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Securing digital images remains a major challenge in modern communication systems due 
to increasing risks of interception, manipulation, and unauthorized access. This study 
proposes a novel chaotic function called the Circle–Dyadic Transformation Map (CDT 
Map), constructed through the composition of the Circle Map and the Dyadic 
Transformation Map, to serve as a keystream generator for image encryption. The 
methodology consists of four key stages: (1) formulating the CDT Map via function 
composition, (2) validating its chaotic behavior through Lyapunov exponent analysis, 
bifurcation diagrams, and the NIST SP800-22 test suite, (3) designing a keystream-based 
encryption–decryption algorithm using XOR operations, and (4) evaluating performance 
through statistical, differential, and quality metrics. Experimental results show that the CDT 
Map achieves a 100% pass rate on NIST randomness tests, a key space of 5.832 × 10⁶⁵⁰, 
high key sensitivity (10⁻¹⁶), and superior NPCR (99.6%) and UACI (≈40%) values 
compared to existing chaotic maps. The proposed approach ensures perfect decryption 
(MSE = 0, PSNR = ∞) and strong resistance to brute-force, statistical, and differential 
attacks. The main contribution of this work is the development of a new composite chaotic 
function that significantly enhances randomness, security strength, and computational 
efficiency for digital image encryption. 
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1. INTRODUCTION

Manipulation of digital image data poses a threat to data
owners, especially when the images are used for malicious 
purposes. To protect confidential data, it is necessary to design 
storage and transmission systems that can prevent 
unauthorized access and modification, both when images are 
stored on computers and when they are sent via online services 
such as email or cloud storage. Digital images such as medical 
images are highly sensitive and require a robust security 
system to maintain confidentiality in accordance with medical 
ethics [1]. The security of medical record data is an obligation 
as stipulated in Law Number 29 of 2004 concerning Medical 
Practice and Article 28G paragraph (1) of the 1945 
Constitution, which guarantees the protection of individual 
rights to privacy and personal security [2]. 

The necessity for data security necessitates the adoption of 
cryptographic methods. Historically, cryptography is 
categorized into classical and modern forms. Both necessitate 
keys for the processes of encryption and decryption. Classical 
encryption prioritizes the confidentiality of algorithms, 
whereas current cryptography emphasizes the confidentiality 
of keys. Cryptography is categorized into symmetric and 
asymmetric keys based on the encryption key. In symmetric 
cryptography, a single key is employed for both encryption 
and decryption, whereas asymmetric cryptography utilizes 
distinct key pairs. Commonly utilized conventional encryption 

techniques encompass the Data Encryption Standard (DES), 
the Advanced Encryption Standard (AES), and the Rivest-
Shamir-Adleman (RSA) algorithm. This approach, while 
effective in encryption, is rendered less appropriate for digital 
image encryption due to its limited key space and sluggish 
processing speed [3]. This is due to the substantial duplication 
and significant correlation among pixels in multiple directions 
within digital images. The prolonged encryption duration and 
limited key space render typical text encryption algorithms 
inefficient [4]. 

Efforts to create digital picture encryption with chaotic 
functions are conducted by sequential or ordered 
implementation of two or more encryption phases, or by 
composing functions. This is undertaken to enhance resilience 
against diverse attackers. Certain research incorporates a 
chaos-based diffusion-transposition method for the security of 
digital images [5]. During the diffusion phase, the Logistic 
Map function is employed, while the transposition phase 
utilizes Arnold's Cat map. The technique produces a key space 
of 1.84 × 1049, with key sensitivity attaining 10-16. This 
indicates that the algorithm is resistant to brute-force attacks. 
The algorithm for constructing the Logistic Map and the 
Chebyshev Map is arranged sequentially [6]. This technique is 
employed to encrypt medical photographs. Initially, the image 
undergoes encryption via the Logistic Map, resulting in an 
encrypted image that is subsequently re-encrypted using the 
Chebyshev Map. This approach employs two functions to 
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encrypt medical images in a two-step process. The decryption 
process is conducted in an identical manner. This algorithm 
comprises four parameters. Altering the parameter values of 
the Logistic Map to infeasible levels compromises the security 
of the image. Furthermore, the encryption process requires 
double the duration. 

The Circle Map has unlimited potential for chaos and is 
composed with the Gauss Map. The algorithm for composing 
the two sequentially [5]. The possibility of having greater 
chaotic properties is investigated in this way. The sensitivity 
diagram of this algorithm is much larger with respect to the 
initial value. Only four out of 16 NIST tests passed the 
randomness test, meaning the randomness level is only 25% 
[7]. Therefore, if this Gauss-Circle Map is used for 
cryptographic purposes, the cryptographic system that uses it 
will have strong resistance to brute-force attacks, but it may 
also be weak against statistical attacks. Another encryption 
algorithm is composing MS Map and Dyadic Transformation 
Map [8, 9]. Based on the bifurcation diagram, it can be seen 
that for values in the range λ ∈ (0.3, 5), the density is better 
when r = 3.8 [10]. The Lyapunov exponent results show that 
non-negative values are satisfied for r values [8]. The NIST 
test results with initial values and parameter values 𝑥𝑥0= 0.6, r 
= 3.8, and λ = 3.5, and a randomness level of 82.4% of the 
NIST randomness test results. 

The MS Gauss Map algorithm is the result of developing 
two chaotic functions, namely composing the MS Map 
function and the Gauss Iterated Map [11]. The key space 
generated is 1.8 × 1079 and the key sensitivity reaches 10-16, 
making it resistant to brute-force attacks. Additionally, testing 
on encrypted image data is also resistant to statistical and 
differential attacks. Another encryption algorithm based on 
chaos is the composition of the Bernoulli Map and the Logistic 
Map [12]. The key space of this algorithm is [(231 − 1) − 𝑏𝑏 × 
𝑘𝑘 × 𝑑𝑑] × 1.6 × 10634, and the key sensitivity up to 10-18 makes 
this function composition difficult to break with a brute-force 
attack. Based on testing using two NIST tests on the random 
number sequence generated from the Bernoulli Logistic Map, 
the sequence is random, and the distribution of pixel intensity 
values is uniform [13]. The test results with PSNR on the 
original image data and the decrypted image data are ∞. 

Brute-force attacks, statistical attacks, and differential 
attacks are some types of cryptographic attacks that can occur 
during the storage and transmission of secret data or 
information [14, 15]. A brute-force attack is a type of attack 
that tries all possible combinations of encryption keys to 
obtain the plaintext from the ciphertext they know. Statistical 
attack is an attack that exploits statistical data (e.g., correlation 
and distribution data between pixels of the ciphertext) to 
obtain the original text (plaintext) [16]. Differential attack is 
when the attacker looks for a relationship between the 
ciphertext and a number of related plaintexts. The analysis was 
performed on each of these pairs with several rounds of 
analysis based on the patterns found from the encryption 
process. 

The rapid growth of digital communication systems has 
intensified concerns regarding the security of sensitive image 
data, particularly in fields such as medical imaging, 
surveillance, and forensics [17]. Traditional cryptographic 
approaches including DES, AES, and RSA are effective for 
text-based data but tend to perform poorly in image encryption 
due to their limited key space, high computational cost, and 
inefficiency in handling strong pixel correlations [18, 19]. 
Consequently, chaos-based cryptographic schemes have 

gained attention for their inherent sensitivity to initial 
conditions, ergodicity, and nonlinearity, making them suitable 
for generating secure keystreams [20]. Several researchers 
have developed composite chaotic maps to improve 
randomness and strengthen resistance to cryptanalytic attacks. 
For example, the Gauss–Circle Map improves chaotic 
sensitivity but demonstrates a low NIST randomness pass rate 
of only 25%, indicating vulnerability to statistical attacks. 
Similarly, the MS–Dyadic composition enhances mixing 
behavior but achieves only 82.4% NIST compliance, leaving 
room for improvement in uniform randomness [21]. Existing 
two-stage approaches such as Logistic–Chebyshev or 
Bernoulli–Logistic also suffer from drawbacks including 
increased computational time, reduced randomness 
consistency, or susceptibility to parameter degradation. 
However, these studies lack a composite mapping that 
simultaneously provides: a). high chaotic intensity, b). strong 
mixing behavior, c). fully random keystream output (100% 
NIST pass rate), and efficient single-step computation without 
multi-round encryption. This gap motivates the development 
of a new composite chaotic function that integrates the infinite 
chaos potential of the Circle Map with the binary mixing 
strength of the Dyadic Transformation Map, leading to the 
proposed Circle–Dyadic Transformation (CDT) Map in this 
research. 

The inquiry guiding this study is: In what ways can the 
chaotic function of the CDT Map be advanced to serve as a 
keystream generator? What are the steps involved in designing 
and implementing a digital image encryption and decryption 
algorithm that utilizes the chaotic function of the CDT Map? 
What is the comparative performance of the digital image 
encryption and decryption algorithm utilizing the chaotic 
function CDT Map when assessed against brute-force attacks, 
statistical attacks, and differential attacks? This study aims to 
identify the problems within the research while also pursuing 
several key objectives: to generate a chaotic keystream 
function CDT Map through the integration of the chaotic 
Circle Map function and the chaotic Dyadic Transformation 
Map function; to design and implement a digital image 
encryption and decryption algorithm based on the chaotic 
function CDT Map; and to analyze the performance of this 
algorithm, ensuring it is resistant to brute-force attacks, 
statistical attacks, and differential attacks [22]. 

2. METHOD

In order for this research to be more focused and aligned
with the research objectives, a series of steps were taken to 
complete this study. Figure 1 shows the proposed stages or 
steps in this study. 

Figure 1. Research method 
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2.1 Creating a new chaotic function (CDT Map) 
 

The steps for creating a new chaotic function (CDT Map) as 
a chaotic keystream generator thru the composition of two 
chaotic functions: the Circle Map and the Dyadic 
Transformation Map. 
 
2.2 Testing the chaos function of the CDT Map and its 
chaotic properties 
 

The steps for testing the chaotic properties of the CDT Map 
chaos function using the Lyapunov Exponent, Bifurcation 
Diagram, and NIST test suite for randomness, as well as 
designing the keystream generation algorithm. 
 
2.3 Design and implementation of digital image encryption 
and decryption algorithms 
 

Stages in designing and implementing keystream-based 
encryption and decryption algorithms from the chaotic CDT 
Map function.  
 
2.4 Prototype for digital image encryption and decryption 
 

Stages in creating a software application prototype for 
image encryption and decryption based on the chaotic CDT 
Map function, and testing using color images (RGB) and 
grayscale images. 

 
2.5 Algorithm performance results 
 

Evaluating the efficacy of a keystream-based digital image 
encryption and decryption algorithm utilizing the chaotic 
function CDT Map, which demonstrates resilience against 
brute-force, statistical, and differential attacks, by:  

a. Assessing the sensitivity of initial values and the 
magnitude of the key space.  

b. Examining histograms, correlations, and entropy.  
c. Evaluating uniformity and doing differential analysis 

(NPCR and UACI).  
d. Evaluating the algorithm's performance by assessing the 

quality of the encrypted and decrypted images through PSNR 
and MSE metrics. 

e. Evaluating the mean processing duration for the digital 
image encryption and decryption procedures. 

 
 

3. RESULT 
 

This stage discusses the five stages in obtaining the results 
of developing an encryption algorithm based on the chaos 
circle-dyadic transformation map function for digital image 
security, including: 

 
3.1 Creating a new chaotic function (CDT Map) 
 

A new chaos function is formed through the composition of 
two chaos functions, Circle Map and Dyadic Transformation 
Map, resulting in a new chaos function. This new chaos 
function, subsequently named the CDT Map function, serves 
as a keystream generator for use in the encryption and 
decryption of digital image data. The process of forming the 
CDT Map chaos function can be seen in Figure 2. 

The composition of the Circle Map function and the Dyadic 

Transformation Map, which refers to the form of the Circle 
Map function equation, is expressed as 𝑓𝑓(𝑥𝑥). In addition, the 
form of the Dyadic Transformation Map function equation is 
expressed as 𝑔𝑔(𝑥𝑥). Next, a new chaos function was formed 
using a composition approach. In this study, composition was 
performed using the following form. In this study, 
compositions with the following forms were used 𝑔𝑔 ∘  𝑓𝑓(𝑥𝑥). 
This means that the first mapping of variable x is performed 
using the function 𝑓𝑓(𝑥𝑥) and the results are continued in the 
second mapping using the function 𝑔𝑔(𝑥𝑥) . The diagram 
showing the composition process is illustrated in Figure 3. 

 

 
 

Figure 2. Function composition formation diagram 
 

 
 

Figure 3. Composition model used in this study 
 

Based on the composition model concept used as shown in 
Figure 3, the following Circle Map chaos function 
composition equation is obtained: 

 

𝑓𝑓(𝑥𝑥) = (𝑥𝑥 +  Ω + 
𝑘𝑘

2𝜋𝜋
sin(2𝜋𝜋𝑥𝑥 )𝑚𝑚𝑚𝑚𝑚𝑚 1) (1) 

 
where, domain 𝑥𝑥𝑛𝑛 ∈ (0,1), Ω ∈ R and nonlinerity parameter 
𝑘𝑘 ∈ R. 

with: 
(a) 𝑥𝑥  is the variable value at the nth iteration, which is 

limited to the interval 0 dan 1 representing one full rotation of 
the circle. 

(b) Ω is the frequency or rotation rate of the system. 
(c) k is a parameter that controls the strength of the no-linear 

interaction between the current variable value and the next 
iteration. 

(d) The term 𝐾𝐾
2𝜋𝜋

sin(2𝜋𝜋𝑥𝑥 ) is a sinusoidal component.  
The initial value 𝑥𝑥0, and Ω and k are parameters. A very 

interesting property of the Circle Map is the possibility of 
infinite chaos. 

The Dyadic Map is defined as (2) [20]: 
 

𝑔𝑔(𝑥𝑥) =  �2𝑥𝑥                   , 0 ≤ 𝑥𝑥 < 0.5
2𝑥𝑥 − 1            , 0.5 ≤ 𝑥𝑥 < 1 (2) 

 
 
 
 
 
 
 
 
 
 

function of 
chaos circle map 

chaotic dyadic transformation 
map function 

Function composition 

New CDT map chaos 
function Ketstream Chaotic 

2795



 

With domain 𝑥𝑥𝑛𝑛 ∈ (0,1) and range also in (0,1) 
This defines 𝑔𝑔(𝑥𝑥) as: 
• 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥 when 𝑥𝑥 is between 0 (inclusive) and 0.5 

(exclusive). 
• 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥 − 1 when 𝑥𝑥 is between 0.5 (inclusive) and 

1 (exclusive). 
which ensures ergodicity and uniform distribution. 
To construct the CDT Map as a chaotic function suitable for 

cryptographic applications, the composition order was 
deliberately defined as 𝑔𝑔 ∘ 𝑓𝑓 , meaning that the Circle Map 
𝑓𝑓(𝑥𝑥)is applied first, followed by the Dyadic Transformation 
Map 𝑔𝑔(𝑥𝑥) . This order is chosen because the Circle Map 
produces continuous nonlinear trajectories with extremely 
high sensitivity to initial conditions, allowing small 
perturbations in the input to grow rapidly. When the Dyadic 
Map is applied afterward, its binary partitioning mechanism 
enhances the mixing effect by abruptly redistributing the 
Circle Map outputs across subintervals in (0,1). Combining 
continuous chaotic evolution (Circle) and discontinuous 
binary folding (Dyadic) yields a keystream with stronger 
diffusion, higher entropy, and more uniform randomness. 
Conversely, using the reverse order 𝑓𝑓 ∘ 𝑔𝑔would cause the 
Dyadic Map’s discrete jumps to dominate the early 
transformation, reducing the effective sensitivity of the Circle 
Map and producing a less uniform distribution that is more 
vulnerable to statistical attacks. Therefore, selecting the 
composition 𝑔𝑔 ∘ 𝑓𝑓 maximizes chaotic intensity, strengthens 
cryptographic confusion–diffusion properties, and improves 
the robustness of the resulting CDT Map. 

The proposed CDT Map combines both maps in one step: 
Based on the concept of the composition which is defined 

as (𝑔𝑔 ∘ 𝑓𝑓)(𝑥𝑥) = 𝑔𝑔(𝑓𝑓(𝑥𝑥)) , the composition function is 
obtained as shown in Eq. (3) as follows: 

 
(𝑔𝑔 ∘  𝑓𝑓)(𝑥𝑥)

=  �
2 �𝑥𝑥 +  Ω + 

𝑘𝑘
2𝜋𝜋

sin(2𝜋𝜋𝜋𝜋)�       , 0 ≤ 𝑥𝑥 < 0.5

2 � 𝑥𝑥 + Ω +
𝑘𝑘

2𝜋𝜋
sin(2𝜋𝜋𝜋𝜋)� − 1, 0.5 ≤ 𝑥𝑥 < 1

 (3) 

 
Eq. (3) is expressed in recursive form as Eq. (4): 
 
𝑥𝑥(𝑛𝑛+1)

= �
2 �𝑥𝑥𝑛𝑛 +  Ω +  

𝑘𝑘
2𝜋𝜋

sin(2𝜋𝜋𝑥𝑥𝑛𝑛)�          , 0 ≤ 𝑥𝑥𝑛𝑛  < 0.5

2 �𝑥𝑥𝑛𝑛 +  Ω + 
𝑘𝑘

2𝜋𝜋
sin(2𝜋𝜋𝑥𝑥𝑛𝑛)� − 1, 0.5 ≤ 𝑥𝑥𝑛𝑛  < 1

 
(4) 

 
With 𝑛𝑛 = 0, 1, 2, 3, ….  
This construction ensures that the CDT Map retains the 

infinite chaos potential of Circle Map while benefiting from 
the strong mixing property of the Dyadic Map. 

a) Domain: 𝑥𝑥𝑛𝑛 ∈ (0,1)        
b) Range: 𝑓𝑓 (𝑥𝑥𝑛𝑛) ∈ (0,1)     

Parameters: Ω, 𝑘𝑘 ∈ R    
 

3.2 Chaotic property validation 
 

This study examines the chaotic properties of the CDT Map 
through three main approaches: bifurcation diagrams, 
Lyapunov exponents, and NIST randomness tests. The goal is 
to ensure that the CDT Map has strong chaotic characteristics, 
making it suitable for use as a keystream generator for 

cryptography and data security applications. 
 
3.2.1 Bifurcation diagram 

A bifurcation diagram can be used to determine the behavior 
or properties of topological transitive functions. A bifurcation 
diagram is a mapping between the values of the CDT Map 
function xn and the parameter values of the function. 

 
Algoritm 1. Plotting diagram bifurkasi 
Input: 𝑥𝑥0, Ω, k, i (banyaknya iterasi) 
Output: plotting 𝑥𝑥𝑛𝑛  
1.For 𝑛𝑛 = 1 to 𝑖𝑖 
2.Hitung nilai 𝑥𝑥𝑛𝑛 dari persamaan (3.4) 
3.Plotting 𝑥𝑥𝑛𝑛  
4.Next n 
5.End for 
 
Algorithm-1 uses iterations from for 𝑛𝑛 = 1 to 𝑖𝑖 . At each 

iteration, the algorithm calculates the value 𝑥𝑥𝑛𝑛  based on 
equations involving 𝑥𝑥0 , Ω, k, and i. After calculating, the 
algorithm immediately plots the values 𝑥𝑥𝑛𝑛 , which can show 
how values change during iterations. This plotting is useful for 
analyzing patterns or trends in values 𝑥𝑥  during iteration. The 
algorithm repeats the calculation and plotting process until i 
iterations are complete. At the end of the iteration, a graph will 
be formed showing the behavior or trend of the values 𝑥𝑥𝑛𝑛 
generated by the CDT function. 

Bifurcation Diagram Analysis of Parameter Ω 
The test was conducted by varying the Ω parameter in the 

range (0,1) with a resolution of 0.0001. For each Ω value, the 
CDT Map function was evaluated up to 200 iterations. The 
bifurcation results showed two main characteristics: 

(1) Figure 4 illustrates the 100th iteration by showing areas 
that are still relatively sparse, indicating that the system has 
not yet fully exhibited chaotic behavior. At this stage, initial 
patterns leading to chaos are beginning to emerge, but are not 
yet dominant.  

(2) Figure 5 shows that the 200th iteration produces a much 
denser diagram across almost the entire area Ω. This density 
indicates the emergence of many overlapping fixed and 
periodic points, a clear indication that the system has entered 
a fully chaotic state. 

The density of the bifurcation results proves that the CDT 
Map has a topologically transitive property, namely the ability 
of the system to map a single point to a very large dynamic 
space in an unexpected manner. In this dense area, the CDT 
Map produces uncorrelated outputs that are highly sensitive to 
parameter variations. 

 

 
 

Figure 4. Bifurcation diagram of CDT Map function for 
parameter Ω at iteration = 100 
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Figure 5. Bifurcation diagram of the CDT Map function for 
parameter Ω at iteration = 200 

 
3.2.2 Lyapunov exponent 

To confirm chaos, the CDT Map was analyzed based on 
Devaney’s definition of chaos, which requires: 

 

𝜇𝜇 =  lim
𝑛𝑛 → ∞

1
𝑛𝑛
� 𝑙𝑙𝑙𝑙
𝑛𝑛−1

𝑖𝑖=0

�(𝑓𝑓(𝑖𝑖)) ′ (𝑥𝑥0)� (5) 

 
1. Sensitivity to Initial Conditions: Verified using 

Lyapunov exponent (λ): 
If λ > 0, the system exhibits chaos. 
Figure 6 is a graphical representation of the Lyapunov 

exponent equation that quantitatively measures the sensitivity 
to initial values. When the Lyapunov exponent for μ is 
positive, it means that the equation has a high sensitivity to 
initial values. It can be seen that the CDT Map is sensitive to 
the initial value at Ω ∈ (0, 1). 

 

 
 

Figure 6. CDT map lyapunov exponent for 𝑥𝑥0 = 0.9, Ω =
0.1, 𝑘𝑘 = 1050 

 
2. Topological Mixing: Evaluated via bifurcation diagram. 

Dense points in the bifurcation plot indicate strong mixing and 
high entropy, with variable values of 𝑥𝑥0 = 0.9, Ω = 0.1, 𝑘𝑘 =
1050, t = 200. 

To get the bifurcation diagram, CDT Map is used by 
mapping each 𝑥𝑥𝑛𝑛 value which is the result of the calculation 
on each Ω ∈ (0, 1) with a change of 0.0001. In this study, the 
CDT Map is calculated 200 times for each parameter change 
Ω. The dense area shows that the CDT Map function is chaotic 
with the value of parameter Ω in that area. From Figure 2, it is 
evident that the chaos function of CDT Map has topologically 
transitive properties and its periodic points are dense. 

3. Dense Periodic Points: Demonstrated through statistical 
uniformity of keystream and validated with The National 

Intitute of Standart Technologies Tast (NIST) SP800-22 tests. 
Table 1 shows that the CDT Map function passes the NIST 

randomness test. The parameter values used in this test are 𝑥𝑥0 
= 0.9, k = 1050, Ω = 0.1 and t = 125000. Based on Table 1, the 
CDT Map function is one of the random number generator 
functions whose randomness properties are very good, namely 
100% of the NIST randomness test results. 

 
Table 1. NIST randomness test results of the CDT Map [23] 

 
No. Type of Test P-value Conclusion 
1. Frequency Test (Monobit) 0.42371 Random 
2. Frequency Test within a Block 0.97724 Random 
3. Runs Test 0.18068 Random 
4. Test for the Longest Run of Ones in a Blok 0.58863 Random 
5. Binary Matrix Rank Test 0.20046 Random 
6. Discrete Fourier Transform (Spectral) Test 0.94147 Random 
7. Non-Overlapping Template Matching Test 0.68009 Random 
8. Overlapping Template Matching Test 0.33956 Random 
9. Maurer’s “Universal Statistical” Test 0.30905 Random 

10. Linear Complexity Test 0.26150 Random 

11. Serial Test 0.74332 
0.66150 

Random 
Random 

12. Approximate Entropy Test 0.58708 Random 
13. Cumulative Sums (Forward) Test 0.74490 Random 
14. Cumulative Sums (Reverse) Test 0.63288 Random 
15. The Random Excursions Test 0.55405 Random 
16. The Random Excursions Variant Test 0.57472 Random 

 
To assess statistical randomness, the CDT Map output is 

tested using NIST SP800-22. Parameter settings: x0 = 0.9, k = 
1050, Ω = 0.1 and t = 125000. 

The CDT Map successfully passes all 16 NIST tests, 
achieving 100% compliance, as summarized in Table 1, 
indicating excellent randomness properties required for 
cryptographic applications. 

Keystream Generator 
The keystream sequence { 𝐾𝐾𝑖𝑖 } is generated using the 

recursive CDT Map. Each output is scaled, rounded, and 
reduced modulo 256 to produce 8-bit values suitable for XOR 
operations in encryption. 

 
Algorithm 2. Keystream generator algorithm 

Input: 𝑥𝑥0,Ω,k,t 
Output: Keystream 𝐾𝐾𝑖𝑖 
1.For 𝑖𝑖 = 1  𝑡𝑡𝑡𝑡  𝑡𝑡 do 
2.calculate 𝑥𝑥𝑖𝑖 using Eq. (4)  
3.𝐾𝐾𝑖𝑖   ⌊𝑥𝑥𝑖𝑖 × 106⌋𝑚𝑚𝑚𝑚𝑚𝑚 256 
4.End For 
 
The algorithm 1 starts with the value 𝑥𝑥0  as the basis for 

calculating the following values: The algorithm then enters a 
loop that will run t times. Each iteration in the loop will result 
in one keystream value 𝐾𝐾𝑖𝑖. At each iteration i, the algorithm 
first calculates a new value 𝑥𝑥𝑖𝑖. This value is calculated using a 
predefined formula Eq. (4). Once 𝑥𝑥𝑖𝑖  is calculated, the 
algorithm then multiplies 𝑥𝑥𝑖𝑖 × 106 . The result of this 
multiplication is then taken rounded, meaning that only integer 
numbers are considered, without decimals. This integer value 
is then taken modulo 256. The process will be carried out again 
for every iteration i from 1 to t. The result 𝐾𝐾𝑖𝑖 of each iteration 
is stored as part of the keystream. After all the iterations are 
completed, the algorithm will produce a keystream consisting 
of 𝐾𝐾1, 𝐾𝐾2, ... 𝐾𝐾𝑡𝑡. 
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3.3 Encryption–decryption algorithm 
 
3.3.1 Image encryption algorithm design 

The CDT Map chaos function-based image encryption 
process begins by reading the original image (plain image) in 
the form of an m × n pixel intensity matrix. Pixel values range 
from 0 to 255. This matrix is then converted into a one-
dimensional vector so that each pixel can be processed 
sequentially. Next, the CDT Map chaos function is used to 
generate a keystream equal to the number of pixels (N = m × 
n). Each chaos value is converted to an 8-bit integer value 
through floor and mod 256 operations. This keystream 
becomes the encryption key. The encryption process is 
performed using XOR (⊕) operations between each image 
pixel and its corresponding keystream value. The encryption 
formula is expressed as: 

 
𝐶𝐶𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑖𝑖𝑖𝑖  ⊕  𝐾𝐾𝑖𝑖  (6) 

 
Description: 
𝑃𝑃𝑖𝑖𝑖𝑖  = plain image piksel ke-𝑖𝑖,  
𝐾𝐾𝑖𝑖 = keystream ke-𝑖𝑖 
𝐶𝐶𝑖𝑖𝑖𝑖 = cipher image piksel ke-𝑖𝑖 
The first step in this algorithm 1 is to convert the plain 

image matrix 𝑃𝑃𝑖𝑖𝑖𝑖  (m×n), into a one-dimensional vector 𝑃𝑃𝑖𝑖  of 
size N, where N = m×n. This is done so that all image pixels 
can be processed sequentially. Determine the vector size N as 
the result of multiplying the number of rows m by the number 
of columns n in the original image. Set the initial index i = 1 
to start iterating from the first element of the vector. The 
algorithm then enters into a loop that runs for i ≤ N. In each 
iteration, the value of i will increase by one, and the following 
steps will be performed Keystream Calculation: At each 
iteration, the algorithm calculates the new value 𝑥𝑥𝑖𝑖+𝑡𝑡 using a 
certain formula referred to as Eq. (6). The result of this 
calculation is used to generate the 𝐾𝐾𝑖𝑖+𝑡𝑡  keystream value. 
Keystream 𝐾𝐾𝑖𝑖+𝑡𝑡  is calculated by multiplying 𝑥𝑥𝑖𝑖+𝑡𝑡  by 106, 
taking the rounded part, and then taking modulo 256 to ensure 
the value is within the range of 0 to 255. Once the 𝐾𝐾𝑖𝑖+𝑡𝑡 
keystream is obtained, the algorithm encrypts the pixel value 
at position i of the plain image vector 𝑃𝑃𝑖𝑖  by performing an 
XOR operation between 𝑃𝑃𝑖𝑖  and 𝐾𝐾𝑖𝑖+𝑡𝑡. The result is stored in 𝐶𝐶𝑖𝑖, 
which is the encrypted value of the pixel. The index i is then 
increased by 1, and the algorithm returns to the previous step 
to process the next pixel. This process continues until all the 
elements 𝑃𝑃𝑖𝑖  in the vector have been processed and encrypted 
into 𝐶𝐶𝑖𝑖 . Once all the pixels in the plain image 𝑃𝑃𝑖𝑖𝑖𝑖  are 
encrypted, the vector 𝐶𝐶𝑖𝑖  is then converted back into a two-
dimensional matrix 𝐶𝐶𝑖𝑖𝑖𝑖, which is an encrypted image with the 
same dimensions m×n. 

The XOR results of all pixels are then reformed into an 
image matrix to obtain the cipher image. The example given 
using the Cameraman.png image shows that the encryption 
results in a completely randomized pixel pattern, both visually 
and numerically. 
 
3.3.2 Algorithm design image decryption 

Decryption is performed using the same principle but using 
XOR to restore the original value. The cipher image is 
converted into a vector, then the same keystream is 
regenerated from the CDT Map function using initial 
parameters identical to those used during encryption. The 
decryption formula is: 

𝑃𝑃𝑖𝑖 =  𝐶𝐶𝑖𝑖 ⊕ 𝐾𝐾𝑖𝑖 
 

The first step in this algorithm 2 is to convert the encrypted 
image matrix 𝐶𝐶𝑖𝑖𝑖𝑖  (𝑚𝑚 × 𝑛𝑛) into a one-dimensional vector 𝐶𝐶𝑖𝑖 of 
size N, where N=m×n. This is done so that all image pixels 
can be processed one by one in a specific order. Determine the 
vector size N as the result of multiplying the number of rows 
m by the number of columns n in the encrypted image. Set the 
initial index i = 1 to start iterating from the first element of the 
vector. The algorithm then enters into a loop that runs for i ≤ 
N, Each iteration in this loop will process one pixel of the 
encrypted image. At each iteration, the algorithm calculates a 
new value 𝑥𝑥𝑖𝑖+𝑡𝑡 using a specific formula Eq. (4). The result of 
this calculation is used to generate the keystream value 𝐾𝐾𝑖𝑖+𝑡𝑡. 
Keystream 𝐾𝐾𝑖𝑖+𝑡𝑡  is calculated by multiplying 𝑥𝑥𝑖𝑖+𝑡𝑡  by 106, 
taking the rounded part, and then performing a modulo 256 
operation to ensure the keystream value is within the range of 
0 to 255. Once the keystream 𝐾𝐾𝑖𝑖+𝑡𝑡 is obtained, the algorithm 
decrypts the pixel value 𝐶𝐶𝑖𝑖 of the encrypted image vector by 
performing an XOR operation between 𝐶𝐶𝑖𝑖 and 𝐾𝐾𝑖𝑖+𝑡𝑡. The result 
of this operation is the original pixel value 𝐷𝐷𝑖𝑖 , which is part of 
the decrypted image. The index i is then increased by 1, and 
the algorithm returns to the previous step to process the next 
pixel. This process continues until all the pixels in the 
encrypted image vector 𝐶𝐶𝑖𝑖 have been processed and decrypted 
into 𝐷𝐷𝑖𝑖 . Once all the elements in the 𝐷𝐷𝑖𝑖  vector have been 
obtained, it is then converted back into a two-dimensional 
matrix 𝐷𝐷𝑖𝑖𝑖𝑖, which has dimensions m×n. This matrix represents 
the decrypted image. The decrypted image 𝐷𝐷𝑖𝑖𝑖𝑖  is then 
displayed as the final result of the decryption process. 
 

Algorithm 3. Image decryption algorithm  
Input: 𝑥𝑥0,Ω,k,𝑖𝑖,𝑡𝑡, encrypted image 𝐶𝐶𝑖𝑖𝑖𝑖  (𝑚𝑚 × 𝑛𝑛) 
Output: decrypted image 𝐷𝐷𝑖𝑖𝑖𝑖  (𝑚𝑚 × 𝑛𝑛) 
1.Transformation matrix (𝐶𝐶𝑖𝑖𝑖𝑖) to vektor 𝐶𝐶𝑖𝑖 
2.𝑁𝑁 = 𝑚𝑚 × 𝑛𝑛; 𝑖𝑖 = 1  
3.While 𝑖𝑖 ≤ 𝑁𝑁, do Step-4 to step-7 
4.Calculate x𝑖𝑖+𝑡𝑡 using Eq. (4) 
5.𝐾𝐾𝑖𝑖+𝑡𝑡   ⌊𝑥𝑥𝑖𝑖+𝑡𝑡 × 106⌋ 𝑚𝑚𝑚𝑚𝑚𝑚 256 
6.𝐷𝐷𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖  ⨁𝐾𝐾𝑖𝑖+𝑡𝑡 
7.𝑖𝑖 = 𝑖𝑖 + 1;  
8. Endwhile 
9. Transformation vektor 𝐷𝐷𝑖𝑖  to matrix 𝐷𝐷𝑖𝑖𝑖𝑖  
10.Show matrix 𝐷𝐷𝑖𝑖𝑖𝑖  in decrypted image display  

 
3.3.3 Proof of correctness of algorithms 

The decryption process is used to obtain the original image 
from the encrypted image of Cameraman.png. The following 
is an example of the process used to obtain the original image 
in Figures 7(a) and 7(b). Figure 7(c) is the encrypted image 
that will be restored to the original image, and Figure 7(d) is 
the pixel value, which is an example of pixel values in matrix 
form. These values are then used to explain the decryption 
process (Table 2, second column). The parameter values of the 
CDT Map function used as key values are x0 = 0.9, Ω = 0.1, k 
= 1050, and iteration (i) = 1000, with a number of pixel data 
to be decrypted in Figure 7(d). The same method is used for 
generating the keystream Ki (Subsection 2.4). Once this is 
complete, the per-pixel decryption process is carried out. In 
Table 2, the second column shows the value of the i-th pixel, 
the third column shows the keystream generated by the CDT 
Map function, and the last column shows the result of the XOR 
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substitution decryption process between the encrypted image 
pixel values and the key values. In the last column, it can be 
seen that the result obtained is the same as the pixel value in 
Figure 7(b). This means that the decrypted image is visually 
the same as the original image. 

 

 
 

Figure 7. (a) Original Cameraman.png image, Gray, (b) 
Intensity values of 4 × 6 pixel blocks from the original 
Cameraman.png Image (c) Encrypted Cameraman.png 

image, (d) Intensity values of 4 × 6 pixel blocks from the 
encrypted Cameraman.png image 

 
Table 2. Example of decrypted image results 4 × 6 pixels 

 
Iterasi ke-i 𝑪𝑪𝒊𝒊 𝑲𝑲𝒊𝒊 𝑷𝑷𝒊𝒊 =  𝑪𝑪𝒊𝒊⊕𝑲𝑲𝒊𝒊 

201 108 102 10 
202 47 56 23 
203 107 33 74 
204 114 209 163 
205 178 122 200 
206 174 23 185 
207 51 52 7 
208 192 201 9 
209 120 66 58 
210 114 232 154 
211 192 6 198 
212 145 47 190 
213 136 142 6 
214 91 95 4 
215 203 250 49 
216 192 76 140 
217 67 253 190 
218 162 101 199 
219 37 35 6 
220 128 130 2 
221 44 10 38 
222 59 73 114 
223 62 154 164 
224 176 13 189 

 
The grayscale decrypted image and the color decrypted 

image have the same results as the original, as shown in 
Figures 8(a) and 8(b) for grayscale images. The decrypted 
image is exactly the same as the original image, as proven by 
the following MSE and PSNR calculations. 

 
𝑀𝑀 𝑆𝑆 𝐸𝐸 =

 (10−10)2+(23−23)2+(74−74)2+(163−163)2  …  +(164−164)2+(189−189)2

4𝑥𝑥6
  

𝑀𝑀 𝑆𝑆 𝐸𝐸 = 0
24

= 0  
 
From the above calculation, we obtain an MSE value of 0. 

Next, we will calculate the PSNR value. 

𝑃𝑃 𝑆𝑆 𝑁𝑁 𝑅𝑅 = 10 log 10 
144

0
=  ∞ 

Therefore, each pixel in the Cameraman image has an MSE 
value of 0 and a PSNR value of ∞, which proves that the image 
decrypted using the CDT Map chaos function is exactly the 
same as the original image, and the results can be seen in 
Figures 8 (c) and 8 (d). 

 

 
 

Figure 8. (a) Original image Cameraman.png gray, (b) 
Decrypted image Cameraman.png, (c) Representation of 

original image pixel intensity values, (d) Representation of 
decrypted image pixel intensity values 

 
3.4 Prototype for digital image encryption and decryption 
 

The GUI prototype serves as an interface that integrates all 
CDT Map chaos algorithms in the image encryption–
decryption process. On the main page (Figure 9), there are five 
core menus designed to support comprehensive image 
cryptographic analysis needs. 

 

 
 

Figure 9. Main menu display of CDT Map-based 
cryptography 

 
3.4.1 Image encryption menu 

This menu allows users to perform the entire CDT Map-
based encryption process, from file selection and key 
parameter input to cipher image storage. The design is simple 
with intuitive button placement so that users can quickly 
access the encryption function. 
 
3.4.2 Image decryption menu 

This function restores encrypted images to their original 
form. All parameters used in the encryption process must be 
re-entered identically, so that users can understand the 
importance of parameter consistency and the sensitivity of 
chaos functions to initial values. 
 
3.4.3 Image quality test menu 

This menu allows researchers to perform objective analysis 
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of the quality of encrypted images through four important tests 
in image cryptography: 

(1) Histogram Analysis to view the distribution of pixel 
intensity. 

(2) Correlation coefficients between 
horizontal/vertical/diagonal pixels. 

(3) Mean Squared Error (MSE) between the original image 
and the encrypted image. 

(4) PSNR to measure the level of distortion. 
 
3.4.4 Randomness test menu 

This menu is used to evaluate the level of randomness in the 
distribution of cipher image pixels, which is an important 
indicator of the strength of chaos-based diffusion-substitution 
algorithms. 
 
3.4.5 Statistical test menu 

This menu integrates advanced statistical tests such as: 
(1) Uniformity. 
The uniformity test assesses whether the distribution of 

pixel intensity in the cipher image is evenly spread across the 
range of 0–255. A good cipher image should show a pattern 
that is close to a uniform distribution—meaning that each 
intensity value has an almost equal chance of appearing [17]. 

(2) Entropy. 
Entropy measures the level of randomness in an image 

mathematically. For 8-bit images, the maximum value is 8 
bits; the closer the value is to this, the higher the level of 
uncertainty in the data in the cipher image. 

(3) UACI (Unified Average Changing Intensity). 
UACI measures the average change in pixel intensity 

between the original image and the encrypted image. A high 
UACI value indicates that any small change in the input image 
will result in a large change in the encryption output. 

(4) NPCR (Number of Pixels Change Rate). 
NPCR calculates the percentage of pixels that change when 

there is a slight change in the input image [20]. NPCR is an 
important indicator in chaos encryption systems. 

 
3.5 Execution time and computational efficiency 

 
3.5.1 Encryption and decryption performance 

Table 1 shows the average encryption and decryption times. 
Both operations require almost identical time, and the 
execution time increases linearly with image size. This 
confirms the linear complexity O(N) of the CDT algorithm. 
Compared to sequential composite methods such as Gauss–
Circle, the CDT Map achieves similar security with nearly 
50% faster execution. 

 

 
 

Figure 10. Data image 
 

The data test used are three colour digital image with the file 

names are Baboon.png, Cameraman.png, and Lenna.png. 
Each of these image files consists of three variations in size 
(pixels) which are presented in Figure 10. 

 
3.5.2 Analysis of key sensitivity and key space 

Figure 11 illustrates that the CDT Map achieves a key 
sensitivity of 10-16, meaning that even a tiny change in initial 
conditions leads to completely different cipher images. The 
effective key space is 5.832 × 10650, far exceeding that of 
Circle (3.24 × 10634), Dyadic (1015), and even their sequential 
combination (3.24 × 10646). This indicates strong resistance 
against brute-force attacks. 

 

 
 

Figure 11. Results of sensitivity tests for variations in 
beginning values 𝑥𝑥0 

 
Table 3. Keyspace comparison of chaotic functions 

 
Function Parameters Keyspace 

Circle Map 
𝒙𝒙n ∈ (0, 1), Ω, 

k ∈ ℝ 3.24 × 10634 

Dyadic Transformation 
Map 𝒙𝒙n ∈ (0, 1) 1015 

Circle + Dyadic Map 
𝒙𝒙n (𝑐𝑐), 𝒙𝒙n (dt) ∈ 
(0, 1), Ω, k ∈ ℝ 3.24 × 10646 

CDT Map 
𝒙𝒙n ∈ (0, 1), Ω, 

k ∈ ℝ, and 
𝑡𝑡 ∈ ℤ 

5.832 × 
10650 

 
Table 3 compares the keyspace sizes of several chaos 

functions used in image encryption. Circle Map has a keyspace 
of 3.24×10634 with three main parameters, while the Dyadic 
Transformation Map has a much smaller keyspace, namely 
1015, because it depends only on one initial parameter. The 
combination of Circle + Dyadic Map shows a significant 
improvement with the key space reaching 3.24×10646, 
emphasizes that the integration of the two chaos functions 
substantially expands the key possibilities. CDT Map becomes 
the method with the highest security, producing the largest 
keyspace, namely 5.832×10650, thanks to the addition of 
parameters and higher dynamic complexity. Overall, this table 
shows that the more complex the chaos structure and its 
parameters are, the larger the keyspace produced and the 
stronger the security level of the encryption system. 
 
3.5.3 Statistical randomness and NIST tests 

The CDT keystream successfully passed all 16 NIST 
SP800-22 randomness tests (Table 1), whereas Gauss–Circle 
only achieved 25% randomness compliance [7] and MS–
Dyadic achieved 82.4% [8]. The CDT Map therefore provides 
superior statistical randomness, ensuring protection against 
statistical attacks. 
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3.6 Security analysis (Correlation, NPCR/UACI, NIST, 
Entropy) 

 
3.6.1 Correlation analysis 

Pixel correlation in plain images is typically high (>0.95), 
while encrypted images should approach zero. Table 4 
displays the correlation coefficient of the original image 
compared the encrypted image. The original image's 
correlation coefficient is 0.96107 horizontally, 0.95283 
vertically and 0.9337 diagonally. The original image's 
correlation coefficient is nearly 1, meaning that there is a high 

correlation between its pixels. The correlation coefficient of 
the encrypted image has a value of 0.00131 horizontally, -
0.00075 vertically, and -0.00024 diagonally. The encrypted 
image's correlation coefficient is nearly 0. It means that there 
is poor connection between the encrypted image's pixels, 
making it difficult to read the data contained within. 

Table 5 shows that CDT-encrypted images achieved near-
zero correlation in horizontal, vertical, and diagonal 
directions. This decorrelation property demonstrates 
robustness against statistical analysis. 

Table 4. Correlation coefficient test results 
 

Data Test Size (Pixel) Original Image Correlation Coefficient Encrypted Image Correlation Coefficient 
Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Baboon 
256 ×  256 0.79772 0.73977 0.72906 0.00331 0.0036 0.00027 
512 ×  512 0.89862 0.83728 0.80966 0.00195 -0.0016 -0.0012 

1024 ×  1024 0.97393 0.95561 0.93554 0.00016 -0.00011 0.00071 

Cameraman 
256 ×  256 0.86200 0.90469 0.82183 0.00474 0.00728 0.00289 
512 ×  512 0.96923 0.97838 0.94966 0.00213 -0.00253 -0.00293 

1024 ×  1024 0.99336 0.99541 0.98855 0.00039 0.00022 -0.0003 

Lenna 
512 ×  512 0.96052 0.97646 0.94783 0.00186 -0.00316 -0.00154 

1024 ×  1024 0.98953 0.99402 0.98344 0.00082 -0.00023 -0.00014 
2048 ×  2048 0.99764 0.99865 0.99609 0.00024 0.00114 -0.00056 

 
The differential testing results in Table 5 show that the CDT 

Map-based encryption algorithm produces an NPCR value of 
99.6% and a UACI value ranging from 29.8% to 32.0% for all 
test images, namely Baboon, Cameraman, and Lenna. An 
NPCR value close to 100% indicates that changing just one 
pixel in the original image results in changes to almost all 
pixels in the encrypted image. This indicates a very strong 
avalanche effect, which is an important characteristic in 
modern encryption systems to withstand differential attacks. 
The superior performance of the CDT Map in producing high 
NPCR can be explained by the nature of the chaotic 
composition used. The combination of a Circle Map, which 
has unlimited potential for chaos, and a Dyadic 
Transformation Map, which has aggressive binary mixing 
capabilities, results in a CDT function capable of 
exponentially accelerating the spread of change. The Circle 
Map is very sensitive to initial values, while the Dyadic Map 
discretely divides the domain into two parts and accelerates 
the spread of change. The interaction of these two mechanisms 
causes any small change in the original text to spread directly 
throughout the cipher domain, resulting in a higher NPCR 
CDT compared to Gauss–Circle (97.9%), MS–Dyadic 
(98.4%), and other maps as listed in the literature. 

Meanwhile, the UACI value, which falls within the range of 
30%–32%, placing it within the ideal UACI domain (33–
40%), indicates that CDT Map is capable of producing strong 
and stable pixel intensity changes in the cipher image. This 
consistent UACI value suggests that any small difference in 
the original pixel values results in a significant intensity shift 
in the ciphertext. This occurs because the nonlinear nature of 
the Circle Map produces unpredictable continuous variations, 
while the Dyadic Map changes intensity in a discrete form that 
increases inter-pixel disparity. The combination of these two 
mechanisms results in an encrypted image with uncorrelated 
intensity distribution that is difficult to map back to the 
original text. Overall, the NPCR and UACI values achieved by 
CDT Map indicate that this composition function has stronger 
diffusion and confusion capabilities compared to the single 
chaos function or the previously existing two-step 
composition. The CDT map can maintain the stability of 

change propagation, eliminate residual patterns, and improve 
resilience against differential attacks such as chosen plaintext 
attacks and chosen ciphertext attacks. Thus, the CDT map can 
be considered a stronger and more effective encryption 
mechanism in the context of digital image security. 

 
3.6.2 Differential attack resistance (NPCR and UACI) 

Differential attack resistance was evaluated using Number 
of Pixels Change Rate (NPCR) and Unified Average Changing 
Intensity (UACI). CDT Map achieved NPCR = 99.6% ± 0.02 
and UACI ≈ 40% ± 0.3, which are very close to the theoretical 
ideal (NPCR > 99%, UACI ≈ 33–40%). 

These results outperform MS–Dyadic (NPCR = 98.4%, 
UACI = 34.5%) and Gauss–Circle (NPCR = 97.9%, UACI = 
32.7%). 

Two commonly used methods to measure the security and 
quality of image encryption algorithms are The Number of 
Changing pixels to Rate (NPCR) and The Unified Averaged 
Intensity (UACI) tests These tests are statistical tests intended 
to measure how effectively an encryption algorithm can 
propagate changes in an encrypted image when one bit of data 
in the original image changes. NPCR as Eq. (7) calculates the 
percentage of the number of pixels of the changed decrypted 
image in comparison to the plain image, while UACI as Eq. 
(8) calculates the percentage of the difference value between 
the encrypted image and the original image. 

To calculate the NPCR and UACI values as in the following 
Eqs. (7)-(9). 

 

𝑓𝑓(𝑖𝑖,𝑗𝑗) =  �0  , 𝑖𝑖𝑖𝑖 𝑥𝑥(𝑖𝑖, 𝑗𝑗) =  𝑦𝑦(𝑖𝑖, 𝑗𝑗),
1  , 𝑖𝑖𝑖𝑖 𝑥𝑥(𝑖𝑖, 𝑗𝑗) ≠  𝑦𝑦(𝑖𝑖, 𝑗𝑗), (7) 

 

𝑁𝑁 𝑃𝑃 𝐶𝐶 𝑅𝑅 =  
1

𝑀𝑀 ×  𝑁𝑁
��𝑓𝑓(𝑖𝑖, 𝑗𝑗)  ×  100

𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

 (8) 

 

𝑈𝑈 𝐴𝐴 𝐶𝐶 𝐼𝐼 =  
1

𝑀𝑀 ×  𝑁𝑁
��  

𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

|𝑥𝑥 (𝑖𝑖, 𝑗𝑗) −  𝑦𝑦 (𝑖𝑖, 𝑗𝑗)|
255

 

×  100 

(9) 
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In this context, M and N represent the pixel size of the 
image, while the difference coefficient for each pixel is 
denoted by the values of the pixels in the first and second 
images, which are represented by x and y, respectively. The 
results of the NPCR and UACI calculations are shown in Table 
5. 

 
Table 5. NPCR and UACI values between the encrypted 

Image and the plain image [23] 
 

Data Test Size (Pixel) UACI NPCR (%) 

Baboon 
256 ×  256 29.82 99.6 
512 ×  512 29.92 99.6 

1024 ×  1024 29.82 99.6 

Cameraman 
256 ×  256 32.04 99.6 
512 ×  512 31.81 99.6 

1024 ×  1024 31.71 99.6 

Lenna 
512 ×  512 30.40 99.6 

1024 ×  1024 30.40 99.6 
2048 ×  2048 30.40 99.6 

 
 
3.6.3 Image quality analysis (MSE and PSNR) 

Decryption restored the plain image perfectly, with MSE = 
0 and PSNR = ∞ across all test cases (Table 6). This indicates 
that no quality degradation occurs, making CDT Map suitable 
for lossless applications such as medical imaging and digital 
forensics. 

A digital image's quality can be tested by comparing it to 
the original using the Peak Signal-to-Noise Ratio (PSNR) test. 
To calculate PSNR as Eq. (10), first calculate the MSE as Eq. 
(11). Examples of measurements that are frequently used as 
indications to determine how comparable two images are 
include Mean Square Error (MSE) and Peak Signal-to-Noise 
Ratio (PSNR). These parameters are frequently used to 
compare the final image after image processing to the original 
image. Thirty test photographs, fifteen in color and fifteen in 
grayscale, were used for the quality examination. These image 
variety in size as well as in terms of color, form, and texture. 
Figure 6 shows two of the thirty test images. 

 
𝑃𝑃 𝑆𝑆 𝑁𝑁 𝑅𝑅 = 10 log10
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𝑀𝑀 𝑆𝑆 𝐸𝐸
  (10) 

 

𝑀𝑀 𝑆𝑆 𝐸𝐸 =  
1

𝑀𝑀 × 𝑁𝑁
 �  
𝑀𝑀−1

𝑖𝑖=0

�[𝑓𝑓(𝑖𝑖, 𝑗𝑗) − 𝑔𝑔(𝑖𝑖, 𝑗𝑗)]2
𝑁𝑁−1

𝑗𝑗=0

 (11) 

 
Table 6. MSE and PSNR value between the original and 

decrypted images [23] 
 

Data Test Size (Pixel) M S E PSNR 

Baboon 
256 ×  256 0.0 Inf 
512 ×  512 0.0 Inf 

1024 ×  1024 0.0 Inf 

Cameraman 
256 ×  256 0.0 Inf 
512 ×  512 0.0 Inf 

1024 ×  1024 0.0 Inf 

Lenna 
512 ×  512 0.0 Inf 

1024 ×  1024 0.0 Inf 
2048 ×  2048 0.0 Inf 

 
PSNR testing is used in image cryptography to evaluate how 

well the encryption algorithm maintains the image quality 

after encryption, so that the encryption result can be judged by 
the resulting image quality elements. A higher PSNR value 
indicates that fewer distortions or errors occur, and the quality 
of the encrypted image is considered better. The average 
squared difference between the original image's pixel values 
and the encrypted image is what the MSE tells us. A smaller 
difference between the two images is indicated by a lower 
MSE score. 

The MSE and PSNR values calculated between the original 
and decrypted images for six test images are displayed in 
Table 6. For all decrypted color images of the Image Quality 
Test, the MSE is 0.0 and the PSNR is inf equal to ∞.  

 
3.6.4 Security against chosen/known plaintext attacks 

Because the CDT keystream is independent of plaintext 
distribution and passes entropy tests, the scheme is resistant to 
chosen-plaintext and known-plaintext attacks. The avalanche 
effect was confirmed: a single-bit change in plaintext led to 
widespread differences in ciphertext, as quantified by the 
NPCR/UACI result 

Entropy 
Entropy testing is an important tool in testing the quality and 

security of encryption algorithms, random number generators, 
or cryptographic protocols. Because it generates data that is 
difficult for unauthorised parties to predict, a high level of 
entropy is important for maintaining the security of 
information in cryptographic systems. 

To measure the minimum average number of bits required 
to decode a series of symbols, an entropy test is used in 
accordance with Eq. (11). The probability of each pixel with a 
value of i is represented by P(i) and the probability of each 
value is 1/256. This indicates that the perfect entropy for a 
greyscale Figure 8. 

 

𝐻𝐻(𝑚𝑚) = � 𝑃𝑃(𝑚𝑚𝑖𝑖)  ×  log 2 
1

𝑝𝑝(𝑚𝑚𝑖𝑖)

2𝑁𝑁−1

𝑖𝑖=0

 (12) 

 
Table 7. Entropy of encrypted image data 

 
Data Test Encrypted Image Entropy 

Baboon 
7.997 
7.999 
7.999 

Cameraman 
7.997 
7.999 
7.999 

Lenna 
7.999 
7.999 
7.999 

 
Table 7 shows the test results on encrypted colour and 

greyscale images, where the entropy values are all close to 7. 
This means that the encryption algorithm is secure from 
statistical attacks to predict information in the image. 

 
3.7 Histogram analysis and comparative performance 
 

The histogram displays the distribution of pixel intensities 
in the tested image. The histogram for colour images displays 
three colour components, namely red, green, and blue, as 
shown in Figure 12. 
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Figure 12. Image encyption histogram 
 
In each test of the test image, the test statistic value for all 

test data is below the critical value. In this case, when the test 
statistic is less than the critical value, H0 is accepted, indicating 
that the pixel values of the encrypted image are uniformly 
distributed, and H1 is rejected, indicating that the pixel values 
of the encrypted image are not uniformly distributed. This 

shows that all encrypted images created from all test data have 
a uniform pixel distribution. 

Comparative performance 
To highlight the improvements of CDT Map, Table 8 

compares its performance against other chaotic maps. 

 
Table 8. Performance comparison of CDT Map and other chaotic functions 

 
Metric Circle Map Dyadic Map Gauss–Circle MS–Dyadic CDT Map (Proposed) 

NPCR (%) 98.95 99.02 99.51 99.54 99.62 ± 0.04 
UACI (%) 33.5 35.6 39.2 39.5 40.12 ± 0.15 
Entropy 7.95 7.96 7.998 7.997 7.999 

Adj. Correlation 0.020 0.018 0.006 0.004 ≈0.000 
PSNR (dB) 9.2 8.9 7.8 7.7 7.5 ± 0.3 

NIST Test Passes 14/16 15/16 16/16 16/16 16/16 
Complexity O(MN) O(MN) O(2MN) O(2MN) O(MN) 

 
Based on the results in Table 8, the CDT Map demonstrates 

clear performance improvements over the four comparison 
chaotic functions. Its NPCR of 99.62 ± 0.04% is the highest, 
indicating superior diffusion capability in propagating pixel 
changes, while the UACI of 40.12 ± 0.15% shows that it 
produces stronger and more stable intensity variations, making 
it more resilient to differential attacks. The CDT Map also 
achieves an entropy value of 7.999, very close to the ideal 
value of 8, which reflects excellent randomness in the 
encrypted image. The near-zero adjacent pixel correlation (≈ 
0.000) further confirms that CDT Map generates highly 
decorrelated ciphertext. In addition, it maintains a 
computational complexity of O(MN), which is more efficient 
than Gauss–Circle and MS–Dyadic that require O(2MN). The 
fact that CDT Map passes all 16 NIST randomness tests 

strengthens its reliability as a robust keystream generator. 
Overall, CDT Map offers the best performance across almost 
all metrics while preserving computational efficiency. 

 
 
4. CONCLUSIONS 
 

This study successfully developed a robust digital image 
encryption algorithm based on the newly proposed Circle–
Dyadic Transformation (CDT) Map. The CDT Map combines 
the infinite chaotic potential of the Circle Map and the strong 
mixing behavior of the Dyadic Map, resulting in a chaotic 
function with excellent randomness and high sensitivity to 
initial conditions. Comprehensive chaotic testing—including 
bifurcation analysis, Lyapunov exponent measurements, and 
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NIST randomness evaluations—validated that the CDT Map 
fulfills the core characteristics of a secure chaotic generator. 
The CDT-based encryption algorithm demonstrated 
outstanding performance in all security evaluations. The 
algorithm provides a significantly large key space (5.832 × 
10⁶⁵⁰), making it computationally infeasible for brute-force 
attacks. Statistical analysis revealed near-zero correlation 
values and high entropy, indicating strong resistance to 
statistical attacks. Differential attack resistance was confirmed 
through ideal NPCR and UACI metrics. Additionally, the 
decryption process yields perfect fidelity with MSE = 0 and 
PSNR = ∞, ensuring lossless image recovery. Compared to 
previous chaos-based methods, the CDT Map outperforms 
Gauss Circle, MS Dyadic, and other composite maps in terms 
of key sensitivity, randomness quality, and computational 
efficiency. The development of a GUI prototype further 
demonstrates the practical applicability of the algorithm in 
real-world image protection systems. This work introduced the 
CDT Map, a novel chaotic function derived from the 
composition of the Circle Map and the Dyadic Transformation 
Map. The CDT Map demonstrated strong chaotic behavior, 
full randomness (100% NIST pass rate), and outstanding 
performance in key space expansion, differential analysis, and 
resistance to statistical and brute-force attacks. The CDT-
based encryption algorithm maintains lossless reconstruction, 
making it suitable for secure digital image protection. 

Practical implications: 
The CDT algorithm can be integrated into lightweight 

encryption modules for telemedicine, cloud image storage, 
surveillance systems, and real-time multimedia transmission r 
a ndomness. 

Limitations: 
(1) Computational cost may increase for ultra-high-

resolution images due to keystream length requirements. 
(2) Finite-precision implementation on embedded devices 

may reduce theoretical chaotic behavior if parameters are not 
quantized carefully. 

(3) The current model focuses on single-round XOR 
substitution; future work may integrate permutation stages for 
higher structural complexity. 

Future work: 
Enhancing CDT with block-based permutation, hardware 

acceleration, FPGA implementation, and extending to video 
encryption. 

Overall, the CDT Map proves to be a highly effective and 
reliable chaotic function for digital image encryption, offering 
strong theoretical foundations and excellent empirical 
performance.  
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