [38]. 

The proposed approach demonstrates significant 

improvements in throughput and stability, reducing the need 

for manual tuning and paving the way for more intelligent and 

autonomous data streaming  

- Monitoring: Continuously collect and preprocess GC and 

broker logs. 

- Prediction: Regression models to predict performance 

under current settings. 

- Adjustment: Automatically adjust configuration 

parameters based on predictions. 

- Feedback Loop: Implement a feedback loop where the 

effects of configuration changes are monitored, and models are 

retrained periodically to adapt to evolving workloads. 

 

 

5. RESULT ANALYSIS 

 

Have chosen a variety of regression techniques to provide a 

comprehensive comparison of both linear and non-linear 

models, as shown in Table 2, ensuring all potential 

relationships in the data are considered. Linear Regression 

serves as a baseline, offering simplicity and interpretability. 

Ridge and Lasso Regression [39] introduce regularization to 

handle multicollinearity and feature selection, potentially 

improving model performance. Non-linear models like SVR 

[40], Decision Tree Regression, Random Forest Regression, 

and Gradient Boosting Regression [32] were included to 

capture complex and non-linear relationships. The diverse 

selection allows us to benchmark performance across different 

approaches, revealing that Linear and Ridge Regression 

perform exceptionally well, indicating a strong linear 

relationship in the dataset. Non-linear models like Random 

Forest also showed good performance, suggesting they capture 

some additional patterns. The comprehensive approach helps 

in selecting the best model based on empirical results, ensuring 

robust and accurate predictions. 

To evaluate the accuracy and reliability of regression 

models for performance prediction, several statistical metrics 

are employed. The most widely used is the MSE, depicted in 

Eq. (3): 

 

𝑀𝑆𝐸 = (
1

𝑛
) 𝛴{𝑖=1}

𝑛 (𝑦𝑖 − ŷ𝑖)
2 (3) 

 

As defined, it measures the average squared difference 

between the actual values 𝑦𝑖  and the predicted values ŷ𝑖 . 

Building on this, as shown in Eq. (4), the RMSE provides the 

error in the same units as the target variable by taking the 

square root of the MSE: 

 

𝑅𝑀𝑆𝐸 = √(
1

𝑛
) 𝛴{𝑖=1}

𝑛 (𝑦𝑖 − ŷ𝑖)
2 (4) 

 

Another useful metric is the MAE, depicted in Eq. (5), 

which captures the average magnitude of prediction errors 

without squaring them, making it less sensitive to outliers: 

 

𝑀𝐴𝐸 =  (
1

𝑛
) 𝛴{𝑖=1}

𝑛 |𝑦𝑖 − ŷ𝑖| (5) 

 

Finally, the Coefficient of Determination (R²) assesses how 

well the model explains the variance in the data and is 

expressed as in Eq. (6): 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦
𝑖
)

2𝑛
𝑖=1

 (6) 

 

• 𝑦𝑖  = actual observed value for the ith data point ŷ𝑖  = 

predicted value for the ith data point (from the regression 

model), 𝑦
𝑖
 = mean of all observed values 𝑦𝑖 . 
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• n = total number of observations. 

• ∑  =𝑛
𝑖=1  Summation over all data points from i = 1 to n. 

Among these, MSE and R² are particularly well-suited for 

system performance prediction tasks. MSE heavily penalizes 

large deviations, which is crucial for throughput predictions 

where significant errors can distort optimization decisions. R², 

on the other hand, provides an interpretable measure of the 

proportion of variance explained by the model, enabling 

straightforward comparison across different regression 

approaches. Together, they offer both absolute and relative 

perspectives on model performance, ensuring accurate and 

reliable assessment for auto-tuning distributed systems. 

 

Table 2. Comparing different regression models 

 
Model MSE R² RMSE MAE Performance Analysis 

Linear Regression 4.84E-06 0.9999 0.0022 0.0014 Excellent fit; captures the relationship very well. 

Ridge Regression 4.84E-06 0.9999 0.0022 0.0014 
Excellent fit; similar to Linear Regression, indicates 

minimal regularization needed. 

Lasso Regression 1.26E-05 0.9999 0.0035 0.0023 
Perfect fit; slightly higher MSE, useful for feature 

selection. 

Support Vector 

Regression 
35.7065 0.6423 5.9755 3.8041 Poor performance; not suitable for the dataset. 

Decision Tree 

Regression 
4.8861 0.7752 2.2105 1.4072 

Moderate performance; likely overfits, does not 

generalize well. 

Random Forest 

Regression 
0.3241 0.9850 0.5693 0.3624 

Good performance; captures relationships well, less 

precise than linear models. 

Gradient Boosting 1.6797 0.9227 1.2960 0.8251 
Good performance; better than Decision Tree, but not as 

good as linear models. 

 

The performance of various models is compared in Table 2. 

MSE and R² were chosen for their balance of simplicity, 

interpretability, and comprehensive insights into model 

performance [23]. MAE is less sensitive to outliers and 

provides a simple average error. MSE helps penalize 

significant errors. RMSE offers a more interpretable error in 

the original unit of measurement, and R² shows how well the 

model explains variance in the data, with values nearer 1 

denoting a better fit. They provide a clear and concise way to 

evaluate and compare the regression models, ensuring robust 

and accurate analysis. From the comparative results, it is 

evident that Linear and Ridge Regression outperform other 

techniques with near-perfect accuracy and stability, making 

them the natural choice for this study. Lasso Regression, while 

slightly less accurate, provides added value for feature 

selection, whereas non-linear models such as Random Forest 

and Gradient Boosting captured additional patterns but did not 

surpass the precision of the linear approaches. Support Vector 

Regression and Decision Trees, on the other hand, showed 

weaker generalization and higher error rates, rendering them 

unsuitable for this dataset. Although Linear and Ridge 

Regression were ultimately selected for their superior 

performance and interpretability, the framework is 

intentionally designed to be algorithm-agnostic, allowing 

future researchers to plug in alternative regression or advanced 

learning models that may yield better results under different 

data distributions or workload conditions. The results of this 

study provide a framework for automated configuration tuning 

that has been proven to improve the performance of data 

streaming systems while reducing the need for manual 

intervention. 

 

 

6. CONCLUSION  

 

This study demonstrates the potential of machine learning–

based approaches for auto-tuning distributed systems, with a 

focus on real-time data streaming platforms such as Apache 

Kafka. By establishing a plug-and-play framework for 

regression techniques, the work highlights how system 

performance metrics like throughput, latency, and stability can 

be systematically modeled and optimized. Although the 

current study concentrates on single-node deployments, the 

findings provide a strong foundation for extending the 

approach to more complex, distributed setups. The ability to 

generalize beyond Kafka to other performance-critical 

domains, including distributed databases, container 

orchestration platforms, and cloud resource management 

frameworks, further emphasizes the broader impact of this 

methodology. 

The contributions of this work are threefold: (a) it provides 

empirical evidence that machine learning models can enhance 

Kafka’s performance tuning, (b) it introduces a flexible plug-

and-play framework that accommodates both linear and non-

linear regression techniques, and (c) it demonstrates 

improvements in throughput prediction accuracy and system 

stability assessment. These findings contribute to the literature 

on automated system optimization and hold practical 

relevance for operators managing real-time streaming 

platforms. 

 

 

7. FUTURE WORK 

 

7.1 Extensions to streaming systems 

 

Future research should expand the framework to multi-node 

Kafka clusters, where challenges such as leader election, 

partitioning, and cross-broker coordination add complexity to 

tuning. Exploring workload-aware auto-tuning under dynamic 

conditions and scaling in multi-tenant cloud environments will 

also be essential to ensure robustness and consistency in real-

world deployments. 

 

7.2 Cross-domain applications 

 

The methodology can be extended beyond Kafka to other 

performance-critical domains, such as distributed databases, 

container orchestration platforms, and cloud resource 

management frameworks. Adapting the proposed approach to 

these systems can broaden its applicability and impact across 

diverse distributed infrastructures. 
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7.3 Methodological advances 

 

On the methodological side, future work should investigate 

non-linear and ensemble models (e.g., Random Forests, 

Gradient Boosting) to capture more intricate relationships 

between configuration and performance. Incorporating 

advanced anomaly detection and adaptive optimization 

algorithms can enhance resilience under varying workloads. 

Furthermore, multi-objective optimization techniques will be 

critical to balance competing performance metrics such as 

throughput, latency, and resource utilization. 

Recent studies confirm the importance of these directions: 

anomaly detection and adaptive learning have been widely 

explored in distributed systems optimization [41], while multi-

objective optimization approaches are emerging as promising 

strategies for balancing performance trade-offs [42]. Finally, 

integrating these techniques into a fully automated CI/CD 

pipeline would enable real-time JVM parameter tuning, 

creating a scalable framework for continuous optimization in 

streaming environments. 
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