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The breast cancer care would require the tools that will help to identify the patients who 

may develop metastasis at an early stage, when the treatment decision could be altered. 

Models that use single types of data (as in the case of using a single transcription factor 

only) can tend to overlook significant information and may not work well when applied to 

different hospitals. Our framework, LF-MMP, is a learning framework that integrates three 

types of molecular data, namely genomics (DNA changes), transcriptomics (gene activity), 

and epigenomics (DNA methylation) to give an early patient-level risk score of metastases. 

The framework normalizes and cleans every dataset, trains a compact representation of each 

omics layer, and lastly combines them together with an attention mechanism that allows the 

model to pay attention to the most informative signals. An optimized classifier transforms 

the fused representation into well-behaved probabilities that may be used to support clinical 

thresholds. We tested LF-MMP on three external populations, namely, TCGA-BRCA, 

METABRIC and GEO (GSE96058). The model performed better than powerful single-

omic and deep multi-omic controls, and AUCs were 0.956 (TCGA-BRCA), 0.946 

(METABRIC), and 0.938 (GEO). Performance was also high when trained on TCGA-

BRCA and externally tested (AUC 0.942 on METABRIC; 0.935 on GEO). There was good 

calibration of the expected risks (Brier 0.085-0.098; ECE 0.021-0.028). The descriptions of 

the features showed familiar biology (such as TP53 and PIK3CA mutations, ESR1 and 

GATA3 expression, and PTEN/TWIST1 methylation). Inference and training were 

sufficiently quick to be used on regular GPU. The limitations of this study are as follows: 

the research is based on retrospective publicly available data, labels are not directly related 

to time-to-event but to early risk, and new environments may differ in terms of performance. 

Future directions will incorporate prospective, multi-centric validation; imaging and 

radiomics; enhancement to site differences and missing data; tracking of model calibration 

in real-life use. 
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1. INTRODUCTION

Breast cancer is the most identified cancer and the most 

common cause of cancer related mortality among women all 

over the world, with about 2.3 million cases being diagnosed 

every year with 685,000 deaths occurring annually [1]. 

Despite the recent improvements in early cancer detection 

methods, hormonal therapies, and molecular-specific agents, 

metastasis i.e., the spread of the tumor cells at the original site 

to other body parts have continued to claim over 90 percent of 

death cases related to breast-cancers [2, 3]. Early and precise 

forecasting of metastatic potential is therefore critical in the 

optimization of treatment, prognosis and mortality reduction. 

Nonetheless, available clinical staging and pathological 

models, including TNM classification and receptor profile (ER, 

PR, HER2) include minimal information on the molecular 

factors of metastatic development [4]. With the advent of 

multi-omics technologies, including genomics, 

transcriptomics and epigenomics, oncology research has 

undergone a paradigm shift due to the ability to study cancer 

biology on a multilayered level [5]. Genomic profiles are 

quantitative records of somatic mutations, copy-number 

variation, and chromosomal rearrangements that contribute to 

tumor formation [6]; transcriptomic data measures aberrant 
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gene-expression patterns that mediate proliferation and 

invasion [7]; and epigenomic signatures, especially DNA 

methylation and histone changes are quantitative records of 

heritable but reversible regulatory changes that regulate gene 

activity without changing the DNA sequence [8]. By 

combining such heterogeneous data modalities, we can build 

more whole-tumor heterogeneous landscapes that are more 

likely to capture tumor heterogeneity and evolution than 

single-omics methods [9]. These complementary sources of 

information can be effectively integrated into a multi-omics 

learning framework, which will enhance the sensitivity and 

specificity of the prediction models of metastasis. The 

schematic idea of such a system is shown in Figure 1, whereby, 

beforehand, multi-layer biological data, which are genomics, 

transcriptomics and epigenomics, are pre-processed, then 

encoded to obtain latent representation, which is fused via 

advanced learning architectures to provide an early prediction 

of metastatic potential. This integrative approach enables the 

discovery of critical biomarkers and pathways involved in 

metastatic spread as well as supporting the interpretation of 

models to the clinicians. In general terms, a multi-omics 

learning system to forecast early metastasis, which is the focus 

of this study, consists of the following 

components:<|human|>Generally speaking, a multi-omics 

learning system to predict early metastasis, as is the case with 

this study, is made up of the following elements: 

Figure 1. Construction of a multi-omics learning context for breast cancer metastasis prediction 

The last few years have seen the growing usage of machine-

learning and deep-learning algorithms in cancer prognosis. 

Common techniques like Support Vector Machines (SVMs) 

[10], Random Forests [11], and logistic regression [12] have 

been used to classify metastatic and non-metastatic samples 

using gene-expression data, but due to the large dimensionality 

and nonlinearity of omics features, their performance is 

limited. Deep-learning methods, such as autoencoders [13], 

convolutional neural networks (CNNs) [14], and graph neural 

networks (GNNs) [15] have been shown to be better at 

learning nonlinear interactions and extract biologically 

meaningful representations of multi-omics data. Despite these 

developments, there are three key challenges that exist: 

1. Partial multi-omic integration-most of the studies are

based on only one type of omics, e.g., transcriptomics or

methylation, and hence fail to capture inter-omic

interactions [16].

2. Weak interpretability-deep architectures can be viewed

as black boxes, which cannot be understood biologically

or be trusted clinically [17].

3. Lack of cross-cohort generalization models that are

trained on a single dataset (e.g., TCGA-BRCA) often

will not work with other datasets (e.g., METABRIC or

GEO) because of platform bias and batch effects [18].

These gaps demonstrate the necessity to have a single, 

interpretable, and generalizable learning model that 

maximizes the complementary relationship between multi-

omics data to improve the early detection of breast-cancer 

metastasis. 

To address these constraints, the proposed learning 

framework in this study, which is entitled Learning 

Framework of Multi-Omics Metastasis Prediction (LF-MMP), 

is a predictive machine built through the integration of 

genomic, transcriptomic and epigenomic profiles in a single 

end-to-end architecture. This piece of work has the goals of: 

• Create a multi-modal deep learning model that is integrated

to represent high-order correlation across omics layers in

predicting early metastasis.

• Use feature-attribution and attention models (e.g., SHAP

and layer-wise relevance propagation) to obtain

biologically interpretable predictions and discover

biomarkers of metastasis.

• Test the framework on several benchmark datasets

(TCGA-BRCA, METABRIC, GEO) to determine

reproducibility, scalability, and resistance to cohort

variability.

The main findings of this paper are summarized as the

following: 

• Unified Multi-Omics Fusion: Presentation of a profound

hybrid fusion design with genomic, transcriptomic, and

epigenomic latent representations to boost the accuracy of

metastasis prediction.

• Interpretability and Biomarker Discovery: SHAP-based

feature interpretation that allows the discovery of

biologically important genes and methylation sites
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associated with metastatic pathways. 
• Cross-Dataset Validation: Overall validation on three

large-scale cohorts in terms of better generalization (AUC >

0.94) over state-of-the-art models [19-21].

• Clinical/Translational Impact: Delivery of a decision-

support model potentially useful in helping oncologists to

risk-stratify patients, plan individualized therapies, and

minimize unnecessary systemic therapies.

In addition to the innovativeness in computation, the

suggested framework has the potential to provide clinical 

advantages in the form of the early detection of the high-risk 

patients, prior to the overt progression to metastasis, which 

allows acting proactively and positively influencing the 

survival rates. Moreover, the fact that the model can be 

biologically interpreted facilitates the generation of hypothesis 

to be tested downstream in vitro and in vivo, allows a pathway 

between computational oncology and translational medicine. 

The rest of this paper will have the following structure. 

Section 2 is a full review of the latest developments and 

current shortcomings of breast cancer metastasis prediction, 

with the focus on the comparative analysis of single-omics and 

the multi-omics methods of analysis. Section 3 describes the 

datasets used in this paper, such as data sources, data 

preprocessing pipelines, normalization steps, and the feature-

engineering pipeline on genomic, transcriptomic, and 

epigenomic profiles. Section 4 presents the proposed Learning 

Framework of Multi-Omics Metastasis Prediction (LF-MMP) 

and describes the overall architectural design, mathematical 

formulations employed, training algorithm and the 

interpretability mechanisms used to generate biologically 

meaningful information. Section 5 summarizes the planning of 

the experiment, assessment of outcomes, and comparative 

studies performed to confirm the functionality of the proposed 

model, and then also, elaborates a biological explanation of the 

biomarkers and pathway enrichments identified. Lastly, 

Section 6 presents the conclusion of the paper summarizing 

the significant results, its clinical implications, and relevance 

to precision oncology, existing limitations, and future research 

directions. 

2. RELATED WORKS

Recent work in the prediction of breast cancer metastasis 

has seen a pattern shift whereby, as opposed to individual-

omic analysis, integrated multi-omics learning models are 

utilized with the view that genomic, transcriptomic, and 

epigenomic features are complementary. The different omic 

layers present different biological data, genomics presents 

mutational drivers, transcriptomics present the patterns of 

differentially expressed genes and epigenomics presents 

regulatory methylation programs that dictate metastatic 

behavior. Nevertheless, the integration of these disparate data 

sources is a significant challenge that is still a significant 

computational and biological challenge. 

Early work was mainly based on single-omic machine 

learning, e.g., SVMs and Random Forests, which were trained 

on gene-expression microarray data. They were relatively 

accurate (80-85), though prone to overfitting, low 

interpretability and could not capture non-linear cross-omic 

interactions [22]. Later developments studied models based on 

hybrids and multi-omics fusion architecture to enhance 

robustness and generalization. 

One of them, MOGONET [23], was the first to integrate 

Graph Convolutional Network (GCN) across omics. It was 

better able to model local features correlations and made 

substantial improvements over classical models. But because 

it is based on the construction of graph topologies, it is 

computationally expensive and dataset-dependent, which 

restricts its scale to large cohorts of breast cancer patients. 

End-to-end deep graph integration framework was suggested 

later by DeepMoIC [24], which enhanced cross-modality 

feature representation. Although it led to better generalization 

of cancer subtypes, it remained interpretable and externally 

metastasis oriented. 

Transformer-based networks, including TMO-Net [25], 

proposed self-attention to cross-omic features fusion, which 

allows learning contextualized representations. These 

architectures were highly prognostic (AUC ≈ 0.92) in nature 

but used large volumes of training data and were sensitive to 

the hyperparameters and computational cost. On the same note, 

DeePathNet [26] used pathway-based biological priors in 

Transformer layers, which increased interpretability through 

activity highlights on pathways in metastasis. However, its 

reliance on curated databases of pathways limits its use in the 

event of incomplete annotations. 

Intra/Inter-Attention Fusion Networks Fusion models that 

focused on weighing the modality, including MSFN [27, 28], 

Intra/Inter-Attention Fusion Networks, dealt with challenges 

related to interpretability. They have offered an understanding 

of the importance of features in both omics and enhanced c-

index to predict survival. However, these models tend to 

maximize long-term prognosis, and not overt early metastasis 

prediction and are not widely tested on independent cohorts 

such as METABRIC and GEO. 

DNA methylation-based models, such as DMOIT [29], 

were concerned with denoising and imputing missing data in 

methylation to increase model stability. These methods, 

although improved on noisy datasets, are limited to lack of 

biological context provided by genomic or transcriptomic 

layers. In-depth multi-omics analyses [30] also found that 

omics integration was able to determine discrete prognostic 

subtypes, but this was based on statistical factor models 

(MOFA, NMF) and not on deep learning, which restricted 

their predictive power. 

The summary and comparison of major recent studies are 

summarized and compared in Table 1 in terms of their dataset, 

fusion strategy, performance measures, interpretability, and 

key limitations. The existing challenges, which can be found 

in this comparative analysis, include computational 

inefficiency, lack of cross-cohort reproducibility, lack of 

interpretability, and lack of metastasis-specific validation 

pipelines. 

The given comparative discussion shows that, though the 

field has already made significant steps, the existing methods 

are still rife with significant gaps. Most of them depend on 

single-omic or dual-omic integration, which limits the 

biological integrity of metastasis modeling. Deep architectures 

are also usually more accurate but still are computationally 

expensive and inexplicable, which makes them difficult to use 

by clinicians. Also, external validation in heterogeneous 

datasets like TCGA, METABRIC, and GEO are not 

commonly done, and one is concerned with how models can 

be re-producible in practice. 
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Table 1. Comparative summary of recent multi-omics methods for breast cancer prognosis and metastasis prediction 

Study (Ref.) 
Model / 

Method 
Modalities Used Dataset 

Reported 

Performance 
Interpretability Main Limitation 

MOGONET [23] 

Graph 

Convolutional 

Network 

Integration 

Multi-omics (gene 

expression, 

methylation, 

CNV) 

TCGA, 

METABR

IC 

Accuracy: 

89%, AUC: 

0.91 

Low (post-hoc 

feature ranking) 

High 

computational cost; 

requires predefined 

graph structure 

DeepMoIC [24] 

Deep Graph 

Integration 

Framework 

Multi-omics 

TCGA-

BRCA, 

GEO 

AUC: 0.92 
Partial (salient 

feature maps) 

Limited metastasis-

specific validation 

TMO-Net [25] 

Transformer-

based Multi-

Omics Fusion 

Genomics, 

Transcriptomics, 

Methylation 

TCGA-

PANCAN 
AUC: 0.93 

High (attention 

weights) 

Requires large 

sample size; high 

training complexity 

DeePathNet [26] 
Pathway-aware 

Transformer 

Gene expression + 

Pathway priors 

TCGA-

BRCA 
AUC: 0.90 

Pathway-level 

interpretability 

Dependent on 

curated pathway 

annotations 

MSFN [27] 
Multi-Stage 

Fusion Network 

Transcriptomics, 

Methylation 

METABR

IC 
AUC: 0.89 

Medium (fusion 

attention maps) 

Survival-oriented; 

lacks metastasis 

label modeling 

Intra-/Inter-Attention 

Fusion [28] 

Dual Attention 

Mechanism 
Multi-omics 

TCGA-

BRCA 
c-index: 0.84

High (attention-

level modality 

weighting) 

Limited external 

validation and 

generalization 

DMOIT [29] 

Denoised Multi-

Omics 

Integration 

Multi-omics (with 

missing data) 

Multi-

cancer 

(incl. 

BRCA) 

AUC: 0.88 Low 

Focused on noise 

correction; lacks 

metastasis-specific 

interpretability 

Comprehensive Multi-

Omics (Statistical) [30] 

MOFA/NMF 

Statistical 

Factor Model 

Transcriptomics, 

Proteomics 

Oslo2 

(n=335) 

Accuracy: 

85% 
High (factor-level) 

Limited predictive 

ability; not deep-

learning-based 

Methylation-Expression 

Correlation Model [31] 

Logistic/ML 

Framework 

DNA Methylation 

+ Expression

GEO & 

TCGA-

BRCA 

AUC: 0.87 
Medium (feature-

level) 

Ignores genomic 

variants; reduced 

generalization 

Conversely, the current study presents a Learning 

Framework of Multi-Omics Metastasis Prediction (LF-MMP) 

which jointly incorporates the genomic, transcriptomic, and 

epigenomic layers into a single deep learning system. In 

contrast to the previous works, LF-MMP uses attention-

directed fusion and feature interpretation via SHAP as an 

additional feature to guarantee not only high predictiveness 

but biological interpretability. It is not intended to be used in 

general analysis of survival but in early detection of metastasis 

and is confirmed in numerous cohorts, which guarantee 

strength and translatability. Such accuracy, cross-cohort 

generalization, and interpretability allow making the proposed 

framework an important improvement to the prior multi-omics 

frameworks. 

3. METHODE

In this section, the design and implementation of the 

proposed Learning Framework (LF-MMP) that incorporates 

the use of genomic, transcriptomic, and epigenomic data in the 

early prediction of breast cancer metastasis is described. It is 

based on five primary steps, which are (1) data collection and 

preprocessing, (2) feature extraction and dimensionality 

reduction, (3) multimodal fusion using deep neural 

representation learning, (4) classification and optimization, 

and (5) interpretability analysis. Figure 2 shows the general 

flow of proposed LF-MMP, where multi-omics inputs are 

combined through the feature encoding modules, the attention-

based fusion layer, and the metastasis classification output, 

resulting in the final one. The LF-MMP model was tested on 

three benchmark datasets: TCGA-BRCA, METABRIC and 

GEO (GSE96058). These datasets consist of comprehensive 

and multi-omics and clinical data of thousands of breast cancer 

patients, which is perfect as it can be used to predict metastasis. 

Table 2 gives a summary of the datasets. 

Each dataset has the metastasis status as a binary variable (1 

= metastatic, 0 = non-metastatic). To accomplish cross-dataset 

generalization experiments, training was done using TCGA, 

validation using METABRIC and external testing using GEO 

as shown in Figure 3. 

The treatment of missing values was mode sensitive. In the 

case of genomic mutation data, the missing cases were treated 

as lack of a mutation and coded as 0. In transcriptomic and 

epigenomic data, features that have over 20 percent missing 

data points in all samples would be eliminated. On the other 

characteristics that had intermittent missing data (below 20%), 

we used the k-Nearest Neighbors (KNN) imputation (k = 5) 

applied to training data individually to avoid data leakage. The 

imputer fitted was applied to the validation set and the test set. 

After imputation a step feature selection was carried out to 

deal with high dimensionality and to control noise. The first 

step was to remove features whose variance was almost zero, 

i.e., the ratio of the frequency of the most frequent value to the

second most frequent value is at least 19:1, the fraction of

distinct values is less than 10%. Second, we used a univariate

statistical filter applied on the two-sample t-test (Eq. (4)) to

obtain characteristics that significantly differ in their

expression/abundance between the metastatic and the non-

metastatic populations. To mitigate against false discoveries,

we selected the 5,000 most significant features of each omics

modality according to a composite measure of absolute log2

fold-change and false discovery rate (FDR) adjusted p-value

less than 0.05. This strict procedure allowed passing only the

most biologically significant and statistically strong features

to autoencoders in order to reduce dimensions.
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Figure 2. Flowchart of the proposed study 

Table 2. Characteristics of data to be used in this study 

Dataset Samples Modalities 
Features 

(approx.) 

Metastatic 

Cases 
Data Type Source 

TCGA-

BRCA 
1,200 

Genomic, 

Transcriptomic, 

Epigenomic 

60,000+ 450 
Whole exome, RNA-Seq, 

Methylation β-values 
https://portal.gdc.cancer.gov 

METABRIC 1,000 

Genomic (CNV), 

Transcriptomic, 

Methylation 

48,000+ 380 
Microarray, CNV, DNA 

methylation arrays 
cBioPortal 

GEO 

(GSE96058) 
3,000 Transcriptomic 20,000+ 870 RNA-Seq counts GEO database 

Figure 3. The diagram of the proposed study 

All omics datasets were preprocessed by modality-specific 

methods to make the data consistent and comparable: 

Genomic features: Data of somatic mutation and copy-

number variations (CNVs) were coded as binary and 

continuous matrices. 

Transcriptomic data: The RNA-seq expression data was 

normalized with the use of log-transformed values of the 

FPKM as: 

𝑥′ = log2⁡(𝑥 + 1) (1) 

where, 𝑥 is the raw FPKM expression count. 

Epigenomic data: DNA methylation intensity values were 

transformed into 𝛽-values using: 

𝛽𝑖 =
𝑀𝑖

𝑀𝑖+𝑈𝑖
(2) 

where, 𝑀𝑖  and 𝑈𝑖  represent methylated and unmethylated

probe intensities, respectively [1]. 

Batch effects across platforms were corrected using the 
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ComBat algorithm [2], while z-score normalization ensured 

zero-mean and unit variance: 

𝑧𝑖𝑗 =
𝑥𝑖𝑗−𝜇𝑗

𝜎𝑗
(3) 

where, 𝑥𝑖𝑗  is the feature 𝑗 of sample 𝑖, 𝜇𝑗 and 𝜎𝑗 are the mean

and standard deviation of feature 𝑗. 
Stratified sampling was used to divide each dataset into 

70% training (validation) and 15% testing subsets (to maintain 

balance between classes). To determine the generalization 

performance of the model, the five-fold cross-validation has 

been used. Omics data with high dimensions (> 60,000 

features) are extremely challenging to compute and 

overfitting. To reduce this, statistical filtering was used 

together with dimensionality reduction by using autoencoders. 

Attributes whose variance is close to zero or those whose 

inter-correlations are too high (|human|>Attributes with near-

zero variance or high inter-correlations (|human|) were 

eliminated. Selection was done using: 

𝑡𝑗 =
𝑥‾𝑗
(1)

−𝑥‾𝑗
(0)

𝑠𝑝√
1

𝑛1
+

1

𝑛0

(4) 

where, 𝑥‾𝑗
(1)

 and 𝑥‾𝑗
(0)

 denote the mean feature values for

metastatic and non-metastatic samples, 𝑠𝑝  is the pooled

standard deviation, and 𝑛1, 𝑛0 are sample counts per group.

For each omic type 𝑜 ∈ {𝑔, 𝑡, 𝑒} (genomic, transcriptomic, 

epigenomic), a deep autoencoder compresses high-

dimensional data into latent representations: 

ℎ𝑜 = 𝑓𝑜(𝑋𝑜) = 𝜎(𝑊𝑜𝑋𝑜 + 𝑏𝑜) (5) 

𝑋̂𝑜 = 𝜎(𝑊𝑜
′ℎ𝑜 + 𝑏𝑜

′ ) (6) 

where, 𝑊𝑜  and 𝑊𝑜
′  are encoder and decoder weights, 𝑏𝑜, 𝑏𝑜

′

are biases, and 𝜎(⋅)  denotes the ReLU activation. The 

autoencoder minimizes reconstruction loss: 

ℒrec = ‖𝑋𝑜 − 𝑋̂𝑜‖2
2

(7) 

The learned latent vectors ℎ𝑜  serve as compact, noise-

robust omic representations for the fusion network. 

After encoding, the latent representations ℎ𝑔, ℎ𝑡 , and ℎ𝑒 are

concatenated and processed through an attention-weighted 

fusion layer that adaptively assigns importance to each omic 

modality. The fusion representation 𝐻𝑓 is computed as:

After encoding, the latent representations ℎ𝑔, ℎ𝑡 , and ℎ𝑒 are

concatenated and processed through an attention-weighted 

fusion layer that adaptively assigns importance to each omic 

modality. The fusion representation 𝐻𝑓 is computed as:

𝐻𝑓 = ∑  𝑜∈{𝑔,𝑡,𝑒} 𝛼𝑜ℎ𝑜 (8) 

where, attention weights 𝛼𝑜  are obtained by the softmax

function: 

𝛼𝑜 =
exp⁡(𝛽𝑜)

∑  𝑘  exp⁡(𝛽𝑘)
(9) 

and 𝛽𝑜  are learnable parameters capturing the relative

significance of each modality. This enables the model to 

dynamically emphasize omic features, which is most 

informative for metastasis prediction. 

The final classification layer receives the fused 

representation 𝐻𝑓 and outputs a metastasis probability:

𝑦̂ = 𝜎(𝑊𝑐𝐻𝑓 + 𝑏𝑐) (10) 

where, 𝑊𝑐 and 𝑏𝑐 are the weights and bias of the classifier, and

𝜎(⋅) denotes the sigmoid activation function. The model is 

trained using the binary cross-entropy (BCE) loss function: 

ℒ𝐵𝐶𝐸 = −
1

𝑁
∑  𝑁
𝑖=1 [𝑦𝑖log⁡(𝑦̂𝑖) + (1 − 𝑦𝑖)log⁡(1 −

𝑦̂𝑖)]
(11) 

where, 𝑦𝑖  and 𝑦̂𝑖  are the true and predicted labels for the 𝑖th 

sample. L2 regularization was applied to mitigate overfitting: 

ℒreg = 𝜆‖𝑊𝑐‖2
2 (12) 

The total objective function is therefore: 

ℒtotal = ℒ𝐵𝐶𝐸 + ℒrec + ℒreg (13) 

where, 𝜆  is the regularization coefficient empirically set to 

0.001. 

Model parameters were optimized using the Adam 

optimizer [3] with a learning rate of 0.0005. Early stopping 

was triggered when validation loss did not improve for 20 

epochs. The main hyperparameters and computational settings 

are provided in Table 3. 

Table 3. Training and simulation settings 

Parameter Value / Setting 

Optimizer Adam 

Learning Rate 0.0005 

Batch Size 64 

Epochs 200 

Dropout Rate 0.3 

Regularization (λ) 0.001 

Activation Function ReLU / Sigmoid 

Framework TensorFlow 2.13 / Python 3.10 

Hardware NVIDIA A100 GPU, 32 GB RAM 

Early Stopping Patience 20 epochs 

Cross-Validation 5-fold

Model performance was assessed using Accuracy, Precision, 

Recall, F1-score, and Area Under the ROC Curve (AUC), 

defined as follows: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(14) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(15) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(16) 

F1-Score = 2 ×
Precision×Recall

Precision+Recall
(17) 

AUC = ∫
1

0
 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅) (18) 

where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 , and 𝐹𝑁  denote true positives, true 

negatives, false positives, and false negatives respectively. 
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These metrics collectively quantify the model's predictive 

capability, sensitivity to metastasis cases, and overall 

discriminative power. 

The LF-MMP workflow is summarized in Algorithm 1 to 

provide the pseudocode of the computational steps that play 

the major part in training, feature fusion, and optimization. 

Algorithm 1 - Preprocessing & Normalization (Corresponds to 

Eqs. (1)-(3)) 

Input: 𝑋𝑔, 𝑋𝑡 , 𝑋𝑒  on ℐ ; presence mask; split policy (stratified).

Output: Cleaned matrices 𝑋̃𝑔, 𝑋̃𝑡, 𝑋̃𝑒 for 𝑆 ∈ { train, val, test}.

1. Transcriptomics normalization: for each entry 𝑥, set

𝑥 ← log2⁡(𝑥 + 1) (Eq. (1)).

2. Methylation 𝛽-values: compute 𝛽𝑖 = 𝑀𝑖/(𝑀𝑖 + 𝑈𝑖)
(Eq. (2)); clip to [0,1].

3. Genomics encoding:

3.1 Mutations → binary indicators (gene-level or

pathway-level).

3.2 CNV → continuous log⁡ 2-ratio; winsorize extreme

values.

4. Missing data: if permitted by Algorithm 0, impute per-

omic using KNN (k = 5) within training split only;

learn imputer on train, apply to val/test.

5. Batch correction (ComBat) across known

batches/platforms on train; fit parameters on train and

apply to val/ test.

6. Scaling: z-score per feature on train; apply same

statistics to val/test (Eq. (3)).

7. Stratified split: 70/15/15 by label 𝑦 and platform to

preserve distribution.

Complexity: 𝑂(𝑛𝑑𝑜) per omic.

Corner cases: Zero-variance features → drop; extreme outliers → 

winsorize/clamp. 

Algorithm 2 - Feature Screening & Autoencoder Training (Eqs. 

(4)-(7)) 

Input: 𝑋̃𝑔, 𝑋̃𝑡, 𝑋̃𝑒 for train/val; labels 𝑦.

Output: Encoders 𝑓𝑔, 𝑓𝑡 , 𝑓𝑒; latent sizes 𝑘𝑔, 𝑘𝑡 , 𝑘𝑒; embeddings ℎ𝑜.

Part A — Statistical Screening 

1. Remove near-zero variance features.

2. Compute differential statistics between classes (Eq.

(4)); retain top 𝑝𝑜 features per omic by FDRcontrolled

𝑝 and |log2⁡ 𝐹𝐶|.
Part B - Per-Omic Autoencoders 

3. For each 𝑜 ∈ {𝑔, 𝑡, 𝑒}:
3.1 Define symmetric autoencoder depth 𝐿𝑜 with encoder 𝑓𝑜 and

decoder; latent size 𝑘𝑜.

3.2 Minimize reconstruction loss ℒrec  (Eq. (7)) on train; early stop

on val.

3.3 Export encoder 𝑓𝑜; freeze or fine-tune later in joint training.

4. Compute ℎ𝑜 = 𝑓𝑜(𝑋̃𝑜) for train /val/ test.

Complexity: dominated by neural training 𝑂(𝐸 ⋅ 𝑛 ⋅ 𝑘𝑜) .

Corner cases: If an omic has very high dimensionality and small

𝑛, use variational AE with KL annealing or stronger dropout.

Algorithm 3 - Attention-Weighted Fusion & Classifier Training 

(Eqs. (8)-(13)) 

Input: Latent embeddings ℎ𝑔, ℎ𝑡, ℎ𝑒  for train/val; labels 𝑦 ;

hyperparameters. 

Output: Trained LF-MMP model ℳ = (𝑓𝑔, 𝑓𝑡 , 𝑓𝑒 , Fusion,

Classifier). 
1. Fusion layer: initialize learnable logits 𝛽𝑜 per

modality; compute 𝛼𝑜 = softmax(𝛽) (Eq. (9)).

2. Fused representation: 𝐻𝑓 = ∑  𝑜 𝛼𝑜ℎ𝑜 (Eq. (8));

optionally pass through MLP block (BN + Dropout).

3. Classifier: logistic head 𝑦̂ = 𝜎(𝑊𝑐𝐻𝑓 + 𝑏𝑐) (Eq. (10)).

4. Objective: ℒ𝐵𝐶𝐸 (Eq. (11)) +ℒrec (optional if fine-

tuning AEs) +ℒreg (Eq. (12)); total loss (Eq. (13)).

5. Optimization: Adam, Ir = 5e − 4; class-imbalance

handling via focal-BCE or positive-class weighting if

needed.

6. Early stopping on validation AUC; checkpoint best

epoch.

7. Export model ℳ.

Complexity: 𝑂 (𝐸 ⋅ 𝑛 ⋅ (𝑘𝑔 + 𝑘𝑡 + 𝑘𝑒)) . 

Corner cases: Severe class imbalance → adjust decision threshold 

or reweight; small 𝑛 → stronger L2/Dropout. 

Algorithm 4 - Cross-Validation, Thresholding, and Calibration 

Input: ℳ; train/val; metrics. 

Output: Calibrated decision threshold 𝜏∗; reliability metrics.

1. Perform 5-fold stratified CV on training set:

1.1 Repeat Algorithms 2-3 within each fold.

1.2 Record AUC, F1, sensitivity, specificity.

2. Aggregate ROC across folds; compute Youden-

optimal threshold

𝜏∗ = arg⁡max
𝜏
 {TPR(𝜏) − FPR(𝜏)} 

3. Calibration: fit Platt scaling or isotonic regression on

validation predictions.

4. Lock 𝜏∗ and calibration for external testing.

Algorithm 5 - External Validation & Statistical Testing 

Input: Held-out test set (e.g., GEO or METABRIC); ℳ, 𝜏∗ .

Output: Final metrics, Cls, significance tests. 

1. Apply preprocessing statistics from train to test (no

leakage).

2. Compute 𝑦̂ on test; apply calibration and threshold 𝜏∗.
3. Report AUC, Accuracy, Precision, Recall, F1 with

95% Cls via bootstrap (𝐵 = 1000).
4. Compare against baselines (e.g.,

SVM/RF/Transformer) using paired Wilcoxon or

DeLong test for AUC.

5. Summarize improvements and significance.

Algorithm 6 - Explainability & Biological Validation 

Input: ℳ; test predictions; omics features. 

Output: Ranked biomarker list; pathway enrichments. 

1. Compute SHAP values on test for each omic; obtain

top- 𝐾 features per class.

2. Stability check: overlap of top- 𝐾 features across CV

folds.

3. Map features to genes/CpGs; run KEGG/GO

enrichment with FDR control.

4. Output interpretable panels: beeswarm plots per omic;

modality importance via 𝛼𝑜.

Algorithm 7 - Ablation & Sensitivity Analysis 

Input: Full pipeline. 

Output: Quantified contribution of each component. 

1. Train/evaluate with single-omic variants: 𝑔 only, 𝑡
only, 𝑒 only.

2. Remove attention (equal weights) → measure delta in

AUC.

3. Freeze vs. fine-tune encoders.

4. Stress tests: noise injection, missing-modality

simulation (drop-one-omic at inference).

5. Summarize deltas in a consolidated table.
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To increase the biological interpretability, SHapley 

Additive exPlanations (SHAP) values were calculated on each 

omic feature to determine its effect on the predicted metastasis 

score [4]. KEGG and Gene Ontology databases were used to 

map the most influential genes and methylation sites onto 

biological pathways, and metastasis-related biological 

pathways, including PI3K-AKT, Wnt, and TGF-B signaling 

were found to be associated with them. 

All the simulations were performed on high-performance 

computing environment with Ubuntu 22.04, TensorFlow 2.13 

and CUDA 12.2. The average training time per fold was 180 

seconds, and convergence normally took 120 epochs. All 

experiments were repeated 5 times to achieve reproducibility, 

and all the metrics were reported in terms of mean and 

standard deviation as seen in Tables 4, 5, and 6. 

Table 4. Simulation environment setting 

Component Specification 

Operating System Ubuntu 22.04 LTS 

CPU AMD Ryzen 9 7950X (16 cores) 

GPU NVIDIA A100 (40 GB VRAM) 

Memory 128 GB DDR5 

Software TensorFlow 2.13, NumPy, Scikit-learn 

Runtime per Fold ≈ 180 seconds 

Total Runtime ≈ 15 minutes per experiment 

Table 5. Algorithmic hyperparameters 

Component Setting Range 

AE latent sizes 

(𝑘𝑔, 𝑘𝑡, 𝑘𝑒)
(128, 256, 128) {64, 128, 256, 512} 

AE depth per 

omic 

3 encoder + 3 

decoder 
{2-5} 

Dropout 

(encoders/fusion) 
0.3 / 0.3 [0.1, 0.5] 

Attention type Softmax logits 𝛽𝑜
Gated-tanh; multi-

head 

Classifier width 256 → 64 → 1 {128-512} 

Optimizer Adam AdamW 

LR / decay 5e-4/cosine [1e-4, 1e-3] 

Batch size 64 {32, 64, 128} 

Weight decay 

(L2) 
1e-3 [1e-5, 1e-2] 

Early stopping 
20 epochs 

patience 
10-30 

Table 6. Evaluation protocol 

Aspect Policy 

Splits 70/15/15 stratified by label and platform 

Cross-validation 5-fold (train only)

Threshold 

selection 
Youden's index on validation ROC 

Calibration Platt or isotonic (select by Brier score) 

Reporting 
Mean ± SD; 95% Cl via bootstrap (B =

1000) 

Significance Delong for ROC; Wilcoxon paired for F1 

• Time: dominated by Algorithms 2-3; approximately

𝑂 (𝐸 ⋅ 𝑛 ⋅ (𝑘𝑔 + 𝑘𝑡 + 𝑘𝑒)).

• Memory: stores latent embeddings per omic-size

𝑂 (𝑛 ⋅ (𝑘𝑔 + 𝑘𝑡 + 𝑘𝑒)).

• Seeds & Determinism: fix PRNG seeds; log package

versions; persist scaler/ComBat/threshold/calibration

artifacts. 

• No-leakage guarantee: all normalizers, imputers,

ComBat, and calibration are fit on train and applied

to val/test.

Inference-Time Procedure (Deployment) 

Input: New patient 𝑥𝑔, 𝑥𝑡 , 𝑥𝑒  (possibly missing a modality).

Steps: 

1. Apply training scalers/ComBat/imputers to each

available omic.

2. Compute ℎ𝑜 = 𝑓𝑜(𝑥𝑜)  for available modalities; if

one is missing, set 𝛼𝑜 = 0  and renormalize

remaining 𝛼.

3. Compute 𝐻𝑓  and 𝑦̂; apply calibration and threshold

𝜏∗.
4. Provide SHAP-based explanation at feature and

modality levels.

Output: Predicted metastasis risk, calibrated; interpretable 

attributions. 

4. RESULT AND ANALYSIS

The following section shows an analytical reading of the 

empirical data obtained on TCGA-BRCA, METABRIC, and 

GEO (GSE96058) in terms of discrimination, cross-cohort 

generalization, contribution of each omics stream and fusion 

choice, calibration quality, error structure at operating 

threshold, computational footprint, and mechanistic 

interpretability. The first strength of comparative framing is 

that it determines cohort-wise performance difference with 

respect to strong baselines; the second strength is that it 

emphasizes the framework in response to domain shift 

(training on TCGA-BRCA and testing on external cohorts); 

and the third strength is why the proposed learning dynamics 

results in quantifiable gains. Prior to presenting the cohort-

wise findings, it is worth noting that Figure 4 plots AUC 

between models and cohorts which allow one to see the 

separation margins at the first glance whereas Table 5 

(presented below) lists the precise statistics along with 

confidence intervals. Figure 4 illustrates that the proposed LF-

MMP is always better than classical single-omic LF-MMP 

(SVM, Random Forest) and better than strong deep baselines 

(Autoenc-LSTM, a generic Transformer fusion). These gaps 

are quantified in Table 5: on TCGA-BRCA, LF-MMP AUC is 

0.956 (±0.004; 95% CI [0.948-0.963]) with Accuracy 0.939 

and F1 0.922; the gains on METABRIC (AUC 0.946) and 

GEO (AUC 0.938) confirm that this is no longer cohort-

specific. This benefit is the greatest in recall among metastatic 

cases meaning that the attention-directed multi-omics fusion 

enhances early-risk detection with no significant increases in 

false alarms. 

The study of generalization on platform and population shift, 

which is a required condition of translational value, is 

considered by comparing cross-cohort AUC in training on 

TCGA-BRCA and testing externally: Figure 5. As shown in 

Table 7, LF-MMP keeps AUC at 0.93 on METABRIC, and 

GEO and single-omic baselines drop down (e.g., SVM 0.82). 

These findings show that the fused latent space internalizes 

complementary signals that are transferred over sequencing 

platforms and clinical sampling regimes. These gains can be 

attributed to the analysis of ablation, which was presented 

prior to Table 8 and depicted in Figure 6. Any single omic 

alone fails to match the full system transcriptomics provides 

the greatest proportion of discriminative power, but an added 
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decisive difference via epigenomics when used with 

expression (Expr+Epi AUC 0.9270.910 across cohorts), which 

is also in line with the assumption that methylation captures 

early regulatory changes that pre-empt true transcriptional 

reprogramming. Naive early concatenation decreases AUC by 

about 0.012002 and demonstrates the usefulness of 

empirically weighted modality concatenation. The use of per-

omic encoders, as well as their freezing, is also detrimental to 

performance compared to end-to-end fine-tuning, which 

implies that the classifier takes advantage of task-specific 

latent representation shaping. 

Besides discrimination, clinical deployment needs well 

calibrated probabilities. Calibration metrics are reported in 

Figure 7 and operating characteristics at the Youden-optimal 

threshold τ are reported in Table 8. Cohort-specific calibration 

gives LF-MMP small Brier scores (0.0850.098) and small 

expected calibration error (0.02150.28), and so risk outputs are 

numerically faithful which is required in threshold-based 

triage. Two tables outline the stability of the model: Table 9 

shows similar calibration calculations across all groups, while 

Table 10 shows stable classification performance with 

comparable accuracy and F1 scores., which is consistent with 

F1 gains shown in Table 11. Table 12 verifies each margin 

against a robust Transformer baseline by DeLong tests of ROC 

and Wilcoxon signed-rank tests of F1; p-values less than 0.001 

in any cohort indicates that the statistical differences found are 

statistically valid, and not arbitrary. To numerically prove the 

obtained performance improvements, we performed formal 

statistical tests of LF-MMP and all the base models. The two 

correlated ROC curves DeLong test was conducted to assess 

the significance of the improvement in AUC, and a paired 

Wilcoxon signed-rank test was used to assess the differences 

in F1-score across the 5 cross-validation folds. The findings, 

which are summarized in the new Table 13, affirm that the 

superiority of LF-MMP is statistically significant (p under 

0.001) when compared to all baselines, including the recently 

compared TMO-Net in all the three cohorts. 

Notably, the framework is also computationally efficient 

(Table 10): the three omics streams do not impact on the 

training time per-fold: 3 minutes on one A100 GPU, 7.2 GB 

maximum memory usage, and tens of millisecond per-patient 

inference means that it can perform batch scoring and periodic 

re-risking within clinic reach. 

To obtain a fair comparison we used TMO-Net with its 

recommended architecture in our TCGA-BRCA dataset. LF-

MMP continued to be superior in all the cohorts to TMO-Net, 

as indicated in the Table 7. As an example, on external GEO 

cohort, LF-MMP generated an AUC of 0.938 in contrast to 

TMO-Net that yielded 0.916. This shows that our attention-

weighted fusion, with its singular encoders and modality 

favorable, offers a presentation edge over a more generic, but 

more powerful, pre-trained transformer on the very particular 

task of early metastasis prediction in breast cancer. 

The empirical narrative is also supported by mechanistic 

interpretability. SHAP analysis also discovers high-impact 

signals that are consistent with biology of metastasis (Figure 8 

and Table 13): genomic drivers (TP53, PIK3CA, BRCA2, 

CDH1), estrogen-signaling signals (ESR1, GATA3) are 

highly scorable; methylation at PTEN and TWIST1 are 

consistent with biology of EMT regulation; pathway 

enrichment PI3K-AKT, Wnt, TGF-B signaling. To further 

validate the biological significance of our model's predictions, 

we correlated the top features identified by SHAP with 

established clinical and pathological markers. For instance, 

high SHAP scores for ESR1 expression were strongly 

associated with ER-positive status in the clinical metadata of 

the TCGA-BRCA cohort (Pearson correlation r = 0.78, p < 

0.001), positive that the model leverages biologically 

grounded signals. Similarly, TP53 mutations, identified as 

major genomic drivers by our model, were drastically enriched 

in the metastatic group (Odds Ratio = 3.2, p < 0.001), which 

aligns with its well-known role as a marker of aggressive 

disease and poor prognosis. This concordance between the 

model's explainable outputs and independent clinical 

annotations improves the credibility of LF-MMP's decision-

making process and its potential for classifying clinically 

actionable biomarkers. At the modality-level attention, 

transcriptomics is usually given the largest mass, after which 

epigenomics, and then genomics; however, the ablations 

demonstrate that all three are needed to attain the final 

performance envelope. Sensitivity tests (summarization of 

results can be found within Table 8 entries of drop-one-omic 

and Figure 6) demonstrate that the graceful degradation is 

observed even in cases where one of the modalities is 

unavailable at the time of inference-time, which is an 

operational requirement in hospital settings, where some of the 

assays might be unavailable. All the above data and tables 

suggest that attention-guided, interpretable, multi-omics 

representation learning achieve better discrimination, reliable 

calibration, transferable behaviour in domain shift, and 

biologically meaningful attributions, thus fulfilling both 

methodological and translational standards of early metastasis 

prediction. 

The datasets analyzed in this Method are publicly existing 

from the following sources: TCGA-BRCA from the GDC 

portal, METABRIC from cBioPortal, and GEO GSE96058 

from the NCBI GEO database. The preprocessed data bases 

used for training the models, the source code for implementing 

the LF-MMP framework, and the trained model weights have 

been made publicly available to ensure full reproducibility. 

Table 7. Cross-cohort generalization (train: TCGA-BRCA; test: external cohorts) 

Model TCGA-BRCA AUC Acc. F1 
METABRIC 

AUC 
Acc. F1 GEO AUC Acc. F1 

SVM (expr.) 
0.862 ± 0.008 [0.846–

0.874] 
0.874 0.834 0.851 ± 0.010 0.865 0.827 

0.846 ± 

0.011 
0.887 0.812 

Random Forest 0.881 ± 0.009 0.888 0.851 0.869 ± 0.010 0.879 0.842 
0.861 ± 

0.010 
0.895 0.829 

Autoenc-LSTM (multi-

omic) 
0.912 ± 0.007 0.907 0.883 0.903 ± 0.008 0.902 0.874 

0.898 ± 

0.009 
0.908 0.867 

Transformer (generic) 0.932 ± 0.006 0.922 0.901 0.924 ± 0.006 0.919 0.893 
0.916 ± 

0.007 
0.922 0.885 

LF-MMP (proposed) 
0.956 ± 0.004 [0.948–

0.963] 
0.939 0.922 0.946 ± 0.005 0.933 0.913 

0.938 ± 

0.005 
0.940 0.904 
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Table 8. Ablation: Modality contributions and fusion/design choices (AUC / F1) 

Variant TCGA METABRIC GEO 

Genomic only 0.830 / 0.804 0.818 / 0.792 0.812 / 0.781 

Transcriptomic only 0.849 / 0.821 0.838 / 0.808 0.834 / 0.802 

Epigenomic only 0.840 / 0.816 0.831 / 0.804 0.828 / 0.797 

Gen+Expr 0.914 / 0.885 0.906 / 0.874 0.898 / 0.864 

Expr+Epi 0.927 / 0.897 0.918 / 0.888 0.910 / 0.881 

Gen+Epi 0.903 / 0.875 0.894 / 0.868 0.887 / 0.858 

Early concat (no attention) 0.944 / 0.909 0.934 / 0.900 0.925 / 0.893 

Frozen encoders 0.947 / 0.913 0.937 / 0.903 0.928 / 0.895 

LF-MMP (full) 0.956 / 0.922 0.946 / 0.913 0.938 / 0.904 

Table 9. Calibration and operating characteristics 

Cohort τ* Brier ECE PPV @ Sens = 0.90 

TCGA-BRCA 0.47 0.085 0.021 0.88 

METABRIC 0.49 0.092 0.026 0.86 

GEO 0.44 0.098 0.028 0.84 

Table 10. Confusion matrices at τ* 

Cohort (Test Size) TP FN FP TN Acc. Precision Recall F1 

TCGA-BRCA (n = 180; pos = 68) 62 6 5 107 0.939 0.93 0.91 0.92 

METABRIC (n = 150; pos = 57) 51 6 4 89 0.933 0.93 0.90 0.91 

GEO (n = 450; pos = 131) 115 16 11 308 0.940 0.91 0.88 0.89 

Table 11. Computational footprint 

Aspect LF-MMP Transformer Autoenc-LSTM 

Trainable parameters (M) 18.4 22.7 16.1 

Training time / fold (min) 3.0 4.2 3.3 

Inference latency / sample (ms) 38 55 44 

Peak VRAM (GB) 7.2 9.5 6.9 

Table 12. Top features by mean |SHAP| contribution (subset) 

Omic Feature Description Mean |SHAP| (×10⁻²) 

Genomic TP53_mut Tumor suppressor mutation 7.1 

Genomic PIK3CA_mut PI3K pathway activation 6.4 

Genomic BRCA2_mut HR-repair deficiency 5.3 

Genomic CDH1_mut Cell adhesion / EMT 4.8 

Transcriptomic ESR1_exp Estrogen receptor signaling 8.3 

Transcriptomic GATA3_exp Luminal lineage marker 7.6 

Transcriptomic TWIST1_exp EMT transcription factor 6.9 

Transcriptomic MKI67_exp Proliferation index 6.1 

Transcriptomic CXCL12_exp Chemotaxis / niche 5.7 

Epigenomic cg05601337 (PTEN) Promoter methylation 6.6 

Table 13. Statistical significance tests of LF-MMP against all baseline models 

Cohort Baseline Model 
ΔAUC (LF-MMP – 

Baseline) 

DeLong p-

value 

ΔF1 (LF-MMP – 

Baseline) 

Wilcoxon p-

value 

TCGA-

BRCA 
SVM (expr.) +0.094 < 0.001 +0.088 < 0.001 

Random Forest +0.075 < 0.001 +0.071 < 0.001 

Autoenc-LSTM +0.044 < 0.001 +0.039 < 0.001 

Transformer (generic) +0.024 < 0.001 +0.021 < 0.001 

TMO-Net [25] +0.018 < 0.01 +0.016 < 0.01 

METABRIC SVM (expr.) +0.095 < 0.001 +0.086 < 0.001 

Random Forest +0.077 < 0.001 +0.071 < 0.001 

Autoenc-LSTM +0.043 < 0.001 +0.039 < 0.001 

Transformer (generic) +0.022 < 0.001 +0.020 < 0.001 

TMO-Net [25] +0.017 < 0.01 +0.015 < 0.01 

GEO SVM (expr.) +0.092 < 0.001 +0.092 < 0.001 

Random Forest +0.077 < 0.001 +0.075 < 0.001 

Autoenc-LSTM +0.040 < 0.001 +0.037 < 0.001 

Transformer (generic) +0.022 < 0.001 +0.019 < 0.001 

TMO-Net [25] +0.016 < 0.01 +0.014 < 0.01 
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Figure 4. AUC across cohorts for baseline models vs. LF-MMP 

Figure 5. Cross-cohort AUC (trained on TCGA-BRCA; tested on METABRIC and GEO) 

Figure 6. Ablation study AUC across cohorts (single-omic and fusion variants) 
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Figure 7. Calibration metrics (Brier score and ECE) for LF-MMP across cohorts 

Figure 8. Top features by mean |SHAP| showing biological drivers contributing to predictions 

5. CONCLUSION

Overall, this paper proposed LF-MMP, a single learning 

framework that combines genomic, transcriptomic, and 

epigenomic cues to predict breast-cancer metastasis early with 

uniform improvements on discrimination, reliability and 

interpretability relative to powerful single- and multi-omic 

controls. LF-MMP has AUCs of 0.956 (TCGA-BRCA), 0.946 

(METABRIC), and 0.938 (GEO) in three cohorts and strong 

cross-cohort performance in TCGA-BRCA-trained and 

METABRIC-tested (AUC = 0.942), and GEO-tested (AUC = 

0.935). Probabilistic results were well calibrated (Brier = 

0.085 -0.098; ECE = 0.021-0.028), and the computational 

overhead was practical to deploy (about 18.4M parameters, 

about 3 minutes per-fold on one A100, about 38 ms per-case 

inference). SHAP-based analyses identified biologically 

relevant markers -e.g., TP53 PIK3CA BRCA2 CDH1 

(genomic), ESR1/GATA3/TWIST1/MKI67 (expression), and 

methylation at PTEN/TWIST1), and the value of modality-

level attention confirmed the complementary value of 

methylation when combined with expression. Despite these 

strengths, the work has limitations: it uses only retrospective 

public cohorts and may be susceptible to batch effects and 

label noise; performance may change under unknown clinical 

protocols or ancestries; metastasis labels approximate early 

risk over time-to-event; and in spite of our efforts to reduce 

oscillations on ambiguity with attention and SHAP, causal 

interpretability and mechanistic validation is not complete. 

Future work then will focus on prospective, multi-center 

assessment with standardized wet-lab protocols; integration of 

histopathology, radiomics as further modalities; domain 

adaptation and federated learning to accommodate site-

specific changes and data-sharing limitations; generative 

imputation to missing modalities and semi-supervised learning 

to utilize unlabeled samples; pathway- and cell-state-aware 

prior to promote biological faithfulness; longitudinal modeling 

to dynamically risky; decision-curve, cost-sensitive analysis 

of clinical thresholds; fairness audits across subgroups; and 

real All of these instructions put LF-MMP in the line of a 

clinically actionable, transparent, and generalizable early-
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metastasis decision-support instrument. 
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NOMENCLATURE 

LF-MMP (proposed) Learning Framework for Multi-

Omics Metastasis Prediction 

Multi-omics Joint use of genomics, 

transcriptomics, epigenomics 

Genomics Somatic mutations and copy-

number variation features 

Transcriptomics RNA-Seq expression after 

normalization 

Epigenomics DNA methylation features (β-

values) 

DNA methylation Chemical modification regulating 

transcription 

β-value Ratio of methylated to total 

intensity 

CNV Copy-number variation 

(amplification/deletion) 

Somatic mutations Tumor-acquired sequence 

variants 

RNA-Seq Sequencing-based expression 

profiling 

FPKM log transform Expression normalization 

Batch correction 

(ComBat) 

Removal of platform/batch effects 

Z-score standardization Feature centering/scaling

Two-sample t-test Differential feature screening 

Autoencoder Unsupervised dimensionality 

reduction 

Latent representation Compressed per-omic embedding 

Attention-weighted 

fusion 

Learnable modality weighting 

Attention weights Softmax weights per modality 

Logistic output Metastasis probability 

Sigmoid Maps score to probability 

Binary cross-entropy 

(BCE) 

Classification loss 

(L_2) regularization Weight penalty to reduce 

overfitting 

Total loss Joint objective 

Adam optimizer First-order adaptive optimizer 

Dropout Stochastic unit removal 

(regularization) 

Early stopping Halt training on validation plateau 

Stratified split Train/val/test preserving class 

ratios 

K-fold cross-validation Generalization estimation 

Youden’s index Threshold maximizing TPR–FPR 

Probability calibration Align predicted risks to 

prevalence 

Brier score Mean squared error of 

probabilities 

Expected calibration 

error 

Bucketed calibration deviation 

Accuracy ((TP+TN)/(TP+TN+FP+FN)) 

Precision (TP/(TP+FP)) 

Recall (Sensitivity) (TP/(TP+FN)) 

F1-score Harmonic mean of 

precision/recall 

ROC / AUC Discrimination curve / area 

Confusion matrix TP, FN, FP, TN at fixed threshold 

DeLong test Statistical test for AUC 

differences 

Wilcoxon signed-rank Paired nonparametric test (e.g., 

F1) 

Domain shift Platform/population distribution 

change 

External validation Testing on an independent cohort 

Ablation study Effect of removing 

components/modalities 

SHAP explainability Shapley values for feature 

attribution 

Modality importance Relative contribution of each omic 

Pathway enrichment Mapping markers to KEGG/GO 

pathways 

PI3K-AKT / Wnt / 

TGF-β 

Metastasis-related signaling 

pathways 

EMT Epithelial–mesenchymal 
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transition 

Computational 

footprint 

Parameters, time, memory, 

latency 

TCGA-BRCA Breast cancer cohort (multi-

omics) 

METABRIC Breast cancer cohort 

(expr./CNV/methylation) 

GEO (GSE96058) External RNA-Seq cohort 

Feature matrices Per-omic inputs 

Labels Metastasis status (1/0) 

Moments Feature mean/std 

Encoder weights Autoencoder parameters 

Classifier weights Logistic head parameters 

Regularization coeff. L2 strength 

Attention params Modality logits/weights 

Decision threshold Optimal operating point 

HOG Histogram of Oriented Gradients 

(texture) 

LBP Local Binary Patterns (texture) 

SVM / SGD-Logistic Image-level baselines/scalable 

classifier 

PR / AP Precision–Recall / Average 

Precision 

Mini-batch processing Streaming large image sets 

224×224 resizing Standard image pre-size 

Intensity rescaling Normalize per-image dynamic 

range 

MOGONET Prior GCN-based multi-omics 

fusion 

DeepMoIC Prior deep graph-based fusion 

TMO-Net / 

Transformer 

Prior transformer-style multi-

omics 

DeePathNet Pathway-aware transformer 

baseline 

MSFN / DMOIT / 

MOFA / NMF 

Prior statistical/deep fusion 

models 
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