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The breast cancer care would require the tools that will help to identify the patients who
may develop metastasis at an early stage, when the treatment decision could be altered.
Models that use single types of data (as in the case of using a single transcription factor
only) can tend to overlook significant information and may not work well when applied to
different hospitals. Our framework, LF-MMP, is a learning framework that integrates three
types of molecular data, namely genomics (DNA changes), transcriptomics (gene activity),
and epigenomics (DNA methylation) to give an early patient-level risk score of metastases.
The framework normalizes and cleans every dataset, trains a compact representation of each
omics layer, and lastly combines them together with an attention mechanism that allows the
model to pay attention to the most informative signals. An optimized classifier transforms
the fused representation into well-behaved probabilities that may be used to support clinical
thresholds. We tested LF-MMP on three external populations, namely, TCGA-BRCA,
METABRIC and GEO (GSE96058). The model performed better than powerful single-
omic and deep multi-omic controls, and AUCs were 0.956 (TCGA-BRCA), 0.946
(METABRIC), and 0.938 (GEO). Performance was also high when trained on TCGA-
BRCA and externally tested (AUC 0.942 on METABRIC; 0.935 on GEO). There was good
calibration of the expected risks (Brier 0.085-0.098; ECE 0.021-0.028). The descriptions of
the features showed familiar biology (such as TP53 and PIK3CA mutations, ESR1 and
GATA3 expression, and PTEN/TWIST1 methylation). Inference and training were
sufficiently quick to be used on regular GPU. The limitations of this study are as follows:
the research is based on retrospective publicly available data, labels are not directly related
to time-to-event but to early risk, and new environments may differ in terms of performance.
Future directions will incorporate prospective, multi-centric validation; imaging and
radiomics; enhancement to site differences and missing data; tracking of model calibration
in real-life use.

1. INTRODUCTION

optimization of treatment, prognosis and mortality reduction.
Nonetheless, available clinical staging and pathological

Breast cancer is the most identified cancer and the most
common cause of cancer related mortality among women all
over the world, with about 2.3 million cases being diagnosed
every year with 685,000 deaths occurring annually [1].
Despite the recent improvements in early cancer detection
methods, hormonal therapies, and molecular-specific agents,
metastasis i.e., the spread of the tumor cells at the original site
to other body parts have continued to claim over 90 percent of
death cases related to breast-cancers [2, 3]. Early and precise
forecasting of metastatic potential is therefore critical in the
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models, including TNM classification and receptor profile (ER,
PR, HER2) include minimal information on the molecular
factors of metastatic development [4]. With the advent of
multi-omics technologies, including genomics,
transcriptomics and epigenomics, oncology research has
undergone a paradigm shift due to the ability to study cancer
biology on a multilayered level [5]. Genomic profiles are
guantitative records of somatic mutations, copy-number
variation, and chromosomal rearrangements that contribute to
tumor formation [6]; transcriptomic data measures aberrant
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gene-expression patterns that mediate proliferation and
invasion [7]; and epigenomic signatures, especially DNA
methylation and histone changes are quantitative records of
heritable but reversible regulatory changes that regulate gene
activity without changing the DNA sequence [8]. By
combining such heterogeneous data modalities, we can build
more whole-tumor heterogeneous landscapes that are more
likely to capture tumor heterogeneity and evolution than
single-omics methods [9]. These complementary sources of
information can be effectively integrated into a multi-omics
learning framework, which will enhance the sensitivity and
specificity of the prediction models of metastasis. The
schematic idea of such a system is shown in Figure 1, whereby,

beforehand, multi-layer biological data, which are genomics,
transcriptomics and epigenomics, are pre-processed, then
encoded to obtain latent representation, which is fused via
advanced learning architectures to provide an early prediction
of metastatic potential. This integrative approach enables the
discovery of critical biomarkers and pathways involved in
metastatic spread as well as supporting the interpretation of
models to the clinicians. In general terms, a multi-omics
learning system to forecast early metastasis, which is the focus
of  this  study, consists of the  following
components:<|human|>Generally speaking, a multi-omics
learning system to predict early metastasis, as is the case with
this study, is made up of the following elements:
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Figure 1. Construction of a multi-omics learning context for breast cancer metastasis prediction

The last few years have seen the growing usage of machine-
learning and deep-learning algorithms in cancer prognosis.
Common techniques like Support Vector Machines (SVMs)
[10], Random Forests [11], and logistic regression [12] have
been used to classify metastatic and non-metastatic samples
using gene-expression data, but due to the large dimensionality
and nonlinearity of omics features, their performance is
limited. Deep-learning methods, such as autoencoders [13],
convolutional neural networks (CNNs) [14], and graph neural
networks (GNNs) [15] have been shown to be better at
learning nonlinear interactions and extract biologically
meaningful representations of multi-omics data. Despite these
developments, there are three key challenges that exist:

1. Partial multi-omic integration-most of the studies are
based on only one type of omics, e.g., transcriptomics or
methylation, and hence fail to capture inter-omic
interactions [16].

2. Weak interpretability-deep architectures can be viewed
as black boxes, which cannot be understood biologically
or be trusted clinically [17].

3. Lack of cross-cohort generalization models that are
trained on a single dataset (e.g., TCGA-BRCA) often
will not work with other datasets (e.g., METABRIC or
GEO) because of platform bias and batch effects [18].

These gaps demonstrate the necessity to have a single,
interpretable, and generalizable learning model that
maximizes the complementary relationship between multi-
omics data to improve the early detection of breast-cancer

metastasis.

To address these constraints, the proposed learning
framework in this study, which is entitled Learning
Framework of Multi-Omics Metastasis Prediction (LF-MMP),
is a predictive machine built through the integration of
genomic, transcriptomic and epigenomic profiles in a single
end-to-end architecture. This piece of work has the goals of:

o Create a multi-modal deep learning model that is integrated
to represent high-order correlation across omics layers in
predicting early metastasis.

e Use feature-attribution and attention models (e.g., SHAP
and layer-wise relevance propagation) to obtain
biologically interpretable predictions and discover
biomarkers of metastasis.

e Test the framework on several benchmark datasets
(TCGA-BRCA, METABRIC, GEO) to determine
reproducibility, scalability, and resistance to cohort
variability.

The main findings of this paper are summarized as the
following:

e Unified Multi-Omics Fusion: Presentation of a profound
hybrid fusion design with genomic, transcriptomic, and
epigenomic latent representations to boost the accuracy of
metastasis prediction.

e Interpretability and Biomarker Discovery: SHAP-based
feature interpretation that allows the discovery of
biologically important genes and methylation sites



associated with metastatic pathways.
e Cross-Dataset Validation: Overall validation on three

large-scale cohorts in terms of better generalization (AUC >

0.94) over state-of-the-art models [19-21].

¢ Clinical/Translational Impact: Delivery of a decision-
support model potentially useful in helping oncologists to
risk-stratify patients, plan individualized therapies, and
minimize unnecessary systemic therapies.

In addition to the innovativeness in computation, the
suggested framework has the potential to provide clinical
advantages in the form of the early detection of the high-risk
patients, prior to the overt progression to metastasis, which
allows acting proactively and positively influencing the
survival rates. Moreover, the fact that the model can be
biologically interpreted facilitates the generation of hypothesis
to be tested downstream in vitro and in vivo, allows a pathway
between computational oncology and translational medicine.

The rest of this paper will have the following structure.
Section 2 is a full review of the latest developments and
current shortcomings of breast cancer metastasis prediction,
with the focus on the comparative analysis of single-omics and
the multi-omics methods of analysis. Section 3 describes the
datasets used in this paper, such as data sources, data
preprocessing pipelines, normalization steps, and the feature-
engineering pipeline on genomic, transcriptomic, and
epigenomic profiles. Section 4 presents the proposed Learning
Framework of Multi-Omics Metastasis Prediction (LF-MMP)
and describes the overall architectural design, mathematical
formulations employed, training algorithm and the
interpretability mechanisms used to generate biologically
meaningful information. Section 5 summarizes the planning of
the experiment, assessment of outcomes, and comparative
studies performed to confirm the functionality of the proposed
model, and then also, elaborates a biological explanation of the
biomarkers and pathway enrichments identified. Lastly,
Section 6 presents the conclusion of the paper summarizing
the significant results, its clinical implications, and relevance
to precision oncology, existing limitations, and future research
directions.

2. RELATED WORKS

Recent work in the prediction of breast cancer metastasis
has seen a pattern shift whereby, as opposed to individual-
omic analysis, integrated multi-omics learning models are
utilized with the view that genomic, transcriptomic, and
epigenomic features are complementary. The different omic
layers present different biological data, genomics presents
mutational drivers, transcriptomics present the patterns of
differentially expressed genes and epigenomics presents
regulatory methylation programs that dictate metastatic
behavior. Nevertheless, the integration of these disparate data
sources is a significant challenge that is still a significant
computational and biological challenge.

Early work was mainly based on single-omic machine
learning, e.g., SVMs and Random Forests, which were trained
on gene-expression microarray data. They were relatively
accurate (80-85), though prone to overfitting, low
interpretability and could not capture non-linear cross-omic
interactions [22]. Later developments studied models based on
hybrids and multi-omics fusion architecture to enhance
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robustness and generalization.

One of them, MOGONET [23], was the first to integrate
Graph Convolutional Network (GCN) across omics. It was
better able to model local features correlations and made
substantial improvements over classical models. But because
it is based on the construction of graph topologies, it is
computationally expensive and dataset-dependent, which
restricts its scale to large cohorts of breast cancer patients.
End-to-end deep graph integration framework was suggested
later by DeepMolC [24], which enhanced cross-modality
feature representation. Although it led to better generalization
of cancer subtypes, it remained interpretable and externally
metastasis oriented.

Transformer-based networks, including TMO-Net [25],
proposed self-attention to cross-omic features fusion, which
allows learning contextualized representations. These
architectures were highly prognostic (AUC =~ 0.92) in nature
but used large volumes of training data and were sensitive to
the hyperparameters and computational cost. On the same note,
DeePathNet [26] used pathway-based biological priors in
Transformer layers, which increased interpretability through
activity highlights on pathways in metastasis. However, its
reliance on curated databases of pathways limits its use in the
event of incomplete annotations.

Intra/Inter-Attention Fusion Networks Fusion models that
focused on weighing the modality, including MSFN [27, 28],
Intra/Inter-Attention Fusion Networks, dealt with challenges
related to interpretability. They have offered an understanding
of the importance of features in both omics and enhanced c-
index to predict survival. However, these models tend to
maximize long-term prognosis, and not overt early metastasis
prediction and are not widely tested on independent cohorts
such as METABRIC and GEO.

DNA methylation-based models, such as DMOIT [29],
were concerned with denoising and imputing missing data in
methylation to increase model stability. These methods,
although improved on noisy datasets, are limited to lack of
biological context provided by genomic or transcriptomic
layers. In-depth multi-omics analyses [30] also found that
omics integration was able to determine discrete prognostic
subtypes, but this was based on statistical factor models
(MOFA, NMF) and not on deep learning, which restricted
their predictive power.

The summary and comparison of major recent studies are
summarized and compared in Table 1 in terms of their dataset,
fusion strategy, performance measures, interpretability, and
key limitations. The existing challenges, which can be found
in this comparative analysis, include computational
inefficiency, lack of cross-cohort reproducibility, lack of
interpretability, and lack of metastasis-specific validation
pipelines.

The given comparative discussion shows that, though the
field has already made significant steps, the existing methods
are still rife with significant gaps. Most of them depend on
single-omic or dual-omic integration, which limits the
biological integrity of metastasis modeling. Deep architectures
are also usually more accurate but still are computationally
expensive and inexplicable, which makes them difficult to use
by clinicians. Also, external validation in heterogeneous
datasets like TCGA, METABRIC, and GEO are not
commonly done, and one is concerned with how models can
be re-producible in practice.



Table 1. Comparative summary of recent multi-omics methods for breast cancer prognosis and metastasis prediction

Model / - Reported - S
Study (Ref.) Method Modalities Used Dataset Performance Interpretability Main Limitation
Cons(:?l?t?onal Mu{et;(-p?rr:slgisoggene TCGA, Accuracy: Low (post-hoc comput?tli?):al cost;
MOGONET [23] o METABR  89%, AUC: - . S
Network methylation, feature ranking) requires predefined
- IC 0.91
Integration CNV) graph structure
Deep Graph TCGA- . . o .
DeepMolC [24] Integration Multi-omics BRCA, AUC: 0.92 Partial (salient L|m|t_e_d metastasis-
feature maps) specific validation
Framework GEO
Transformer- Genomics, . . Requires large
TMO-Net [25] based Multi- Transcriptomics, TCGA- AUC: 0.93 High (_attenuon sample size; high
. . - PANCAN weights) . -
Omics Fusion Methylation training complexity
. Dependent on
DeePathNet [26] Pathway-aware  Gene expression + TCGA- AUC: 0.90 _Pathway-lgv_el curated pathway
Transformer Pathway priors BRCA interpretability ;
annotations
. . . - . Survival-oriented,;
MSEN [27] Multl-Stage Transcrlptomlcs, METABR AUC: 0.89 Medlu_m (fusion lacks metastasis
Fusion Network Methylation IC attention maps) -
label modeling
. . High (attention- Limited external
Intra-/Inter-Attention Dual Attention A TCGA- . . . L
Fusion [28] Mechanism Multi-omics BRCA c-index: 0.84 Ievel_mo_dallty valldatl_on a_md
weighting) generalization
Denoised Multi- Multi- Focused on noise
. Multi-omics (with cancer . correction; lacks
DMOIT [29] Intoen:;i?on missing data) (incl. AUC:0.88 Low metastasis-specific
9 BRCA) interpretability
. . MOFA/NMF . . Limited predictive
Comprehensive Multi- - Transcriptomics, Oslo2 Accuracy: . e
Omics (Statistical) [30] Statistical Proteomics (n=335) 85% High (factor-level) ablllty_, not deep-
Factor Model learning-based
Methylation-Expression Logistic/ML DNA Methylation CEO & . Medium (feature- Ign_ores .genomlc
Correlation Model [31] Framework + Expression TCGA- AUC: 0.87 level) variants; _redyced
BRCA generalization

Conversely, the current study presents a Learning
Framework of Multi-Omics Metastasis Prediction (LF-MMP)
which jointly incorporates the genomic, transcriptomic, and
epigenomic layers into a single deep learning system. In
contrast to the previous works, LF-MMP uses attention-
directed fusion and feature interpretation via SHAP as an
additional feature to guarantee not only high predictiveness
but biological interpretability. It is not intended to be used in
general analysis of survival but in early detection of metastasis
and is confirmed in numerous cohorts, which guarantee
strength and translatability. Such accuracy, cross-cohort
generalization, and interpretability allow making the proposed
framework an important improvement to the prior multi-omics
frameworks.

3. METHODE

In this section, the design and implementation of the
proposed Learning Framework (LF-MMP) that incorporates
the use of genomic, transcriptomic, and epigenomic data in the
early prediction of breast cancer metastasis is described. It is
based on five primary steps, which are (1) data collection and
preprocessing, (2) feature extraction and dimensionality
reduction, (3) multimodal fusion using deep neural
representation learning, (4) classification and optimization,
and (5) interpretability analysis. Figure 2 shows the general
flow of proposed LF-MMP, where multi-omics inputs are
combined through the feature encoding modules, the attention-
based fusion layer, and the metastasis classification output,
resulting in the final one. The LF-MMP model was tested on
three benchmark datasets: TCGA-BRCA, METABRIC and
GEO (GSE96058). These datasets consist of comprehensive
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and multi-omics and clinical data of thousands of breast cancer
patients, which is perfect as it can be used to predict metastasis.
Table 2 gives a summary of the datasets.

Each dataset has the metastasis status as a binary variable (1
= metastatic, 0 = non-metastatic). To accomplish cross-dataset
generalization experiments, training was done using TCGA,
validation using METABRIC and external testing using GEO
as shown in Figure 3.

The treatment of missing values was mode sensitive. In the
case of genomic mutation data, the missing cases were treated
as lack of a mutation and coded as 0. In transcriptomic and
epigenomic data, features that have over 20 percent missing
data points in all samples would be eliminated. On the other
characteristics that had intermittent missing data (below 20%),
we used the k-Nearest Neighbors (KNN) imputation (k = 5)
applied to training data individually to avoid data leakage. The
imputer fitted was applied to the validation set and the test set.

After imputation a step feature selection was carried out to
deal with high dimensionality and to control noise. The first
step was to remove features whose variance was almost zero,
i.e., the ratio of the frequency of the most frequent value to the
second most frequent value is at least 19:1, the fraction of
distinct values is less than 10%. Second, we used a univariate
statistical filter applied on the two-sample t-test (Eq. (4)) to
obtain characteristics that significantly differ in their
expression/abundance between the metastatic and the non-
metastatic populations. To mitigate against false discoveries,
we selected the 5,000 most significant features of each omics
modality according to a composite measure of absolute log2
fold-change and false discovery rate (FDR) adjusted p-value
less than 0.05. This strict procedure allowed passing only the
most biologically significant and statistically strong features
to autoencoders in order to reduce dimensions.
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Figure 2. Flowchart of the proposed study

Table 2. Characteristics of data to be used in this study

Dataset Samples Modalities Features Metastatic Data Type Source
(approx.) Cases
Genomic
TCGA- R Whole exome, RNA-Seq, .
BRCA 1,200 Trém_scrlptomlc, 60,000+ 450 Methylation B-values https://portal.gdc.cancer.gov
pigenomic
Genomic (CNV), .
METABRIC 1,000 Transcriptomic, 48,000+ 380 M 'ﬁ:gfhr rell;lt,ignN;r/r’aDs’\IA cBioPortal
Methylation y Y
GEO . .
(GSE96058) 3,000 Transcriptomic 20,000+ 870 RNA-Seq counts GEO database

9 e

2
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5 Clinical Outome
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Processiné Transcriptomic —> Accurate
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Figure 3. The diagram of the proposed study

All omics datasets were preprocessed by modality-specific
methods to make the data consistent and comparable:

Genomic features: Data of somatic mutation and copy-
number variations (CNVs) were coded as binary and
continuous matrices.

Transcriptomic data: The RNA-seq expression data was
normalized with the use of log-transformed values of the
FPKM as:

x' =log, (x +1) (1)
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where, x is the raw FPKM expression count.
Epigenomic data: DNA methylation intensity values were
transformed into B-values using:

2

where, M; and U; represent methylated and unmethylated
probe intensities, respectively [1].
Batch effects across platforms were corrected using the



ComBat algorithm [2], while z-score normalization ensured
zero-mean and unit variance:

_XijmH
Zij =

p» (3)
where, x;; is the feature j of sample i, u; and o; are the mean
and standard deviation of feature j.

Stratified sampling was used to divide each dataset into
70% training (validation) and 15% testing subsets (to maintain
balance between classes). To determine the generalization
performance of the model, the five-fold cross-validation has
been used. Omics data with high dimensions (> 60,000
features) are extremely challenging to compute and
overfitting. To reduce this, statistical filtering was used
together with dimensionality reduction by using autoencoders.

Attributes whose variance is close to zero or those whose
inter-correlations are too high (Jhuman|>Attributes with near-
zero variance or high inter-correlations (Jhuman|) were
eliminated. Selection was done using:

S(1)_(0)
X] Xj

1 1
S A evar

where, fj(l) and fj(o) denote the mean feature values for
metastatic and non-metastatic samples, s, is the pooled

standard deviation, and n,, n, are sample counts per group.
For each omic type o € {g, t, e} (genomic, transcriptomic,

4= “4)

epigenomic), a deep autoencoder compresses high-
dimensional data into latent representations:

ho = fo(Xo) = o(W,X, + b,) Q)

Xy = a(Wihy + bg) (6)

where, W, and W, are encoder and decoder weights, b,, b;,
are biases, and a(:) denotes the RelLU activation. The
autoencoder minimizes reconstruction loss:

|2

Liee = ”Xo _)?o 2

(7

The learned latent vectors h, serve as compact, noise-
robust omic representations for the fusion network.

After encoding, the latent representations hy, ., and h, are
concatenated and processed through an attention-weighted
fusion layer that adaptively assigns importance to each omic
modality. The fusion representation Hy is computed as:

After encoding, the latent representations hg, h;, and h, are
concatenated and processed through an attention-weighted
fusion layer that adaptively assigns importance to each omic
modality. The fusion representation Hy is computed as:

Hy = Zoe{g,t,e} aoh, )
where, attention weights «a, are obtained by the softmax
function:

_ _exp (Bo)

T Skexp (Br) ©)

o

and B, are learnable parameters capturing the relative
significance of each modality. This enables the model to
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dynamically emphasize omic features, which is most
informative for metastasis prediction.
The final classification layer receives the fused

representation Hy and outputs a metastasis probability:

9 =o(W.H; + b,) (10)

where, W, and b, are the weights and bias of the classifier, and
a(+) denotes the sigmoid activation function. The model is
trained using the binary cross-entropy (BCE) loss function;

Lpcs = =~ XTI, [ydog ) + (1 — ylog (1 —
D)

where, y; and ¥; are the true and predicted labels for the i™
sample. L2 regularization was applied to mitigate overfitting:

(11)

Lreg = A”M/c”% (12)
The total objective function is therefore:
Ltotal = LBCE + ‘Crec + Lreg (13)

where, A is the regularization coefficient empirically set to
0.001.

Model parameters were optimized using the Adam
optimizer [3] with a learning rate of 0.0005. Early stopping
was triggered when validation loss did not improve for 20
epochs. The main hyperparameters and computational settings
are provided in Table 3.

Table 3. Training and simulation settings

Parameter Value / Setting
Optimizer Adam
Learning Rate 0.0005
Batch Size 64
Epochs 200
Dropout Rate 0.3
Regularization () 0.001

Activation Function ReLU / Sigmoid

Framework TensorFlow 2.13 / Python 3.10
Hardware NVIDIA A100 GPU, 32 GB RAM
Early Stopping Patience 20 epochs
Cross-Validation 5-fold

Model performance was assessed using Accuracy, Precision,
Recall, F1-score, and Area Under the ROC Curve (AUC),
defined as follows:

Accuracy = ———+1%__ (14)
TP+TN+FP+FN
Precision = —— (15)
TP+FP
Recall = —— (16)
TP+FN

PrecisionXRecall
F1-Score = 2 X Precision+Recall (17)
AUC = [ TPR(FPR)d(FPR) (18)

where, TP,TN,FP , and FN denote true positives, true
negatives, false positives, and false negatives respectively.



These metrics collectively quantify the model's predictive 2.
capability, sensitivity to metastasis cases, and overall
discriminative power. 3.

The LF-MMP workflow is summarized in Algorithm 1 to 4,
provide the pseudocode of the computational steps that play

Fused representation: Hy = ¥, a,h, (EQ. (8));
optionally pass through MLP block (BN + Dropout).
Classifier: logistic head y = a(W,H; + b,) (Eq. (10)).
Objective: Lgcg (EQ. (11)) +L,. (optional if fine-
tuning AEs) +£,., (Eq. (12)); total loss (Eq. (13)).

the major part in training, feature fusion, and optimization.

Algorithm 1 - Preprocessing & Normalization (Corresponds to
Egs. (1)-(3))

Input: Xg, X;, X, on J; presence mask; split policy (stratified).
Output: Cleaned matrices X,, X;, X, for S € { train, val, test}.

1. Transcriptomics normalization: for each entry x, set
x < log, (x +1) (Eq. (1)).

2. Methylation B-values: compute 8; = M;/(M; + U;)
(Eq. (2)); clip to [0,1].

3. Genomics encoding:

3.1 Mutations — binary indicators (gene-level or
pathway-level).

3.2 CNV - continuous log 2-ratio; winsorize extreme
values.

4. Missing data: if permitted by Algorithm 0, impute per-
omic using KNN (k = 5) within training split only;
learn imputer on train, apply to val/test.

5. Batch correction (ComBat) across known
batches/platforms on train; fit parameters on train and
apply to val/ test.

6. Scaling: z-score per feature on train; apply same
statistics to val/test (Eq. (3)).

7. Stratified split: 70/15/15 by label y and platform to
preserve distribution.

Complexity: 0(nd,) per omic.
Corner cases: Zero-variance features — drop; extreme outliers —»
winsorize/clamp.

Algorithm 2 - Feature Screening & Autoencoder Training (Egs.

(4)-(M)

Input: X,, X, X, for train/val; labels y.
Output: Encoders fg, f;, fe: latent sizes kg, k¢, k.; embeddings h,.
Part A — Statistical Screening
1. Remove near-zero variance features.
2. Compute differential statistics between classes (Eq.
(4)); retain top p, features per omic by FDRcontrolled
p and |log, FC|.
Part B - Per-Omic Autoencoders
3. Foreacho € {g,t,e}:
3.1 Define symmetric autoencoder depth L, with encoder f, and
decoder; latent size k,.
3.2 Minimize reconstruction loss L., (Eq. (7)) on train; early stop
on val.
3.3 Export encoder f,; freeze or fine-tune later in joint training.
4. Compute h, = f,(X,) for train /val/ test.
Complexity: dominated by neural training O(E -n-k,) .
Corner cases: If an omic has very high dimensionality and small
n, use variational AE with KL annealing or stronger dropout.

Algorithm 3 - Attention-Weighted Fusion & Classifier Training
(Egs. (8)-(13))

Input: Latent embeddings hy, h¢, h, for trainival; labels y ;
hyperparameters.
Output: Trained LF-MMP model JV[:(fy,ft,fe, Fusion,
Classifier).
1. Fusion layer: initialize learnable logits 3, per
modality; compute a, = softmax(f) (Eq. (9)).

5. Optimization: Adam, Ir = 5e — 4; class-imbalance
handling via focal-BCE or positive-class weighting if

needed.
6. Early stopping on validation AUC; checkpoint best
epoch.
7. Export model M.
Complexity: 0 (E n- (kg + ke + ke))

Corner cases: Severe class imbalance — adjust decision threshold
or reweight; small n — stronger L2/Dropout.

Algorithm 4 - Cross-Validation, Thresholding, and Calibration

Input: M; train/val; metrics.
Output: Calibrated decision threshold 7*; reliability metrics.
1. Perform 5-fold stratified CV on training set:
1.1 Repeat Algorithms 2-3 within each fold.
1.2 Record AUC, F1, sensitivity, specificity.
2. Aggregate ROC across folds; compute Youden-
optimal threshold
T" = arg mTax{TPR(T) — FPR(7)}

3. Calibration: fit Platt scaling or isotonic regression on
validation predictions.
4. Lock t* and calibration for external testing.

Algorithm 5 - External Validation & Statistical Testing

Input: Held-out test set (e.g., GEO or METABRIC); M, t*.
Output: Final metrics, Cls, significance tests.
1. Apply preprocessing statistics from train to test (no
leakage).
2. Compute y on test; apply calibration and threshold t*.
3. Report AUC, Accuracy, Precision, Recall, F1 with
95% Cls via bootstrap (B = 1000).
4. Compare against baselines (e.g.,
SVM/RF/Transformer) using paired Wilcoxon or
DelLong test for AUC.
5. Summarize improvements and significance.

Algorithm 6 - Explainability & Biological Validation

Input: M; test predictions; omics features.
Output: Ranked biomarker list; pathway enrichments.
1. Compute SHAP values on test for each omic; obtain
top- K features per class.
2. Stability check: overlap of top- K features across CV
folds.
3. Map features to genes/CpGs; run KEGG/GO
enrichment with FDR control.
4. Output interpretable panels: beeswarm plots per omic;
modality importance via «,,.

Algorithm 7 - Ablation & Sensitivity Analysis

Input: Full pipeline.
Output: Quantified contribution of each component.
1. Train/evaluate with single-omic variants: g only, t
only, e only.
2. Remove attention (equal weights) — measure delta in
AUC.
3. Freeze vs. fine-tune encoders.
4.  Stress tests: noise injection, missing-modality
simulation (drop-one-omic at inference).
5. Summarize deltas in a consolidated table.
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To increase the biological interpretability, SHapley
Additive exPlanations (SHAP) values were calculated on each
omic feature to determine its effect on the predicted metastasis
score [4]. KEGG and Gene Ontology databases were used to
map the most influential genes and methylation sites onto
biological pathways, and metastasis-related biological
pathways, including PI3K-AKT, Wnt, and TGF-B signaling
were found to be associated with them.

All the simulations were performed on high-performance
computing environment with Ubuntu 22.04, TensorFlow 2.13
and CUDA 12.2. The average training time per fold was 180
seconds, and convergence normally took 120 epochs. All
experiments were repeated 5 times to achieve reproducibility,
and all the metrics were reported in terms of mean and
standard deviation as seen in Tables 4, 5, and 6.

Table 4. Simulation environment setting

Component Specification
Operating System Ubuntu 22.04 LTS
CPU AMD Ryzen 9 7950X (16 cores)
GPU NVIDIA A100 (40 GB VRAM)
Memory 128 GB DDR5
Software TensorFlow 2.13, NumPy, Scikit-learn

~ 180 seconds
~ 15 minutes per experiment

Runtime per Fold
Total Runtime

Table 5. Algorithmic hyperparameters

Component Setting Range
AE latent si
AENLSIZES (108, 256,128) {64, 128, 256, 512}
(kg ke, ke)
AE depth per 3 encoder + 3
omic decoder {25}
Dropout
(encoders/fusion) 0.3/03 [0.1,0.5]
Attention type  Softmax logits S8, Gated-thaenatzj; multi-
Classifier width 256 - 64 - 1 {128-512}
Optimizer Adam AdamW
LR / decay 5e-4/cosine [1le-4, 1le-3]
Batch size 64 {32, 64, 128}
Weight decay
(L2) le-3 [1le-5, 1le-2]
. 20 epochs
Early stopping patience 10-30

Table 6. Evaluation protocol

Aspect Policy
Splits 70/15/15 stratified by label and platform
Cross-validation 5-fold (train only)
Threshold Youden's index on validation ROC
selection
Calibration Platt or isotonic (select by Brier score)
Reporting Mean + SD; 95% ClI via bootstrap (B =
1000)
Significance Delong for ROC; Wilcoxon paired for F1

Time: dominated by Algorithms 2-3; approximately
0(E-n-(ky+ ke +ke)).

Memory: stores latent embeddings per omic-size
0 (n- (kg +ke +ke)).

Seeds & Determinism: fix PRNG seeds; log package
versions; persist scaler/ComBat/threshold/calibration
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artifacts.

No-leakage guarantee: all normalizers, imputers,
ComBat, and calibration are fit on train and applied
to val/test.

Inference-Time Procedure (Deployment)

Input: New patient x,, x, x, (possibly missing a modality).

Steps:

1. Apply training scalers/ComBat/imputers to each
available omic.

2. Compute h, = f,(x,) for available modalities; if
one is missing, set a, =0 and renormalize
remaining a.

3. Compute Hr and y; apply calibration and threshold
T

4. Provide SHAP-based explanation at feature and

modality levels.
Output: Predicted metastasis risk, calibrated; interpretable
attributions.

4. RESULT AND ANALYSIS

The following section shows an analytical reading of the
empirical data obtained on TCGA-BRCA, METABRIC, and
GEO (GSE96058) in terms of discrimination, cross-cohort
generalization, contribution of each omics stream and fusion
choice, calibration quality, error structure at operating
threshold, computational footprint, and mechanistic
interpretability. The first strength of comparative framing is
that it determines cohort-wise performance difference with
respect to strong baselines; the second strength is that it
emphasizes the framework in response to domain shift
(training on TCGA-BRCA and testing on external cohorts);
and the third strength is why the proposed learning dynamics
results in quantifiable gains. Prior to presenting the cohort-
wise findings, it is worth noting that Figure 4 plots AUC
between models and cohorts which allow one to see the
separation margins at the first glance whereas Table 5
(presented below) lists the precise statistics along with
confidence intervals. Figure 4 illustrates that the proposed LF-
MMP is always better than classical single-omic LF-MMP
(SVM, Random Forest) and better than strong deep baselines
(Autoenc-LSTM, a generic Transformer fusion). These gaps
are quantified in Table 5: on TCGA-BRCA, LF-MMP AUC is
0.956 (£0.004; 95% CI [0.948-0.963]) with Accuracy 0.939
and F1 0.922; the gains on METABRIC (AUC 0.946) and
GEO (AUC 0.938) confirm that this is no longer cohort-
specific. This benefit is the greatest in recall among metastatic
cases meaning that the attention-directed multi-omics fusion
enhances early-risk detection with no significant increases in
false alarms.

The study of generalization on platform and population shift,
which is a required condition of translational value, is
considered by comparing cross-cohort AUC in training on
TCGA-BRCA and testing externally: Figure 5. As shown in
Table 7, LF-MMP keeps AUC at 0.93 on METABRIC, and
GEO and single-omic baselines drop down (e.g., SVM 0.82).
These findings show that the fused latent space internalizes
complementary signals that are transferred over sequencing
platforms and clinical sampling regimes. These gains can be
attributed to the analysis of ablation, which was presented
prior to Table 8 and depicted in Figure 6. Any single omic
alone fails to match the full system transcriptomics provides
the greatest proportion of discriminative power, but an added



decisive difference via epigenomics when used with
expression (Expr+Epi AUC 0.9270.910 across cohorts), which
is also in line with the assumption that methylation captures
early regulatory changes that pre-empt true transcriptional
reprogramming. Naive early concatenation decreases AUC by
about 0.012002 and demonstrates the usefulness of
empirically weighted modality concatenation. The use of per-
omic encoders, as well as their freezing, is also detrimental to
performance compared to end-to-end fine-tuning, which
implies that the classifier takes advantage of task-specific
latent representation shaping.

Besides discrimination, clinical deployment needs well
calibrated probabilities. Calibration metrics are reported in
Figure 7 and operating characteristics at the Youden-optimal
threshold t are reported in Table 8. Cohort-specific calibration
gives LF-MMP small Brier scores (0.0850.098) and small
expected calibration error (0.02150.28), and so risk outputs are
numerically faithful which is required in threshold-based
triage. Two tables outline the stability of the model: Table 9
shows similar calibration calculations across all groups, while
Table 10 shows stable classification performance with
comparable accuracy and F1 scores., which is consistent with
F1 gains shown in Table 11. Table 12 verifies each margin
against a robust Transformer baseline by DeLong tests of ROC
and Wilcoxon signed-rank tests of F1; p-values less than 0.001
in any cohort indicates that the statistical differences found are
statistically valid, and not arbitrary. To numerically prove the
obtained performance improvements, we performed formal
statistical tests of LF-MMP and all the base models. The two
correlated ROC curves DelLong test was conducted to assess
the significance of the improvement in AUC, and a paired
Wilcoxon signed-rank test was used to assess the differences
in Fl-score across the 5 cross-validation folds. The findings,
which are summarized in the new Table 13, affirm that the
superiority of LF-MMP is statistically significant (p under
0.001) when compared to all baselines, including the recently
compared TMO-Net in all the three cohorts.

Notably, the framework is also computationally efficient
(Table 10): the three omics streams do not impact on the
training time per-fold: 3 minutes on one A100 GPU, 7.2 GB
maximum memory usage, and tens of millisecond per-patient
inference means that it can perform batch scoring and periodic
re-risking within clinic reach.

To obtain a fair comparison we used TMO-Net with its
recommended architecture in our TCGA-BRCA dataset. LF-
MMP continued to be superior in all the cohorts to TMO-Net,
as indicated in the Table 7. As an example, on external GEO
cohort, LF-MMP generated an AUC of 0.938 in contrast to
TMO-Net that yielded 0.916. This shows that our attention-
weighted fusion, with its singular encoders and modality

favorable, offers a presentation edge over a more generic, but
more powerful, pre-trained transformer on the very particular
task of early metastasis prediction in breast cancer.

The empirical narrative is also supported by mechanistic
interpretability. SHAP analysis also discovers high-impact
signals that are consistent with biology of metastasis (Figure 8
and Table 13): genomic drivers (TP53, PIK3CA, BRCA2,
CDHI1), estrogen-signaling signals (ESR1, GATA3) are
highly scorable; methylation at PTEN and TWISTI1 are
consistent with biology of EMT regulation; pathway
enrichment PI3K-AKT, Wnt, TGF-B signaling. To further
validate the biological significance of our model's predictions,
we correlated the top features identified by SHAP with
established clinical and pathological markers. For instance,
high SHAP scores for ESRI expression were strongly
associated with ER-positive status in the clinical metadata of
the TCGA-BRCA cohort (Pearson correlation r = 0.78, p <
0.001), positive that the model leverages biologically
grounded signals. Similarly, 7P53 mutations, identified as
major genomic drivers by our model, were drastically enriched
in the metastatic group (Odds Ratio = 3.2, p < 0.001), which
aligns with its well-known role as a marker of aggressive
disease and poor prognosis. This concordance between the
model's explainable outputs and independent clinical
annotations improves the credibility of LF-MMP's decision-
making process and its potential for classifying clinically
actionable biomarkers. At the modality-level attention,
transcriptomics is usually given the largest mass, after which
epigenomics, and then genomics; however, the ablations
demonstrate that all three are needed to attain the final
performance envelope. Sensitivity tests (summarization of
results can be found within Table 8 entries of drop-one-omic
and Figure 6) demonstrate that the graceful degradation is
observed even in cases where one of the modalities is
unavailable at the time of inference-time, which is an
operational requirement in hospital settings, where some of the
assays might be unavailable. All the above data and tables
suggest that attention-guided, interpretable, multi-omics
representation learning achieve better discrimination, reliable
calibration, transferable behaviour in domain shift, and
biologically meaningful attributions, thus fulfilling both
methodological and translational standards of early metastasis
prediction.

The datasets analyzed in this Method are publicly existing
from the following sources: TCGA-BRCA from the GDC
portal, METABRIC from cBioPortal, and GEO GSE96058
from the NCBI GEO database. The preprocessed data bases
used for training the models, the source code for implementing
the LF-MMP framework, and the trained model weights have
been made publicly available to ensure full reproducibility.

Table 7. Cross-cohort generalization (train: TCGA-BRCA; test: external cohorts)

Model TCGA-BRCAAUC  Acc. Fl METAﬁ'?:R'C Acc. F1 GEOAUC Acc. F1
0.862 +0.008 [0.846— 0.846 +
SVM (expr.) i 0874 0834 085140010 0865 0827 oot 0887 0812
Random Forest 0.881 +0.009 0.888 0851  0.869+0010 0879 0.842 0683110“: 0.895 0.829
Autoenc-LSTM (multi- 0.912 +0.007 0907 0883  0903+0008 0902 0874 9898E 908 0ge7
omic) 0.009

Transformer (generic) 0.932 +0.006 0922 0901 002440006 0919 0.893 069(:)1371 0022 0.885
LF-MMP (proposed) 098 igggg.] [0.948- 939 0022 094640005 0933 0913 0693§5i 0.040 0.904
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Table 8. Ablation: Modality contributions and fusion/design choices (AUC / F1)

Variant TCGA METABRIC GEO
Genomic only 0.830/0.804 0.818/0.792 0.812/0.781
Transcriptomic only 0.849/0.821 0.838/0.808 0.834/0.802
Epigenomic only 0.840/0.816 0.831/0.804 0.828/0.797
Gen+Expr 0.914/0.885 0.906/0.874 0.898/0.864
Expr+Epi 0.927/0.897 0.918/0.888 0.910/0.881
Gen+Epi 0.903/0.875 0.894/0.868 0.887/0.858
Early concat (no attention) 0.944/0.909 0.934/0.900 0.925/0.893
Frozen encoders 0.947/0913 0.937/0.903 0.928/0.895
LF-MMP (full) 0.956/0.922 0.946/0.913  0.938 / 0.904

Table 9. Calibration and operating characteristics

Cohort t* Brier ECE PPV @ Sens=0.90
TCGA-BRCA 0.47 0.085 0.021 0.88
METABRIC 0.49 0.092 0.026 0.86
GEO 0.44 0.098 0.028 0.84

Table 10. Confusion matrices at t*

Cohort (Test Size) TP FN FP TN Acc. Precision Recall F1
TCGA-BRCA (n=180; pos=68) 62 6 5 107 0.939 0.93 0.91 0.92
METABRIC (n = 150; pos =57) 51 6 4 89  0.933 0.93 0.90 091
GEO (n =450; pos = 131) 115 16 11 308 0.940 0.91 0.88  0.89

Table 11. Computational footprint

Aspect LF-MMP  Transformer Autoenc-LSTM
Trainable parameters (M) 18.4 22.7 16.1
Training time / fold (min) 3.0 4.2 3.3
Inference latency / sample (ms) 38 55 44
Peak VRAM (GB) 7.2 9.5 6.9

Table 12. Top features by mean |[SHAP| contribution (subset)

Omic Feature Description Mean |[SHAP| (x107?)
Genomic TP53_mut Tumor suppressor mutation 7.1
Genomic PIK3CA_mut PI13K pathway activation 6.4
Genomic BRCA2_mut HR-repair deficiency 5.3
Genomic CDH1_mut Cell adhesion / EMT 4.8

Transcriptomic ESR1 exp Estrogen receptor signaling 8.3
Transcriptomic GATA3_exp Luminal lineage marker 7.6
Transcriptomic TWIST1_exp EMT transcription factor 6.9
Transcriptomic MKI67_exp Proliferation index 6.1
Transcriptomic CXCL12_exp Chemotaxis / niche 5.7

Epigenomic €g05601337 (PTEN) Promoter methylation 6.6

Table 13. Statistical significance tests of LF-MMP against all baseline models

AAUC (LF-MMP — DeLong p- AF1 (LF-MMP —

Wilcoxon p-

Cohort Baseline Model Baseline) value Baseline) value

TCGA- SVM (expr.) +0.094 <0.001 +0.088 <0.001
BRCA pr. . . . .

Random Forest +0.075 <0.001 +0.071 <0.001

Autoenc-LSTM +0.044 <0.001 +0.039 <0.001

Transformer (generic) +0.024 <0.001 +0.021 <0.001

TMO-Net [25] +0.018 <0.01 +0.016 <0.01

METABRIC SVM (expr.) +0.095 <0.001 +0.086 <0.001

Random Forest +0.077 <0.001 +0.071 <0.001

Autoenc-LSTM +0.043 <0.001 +0.039 <0.001

Transformer (generic) +0.022 <0.001 +0.020 <0.001

TMO-Net [25] +0.017 <0.01 +0.015 <0.01

GEO SVM (expr.) +0.092 <0.001 +0.092 <0.001

Random Forest +0.077 <0.001 +0.075 <0.001

Autoenc-LSTM +0.040 <0.001 +0.037 <0.001

Transformer (generic) +0.022 <0.001 +0.019 <0.001

TMO-Net [25] +0.016 <0.01 +0.014 <0.01
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Figure 5. Cross-cohort AUC (trained on TCGA-BRCA; tested on METABRIC and GEO)
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Figure 6. Ablation study AUC across cohorts (single-omic and fusion variants)
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Figure 8. Top features by mean |[SHAP| showing biological drivers contributing to predictions

5. CONCLUSION

Overall, this paper proposed LF-MMP, a single learning
framework that combines genomic, transcriptomic, and
epigenomic cues to predict breast-cancer metastasis early with
uniform improvements on discrimination, reliability and
interpretability relative to powerful single- and multi-omic
controls. LF-MMP has AUCs of 0.956 (TCGA-BRCA), 0.946
(METABRIC), and 0.938 (GEO) in three cohorts and strong
cross-cohort performance in TCGA-BRCA-trained and
METABRIC-tested (AUC = 0.942), and GEO-tested (AUC =
0.935). Probabilistic results were well calibrated (Brier =
0.085 -0.098; ECE = 0.021-0.028), and the computational
overhead was practical to deploy (about 18.4M parameters,
about 3 minutes per-fold on one A100, about 38 ms per-case
inference). SHAP-based analyses identified biologically
relevant markers -e.g., TP53 PIK3CA BRCA2 CDH1
(genomic), ESR1/GATA3/TWIST1/MKI67 (expression), and
methylation at PTEN/TWIST1), and the value of modality-
level attention confirmed the complementary value of

2654

methylation when combined with expression. Despite these
strengths, the work has limitations: it uses only retrospective
public cohorts and may be susceptible to batch effects and
label noise; performance may change under unknown clinical
protocols or ancestries; metastasis labels approximate early
risk over time-to-event; and in spite of our efforts to reduce
oscillations on ambiguity with attention and SHAP, causal
interpretability and mechanistic validation is not complete.
Future work then will focus on prospective, multi-center
assessment with standardized wet-lab protocols; integration of
histopathology, radiomics as further modalities; domain
adaptation and federated learning to accommodate site-
specific changes and data-sharing limitations; generative
imputation to missing modalities and semi-supervised learning
to utilize unlabeled samples; pathway- and cell-state-aware
prior to promote biological faithfulness; longitudinal modeling
to dynamically risky; decision-curve, cost-sensitive analysis
of clinical thresholds; fairness audits across subgroups; and
real All of these instructions put LF-MMP in the line of a
clinically actionable, transparent, and generalizable early-



metastasis decision-support instrument.
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NOMENCLATURE

LF-MMP (proposed)

Learning Framework for Multi-
Omics Metastasis Prediction

Multi-omics Joint  use of  genomics,
transcriptomics, epigenomics
Genomics Somatic mutations and copy-

Transcriptomics

number variation features
RNA-Seq expression
normalization

after

Epigenomics DNA methylation features (B-
values)
DNA methylation Chemical modification regulating

transcription

B-value
CNV

Somatic mutations

RNA-Seq

FPKM log transform
Batch correction
(ComBat)

Z-score standardization
Two-sample t-test
Autoencoder

Latent representation
Attention-weighted
fusion

Attention weights
Logistic output
Sigmoid
Binary
(BCE)
(L_2) regularization

cross-entropy

Total loss
Adam optimizer
Dropout

Early stopping
Stratified split

K-fold cross-validation
Youden’s index
Probability calibration

Brier score
Expected calibration
error

Accuracy

Precision

Recall (Sensitivity)
F1-score

ROC/AUC
Confusion matrix
Delong test
Wilcoxon signed-rank

Domain shift

External validation
Ablation study

SHAP explainability

Modality importance
Pathway enrichment

PI3K-AKT / Wnt /
TGF-B
EMT

Ratio of methylated to total
intensity

Copy-number variation
(amplification/deletion)
Tumor-acquired sequence
variants

Sequencing-based expression
profiling

Expression normalization
Removal of platform/batch effects

Feature centering/scaling
Differential feature screening
Unsupervised dimensionality
reduction

Compressed per-omic embedding
Learnable modality weighting

Softmax weights per modality
Metastasis probability

Maps score to probability
Classification loss

Weight reduce
overfitting

Joint objective

First-order adaptive optimizer
Stochastic unit removal
(regularization)

Halt training on validation plateau
Train/val/test preserving class
ratios

Generalization estimation
Threshold maximizing TPR-FPR

penalty to

Align  predicted risks to
prevalence
Mean squared error  of
probabilities

Bucketed calibration deviation

((TP+TN)/(TP+TN+FP+FN))
(TP/(TP+FP))
(TP/(TP+FN))
Harmonic
precision/recall
Discrimination curve / area

TP, FN, FP, TN at fixed threshold
Statistical test for AUC
differences

Paired nonparametric test (e.g.,
F1)

Platform/population  distribution
change

Testing on an independent cohort

mean of

Effect of removing
components/modalities
Shapley values for feature
attribution

Relative contribution of each omic
Mapping markers to KEGG/GO
pathways
Metastasis-related
pathways
Epithelial-mesenchymal

signaling



Computational
footprint
TCGA-BRCA

METABRIC

GEO (GSE96058)
Feature matrices
Labels

Moments
Encoder weights
Classifier weights

Regularization coeff.

Attention params
Decision threshold
HOG

transition

Parameters,  time,  memory,
latency

Breast cancer cohort (multi-
omics)

Breast cancer cohort
(expr./CNV/methylation)

External RNA-Seq cohort
Per-omic inputs
Metastasis status (1/0)
Feature mean/std
Autoencoder parameters
Logistic head parameters
L2 strength

Modality logits/weights
Optimal operating point
Histogram of Oriented Gradients
(texture)

2657

LBP
SVM / SGD-Logistic

PR/AP

Mini-batch processing
224224 resizing
Intensity rescaling

MOGONET

DeepMolC
TMO-Net
Transformer
DeePathNet

MSFN / DMOIT /

MOFA / NMF

Local Binary Patterns (texture)

Image-level  baselines/scalable
classifier
Precision—Recall /  Average
Precision

Streaming large image sets
Standard image pre-size
Normalize per-image dynamic
range
Prior
fusion
Prior deep graph-based fusion

GCN-based multi-omics

Prior transformer-style multi-
omics
Pathway-aware transformer
baseline
Prior  statistical/deep  fusion
models





