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The integration of artificial intelligence (Al), particularly machine learning (ML), into
geometallurgy provides an important opportunity to optimize mineral processing and mine
planning. This study synthesizes recent research on ML-based geometallurgical
applications and examines advances and challenges within the Peruvian mining sector. A
non-experimental, descriptive methodology was employed through a systematic literature
review in Scopus, ScienceDirect, and Web of Science (2013—-2023). The search identified
312 records, reduced to 238 after removing duplicates. Following title and abstract
screening, 170 studies were excluded, and 33 publications met the inclusion criteria, all
reporting ML models incorporated into geometallurgical workflows. The selected studies
were classified into six application categories, and two Peruvian case studies were
examined: Sociedad Minera Cerro Verde, focused on copper concentration improvement,
and the Minsur—Pucamarca Unit, centered on gold leaching optimization. Internationally,
research is dominated by supervised classification algorithms for mineralogical prediction,
while in Peru successful implementations are mainly associated with computer-assisted
decision-making in operational contexts. At Cerro Verde, the use of Random Forest and
Gradient Boosting models led to a 6.5% increase in copper production and a 0.8% rise in
recovery. At Minsur, the Optimus Leach system improved gold recovery prediction
accuracy (R? = 0.81) and generated USD 1.4 million in economic benefits during its first
year. Overall, the findings indicate that ML-enabled geometallurgy can enhance efficiency,
profitability, and sustainability when supported by high-quality data, adequate
instrumentation, and multidisciplinary teams, contributing to the digital transformation of
Peruvian mining.

1. INTRODUCTION

of different types from several areas such as geology, mine,
concentration plant, leaching, electrodeposition or refining

Geometallurgy presents an interdisciplinary approach that
links geological variations and variations in mineral
processing through block models that include both geological
data (mineralogy, lithology, alterations, rock strength, etc.)
and process data (recoveries, concentrate grade, reagent
consumption, energy consumption, etc.). In this way, it
predicts the process response based on the properties of the
process feed and its location in the deposit [1].

A geometallurgical program contains a large amount of data
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according to the operations of each company and even
environment and safety, which allows to have a better
knowledge of the mineral deposit and achieve greater
efficiency of the process by optimizing the tonnage, grade and
recovery of the metal, reducing the environmental impact,
providing greater confidence to investors, etc. Therefore, there
is a useful database for decision-making in the planning of the
production and mining process [2]. Figure 1 shows the flow
diagram of a geometallurgical program.
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Figure 1. Geometallurgical program focus
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Data science and programming have been used in mineral
processing since 1970 for modeling, simulation, control and
optimization through the implementation of instrumentation,
expert systems, reinforcement learning algorithms and neural
networks, since the nineties a branch of artificial intelligence
called machine learning has taken relevance to be used as a
control system and decision support [3]. Artificial intelligence
and machine learning applied to process engineering has had
cycles of enthusiasm in research and disappointment due to the
lack of significant impacts, however with the arrival of the
fourth industrial revolution, the internet of things and big data,
computational capacity, the variety of data and the
improvement in algorithms have increased, which has allowed
the success of many applications based on data and / or images
[3].

Machine learning predicts trends and has as its main
characteristic that the algorithms learn from themselves over
time, improving their accuracy without needing to be
reprogrammed. It finds patterns by studying a training data set
and develops an algorithm without human intervention.
However, for its correct operation it depends on the quality of
the feed data, properly calibrated instrumentation and training
in the various scenarios.

Machine learning algorithms can be integrated into real-
time systems, evaluating changes in the process and

responding with alternatives to obtain better results. They are
used in the prediction of missing data, forecasting impact
parameters, validating algorithms using visualization and
statistical tools such as accuracy, cluster distortion, confusion
matrix, receiver operating characteristic curve, squared error,
which allow the evaluation of predicted data; in addition, they
can be coupled to optimization methods, increasing their
exploration capacity and identifying data that are more
significant in a faster way, allowing a greater number of
simulation runs [4].

There are three types of algorithms: supervised learning
based on labeled data, unsupervised learning based on
unlabeled data, and reinforcement learning based on reward or
penalty. Machine learning modeling methods have faster,
multidimensional processing capabilities that have not yet
been fully utilized to integrate all process properties into the
geometallurgical block model [5]. Figure 2 presents the main
machine learning algorithms.

The objectives of this study are to describe the main
applications of machine learning in the field of geometallurgy
found in research in recent years, to present successful cases
of this type of application in the main mining units in Peru that
allow understanding the current situation of the Peruvian
mining sector and to identify barriers in the implementation of
machine learning applications.
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Figure 2. Types of machine learning techniques

2. MATERIALS AND METHODS

This study adopts a descriptive, non-experimental research
design aimed at identifying, classifying, and analyzing the
main applications of machine learning in the field of
geometallurgy, with special emphasis on the advances and
challenges of the Peruvian mining sector. The methodological
process was structured in four main stages: literature review,
data classification, case study selection, and synthesis-
analysis.

2.1 Literature review strategy

A comprehensive search was conducted for publications
published between January 2013 and December 2023 in high-
impact scientific databases such as Scopus, ScienceDirect, and
Web of Science. Search strings were formulated using a
combination of controlled vocabulary and Boolean operators,
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including:
*“geometallurgy” AND “machine learning”
*“geometallurgy” AND “artificial intelligence”
*“geometallurgy” AND (“predictive modeling”
“advanced analytics”)
Publications were included that:
(a) explicitly address machine learning applications within
geometallurgical workflows,
present a methodological description and performance
metrics, and
correspond to peer-reviewed articles, conference
presentations, or technical reports from recognized
events (e.g., PERUMIN).
Works that were excluded were:
(a) did not detail the methodology used,
(b) were exclusively conceptual with no applied results, or
(c) were not related to mining or mineral processing.

OR

(b)
(©)



2.2 Data extraction and categorization

From each selected publication, relevant information was
extracted on the following topics: type of algorithm used, data
source and scale, commodity analyzed, process stage, and
reported results. The applications were classified into six
categories, following the framework proposed by Koch and
Rosenkranz [2] and updated with recent contributions [4]:

(a) mineralogical prediction models,

(b) data-driven geometallurgical modeling,

(c) yield prediction for mine planning,

(d) computer-aided decision-making in operations,

(e) environmental impact prediction, and

(f) data-centric laboratories.

2.3 Selection of case studies in Peru

Two Peruvian mining operations were selected that
document the successful use of machine learning in
geometallurgical processes:

*Cerro Verde Mining Company (optimization of copper
concentration).

*Minsur — Pucamarca Unit (optimization of gold leaching).

The selection criteria were: (a) availability of verifiable
quantitative results, (b) detailed public presentation of the
methodology in technical forums such as PERUMIN 35/36,
and (c) representativeness in terms of mineral type and
operational scale.

2.4 Analytical approach

The analysis integrated a descriptive synthesis of global
trends with a comparative evaluation of the Peruvian cases.
Each application was evaluated considering:

*Type and architecture of machine learning algorithms
implemented (e.g., Random Forest, Gradient Boosting, SVM,
ANN).

*Data integration strategy (real-time sensors, laboratory
data, historical operating databases).

*Performance indicators measured (recovery, throughput,
energy efficiency, cost reduction).

*Barriers and enabling factors for implementation.

The synthesis sought to contrast international scientific
production with the Peruvian operational context, highlighting
both the technological potential and the implementation
challenges towards the transition to digital mining.

3. RESULTS

In the literature review it has been found that the main
applications of machine learning in geometallurgy currently
developed can be classified as shown in Figure 3 in: (a)
mineralogical ~ prediction models, (b) data-driven
geometallurgical modeling, (c) performance prediction for
mine planning, (d) computer-aided decision making in
operations, (e) prediction of environmental impacts and (f)
data-centric laboratories, with a greater number of
investigations in mineralogy prediction.

Figure 3 illustrates the global distribution of machine-
learning applications in geometallurgy, with mineralogical
prediction and spatial modeling dominating the literature. This
concentration of studies reflects the availability of large
image-based datasets (SEM, hyperspectral, optical
microscopy), which are well-suited for supervised algorithms
such as Random Forest or CNNs. Conversely, categories such
as environmental prediction or digital-twin integration remain
underrepresented due to limited access to long-term
environmental datasets and the technological gap between
universities and full-scale mining operations. The disparate
distribution indicates that while the foundational components
of digital geometallurgy are well-developed, downstream
applications involving operations control or sustainability are
still emerging.

Categorias
Mineralogical Prediction
Data-based Geometallurgical Modeling
Performance Prediction for Mine Planning
Computer-Aided Decision Making
Environmental Impact Prediction
Data-Centered Laboratories

Figure 3. Publications on machine learning applications in the field of Geometallurgy

3.1 Mineralogical prediction

Among the objectives of geometallurgical studies is the
maximization of the information extracted from mineral
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deposits. Thus, through the modeling and simulation of
concentration processes, a correlation is made between
textural classes (grain size, shape, and mineral associations)
and their behavior in the comminution and/or flotation process



to predict metallurgical results (recovery, grade, particle
distribution). Therefore, quantified textural information is a
relevant indicator for mining planning and process
optimization [6].

Mineral liberation analysis is important for the control and
optimization of comminution circuits and is used in
geometallurgy to understand the effect of particle behavior on
mineral processing. 1D and 2D release spectra can be obtained
in scanning electron microscopes (SEM) or optical
microscopes, while 3D release analysis requires an X-ray
computed tomograph. Currently, more economical methods
are being developed to evaluate the degree of liberation
through optical micrographs using supervised image
classification machine learning algorithms such as Random
Forest Tree, which uses the statistical properties of minerals
by evaluating mineral colors and textures to subject them to a
voting process and automatically classify particle images,
allowing to distinguish metallic minerals from gangue. In this
way, 2D mineralogical maps can be estimated, and the
variation in the release spectra, mineralogical composition,
and the degree recovery curve can be measured [7, 8].

Machine learning algorithms and descriptors are also being
used to develop automated mineralogical characterization
methods of drill cores for the estimation of modal mineralogy
and textural classification, which reduces the time and cost of
these tests that were traditionally performed in geological
logging with the qualitative description of lithology,
mineralogy, mineral texture and element analysis with X-ray
fluorescence (XRF). Among the descriptors for the extraction
of image features are: (a) the gray level co-occurrence matrix
(GLCM) that evaluates pixel frequency and (b) local binary
patterns (LBP) that evaluate geometric patterns. As for the
machine learning algorithms, Random Forest trees are used,
based on the voting of many decision trees; Support Vector
Machine (SVM), based on a hyperplane that maximizes the
distance between characteristic vectors belonging to different
classes, and artificial neural networks (ANN), based on the
construction of a function represented as a series of weighted
sums that are organized in layers to minimize the classification
error [9].

Recent studies have established this category as one of the
most advanced areas within digital geometallurgy, particularly
due to the increasing use of hyperspectral imaging, automated
microscopy, and supervised machine learning models. For
example, the systematic review by Jung and Choi [10]
highlights that algorithms such as Random Forest, SVM, and
neural networks are the most frequently used for mineral
texture classification and modal mineralogy estimation;
however, the authors warn that training quality depends
heavily on image standardization and spectral homogeneity,
which remains a challenge in deposits with high lithological
variability. The study by Tusa et al. [11] demonstrated that
combining  hyperspectral data with  high-resolution
mineralogical information improves the prediction of mineral
abundances using RF, SVM, and ANN; however, they
identified the spatial integration of images, spectra, and SEM-
MLA data as the main limitation, as it can introduce errors in
large drilling campaigns. Finally, a recent deep-learning study
applied to drill-core images showed that convolutional neural
networks with transfer learning can predict mineral content
directly from RGB images, although their performance is still
constrained by the limited amount of training samples and the
availability of labeled datasets [12]. Taken together, these
works demonstrate significant progress in automated
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mineralogical analysis, yet they also raise debate over the
representativeness of 2D models compared to 3D approaches,
where the higher accuracy obtained through tomography
comes with substantially higher operational costs.

3.2 Data-driven geometallurgical modeling

For the spatial modeling of process properties, regression
models, multivariate statistics such as principal component
analysis and partial least squares, and geostatistical methods
such as krigging are generally used; however, machine
learning methods can also be used, which, while requiring a
large amount of training data, are fast to process and can
handle multidimensionality. For this purpose, in the research
by Lishchuk et al. [5], they evaluated ten machine learning
algorithms and compared them considering the relative
standard deviation, obtaining that the decision tree algorithms
are the most appropriate for modeling non-additive variables
such as recovery.

An alternative to generating geometallurgical models is the
use of supervised learning and linear regression in the
prediction of metallurgical variables, which has the advantage
of reducing the time and costs invested in laboratory tests. For
example, in the research by Mu and Salas [13] for the
construction of the geometallurgical model of a copper deposit
they carried out the identification of domains evaluating four
methods Kmeans, hierarchical clustering (AGG), spatial
clustering of applications with noise based on density
(DBSCAN) and self-organization maps (SOM), obtaining
better results in Kmeans under the Silhouette and Calinsky
Harabasz cluster validity indices, in terms of dimensionality
reduction they found that unsupervised neural networks called
autoencoder work better than the principal component analysis
technique (PCA), in block modeling they used the
computational geometric technique Alpha Shape for the
identification of blocks without information and subsequently
performed the interpolation with the supervised learning
regression method Gradient Boosting. Concluding that it is
feasible to generate a geometallurgical model based only on
the data methodology.

Data-driven geometallurgical models powered by machine
learning have gained relevance due to their ability to capture
nonlinear relationships between plant variables and geological
characteristics. The study by Goronovski et al. [14] compared
ten algorithms and identified decision trees as the most
suitable for modeling recoveries, due to their flexibility when
dealing with non-additive variables. However, these models
face limitations in their extrapolation capacity: they perform
well within the training range, but their performance drops
when encountering new ore types or operational conditions not
previously seen.

Other studies such as those by Hasan et al. [15] combine
dimensionality reduction techniques (autoencoders) with
Gradient Boosting to generate complete spatial models,
reporting improvements over traditional PCA. However, the
use of autoencoders introduces algorithmic opacity, making
interpretation difficult for geometallurgical personnel.

3.3 Performance prediction for mine planning

The purpose of mining extraction sequence planning is to
achieve greater profitability in the long-term mining operation.
To achieve this, sequential decisions are made in the extraction
of minerals based on the maximization of reward functions



that take into account weighted values of economic,
productive, and environmental factors, and the minimization
of regret functions that consider probable losses. In this sense,
numerous process simulation tools can be used, including band
algorithms, which work well with geological variables
characterized by uncertainty [2].

Prediction models for key mineral processing performance
indicators can be developed using multiple linear regression
machine learning algorithms and neural networks with
independent variables such as rock characteristics linked to
plant-dependent variables such as mill tonnage, recovery,
reagent and ball consumption, taking into account mining fleet
management records. These prediction models, integrated
with simultaneous stochastic optimization models, allow for
the generation of mining sequencing that generates greater
profitability for the company due to a better evaluation of the
block value of the geometallurgical model, taking into account
the associated energy costs for grinding and reagent
consumption, as well as more precise compliance with
production schedules [16, 17].

Both global research trends coincide in noting that
integrating mine sequencing, metallurgical variables and ML
improves profitability [18] demonstrated that integrating
predictive models with stochastic algorithms enables better
estimation of higher-value blocks. The main contribution is the
ability to incorporate geological and metallurgical uncertainty,
something classical deterministic models cannot achieve.

However, debate persists regarding the stability of these
predictions: some authors note that, under operational
fluctuations, models may amplify variability, affecting day-to-
day planning. In addition, building robust models requires
complete datasets that many operations do not possess [19].

3.4 Computer-assisted decision-making in operations

Modeling in mining aims to improve production planning
through the characterization of geometallurgical units and
process optimization, taking into account high-impact
parameters such as tonnage, recovery, and grade. To achieve
this, machine learning has proven to be an extremely useful
tool that requires the knowledge and experience of operations
experts and a basic understanding of algorithms and data
science.

The models used can be divided into three types: (a)
Physical models derived from first principles which require a
full understanding of the phenomenon and all parameters must
be measured, (b) Phenomenological models which have
measured physical limits and hard-to-measure parameters are
calibrated with empirical constants requiring experimental
design and pilot testing and (¢) Data-driven models where
inputs are derived from their correlations and distribution are
developed from historical data, they are accurate within
training data useful in brownfield operations. Machine
learning regression models are data-driven models that are
developed from historical sensor data and metallurgical
chemical assays, so they are being used in thin section
microscopy, flotation, comminution, hydrocyclone evaluation,
etc. [20].

Two control strategies have been developed in mineral
processing, which are expert systems and predictive models,
and currently hybrid models are emerging that integrate simple
prediction models into expert systems, however the efficiency
of these systems depends on the quality of the data provided
by the instruments, among which stand out near infrared
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spectroscopy (NIR), Fourier transform spectroscopy (FTIR)
and Raman spectroscopy, virtual sensors based on
spectroscopy and microelectromechanics can also be used,
which has the advantage of overcoming the aggressive
chemical conditions of the environment [21].

This category includes the most applied studies [22] showed
that the use of AutoML in flotation and comminution can
reduce calibration times and improve predictive accuracy
compared to traditional linear models. The main contribution
lies in automating the model-selection process; however, its
limitation is that AutoML tends to select complex models
requiring costly computational infrastructure.

Globally, there is consensus that hybrid models (expert
systems + ML) offer greater stability; however, some studies
warn that the quality of recommendations depends almost
entirely on sensor calibration and the consistency of historical
data recurring weakness in real mining operations [23].

3.5 Prediction of environmental impacts

The sustainability, competitiveness and success of the
mining industry in the era of digital transformation known as
the fourth industrial revolution depend on the development of
energy-efficient and environmentally conscious methods for
mineral processing, such as the optimization of selective
mining units to reduce gangue extraction; non-explosive rock
breaking methods that reduce the generation of fine material
and promote microfracturing of minerals; use of tunnel boring
machines for thin ore bodies; pre-concentration of minerals
through automated mineral sorting with sensors based on
optical microscopy technologies and image recognition based
on artificial intelligence; optimization of mineral
concentration by analyzing flotation froths with machine
learning tools; circular economy strategies that involve the
reuse of metallurgical waste; remote monitoring of mining
operations; reduction of carbon-based energy use; and
ecosystem restoration. The combination of these new methods
will reduce the environmental impact of mining [24].

Life cycle assessment is a tool for measuring the
environmental impacts generated by mining operations, taking
into account crucial indicators such as global warming
potential (GWP), terrestrial acidification (TA), water
depletion (WD), and land use (LU). This tool is of great
importance today due to the increasing demand for metals due
to the global transition to clean energy and, consequently, the
increase in production. Life cycle analysis integrated with
geometallurgy, process simulation, and machine learning
algorithms such as decision trees, neural networks, and
Random Forests achieves more accurate and reliable results.
In this way, the fate of contaminants can be predicted and,
therefore, production processes can be designed and/or
modified with a circular economy approach [25].

The prediction of acid rock drainage allows for the
assessment of environmental risk from pre-feasibility stages
and is a support for the valorization of geo-environmental
model blocks due to the economic costs involved in the mine
closure stage; to define geo-environmental models, the
evaluation of the mineralogical, textural, geochemical,
geometallurgical properties of the rock, and microbiological
processes is required. Currently, field tests (drill core
observations, leaching tests for pH and dissolved metals, total
metal concentration analysis with portable X-ray fluorescence
equipment), static tests (acid-base accounting (ABA) tests, net
acid generation (NAG) tests, acid buffer characteristic curve



method), and kinetic tests (laboratory leaching column tests,
cell moisture tests, and field pad tests) are being carried out to
classify waste according to its acid-generating potential.
However, due to the multiple processes that are involved in the
formation of rock acid drainage, more accurate predictions are
required that can be achieved using machine learning
algorithms [26]. Machine learning algorithms have a
significant impact on GHG emissions reduction in LCA for
differentiated geographic approaches; however, they are still
underutilized [27].

Recent research combines LCA with decision trees, neural
networks, and Random Forest to estimate emissions and acid
drainage. The study by Stehlik et al. [28] reported that ML
models reduce prediction errors of GWP and TA compared to
traditional methods but also highlight that the availability of
environmental databases remains limited, reducing model
generalization.

Regarding acid drainage, the study by Anthony et al. [29]
describe that ML algorithms can integrate mineralogical,
textural, and geochemical properties; however, they warn that
microbial variability and hydrogeological conditions are still
not adequately modeled. This raises an ongoing controversy:
to what extent can models be trusted when part of the
underlying phenomenology is not yet represented?

3.6 Data-centric laboratories

The mining value chain generates a large amount of data in
each of'its processes. This has been particularly true in the area
of mineral processing, where the flow of data has increased
due to the implementation of sensors. Historically, this data
has been processed separately. However, the current trend is
toward geometallurgy and the joint processing of data, as this
allows for greater efficiency in mineral extraction. This is why
data-centric laboratories are emerging, whose primary
objective is data generation and experimentation. This requires
instrumentation and infrastructure for real-time monitoring,
analysis, and characterization of the operation, as well as data
analytics methods. In dry laboratories, data management,
multidisciplinary data analysis, research, experimentation,
process design and training are carried out. For this purpose,
they use data science, statistics, simulation that may include
virtual and augmented reality, machine learning and
visualization tools. Unlike wet or conventional laboratories,
they do not have materials, instruments and reagents but they
do require a much larger investment due to the essential
components for the operation of this type of laboratories such
as: (a) technology that involves high-performance computing
equipment, data storage servers and communication and
information infrastructure, (b) integration of knowledge since
data from tests and sensors will be used as data from automatic
analysis of the process, (c) expert personnel in operations as
well as data scientists, (d) data governance to ensure that data
management meets accessibility, security and quality
standards, (e) operational and financial models that ensure the
viability and sustainability of this type of project. Finally, the
objective is to have better mineral processing evaluation
indicators that allow us to obtain greater efficiency in the
operation and cost reduction [30].

For the capture of relevant quality information,
instrumentation and equipment are required in the main
mining operations, for example in explorations the following
can be used: (a) high resolution remote sensing such as the
hyperspectral imaging method that allows the mapping of
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geological characteristics based on optical reflectance
properties, (b) drone-based sensors that identify mineral
anomalies to determine mineral exploration targets, (c)
portable measuring devices such as laser-induced breakdown
spectroscopy (LIBS), portable X-ray fluorescence (pXRF) for
geochemical analysis in rocks, (d) cross-sectional seismic
tomography to determine geological formations; in mining
there is rock glass technology that can predict geological and
geotechnical conditions prior to mining. There are also
detection methods such as the electromagnetic spectrum and
ground penetrating radar, as well as automated mechanical
rock cutting, rock preconditioning investigations with water
jets, thermal impulses or explosive impulses. In terms of
mineral processing, there are (a) automated sampling, (b)
particle image analyzers in wet, dry, dynamic flows, etc., (c)
fully integrated automation (TIA) such as digital twins that are
presented as a virtual simulation of mineral processing
operations [21].

Studies by Yao et al. [31] indicate that data-centric
laboratories represent the next technological leap, enabling
integration of sensors, digital twins, and advanced analytics
for virtual experimentation. Their major contribution is the
ability to accelerate experimentation cycles without operating
physical equipment.

The main limitation is economic: the necessary
infrastructure (HPC, servers, OT/IT integration, data
governance) exceeds the capacity of many mid-sized
operations. In addition, there is ongoing controversy regarding
dependence on external vendors and who ultimately controls
data and model ownership [32].

3.7 Success stories in Peru

According to the Global Al Adoption Index 2023, 42% of
companies worldwide have adopted artificial intelligence,
while in Latin America, an increase from 40% to 47% in Al
adoption has been reported by 2023. The main limitation is the
lack of experience or knowledge in the field, followed by
ethical concerns regarding data governance. Investment is
focused on process automation, and the main reason for
adoption is achieving faster decision-making to improve
customer experience.

In Peru, 44% of companies are undergoing a digital
transformation process, with the most advanced sectors being
mass consumption, communications, and financial services.
The main problems they face are a lack of human resources,
budget, and strategies. They have high data availability, but it
is underutilized. The mining sector has been working on
digital transformation for an average of three years, and as
shown in Figure 4, only 15% of companies are at a mature
stage and have artificial intelligence applications.

As shown in Figure 4, the sharp growth in machine-learning
publications after 2018 is consistent with the expansion of
open-access mineralogical databases, cloud-based computing
resources, and the democratization of Python-based data-
science tools. The increase also coincides with declining ore
grades worldwide, which has pressured mining companies to
invest in predictive modeling of recovery and throughput. This
pattern suggests that the growth is not merely academic but
also driven by operational needs in real mining environments.

Figure 5 shows the number of publications on machine
learning applications by category of the main Peruvian mining
companies presented at Perumin 35 and 36, noting that there
is an increase in publications related to the category of



computer-assisted decision-making.

Figure 5 shows an evolution in the categories of machine-
learning-related publications presented at PERUMIN between
2013 and 2023. The shift toward ‘geometallurgy’, ‘digital
operations’ and ‘process optimization’ after 2018 reflects the
accelerated adoption of digital transformation initiatives in
Peruvian mining. This trend coincides with an increase in
sensorization of concentrator plants, wider availability of
automated mineralogical data (SEM-MLA, hyperspectral

scanning), and industry pressure to optimize recovery amid
lower ore grades. In contrast, earlier conferences were
dominated by topics such as blasting or geomechanics, which
require less high-density data. The growing prominence of Al-
enabled studies at PERUMIN suggests that Peruvian
operations are moving from descriptive to predictive and
prescriptive analytics, aligning with international trends and
indicating a maturing of data infrastructures within major
mining companies.
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Cerro Verde Case. In recent years, Sociedad Minera Cerro
Verde has been promoting the application of artificial
intelligence in its operations. The study [33] in his research
work presented at Perumin 35 explains the success story of
increasing the production of pounds of copper concentrate in
Cerro Verde, as can be seen in Figure 6, the applied
methodology has nine phases.

Figure 6 contrasts global and Peruvian publication patterns,
revealing that Peru exhibits a disproportionate focus on
operational applications, such as plant control and
metallurgical optimization, rather than early-stage research.
This bias reflects Peru’s status as a copper-dominated
producer where concentrator plants already have extensive
instrumentation, allowing rapid adoption of ML for predictive
control. Conversely, upstream research—such as advanced
mineral-texture analysis—is less represented due to the limited
presence of specialized research facilities in the region.

*Proof of concept defining high-potential variables such as
recovery and tonnage, which are correlated with ore type, Cu
and Fe head grade, hardness, oxidation level, and operating
parameters such as cyclone pressure, % mill discharge
solids, % rougher feed solids, rougher concentrate grade,
scavenger concentrate grade, primary collector dosage,
secondary collector dosage, and pH.

eImplementation of first principles, which are the ranges
established for the models to ensure metallurgically consistent
recommendations.

*Construction of both baseline and optimization recovery
and tonnage models, useful for comparing production with and
without Al. The machine learning algorithms used were
Random Forests and, specifically, gradient boosting, which
consist of thousands of decision trees that allow for multiple
scenarios and nonlinear relationships to be presented, helping
the models generate better recommendations for optimizing
processes.

*Development of the anomaly detection module that allows
for the evaluation of data consistency and, therefore, the
validation of the quality of the model input information, which
comes from permanently monitored plant instrumentation.

*Model iteration or model training, which is very important
due to variations in mineral type, especially when mining

phase changes, equipment changes, or flowsheet
modifications occur. In all these cases, model retraining is
required.

*User interface, where operators view recommendations
and have the option to approve or reject them, following
discussions involving operators and supervisors.

*The importance of aligning the APCs with first principles
to enable the development of artificial intelligence and ensure
the stable execution of recommendations.

*Adjusting constraints, which are basically the maximum
design capacities of the equipment.

*Sustainability, which involves building trust among end
users, namely, operators, so they will use the system
permanently.

Among the conclusions, it is noted that the implementation
of Al allowed for an increase in copper pounds by 6.5% and
copper recovery by 0.8%. The correct functioning of the
APCs, automatic control, and instrumentation were of utmost
importance for this work from a technical point of view, and
from a human resources point of view, the leadership of the
management, communication between the various areas
involved, and training of operating personnel. Furthermore,
this tool has allowed for the identification of several
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opportunities for improvement, since the artificial intelligence
recommendations motivate the evaluation, interpretation, and
discussion of these among metallurgists.

In the case of Sociedad Minera Cerro Verde, the reviewed
technical documentation indicates that the predictive models
were trained using operational variables such as feed grade
(CuT and CuS), mineralogical composition from MLA
analyses, hardness indices (Axb, BWi), particle size
distributions (P80), flotation air flow, reagent dosage and plant
throughput. Before model training, datasets were cleaned
through outlier removal based on interquartile ranges and z-
score thresholds, followed by normalization of continuous
variables. Feature importance analyses showed that
mineralogy, feed grade and grind size had the highest
predictive weight. Model validation was performed using 10-
fold cross-validation and independent test sets, reporting
performance metrics such as R%, RMSE and MAE. Despite the
positive results, internal reports highlight limitations including
sensor calibration drift, missing data during plant upsets, and
model sensitivity to mineralogical variability not previously
observed in the training dataset.

Minsur Case. Optimus Leach is the real-time
recommendation system for optimizing the gold leaching
process at the Pucamarca mining unit, presented as a success
story at Perumin 36. The main objective is to maximize the
gold recovery percentage from the leaching cells. The
methodology includes the following steps:

*Data Collection and Preparation: Mineralogical variables
such as alterations, ore grades, and fine ore content were taken
into account, as well as process variables such as particle size
distribution, pH, moisture content, irrigated cells, irrigation
rates, irrigation ratios, cyanide concentration, and gold and
silver grades. These variables were obtained from the
following data sources: (a) Stockpile Control, (b) Drip
Irrigation Cells, (c) Daily Report, (d) Cell Certificate, (e)
Moisture Content, (f) Mining Plan, and (g) ADR Parameters.

*Algorithm Selection: For deterministic models, the
Klimpel equation was considered, while for assembled
machine learning models, the type of algorithm used was not
specified. It should be noted that recommendation systems
typically use Random Forest (RF), Gradient Boosting (GB),
Support Vector Machines (SVM), and Neural Networks
(ANN).

*Development of Predictive Models: For the development
of this system, a model for estimating daily percolated ounces
and a model for estimating daily percolated flow were used.
Both were built using machine learning algorithms based on a
deterministic model that allows theoretically estimating the
grade based on irrigation days in the cell and statistical models
that explain gold contribution based on operational variables.

*Model Training: The performance of the models was
evaluated by partitioning the data, i.e., one data set for pattern
training and another data set for model validation testing.

*Real-time implementation: The web application has three
parts: (a) Diagnostics, where irrigation rates and historical
recoveries can be viewed; (b) Recommendations for cell
irrigation rate, duration, and intensity parameters for
optimization; and (c) Simulation, where different cell
parameter and gold recovery scenarios can be created. The
architecture for this case can be seen in Figure 7.

*Results evaluation: Figure 8 shows that the base
deterministic model has a correlation of 0.6 and an error of
0.16, while the machine learning model has a correlation of
0.81 and an error of 0.05, thus reducing the variability in gold



grade estimation in the rich solution, which meant greater
recovery and more efficient management of leach pad
inventories.

eImpact: An economic benefit of $1.4M was achieved in the
first year. At the organizational level, planning was
decentralized and the team was empowered with machine
learning, in addition to the implementation of enablers such as
data integration.

Figures 7 and 8 summarize the economic and operational
impacts of ML-based systems implemented in Peru. The
improvements observed—such as increased recovery and
more stable reagent consumption—reflect the ability of ML
models to capture nonlinearities that conventional linear
control strategies cannot. However, the results also highlight
the dependency on high-quality sensor data, as shown by
performance drops during periods of incomplete or noisy
measurements. These figures underscore both the potential of
ML for process intensification and the infrastructural
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Automatic

Stacking control
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challenges that must be addressed for long-term adoption.
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system integrates variables such as cyanide concentration, pH,
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granulometry, mineralogical composition and heap height.
Preprocessing steps include smoothing of noisy time-series
signals, interpolation of incomplete data and normalization of
chemical parameters. The Gradient Boosting model used in
Optimus Leach was validated using k-fold cross-validation
and evaluated with metrics such as R? and RMSE, yielding
prediction accuracies consistent with industrial requirements.
However, the system documentation indicates that its
performance may decrease when abrupt changes in ore
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4. CONCLUSIONS

In recent years, international research on machine learning
applications in geometallurgy has focused on mineralogical
prediction models, data-driven geometallurgical modeling,
yield prediction for mine planning, computer-aided decision-
making in operations, environmental impact prediction, and
data-centric laboratories. However, this focus is notably on
mineralogical prediction using supervised classification
algorithms.

This growing emphasis illustrates a broader theoretical shift
from deterministic geometallurgical workflows toward hybrid
computational frameworks, where machine learning models
enhance —rather than replace— geological and metallurgical
interpretation. This integration reveals the need for more
robust data architectures, higher levels of standardization, and
the incorporation of explainable ML techniques to ensure
interpretability and adoption within operational teams.

In the Peruvian mining sector, only 15% of companies have
artificial intelligence applications, and they are successfully
adopting applications focused on computer-aided decision-
making in the operations area, as evidenced by the cases
presented by Cerro Verde and Minsur with their machine
learning-based recommendation systems, achieving increases
in tonnage and recovery in their operations, which ultimately
translates into greater profitability. It is important to highlight
that the main mining companies in Peru are pursuing advanced
analytics strategies with a view to becoming digital mines in
the near future, characterized by integrated operation centers,
the implementation of artificial intelligence in all their
processes, and high levels of automation with machine
learning predictive models coupled with expert systems.

These cases demonstrate the practical implications of ML
deployment, showing that predictive modeling can stabilize
metallurgical performance, anticipate operational deviations,
and support decision-making in near-real time. As Peruvian
operations continue moving toward digital transformation,
machine learning becomes a key enabler for semi-autonomous
concentrator plants and integrated remote operation centers.

The greatest challenge in the development of machine
learning-based recommendation systems has been the
formation of multidisciplinary teams with experience in
operations, as well as knowledge of data science. To quickly
overcome this challenge, mining companies have opted for
joint ventures with startups that have data scientists and
analytical scientists. It should also be considered that the
databases of the different mining areas are not interconnected
and often require large investments in instrumentation and
telecommunications networks for data capture, as well as
rigorous instrument maintenance and calibration programs.

This reveals a structural limitation that must be addressed:
the historical fragmentation of operational databases. Future
implementations will require unified data governance
strategies, sensor calibration protocols, and interoperability
frameworks that guarantee data quality, continuity and
traceability—conditions without which advanced ML models
cannot achieve stable performance.

They claim that a geometallurgical program allows for
greater efficiency in operational processes. On the other hand,
machine learning algorithms allow predictions to be made
through the interpretation of data and patterns connected with
established knowledge [4]. In accordance with the
bibliographic review and the applications presented, it is
observed that geometallurgy, by integrating the disciplines of
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geology, mining, and metallurgy, has led to a better
understanding of the entire value chain, providing a tool for
better estimating the mineral values of the blocks. This allows
the development of models with more precise maximization or
minimization objective functions and the establishment of
action strategies for process optimization. Machine learning
algorithms also complement geometallurgy and are
strengthened for the construction of efficient models that allow
improving planning and production in mining [2].

Given these synergies, future work should explore the
integration of 2D and 3D mineralogical datasets into unified
ML workflows, develop interpretable models to support
domain experts, and incorporate uncertainty quantification to
enhance block valuation and risk assessment.

For machine learning algorithms to function correctly,
quality input data, instrumentation, and training are required.
Similarly, the case analysis shows that data understanding,
traceability, and preparation are very important for successful
predictions with machine learning models. This is usually the
longest process in the execution of this type of project, since
the main mining operation areas traditionally have isolated
databases that need to be interconnected to identify patterns
and trends. Investments in instrumentation, sensors, and
telecommunications networks are often also required to
capture the data that feeds the model in real time.

Mineral processing control strategies are classified into
expert systems, predictive models, and hybrid models, which
are the integration of the two previously mentioned [4].
Accordingly, Peruvian mining companies that are using some
artificial intelligence application have had initial success with
hybrid models related to core business variables such as
throughput and recovery executed in expert systems.
Therefore, the next stage could be to develop applications that
can include other variables such as mill power, which is related
to energy consumption, which would have, in addition to
economic benefits, a reduction in the environmental impact
and carbon footprint.

Consequently, lines of future research should focus on
expanding ML applications toward sustainability metrics,
including predictive models for acid drainage, water balance
optimization, and carbon emission reduction. Additionally,
adaptive control systems that directly link ML outputs to
operational actuators represent a promising frontier, enabling
dynamic, real-time optimization of metallurgical performance.
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NOMENCLATURE

Al Artificial intelligence

ML Machine learning

ANN Artificial neural networks
SVM Support Vector Machine
RF Random Forest

GB Gradient Boosting

GWP Global warming potential
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