
IntelliStream: A Machine Learning Framework Based on Regression for Improving Broker

Performance and Throughput via Log Analysis

G. Vijayakumar* , R. K. Bharathi

Department of Computer Applications, JSS Science &Technology University, University of Mysore, Mysore 570006, India

Corresponding Author Email: vijayakumar.gundappa@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121115 ABSTRACT

Received: 9 July 2025

Revised: 3 September 2025

Accepted: 12 September 2025

Available online: 30 November 2025

In modern data-driven ecosystems, platforms such as Apache Kafka are essential for

handling continuous, high-volume event streams across domains including IoT,

finance, e-commerce, and industrial monitoring. These applications rely on real-time

processing for tasks such as anomaly detection, fraud analysis, recommendation

systems, and predictive maintenance. As workloads vary widely, multiple specialized

pipelines are often required, adding complexity and increasing operational overhead.

Tuning such systems is challenging, as parameters related to memory, concurrency,

replication, and batching must be balanced to maintain high throughput, low latency,

and stable performance under dynamic conditions. Misconfigurations can trigger fast

failures, making automated, adaptive tuning essential. The study proposes a machine

learning framework that dynamically adjusts real-time streaming platforms to achieve

better performance. By analyzing garbage collection (GC) logs and broker logs, the

method employs regression models to detect bottlenecks and predict optimal

configuration settings. Key metrics are extracted from logs, used to train regression

models, and applied to adjust parameters dynamically. Experimental evaluation shows

that Linear and Ridge Regression achieved an R² of 0.9999 with a Mean Squared Error

(MSE) of 4.84E-06, delivering over 99% accuracy in predicting throughput trends. The

method dynamically optimizes performance, cutting manual tuning and enabling more

intelligent, self-managing streaming systems.

Keywords:

garbage collection, machine learning,

streaming, tuning, regression

1. INTRODUCTION

The need for real-time data streaming and processing has

significantly increased in today's data-driven society.

Platforms designed for these tasks must efficiently and reliably

handle a vast amount of data. Apache Kafka, a widely used

distributed event streaming platform, has emerged as a key

technology for building real-time data pipelines and streaming

applications [1]. It remains quite challenging to optimize

Kafka's performance to meet the demands of a changing

workload, despite its robust design.

Recent studies comparing manual, heuristic, and machine

learning–based tuning methods in distributed systems are

supported by several journal articles and surveys. Manual

tuning of Kafka parameters generally shows only modest

throughput improvements, whereas heuristic methods achieve

stronger results, and machine learning approaches often

provide the largest performance gains while also reducing

latency variability [2-4]. Manual tuning in distributed systems

like Apache Kafka generally results in limited performance

improvements due to its static adjustment nature. The studies

[3, 4] presented that manual tuning requires administrators to

change distributions and configurations directly and typically

only achieves around a 10% improvement in throughput, as

changes are not adaptive to dynamic workload conditions.

Heuristic-based methods, using rules or profiling to guide

tuning, can deliver higher throughput gains (up to 25%) but

still struggle to adapt under fluctuating workloads [4-6].

Whereas Machine learning techniques, such as reinforcement

learning and regression-based optimization, routinely surpass

manual and heuristic methods in both throughput and latency

stability (with throughput improvements of 40–50%) [2, 6-8].

Performance tuning of Kafka involves adjusting numerous

configuration parameters that influence throughput, latency,

and stability. These parameters, such as heap size, buffer sizes,

and concurrency settings, can interact in complex ways,

making manual tuning a daunting and often inefficient task

[9]. Moreover, the dynamic nature of workloads in production

environments necessitates continuous and adaptive tuning to

maintain optimal performance [10]. The problem has a

promising answer in machine learning. Machine learning

models can find patterns and correlations in operational logs,

particularly garbage collection (GC) logs and broker logs,

which are not immediately visible using conventional

techniques. These insights can then be used to predict the

effects of various configurations on performance metrics and

to identify optimal settings [11].

The selection of GC logs and broker logs as primary

indicators is motivated by their direct impact on system

performance. GC logs capture information about memory

allocation, collection frequency, and pause durations [12]. A

high frequency of GC events or long GC pauses can

Mathematical Modelling of Engineering Problems
Vol. 12, No. 11, November, 2025, pp. 3895-3903

Journal homepage: http://iieta.org/journals/mmep

3895

https://orcid.org/0000-0002-9886-8910
https://orcid.org/0000-0002-7616-2415
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.121115&domain=pdf

significantly reduce throughput by interrupting message

processing and increasing latency due to stalled threads.

Similarly, broker logs provide operational metrics such as

message throughput, request latency, error counts, and

partition reassignments [10], all of which directly reflect

system stability and responsiveness. For example, sustained

error rates or rising latencies in broker logs indicate declining

stability under load, while steady throughput values reflect

efficient resource utilization. By analyzing both GC and

broker logs together, the study establishes a holistic view: GC

behavior explains memory-level bottlenecks, while broker

metrics capture system-level performance outcomes. This

dual-log perspective ensures that the machine learning

framework links configuration parameters to the most critical

performance dimensions.

The dependent variables that represent performance are

explicitly defined as throughput (MB/sec), latency

(milliseconds), and stability (measured through error rates and

consistency under varying workloads). These metrics capture

efficiency, responsiveness, and robustness in distributed

streaming. The independent variables are the Kafka

configuration parameters, such as heap size, buffer size,

concurrency levels, and GC behavior that directly influence

performance outcomes. To connect these inputs with

measurable system behavior, the study leverages GC logs,

which provide details on memory allocation, pause times, and

heap utilization, as well as broker logs, which record

throughput, request latency, and error statistics. This explicit

mapping of independent and dependent variables strengthens

the analytical foundation of the proposed machine learning

framework, ensuring that the research targets the most relevant

and impactful performance indicators.

We utilize the publicly available JVM Logs Dataset from

Kaggle [13], which provides GC and Kafka broker logs under

diverse workload conditions and serves as a reproducible

benchmark for performance modeling studies. which

comprises 471 files and 2,880 features derived from GC and

Kafka broker logs. This rich dataset captures diverse workload

conditions, providing a robust foundation for machine

learning–based performance modeling and auto-tuning.

Through a series of experiments, the model shows the

effectiveness of the strategy, exhibiting notable gains in

performance stability and throughput. In addition to increasing

system efficiency, the automated tuning process eliminates the

need for significant manual intervention, which lowers

complexity and operating costs. Given the complexity and

non-linearity of distributed system behavior, relying on a

single regression technique may not adequately capture the

diverse relationships between configuration parameters and

performance outcomes. For instance, while linear regression

offers interpretability, it oversimplifies non-linear effects;

conversely, tree-based models such as decision trees or

gradient boosting can capture non-linear patterns but may risk

overfitting [14]. To address these limitations, an ensemble of

regression algorithms is often more effective, as it combines

the strengths of multiple models to improve predictive

accuracy and generalizability. Approaches such as Random

Forest Regression and Gradient Boosting Regression have

shown significant promise in prior system optimization studies

[15], reducing variance and bias while delivering more reliable

performance predictions. Incorporating ensemble regression

methods into auto-tuning frameworks thus provides a fine-

tuned and adaptive means of modeling system performance

under dynamic workloads. The objective of this research is to

develop a machine learning-based auto-tuning framework that

improves Kafka's throughput and stability while reducing

manual intervention.

The paper proposes an automated, machine learning-based

approach to fine-tune real-time data streaming platforms for

better throughput and overall performance. The method

involves collecting and preprocessing log data, extracting

relevant features, and training regression models to predict

performance outcomes. The models are then used to adjust

configuration parameters dynamically, ensuring the system

operates at peak efficiency under varying conditions.

The remainder of the paper is structured as follows: Section

2 reviews related work in the field of performance tuning using

machine learning. Section 3 describes the methodology,

including data collection, feature engineering, and model

training. Section 4 presents the experimental setup and results.

Section 5 concludes the paper with a discussion of the

findings, and finally, Section 6 presents potential future work

in the area.

2. RELATED WORK

The challenge of optimizing performance in distributed

systems [16], particularly real-time data streaming platforms,

has been the focus of extensive research. The section reviews

existing literature on performance tuning using machine

learning, with a specific focus on the analysis of operational

logs and the application of regression techniques.

2.1 Performance tuning of distributed systems

Traditional approaches to performance tuning in distributed

systems often involve heuristic methods and rule-based

configurations [17]. These methods require significant

expertise and manual intervention, making them labor-

intensive and less adaptable to dynamic workloads. Recent

advances have shifted towards more automated solutions,

leveraging statistical and machine learning techniques to

address these limitations [18].

2.2 Machine learning for system optimization

Performance tuning is essential for ensuring system

efficiency and stability, and automating this process

minimizes manual effort while enabling adaptive optimization

in dynamic workloads. Machine learning has shown

considerable promise in optimizing system performance [19].

Approaches such as reinforcement learning [20], supervised

learning, and unsupervised learning have been applied to

various tuning problems. For instance, reinforcement learning

has been applied to resource management in cluster

computing, resulting in improved resource utilization and

faster job completion times [11]. Similarly, deep learning

models have been employed to predict performance

bottlenecks in cloud services, thereby enabling more effective

resource allocation [12].

2.3 Log analysis for performance tuning

Log analysis is a critical aspect of performance tuning,

providing insights into system behavior and performance

metrics. Logs from GC and broker activities offer valuable

data for understanding and predicting system performance. It

3896

is demonstrated that the use of log mining techniques to

diagnose performance issues in distributed systems highlights

the potential of logs as a rich source of information for

optimization tasks [21].

While log analysis provides the raw behavioral data, it must

be coupled with predictive modeling to translate these signals

into actionable tuning decisions.

2.4 Regression techniques in performance prediction

Regression techniques are particularly effective in modeling

the relationships between configuration parameters and

performance metrics [22]. In the context of system tuning,

regression models have been used to predict the impact of

configuration changes on performance metrics. Using

regression trees to model the performance of database queries

provides a basis for automatic tuning of query parameters. In

this way, log analysis and regression complement each other:

logs supply the empirical evidence of system behavior, and

regression translates this evidence into predictive insights for

tuning.

There are multiple measures to find the effectiveness of

machine learning models, as in Eq. (1).

Mean Squared Error (MSE): MSE is a metric used to

measure the average squared difference between predicted and

actual values in a dataset. It quantifies the error by squaring

the differences to ensure both positive and negative errors

contribute equally, and then averaging these squared

differences.

Mean Absolute Error (MAE): MAE is a metric that

calculates the error by taking the absolute value of the

differences between predicted and actual values, and then

averaging these absolute differences. It is less sensitive to

outliers than MSE and provides a linear measure of average

error [23]. However, it does not emphasize larger errors, which

can be critical in some applications.

Root Mean Squared Error (RMSE): RMSE is the square

root of MSE, making it interpretable in the same units as the

target variable [23]. However, it carries the same information

as MSE on a different scale.

Mean Absolute Percentage Error (MAPE): MAPE

measures error as a percentage, which can be helpful in

interpretability in business contexts [24]. However, it is

undefined for zero values and can be biased by small actual

values.

Adjusted R-squared (R²): Adjusted R² adjusts for the

number of predictors in the model, preventing overfitting.

While helpful, it is more complex to interpret compared to the

standard R² for an initial comparison [25].

()
1

,
n

i i

i

x y
=






(1)

With n observations, where 𝑥𝑖 represents the feature vector

and 𝑦𝑖 the target variable. The goal is to predict the target

variable 𝑦 ̂using the regression model as depicted in Eq. (2):

ˆ ()y f x=
 (2)

MSE emphasizes large errors; sensitivity is particularly

crucial for throughput predictions, where large prediction

errors can lead to misleading conclusions. Given a dataset of

observations where the goal is to predict Throughput MB/sec

using a regression model, MSE and R² are proven to be

effective metrics for model evaluation. MSE emphasizes

larger errors more heavily [26], ensuring the model minimizes

significant deviations, which is crucial for accurate throughput

predictions. R² provides a clear measure of the model's

explanatory power and facilitates comparison across different

models [25]. In contrast, MAE, which measures the average

magnitude of errors without considering their direction, does

not penalize larger errors as heavily, making it less suitable

when large errors have significant impacts. RMSE offers

similar benefits to MSE but with added complexity due to the

square root transformation, without additional interpretative

value [27]. Therefore, MSE and R² are preferred for their

ability to provide both absolute and relative measures of model

performance [23], ensuring accurate and reliable assessments

for predicting throughput MB/sec.

Several frameworks have been proposed for the auto-tuning

of distributed systems using machine learning [7]. Machine

learning is used to automatically tune database configurations,

demonstrating significant performance improvements [28].

Similarly, new frameworks were employed with a

combination of supervised learning and Bayesian optimization

to tune cloud services, highlighting the potential for machine

learning in automated system tuning [29].

2.5 Application to Apache Kafka

A comprehensive framework that leverages log analysis and

regression-based modeling for dynamic, machine learning–

driven tuning of Kafka remains largely unrealized. Specific to

Apache Kafka, research has explored various aspects of

performance optimization, though there is limited work on

comprehensive auto-tuning solutions [1]. There are

experiments that examined the impact of different

configuration settings on Kafka's performance, suggesting that

machine learning could be beneficial in automating these

adjustments [11]. However, a complete framework leveraging

machine learning to analyze Kafka’s GC and broker logs for

dynamic tuning has not been fully realized.

The reviewed literature underscores the potential of

machine learning techniques, particularly regression models,

in automating the performance tuning of distributed systems

[30]. While significant progress has been made in general

system optimization, the specific application to Apache Kafka

remains an open area for further research [31]. The aim is to

bridge the gap by proposing a novel approach that integrates

machine learning-based log analysis for the auto-tuning of

Kafka, thereby enhancing its throughput and overall

performance.

3. METHODOLOGY

The section outlines the methodology for using machine

learning techniques to auto-tune real-time data streaming

platforms by analyzing GC and broker logs [1]. The approach

involves several key steps: data collection and preprocessing,

feature extraction, model training, and the application of

regression models for dynamic configuration tuning [32].

Specifically, the study evaluates multiple regression

algorithms, including Linear Regression, Ridge Regression,

Lasso Regression, Support Vector Regression (SVR),

Decision Tree Regression, Random Forest Regression, and

Gradient Boosting Regression, to capture both linear and non-

linear relationships in the data. The dataset, constructed from

3897

GC and broker logs collected from AWS EC2-based Kafka

deployments, comprises several thousand log entries that

encapsulate throughput, latency, memory usage, and garbage

collection metrics. By benchmarking a diverse set of

algorithms on this dataset, the methodology ensures not only

robust model selection but also provides a plug-and-play

framework where different regression techniques can be

substituted depending on workload characteristics and

prediction requirements.

A comprehensive collection of 471 files, including 226 raw

log files, 244 structured CSV files, and 1 Python preprocessing

script, comprised the publicly accessible JVM Logs Dataset on

Kaggle [13], from which the experimental data were sourced.

The dataset yields 2,880 columns of features after translation,

comprising 1,204 decimal-valued metrics (such as latency,

throughput, and memory utilisation) and 1,676 integer-valued

parameters (such as counts and frequencies). By capturing

crucial data from Kafka broker logs (throughput, latency, and

error counts) and GC logs (heap consumption, halt periods,

and collection frequency), these capabilities allow for the

methodical modelling of configuration–performance

interactions under various workloads.

Figure 1. AWS EC2 instances

Table 1. The installation steps on AWS EC2

Steps Description

Launch EC2 Instance
Launch an EC2 instance from the AWS Management Console. Select an Amazon Linux 2 AMI and a t2.micro

instance type to stay within the Free Tier limits.

Connect to EC2 via SSH Once the instance is running, connect to it via SSH using a terminal or an SSH client.

Update Package List Update the package list using the package manager for the Linux distribution installed on the EC2 instance.

Install Java Install Java, as Kafka requires it to run.

Download Kafka Binaries Download the latest Kafka binaries from the official Apache Kafka website.

Extract Kafka Files Extract the downloaded Kafka files to a directory on the EC2 instance.

Configure Kafka
Edit the server properties file to configure the Kafka server settings, such as broker ID, log directories, and

Zookeeper connection string.

Start Zookeeper Service Start the Zookeeper service, which Kafka depends on for coordination.

Start Kafka Broker Start the Kafka broker, which will begin listening for incoming connections and processing messages.

Verify Installation Verify the installation by creating a topic and sending test messages to ensure Kafka is functioning correctly.

Configure Security

Groups

Configure security groups in the AWS Management Console to allow necessary inbound and outbound traffic

for Kafka communication, ensuring appropriate network access.

Figure 2. Zookeeper and Kafka broker running on AWS EC2

3898

3.1 Data collection and preprocessing

Log collection: The first step involves collecting logs from

the data streaming platform [33]. Specifically, gather garbage

collection (GC) logs and broker logs. GC logs provide insights

into memory management and garbage collection events,

while broker logs contain information about broker activities,

including message throughput, latency, and error rates. Figure

1 shows the AWS EC2 [34] instances that were provisioned

with the steps mentioned in Table 1.

Preprocessing: Raw logs are often noisy and unstructured.

Preprocess these logs to extract relevant data points. After the

EC2 instances are up, Figure 2 shows the zookeeper [21] and

Kafka broker running, which is used to capture the logs for

further processing.

Data integration: The preprocessed data from GC and

broker logs are integrated into a unified dataset. The dataset

captures the system’s state and performance metrics over time,

providing a comprehensive view necessary for model training.

Figure 3. Optimized feature selection

3.2 Feature extraction

Metric selection: As shown in Figure 3, identified key

performance metrics that influence the throughput and

stability of the system. For GC logs, important metrics include

GC pause times, heap usage, and frequency of garbage

collection events [35]. For broker logs, the primary focus is on

metrics such as message throughput, request latency, and error

rates [10].

3.3 Model training

Regression models: Regression techniques are utilized to

model the relationship between the extracted features and the

performance metrics. Various regression models are

considered, including linear regression, ridge regression, and

more complex models like Random Forests and Gradient

Boosting Machines [32]. For feature selection, we have

adopted the OptiFeat approach, as detailed in prior work [36].

OptiFeat combines subject matter expertise with Recursive

Feature Elimination (RFE) to ensure optimal feature selection,

enhancing model interpretability and performance. The

feature engineering process aligns with the methodology

outlined in OptiFeat, providing only the most relevant features

are retained for model training.

Training and validation: The dataset is split into training

and validation sets (70:30). The training set is used to train the

regression models. In contrast, the validation set is used to

evaluate their performance [37]. Key steps include:

- Hyperparameter tuning using cross-validation to optimize

model performance.

- Evaluating model accuracy using metrics such as R2,

MAE, and RMSE.

- Selecting the best-performing model based on validation

results. The complete process is depicted in Figure 4.

Figure 4. Procedure chart

3899

3.4 Dynamic configuration tuning

Predictive analysis: The trained regression models are used

to predict the impact of different configuration settings on

system performance. By simulating various configurations, we

identified settings that maximize throughput and minimize

latency [9].

Automated tuning: Developed an automated tuning

mechanism that adjusts the system’s configuration parameters

based on model predictions. The mechanism continuously

monitors system performance and logs, dynamically updating

configurations to maintain optimal performance. The steps

involved are:

- Monitoring: Continuously collect and preprocess GC and

broker logs.

- Prediction: Use regression models to predict performance

under current settings.

- Adjustment: Automatically adjust configuration

parameters based on predictions.

- Feedback Loop: Implement a feedback loop where the

effects of configuration changes are monitored, and models are

retrained periodically to adapt to evolving workloads.

Clear criteria, such as performance deterioration thresholds,

prediction confidence ratings, and historical trend analysis,

control the auto-tuning process. The model is guided by these

measurements to determine the best time and way to make

configuration changes, guaranteeing the system performance

stays stable and adaptable to shifting workloads.

Implementation: The auto-tuning mechanism is

implemented as a modular system that can be integrated with

existing data streaming platforms. It includes components for

log collection, feature extraction, model inference, and

configuration management. The relatively poor performance

of SVR and Decision Tree models can be attributed to both the

characteristics of the dataset and model sensitivity. Since the

underlying relationship between configuration parameters and

throughput is largely linear, simpler regression models are

better suited. In contrast, non-linear methods such as SVR and

Decision Trees underperform without extensive

hyperparameter tuning. This reinforces the importance of the

proposed plug-and-play framework, which allows such

models to be tested in baseline form while enabling future

integration of optimized or alternative regression techniques.

4. EXPERIMENTAL SETUP

To validate the methodology, set up a series of experiments

using a representative real-time data streaming environment.

As the AWS t2.micro EC2 instance comes with 1 GB of RAM,

we have to reduce the memory size of brokers.

Adopted methodology leverages machine learning

techniques to provide an automated solution for tuning real-

time data streaming platforms. By analyzing GC and broker

logs and employing regression models, which can dynamically

adjust configuration settings to optimize performance [38].

The proposed approach demonstrates significant

improvements in throughput and stability, reducing the need

for manual tuning and paving the way for more intelligent and

autonomous data streaming

- Monitoring: Continuously collect and preprocess GC and

broker logs.

- Prediction: Regression models to predict performance

under current settings.

- Adjustment: Automatically adjust configuration

parameters based on predictions.

- Feedback Loop: Implement a feedback loop where the

effects of configuration changes are monitored, and models are

retrained periodically to adapt to evolving workloads.

5. RESULT ANALYSIS

Have chosen a variety of regression techniques to provide a

comprehensive comparison of both linear and non-linear

models, as shown in Table 2, ensuring all potential

relationships in the data are considered. Linear Regression

serves as a baseline, offering simplicity and interpretability.

Ridge and Lasso Regression [39] introduce regularization to

handle multicollinearity and feature selection, potentially

improving model performance. Non-linear models like SVR

[40], Decision Tree Regression, Random Forest Regression,

and Gradient Boosting Regression [32] were included to

capture complex and non-linear relationships. The diverse

selection allows us to benchmark performance across different

approaches, revealing that Linear and Ridge Regression

perform exceptionally well, indicating a strong linear

relationship in the dataset. Non-linear models like Random

Forest also showed good performance, suggesting they capture

some additional patterns. The comprehensive approach helps

in selecting the best model based on empirical results, ensuring

robust and accurate predictions.

To evaluate the accuracy and reliability of regression

models for performance prediction, several statistical metrics

are employed. The most widely used is the MSE, depicted in

Eq. (3):

𝑀𝑆𝐸 = (
1

𝑛
) 𝛴{𝑖=1}

𝑛 (𝑦𝑖 − ŷ𝑖)
2 (3)

As defined, it measures the average squared difference

between the actual values 𝑦𝑖 and the predicted values ŷ𝑖 .

Building on this, as shown in Eq. (4), the RMSE provides the

error in the same units as the target variable by taking the

square root of the MSE:

𝑅𝑀𝑆𝐸 = √(
1

𝑛
) 𝛴{𝑖=1}

𝑛 (𝑦𝑖 − ŷ𝑖)
2 (4)

Another useful metric is the MAE, depicted in Eq. (5),

which captures the average magnitude of prediction errors

without squaring them, making it less sensitive to outliers:

𝑀𝐴𝐸 = (
1

𝑛
) 𝛴{𝑖=1}

𝑛 |𝑦𝑖 − ŷ𝑖| (5)

Finally, the Coefficient of Determination (R²) assesses how

well the model explains the variance in the data and is

expressed as in Eq. (6):

𝑅2 = 1 −
∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦
𝑖
)

2𝑛
𝑖=1

 (6)

• 𝑦𝑖 = actual observed value for the ith data point ŷ𝑖 =

predicted value for the ith data point (from the regression

model), 𝑦
𝑖
 = mean of all observed values 𝑦𝑖 .

3900

• n = total number of observations.

• ∑ =𝑛
𝑖=1 Summation over all data points from i = 1 to n.

Among these, MSE and R² are particularly well-suited for

system performance prediction tasks. MSE heavily penalizes

large deviations, which is crucial for throughput predictions

where significant errors can distort optimization decisions. R²,

on the other hand, provides an interpretable measure of the

proportion of variance explained by the model, enabling

straightforward comparison across different regression

approaches. Together, they offer both absolute and relative

perspectives on model performance, ensuring accurate and

reliable assessment for auto-tuning distributed systems.

Table 2. Comparing different regression models

Model MSE R² RMSE MAE Performance Analysis

Linear Regression 4.84E-06 0.9999 0.0022 0.0014 Excellent fit; captures the relationship very well.

Ridge Regression 4.84E-06 0.9999 0.0022 0.0014
Excellent fit; similar to Linear Regression, indicates

minimal regularization needed.

Lasso Regression 1.26E-05 0.9999 0.0035 0.0023
Perfect fit; slightly higher MSE, useful for feature

selection.

Support Vector

Regression
35.7065 0.6423 5.9755 3.8041 Poor performance; not suitable for the dataset.

Decision Tree

Regression
4.8861 0.7752 2.2105 1.4072

Moderate performance; likely overfits, does not

generalize well.

Random Forest

Regression
0.3241 0.9850 0.5693 0.3624

Good performance; captures relationships well, less

precise than linear models.

Gradient Boosting 1.6797 0.9227 1.2960 0.8251
Good performance; better than Decision Tree, but not as

good as linear models.

The performance of various models is compared in Table 2.

MSE and R² were chosen for their balance of simplicity,

interpretability, and comprehensive insights into model

performance [23]. MAE is less sensitive to outliers and

provides a simple average error. MSE helps penalize

significant errors. RMSE offers a more interpretable error in

the original unit of measurement, and R² shows how well the

model explains variance in the data, with values nearer 1

denoting a better fit. They provide a clear and concise way to

evaluate and compare the regression models, ensuring robust

and accurate analysis. From the comparative results, it is

evident that Linear and Ridge Regression outperform other

techniques with near-perfect accuracy and stability, making

them the natural choice for this study. Lasso Regression, while

slightly less accurate, provides added value for feature

selection, whereas non-linear models such as Random Forest

and Gradient Boosting captured additional patterns but did not

surpass the precision of the linear approaches. Support Vector

Regression and Decision Trees, on the other hand, showed

weaker generalization and higher error rates, rendering them

unsuitable for this dataset. Although Linear and Ridge

Regression were ultimately selected for their superior

performance and interpretability, the framework is

intentionally designed to be algorithm-agnostic, allowing

future researchers to plug in alternative regression or advanced

learning models that may yield better results under different

data distributions or workload conditions. The results of this

study provide a framework for automated configuration tuning

that has been proven to improve the performance of data

streaming systems while reducing the need for manual

intervention.

6. CONCLUSION

This study demonstrates the potential of machine learning–

based approaches for auto-tuning distributed systems, with a

focus on real-time data streaming platforms such as Apache

Kafka. By establishing a plug-and-play framework for

regression techniques, the work highlights how system

performance metrics like throughput, latency, and stability can

be systematically modeled and optimized. Although the

current study concentrates on single-node deployments, the

findings provide a strong foundation for extending the

approach to more complex, distributed setups. The ability to

generalize beyond Kafka to other performance-critical

domains, including distributed databases, container

orchestration platforms, and cloud resource management

frameworks, further emphasizes the broader impact of this

methodology.

The contributions of this work are threefold: (a) it provides

empirical evidence that machine learning models can enhance

Kafka’s performance tuning, (b) it introduces a flexible plug-

and-play framework that accommodates both linear and non-

linear regression techniques, and (c) it demonstrates

improvements in throughput prediction accuracy and system

stability assessment. These findings contribute to the literature

on automated system optimization and hold practical

relevance for operators managing real-time streaming

platforms.

7. FUTURE WORK

7.1 Extensions to streaming systems

Future research should expand the framework to multi-node

Kafka clusters, where challenges such as leader election,

partitioning, and cross-broker coordination add complexity to

tuning. Exploring workload-aware auto-tuning under dynamic

conditions and scaling in multi-tenant cloud environments will

also be essential to ensure robustness and consistency in real-

world deployments.

7.2 Cross-domain applications

The methodology can be extended beyond Kafka to other

performance-critical domains, such as distributed databases,

container orchestration platforms, and cloud resource

management frameworks. Adapting the proposed approach to

these systems can broaden its applicability and impact across

diverse distributed infrastructures.

3901

7.3 Methodological advances

On the methodological side, future work should investigate

non-linear and ensemble models (e.g., Random Forests,

Gradient Boosting) to capture more intricate relationships

between configuration and performance. Incorporating

advanced anomaly detection and adaptive optimization

algorithms can enhance resilience under varying workloads.

Furthermore, multi-objective optimization techniques will be

critical to balance competing performance metrics such as

throughput, latency, and resource utilization.

Recent studies confirm the importance of these directions:

anomaly detection and adaptive learning have been widely

explored in distributed systems optimization [41], while multi-

objective optimization approaches are emerging as promising

strategies for balancing performance trade-offs [42]. Finally,

integrating these techniques into a fully automated CI/CD

pipeline would enable real-time JVM parameter tuning,

creating a scalable framework for continuous optimization in

streaming environments.

REFERENCES

[1] Calderon, G., del Campo, G., Saavedra, E., Santamaría,

A. (2024). Monitoring framework for the performance

evaluation of an IoT platform with Elasticsearch and

Apache Kafka. Information Systems Frontiers, 26(6):

2373-2389. https://doi.org/10.1007/s10796-023-10409-2

[2] Kroth, B., Matusevych, S., Zhu, Y. (2025). Autotuning

systems: Techniques, challenges, and opportunities. In

Companion of the 2025 International Conference on

Management of Data, pp. 821-828.

https://doi.org/10.1145/3722212.3725638

[3] Deva, S. (2025). Optimizing Apache Kafka for efficient

data ingestion. World Journal of Advanced Engineering

Technology and Sciences, 15(2): 1081-1091.

https://doi.org/10.30574/wjaets.2025.15.2.0566

[4] Arega, K.L., Bagwari, A., Tune, K.K., Beyene, A.M.,

Rodriguez, C., Lezama, P., Salau, A.O. (2025). A deep

learning-based approach for detecting Afan Oromo fake

news on social media. Mathematical Modelling of

Engineering Problems, 12(9): 3278-3288.

https://doi.org/10.18280/mmep.120930

[5] Patil, Y., Fathima, R., Sundarajan, S., Sridevi Ponmalar,

P., Ramachandran, H. (2024). Impact of feature selection

on wheat yield prediction using machine learning.

International Journal of Design & Nature and

Ecodynamics, 19(6): 1909-1917.

https://doi.org/10.18280/ijdne.190607

[6] Toderean, L., Daian, M., Cioara, T., Anghel, I.,

Michalakopoulos, V., Sarantinopoulos, E., Sarmas, E.

(2025). Heuristic based federated learning with adaptive

hyperparameter tuning for households energy prediction.

Scientific Reports, 15(1): 12564.

https://doi.org/10.1038/s41598-025-96443-3

[7] Van Aken, D., Pavlo, A., Gordon, G.J., Zhang, B. (2017).

Automatic database management system tuning through

large-scale machine learning. In Proceedings of the 2017

ACM International Conference on Management of Data,

pp. 1009-1024.

https://doi.org/10.1145/3035918.3064029

[8] Xue, W., Roy, C.J. (2023). Machine learning-driven

autotuning of graphics processing unit accelerated

computational fluid dynamics for enhanced

performance. arXiv preprint arXiv:2306.14011.

https://doi.org/10.48550/arXiv.2306.14011

[9] Eldor, E. (2023). RAM allocation in Kafka clusters:

Performance, stability, and optimization strategies. In

Kafka Troubleshooting in Production: Stabilizing Kafka

Clusters in the Cloud and On-premises, pp. 63-84.

https://doi.org/10.1007/978-1-4842-9490-1_6.

[10] Eldor, E. (2023). Kafka Troubleshooting in Production.

Springer Books. https://doi.org/10.1007/978-1-4842-

9490-1

[11] Vyas, S., Tyagi, R.K., Jain, C., Sahu, S. (2021).

Literature review: A comparative study of real time

streaming technologies and Apache Kafka. In 2021

Fourth International Conference on Computational

Intelligence and Communication Technologies (CCICT),

Sonepat, India, pp. 146-153.

https://doi.org/10.1109/CCICT53244.2021.00038

[12] Choudhary, A., Govil, M.C., Singh, G., Awasthi, L.K.,

Pilli, E.S., Kapil, D. (2017). A critical survey of live

virtual machine migration techniques. Journal of Cloud

Computing, 6(1): 23. https://doi.org/10.1186/s13677-

017-0092-1

[13] JVM logs.

https://www.kaggle.com/datasets/vijayakumargundappa

/jvm-logs, accessed on May 20, 2024.

[14] Nanda, S.K., Chaudhary, D.K. (2024). Machine

Learning: Principles, Algorithms, and Tools. Addition

Publishing House.

[15] Mehta, S., Patnaik, K.S. (2021). Improved prediction of

software defects using ensemble machine learning

techniques. Neural Computing and Applications, 33(16):

10551-10562. https://doi.org/10.1007/s00521-021-

05811-3

[16] Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves,

T., Holderbaugh, M., Poulosky, P. (2016).

Benchmarking streaming computation engines: Storm,

Flink and spark streaming. In 2016 IEEE International

Parallel and Distributed Processing Symposium

Workshops (IPDPSW), Chicago, IL, USA, pp. 1789-

1792. https://doi.org/10.1109/IPDPSW.2016.138

[17] Bagla, P., Kumar, K. (2023). A rule-based fuzzy ant

colony improvement (ACI) approach for automated

disease diagnoses. Multimedia Tools and Applications,

82(24): 37709-37729. https://doi.org/10.1007/s11042-

023-15115-4

[18] Austin, A.M., Ramkumar, N., Gladders, B., Barnes, J.A.,

Eid, M.A., Moore, K.O., Goodney, P.P. (2022). Using a

cohort study of diabetes and peripheral artery disease to

compare logistic regression and machine learning via

random forest modeling. BMC Medical Research

Methodology, 22(1): 300.

https://doi.org/10.1186/s12874-022-01774-8

[19] Balasubramanian, S., Ghosal, D., Sharath, K.N.B.,

Pouyoul, E., Sim, A., Wu, K., Tierney, B. (2018). Auto-

tuned publisher in a pub/sub system: Design and

performance evaluation. In 2018 IEEE International

Conference on Autonomic Computing (ICAC), Trento,

Italy, pp. 21-30.

https://doi.org/10.1109/ICAC.2018.00012

[20] Mao, H., Alizadeh, M., Menache, I., Kandula, S. (2016).

Resource management with deep reinforcement learning.

In Proceedings of the 15th ACM Workshop on Hot

Topics in Networks, pp. 50-56.

3902

https://doi.org/10.1145/3005745.3005750

[21] Pithode, K., Patheja, P.S. (2023). Analyzing system logs

of big data distributed environment: A review. In

International Conference on Data Science and Big Data

Analysis, pp. 433-446. https://doi.org/10.1007/978-981-

99-9179-2_34

[22] Singh, P., Adebanjo, A., Shafiq, N., Razak, S.N.A.,

Kumar, V., Farhan, S.A., Sergeevna, M.T. (2024).

Development of performance-based models for green

concrete using multiple linear regression and artificial

neural network. International Journal on Interactive

Design and Manufacturing (IJIDeM), 18(5): 2945-2956.

https://doi.org/10.1007/s12008-023-01386-6

[23] Hodson, T.O. (2022). Root mean square error (RMSE) or

mean absolute error (MAE): When to use them or not.

Geoscientific Model Development Discussions, 15(14):

5481-5487. https://doi.org/10.5194/gmd-15-5481-2022

[24] Nourbakhsh, Z., Habibi, N. (2023). Combining LSTM

and CNN methods and fundamental analysis for stock

price trend prediction. Multimedia Tools and

Applications, 82(12): 17769-17799.

https://doi.org/10.1007/s11042-022-13963-0

[25] Ozili, P.K. (2023). The acceptable R-square in empirical

modelling for social science research. In Social research

Methodology and Publishing Results: A Guide to Non-

Native English Speakers, pp. 134-143.

https://doi.org/10.4018/978-1-6684-6859-3.ch009

[26] Driscoll, L., de la Torre, S., Gomez-Ruiz, J.A. (2022).

Feature-based lithium-ion battery state of health

estimation with artificial neural networks. Journal of

Energy Storage, 50: 104584.

https://doi.org/10.1016/j.est.2022.104584

[27] William, P., Paithankar, D.N., Yawalkar, P.M., Korde,

S.K., Rajendra, A., Rakshe, D.S. (2023). Divination of

air quality assessment using ensembling machine

learning approach. In 2023 International Conference on

Artificial Intelligence and Knowledge Discovery in

Concurrent Engineering (ICECONF), Chennai, India,

pp. 1-10.

https://doi.org/10.1109/ICECONF57129.2023.1008375

1

[28] Deng, A. (2023). Database task processing optimization

based on performance evaluation and machine learning

algorithm. Soft Computing-A Fusion of Foundations,

Methodologies & Applications, 27(10): 6811-6821.

https://doi.org/10.1007/s00500-023-08111-1

[29] Nabi, S., Ahmad, M., Ibrahim, M., Hamam, H. (2022).

AdPSO: Adaptive PSO-based task scheduling approach

for cloud computing. Sensors, 22(3), 920.

https://doi.org/10.3390/s22030920

[30] Vijayakumar, G., Bharathi, R.K. (2022). Predicting JVM

parameters for performance tuning using different

regression algorithms. In 2022 Fourth International

Conference on Emerging Research in Electronics,

Computer Science and Technology (ICERECT),

Mandya, India, pp. 1-8.

https://doi.org/10.1109/ICERECT56837.2022.10060788

[31] Vijayakumar, G., Bharathi, R.K. (2023). Streaming big

data with open-source: A comparative study and

architectural recommendations. In 2023 International

Conference on Sustainable Computing and Data

Communication Systems (ICSCDS), Erode, India, pp.

1420-1425.

https://doi.org/10.1109/ICSCDS56580.2023.10105025

[32] Tuniya, N., Parihar, M., Patil, S., Lawand, K., Nawale,

H. (2022). Comparative analysis of regressor models on

non-invasive blood glucose dataset. In Proceedings of

International Conference on Computing and

Communication Networks: ICCCN 2021, pp. 209-217.

https://doi.org/10.1007/978-981-19-0604-6_19

[33] Raptis, T.P., Passarella, A. (2023). A survey on

networked data streaming with Apache Kafka. IEEE

Access, 11: 85333-85350.

https://doi.org/10.1109/ACCESS.2023.3303810

[34] Mishra, P. (2023). Advanced AWS services. In Cloud

Computing with AWS: Everything You Need to Know

to be an AWS Cloud Practitioner, pp. 247-277.

https://doi.org/10.1007/978-1-4842-9172-6_9

[35] Beronić, D., Novosel, N., Mihaljević, B., Radovan, A.

(2022). Assessing contemporary automated memory

management in Java–garbage first, Shenandoah, and Z

garbage collectors comparison. In 2022 45th Jubilee

International Convention on Information,

Communication and Electronic Technology (MIPRO),

Opatija, Croatia, pp. 1495-1500.

https://doi.org/10.23919/MIPRO55190.2022.9803445

[36] Vijayakumar, G., Bharathi, R.K. (2024). OptiFeat:

Enhancing feature selection, a hybrid approach

combining subject matter expertise and recursive feature

elimination method. Discover Computing, 27(1): 44.

https://doi.org/10.1007/s10791-024-09483-0

[37] Douiba, M., Benkirane, S., Guezzaz, A., Azrour, M.

(2023). Anomaly detection model based on gradient

boosting and decision tree for IoT environments security.

Journal of Reliable Intelligent Environments, 9(4): 421-

432. https://doi.org/10.1007/S40860-022-00184-

3/METRICS

[38] Gupta, A., Jain, S. (2022). Optimizing performance of

Real-Time Big Data stateful streaming applications on

Cloud. In 2022 IEEE International Conference on Big

Data and Smart Computing (BigComp), Daegu, Korea,

pp. 1-4.

https://doi.org/10.1109/BigComp54360.2022.00010

[39] Zhang, Y., Politis, D.N. (2023). Debiased and

thresholded ridge regression for linear models with

heteroskedastic and correlated errors. Journal of the

Royal Statistical Society Series B: Statistical

Methodology, 85(2): 327-355.

https://doi.org/10.1093/jrsssb/qkad006

[40] Dash, R.K., Nguyen, T.N., Cengiz, K., Sharma, A.

(2023). Fine-tuned support vector regression model for

stock predictions. Neural Computing and Applications,

35(32): 23295-23309. https://doi.org/10.1007/s00521-

021-05842-w

[41] Moriano, P., Hespeler, S.C., Li, M., Mahbub, M. (2025).

Adaptive anomaly detection for identifying attacks in

cyber-physical systems: A systematic literature review.

Artificial Intelligence Review, 58(9): 283.

https://doi.org/10.1007/s10462-025-11292-w

[42] Harkare, V., Mangrulkar, R., Thorat, O., Jain, S.R.

(2024). Evolutionary approaches for multi-objective

optimization and pareto-optimal solution selection in

data analytics. In Applied Multi-Objective Optimization,

pp. 67-94. https://doi.org/10.1007/978-981-97-0353-1_4

3903

