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Shrimp species classification continues to be difficult in terms of morphological features, 

small datasets (in general), and environmental noise associated with image capture. 

Standard techniques based on handmade shallow features alone have proved very poor on 

challenging tasks. Recent developments in deep learning have demonstrated great potential; 

however, this relies heavily on a large and diverse amount of data, which limits its potential 

to be applied for shrimp studies, as such data resources are scarce. To alleviate the 

challenge, we propose a unified platform, which integrates shallow and deep Convolutional 

Neural Networks (CNN) features for improved classification accuracy. Furthermore, to 

bridge the gap in data availability and balance, Generative Adversarial Networks (GANs) 

are employed to synthesize realistic shrimp pictures, thereby broadening our training set 

with a wider range of possible inputs beyond those already used in traditional augmentation 

methods. Experimental results show the proposed method at 91.66% precision, 89.8% 

accuracy, and 0.94 F1-score, robustly. These data suggest that GAN-based augmentation 

and hybrid feature extraction contribute to a significant improvement of shrimp image 

classification and provide a great contribution for aquaculture monitoring and automatic 

marine species classification systems. 
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1. INTRODUCTION

In the past two decades image classification has evolved 

significantly, simultaneously based on the advancement in 

computational capacity, large datasets and sophisticated image 

feature extraction methods. Image classification, at its most 

basic level, is the process of assigning images to defined 

classes based on a set of visual representations, a problem 

widely useful in applications as diverse as those in medical 

diagnostics, agricultural monitoring, food quality assessment 

and biometric recognition. Deep learning has gained the 

greatest success in the computer vision literature but we can 

still find reasons to pay attention to features in our handcrafted 

images when the datasets are either small or domain-specific 

in the way that we have previously studied. In such use cases, 

hand-designed methods such as morphometric analysis, color 

histograms, texture descriptors, and shape features have often 

occupied the central position, on account of their ability to 

have good sensitivity and generalization in very small data. 

For instance, conventional descriptors, like LBP, HOG and 

GLCM, have been well-accepted for interpretability and 

computation in the early stage of the image classification 

research. Their popularity in very specific biological settings 

such as shrimp classification shows that handiwork not only 

generated good base rules but also established a basis for 

further development of deep learning and hybrid methods. 

While feature extraction has become automated, in some cases 

handcrafted feature engineering becomes out of sight, it has 

been maintained as an attractive option for focused 

classification tasks where sample acquisition is expensive, 

ethical, or domain specific. It has also been seen in imaging 

studies that better GLCM descriptors and radiomic features 

have good performance for MRI and breast lesion detection at 

the diagnostic level. For instance, Meredith et al. [1] calculated 

forty radiomic features and fused the automatically learned 

deep features to enhance tumor image classification. In 

aquaculture applications, handcrafted descriptors were more 

prevalent in these early classification models. Sucharita et al. 

[2] used Gabor filters to extract fine-scale texture patterns in

prawns. Their classification performance is about 93%, while

Haikal et al. [3] used GLCM-based descriptors to differentiate

shrimp quality with ~80% accuracy. Shape descriptors are also

promising in discriminative tasks; Poonnoy et al. [4]

demonstrated a very high accuracy of 99.8% of RID-based

features in ANNs, highlighting the discriminative power of

well-defined shape measures. These studies, taken together,

indicate that handcrafted features, when used in concert with

the fit of classical classifiers like K-Nearest Neighbors (K-

NN), Support Vector Machines (SVM), and Random Forests,

obtain sufficient baselines, and can be particularly desirable

for poor image classification scenarios. There was a definite

decline in the extent of work produced by manual feature

engineering in terms of issues such as scaling, stability against

different light and different directions, generalization to other

datasets, and computer vision research moved in the direction

of deep learning. Convolutional Neural Networks (CNNs),
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which provide features in the images of various levels 

instantiated from their input, significantly changed the 

classification paradigm, which aims to automate feature 

extraction by hierarchical convolutional processing. AlexNet, 

ResNet, and DenseNet were early-mover architectures that 

would deliver unrivaled performance in wide domains, such as 

everyday objects and challenging medical images. For 

instance, strawberry classification reached an accuracy of 

99.8% based on CNN models [5], while Residual Networks 

(ResNet) achieved significant improvements in training 

efficiency on a complex medical dataset and diminished the 

vanishing gradient problem [6]. Deep networks were 

transformative in shrimp classification: Test results for 

DenseNet121 classification of samples from fresh, frozen, and 

stale were 98.75% [7], and the same method was applied for 

InceptionResNetV2 which was able to classify seven shrimp 

species with 99.4% accuracy, with one to two seconds per 

sample only [8]. The disease-specific shrimp classification 

model, the SDNet, which combined unsupervised learning 

model and deep CNN revealed better adaptation of deep 

learning and its associated architecture [9]. This development 

shows the ability of deep learning methods to outperform 

handcrafted baselines using high dataset size, annotation 

quality, and computational resources. Techniques of hand or 

learned feature generation have been investigated for 

sophisticated image classification schemes which result in 

hybridization to exploit the combined advantage of both 

methods. These forms of hybrid feature fusion approaches 

solve the essential problem of interpretability vs performance, 

where handcrafted descriptors yield local insights and trained 

deep learning ensures generalizable feature extraction from 

high-dimensional data. For instance, Anami and Sagarnal [10] 

achieved an accuracy of 93.87% for indoor scene classification 

with multi-level feature fusion, hybrid ones outperforming 

conventional ones for analysis]. Within the context of 

aquaculture, Zhang et al. [11] integrated shallow handcrafted 

descriptors and deeper representations, indicating that shrimp 

species with low visual variation called for the high 

discriminative dimensionality of handcrafted forms to be 

augmented with deep network-dependent abstractions. They 

acted as an epistemological intermediary between the classical 

stats feature and representation learning procedures, and were 

an empirical option that solved empirical problems in domains 

where isolated applied methods could not be systematically 

solved. And beyond accuracy, fusion can enhance the 

confidence to judge classification systems from black-box 

deep representations as explainable shallow descriptions 

against opaque and deep representations at a later or stronger 

level, which translates directly to vital activities like healthcare 

diagnosis and food quality certification systems. Although 

deep architectures are still growing and maturing, deep 

learning methods are data sensitive and there are numerous 

topics such as shrimp classification and medical diagnosis that 

have suffered from insufficient structured data, lack of 

homogeneous representation, poor representation between 

samples across classes, and ethical dilemmas in training. To 

overcome these limitations, data augmentation and synthetic 

sample generation have been applied increasingly, and 

Generative Adversarial Networks (GANs) is leading the way. 

GANs produce synthetic realistic samples with the ability to 

build realistic samples to use within a limited number of 

training sets, and for problems of large volume of annotated 

data hard to obtain, these models can help in classification. For 

dermatology and other sensitive purposes, the introduction of 

GAN driven synthetic skin images enhanced classification 

accuracy given the variety representation of input sets [12]. 

Similarly, some GAN-based methods have recently passed 

99.5% accuracy on malware image classification and been 

successful on industrial forecasting applications [13, 14]. 

GANs made significant contributions to freshness assessment 

in aquaculture research: a GAN-augmented APCNN + SVM 

hypercube approach yielded shrimp freshness classification 

accuracy of 98.1% [15], while frameworks built with GANs 

generally improved the freshness assessment accuracy by 

around 8.68% in shrimp classification experiments with small 

training datasets [16]. Although GANs are a very robust 

enhancement, overfitting risks (e.g., mode collapse) and 

ethical issues are not negligible even when analyzing medical 

synthetic data, and caution is warranted with the 

implementation of GAN algorithms. Shrimp classification has 

evolved over long time series so as to be part of a larger 

spectrum of overall evolution due to the transition from 

handcrafted feature engineering methods to hybridization and 

data heavy deep learning methods. In shrimp classification, we 

concentrated on handcrafted features from 2014 to 2015, in 

which shape-based RID classifiers and texture feature shapes 

processed by Gabor provided significant accuracies. In 2019: 

A fusion of features — An advancement that marries shallow 

and deep representation — was born. In case of the year of 

2022, disease-based shrimp classification [9] and freshness 

detection were also improved by GAN enabled CNN 

architectures [15]. By comparison, the DenseNet, 

InceptionResNetV2 and other deep learned networks, 

implemented on such architectures in 2023 and 2024 were 

widely used, transforming shrimp classification, attaining up 

to 99% accuracies with less CPU time per sample in 

comparison time. Also, GAN-based augmentation 

significantly improved performance under limited training 

conditions with both stabilization and expansion from these 

successes [17, 18]. Collectively, this chronological 

progression is not just about the evolution of technology but 

an epistemological evolution as well, where well-defined, 

classical techniques for domain-specific, interpretable 

handcrafted methods transition towards architecture-agnostic 

deep learning architectures facilitating high performance, 

generic feature extraction; where hybrid deep learning 

methods and GANs are a synergistic bridge to an optimized 

classification efficacy. This domain of shrimp classification is 

thus symptomatic of more general evolutionary trends of 

image classification: it embodies both the lasting tradition of 

traditional methods as useful for handling current difficulties 

and revolutionary new possibilities in generative architectures. 

This paper addresses the following contributions:   

1. A robust data augmentation approach employing 

Generative Adversarial Networks (GAN) for depicting 

realistic shrimp images was accomplished.   

2. The efficacy of augmentation using GANs with a ResNet 

classifier surpassed the performance achieved with traditional 

data augmentation methods. 

3. The accuracy, F1-score, and precision of the least capable 

shrimp class were greatly enhanced as a result of using 

augmentation with GANs to balance the sample size of each 

class. 

 

 

2. SHRIMP CLASSIFICATION 

 

The proposed shrimp classification method using GAN-
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ResNet is illustrated in Figure 1. The proposed GAN was 

developed using ResNet in both the generator and the 

discriminator. Synthetic shrimp images were generated using 

a generator, and the discriminator classified the shrimp images 

based on the shrimp and the generated datasets. Penaeidae: A 

dominant family with 135 species, including commercially 

important species, such as Fenneropenaeus indicus and 

Penaeus monodon [8]. Sergestidae include smaller species, 

such as Acetes spp., which are significant for local 

consumption. Among the collected shrimp images, five of the 

most common shrimps were selected for classification: Giant 

River shrimp, white shrimp, Procambarus clarkii, 

Marsupenaeus japonicus, and Peacock mantis shrimp. A deep 

CNN network, ResNet50, was used to classify shrimp images 

according to the classes. The ResNet50 architecture is shown 

in Figure 2.  

 

 
 

Figure 1. Shrimp classification using GAN-ResNet 

 

 
 

Figure 2. ResNet50 architecture 

 

ResNet-50 is a convolutional neural network design from 

the ResNet (Residual Networks) family, which addresses deep 

neural network training issues. ResNet-50, developed by 

Microsoft Research Asia, excels in image categorisation. Deep 

ResNet topologies include ResNet-18, ResNet-32, and 

ResNet-50, a medium-sized version. The 2015 ResNet-50 

model continues to improve image categorisation. 

ResNet-50 in generator 

ResNet-50 is a deep residual network with 50 layers, 

incorporating skip connections to improve gradient flow and 

learning capacity. In the GAN context, ResNet-50 can be used 

in the generator primarily in two ways: 

•As a backbone for feature extraction and representation 

learning within the generator to produce high-quality images. 

•Adapted into the generator with residual blocks to facilitate 

deeper architectures, allowing better image generation. 

Step 1: Input noise vector 

Start with a noise vector 𝑧 ∈ ℝ𝑑  sampled from a simple 

distribution (e.g., 𝑧 ∼ 𝒩(0, 𝐼)). 
Step 2: Project and reshape 

𝑧 is projected through a fully connected layer to form a low-

resolution feature map tensor: 

 

𝑓0 = 𝜙(𝑊𝑝𝑧 + 𝑏𝑝), 𝑓0 ∈ ℝ𝐶×𝐻×𝑊 (1) 

 

where, 𝜙  is an activation (ReLU), 𝑊𝑝, 𝑏𝑝  are weights and 

biases, and 𝐶,𝐻,𝑊 are channel, height, and width dimensions 

for the feature map. 

Step 3: ResNet-50 blocks (residual learning) 

The feature map 𝑓0  is passed through multiple residual 

blocks adapted from ResNet-50 architecture. Each residual 

block mathematically can be expressed as: 

 

𝑓𝑙+1 = 𝑓𝑙 + ℱ(𝑓𝑙 ,𝑊𝑙) (2) 

 

where, 𝑓𝑙  is input feature map at layer 𝑙 , ℱ  is the residual 

function (a stack of convolutions, batch normalizations, 

activations), and 𝑊𝑙 are the block parameters. 

The ResNet-50 generator uses a sequence of these residual 

blocks to incrementally refine features while preserving 

gradients via skip connections. 

Step 4: Upsampling layers 

The output from ResNet blocks is upsampled (e.g., using 

transpose convolutions or nearest-neighbor upsampling 

followed by convolution), mathematically: to increase spatial 

resolution towards the image size while refining features. 

Step 5: Output layer 

Finally, a convolutional layer maps the feature map to an 

image with 3 color channels: 

 

𝑥̂ = 𝜎(𝑊𝑜 ∗ 𝑓𝐿 + 𝑏𝑜) (3) 

 

where, 𝑥̂ ∈ ℝ3×𝐻𝑖𝑚𝑔×𝑊𝑖𝑚𝑔  is the generated image, 𝜎  is an 

activation (e.g., Tanh for pixel values normalized between -1 

and 1), 𝑊𝑜 and 𝑏𝑜 are weights and bias. 

Step 6: Training objective 

Generator weights (including the ResNet-50 blocks) are 

updated to minimize discriminator ability to distinguish 𝐷(𝑥̂) 
from real, using adversarial loss such as binary cross-entropy 

or variants: 

 

ℒ𝐺 = −𝔼𝑧∼𝑝𝑧[log⁡ 𝐷(𝐺(𝑧))] (4) 

 

For the discriminator, ResNet-50 takes input x (image), 

passes through layers of convolutions and residual blocks, and 

outputs 

 

𝐷(𝑥) = 𝜎(𝑊 ⋅ 𝑓(𝑥) + 𝑏) (5) 

 

where, f(x) is the feature vector output by ResNet before the 

final classification layer, W, b are weights and bias of the final 

layer, and σ is the sigmoid function. 

Step-by-Step Mathematical Flow is given below 

1. Input: Image x (real or fake) with shape (H, W, C) 

2. Initial convolution: Apply convolution Conv(x), batch 

normalization BN, and ReLU: 

 

𝑥1 = ReLU(BN(Conv(𝑥))) (6) 

 

3. Residual blocks: For each Residual block i in [1, 2, ..., 

N], 𝑥𝑖+1 = 𝑥𝑖 + 𝐹(𝑥𝑖 ,𝑊𝑖), where F has convolutions, 

BN, ReLU. 

This residual connection helps gradients flow better during 

backpropagation. 

4. Feature extraction: After passing through all residual 
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blocks, get feature map f(x). 

5. Pooling: Apply Global Average Pooling GAP(f(x)) to

reduce feature map to a vector:

𝑣 = GAP(𝑓(𝑥)) (7) 

6. Fully connected layer: Compute output logit

𝑙 = 𝑊 ⋅ 𝑣 + 𝑏 (8) 

7. Sigmoid activation: Calculate probability of being real

data:

𝐷(𝑥) = 𝜎(𝑙) =
1

1 + 𝑒−𝑙
(9) 

8. Discriminator loss: For batch size m,

𝐽𝐷 = −
1

𝑚
∑  

𝑚

𝑖=1

[log⁡ 𝐷(𝑥𝑖) + log⁡(1 − 𝐷(𝐺(𝑧𝑖)))] (10) 

This loss is minimized to improve discrimination. 

The training and evaluation components were provided. The 

generator and discriminator networks have their weights 

assigned randomly at the start. While the generator's goal is to 

create fake data that is as realistic as possible, the discriminator 

aims to correctly identify real data and define authentic data 

from fake data. The generator starts with random noise that 

serves as input to create fake data. That fake data will then be 

combined with real data, if available, to create a training batch. 

The discriminator receives the generator’s output, and a loss is 

calculated, which stems from the level of fooling the 

discriminator experiences. The generator's loss is reduced by 

adjusting its weights through gradient descent, leading to 

improved data output realism. The output data can either be 

real or fake, and the discriminator will classify them as real or 

fake. The loss the discriminator has is based on how accurately 

it can tell real data apart from fake data. To reduce this loss, 

the discriminator’s weights are adjusted so that the ability to 

tell genuine data apart from synthetic data is enhanced. The 

core principle of GANs is the adversarial training process, in 

which the generator and discriminator improve simultaneously 

through competition. 

The generator's ability to produce realistic data improves as 

training continues, while the discriminator improves in its 

ability to tell real data apart from fake data. Training continues 

for several epochs or until a convergence criterion is met. A 

generator tried to make data that was close to real, and a 

discriminator tried to tell if the data was real or fake. The 

generator continuously fails to obtain the data from the 

discriminator repeatedly. When training is finished, the 

generator attempts to create fake data for the discriminator to 

evaluate. 

3. RESULTS AND DISCUSSION

This section evaluates the performance of the proposed 

shrimp classification using GAN-ResNet with the collected 

dataset. The collected dataset includes shrimp categories such 

as Giant River shrimp, White shrimp, Procambarus clarkii, 

Marsupenaeus japonicus, and Peacock mantis shrimp. Table 1 

presents the shrimp classes dataset with the number of images 

for training and testing. The training and testing were done in 

a Windows 10 environment, using an Intel Core i7-7700 

central processing unit (CPU) and an Nvidia RTX 2080 

graphics processing unit (GPU). TensorFlow v1.13.0 and 

Keras are two deep-learning frameworks that were used in the 

process of developing and training the models. 

Table 1. Shrimp data set collected for training and testing 

Category White Shrimp Giant River Marsupenaeus Japonicus Procambarus Clarkii Peacock Mantis Total 

Training 562 511 506 532 525 2636 

Testing 541 492 498 431 419 2381 

Total 1103 1003 1004 963 944 5017 

Before training the classifier models, the AC-GAN's 

produced synthetic pictures were tuned. The AC-GAN was 

trained with varying numbers of training images of each class. 

This was done to determine the lowest number of images 

required to make synthetic images that closely resemble 

genuine ones. Figure 3 shows the collected shrimp dataset, and 

Figure 4 shows the generated synthetic shrimp images for each 

class using ResNet. 

Figure 3. Collected shrimp data set 

Figure 4. Synthetic images generated per class using various 

AC-GAN training sample sizes 

The GAN component was employed for synthetic data 

augmentation, enhancing dataset diversity and reducing 

overfitting, while ResNet-50 acted as the deep feature 

extractor and classifier. Training was conducted over 50 

epochs, allowing the model to iteratively optimize both 

generator and discriminator objectives in tandem with ResNet-

50’s classification loss. Throughout testing, the model 
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achieved an overall accuracy of 89.8%, precision of 91.6%, 

and F1-score of 94.1%, with per-class precision consistently 

ranging from 0.89 to 0.93.  

Figures 3 and 4 demonstrate that, in the case of shrimp 

images, the appearance of the developed synthetic images was 

not comparable to that of the real ones. On the other hand, the 

number of samples collected includes detailed images that 

seem to be the exact classification of the shrimps. To evaluate 

the effectiveness of a CNN classifier, a ResNet model 

consisting of 2636 samples from different categories of 

shrimps was used for training.  For testing, 541 white shrimp 

images, 492 giant river shrimp images, 498 Marsupenaeus 

japonicus shrimp images, 431 Procambarus clarkii shrimp 

images, and 419 peacock mantis shrimp images are used. 

Table 2. Overall qualitative evaluation results of the proposed technique 

Performance Measure 
White 

Shrimp 

Giant 

River 

Marsupenaeus 

Japonicus 

Procambarus 

Clarkii 

Peacock 

Mantis 
Overall 

Number of shrimps 541 492 498 431 419 2381 

True Positive 443 402 390 371 339 1945 

True Negative 39 50 44 24 37 194 

False Positive 45 31 47 25 29 177 

False Negative 14 9 17 11 14 65 

Precision 0.9078 0.9285 0.8925 0.9369 0.9212 0.9166 

Accuracy 0.891 0.9187 0.8715 0.9165 0.8974 0.8984 

F-1 Score 0.9376 0.9527 0.9242 0.9538 0.9404 0.9415 

Figure 5. The proposed method of precision score analysis 

Figure 6. The proposed method of accuracy analysis 

Figure 7. The proposed method of F1-score analysis 
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Figure 8. Proposed method performance comparison with state-of-the-art techniques 

The proposed technique was qualitatively evaluated using a 

confusion matrix, as in Table 2. The precision scores achieved 

90.78% for White shrimp, 92.8% for Giant river, 89.25% for 

Marsupenaeus Japonicus, 93.69% for Procambarus clarkii, 

and 92.12% for Peacock mantis. The precision, accuracy, and 

F-1 Score of white shrimp, and Marsupenaeus japonicus, are

quite low compared to other category shrimps, as shown in

Figures 5, 6, and 7, due to their complex shape. The overall

precision score of 91.66%, accuracy of 89.8%, and F-1 Score

of 0.94 show the robustness of the proposed technique. Figure

8 shows the overall performance in terms of precision score

compared with state-of-the-art techniques. For fair

comparison with the proposed technique, state-of-the-art

techniques are selected, such as InceptionResNetV2 [19],

SDNET [9], Multi-layer Fusion [11], GLCM [3], and DICNN

[20]. InceptionResNetV2 architecture achieved an impressive

average precision of 90.93%, SDNET precision score of

90.67%, Multi-layer Fusion method precision score of

91.41%, GLCM precision score of 90.56%, DICNN precision

score of 90.54%, and the proposed GAN achieved a precision

score of 91.6% by utilising the collected dataset [21, 22].

4. CONCLUSION

The proposed GAN-based shrimp classification method 

successfully utilized the generative network to create high-

quality synthetic shrimp images, enriching the training dataset 

and reducing data scarcity. Experimental analysis confirmed 

that the synthetic images closely resembled genuine ones, and 

when used for GAN-based augmentation, the ResNet-50 

model consistently outperformed standard approaches in terms 

of precision, accuracy, and F1-score. The achieved precision 

of 91.66%, accuracy of 89.8%, and F1-score of 0.94 

demonstrate the effectiveness of the proposed technique 

compared to state-of-the-art methods, particularly for objects 

with complex shapes. 

However, the study did not explore the method’s robustness 

under scenarios with very limited samples or highly complex 

and cluttered backgrounds, which may pose challenges for 

accurate classification. As a direction for future work, the 

model can be extended to handle such challenging conditions 

by incorporating advanced pre-processing, transfer learning 

strategies, or attention-based mechanisms. Additionally, 

applying the proposed framework to broader object categories 

in agriculture, aquaculture, or food quality inspection could 

validate its generalizability and scalability. 
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