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Shrimp species classification continues to be difficult in terms of morphological features,
small datasets (in general), and environmental noise associated with image capture.
Standard techniques based on handmade shallow features alone have proved very poor on
challenging tasks. Recent developments in deep learning have demonstrated great potential;
however, this relies heavily on a large and diverse amount of data, which limits its potential
to be applied for shrimp studies, as such data resources are scarce. To alleviate the
challenge, we propose a unified platform, which integrates shallow and deep Convolutional
Neural Networks (CNN) features for improved classification accuracy. Furthermore, to
bridge the gap in data availability and balance, Generative Adversarial Networks (GANs)
are employed to synthesize realistic shrimp pictures, thereby broadening our training set
with a wider range of possible inputs beyond those already used in traditional augmentation
methods. Experimental results show the proposed method at 91.66% precision, 89.8%
accuracy, and 0.94 Fl-score, robustly. These data suggest that GAN-based augmentation
and hybrid feature extraction contribute to a significant improvement of shrimp image
classification and provide a great contribution for aquaculture monitoring and automatic
marine species classification systems.

1. INTRODUCTION

In the past two decades image classification has evolved
significantly, simultaneously based on the advancement in
computational capacity, large datasets and sophisticated image
feature extraction methods. Image classification, at its most
basic level, is the process of assigning images to defined
classes based on a set of visual representations, a problem
widely useful in applications as diverse as those in medical
diagnostics, agricultural monitoring, food quality assessment
and biometric recognition. Deep learning has gained the
greatest success in the computer vision literature but we can
still find reasons to pay attention to features in our handcrafted
images when the datasets are either small or domain-specific
in the way that we have previously studied. In such use cases,
hand-designed methods such as morphometric analysis, color
histograms, texture descriptors, and shape features have often
occupied the central position, on account of their ability to
have good sensitivity and generalization in very small data.

For instance, conventional descriptors, like LBP, HOG and
GLCM, have been well-accepted for interpretability and
computation in the early stage of the image classification
research. Their popularity in very specific biological settings
such as shrimp classification shows that handiwork not only
generated good base rules but also established a basis for
further development of deep learning and hybrid methods.
While feature extraction has become automated, in some cases
handcrafted feature engineering becomes out of sight, it has

2555

been maintained as an attractive option for focused
classification tasks where sample acquisition is expensive,
ethical, or domain specific. It has also been seen in imaging
studies that better GLCM descriptors and radiomic features
have good performance for MRI and breast lesion detection at
the diagnostic level. For instance, Meredith et al. [1] calculated
forty radiomic features and fused the automatically learned
deep features to enhance tumor image classification. In
aquaculture applications, handcrafted descriptors were more
prevalent in these early classification models. Sucharita et al.
[2] used Gabor filters to extract fine-scale texture patterns in
prawns. Their classification performance is about 93%, while
Haikal et al. [3] used GLCM-based descriptors to differentiate
shrimp quality with ~80% accuracy. Shape descriptors are also
promising in discriminative tasks; Poonnoy et al. [4]
demonstrated a very high accuracy of 99.8% of RID-based
features in ANNSs, highlighting the discriminative power of
well-defined shape measures. These studies, taken together,
indicate that handcrafted features, when used in concert with
the fit of classical classifiers like K-Nearest Neighbors (K-
NN), Support Vector Machines (SVM), and Random Forests,
obtain sufficient baselines, and can be particularly desirable
for poor image classification scenarios. There was a definite
decline in the extent of work produced by manual feature
engineering in terms of issues such as scaling, stability against
different light and different directions, generalization to other
datasets, and computer vision research moved in the direction
of deep learning. Convolutional Neural Networks (CNNs),
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which provide features in the images of various levels
instantiated from their input, significantly changed the
classification paradigm, which aims to automate feature
extraction by hierarchical convolutional processing. AlexNet,
ResNet, and DenseNet were early-mover architectures that
would deliver unrivaled performance in wide domains, such as
everyday objects and challenging medical images. For
instance, strawberry classification reached an accuracy of
99.8% based on CNN models [5], while Residual Networks
(ResNet) achieved significant improvements in training
efficiency on a complex medical dataset and diminished the
vanishing gradient problem [6]. Deep networks were
transformative in shrimp classification: Test results for
DenseNet121 classification of samples from fresh, frozen, and
stale were 98.75% [7], and the same method was applied for
InceptionResNetV2 which was able to classify seven shrimp
species with 99.4% accuracy, with one to two seconds per
sample only [8]. The disease-specific shrimp classification
model, the SDNet, which combined unsupervised learning
model and deep CNN revealed better adaptation of deep
learning and its associated architecture [9]. This development
shows the ability of deep learning methods to outperform
handcrafted baselines using high dataset size, annotation
quality, and computational resources. Techniques of hand or
learned feature generation have been investigated for
sophisticated image classification schemes which result in
hybridization to exploit the combined advantage of both
methods. These forms of hybrid feature fusion approaches
solve the essential problem of interpretability vs performance,
where handcrafted descriptors yield local insights and trained
deep learning ensures generalizable feature extraction from
high-dimensional data. For instance, Anami and Sagarnal [10]
achieved an accuracy of 93.87% for indoor scene classification
with multi-level feature fusion, hybrid ones outperforming
conventional ones for analysis]. Within the context of
aquaculture, Zhang et al. [11] integrated shallow handcrafted
descriptors and deeper representations, indicating that shrimp
species with low visual variation called for the high
discriminative dimensionality of handcrafted forms to be
augmented with deep network-dependent abstractions. They
acted as an epistemological intermediary between the classical
stats feature and representation learning procedures, and were
an empirical option that solved empirical problems in domains
where isolated applied methods could not be systematically
solved. And beyond accuracy, fusion can enhance the
confidence to judge classification systems from black-box
deep representations as explainable shallow descriptions
against opaque and deep representations at a later or stronger
level, which translates directly to vital activities like healthcare
diagnosis and food quality certification systems. Although
deep architectures are still growing and maturing, deep
learning methods are data sensitive and there are numerous
topics such as shrimp classification and medical diagnosis that
have suffered from insufficient structured data, lack of
homogeneous representation, poor representation between
samples across classes, and ethical dilemmas in training. To
overcome these limitations, data augmentation and synthetic
sample generation have been applied increasingly, and
Generative Adversarial Networks (GANSs) is leading the way.
GANs produce synthetic realistic samples with the ability to
build realistic samples to use within a limited number of
training sets, and for problems of large volume of annotated
data hard to obtain, these models can help in classification. For
dermatology and other sensitive purposes, the introduction of
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GAN driven synthetic skin images enhanced classification
accuracy given the variety representation of input sets [12].
Similarly, some GAN-based methods have recently passed
99.5% accuracy on malware image classification and been
successful on industrial forecasting applications [13, 14].
GANSs made significant contributions to freshness assessment
in aquaculture research: a GAN-augmented APCNN + SVM
hypercube approach yielded shrimp freshness classification
accuracy of 98.1% [15], while frameworks built with GANs
generally improved the freshness assessment accuracy by
around 8.68% in shrimp classification experiments with small
training datasets [16]. Although GANs are a very robust
enhancement, overfitting risks (e.g., mode collapse) and
ethical issues are not negligible even when analyzing medical
synthetic data, and caution is warranted with the
implementation of GAN algorithms. Shrimp classification has
evolved over long time series so as to be part of a larger
spectrum of overall evolution due to the transition from
handcrafted feature engineering methods to hybridization and
data heavy deep learning methods. In shrimp classification, we
concentrated on handcrafted features from 2014 to 2015, in
which shape-based RID classifiers and texture feature shapes
processed by Gabor provided significant accuracies. In 2019:
A fusion of features — An advancement that marries shallow
and deep representation — was born. In case of the year of
2022, disease-based shrimp classification [9] and freshness
detection were also improved by GAN enabled CNN
architectures [15]. By comparison, the DenseNet,
InceptionResNetV2 and other deep learned networks,
implemented on such architectures in 2023 and 2024 were
widely used, transforming shrimp classification, attaining up
to 99% accuracies with less CPU time per sample in
comparison time. Also, GAN-based augmentation
significantly improved performance under limited training
conditions with both stabilization and expansion from these
successes [17, 18]. Collectively, this chronological
progression is not just about the evolution of technology but
an epistemological evolution as well, where well-defined,
classical techniques for domain-specific, interpretable
handcrafted methods transition towards architecture-agnostic
deep learning architectures facilitating high performance,
generic feature extraction; where hybrid deep learning
methods and GANSs are a synergistic bridge to an optimized
classification efficacy. This domain of shrimp classification is
thus symptomatic of more general evolutionary trends of
image classification: it embodies both the lasting tradition of
traditional methods as useful for handling current difficulties
and revolutionary new possibilities in generative architectures.

This paper addresses the following contributions:

1. A robust data augmentation approach employing
Generative Adversarial Networks (GAN) for depicting
realistic shrimp images was accomplished.

2. The efficacy of augmentation using GANs with a ResNet
classifier surpassed the performance achieved with traditional
data augmentation methods.

3. The accuracy, F1-score, and precision of the least capable
shrimp class were greatly enhanced as a result of using
augmentation with GANs to balance the sample size of each
class.

2. SHRIMP CLASSIFICATION

The proposed shrimp classification method using GAN-



ResNet is illustrated in Figure 1. The proposed GAN was
developed using ResNet in both the generator and the
discriminator. Synthetic shrimp images were generated using
a generator, and the discriminator classified the shrimp images
based on the shrimp and the generated datasets. Penacidae: A
dominant family with 135 species, including commercially
important species, such as Fenneropenaeus indicus and
Penaeus monodon [8]. Sergestidae include smaller species,
such as Acetes spp., which are significant for local
consumption. Among the collected shrimp images, five of the
most common shrimps were selected for classification: Giant
River shrimp, white shrimp, Procambarus clarkii,
Marsupenaeus japonicus, and Peacock mantis shrimp. A deep
CNN network, ResNet50, was used to classify shrimp images
according to the classes. The ResNet50 architecture is shown
in Figure 2.
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Figure 1. Shrimp classification using GAN-ResNet
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Figure 2. ResNet50 architecture

ResNet-50 is a convolutional neural network design from
the ResNet (Residual Networks) family, which addresses deep
neural network training issues. ResNet-50, developed by
Microsoft Research Asia, excels in image categorisation. Deep
ResNet topologies include ResNet-18, ResNet-32, and
ResNet-50, a medium-sized version. The 2015 ResNet-50
model continues to improve image categorisation.

ResNet-50 in generator

ResNet-50 is a deep residual network with 50 layers,
incorporating skip connections to improve gradient flow and
learning capacity. In the GAN context, ResNet-50 can be used
in the generator primarily in two ways:

*As a backbone for feature extraction and representation
learning within the generator to produce high-quality images.

*Adapted into the generator with residual blocks to facilitate
deeper architectures, allowing better image generation.

Step 1: Input noise vector

Start with a noise vector z € R sampled from a simple
distribution (e.g., z ~ N'(0,1)).

Step 2: Project and reshape

z is projected through a fully connected layer to form a low-

resolution feature map tensor:
fo = $Wyz + by), f, € RV (1)

where, ¢ is an activation (ReLU), W}, b, are weights and
biases, and C, H, W are channel, height, and width dimensions
for the feature map.

Step 3: ResNet-50 blocks (residual learning)

The feature map f; is passed through multiple residual
blocks adapted from ResNet-50 architecture. Each residual
block mathematically can be expressed as:

firr = i+ F(fu W) 2)

where, f; is input feature map at layer [, F is the residual
function (a stack of convolutions, batch normalizations,
activations), and W, are the block parameters.

The ResNet-50 generator uses a sequence of these residual
blocks to incrementally refine features while preserving
gradients via skip connections.

Step 4: Upsampling layers

The output from ResNet blocks is upsampled (e.g., using
transpose convolutions or nearest-neighbor upsampling
followed by convolution), mathematically: to increase spatial
resolution towards the image size while refining features.

Step 5: Output layer

Finally, a convolutional layer maps the feature map to an
image with 3 color channels:

X =aWs*fL+bo) )

where, £ € R3*Himg*Wimg {5 the generated image, o is an
activation (e.g., Tanh for pixel values normalized between -1
and 1), W, and b, are weights and bias.

Step 6: Training objective

Generator weights (including the ResNet-50 blocks) are
updated to minimize discriminator ability to distinguish D (%)
from real, using adversarial loss such as binary cross-entropy
or variants:

Ls = —E;p,[log D(G(2))] 4)

For the discriminator, ResNet-50 takes input x (image),
passes through layers of convolutions and residual blocks, and
outputs

D(x) =a(W - f(x) + b) )

where, f(x) is the feature vector output by ResNet before the
final classification layer, W, b are weights and bias of the final
layer, and o is the sigmoid function.
Step-by-Step Mathematical Flow is given below
1. Input: Image x (real or fake) with shape (H, W, C)
2. Initial convelution: Apply convolution Conv(x), batch
normalization BN, and ReLU:

x; = ReLU(BN(Conv(x))) (6)

3. Residual blocks: For each Residual block iin [1, 2, ...,
N1, xi+1 = x; + F(x;, W;), where F has convolutions,
BN, ReLU.
This residual connection helps gradients flow better during
backpropagation.
4. Feature extraction: After passing through all residual



blocks, get feature map f(x).

5. Pooling: Apply Global Average Pooling GAP(f(x)) to
reduce feature map to a vector:
v = GAP(f(x)) (7
6. Fully connected layer: Compute output logit
I=W-v+b (®)
7. Sigmoid activation: Calculate probability of being real
data:
= = 9
DE) =0()) = 77> ©)
8. Discriminator loss: For batch size m,
1 m
Jp === llog D(x) +log (1 = DGEM]  (10)
i=1

This loss is minimized to improve discrimination.

The training and evaluation components were provided. The
generator and discriminator networks have their weights
assigned randomly at the start. While the generator's goal is to
create fake data that is as realistic as possible, the discriminator
aims to correctly identify real data and define authentic data
from fake data. The generator starts with random noise that
serves as input to create fake data. That fake data will then be
combined with real data, if available, to create a training batch.
The discriminator receives the generator’s output, and a loss is
calculated, which stems from the level of fooling the
discriminator experiences. The generator's loss is reduced by
adjusting its weights through gradient descent, leading to

improved data output realism. The output data can either be
real or fake, and the discriminator will classify them as real or
fake. The loss the discriminator has is based on how accurately
it can tell real data apart from fake data. To reduce this loss,
the discriminator’s weights are adjusted so that the ability to
tell genuine data apart from synthetic data is enhanced. The
core principle of GANs is the adversarial training process, in
which the generator and discriminator improve simultaneously
through competition.

The generator's ability to produce realistic data improves as
training continues, while the discriminator improves in its
ability to tell real data apart from fake data. Training continues
for several epochs or until a convergence criterion is met. A
generator tried to make data that was close to real, and a
discriminator tried to tell if the data was real or fake. The
generator continuously fails to obtain the data from the
discriminator repeatedly. When training is finished, the
generator attempts to create fake data for the discriminator to
evaluate.

3. RESULTS AND DISCUSSION

This section evaluates the performance of the proposed
shrimp classification using GAN-ResNet with the collected
dataset. The collected dataset includes shrimp categories such
as Giant River shrimp, White shrimp, Procambarus clarkii,
Marsupenaeus japonicus, and Peacock mantis shrimp. Table 1
presents the shrimp classes dataset with the number of images
for training and testing. The training and testing were done in
a Windows 10 environment, using an Intel Core i7-7700
central processing unit (CPU) and an Nvidia RTX 2080
graphics processing unit (GPU). TensorFlow v1.13.0 and
Keras are two deep-learning frameworks that were used in the
process of developing and training the models.

Table 1. Shrimp data set collected for training and testing

Category White Shrimp Giant River Marsupenaeus Japonicus Procambarus Clarkii Peacock Mantis Total
Training 562 511 506 532 525 2636
Testing 541 492 498 431 419 2381
Total 1103 1003 1004 963 944 5017
Before training the classifier models, the AC-GAN's white : \ )
produced synthetic pictures were tuned. The AC-GAN was Shrimp il 3
trained with varying numbers of training images of each class. sy = r e
This was done to determine the lowest number of images shrimp /L =
required to make synthetic images that closely resemble i e B e
genuine ones. Figure 3 shows the collected shrimp dataset, and m T\\ -
Figure 4 shows the generated synthetic shrimp images for each Procambaryy . o S =
class using ResNet.
Peacock
) mantis -5, “ w g e—
White e g

Shrimp { \ ‘*43 \
Giant 7 5N 2
River £ ’) .A “ "
Shrimp ¢
Marsupenaeus # IRe. P "éu.m
japonicus ™~ Wgs} -'g%}_ [f S
~ d | L
Procambarus =

clarkii

Peacock
mantis

Figure 3. Collected shrimp data set
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Figure 4. Synthetic images generated per class using various
AC-GAN training sample sizes

The GAN component was employed for synthetic data
augmentation, enhancing dataset diversity and reducing
overfitting, while ResNet-50 acted as the deep feature
extractor and classifier. Training was conducted over 50
epochs, allowing the model to iteratively optimize both
generator and discriminator objectives in tandem with ResNet-
50’s classification loss. Throughout testing, the model



achieved an overall accuracy of 89.8%, precision of 91.6%,
and F1-score of 94.1%, with per-class precision consistently
ranging from 0.89 to 0.93.

Figures 3 and 4 demonstrate that, in the case of shrimp
images, the appearance of the developed synthetic images was
not comparable to that of the real ones. On the other hand, the
number of samples collected includes detailed images that

seem to be the exact classification of the shrimps. To evaluate
the effectiveness of a CNN classifier, a ResNet model
consisting of 2636 samples from different categories of
shrimps was used for training. For testing, 541 white shrimp
images, 492 giant river shrimp images, 498 Marsupenaeus
japonicus shrimp images, 431 Procambarus clarkii shrimp
images, and 419 peacock mantis shrimp images are used.

Table 2. Overall qualitative evaluation results of the proposed technique

Performance Measure White Giant Marsupenaeus Procambarus Peacock Overall
Shrimp River Japonicus Clarkii Mantis
Number of shrimps 541 492 498 431 419 2381
True Positive 443 402 390 371 339 1945
True Negative 39 50 44 24 37 194
False Positive 45 31 47 25 29 177
False Negative 14 9 17 11 14 65
Precision 0.9078 0.9285 0.8925 0.9369 0.9212 0.9166
Accuracy 0.891 0.9187 0.8715 0.9165 0.8974 0.8984
F-1 Score 0.9376 0.9527 0.9242 0.9538 0.9404 0.9415
95
o1 93.7
92.9
o 922
&15, 2
o 90.8
g 90 89.3
A
89
87
White Giant river Marsupenaeus Procambarus clarkii ~ Peacock mantis
japonicus
Shrimp Category
Figure 5. The proposed method of precision score analysis
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Jjaponicus
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Figure 6. The proposed method of accuracy analysis
9.6
9.55
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Figure 7. The proposed method of F1-score analysis
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Figure 8. Proposed method performance comparison with state-of-the-art techniques

The proposed technique was qualitatively evaluated using a
confusion matrix, as in Table 2. The precision scores achieved
90.78% for White shrimp, 92.8% for Giant river, 89.25% for
Marsupenaeus Japonicus, 93.69% for Procambarus clarkii,
and 92.12% for Peacock mantis. The precision, accuracy, and
F-1 Score of white shrimp, and Marsupenaeus japonicus, are
quite low compared to other category shrimps, as shown in
Figures 5, 6, and 7, due to their complex shape. The overall
precision score of 91.66%, accuracy of 89.8%, and F-1 Score
0f 0.94 show the robustness of the proposed technique. Figure
8 shows the overall performance in terms of precision score
compared with state-of-the-art techniques. For fair
comparison with the proposed technique, state-of-the-art
techniques are selected, such as InceptionResNetV2 [19],
SDNET [9], Multi-layer Fusion [11], GLCM [3], and DICNN
[20]. InceptionResNetV2 architecture achieved an impressive
average precision of 90.93%, SDNET precision score of
90.67%, Multi-layer Fusion method precision score of
91.41%, GLCM precision score of 90.56%, DICNN precision
score of 90.54%, and the proposed GAN achieved a precision
score of 91.6% by utilising the collected dataset [21, 22].

4. CONCLUSION

The proposed GAN-based shrimp classification method
successfully utilized the generative network to create high-
quality synthetic shrimp images, enriching the training dataset
and reducing data scarcity. Experimental analysis confirmed
that the synthetic images closely resembled genuine ones, and
when used for GAN-based augmentation, the ResNet-50
model consistently outperformed standard approaches in terms
of precision, accuracy, and F1-score. The achieved precision
of 91.66%, accuracy of 89.8%, and Fl-score of 0.94
demonstrate the effectiveness of the proposed technique
compared to state-of-the-art methods, particularly for objects
with complex shapes.

However, the study did not explore the method’s robustness
under scenarios with very limited samples or highly complex
and cluttered backgrounds, which may pose challenges for
accurate classification. As a direction for future work, the
model can be extended to handle such challenging conditions
by incorporating advanced pre-processing, transfer learning
strategies, or attention-based mechanisms. Additionally,
applying the proposed framework to broader object categories
in agriculture, aquaculture, or food quality inspection could
validate its generalizability and scalability.
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