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The integration of artificial intelligence (AI), particularly machine learning (ML), into 

geometallurgy provides an important opportunity to optimize mineral processing and mine 

planning. This study synthesizes recent research on ML-based geometallurgical 

applications and examines advances and challenges within the Peruvian mining sector. A 

non-experimental, descriptive methodology was employed through a systematic literature 

review in Scopus, ScienceDirect, and Web of Science (2013–2023). The search identified 

312 records, reduced to 238 after removing duplicates. Following title and abstract 

screening, 170 studies were excluded, and 33 publications met the inclusion criteria, all 

reporting ML models incorporated into geometallurgical workflows. The selected studies 

were classified into six application categories, and two Peruvian case studies were 

examined: Sociedad Minera Cerro Verde, focused on copper concentration improvement, 

and the Minsur–Pucamarca Unit, centered on gold leaching optimization. Internationally, 

research is dominated by supervised classification algorithms for mineralogical prediction, 

while in Peru successful implementations are mainly associated with computer-assisted 

decision-making in operational contexts. At Cerro Verde, the use of Random Forest and 

Gradient Boosting models led to a 6.5% increase in copper production and a 0.8% rise in 

recovery. At Minsur, the Optimus Leach system improved gold recovery prediction 

accuracy (R² = 0.81) and generated USD 1.4 million in economic benefits during its first 

year. Overall, the findings indicate that ML-enabled geometallurgy can enhance efficiency, 

profitability, and sustainability when supported by high-quality data, adequate 

instrumentation, and multidisciplinary teams, contributing to the digital transformation of 

Peruvian mining. 
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1. INTRODUCTION

Geometallurgy presents an interdisciplinary approach that 

links geological variations and variations in mineral 

processing through block models that include both geological 

data (mineralogy, lithology, alterations, rock strength, etc.) 

and process data (recoveries, concentrate grade, reagent 

consumption, energy consumption, etc.). In this way, it 

predicts the process response based on the properties of the 

process feed and its location in the deposit [1]. 

A geometallurgical program contains a large amount of data 

of different types from several areas such as geology, mine, 

concentration plant, leaching, electrodeposition or refining 

according to the operations of each company and even 

environment and safety, which allows to have a better 

knowledge of the mineral deposit and achieve greater 

efficiency of the process by optimizing the tonnage, grade and 

recovery of the metal, reducing the environmental impact, 

providing greater confidence to investors, etc. Therefore, there 

is a useful database for decision-making in the planning of the 

production and mining process [2]. Figure 1 shows the flow 

diagram of a geometallurgical program. 

Figure 1. Geometallurgical program focus 
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Data science and programming have been used in mineral 

processing since 1970 for modeling, simulation, control and 

optimization through the implementation of instrumentation, 

expert systems, reinforcement learning algorithms and neural 

networks, since the nineties a branch of artificial intelligence 

called machine learning has taken relevance to be used as a 

control system and decision support [3]. Artificial intelligence 

and machine learning applied to process engineering has had 

cycles of enthusiasm in research and disappointment due to the 

lack of significant impacts, however with the arrival of the 

fourth industrial revolution, the internet of things and big data, 

computational capacity, the variety of data and the 

improvement in algorithms have increased, which has allowed 

the success of many applications based on data and / or images 

[3].  

Machine learning predicts trends and has as its main 

characteristic that the algorithms learn from themselves over 

time, improving their accuracy without needing to be 

reprogrammed. It finds patterns by studying a training data set 

and develops an algorithm without human intervention. 

However, for its correct operation it depends on the quality of 

the feed data, properly calibrated instrumentation and training 

in the various scenarios.  

Machine learning algorithms can be integrated into real-

time systems, evaluating changes in the process and 

responding with alternatives to obtain better results. They are 

used in the prediction of missing data, forecasting impact 

parameters, validating algorithms using visualization and 

statistical tools such as accuracy, cluster distortion, confusion 

matrix, receiver operating characteristic curve, squared error, 

which allow the evaluation of predicted data; in addition, they 

can be coupled to optimization methods, increasing their 

exploration capacity and identifying data that are more 

significant in a faster way, allowing a greater number of 

simulation runs [4].  

There are three types of algorithms: supervised learning 

based on labeled data, unsupervised learning based on 

unlabeled data, and reinforcement learning based on reward or 

penalty. Machine learning modeling methods have faster, 

multidimensional processing capabilities that have not yet 

been fully utilized to integrate all process properties into the 

geometallurgical block model [5]. Figure 2 presents the main 

machine learning algorithms. 

The objectives of this study are to describe the main 

applications of machine learning in the field of geometallurgy 

found in research in recent years, to present successful cases 

of this type of application in the main mining units in Peru that 

allow understanding the current situation of the Peruvian 

mining sector and to identify barriers in the implementation of 

machine learning applications. 

Figure 2. Types of machine learning techniques 

2. MATERIALS AND METHODS

This study adopts a descriptive, non-experimental research 

design aimed at identifying, classifying, and analyzing the 

main applications of machine learning in the field of 

geometallurgy, with special emphasis on the advances and 

challenges of the Peruvian mining sector. The methodological 

process was structured in four main stages: literature review, 

data classification, case study selection, and synthesis-

analysis. 

2.1 Literature review strategy 

A comprehensive search was conducted for publications 

published between January 2013 and December 2023 in high-

impact scientific databases such as Scopus, ScienceDirect, and 

Web of Science. Search strings were formulated using a 

combination of controlled vocabulary and Boolean operators, 

including: 

“geometallurgy” AND “machine learning”

“geometallurgy” AND “artificial intelligence”

“geometallurgy” AND (“predictive modeling” OR

“advanced analytics”) 

Publications were included that: 

(a) explicitly address machine learning applications within

geometallurgical workflows,

(b) present a methodological description and performance

metrics, and

(c) correspond to peer-reviewed articles, conference

presentations, or technical reports from recognized

events (e.g., PERUMIN).

Works that were excluded were: 

(a) did not detail the methodology used,

(b) were exclusively conceptual with no applied results, or

(c) were not related to mining or mineral processing.
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2.2 Data extraction and categorization 

From each selected publication, relevant information was 

extracted on the following topics: type of algorithm used, data 

source and scale, commodity analyzed, process stage, and 

reported results. The applications were classified into six 

categories, following the framework proposed by Koch and 

Rosenkranz [2] and updated with recent contributions [4]: 

(a) mineralogical prediction models,

(b) data-driven geometallurgical modeling,

(c) yield prediction for mine planning,

(d) computer-aided decision-making in operations,

(e) environmental impact prediction, and

(f) data-centric laboratories.

2.3 Selection of case studies in Peru 

Two Peruvian mining operations were selected that 

document the successful use of machine learning in 

geometallurgical processes: 

Cerro Verde Mining Company (optimization of copper

concentration). 

Minsur – Pucamarca Unit (optimization of gold leaching).

The selection criteria were: (a) availability of verifiable

quantitative results, (b) detailed public presentation of the 

methodology in technical forums such as PERUMIN 35/36, 

and (c) representativeness in terms of mineral type and 

operational scale. 

2.4 Analytical approach 

The analysis integrated a descriptive synthesis of global 

trends with a comparative evaluation of the Peruvian cases. 

Each application was evaluated considering: 

Type and architecture of machine learning algorithms

implemented (e.g., Random Forest, Gradient Boosting, SVM, 

ANN). 

Data integration strategy (real-time sensors, laboratory

data, historical operating databases). 

Performance indicators measured (recovery, throughput,

energy efficiency, cost reduction). 

Barriers and enabling factors for implementation.

The synthesis sought to contrast international scientific

production with the Peruvian operational context, highlighting 

both the technological potential and the implementation 

challenges towards the transition to digital mining. 

3. RESULTS

In the literature review it has been found that the main

applications of machine learning in geometallurgy currently 

developed can be classified as shown in Figure 3 in: (a) 

mineralogical prediction models, (b) data-driven 

geometallurgical modeling, (c) performance prediction for 

mine planning, (d) computer-aided decision making in 

operations, (e) prediction of environmental impacts and (f) 

data-centric laboratories, with a greater number of 

investigations in mineralogy prediction.  

Figure 3 illustrates the global distribution of machine-

learning applications in geometallurgy, with mineralogical 

prediction and spatial modeling dominating the literature. This 

concentration of studies reflects the availability of large 

image-based datasets (SEM, hyperspectral, optical 

microscopy), which are well-suited for supervised algorithms 

such as Random Forest or CNNs. Conversely, categories such 

as environmental prediction or digital-twin integration remain 

underrepresented due to limited access to long-term 

environmental datasets and the technological gap between 

universities and full-scale mining operations. The disparate 

distribution indicates that while the foundational components 

of digital geometallurgy are well-developed, downstream 

applications involving operations control or sustainability are 

still emerging. 

Figure 3. Publications on machine learning applications in the field of Geometallurgy 

3.1 Mineralogical prediction 

Among the objectives of geometallurgical studies is the 

maximization of the information extracted from mineral 

deposits. Thus, through the modeling and simulation of 

concentration processes, a correlation is made between 

textural classes (grain size, shape, and mineral associations) 

and their behavior in the comminution and/or flotation process 
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to predict metallurgical results (recovery, grade, particle 

distribution). Therefore, quantified textural information is a 

relevant indicator for mining planning and process 

optimization [6]. 

Mineral liberation analysis is important for the control and 

optimization of comminution circuits and is used in 

geometallurgy to understand the effect of particle behavior on 

mineral processing. 1D and 2D release spectra can be obtained 

in scanning electron microscopes (SEM) or optical 

microscopes, while 3D release analysis requires an X-ray 

computed tomograph. Currently, more economical methods 

are being developed to evaluate the degree of liberation 

through optical micrographs using supervised image 

classification machine learning algorithms such as Random 

Forest Tree, which uses the statistical properties of minerals 

by evaluating mineral colors and textures to subject them to a 

voting process and automatically classify particle images, 

allowing to distinguish metallic minerals from gangue. In this 

way, 2D mineralogical maps can be estimated, and the 

variation in the release spectra, mineralogical composition, 

and the degree recovery curve can be measured [7, 8]. 

Machine learning algorithms and descriptors are also being 

used to develop automated mineralogical characterization 

methods of drill cores for the estimation of modal mineralogy 

and textural classification, which reduces the time and cost of 

these tests that were traditionally performed in geological 

logging with the qualitative description of lithology, 

mineralogy, mineral texture and element analysis with X-ray 

fluorescence (XRF). Among the descriptors for the extraction 

of image features are: (a) the gray level co-occurrence matrix 

(GLCM) that evaluates pixel frequency and (b) local binary 

patterns (LBP) that evaluate geometric patterns. As for the 

machine learning algorithms, Random Forest trees are used, 

based on the voting of many decision trees; Support Vector 

Machine (SVM), based on a hyperplane that maximizes the 

distance between characteristic vectors belonging to different 

classes, and artificial neural networks (ANN), based on the 

construction of a function represented as a series of weighted 

sums that are organized in layers to minimize the classification 

error [9]. 

Recent studies have established this category as one of the 

most advanced areas within digital geometallurgy, particularly 

due to the increasing use of hyperspectral imaging, automated 

microscopy, and supervised machine learning models. For 

example, the systematic review by Jung and Choi [10] 

highlights that algorithms such as Random Forest, SVM, and 

neural networks are the most frequently used for mineral 

texture classification and modal mineralogy estimation; 

however, the authors warn that training quality depends 

heavily on image standardization and spectral homogeneity, 

which remains a challenge in deposits with high lithological 

variability. The study by Tuşa et al. [11] demonstrated that 

combining hyperspectral data with high-resolution 

mineralogical information improves the prediction of mineral 

abundances using RF, SVM, and ANN; however, they 

identified the spatial integration of images, spectra, and SEM-

MLA data as the main limitation, as it can introduce errors in 

large drilling campaigns. Finally, a recent deep-learning study 

applied to drill-core images showed that convolutional neural 

networks with transfer learning can predict mineral content 

directly from RGB images, although their performance is still 

constrained by the limited amount of training samples and the 

availability of labeled datasets [12]. Taken together, these 

works demonstrate significant progress in automated 

mineralogical analysis, yet they also raise debate over the 

representativeness of 2D models compared to 3D approaches, 

where the higher accuracy obtained through tomography 

comes with substantially higher operational costs. 

3.2 Data-driven geometallurgical modeling 

For the spatial modeling of process properties, regression 

models, multivariate statistics such as principal component 

analysis and partial least squares, and geostatistical methods 

such as krigging are generally used; however, machine 

learning methods can also be used, which, while requiring a 

large amount of training data, are fast to process and can 

handle multidimensionality. For this purpose, in the research 

by Lishchuk et al. [5], they evaluated ten machine learning 

algorithms and compared them considering the relative 

standard deviation, obtaining that the decision tree algorithms 

are the most appropriate for modeling non-additive variables 

such as recovery.  

An alternative to generating geometallurgical models is the 

use of supervised learning and linear regression in the 

prediction of metallurgical variables, which has the advantage 

of reducing the time and costs invested in laboratory tests. For 

example, in the research by Mu and Salas [13] for the 

construction of the geometallurgical model of a copper deposit 

they carried out the identification of domains evaluating four 

methods Kmeans, hierarchical clustering (AGG), spatial 

clustering of applications with noise based on density 

(DBSCAN) and self-organization maps (SOM), obtaining 

better results in Kmeans under the Silhouette and Calinsky 

Harabasz cluster validity indices, in terms of dimensionality 

reduction they found that unsupervised neural networks called 

autoencoder work better than the principal component analysis 

technique (PCA), in block modeling they used the 

computational geometric technique Alpha Shape for the 

identification of blocks without information and subsequently 

performed the interpolation with the supervised learning 

regression method Gradient Boosting. Concluding that it is 

feasible to generate a geometallurgical model based only on 

the data methodology. 

Data-driven geometallurgical models powered by machine 

learning have gained relevance due to their ability to capture 

nonlinear relationships between plant variables and geological 

characteristics. The study by Goronovski et al. [14] compared 

ten algorithms and identified decision trees as the most 

suitable for modeling recoveries, due to their flexibility when 

dealing with non-additive variables. However, these models 

face limitations in their extrapolation capacity: they perform 

well within the training range, but their performance drops 

when encountering new ore types or operational conditions not 

previously seen. 

Other studies such as those by Hasan et al. [15] combine 

dimensionality reduction techniques (autoencoders) with 

Gradient Boosting to generate complete spatial models, 

reporting improvements over traditional PCA. However, the 

use of autoencoders introduces algorithmic opacity, making 

interpretation difficult for geometallurgical personnel. 

3.3 Performance prediction for mine planning 

The purpose of mining extraction sequence planning is to 

achieve greater profitability in the long-term mining operation. 

To achieve this, sequential decisions are made in the extraction 

of minerals based on the maximization of reward functions 
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that take into account weighted values of economic, 

productive, and environmental factors, and the minimization 

of regret functions that consider probable losses. In this sense, 

numerous process simulation tools can be used, including band 

algorithms, which work well with geological variables 

characterized by uncertainty [2]. 

Prediction models for key mineral processing performance 

indicators can be developed using multiple linear regression 

machine learning algorithms and neural networks with 

independent variables such as rock characteristics linked to 

plant-dependent variables such as mill tonnage, recovery, 

reagent and ball consumption, taking into account mining fleet 

management records. These prediction models, integrated 

with simultaneous stochastic optimization models, allow for 

the generation of mining sequencing that generates greater 

profitability for the company due to a better evaluation of the 

block value of the geometallurgical model, taking into account 

the associated energy costs for grinding and reagent 

consumption, as well as more precise compliance with 

production schedules [16, 17]. 

Both global research trends coincide in noting that 

integrating mine sequencing, metallurgical variables and ML 

improves profitability [18] demonstrated that integrating 

predictive models with stochastic algorithms enables better 

estimation of higher-value blocks. The main contribution is the 

ability to incorporate geological and metallurgical uncertainty, 

something classical deterministic models cannot achieve. 

However, debate persists regarding the stability of these 

predictions: some authors note that, under operational 

fluctuations, models may amplify variability, affecting day-to-

day planning. In addition, building robust models requires 

complete datasets that many operations do not possess [19]. 

3.4 Computer-assisted decision-making in operations 

Modeling in mining aims to improve production planning 

through the characterization of geometallurgical units and 

process optimization, taking into account high-impact 

parameters such as tonnage, recovery, and grade. To achieve 

this, machine learning has proven to be an extremely useful 

tool that requires the knowledge and experience of operations 

experts and a basic understanding of algorithms and data 

science.  

The models used can be divided into three types: (a) 

Physical models derived from first principles which require a 

full understanding of the phenomenon and all parameters must 

be measured, (b) Phenomenological models which have 

measured physical limits and hard-to-measure parameters are 

calibrated with empirical constants requiring experimental 

design and pilot testing and (c) Data-driven models where 

inputs are derived from their correlations and distribution are 

developed from historical data, they are accurate within 

training data useful in brownfield operations. Machine 

learning regression models are data-driven models that are 

developed from historical sensor data and metallurgical 

chemical assays, so they are being used in thin section 

microscopy, flotation, comminution, hydrocyclone evaluation, 

etc. [20]. 

Two control strategies have been developed in mineral 

processing, which are expert systems and predictive models, 

and currently hybrid models are emerging that integrate simple 

prediction models into expert systems, however the efficiency 

of these systems depends on the quality of the data provided 

by the instruments, among which stand out near infrared 

spectroscopy (NIR), Fourier transform spectroscopy (FTIR) 

and Raman spectroscopy, virtual sensors based on 

spectroscopy and microelectromechanics can also be used, 

which has the advantage of overcoming the aggressive 

chemical conditions of the environment [21]. 

This category includes the most applied studies [22] showed 

that the use of AutoML in flotation and comminution can 

reduce calibration times and improve predictive accuracy 

compared to traditional linear models. The main contribution 

lies in automating the model-selection process; however, its 

limitation is that AutoML tends to select complex models 

requiring costly computational infrastructure. 

Globally, there is consensus that hybrid models (expert 

systems + ML) offer greater stability; however, some studies 

warn that the quality of recommendations depends almost 

entirely on sensor calibration and the consistency of historical 

data recurring weakness in real mining operations [23]. 

3.5 Prediction of environmental impacts 

The sustainability, competitiveness and success of the 

mining industry in the era of digital transformation known as 

the fourth industrial revolution depend on the development of 

energy-efficient and environmentally conscious methods for 

mineral processing, such as the optimization of selective 

mining units to reduce gangue extraction; non-explosive rock 

breaking methods that reduce the generation of fine material 

and promote microfracturing of minerals; use of tunnel boring 

machines for thin ore bodies; pre-concentration of minerals 

through automated mineral sorting with sensors based on 

optical microscopy technologies and image recognition based 

on artificial intelligence; optimization of mineral 

concentration by analyzing flotation froths with machine 

learning tools; circular economy strategies that involve the 

reuse of metallurgical waste; remote monitoring of mining 

operations; reduction of carbon-based energy use; and 

ecosystem restoration. The combination of these new methods 

will reduce the environmental impact of mining [24]. 

Life cycle assessment is a tool for measuring the 

environmental impacts generated by mining operations, taking 

into account crucial indicators such as global warming 

potential (GWP), terrestrial acidification (TA), water 

depletion (WD), and land use (LU). This tool is of great 

importance today due to the increasing demand for metals due 

to the global transition to clean energy and, consequently, the 

increase in production. Life cycle analysis integrated with 

geometallurgy, process simulation, and machine learning 

algorithms such as decision trees, neural networks, and 

Random Forests achieves more accurate and reliable results. 

In this way, the fate of contaminants can be predicted and, 

therefore, production processes can be designed and/or 

modified with a circular economy approach [25]. 

The prediction of acid rock drainage allows for the 

assessment of environmental risk from pre-feasibility stages 

and is a support for the valorization of geo-environmental 

model blocks due to the economic costs involved in the mine 

closure stage; to define geo-environmental models, the 

evaluation of the mineralogical, textural, geochemical, 

geometallurgical properties of the rock, and microbiological 

processes is required. Currently, field tests (drill core 

observations, leaching tests for pH and dissolved metals, total 

metal concentration analysis with portable X-ray fluorescence 

equipment), static tests (acid-base accounting (ABA) tests, net 

acid generation (NAG) tests, acid buffer characteristic curve 
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method), and kinetic tests (laboratory leaching column tests, 

cell moisture tests, and field pad tests) are being carried out to 

classify waste according to its acid-generating potential. 

However, due to the multiple processes that are involved in the 

formation of rock acid drainage, more accurate predictions are 

required that can be achieved using machine learning 

algorithms [26]. Machine learning algorithms have a 

significant impact on GHG emissions reduction in LCA for 

differentiated geographic approaches; however, they are still 

underutilized [27]. 

Recent research combines LCA with decision trees, neural 

networks, and Random Forest to estimate emissions and acid 

drainage. The study by Stehlik et al. [28] reported that ML 

models reduce prediction errors of GWP and TA compared to 

traditional methods but also highlight that the availability of 

environmental databases remains limited, reducing model 

generalization. 

Regarding acid drainage, the study by Anthony et al. [29] 

describe that ML algorithms can integrate mineralogical, 

textural, and geochemical properties; however, they warn that 

microbial variability and hydrogeological conditions are still 

not adequately modeled. This raises an ongoing controversy: 

to what extent can models be trusted when part of the 

underlying phenomenology is not yet represented? 

3.6 Data-centric laboratories 

The mining value chain generates a large amount of data in 

each of its processes. This has been particularly true in the area 

of mineral processing, where the flow of data has increased 

due to the implementation of sensors. Historically, this data 

has been processed separately. However, the current trend is 

toward geometallurgy and the joint processing of data, as this 

allows for greater efficiency in mineral extraction. This is why 

data-centric laboratories are emerging, whose primary 

objective is data generation and experimentation. This requires 

instrumentation and infrastructure for real-time monitoring, 

analysis, and characterization of the operation, as well as data 

analytics methods. In dry laboratories, data management, 

multidisciplinary data analysis, research, experimentation, 

process design and training are carried out. For this purpose, 

they use data science, statistics, simulation that may include 

virtual and augmented reality, machine learning and 

visualization tools. Unlike wet or conventional laboratories, 

they do not have materials, instruments and reagents but they 

do require a much larger investment due to the essential 

components for the operation of this type of laboratories such 

as: (a) technology that involves high-performance computing 

equipment, data storage servers and communication and 

information infrastructure, (b) integration of knowledge since 

data from tests and sensors will be used as data from automatic 

analysis of the process, (c) expert personnel in operations as 

well as data scientists, (d) data governance to ensure that data 

management meets accessibility, security and quality 

standards, (e) operational and financial models that ensure the 

viability and sustainability of this type of project. Finally, the 

objective is to have better mineral processing evaluation 

indicators that allow us to obtain greater efficiency in the 

operation and cost reduction [30]. 

For the capture of relevant quality information, 

instrumentation and equipment are required in the main 

mining operations, for example in explorations the following 

can be used: (a) high resolution remote sensing such as the 

hyperspectral imaging method that allows the mapping of 

geological characteristics based on optical reflectance 

properties, (b) drone-based sensors that identify mineral 

anomalies to determine mineral exploration targets, (c) 

portable measuring devices such as laser-induced breakdown 

spectroscopy (LIBS), portable X-ray fluorescence (pXRF) for 

geochemical analysis in rocks, (d) cross-sectional seismic 

tomography to determine geological formations; in mining 

there is rock glass technology that can predict geological and 

geotechnical conditions prior to mining. There are also 

detection methods such as the electromagnetic spectrum and 

ground penetrating radar, as well as automated mechanical 

rock cutting, rock preconditioning investigations with water 

jets, thermal impulses or explosive impulses. In terms of 

mineral processing, there are (a) automated sampling, (b) 

particle image analyzers in wet, dry, dynamic flows, etc., (c) 

fully integrated automation (TIA) such as digital twins that are 

presented as a virtual simulation of mineral processing 

operations [21]. 

Studies by Yao et al. [31] indicate that data-centric 

laboratories represent the next technological leap, enabling 

integration of sensors, digital twins, and advanced analytics 

for virtual experimentation. Their major contribution is the 

ability to accelerate experimentation cycles without operating 

physical equipment. 

The main limitation is economic: the necessary 

infrastructure (HPC, servers, OT/IT integration, data 

governance) exceeds the capacity of many mid-sized 

operations. In addition, there is ongoing controversy regarding 

dependence on external vendors and who ultimately controls 

data and model ownership [32]. 

3.7 Success stories in Peru 

According to the Global AI Adoption Index 2023, 42% of 

companies worldwide have adopted artificial intelligence, 

while in Latin America, an increase from 40% to 47% in AI 

adoption has been reported by 2023. The main limitation is the 

lack of experience or knowledge in the field, followed by 

ethical concerns regarding data governance. Investment is 

focused on process automation, and the main reason for 

adoption is achieving faster decision-making to improve 

customer experience. 

In Peru, 44% of companies are undergoing a digital 

transformation process, with the most advanced sectors being 

mass consumption, communications, and financial services. 

The main problems they face are a lack of human resources, 

budget, and strategies. They have high data availability, but it 

is underutilized. The mining sector has been working on 

digital transformation for an average of three years, and as 

shown in Figure 4, only 15% of companies are at a mature 

stage and have artificial intelligence applications.  

As shown in Figure 4, the sharp growth in machine-learning 

publications after 2018 is consistent with the expansion of 

open-access mineralogical databases, cloud-based computing 

resources, and the democratization of Python-based data-

science tools. The increase also coincides with declining ore 

grades worldwide, which has pressured mining companies to 

invest in predictive modeling of recovery and throughput. This 

pattern suggests that the growth is not merely academic but 

also driven by operational needs in real mining environments. 

Figure 5 shows the number of publications on machine 

learning applications by category of the main Peruvian mining 

companies presented at Perumin 35 and 36, noting that there 

is an increase in publications related to the category of 
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computer-assisted decision-making. 

Figure 5 shows an evolution in the categories of machine-

learning-related publications presented at PERUMIN between 

2013 and 2023. The shift toward ‘geometallurgy’, ‘digital 

operations’ and ‘process optimization’ after 2018 reflects the 

accelerated adoption of digital transformation initiatives in 

Peruvian mining. This trend coincides with an increase in 

sensorization of concentrator plants, wider availability of 

automated mineralogical data (SEM-MLA, hyperspectral 

scanning), and industry pressure to optimize recovery amid 

lower ore grades. In contrast, earlier conferences were 

dominated by topics such as blasting or geomechanics, which 

require less high-density data. The growing prominence of AI-

enabled studies at PERUMIN suggests that Peruvian 

operations are moving from descriptive to predictive and 

prescriptive analytics, aligning with international trends and 

indicating a maturing of data infrastructures within major 

mining companies. 

Figure 4. Digital transformation technologies 

Figure 5. Publications on machine learning applications in the field of Geometallurgy in Perumin 35 and 36 

Figure 6. SMCV Artificial Intelligence Implementation Methodology 
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Cerro Verde Case. In recent years, Sociedad Minera Cerro 

Verde has been promoting the application of artificial 

intelligence in its operations. The study [33] in his research 

work presented at Perumin 35 explains the success story of 

increasing the production of pounds of copper concentrate in 

Cerro Verde, as can be seen in Figure 6, the applied 

methodology has nine phases. 

Figure 6 contrasts global and Peruvian publication patterns, 

revealing that Peru exhibits a disproportionate focus on 

operational applications, such as plant control and 

metallurgical optimization, rather than early-stage research. 

This bias reflects Peru’s status as a copper-dominated 

producer where concentrator plants already have extensive 

instrumentation, allowing rapid adoption of ML for predictive 

control. Conversely, upstream research—such as advanced 

mineral-texture analysis—is less represented due to the limited 

presence of specialized research facilities in the region. 

Proof of concept defining high-potential variables such as

recovery and tonnage, which are correlated with ore type, Cu 

and Fe head grade, hardness, oxidation level, and operating 

parameters such as cyclone pressure, % mill discharge 

solids, % rougher feed solids, rougher concentrate grade, 

scavenger concentrate grade, primary collector dosage, 

secondary collector dosage, and pH. 

Implementation of first principles, which are the ranges

established for the models to ensure metallurgically consistent 

recommendations. 

Construction of both baseline and optimization recovery

and tonnage models, useful for comparing production with and 

without AI. The machine learning algorithms used were 

Random Forests and, specifically, gradient boosting, which 

consist of thousands of decision trees that allow for multiple 

scenarios and nonlinear relationships to be presented, helping 

the models generate better recommendations for optimizing 

processes. 

Development of the anomaly detection module that allows

for the evaluation of data consistency and, therefore, the 

validation of the quality of the model input information, which 

comes from permanently monitored plant instrumentation. 

Model iteration or model training, which is very important

due to variations in mineral type, especially when mining 

phase changes, equipment changes, or flowsheet 

modifications occur. In all these cases, model retraining is 

required. 

User interface, where operators view recommendations

and have the option to approve or reject them, following 

discussions involving operators and supervisors. 

The importance of aligning the APCs with first principles

to enable the development of artificial intelligence and ensure 

the stable execution of recommendations. 

Adjusting constraints, which are basically the maximum

design capacities of the equipment. 

Sustainability, which involves building trust among end

users, namely, operators, so they will use the system 

permanently. 

Among the conclusions, it is noted that the implementation 

of AI allowed for an increase in copper pounds by 6.5% and 

copper recovery by 0.8%. The correct functioning of the 

APCs, automatic control, and instrumentation were of utmost 

importance for this work from a technical point of view, and 

from a human resources point of view, the leadership of the 

management, communication between the various areas 

involved, and training of operating personnel. Furthermore, 

this tool has allowed for the identification of several 

opportunities for improvement, since the artificial intelligence 

recommendations motivate the evaluation, interpretation, and 

discussion of these among metallurgists. 

In the case of Sociedad Minera Cerro Verde, the reviewed 

technical documentation indicates that the predictive models 

were trained using operational variables such as feed grade 

(CuT and CuS), mineralogical composition from MLA 

analyses, hardness indices (Axb, BWi), particle size 

distributions (P80), flotation air flow, reagent dosage and plant 

throughput. Before model training, datasets were cleaned 

through outlier removal based on interquartile ranges and z-

score thresholds, followed by normalization of continuous 

variables. Feature importance analyses showed that 

mineralogy, feed grade and grind size had the highest 

predictive weight. Model validation was performed using 10-

fold cross-validation and independent test sets, reporting 

performance metrics such as R², RMSE and MAE. Despite the 

positive results, internal reports highlight limitations including 

sensor calibration drift, missing data during plant upsets, and 

model sensitivity to mineralogical variability not previously 

observed in the training dataset. 

Minsur Case. Optimus Leach is the real-time 

recommendation system for optimizing the gold leaching 

process at the Pucamarca mining unit, presented as a success 

story at Perumin 36. The main objective is to maximize the 

gold recovery percentage from the leaching cells. The 

methodology includes the following steps: 

Data Collection and Preparation: Mineralogical variables

such as alterations, ore grades, and fine ore content were taken 

into account, as well as process variables such as particle size 

distribution, pH, moisture content, irrigated cells, irrigation 

rates, irrigation ratios, cyanide concentration, and gold and 

silver grades. These variables were obtained from the 

following data sources: (a) Stockpile Control, (b) Drip 

Irrigation Cells, (c) Daily Report, (d) Cell Certificate, (e) 

Moisture Content, (f) Mining Plan, and (g) ADR Parameters. 

Algorithm Selection: For deterministic models, the

Klimpel equation was considered, while for assembled 

machine learning models, the type of algorithm used was not 

specified. It should be noted that recommendation systems 

typically use Random Forest (RF), Gradient Boosting (GB), 

Support Vector Machines (SVM), and Neural Networks 

(ANN). 

Development of Predictive Models: For the development

of this system, a model for estimating daily percolated ounces 

and a model for estimating daily percolated flow were used. 

Both were built using machine learning algorithms based on a 

deterministic model that allows theoretically estimating the 

grade based on irrigation days in the cell and statistical models 

that explain gold contribution based on operational variables. 

Model Training: The performance of the models was

evaluated by partitioning the data, i.e., one data set for pattern 

training and another data set for model validation testing. 

Real-time implementation: The web application has three

parts: (a) Diagnostics, where irrigation rates and historical 

recoveries can be viewed; (b) Recommendations for cell 

irrigation rate, duration, and intensity parameters for 

optimization; and (c) Simulation, where different cell 

parameter and gold recovery scenarios can be created. The 

architecture for this case can be seen in Figure 7. 

Results evaluation: Figure 8 shows that the base

deterministic model has a correlation of 0.6 and an error of 

0.16, while the machine learning model has a correlation of 

0.81 and an error of 0.05, thus reducing the variability in gold 
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grade estimation in the rich solution, which meant greater 

recovery and more efficient management of leach pad 

inventories. 

Impact: An economic benefit of $1.4M was achieved in the

first year. At the organizational level, planning was 

decentralized and the team was empowered with machine 

learning, in addition to the implementation of enablers such as 

data integration. 

Figures 7 and 8 summarize the economic and operational 

impacts of ML-based systems implemented in Peru. The 

improvements observed—such as increased recovery and 

more stable reagent consumption—reflect the ability of ML 

models to capture nonlinearities that conventional linear 

control strategies cannot. However, the results also highlight 

the dependency on high-quality sensor data, as shown by 

performance drops during periods of incomplete or noisy 

measurements. These figures underscore both the potential of 

ML for process intensification and the infrastructural 

challenges that must be addressed for long-term adoption. 

For the Minsur–Pucamarca operation, the Optimus Leach 

system integrates variables such as cyanide concentration, pH, 

dissolved oxygen, solution flow rate, ore permeability, 

granulometry, mineralogical composition and heap height. 

Preprocessing steps include smoothing of noisy time-series 

signals, interpolation of incomplete data and normalization of 

chemical parameters. The Gradient Boosting model used in 

Optimus Leach was validated using k-fold cross-validation 

and evaluated with metrics such as R² and RMSE, yielding 

prediction accuracies consistent with industrial requirements. 

However, the system documentation indicates that its 

performance may decrease when abrupt changes in ore 

permeability occur or when heap irrigation is irregular, which 

introduces temporal variability that the model does not fully 

capture. Additionally, the limited availability of high-

frequency mineralogical data constrains the representation of 

mineralogical heterogeneity within the heap. 

Figure 7. Optimus leach Minsur application architecture 

Figure 8. Comparison of real curve with deterministic model and machine learning model 
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4. CONCLUSIONS

In recent years, international research on machine learning 

applications in geometallurgy has focused on mineralogical 

prediction models, data-driven geometallurgical modeling, 

yield prediction for mine planning, computer-aided decision-

making in operations, environmental impact prediction, and 

data-centric laboratories. However, this focus is notably on 

mineralogical prediction using supervised classification 

algorithms. 

This growing emphasis illustrates a broader theoretical shift 

from deterministic geometallurgical workflows toward hybrid 

computational frameworks, where machine learning models 

enhance —rather than replace— geological and metallurgical 

interpretation. This integration reveals the need for more 

robust data architectures, higher levels of standardization, and 

the incorporation of explainable ML techniques to ensure 

interpretability and adoption within operational teams. 

In the Peruvian mining sector, only 15% of companies have 

artificial intelligence applications, and they are successfully 

adopting applications focused on computer-aided decision-

making in the operations area, as evidenced by the cases 

presented by Cerro Verde and Minsur with their machine 

learning-based recommendation systems, achieving increases 

in tonnage and recovery in their operations, which ultimately 

translates into greater profitability. It is important to highlight 

that the main mining companies in Peru are pursuing advanced 

analytics strategies with a view to becoming digital mines in 

the near future, characterized by integrated operation centers, 

the implementation of artificial intelligence in all their 

processes, and high levels of automation with machine 

learning predictive models coupled with expert systems. 

These cases demonstrate the practical implications of ML 

deployment, showing that predictive modeling can stabilize 

metallurgical performance, anticipate operational deviations, 

and support decision-making in near-real time. As Peruvian 

operations continue moving toward digital transformation, 

machine learning becomes a key enabler for semi-autonomous 

concentrator plants and integrated remote operation centers. 

The greatest challenge in the development of machine 

learning-based recommendation systems has been the 

formation of multidisciplinary teams with experience in 

operations, as well as knowledge of data science. To quickly 

overcome this challenge, mining companies have opted for 

joint ventures with startups that have data scientists and 

analytical scientists. It should also be considered that the 

databases of the different mining areas are not interconnected 

and often require large investments in instrumentation and 

telecommunications networks for data capture, as well as 

rigorous instrument maintenance and calibration programs. 

This reveals a structural limitation that must be addressed: 

the historical fragmentation of operational databases. Future 

implementations will require unified data governance 

strategies, sensor calibration protocols, and interoperability 

frameworks that guarantee data quality, continuity and 

traceability—conditions without which advanced ML models 

cannot achieve stable performance. 

They claim that a geometallurgical program allows for 

greater efficiency in operational processes. On the other hand, 

machine learning algorithms allow predictions to be made 

through the interpretation of data and patterns connected with 

established knowledge [4]. In accordance with the 

bibliographic review and the applications presented, it is 

observed that geometallurgy, by integrating the disciplines of 

geology, mining, and metallurgy, has led to a better 

understanding of the entire value chain, providing a tool for 

better estimating the mineral values of the blocks. This allows 

the development of models with more precise maximization or 

minimization objective functions and the establishment of 

action strategies for process optimization. Machine learning 

algorithms also complement geometallurgy and are 

strengthened for the construction of efficient models that allow 

improving planning and production in mining [2].  

Given these synergies, future work should explore the 

integration of 2D and 3D mineralogical datasets into unified 

ML workflows, develop interpretable models to support 

domain experts, and incorporate uncertainty quantification to 

enhance block valuation and risk assessment. 

For machine learning algorithms to function correctly, 

quality input data, instrumentation, and training are required. 

Similarly, the case analysis shows that data understanding, 

traceability, and preparation are very important for successful 

predictions with machine learning models. This is usually the 

longest process in the execution of this type of project, since 

the main mining operation areas traditionally have isolated 

databases that need to be interconnected to identify patterns 

and trends. Investments in instrumentation, sensors, and 

telecommunications networks are often also required to 

capture the data that feeds the model in real time.  

Mineral processing control strategies are classified into 

expert systems, predictive models, and hybrid models, which 

are the integration of the two previously mentioned [4]. 

Accordingly, Peruvian mining companies that are using some 

artificial intelligence application have had initial success with 

hybrid models related to core business variables such as 

throughput and recovery executed in expert systems. 

Therefore, the next stage could be to develop applications that 

can include other variables such as mill power, which is related 

to energy consumption, which would have, in addition to 

economic benefits, a reduction in the environmental impact 

and carbon footprint. 

Consequently, lines of future research should focus on 

expanding ML applications toward sustainability metrics, 

including predictive models for acid drainage, water balance 

optimization, and carbon emission reduction. Additionally, 

adaptive control systems that directly link ML outputs to 

operational actuators represent a promising frontier, enabling 

dynamic, real-time optimization of metallurgical performance. 
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