Z I El' A International Information and

Engineering Technology Association

Mathematical Modelling of Engineering Problems
Vol. 12, No. 11, November, 2025, pp. 3895-3903

Journal homepage: http://iieta.org/journals/mmep

IntelliStream: A Machine Learning Framework Based on Regression for Improving Broker N

Performance and Throughput via Log Analysis

G. Vijayakumar™®, R. K. Bharathi

Check for
updates

Department of Computer Applications, JSS Science &Technology University, University of Mysore, Mysore 570006, India

Corresponding Author Email: vijayakumar.gundappa@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121115

ABSTRACT

Received: 9 July 2025

Revised: 3 September 2025
Accepted: 12 September 2025
Available online: 30 November 2025

Keywords:
garbage collection, machine
streaming, tuning, regression

learning,

In modern data-driven ecosystems, platforms such as Apache Kafka are essential for
handling continuous, high-volume event streams across domains including loT,
finance, e-commerce, and industrial monitoring. These applications rely on real-time
processing for tasks such as anomaly detection, fraud analysis, recommendation
systems, and predictive maintenance. As workloads vary widely, multiple specialized
pipelines are often required, adding complexity and increasing operational overhead.
Tuning such systems is challenging, as parameters related to memory, concurrency,
replication, and batching must be balanced to maintain high throughput, low latency,
and stable performance under dynamic conditions. Misconfigurations can trigger fast
failures, making automated, adaptive tuning essential. The study proposes a machine
learning framework that dynamically adjusts real-time streaming platforms to achieve
better performance. By analyzing garbage collection (GC) logs and broker logs, the
method employs regression models to detect bottlenecks and predict optimal
configuration settings. Key metrics are extracted from logs, used to train regression
models, and applied to adjust parameters dynamically. Experimental evaluation shows
that Linear and Ridge Regression achieved an R=f 0.9999 with a Mean Squared Error
(MSE) of 4.84E-06, delivering over 99% accuracy in predicting throughput trends. The
method dynamically optimizes performance, cutting manual tuning and enabling more
intelligent, self-managing streaming systems.

1. INTRODUCTION

The need for real-time data streaming and processing has
significantly increased in today's data-driven society.
Platforms designed for these tasks must efficiently and reliably
handle a vast amount of data. Apache Kafka, a widely used
distributed event streaming platform, has emerged as a key
technology for building real-time data pipelines and streaming
applications [1]. It remains quite challenging to optimize
Kafka's performance to meet the demands of a changing
workload, despite its robust design.

Recent studies comparing manual, heuristic, and machine
learning—based tuning methods in distributed systems are
supported by several journal articles and surveys. Manual
tuning of Kafka parameters generally shows only modest
throughput improvements, whereas heuristic methods achieve
stronger results, and machine learning approaches often
provide the largest performance gains while also reducing
latency variability [2-4]. Manual tuning in distributed systems
like Apache Kafka generally results in limited performance
improvements due to its static adjustment nature. The studies
[3, 4] presented that manual tuning requires administrators to
change distributions and configurations directly and typically
only achieves around a 10% improvement in throughput, as
changes are not adaptive to dynamic workload conditions.
Heuristic-based methods, using rules or profiling to guide

3895

tuning, can deliver higher throughput gains (up to 25%) but
still struggle to adapt under fluctuating workloads [4-6].
Whereas Machine learning techniques, such as reinforcement
learning and regression-based optimization, routinely surpass
manual and heuristic methods in both throughput and latency
stability (with throughput improvements of 40-50%) [2, 6-8].

Performance tuning of Kafka involves adjusting numerous
configuration parameters that influence throughput, latency,
and stability. These parameters, such as heap size, buffer sizes,
and concurrency settings, can interact in complex ways,
making manual tuning a daunting and often inefficient task
[9]. Moreover, the dynamic nature of workloads in production
environments necessitates continuous and adaptive tuning to
maintain optimal performance [10]. The problem has a
promising answer in machine learning. Machine learning
models can find patterns and correlations in operational logs,
particularly garbage collection (GC) logs and broker logs,
which are not immediately visible using conventional
techniques. These insights can then be used to predict the
effects of various configurations on performance metrics and
to identify optimal settings [11].

The selection of GC logs and broker logs as primary
indicators is motivated by their direct impact on system
performance. GC logs capture information about memory
allocation, collection frequency, and pause durations [12]. A
high frequency of GC events or long GC pauses can

https://orcid.org/0000-0002-9886-8910
https://orcid.org/0000-0002-7616-2415
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.121115&domain=pdf

significantly reduce throughput by interrupting message
processing and increasing latency due to stalled threads.
Similarly, broker logs provide operational metrics such as
message throughput, request latency, error counts, and
partition reassignments [10], all of which directly reflect
system stability and responsiveness. For example, sustained
error rates or rising latencies in broker logs indicate declining
stability under load, while steady throughput values reflect
efficient resource utilization. By analyzing both GC and
broker logs together, the study establishes a holistic view: GC
behavior explains memory-level bottlenecks, while broker
metrics capture system-level performance outcomes. This
dual-log perspective ensures that the machine learning
framework links configuration parameters to the most critical
performance dimensions.

The dependent variables that represent performance are
explicitly defined as throughput (MB/sec), latency
(milliseconds), and stability (measured through error rates and
consistency under varying workloads). These metrics capture
efficiency, responsiveness, and robustness in distributed
streaming. The independent variables are the Kafka
configuration parameters, such as heap size, buffer size,
concurrency levels, and GC behavior that directly influence
performance outcomes. To connect these inputs with
measurable system behavior, the study leverages GC logs,
which provide details on memory allocation, pause times, and
heap utilization, as well as broker logs, which record
throughput, request latency, and error statistics. This explicit
mapping of independent and dependent variables strengthens
the analytical foundation of the proposed machine learning
framework, ensuring that the research targets the most relevant
and impactful performance indicators.

We utilize the publicly available JVM Logs Dataset from
Kaggle [13], which provides GC and Kafka broker logs under
diverse workload conditions and serves as a reproducible
benchmark for performance modeling studies. which
comprises 471 files and 2,880 features derived from GC and
Kafka broker logs. This rich dataset captures diverse workload
conditions, providing a robust foundation for machine
learning—based performance modeling and auto-tuning.

Through a series of experiments, the model shows the
effectiveness of the strategy, exhibiting notable gains in
performance stability and throughput. In addition to increasing
system efficiency, the automated tuning process eliminates the
need for significant manual intervention, which lowers
complexity and operating costs. Given the complexity and
non-linearity of distributed system behavior, relying on a
single regression technique may not adequately capture the
diverse relationships between configuration parameters and
performance outcomes. For instance, while linear regression
offers interpretability, it oversimplifies non-linear effects;
conversely, tree-based models such as decision trees or
gradient boosting can capture non-linear patterns but may risk
overfitting [14]. To address these limitations, an ensemble of
regression algorithms is often more effective, as it combines
the strengths of multiple models to improve predictive
accuracy and generalizability. Approaches such as Random
Forest Regression and Gradient Boosting Regression have
shown significant promise in prior system optimization studies
[15], reducing variance and bias while delivering more reliable
performance predictions. Incorporating ensemble regression
methods into auto-tuning frameworks thus provides a fine-
tuned and adaptive means of modeling system performance
under dynamic workloads. The objective of this research is to

3896

develop a machine learning-based auto-tuning framework that
improves Kafka's throughput and stability while reducing
manual intervention.

The paper proposes an automated, machine learning-based
approach to fine-tune real-time data streaming platforms for
better throughput and overall performance. The method
involves collecting and preprocessing log data, extracting
relevant features, and training regression models to predict
performance outcomes. The models are then used to adjust
configuration parameters dynamically, ensuring the system
operates at peak efficiency under varying conditions.

The remainder of the paper is structured as follows: Section
2 reviews related work in the field of performance tuning using
machine learning. Section 3 describes the methodology,
including data collection, feature engineering, and model
training. Section 4 presents the experimental setup and results.
Section 5 concludes the paper with a discussion of the
findings, and finally, Section 6 presents potential future work
in the area.

2. RELATED WORK

The challenge of optimizing performance in distributed
systems [16], particularly real-time data streaming platforms,
has been the focus of extensive research. The section reviews
existing literature on performance tuning using machine
learning, with a specific focus on the analysis of operational
logs and the application of regression techniques.

2.1 Performance tuning of distributed systems

Traditional approaches to performance tuning in distributed
systems often involve heuristic methods and rule-based
configurations [17]. These methods require significant
expertise and manual intervention, making them labor-
intensive and less adaptable to dynamic workloads. Recent
advances have shifted towards more automated solutions,
leveraging statistical and machine learning techniques to
address these limitations [18].

2.2 Machine learning for system optimization

Performance tuning is essential for ensuring system
efficiency and stability, and automating this process
minimizes manual effort while enabling adaptive optimization
in dynamic workloads. Machine learning has shown
considerable promise in optimizing system performance [19].
Approaches such as reinforcement learning [20], supervised
learning, and unsupervised learning have been applied to
various tuning problems. For instance, reinforcement learning
has been applied to resource management in cluster
computing, resulting in improved resource utilization and
faster job completion times [11]. Similarly, deep learning
models have been employed to predict performance
bottlenecks in cloud services, thereby enabling more effective
resource allocation [12].

2.3 Log analysis for performance tuning

Log analysis is a critical aspect of performance tuning,
providing insights into system behavior and performance
metrics. Logs from GC and broker activities offer valuable
data for understanding and predicting system performance. It

is demonstrated that the use of log mining techniques to
diagnose performance issues in distributed systems highlights
the potential of logs as a rich source of information for
optimization tasks [21].

While log analysis provides the raw behavioral data, it must
be coupled with predictive modeling to translate these signals
into actionable tuning decisions.

2.4 Regression techniques in performance prediction

Regression techniques are particularly effective in modeling
the relationships between configuration parameters and
performance metrics [22]. In the context of system tuning,
regression models have been used to predict the impact of
configuration changes on performance metrics. Using
regression trees to model the performance of database queries
provides a basis for automatic tuning of query parameters. In
this way, log analysis and regression complement each other:
logs supply the empirical evidence of system behavior, and
regression translates this evidence into predictive insights for
tuning.

There are multiple measures to find the effectiveness of
machine learning models, as in Eq. (1).

Mean Squared Error (MSE): MSE is a metric used to
measure the average squared difference between predicted and
actual values in a dataset. It quantifies the error by squaring
the differences to ensure both positive and negative errors
contribute equally, and then averaging these squared
differences.

Mean Absolute Error (MAE): MAE is a metric that
calculates the error by taking the absolute value of the
differences between predicted and actual values, and then
averaging these absolute differences. It is less sensitive to
outliers than MSE and provides a linear measure of average
error [23]. However, it does not emphasize larger errors, which
can be critical in some applications.

Root Mean Squared Error (RMSE): RMSE is the square
root of MSE, making it interpretable in the same units as the
target variable [23]. However, it carries the same information
as MSE on a different scale.

Mean Absolute Percentage Error (MAPE): MAPE
measures error as a percentage, which can be helpful in
interpretability in business contexts [24]. However, it is
undefined for zero values and can be biased by small actual
values.

Adjusted R-squared (R?): Adjusted R? adjusts for the
number of predictors in the model, preventing overfitting.
While helpful, it is more complex to interpret compared to the
standard R? for an initial comparison [25].

{

With n observations, where x; represents the feature vector
and y; the target variable. The goal is to predict the target
variable y using the regression model as depicted in Eq. (2):

y="1(x)

MSE emphasizes large errors; sensitivity is particularly
crucial for throughput predictions, where large prediction
errors can lead to misleading conclusions. Given a dataset of
observations where the goal is to predict Throughput MB/sec

n

2% 1)

i=1

(1)

)

3897

using a regression model, MSE and R? are proven to be
effective metrics for model evaluation. MSE emphasizes
larger errors more heavily [26], ensuring the model minimizes
significant deviations, which is crucial for accurate throughput
predictions. R? provides a clear measure of the model's
explanatory power and facilitates comparison across different
models [25]. In contrast, MAE, which measures the average
magnitude of errors without considering their direction, does
not penalize larger errors as heavily, making it less suitable
when large errors have significant impacts. RMSE offers
similar benefits to MSE but with added complexity due to the
square root transformation, without additional interpretative
value [27]. Therefore, MSE and R? are preferred for their
ability to provide both absolute and relative measures of model
performance [23], ensuring accurate and reliable assessments
for predicting throughput MB/sec.

Several frameworks have been proposed for the auto-tuning
of distributed systems using machine learning [7]. Machine
learning is used to automatically tune database configurations,
demonstrating significant performance improvements [28].
Similarly, new frameworks were employed with a
combination of supervised learning and Bayesian optimization
to tune cloud services, highlighting the potential for machine
learning in automated system tuning [29].

2.5 Application to Apache Kafka

A comprehensive framework that leverages log analysis and
regression-based modeling for dynamic, machine learning—
driven tuning of Kafka remains largely unrealized. Specific to
Apache Kafka, research has explored various aspects of
performance optimization, though there is limited work on
comprehensive auto-tuning solutions [1]. There are
experiments that examined the impact of different
configuration settings on Kafka's performance, suggesting that
machine learning could be beneficial in automating these
adjustments [11]. However, a complete framework leveraging
machine learning to analyze Kafka’s GC and broker logs for
dynamic tuning has not been fully realized.

The reviewed literature underscores the potential of
machine learning techniques, particularly regression models,
in automating the performance tuning of distributed systems
[30]. While significant progress has been made in general
system optimization, the specific application to Apache Kafka
remains an open area for further research [31]. The aim is to
bridge the gap by proposing a novel approach that integrates
machine learning-based log analysis for the auto-tuning of
Kafka, thereby enhancing its throughput and overall
performance.

3. METHODOLOGY

The section outlines the methodology for using machine
learning techniques to auto-tune real-time data streaming
platforms by analyzing GC and broker logs [1]. The approach
involves several key steps: data collection and preprocessing,
feature extraction, model training, and the application of
regression models for dynamic configuration tuning [32].

Specifically, the study evaluates multiple regression
algorithms, including Linear Regression, Ridge Regression,
Lasso Regression, Support Vector Regression (SVR),
Decision Tree Regression, Random Forest Regression, and
Gradient Boosting Regression, to capture both linear and non-
linear relationships in the data. The dataset, constructed from

GC and broker logs collected from AWS EC2-based Kafka
deployments, comprises several thousand log entries that
encapsulate throughput, latency, memory usage, and garbage
collection metrics. By benchmarking a diverse set of
algorithms on this dataset, the methodology ensures not only
robust model selection but also provides a plug-and-play
framework where different regression techniques can be
substituted depending on workload characteristics and
prediction requirements.

A comprehensive collection of 471 files, including 226 raw
log files, 244 structured CSV files, and 1 Python preprocessing

script, comprised the publicly accessible JVM Logs Dataset on
Kaggle [13], from which the experimental data were sourced.
The dataset yields 2,880 columns of features after translation,
comprising 1,204 decimal-valued metrics (such as latency,
throughput, and memory utilisation) and 1,676 integer-valued
parameters (such as counts and frequencies). By capturing
crucial data from Kafka broker logs (throughput, latency, and
error counts) and GC logs (heap consumption, halt periods,
and collection frequency), these capabilities allow for the

methodical modelling of configuration—performance
interactions under various workloads.

O Name # v Instance ID Instance state v | Instance type ¥ Status check Alarm status
] MyKafkaServer2 i-0b5d45948fa196399 ® Running & @ t2.micro ® 2/2 checks passed View alarms =
O MyKafkaServer i-0db31f05c991028ec @ Running R Q t2.micro @ 2/2 checks passed View alarms -
[Zookeeper i-Ocalaf9ceeec2dle8 (® Running @ Q t2.micro) 2/2 checks passed View alarms 4
Figure 1. AWS EC2 instances
Table 1. The installation steps on AWS EC2
Steps Description

Launch EC2 Instance

Launch an EC2 instance from the AWS Management Console. Select an Amazon Linux 2 AMI and a t2.micro

instance type to stay within the Free Tier limits.

Connect to EC2 via SSH
Update Package List
Install Java
Download Kafka Binaries
Extract Kafka Files

Configure Kafka

Start Zookeeper Service
Start Kafka Broker
Verify Installation
Configure Security

Groups

Once the instance is running, connect to it via SSH using a terminal or an SSH client.
Update the package list using the package manager for the Linux distribution installed on the EC2 instance.
Install Java, as Kafka requires it to run.
Download the latest Kafka binaries from the official Apache Kafka website.
Extract the downloaded Kafka files to a directory on the EC2 instance.
Edit the server properties file to configure the Kafka server settings, such as broker ID, log directories, and
Zookeeper connection string.
Start the Zookeeper service, which Kafka depends on for coordination.
Start the Kafka broker, which will begin listening for incoming connections and processing messages.
Verify the installation by creating a topic and sending test messages to ensure Kafka is functioning correctly.
Configure security groups in the AWS Management Console to allow necessary inbound and outbound traffic
for Katka communication, ensuring appropriate network access.

zookeeper.sync.time.ms = 2000

(kafka.server.KafkaConfig)
[2024-05-24 02:56:09,618] INFO [ThrottledChannelReaper-Fetch]
: Starting (kafka.server.ClientQuotaManager$ThrottledChannelR
eaper)
[2024-05-24 02:56:09,619] INFO [ThrottledChannelReaper-Produc
e]: Starting (kafka.server.ClientQuotaManager$ThrottledChanne
1Reaper)
[2024-05-24 02:56:09,621] INFO [ThrottledChannelReaper-Reques
t]: Starting (kafka.server.ClientQuotaManager$ThrottledChanne
1Reaper)
[2024-05-24 02:56:09,639] INFO [ThrottledChannelReaper-Contro
1lerMutation]: Starting (kafka.server.ClientQuotaManager$Thro
ttledChannelReaper)

[2024-05-24 02:56:09,660] INFO Log directory /tmp/kafka-logs
not found, creating it. (kafka.log.LogManager)

[2024-05-24 02:56:09,685] INFO Loading logs from log dirs Arr
aySeq(/tmp/kaftka-logs) (kafka.log.LogManager)

[2024-05-24 02:56:09,700] INFO Attempting recovery for all lo
gs in /tmp/kafka-logs since no clean shutdown file was found
(kafka.log.LogManager)

[2024-05-24 02:56:09,711] INFO Loaded 0 logs in 26ms. (kafka.
log.LogManager

[2024-05-24 02:56:09,718] INFO Starting log cleanup with a pe
riod of 300000 ms. (kafka.log.LogManager)

[2024-05-24 02:56:09,724] INFO Starting log flusher with a de
fault period of 9223372036854775807 ms. (kafka.log.LogManager

)

[2024-05-24 02:56:10,629] INFO Updated connection-accept-rate
max connection creation rate to 2147483647 (kafka.network.Co
nnectionQuotas)

[2024-05-24 02:56:10,637] INFO Awaiting socket connections on
0.0.0.0:9092. (kafka.network.Acceptor)

2. Ec2kafkaex1

1.62.Final.jar:/home/ec2-user/kafka_2.13-2.8.0/bin/../libs/0
sgi-resource-locator-1.0.3.jar:/home/ec2-user/kafka_2.13-2.8
.0/bin/../libs/paranamer-2.8.jar:/home/ec2-user/kafka 2.13-2
.8.0/bin/../1ibs/plexus-utils-3.2.1.jar:/home/ec2-user/kafka
_2.13-2.8.0/bin/../libs/reflections-0.9.12.jar:/home/ec2-use
r/kafka_2.13-2.8.0/bin/../libs/rocksdbjni-5.18.4.jar:/home/e
c2-user/kafka_2.13-2.8.0/bin/../libs/scala-collection-compat
_2.13-2.3.0.jar:/home/ec2-user/kafka_2.13-2.8.0/bin/../11ibs/
scala-java8-compat_2.13-0.9.1.jar:/home/ec2-user/kafka_2.13-
2.8.0/bin/../libs/scala-libra .13.5.jar:/home/ec2-user/ka
fka_2.13-2.8.0/bin/../libs/scala-logging_2.13-3.9.2.jar:/hom
e/ec2-user/kafka_2.13-2.8.0/bin/../libs/scala-reflect-2.13.5
.jar:/home/ec2-user/kaftka_2.13-2.8.0/bin/../libs/s1f4j-api-1
.7.30.jar:/home/ec2-user/kafka_2.13-2.8.0/bin/../libs/s1f4]-
log4j12-1.7.30.jar:/home/ec2-user/kafka_2.13-2.8.0/bin/../11
bs/snappy-java-1.1.8.1.jar:/home/ec2-user/kafka_2.13-2.8.0/b
in/../libs/zookeeper-3.5.9.jar:/home/ec2-user/kafka_2.13-2.8
.0/bin/../11bs/zookeeper-jute-3.5.9.jar:/home/ec2-user/kafka
_2.13-2.8.0/bin/../libs/zstd-jn1-1.4.9-1.jar (org.apache.zoo
keeper.server.ZooKeeperServer)

[2024-05-24 02:55:55,388] INFO Server environment:java.libra
ry.path=/usr/java/packages/lib:/usr/1ib64:/1ib64:/1ib:/usr/1
ib (org.apache.zookeeper.server.ZooKeeperServer)

[2024-05-24 02:55:55,388] INFO Server environment:java.io.tm
pdir=/tmp (org.apache.zookeeper.server.ZooKeeperServer)
[2024-05-24 02:55:55,388] INFO Server environment:java.compi
ler=<NA> (org.apache.zookeeper.server.ZooKeeperServer)
[2024-05-24 02:55:55,388] INFO Server environment:os.name=L1i
nux (org.apache.zookeeper.server.ZooKeeperServer)
[2024-05-24 02:55:55,388] INFO Server environment:os.arch=am
dé4 (org.apache.zookeeper.server.ZooKeeperServer)
[2024-05-24 02:55:55,389] INFO Server environment:os.version
=6.1.90-99.173.amzn2023.x86_64 (org.apache.zookeeper.server.

5. EC2MyKafka2

Figure 2. Zookeeper and Kafka broker running on AWS EC2

3898

3.1 Data collection and preprocessing

Log collection: The first step involves collecting logs from
the data streaming platform [33]. Specifically, gather garbage
collection (GC) logs and broker logs. GC logs provide insights
into memory management and garbage collection events,
while broker logs contain information about broker activities,
including message throughput, latency, and error rates. Figure
1 shows the AWS EC2 [34] instances that were provisioned
with the steps mentioned in Table 1.

Preprocessing: Raw logs are often noisy and unstructured.
Preprocess these logs to extract relevant data points. After the
EC2 instances are up, Figure 2 shows the zookeeper [21] and
Kafka broker running, which is used to capture the logs for
further processing.

Data integration: The preprocessed data from GC and
broker logs are integrated into a unified dataset. The dataset
captures the system’s state and performance metrics over time,
providing a comprehensive view necessary for model training.

3.2 Feature extraction

Metric selection: As shown in Figure 3, identified key
performance metrics that influence the throughput and
stability of the system. For GC logs, important metrics include
GC pause times, heap usage, and frequency of garbage
collection events [35]. For broker logs, the primary focus is on
metrics such as message throughput, request latency, and error
rates [10].

3.3 Model training

Regression models: Regression techniques are utilized to
model the relationship between the extracted features and the
performance metrics. Various regression models are
considered, including linear regression, ridge regression, and
more complex models like Random Forests and Gradient
Boosting Machines [32]. For feature selection, we have
adopted the OptiFeat approach, as detailed in prior work [36].
OptiFeat combines subject matter expertise with Recursive

Training and validation: The dataset is split into training

- Hyperparameter tuning using cross-validation to optimize

Trigger on schedule/Perf Feature Elimination (RFE) to ensure optimal feature selection,
Gather JVM logs |« degradation enhancing model interpretability and performance. The
feature engineering process aligns with the methodology
outlined in OptiFeat, providing only the most relevant features
y are retained for model training.
Feature engineering Finetune with

(OptiFeat) Mew values and validation sets (70:30). The training set is used to train the
+ regression models. In contrast, the validation set is used to

_ Compare Each Model evaluate their performance [37]. Key steps include:

Train the model R
for Applicability
model performance.
L Evaluate the _T
model MAE, and RMSE.

Figure 3. Optimized feature selection

‘ 1. Data Collection GC logs, Broker [o{/,uJ

l

2. Preprocessing Clean, structure, integrate rlulusz:lJ

}

‘3. Feature Extraction & SelectionApply OptiFeat (SME + RFE)’

l

L-L Model Training Train regression models (Linear, Ridge, Lasso, RF, ("HM)’

l

5. Model Evalnation Metrics: MSE, RMSE, MAE, R?

]

6. Dynamic Configuration TuningPredict & auto-adjust Kafka parameters

l

‘7. Experimental ValidationDeploy on AWS EC2, measure pm‘_fo-ﬁnnnrr}

l

8. Continuous Improvement Eztend to clusters, anomaly detection, adaptive learning

Figure 4. Procedure chart

3899

- Evaluating model accuracy using metrics such as RZ,

- Selecting the best-performing model based on validation
results. The complete process is depicted in Figure 4.

3.4 Dynamic configuration tuning

Predictive analysis: The trained regression models are used
to predict the impact of different configuration settings on
system performance. By simulating various configurations, we
identified settings that maximize throughput and minimize
latency [9].

Automated tuning: Developed an automated tuning
mechanism that adjusts the system’s configuration parameters
based on model predictions. The mechanism continuously
monitors system performance and logs, dynamically updating
configurations to maintain optimal performance. The steps
involved are:

- Monitoring: Continuously collect and preprocess GC and
broker logs.

- Prediction: Use regression models to predict performance
under current settings.

- Adjustment: Automatically
parameters based on predictions.

- Feedback Loop: Implement a feedback loop where the
effects of configuration changes are monitored, and models are
retrained periodically to adapt to evolving workloads.

Clear criteria, such as performance deterioration thresholds,
prediction confidence ratings, and historical trend analysis,
control the auto-tuning process. The model is guided by these
measurements to determine the best time and way to make
configuration changes, guaranteeing the system performance
stays stable and adaptable to shifting workloads.

Implementation: The auto-tuning mechanism s
implemented as a modular system that can be integrated with
existing data streaming platforms. It includes components for
log collection, feature extraction, model inference, and
configuration management. The relatively poor performance
of SVR and Decision Tree models can be attributed to both the
characteristics of the dataset and model sensitivity. Since the
underlying relationship between configuration parameters and
throughput is largely linear, simpler regression models are
better suited. In contrast, non-linear methods such as SVR and
Decision Trees underperform without extensive
hyperparameter tuning. This reinforces the importance of the
proposed plug-and-play framework, which allows such
models to be tested in baseline form while enabling future
integration of optimized or alternative regression techniques.

adjust configuration

4. EXPERIMENTAL SETUP

To validate the methodology, set up a series of experiments
using a representative real-time data streaming environment.
As the AWS t2.micro EC2 instance comes with 1 GB of RAM,
we have to reduce the memory size of brokers.

Adopted methodology leverages machine learning
techniques to provide an automated solution for tuning real-
time data streaming platforms. By analyzing GC and broker
logs and employing regression models, which can dynamically
adjust configuration settings to optimize performance [38].
The proposed approach demonstrates significant
improvements in throughput and stability, reducing the need
for manual tuning and paving the way for more intelligent and
autonomous data streaming

- Monitoring: Continuously collect and preprocess GC and
broker logs.

- Prediction: Regression models to predict performance
under current settings.

3900

- Adjustment: Automatically
parameters based on predictions.

- Feedback Loop: Implement a feedback loop where the
effects of configuration changes are monitored, and models are
retrained periodically to adapt to evolving workloads.

adjust configuration

5. RESULT ANALYSIS

Have chosen a variety of regression techniques to provide a
comprehensive comparison of both linear and non-linear
models, as shown in Table 2, ensuring all potential
relationships in the data are considered. Linear Regression
serves as a baseline, offering simplicity and interpretability.
Ridge and Lasso Regression [39] introduce regularization to
handle multicollinearity and feature selection, potentially
improving model performance. Non-linear models like SVR
[40], Decision Tree Regression, Random Forest Regression,
and Gradient Boosting Regression [32] were included to
capture complex and non-linear relationships. The diverse
selection allows us to benchmark performance across different
approaches, revealing that Linear and Ridge Regression
perform exceptionally well, indicating a strong linear
relationship in the dataset. Non-linear models like Random
Forest also showed good performance, suggesting they capture
some additional patterns. The comprehensive approach helps
in selecting the best model based on empirical results, ensuring
robust and accurate predictions.

To evaluate the accuracy and reliability of regression
models for performance prediction, several statistical metrics
are employed. The most widely used is the MSE, depicted in

Eq. (3):

1
MSE = (=) 5y 01 - 90? G)

As defined, it measures the average squared difference
between the actual values y; and the predicted values ¥; .
Building on this, as shown in Eq. (4), the RMSE provides the
error in the same units as the target variable by taking the
square root of the MSE:

1
RMSE = J (;) iy — 902 @)

Another useful metric is the MAE, depicted in Eq. (5),
which captures the average magnitude of prediction errors
without squaring them, making it less sensitive to outliers:

1
wae = (3) iyl 5 ©

Finally, the Coefficient of Determination (R?) assesses how
well the model explains the variance in the data and is
expressed as in Eq. (6):

LG9
—\2
Z?=1(yi - yl)

R? =

(6)

e y; = actual observed value for the i data pointy; =
predicted value for the i data point (from the regression
model), ¥, = mean of all observed values y;.

e n = total number of observations.
1 = Summation over all data points from i =1 to n.
Among these, MSE and R? are particularly well-suited for
system performance prediction tasks. MSE heavily penalizes
large deviations, which is crucial for throughput predictions
where significant errors can distort optimization decisions. R?,

on the other hand, provides an interpretable measure of the
proportion of variance explained by the model, enabling
straightforward comparison across different regression
approaches. Together, they offer both absolute and relative
perspectives on model performance, ensuring accurate and
reliable assessment for auto-tuning distributed systems.

Table 2. Comparing different regression models

Model MSE R RMSE MAE Performance Analysis
Linear Regression 4.84E-06 0.9999 0.0022 0.0014 Excellent fit; captures the relationship very well.
Ridge Regression 4 84E-06 0.9999 0.0022 0.0014 Excellent ﬁt;. s.1m11ar to Ln}ear'Regresswn, indicates
minimal regularization needed.
Lasso Regression 1.26E-05 0.9999 0.0035 0.0023 Perfect fit; slightly higher MSE, useful for feature
selection.
Support Vector 35.7065 0.6423 59755 3.8041 Poor performance; not suitable for the dataset.
Regression
Decision Tree 48861 07752 29105 1.4072 Moderate performance;.llkely overfits, does not
Regression generalize well.
Random Fprest 03241 0.9850 0.5693 0.3624 Good performange; captures relationships well, less
Regression precise than linear models.
Gradient Boosting 1.6797 0.9227 1.2960 0.8251 Good performance; better than Decision Tree, but not as

good as linear models.

The performance of various models is compared in Table 2.
MSE and R? were chosen for their balance of simplicity,
interpretability, and comprehensive insights into model
performance [23]. MAE is less sensitive to outliers and
provides a simple average error. MSE helps penalize
significant errors. RMSE offers a more interpretable error in
the original unit of measurement, and R? shows how well the
model explains variance in the data, with values nearer 1
denoting a better fit. They provide a clear and concise way to
evaluate and compare the regression models, ensuring robust
and accurate analysis. From the comparative results, it is
evident that Linear and Ridge Regression outperform other
techniques with near-perfect accuracy and stability, making
them the natural choice for this study. Lasso Regression, while
slightly less accurate, provides added value for feature
selection, whereas non-linear models such as Random Forest
and Gradient Boosting captured additional patterns but did not
surpass the precision of the linear approaches. Support Vector
Regression and Decision Trees, on the other hand, showed
weaker generalization and higher error rates, rendering them
unsuitable for this dataset. Although Linear and Ridge
Regression were ultimately selected for their superior
performance and interpretability, the framework is
intentionally designed to be algorithm-agnostic, allowing
future researchers to plug in alternative regression or advanced
learning models that may yield better results under different
data distributions or workload conditions. The results of this
study provide a framework for automated configuration tuning
that has been proven to improve the performance of data
streaming systems while reducing the need for manual
intervention.

6. CONCLUSION

This study demonstrates the potential of machine learning—
based approaches for auto-tuning distributed systems, with a
focus on real-time data streaming platforms such as Apache
Kafka. By establishing a plug-and-play framework for
regression techniques, the work highlights how system
performance metrics like throughput, latency, and stability can

be systematically modeled and optimized. Although the
current study concentrates on single-node deployments, the
findings provide a strong foundation for extending the
approach to more complex, distributed setups. The ability to
generalize beyond Kafka to other performance-critical
domains, including distributed databases, container
orchestration platforms, and cloud resource management
frameworks, further emphasizes the broader impact of this
methodology.

The contributions of this work are threefold: (a) it provides
empirical evidence that machine learning models can enhance
Kafka’s performance tuning, (b) it introduces a flexible plug-
and-play framework that accommodates both linear and non-
linear regression techniques, and (c) it demonstrates
improvements in throughput prediction accuracy and system
stability assessment. These findings contribute to the literature
on automated system optimization and hold practical
relevance for operators managing real-time streaming
platforms.

7. FUTURE WORK
7.1 Extensions to streaming systems

Future research should expand the framework to multi-node
Kafka clusters, where challenges such as leader election,
partitioning, and cross-broker coordination add complexity to
tuning. Exploring workload-aware auto-tuning under dynamic
conditions and scaling in multi-tenant cloud environments will
also be essential to ensure robustness and consistency in real-
world deployments.

7.2 Cross-domain applications

The methodology can be extended beyond Kafka to other
performance-critical domains, such as distributed databases,
container orchestration platforms, and cloud resource
management frameworks. Adapting the proposed approach to
these systems can broaden its applicability and impact across
diverse distributed infrastructures.

3901

7.3 Methodological advances

On the methodological side, future work should investigate
non-lincar and ensemble models (e.g., Random Forests,
Gradient Boosting) to capture more intricate relationships
between configuration and performance. Incorporating
advanced anomaly detection and adaptive optimization
algorithms can enhance resilience under varying workloads.
Furthermore, multi-objective optimization techniques will be
critical to balance competing performance metrics such as
throughput, latency, and resource utilization.

Recent studies confirm the importance of these directions:
anomaly detection and adaptive learning have been widely
explored in distributed systems optimization [41], while multi-
objective optimization approaches are emerging as promising
strategies for balancing performance trade-offs [42]. Finally,
integrating these techniques into a fully automated CI/CD
pipeline would enable real-time JVM parameter tuning,
creating a scalable framework for continuous optimization in
streaming environments.

REFERENCES
[1] Calderon, G., del Campo, G., Saavedra, E., Santamaria,
A. (2024). Monitoring framework for the performance
evaluation of an IoT platform with Elasticsearch and
Apache Kafka. Information Systems Frontiers, 26(6):
2373-2389. https://doi.org/10.1007/s10796-023-10409-2
Kroth, B., Matusevych, S., Zhu, Y. (2025). Autotuning
systems: Techniques, challenges, and opportunities. In
Companion of the 2025 International Conference on
Management of Data, pp- 821-828.
https://doi.org/10.1145/3722212.3725638

Deva, S. (2025). Optimizing Apache Kafka for efficient
data ingestion. World Journal of Advanced Engineering
Technology and Sciences, 15(2): 1081-1091.
https://doi.org/10.30574/wjaets.2025.15.2.0566

Arega, K.L., Bagwari, A., Tune, K.K., Beyene, A.M.,
Rodriguez, C., Lezama, P., Salau, A.O. (2025). A deep
learning-based approach for detecting Afan Oromo fake
news on social media. Mathematical Modelling of
Engineering Problems, 12(9): 3278-3288.
https://doi.org/10.18280/mmep.120930

Patil, Y., Fathima, R., Sundarajan, S., Sridevi Ponmalar,
P., Ramachandran, H. (2024). Impact of feature selection
on wheat yield prediction using machine learning.
International Journal of Design & Nature and
Ecodynamics, 19(6): 1909-1917.
https://doi.org/10.18280/ijdne.190607

Toderean, L., Daian, M., Cioara, T., Anghel, I,
Michalakopoulos, V., Sarantinopoulos, E., Sarmas, E.
(2025). Heuristic based federated learning with adaptive
hyperparameter tuning for households energy prediction.
Scientific Reports, 15(1): 12564.
https://doi.org/10.1038/s41598-025-96443-3

Van Aken, D., Pavlo, A., Gordon, G.J., Zhang, B. (2017).
Automatic database management system tuning through
large-scale machine learning. In Proceedings of the 2017
ACM International Conference on Management of Data,
pp. 1009-1024.
https://doi.org/10.1145/3035918.3064029

Xue, W., Roy, C.J. (2023). Machine learning-driven
autotuning of graphics processing unit accelerated

(2]

(3]

(3]

(7]

3902

(9]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

computational ~ fluid dynamics for enhanced
performance. arXiv preprint arXiv:2306.14011.
https://doi.org/10.48550/arXiv.2306.14011

Eldor, E. (2023). RAM allocation in Kafka clusters:
Performance, stability, and optimization strategies. In
Kafka Troubleshooting in Production: Stabilizing Kafka
Clusters in the Cloud and On-premises, pp. 63-84.
https://doi.org/10.1007/978-1-4842-9490-1 6.

Eldor, E. (2023). Kafka Troubleshooting in Production.
Springer Books. https://doi.org/10.1007/978-1-4842-
9490-1

Vyas, S., Tyagi, RK., Jain, C., Sahu, S. (2021).
Literature review: A comparative study of real time
streaming technologies and Apache Kafka. In 2021
Fourth International Conference on Computational
Intelligence and Communication Technologies (CCICT),
Sonepat, India, pp- 146-153.
https://doi.org/10.1109/CCICT53244.2021.00038
Choudhary, A., Govil, M.C., Singh, G., Awasthi, L.K.,
Pilli, E.S., Kapil, D. (2017). A critical survey of live
virtual machine migration techniques. Journal of Cloud
Computing, 6(1): 23. https://doi.org/10.1186/s13677-
017-0092-1

JVM logs.
https://www .kaggle.com/datasets/vijayakumargundappa
/jvm-logs, accessed on May 20, 2024.

Nanda, S.K., Chaudhary, D.K. (2024). Machine
Learning: Principles, Algorithms, and Tools. Addition
Publishing House.

Mehta, S., Patnaik, K.S. (2021). Improved prediction of
software defects using ensemble machine learning
techniques. Neural Computing and Applications, 33(16):
10551-10562. https://doi.org/10.1007/s00521-021-

05811-3
Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves,
T., Holderbaugh, M., Poulosky, P. (2016).

Benchmarking streaming computation engines: Storm,
Flink and spark streaming. In 2016 IEEE International
Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Chicago, IL, USA, pp. 1789-
1792. https://doi.org/10.1109/IPDPSW.2016.138

Bagla, P., Kumar, K. (2023). A rule-based fuzzy ant
colony improvement (ACI) approach for automated
disease diagnoses. Multimedia Tools and Applications,
82(24): 37709-37729. https://doi.org/10.1007/s11042-
023-15115-4

Austin, A.M., Ramkumar, N., Gladders, B., Barnes, J.A.,
Eid, M.A., Moore, K.O., Goodney, P.P. (2022). Using a
cohort study of diabetes and peripheral artery disease to
compare logistic regression and machine learning via
random forest modeling. BMC Medical Research
Methodology, 22(1): 300.
https://doi.org/10.1186/s12874-022-01774-8
Balasubramanian, S., Ghosal, D., Sharath, K.N.B.,
Pouyoul, E., Sim, A., Wu, K., Tierney, B. (2018). Auto-
tuned publisher in a pub/sub system: Design and
performance evaluation. In 2018 IEEE International
Conference on Autonomic Computing (ICAC), Trento,
Italy, Pp- 21-30.
https://doi.org/10.1109/ICAC.2018.00012

Mao, H., Alizadeh, M., Menache, 1., Kandula, S. (2016).
Resource management with deep reinforcement learning.
In Proceedings of the 15th ACM Workshop on Hot
Topics in Networks, pp- 50-56.

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

[31]

https://doi.org/10.1145/3005745.3005750

Pithode, K., Patheja, P.S. (2023). Analyzing system logs
of big data distributed environment: A review. In
International Conference on Data Science and Big Data
Analysis, pp. 433-446. https://doi.org/10.1007/978-981-
99-9179-2 34

Singh, P., Adebanjo, A., Shafiq, N., Razak, S.N.A.,
Kumar, V., Farhan, S.A., Sergeevna, M.T. (2024).
Development of performance-based models for green
concrete using multiple linear regression and artificial
neural network. International Journal on Interactive
Design and Manufacturing (IJIDeM), 18(5): 2945-2956.
https://doi.org/10.1007/s12008-023-01386-6

Hodson, T.O. (2022). Root mean square error (RMSE) or
mean absolute error (MAE): When to use them or not.
Geoscientific Model Development Discussions, 15(14):
5481-5487. https://doi.org/10.5194/gmd-15-5481-2022
Nourbakhsh, Z., Habibi, N. (2023). Combining LSTM
and CNN methods and fundamental analysis for stock
price trend prediction. Multimedia Tools and
Applications, 82(12): 17769-17799.
https://doi.org/10.1007/s11042-022-13963-0

Ozili, P.K. (2023). The acceptable R-square in empirical
modelling for social science research. In Social research
Methodology and Publishing Results: A Guide to Non-
Native English Speakers, pp- 134-143.
https://doi.org/10.4018/978-1-6684-6859-3.ch009
Driscoll, L., de la Torre, S., Gomez-Ruiz, J.A. (2022).
Feature-based lithium-ion battery state of health
estimation with artificial neural networks. Journal of
Energy Storage, 50: 104584.
https://doi.org/10.1016/j.est.2022.104584

William, P., Paithankar, D.N., Yawalkar, P.M., Korde,
S.K., Rajendra, A., Rakshe, D.S. (2023). Divination of
air quality assessment using ensembling machine
learning approach. In 2023 International Conference on
Artificial Intelligence and Knowledge Discovery in
Concurrent Engineering (ICECONF), Chennai, India,
pp- 1-10.
https://doi.org/10.1109/ICECONF57129.2023.1008375
1

Deng, A. (2023). Database task processing optimization
based on performance evaluation and machine learning
algorithm. Soft Computing-A Fusion of Foundations,
Methodologies & Applications, 27(10): 6811-6821.
https://doi.org/10.1007/s00500-023-08111-1

Nabi, S., Ahmad, M., Ibrahim, M., Hamam, H. (2022).
AdPSO: Adaptive PSO-based task scheduling approach
for cloud computing. Sensors, 22(3), 920.
https://doi.org/10.3390/s22030920

Vijayakumar, G., Bharathi, R.K. (2022). Predicting JVM
parameters for performance tuning using different
regression algorithms. In 2022 Fourth International
Conference on Emerging Research in Electronics,
Computer Science and Technology (ICERECT),
Mandya, India, pp- 1-8.
https://doi.org/10.1109/ICERECT56837.2022.10060788
Vijayakumar, G., Bharathi, R.K. (2023). Streaming big
data with open-source: A comparative study and
architectural recommendations. In 2023 International
Conference on Sustainable Computing and Data
Communication Systems (ICSCDS), Erode, India, pp.

3903

[32]

[35]

[36]

[37]

[38]

[39]

[41]

[42]

1420-1425.
https://doi.org/10.1109/ICSCDS56580.2023.10105025
Tuniya, N., Parihar, M., Patil, S., Lawand, K., Nawale,
H. (2022). Comparative analysis of regressor models on
non-invasive blood glucose dataset. In Proceedings of
International ~ Conference on Computing and
Communication Networks: ICCCN 2021, pp. 209-217.
https://doi.org/10.1007/978-981-19-0604-6 19

Raptis, T.P., Passarella, A. (2023). A survey on
networked data streaming with Apache Kafka. IEEE
Access, 11: 85333-85350.
https://doi.org/10.1109/ACCESS.2023.3303810

Mishra, P. (2023). Advanced AWS services. In Cloud
Computing with AWS: Everything You Need to Know
to be an AWS Cloud Practitioner, pp. 247-277.
https://doi.org/10.1007/978-1-4842-9172-6 9

Beroni¢, D., Novosel, N., Mihaljevi¢, B., Radovan, A.
(2022). Assessing contemporary automated memory
management in Java—garbage first, Shenandoah, and Z
garbage collectors comparison. In 2022 45th Jubilee
International Convention on Information,
Communication and Electronic Technology (MIPRO),
Opatija, Croatia, pp- 1495-1500.
https://doi.org/10.23919/MIPR0O55190.2022.9803445
Vijayakumar, G., Bharathi, R.K. (2024). OptiFeat:
Enhancing feature selection, a hybrid approach
combining subject matter expertise and recursive feature
elimination method. Discover Computing, 27(1): 44.
https://doi.org/10.1007/s10791-024-09483-0

Douiba, M., Benkirane, S., Guezzaz, A., Azrour, M.
(2023). Anomaly detection model based on gradient
boosting and decision tree for IoT environments security.
Journal of Reliable Intelligent Environments, 9(4): 421-
432. https://doi.org/10.1007/S40860-022-00184-
3/METRICS

Gupta, A., Jain, S. (2022). Optimizing performance of
Real-Time Big Data stateful streaming applications on
Cloud. In 2022 IEEE International Conference on Big
Data and Smart Computing (BigComp), Daegu, Korea,
pp- 1-4.
https://doi.org/10.1109/BigComp54360.2022.00010
Zhang, Y., Politis, D.N. (2023). Debiased and
thresholded ridge regression for linear models with
heteroskedastic and correlated errors. Journal of the
Royal Statistical Society Series B: Statistical
Methodology, 85(2): 327-355.
https://doi.org/10.1093/jrsssb/qkad006

Dash, R.K., Nguyen, T.N., Cengiz, K., Sharma, A.
(2023). Fine-tuned support vector regression model for
stock predictions. Neural Computing and Applications,
35(32): 23295-23309. https://doi.org/10.1007/s00521-
021-05842-w

Moriano, P., Hespeler, S.C., Li, M., Mahbub, M. (2025).
Adaptive anomaly detection for identifying attacks in
cyber-physical systems: A systematic literature review.
Artificial ~ Intelligence Review, 58(9): 283.
https://doi.org/10.1007/s10462-025-11292-w

Harkare, V., Mangrulkar, R., Thorat, O., Jain, S.R.
(2024). Evolutionary approaches for multi-objective
optimization and pareto-optimal solution selection in
data analytics. In Applied Multi-Objective Optimization,
pp- 67-94. https://doi.org/10.1007/978-981-97-0353-1 4

