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Securing digital images remains a major challenge in modern communication systems due
to increasing risks of interception, manipulation, and unauthorized access. This study
proposes a novel chaotic function called the Circle-Dyadic Transformation Map (CDT
Map), constructed through the composition of the Circle Map and the Dyadic
Transformation Map, to serve as a keystream generator for image encryption. The
methodology consists of four key stages: (1) formulating the CDT Map via function
composition, (2) validating its chaotic behavior through Lyapunov exponent analysis,
bifurcation diagrams, and the NIST SP800-22 test suite, (3) designing a keystream-based
encryption—decryption algorithm using XOR operations, and (4) evaluating performance
through statistical, differential, and quality metrics. Experimental results show that the CDT
Map achieves a 100% pass rate on NIST randomness tests, a key space of 5.832 x 10%%°,
high key sensitivity (107'%), and superior NPCR (99.6%) and UACI (=40%) values
compared to existing chaotic maps. The proposed approach ensures perfect decryption
(MSE = 0, PSNR = o) and strong resistance to brute-force, statistical, and differential
attacks. The main contribution of this work is the development of a new composite chaotic
function that significantly enhances randomness, security strength, and computational

efficiency for digital image encryption.

1. INTRODUCTION

Manipulation of digital image data poses a threat to data
owners, especially when the images are used for malicious
purposes. To protect confidential data, it is necessary to design
storage and transmission systems that can prevent
unauthorized access and modification, both when images are
stored on computers and when they are sent via online services
such as email or cloud storage. Digital images such as medical
images are highly sensitive and require a robust security
system to maintain confidentiality in accordance with medical
ethics [1]. The security of medical record data is an obligation
as stipulated in Law Number 29 of 2004 concerning Medical
Practice and Article 28G paragraph (1) of the 1945
Constitution, which guarantees the protection of individual
rights to privacy and personal security [2].

The necessity for data security necessitates the adoption of
cryptographic methods. Historically, cryptography is
categorized into classical and modern forms. Both necessitate
keys for the processes of encryption and decryption. Classical
encryption prioritizes the confidentiality of algorithms,
whereas current cryptography emphasizes the confidentiality
of keys. Cryptography is categorized into symmetric and
asymmetric keys based on the encryption key. In symmetric
cryptography, a single key is employed for both encryption
and decryption, whereas asymmetric cryptography utilizes
distinct key pairs. Commonly utilized conventional encryption
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techniques encompass the Data Encryption Standard (DES),
the Advanced Encryption Standard (AES), and the Rivest-
Shamir-Adleman (RSA) algorithm. This approach, while
effective in encryption, is rendered less appropriate for digital
image encryption due to its limited key space and sluggish
processing speed [3]. This is due to the substantial duplication
and significant correlation among pixels in multiple directions
within digital images. The prolonged encryption duration and
limited key space render typical text encryption algorithms
inefficient [4].

Efforts to create digital picture encryption with chaotic
functions are conducted by sequential or ordered
implementation of two or more encryption phases, or by
composing functions. This is undertaken to enhance resilience
against diverse attackers. Certain research incorporates a
chaos-based diffusion-transposition method for the security of
digital images [5]. During the diffusion phase, the Logistic
Map function is employed, while the transposition phase
utilizes Arnold's Cat map. The technique produces a key space
of 1.84 x 10%, with key sensitivity attaining 107'°. This
indicates that the algorithm is resistant to brute-force attacks.
The algorithm for constructing the Logistic Map and the
Chebyshev Map is arranged sequentially [6]. This technique is
employed to encrypt medical photographs. Initially, the image
undergoes encryption via the Logistic Map, resulting in an
encrypted image that is subsequently re-encrypted using the
Chebyshev Map. This approach employs two functions to
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encrypt medical images in a two-step process. The decryption
process is conducted in an identical manner. This algorithm
comprises four parameters. Altering the parameter values of
the Logistic Map to infeasible levels compromises the security
of the image. Furthermore, the encryption process requires
double the duration.

The Circle Map has unlimited potential for chaos and is
composed with the Gauss Map. The algorithm for composing
the two sequentially [5]. The possibility of having greater
chaotic properties is investigated in this way. The sensitivity
diagram of this algorithm is much larger with respect to the
initial value. Only four out of 16 NIST tests passed the
randomness test, meaning the randomness level is only 25%
[7]. Therefore, if this Gauss-Circle Map is used for
cryptographic purposes, the cryptographic system that uses it
will have strong resistance to brute-force attacks, but it may
also be weak against statistical attacks. Another encryption
algorithm is composing MS Map and Dyadic Transformation
Map [8, 9]. Based on the bifurcation diagram, it can be seen
that for values in the range 4 € (0.3, 5), the density is better
when r = 3.8 [10]. The Lyapunov exponent results show that
non-negative values are satisfied for r values [8]. The NIST
test results with initial values and parameter values x,= 0.6, r
= 3.8, and A= 3.5, and a randomness level of 82.4% of the
NIST randomness test results.

The MS Gauss Map algorithm is the result of developing
two chaotic functions, namely composing the MS Map
function and the Gauss Iterated Map [11]. The key space
generated is 1.8 x 107 and the key sensitivity reaches 10°!°,
making it resistant to brute-force attacks. Additionally, testing
on encrypted image data is also resistant to statistical and
differential attacks. Another encryption algorithm based on
chaos is the composition of the Bernoulli Map and the Logistic
Map [12]. The key space of this algorithm is [(2*' — 1) — b X
k x d] x 1.6 x 1094 and the key sensitivity up to 10°'® makes
this function composition difficult to break with a brute-force
attack. Based on testing using two NIST tests on the random
number sequence generated from the Bernoulli Logistic Map,
the sequence is random, and the distribution of pixel intensity
values is uniform [13]. The test results with PSNR on the
original image data and the decrypted image data are oo.

Brute-force attacks, statistical attacks, and differential
attacks are some types of cryptographic attacks that can occur
during the storage and transmission of secret data or
information [14, 15]. A brute-force attack is a type of attack
that tries all possible combinations of encryption keys to
obtain the plaintext from the ciphertext they know. Statistical
attack is an attack that exploits statistical data (e.g., correlation
and distribution data between pixels of the ciphertext) to
obtain the original text (plaintext) [16]. Differential attack is
when the attacker looks for a relationship between the
ciphertext and a number of related plaintexts. The analysis was
performed on each of these pairs with several rounds of
analysis based on the patterns found from the encryption
process.

The rapid growth of digital communication systems has
intensified concerns regarding the security of sensitive image
data, particularly in fields such as medical imaging,
surveillance, and forensics [17]. Traditional cryptographic
approaches including DES, AES, and RSA are effective for
text-based data but tend to perform poorly in image encryption
due to their limited key space, high computational cost, and
inefficiency in handling strong pixel correlations [18, 19].
Consequently, chaos-based cryptographic schemes have

gained attention for their inherent sensitivity to initial
conditions, ergodicity, and nonlinearity, making them suitable
for generating secure keystreams [20]. Several researchers
have developed composite chaotic maps to improve
randomness and strengthen resistance to cryptanalytic attacks.
For example, the Gauss—Circle Map improves chaotic
sensitivity but demonstrates a low NIST randomness pass rate
of only 25%, indicating vulnerability to statistical attacks.
Similarly, the MS-Dyadic composition enhances mixing
behavior but achieves only 82.4% NIST compliance, leaving
room for improvement in uniform randomness [21]. Existing
two-stage approaches such as Logistic—Chebyshev or
Bernoulli-Logistic also suffer from drawbacks including
increased computational time, reduced randomness
consistency, or susceptibility to parameter degradation.
However, these studies lack a composite mapping that
simultaneously provides: a). high chaotic intensity, b). strong
mixing behavior, c). fully random keystream output (100%
NIST pass rate), and efficient single-step computation without
multi-round encryption. This gap motivates the development
of a new composite chaotic function that integrates the infinite
chaos potential of the Circle Map with the binary mixing
strength of the Dyadic Transformation Map, leading to the
proposed Circle-Dyadic Transformation (CDT) Map in this
research.

The inquiry guiding this study is: In what ways can the
chaotic function of the CDT Map be advanced to serve as a
keystream generator? What are the steps involved in designing
and implementing a digital image encryption and decryption
algorithm that utilizes the chaotic function of the CDT Map?
What is the comparative performance of the digital image
encryption and decryption algorithm utilizing the chaotic
function CDT Map when assessed against brute-force attacks,
statistical attacks, and differential attacks? This study aims to
identify the problems within the research while also pursuing
several key objectives: to generate a chaotic keystream
function CDT Map through the integration of the chaotic
Circle Map function and the chaotic Dyadic Transformation
Map function; to design and implement a digital image
encryption and decryption algorithm based on the chaotic
function CDT Map; and to analyze the performance of this
algorithm, ensuring it is resistant to brute-force attacks,
statistical attacks, and differential attacks [22].

2. METHOD

In order for this research to be more focused and aligned
with the research objectives, a series of steps were taken to
complete this study. Figure 1 shows the proposed stages or
steps in this study.
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Figure 1. Research method



2.1 Creating a new chaotic function (CDT Map)

The steps for creating a new chaotic function (CDT Map) as
a chaotic keystream generator thru the composition of two
chaotic functions: the Circle Map and the Dyadic
Transformation Map.

2.2 Testing the chaos function of the CDT Map and its
chaotic properties

The steps for testing the chaotic properties of the CDT Map
chaos function using the Lyapunov Exponent, Bifurcation
Diagram, and NIST test suite for randomness, as well as
designing the keystream generation algorithm.

2.3 Design and implementation of digital image encryption
and decryption algorithms

Stages in designing and implementing keystream-based
encryption and decryption algorithms from the chaotic CDT
Map function.

2.4 Prototype for digital image encryption and decryption

Stages in creating a software application prototype for
image encryption and decryption based on the chaotic CDT
Map function, and testing using color images (RGB) and
grayscale images.

2.5 Algorithm performance results

Evaluating the efficacy of a keystream-based digital image
encryption and decryption algorithm utilizing the chaotic
function CDT Map, which demonstrates resilience against
brute-force, statistical, and differential attacks, by:

a. Assessing the sensitivity of initial values and the
magnitude of the key space.

b. Examining histograms, correlations, and entropy.

c. Evaluating uniformity and doing differential analysis
(NPCR and UACI).

d. Evaluating the algorithm's performance by assessing the
quality of the encrypted and decrypted images through PSNR
and MSE metrics.

e. Evaluating the mean processing duration for the digital
image encryption and decryption procedures.

3. RESULT

This stage discusses the five stages in obtaining the results
of developing an encryption algorithm based on the chaos
circle-dyadic transformation map function for digital image
security, including:

3.1 Creating a new chaotic function (CDT Map)

A new chaos function is formed through the composition of
two chaos functions, Circle Map and Dyadic Transformation
Map, resulting in a new chaos function. This new chaos
function, subsequently named the CDT Map function, serves
as a keystream generator for use in the encryption and
decryption of digital image data. The process of forming the
CDT Map chaos function can be seen in Figure 2.

The composition of the Circle Map function and the Dyadic
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Transformation Map, which refers to the form of the Circle
Map function equation, is expressed as f(x). In addition, the
form of the Dyadic Transformation Map function equation is
expressed as g(x). Next, a new chaos function was formed
using a composition approach. In this study, composition was
performed using the following form. In this study,
compositions with the following forms were used g o f(x).
This means that the first mapping of variable x is performed
using the function f(x) and the results are continued in the
second mapping using the function g(x). The diagram
showing the composition process is illustrated in Figure 3.

chaotic dyadic transformation
map function

function of
chaos circle map

A 4

Function composition

i

New CDT map chaos
function

—» Ketstream Chaotic

Figure 2. Function composition formation diagram

A B C

gof

Figure 3. Composition model used in this study

Based on the composition model concept used as shown in

Figure 3, the following Circle Map chaos function
composition equation is obtained:
k
fO) =+ Q+ 2—sin(2nx)mod 1) (D
s

where, domain x,, € (0,1), Q@ € R and nonlinerity parameter
k € R.

with:

(a) x is the variable value at the nth iteration, which is
limited to the interval 0 dan | representing one full rotation of
the circle.

(b) Q is the frequency or rotation rate of the system.

(c) k is a parameter that controls the strength of the no-linear
interaction between the current variable value and the next
iteration.

(d) The term %sin(an) is a sinusoidal component.

The initial value x,, and Q and k are parameters. A very
interesting property of the Circle Map is the possibility of
infinite chaos.

The Dyadic Map is defined as (2) [20]:

2x

,0<x <05
909 = Lax -1

,05<x<1 2)



With domain x,, € (0,1) and range also in (0,1)

This defines g(x) as:

g(x) = 2x when x is between 0 (inclusive) and 0.5
(exclusive).

g(x) =2x — 1 when x is between 0.5 (inclusive) and
1 (exclusive).

which ensures ergodicity and uniform distribution.

To construct the CDT Map as a chaotic function suitable for
cryptographic applications, the composition order was
deliberately defined as g o f, meaning that the Circle Map
f(x)is applied first, followed by the Dyadic Transformation
Map g(x). This order is chosen because the Circle Map
produces continuous nonlinear trajectories with extremely
high sensitivity to initial conditions, allowing small
perturbations in the input to grow rapidly. When the Dyadic
Map is applied afterward, its binary partitioning mechanism
enhances the mixing effect by abruptly redistributing the
Circle Map outputs across subintervals in (0,1). Combining
continuous chaotic evolution (Circle) and discontinuous
binary folding (Dyadic) yields a keystream with stronger
diffusion, higher entropy, and more uniform randomness.
Conversely, using the reverse order f o gwould cause the
Dyadic Map’s discrete jumps to dominate the -early
transformation, reducing the effective sensitivity of the Circle
Map and producing a less uniform distribution that is more
vulnerable to statistical attacks. Therefore, selecting the
composition g o f maximizes chaotic intensity, strengthens
cryptographic confusion—diffusion properties, and improves
the robustness of the resulting CDT Map.

The proposed CDT Map combines both maps in one step:

Based on the concept of the composition which is defined
as (geof)(x) =g(f(x)) , the composition function is
obtained as shown in Eq. (3) as follows:

(g ° N
k
2<x+ Q+ —sin(an)) ,0 <x <05
21

- A3)
2(x+9+%sin(2nx)) —-1,05 <x <1
Eq. (3) is expressed in recursive form as Eq. (4):
Xn+1)
2 (xn + O+ %sin(an,J) ,0 <x, <05 4)

k
2 (xn + QO+ Esin(ann)) -1,05 <x, <1

Withn=0,1,2,3, ....

This construction ensures that the CDT Map retains the
infinite chaos potential of Circle Map while benefiting from
the strong mixing property of the Dyadic Map.

a) Domain: x,, € (0,1)
b) Range: f (x,) € (0,1)
Parameters: Q, k € R

3.2 Chaotic property validation

This study examines the chaotic properties of the CDT Map
through three main approaches: bifurcation diagrams,
Lyapunov exponents, and NIST randomness tests. The goal is
to ensure that the CDT Map has strong chaotic characteristics,
making it suitable for use as a keystream generator for
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cryptography and data security applications.

3.2.1 Bifurcation diagram

A bifurcation diagram can be used to determine the behavior
or properties of topological transitive functions. A bifurcation
diagram is a mapping between the values of the CDT Map
function x, and the parameter values of the function.

Algoritm 1. Plotting diagram bifurkasi

Input: xy, Q, k, i (banyaknya iterasi)
Output: plotting x,,

1.Forn =1toi

2.Hitung nilai x,, dari persamaan (3.4)
3.Plotting x,,

4 Next n

5.End for

Algorithm-1 uses iterations from for n = 1 to i. At each
iteration, the algorithm calculates the value x, based on
equations involving x,, Q, k, and i. After calculating, the
algorithm immediately plots the values x,, which can show
how values change during iterations. This plotting is useful for
analyzing patterns or trends in values x during iteration. The
algorithm repeats the calculation and plotting process until i
iterations are complete. At the end of the iteration, a graph will
be formed showing the behavior or trend of the values X,
generated by the CDT function.

Bifurcation Diagram Analysis of Parameter Q

The test was conducted by varying the Q parameter in the
range (0,1) with a resolution of 0.0001. For each Q value, the
CDT Map function was evaluated up to 200 iterations. The
bifurcation results showed two main characteristics:

(1) Figure 4 illustrates the 100th iteration by showing areas
that are still relatively sparse, indicating that the system has
not yet fully exhibited chaotic behavior. At this stage, initial
patterns leading to chaos are beginning to emerge, but are not
yet dominant.

(2) Figure 5 shows that the 200" iteration produces a much
denser diagram across almost the entire area Q. This density
indicates the emergence of many overlapping fixed and
periodic points, a clear indication that the system has entered
a fully chaotic state.

The density of the bifurcation results proves that the CDT
Map has a topologically transitive property, namely the ability
of the system to map a single point to a very large dynamic
space in an unexpected manner. In this dense area, the CDT
Map produces uncorrelated outputs that are highly sensitive to
parameter variations.

04 06
Omega

08

Figure 4. Bifurcation diagram of CDT Map function for
parameter Q at iteration = 100
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Figure 5. Bifurcation diagram of the CDT Map function for
parameter € at iteration = 200

3.2.2 Lyapunov exponent
To confirm chaos, the CDT Map was analyzed based on
Devaney’s definition of chaos, which requires:

n-1

1 .
n|(F®) " (xo)|

i=0

)

= lim
H n-oon

1. Sensitivity to Initial Conditions: Verified using
Lyapunov exponent (A):

If A > 0, the system exhibits chaos.

Figure 6 is a graphical representation of the Lyapunov
exponent equation that quantitatively measures the sensitivity
to initial values. When the Lyapunov exponent for u is
positive, it means that the equation has a high sensitivity to
initial values. It can be seen that the CDT Map is sensitive to
the initial value at Q € (0, 1).

785
— LyAPUNOV EXponent
7.80
1.75
7.70
H765
7.60

755

150

745

T T T T T T

0.0 02 04 06 08
Omega

Figure 6. CDT map lyapunov exponent for x, = 0.9, (1 =
0.1, k = 1050

2. Topological Mixing: Evaluated via bifurcation diagram.
Dense points in the bifurcation plot indicate strong mixing and
high entropy, with variable values of x, = 0.9,Q = 0.1,k =
1050, ¢ =200.

To get the bifurcation diagram, CDT Map is used by
mapping each x,, value which is the result of the calculation
on each Q € (0, 1) with a change of 0.0001. In this study, the
CDT Map is calculated 200 times for each parameter change
Q. The dense area shows that the CDT Map function is chaotic
with the value of parameter Q in that area. From Figure 2, it is
evident that the chaos function of CDT Map has topologically
transitive properties and its periodic points are dense.

3. Dense Periodic Points: Demonstrated through statistical
uniformity of keystream and validated with The National
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Intitute of Standart Technologies Tast (NIST) SP800-22 tests.

Table 1 shows that the CDT Map function passes the NIST
randomness test. The parameter values used in this test are x
=0.9,k=1050,Q2=0.1 and = 125000. Based on Table 1, the
CDT Map function is one of the random number generator
functions whose randomness properties are very good, namely
100% of the NIST randomness test results.

Table 1. NIST randomness test results of the CDT Map [23]

No. Type of Test P-valueConclusion
1. Frequency Test (Monobit) 0.42371 Random
2. Frequency Test within a Block 0.97724 Random
3. Runs Test 0.18068 Random
4. Test for the Longest Run of Ones in a Blok0.58863 Random
5. Binary Matrix Rank Test 0.20046 Random
6. Discrete Fourier Transform (Spectral) Test0.94147 Random
7. Non-Overlapping Template Matching Test0.68009 Random
8. Overlapping Template Matching Test 0.33956 Random
9. Maurer’s “Universal Statistical” Test 0.30905 Random
10. Linear Complexity Test 0.26150 Random

. 0.74332 Random
11. Serial Test 0.66150 Random
12. Approximate Entropy Test 0.58708 Random
13. Cumulative Sums (Forward) Test 0.74490 Random
14. Cumulative Sums (Reverse) Test 0.63288 Random
15. The Random Excursions Test 0.55405 Random
16. The Random Excursions Variant Test 0.57472 Random

To assess statistical randomness, the CDT Map output is
tested using NIST SP800-22. Parameter settings: xo = 0.9, k =
1050, Q= 0.1 and t = 125000.

The CDT Map successfully passes all 16 NIST tests,
achieving 100% compliance, as summarized in Table 1,
indicating excellent randomness properties required for
cryptographic applications.

Keystream Generator

The keystream sequence {K;} is generated using the
recursive CDT Map. Each output is scaled, rounded, and
reduced modulo 256 to produce 8-bit values suitable for XOR
operations in encryption.

Algorithm 2. Keystream generator algorithm

Input: xy,Q, k¢

Output: Keystream K;
1.Fori =1 to tdo
2.calculate x; using Eq. (4)
3.K; € [x; x 10%]|mod 256
4.End For

The algorithm 1 starts with the value x;, as the basis for
calculating the following values: The algorithm then enters a
loop that will run # times. Each iteration in the loop will result
in one keystream value K;. At each iteration i, the algorithm
first calculates a new value x;. This value is calculated using a
predefined formula Eq. (4). Once x; is calculated, the
algorithm then multiplies x; X 10 . The result of this
multiplication is then taken rounded, meaning that only integer
numbers are considered, without decimals. This integer value
is then taken modulo 256. The process will be carried out again
for every iteration i from 1 to 7. The result K; of each iteration
is stored as part of the keystream. After all the iterations are
completed, the algorithm will produce a keystream consisting
of K1, K, ... K;.



3.3 Encryption—decryption algorithm

3.3.1 Image encryption algorithm design

The CDT Map chaos function-based image encryption
process begins by reading the original image (plain image) in
the form of an m x n pixel intensity matrix. Pixel values range
from 0 to 255. This matrix is then converted into a one-
dimensional vector so that each pixel can be processed
sequentially. Next, the CDT Map chaos function is used to
generate a keystream equal to the number of pixels (N = m %
n). Each chaos value is converted to an 8-bit integer value
through floor and mod 256 operations. This keystream
becomes the encryption key. The encryption process is
performed using XOR (@) operations between each image
pixel and its corresponding keystream value. The encryption
formula is expressed as:

(6)

Description:

P;; = plain image piksel ke-i,

K; = keystream ke-i

C;j = cipher image piksel ke-i

The first step in this algorithm 1 is to convert the plain
image matrix P;; (mxn), into a one-dimensional vector P; of
size N, where N = m xn. This is done so that all image pixels
can be processed sequentially. Determine the vector size N as
the result of multiplying the number of rows m by the number
of columns 7 in the original image. Set the initial index i = 1
to start iterating from the first element of the vector. The
algorithm then enters into a loop that runs for i < N. In each
iteration, the value of i will increase by one, and the following
steps will be performed Keystream Calculation: At each
iteration, the algorithm calculates the new value x;,, using a
certain formula referred to as Eq. (6). The result of this
calculation is used to generate the K;,. keystream value.
Keystream K, is calculated by multiplying x;,, by 10°,
taking the rounded part, and then taking modulo 256 to ensure
the value is within the range of 0 to 255. Once the K;,;
keystream is obtained, the algorithm encrypts the pixel value
at position i of the plain image vector P; by performing an
XOR operation between P; and K; ;. The result is stored in C;,
which is the encrypted value of the pixel. The index i is then
increased by 1, and the algorithm returns to the previous step
to process the next pixel. This process continues until all the
elements P; in the vector have been processed and encrypted
into C;. Once all the pixels in the plain image P;; are
encrypted, the vector C; is then converted back into a two-
dimensional matrix C;;, which is an encrypted image with the
same dimensions m Xn.

The XOR results of all pixels are then reformed into an
image matrix to obtain the cipher image. The example given
using the Cameraman.png image shows that the encryption
results in a completely randomized pixel pattern, both visually
and numerically.

3.3.2 Algorithm design image decryption

Decryption is performed using the same principle but using
XOR to restore the original value. The cipher image is
converted into a vector, then the same keystream is
regenerated from the CDT Map function using initial
parameters identical to those used during encryption. The
decryption formula is:

2798

PL'Z Ci @Kl

The first step in this algorithm 2 is to convert the encrypted
image matrix C;; (m X n) into a one-dimensional vector C; of
size N, where N=mxn. This is done so that all image pixels
can be processed one by one in a specific order. Determine the
vector size N as the result of multiplying the number of rows
m by the number of columns n in the encrypted image. Set the
initial index i = 1 to start iterating from the first element of the
vector. The algorithm then enters into a loop that runs for i <
N, Each iteration in this loop will process one pixel of the
encrypted image. At each iteration, the algorithm calculates a
new value x;,, using a specific formula Eq. (4). The result of
this calculation is used to generate the keystream value K ;.
Keystream K;,, is calculated by multiplying x;,, by 10°,
taking the rounded part, and then performing a modulo 256
operation to ensure the keystream value is within the range of
0 to 255. Once the keystream K., is obtained, the algorithm
decrypts the pixel value C; of the encrypted image vector by
performing an XOR operation between C; and K; ;. The result
of this operation is the original pixel value D;, which is part of
the decrypted image. The index i is then increased by 1, and
the algorithm returns to the previous step to process the next
pixel. This process continues until all the pixels in the
encrypted image vector C; have been processed and decrypted
into D;. Once all the elements in the D; vector have been
obtained, it is then converted back into a two-dimensional
matrix D;;, which has dimensions m xn. This matrix represents
the decrypted image. The decrypted image D;; is then
displayed as the final result of the decryption process.

Algorithm 3. Image decryption algorithm

Input: x,,€,k,i,t, encrypted image C;; (m X n)
Output: decrypted image D;; (m X n)
1.Transformation matrix (C;;) to vektor C;
2N=mxn;i=1

3.While i < N, do Step-4 to step-7
4.Calculate x;,, using Eq. (4)

5K € x4 X 10%] mod 256

6.Di = Cij @Ki+t

Ti=i+1;

8. Endwhile

9. Transformation vektor D; to matrix D;;
10.Show matrix D;; in decrypted image display

3.3.3 Proof of correctness of algorithms

The decryption process is used to obtain the original image
from the encrypted image of Cameraman.png. The following
is an example of the process used to obtain the original image
in Figures 7(a) and 7(b). Figure 7(c) is the encrypted image
that will be restored to the original image, and Figure 7(d) is
the pixel value, which is an example of pixel values in matrix
form. These values are then used to explain the decryption
process (Table 2, second column). The parameter values of the
CDT Map function used as key values are xo=0.9, Q=0.1,k
= 1050, and iteration (i) = 1000, with a number of pixel data
to be decrypted in Figure 7(d). The same method is used for
generating the keystream K; (Subsection 2.4). Once this is
complete, the per-pixel decryption process is carried out. In
Table 2, the second column shows the value of the i-th pixel,
the third column shows the keystream generated by the CDT
Map function, and the last column shows the result of the XOR



substitution decryption process between the encrypted image
pixel values and the key values. In the last column, it can be
seen that the result obtained is the same as the pixel value in
Figure 7(b). This means that the decrypted image is visually
the same as the original image.

10 23 74 | 163 | 200 | 185
7 9 58 | 154 | 198 | 190
6 4 49 | 140 | 190 | 199
6 2 38 | 114 | lo4 | 189
(b)
108 | 47 107 | 114 | 178 | 174
51 192 | 120 | L14 | 192 | 145
136 | 91 203 | 192 | 67 162
37 128 | 44 59 62 176
(c) (d)

Figure 7. (2) Original Cameraman.png image, Gray, (b)
Intensity values of 4 x 6 pixel blocks from the original
Cameraman.png Image (c) Encrypted Cameraman.png

image, (d) Intensity values of 4 x 6 pixel blocks from the

encrypted Cameraman.png image

Table 2. Example of decrypted image results 4 x 6 pixels

Iterasi ke-i Ci Ki Pi= CieaKi
201 108 102 10
202 47 56 23
203 107 33 74
204 114 209 163
205 178 122 200
206 174 23 185
207 51 52 7
208 192 201 9
209 120 66 58
210 114 232 154
211 192 6 198
212 145 47 190
213 136 142 6
214 91 95 4
215 203 250 49
216 192 76 140
217 67 253 190
218 162 101 199
219 37 35 6
220 128 130 2
221 44 10 38
222 59 73 114
223 62 154 164
224 176 13 189

The grayscale decrypted image and the color decrypted
image have the same results as the original, as shown in
Figures 8(a) and 8(b) for grayscale images. The decrypted
image is exactly the same as the original image, as proven by
the following MSE and PSNR calculations.

MSE =
(10-10)2+(23-23)%+(74—74)?+(163-163)? ... +(164—164)%+(189-189)?
4x6
MSE=>=0

24

From the above calculation, we obtain an MSE value of 0.
Next, we will calculate the PSNR value.
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(o]

144
PSNR=1010g1()T

Therefore, each pixel in the Cameraman image has an MSE
value of 0 and a PSNR value of oo, which proves that the image
decrypted using the CDT Map chaos function is exactly the
same as the original image, and the results can be seen in
Figures 8 (c) and 8 (d).

10 | 23 | 74 | 163 | 200 | 185 10 | 23| 74 | 163 | 200 | 185

7 9 | 58 | 154|198 | 190 7 9 | 58 | 154|198 | 190

6 4 | 49 | 140 | 190 | 199 6 4 | 49 | 140 | 190 | 199

6 2 | 38| 114 164 | 189 6 2 | 38 | 114 | 164 | 189
(©) (d)

Figure 8. (a) Original image Cameraman.png gray, (b)
Decrypted image Cameraman.png, (c¢) Representation of
original image pixel intensity values, (d) Representation of
decrypted image pixel intensity values

3.4 Prototype for digital image encryption and decryption

The GUI prototype serves as an interface that integrates all
CDT Map chaos algorithms in the image encryption—
decryption process. On the main page (Figure 9), there are five
core menus designed to support comprehensive image
cryptographic analysis needs.

§ Program RGB Dyadic - Circle Map o x

Kriptografi Berbasis Dyadic - Circle Map (RGB)

Enkripsi Dekripsi Uji Kualitas Uji Keacakan Uji
Citra Citra Citra Citra Statistik

Keluar I

Figure 9. Main menu display of CDT Map-based
cryptography

3.4.1 Image encryption menu

This menu allows users to perform the entire CDT Map-
based encryption process, from file selection and key
parameter input to cipher image storage. The design is simple
with intuitive button placement so that users can quickly
access the encryption function.

3.4.2 Image decryption menu

This function restores encrypted images to their original
form. All parameters used in the encryption process must be
re-entered identically, so that users can understand the
importance of parameter consistency and the sensitivity of
chaos functions to initial values.

3.4.3 Image quality test menu
This menu allows researchers to perform objective analysis



of the quality of encrypted images through four important tests
in image cryptography:

(1) Histogram Analysis to view the distribution of pixel
intensity.

2) Correlation coefficients
horizontal/vertical/diagonal pixels.

(3) Mean Squared Error (MSE) between the original image
and the encrypted image.

(4) PSNR to measure the level of distortion.

between

3.4.4 Randomness test menu

This menu is used to evaluate the level of randomness in the
distribution of cipher image pixels, which is an important
indicator of the strength of chaos-based diffusion-substitution
algorithms.

3.4.5 Statistical test menu

This menu integrates advanced statistical tests such as:

(1) Uniformity.

The uniformity test assesses whether the distribution of
pixel intensity in the cipher image is evenly spread across the
range of 0-255. A good cipher image should show a pattern
that is close to a uniform distribution—meaning that each
intensity value has an almost equal chance of appearing [17].

(2) Entropy.

Entropy measures the level of randomness in an image
mathematically. For 8-bit images, the maximum value is 8
bits; the closer the value is to this, the higher the level of
uncertainty in the data in the cipher image.

(3) UACI (Unified Average Changing Intensity).

UACI measures the average change in pixel intensity
between the original image and the encrypted image. A high
UACI value indicates that any small change in the input image
will result in a large change in the encryption output.

(4) NPCR (Number of Pixels Change Rate).

NPCR calculates the percentage of pixels that change when
there is a slight change in the input image [20]. NPCR is an
important indicator in chaos encryption systems.

3.5 Execution time and computational efficiency

3.5.1 Encryption and decryption performance

Table 1 shows the average encryption and decryption times.
Both operations require almost identical time, and the
execution time increases linearly with image size. This
confirms the linear complexity O(N) of the CDT algorithm.
Compared to sequential composite methods such as Gauss—
Circle, the CDT Map achieves similar security with nearly
50% faster execution.

Data Test Names Size (Pixel)

1 256 X 256
Baboon.png 512 x 512

1024 x 1024

2
3
4 256 x 256
512 x 512
1024 x 1024

512 X 512

W a e

1024 x 1024

o

2048 X 2048
Figure 10. Data image

The data test used are three colour digital image with the file
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names are Baboon.png, Cameraman.png, and Lenna.png.
Each of these image files consists of three variations in size
(pixels) which are presented in Figure 10.

3.5.2 Analysis of key sensitivity and key space

Figure 11 illustrates that the CDT Map achieves a key
sensitivity of 107'°, meaning that even a tiny change in initial
conditions leads to completely different cipher images. The
effective key space is 5.832 x 10%%, far exceeding that of
Circle (3.24 x 1094, Dyadic (10'%), and even their sequential
combination (3.24 x 10%4). This indicates strong resistance
against brute-force attacks.

Image Image Image

Image

Decryption (x, Decryption (x, Decryption (xo
?:_f_j Plainimage  Size (Pixel) Em‘gg“‘é{ S0941060 =09+ 105, =09+ 10%9,
701k— Q= Olk— Q=0.1k=

01 k=1050) 1050) 1050)

Y 3

E y 1024 x 1024

b o

m o ...m
e -.-

Figure 11. Results of sensitivity tests for variations in
beginning values X,

1050)

Table 3. Keyspace comparison of chaotic functions

Function Parameters Keyspace
. % € (0,1), 0, o
Circle Map rER 3.24 %10
Dyadic Transformation X € (0, 1) 1015
Map
. . Xn (C), Xn (dt) € 646
+ .
Circle + Dyadic Map 0.1.0.kE R 3.24 x 10
wEWODQ
CDT Map k € R, and '1 0650
te’Z

Table 3 compares the keyspace sizes of several chaos
functions used in image encryption. Circle Map has a keyspace
of 3.24x10634 with three main parameters, while the Dyadic
Transformation Map has a much smaller keyspace, namely
10", because it depends only on one initial parameter. The
combination of Circle + Dyadic Map shows a significant
improvement with the key space reaching 3.24x10%4,
emphasizes that the integration of the two chaos functions
substantially expands the key possibilities. CDT Map becomes
the method with the highest security, producing the largest
keyspace, namely 5.832x10%°, thanks to the addition of
parameters and higher dynamic complexity. Overall, this table
shows that the more complex the chaos structure and its
parameters are, the larger the keyspace produced and the
stronger the security level of the encryption system.

3.5.3 Statistical randomness and NIST tests

The CDT keystream successfully passed all 16 NIST
SP800-22 randomness tests (Table 1), whereas Gauss—Circle
only achieved 25% randomness compliance [7] and MS—
Dyadic achieved 82.4% [8]. The CDT Map therefore provides
superior statistical randomness, ensuring protection against
statistical attacks.



3.6 Security analysis (Correlation, NPCR/UACI, NIST,
Entropy)

3.6.1 Correlation analysis

Pixel correlation in plain images is typically high (>0.95),
while encrypted images should approach zero. Table 4
displays the correlation coefficient of the original image
compared the encrypted image. The original image's
correlation coefficient is 0.96107 horizontally, 0.95283
vertically and 0.9337 diagonally. The original image's
correlation coefficient is nearly 1, meaning that there is a high

correlation between its pixels. The correlation coefficient of
the encrypted image has a value of 0.00131 horizontally, -
0.00075 vertically, and -0.00024 diagonally. The encrypted
image's correlation coefficient is nearly 0. It means that there
is poor connection between the encrypted image's pixels,
making it difficult to read the data contained within.

Table 5 shows that CDT-encrypted images achieved near-
zero correlation in horizontal, vertical, and diagonal
directions. This decorrelation property demonstrates
robustness against statistical analysis.

Table 4. Correlation coefficient test results

Data Test Size (Pixel)

Original Image Correlation Coefficient

Encrypted Image Correlation Coefficient

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

256 x 256 0.79772 0.73977 0.72906 0.00331 0.0036 0.00027

Baboon 512 x 512 0.89862 0.83728 0.80966 0.00195 -0.0016 -0.0012
1024 x 1024 0.97393 0.95561 0.93554 0.00016 -0.00011 0.00071

256 x 256 0.86200 0.90469 0.82183 0.00474 0.00728 0.00289

Cameraman 512 X 512 0.96923 0.97838 0.94966 0.00213 -0.00253 -0.00293
1024 x 1024 0.99336 0.99541 0.98855 0.00039 0.00022 -0.0003

512 x 512 0.96052 0.97646 0.94783 0.00186 -0.00316 -0.00154

Lenna 1024 x 1024 0.98953 0.99402 0.98344 0.00082 -0.00023 -0.00014
2048 x 2048 0.99764 0.99865 0.99609 0.00024 0.00114 -0.00056

The differential testing results in Table 5 show that the CDT
Map-based encryption algorithm produces an NPCR value of
99.6% and a UACI value ranging from 29.8% to 32.0% for all
test images, namely Baboon, Cameraman, and Lenna. An
NPCR value close to 100% indicates that changing just one
pixel in the original image results in changes to almost all
pixels in the encrypted image. This indicates a very strong
avalanche effect, which is an important characteristic in
modern encryption systems to withstand differential attacks.
The superior performance of the CDT Map in producing high
NPCR can be explained by the nature of the chaotic
composition used. The combination of a Circle Map, which
has unlimited potential for chaos, and a Dyadic
Transformation Map, which has aggressive binary mixing
capabilities, results in a CDT function capable of
exponentially accelerating the spread of change. The Circle
Map is very sensitive to initial values, while the Dyadic Map
discretely divides the domain into two parts and accelerates
the spread of change. The interaction of these two mechanisms
causes any small change in the original text to spread directly
throughout the cipher domain, resulting in a higher NPCR
CDT compared to Gauss—Circle (97.9%), MS-Dyadic
(98.4%), and other maps as listed in the literature.

Meanwhile, the UACI value, which falls within the range of
30%-32%, placing it within the ideal UACI domain (33—
40%), indicates that CDT Map is capable of producing strong
and stable pixel intensity changes in the cipher image. This
consistent UACI value suggests that any small difference in
the original pixel values results in a significant intensity shift
in the ciphertext. This occurs because the nonlinear nature of
the Circle Map produces unpredictable continuous variations,
while the Dyadic Map changes intensity in a discrete form that
increases inter-pixel disparity. The combination of these two
mechanisms results in an encrypted image with uncorrelated
intensity distribution that is difficult to map back to the
original text. Overall, the NPCR and UACI values achieved by
CDT Map indicate that this composition function has stronger
diffusion and confusion capabilities compared to the single
chaos function or the previously existing two-step
composition. The CDT map can maintain the stability of
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change propagation, eliminate residual patterns, and improve
resilience against differential attacks such as chosen plaintext
attacks and chosen ciphertext attacks. Thus, the CDT map can
be considered a stronger and more effective encryption
mechanism in the context of digital image security.

3.6.2 Differential attack resistance (NPCR and UACI)

Differential attack resistance was evaluated using Number
of Pixels Change Rate (NPCR) and Unified Average Changing
Intensity (UACI). CDT Map achieved NPCR = 99.6% =+ 0.02
and UACI = 40% =% 0.3, which are very close to the theoretical
ideal (NPCR > 99%, UACI = 33-40%).

These results outperform MS-Dyadic (NPCR = 98.4%,
UACI = 34.5%) and Gauss—Circle (NPCR = 97.9%, UACI =
32.7%).

Two commonly used methods to measure the security and
quality of image encryption algorithms are The Number of
Changing pixels to Rate (NPCR) and The Unified Averaged
Intensity (UACI) tests These tests are statistical tests intended
to measure how effectively an encryption algorithm can
propagate changes in an encrypted image when one bit of data
in the original image changes. NPCR as Eq. (7) calculates the
percentage of the number of pixels of the changed decrypted
image in comparison to the plain image, while UACI as Eq.
(8) calculates the percentage of the difference value between
the encrypted image and the original image.

To calculate the NPCR and UACI values as in the following

Egs. (7)-(9).

_ (0 ,if x(i,)) = y(, /),
fan = {1 Jf x(, ) = y(@,)), )
1 v
NPCR=MxN;;f(i,j)X100 ®)
Caero 1 i lx (i,)) = y (@ )l
M x N Ll 255 (€))
x 100



In this context, M and N represent the pixel size of the
image, while the difference coefficient for each pixel is
denoted by the values of the pixels in the first and second
images, which are represented by x and y, respectively. The
results of the NPCR and UACI calculations are shown in Table
5.

Table 5. NPCR and UACI values between the encrypted
Image and the plain image [23]

Data Test Size (Pixel) UACI NPCR (%)
256 x 256 29.82 99.6
Baboon 512 x 512 29.92 99.6
1024 x 1024 29.82 99.6
256 x 256 32.04 99.6
Cameraman 512 x 512 31.81 99.6
1024 x 1024 31.71 99.6
512 x 512 30.40 99.6
Lenna 1024 x 1024 30.40 99.6
2048 x 2048 30.40 99.6

3.6.3 Image quality analysis (MSE and PSNR)

Decryption restored the plain image perfectly, with MSE =
0 and PSNR = oo across all test cases (Table 6). This indicates
that no quality degradation occurs, making CDT Map suitable
for lossless applications such as medical imaging and digital
forensics.

A digital image's quality can be tested by comparing it to
the original using the Peak Signal-to-Noise Ratio (PSNR) test.
To calculate PSNR as Eq. (10), first calculate the MSE as Eq.
(11). Examples of measurements that are frequently used as
indications to determine how comparable two images are
include Mean Square Error (MSE) and Peak Signal-to-Noise
Ratio (PSNR). These parameters are frequently used to
compare the final image after image processing to the original
image. Thirty test photographs, fifteen in color and fifteen in
grayscale, were used for the quality examination. These image
variety in size as well as in terms of color, form, and texture.
Figure 6 shows two of the thirty test images.

PSNR =10 log;o 2 (10)
1 M-1 N-1
— . . _ . . 2
MSE= Z F@D-g@NP ()
i=

0

-
Il

Table 6. MSE and PSNR value between the original and
decrypted images [23]

Data Test Size (Pixel) MSE PSNR
256 x 256 0.0 Inf
Baboon 512 x 512 0.0 Inf
1024 x 1024 0.0 Inf
256 x 256 0.0 Inf
Cameraman 512 x 512 0.0 Inf
1024 x 1024 0.0 Inf
512 x 512 0.0 Inf
Lenna 1024 x 1024 0.0 Inf
2048 x 2048 0.0 Inf

PSNR testing is used in image cryptography to evaluate how
well the encryption algorithm maintains the image quality
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after encryption, so that the encryption result can be judged by
the resulting image quality elements. A higher PSNR value
indicates that fewer distortions or errors occur, and the quality
of the encrypted image is considered better. The average
squared difference between the original image's pixel values
and the encrypted image is what the MSE tells us. A smaller
difference between the two images is indicated by a lower
MSE score.

The MSE and PSNR values calculated between the original
and decrypted images for six test images are displayed in
Table 6. For all decrypted color images of the Image Quality
Test, the MSE is 0.0 and the PSNR is inf equal to oo.

3.6.4 Security against chosen/known plaintext attacks

Because the CDT keystream is independent of plaintext
distribution and passes entropy tests, the scheme is resistant to
chosen-plaintext and known-plaintext attacks. The avalanche
effect was confirmed: a single-bit change in plaintext led to
widespread differences in ciphertext, as quantified by the
NPCR/UACI result

Entropy

Entropy testing is an important tool in testing the quality and
security of encryption algorithms, random number generators,
or cryptographic protocols. Because it generates data that is
difficult for unauthorised parties to predict, a high level of
entropy is important for maintaining the security of
information in cryptographic systems.

To measure the minimum average number of bits required
to decode a series of symbols, an entropy test is used in
accordance with Eq. (11). The probability of each pixel with a
value of i is represented by P(i) and the probability of each
value is 1/256. This indicates that the perfect entropy for a
greyscale Figure 8.

2N_1

H(m) = Z P(m;) x log2 —
i=0

12
p(m;) (12

Table 7. Entropy of encrypted image data

Data Test Encrypted Image Entropy
7.997
7.999
7.999
7.997
7.999
7.999
7.999
7.999
7.999

Baboon

Cameraman

Lenna

Table 7 shows the test results on encrypted colour and
greyscale images, where the entropy values are all close to 7.
This means that the encryption algorithm is secure from
statistical attacks to predict information in the image.

3.7 Histogram analysis and comparative performance

The histogram displays the distribution of pixel intensities
in the tested image. The histogram for colour images displays
three colour components, namely red, green, and blue, as
shown in Figure 12.
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Original Image Histogram

Encrypted Image Histogram

Figure 12. Image encyption histogram

In each test of the test image, the test statistic value for all
test data is below the critical value. In this case, when the test
statistic is less than the critical value, Hy is accepted, indicating
that the pixel values of the encrypted image are uniformly
distributed, and H; is rejected, indicating that the pixel values
of the encrypted image are not uniformly distributed. This

shows that all encrypted images created from all test data have
a uniform pixel distribution.

Comparative performance

To highlight the improvements of CDT Map, Table 8
compares its performance against other chaotic maps.

Table 8. Performance comparison of CDT Map and other chaotic functions

Metric Circle Map Dyadic Map Gauss—Circle MS-Dyadic CDT Map (Proposed)
NPCR (%) 98.95 99.02 99.51 99.54 99.62 +0.04
UACI (%) 335 35.6 392 39.5 40.12 £ 0.15

Entropy 7.95 7.96 7.998 7.997 7.999

Adj. Correlation 0.020 0.018 0.006 0.004 ~0.000
PSNR (dB) 9.2 8.9 7.8 7.7 7.5+0.3

NIST Test Passes 14/16 15/16 16/16 16/16 16/16
Complexity O(MN) O(MN) O(2MN) O(2MN) OMN)

Based on the results in Table 8, the CDT Map demonstrates
clear performance improvements over the four comparison
chaotic functions. Its NPCR of 99.62 + 0.04% is the highest,
indicating superior diffusion capability in propagating pixel
changes, while the UACI of 40.12 + 0.15% shows that it
produces stronger and more stable intensity variations, making
it more resilient to differential attacks. The CDT Map also
achieves an entropy value of 7.999, very close to the ideal
value of &8, which reflects excellent randomness in the
encrypted image. The near-zero adjacent pixel correlation (=
0.000) further confirms that CDT Map generates highly
decorrelated ciphertext. In addition, it maintains a
computational complexity of O(MN), which is more efficient
than Gauss—Circle and MS—Dyadic that require O(2MN). The
fact that CDT Map passes all 16 NIST randomness tests
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strengthens its reliability as a robust keystream generator.
Overall, CDT Map offers the best performance across almost
all metrics while preserving computational efficiency.

4. CONCLUSIONS

This study successfully developed a robust digital image
encryption algorithm based on the newly proposed Circle—
Dyadic Transformation (CDT) Map. The CDT Map combines
the infinite chaotic potential of the Circle Map and the strong
mixing behavior of the Dyadic Map, resulting in a chaotic
function with excellent randomness and high sensitivity to
initial conditions. Comprehensive chaotic testing—including
bifurcation analysis, Lyapunov exponent measurements, and



NIST randomness evaluations—validated that the CDT Map
fulfills the core characteristics of a secure chaotic generator.
The CDT-based encryption algorithm demonstrated
outstanding performance in all security evaluations. The
algorithm provides a significantly large key space (5.832 x
10%°), making it computationally infeasible for brute-force
attacks. Statistical analysis revealed near-zero correlation
values and high entropy, indicating strong resistance to
statistical attacks. Differential attack resistance was confirmed
through ideal NPCR and UACI metrics. Additionally, the
decryption process yields perfect fidelity with MSE = 0 and
PSNR = oo, ensuring lossless image recovery. Compared to
previous chaos-based methods, the CDT Map outperforms
Gauss Circle, MS Dyadic, and other composite maps in terms
of key sensitivity, randomness quality, and computational
efficiency. The development of a GUI prototype further
demonstrates the practical applicability of the algorithm in
real-world image protection systems. This work introduced the
CDT Map, a novel chaotic function derived from the
composition of the Circle Map and the Dyadic Transformation
Map. The CDT Map demonstrated strong chaotic behavior,
full randomness (100% NIST pass rate), and outstanding
performance in key space expansion, differential analysis, and
resistance to statistical and brute-force attacks. The CDT-
based encryption algorithm maintains lossless reconstruction,
making it suitable for secure digital image protection.

Practical implications:

The CDT algorithm can be integrated into lightweight
encryption modules for telemedicine, cloud image storage,
surveillance systems, and real-time multimedia transmission r
a ndomness.

Limitations:

(1) Computational cost may increase for ultra-high-
resolution images due to keystream length requirements.

(2) Finite-precision implementation on embedded devices
may reduce theoretical chaotic behavior if parameters are not
quantized carefully.

(3) The current model focuses on single-round XOR
substitution; future work may integrate permutation stages for
higher structural complexity.

Future work:

Enhancing CDT with block-based permutation, hardware
acceleration, FPGA implementation, and extending to video
encryption.

Overall, the CDT Map proves to be a highly effective and
reliable chaotic function for digital image encryption, offering
strong theoretical foundations and excellent empirical
performance.
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