
Frequent Subtree Mining Algorithm for Ribonucleic Acid Topological Pattern

Zhiqiang Li1, Chengjie Xu2, Chen Liu2*

1 School of Computer Science and Engineering, Yulin Normal University, Yulin 537000, China
2 School of Science, Hunan University of Technology, Zhuzhou 412007, China

Corresponding Author Email: liuchen6949@163.com

https://doi.org/10.18280/ria.330113 ABSTRACT

Received: 12 October 2018

Accepted: 28 January 2019

In recent years, with the demand for pattern information in the field of bioinformatics research,

frequent subtree mining algorithms have become a research hotspot. In this paper, a fast and

efficient mining algorithm based on frequent embedded subtree is proposed to solve the

problem of large-scale of biological data and high sequence pattern similarity in the process of

biological data mining. The algorithm uses a unique string coding method to represent the tree,

and uses a scope-list for substring amplification and frequency testing. The pruning technique

greatly compresses the search space and reduces the computational time. Compared with the

classical pattern mining algorithm, the proposed algorithm improves the efficiency of mining

greatly.

Keywords:

ribonucleic acid, frequent subtree,

topological pattern, frequent pattern

mining

1. INTRODUCTION

In recent years, a growing attention has been paid to the

mining of frequent patterns in transaction databases,

sequences, trees and graphs [1, 2]. The essence of frequent

pattern mining is to discover useful correlations between

patterns in numerous databases. Currently, frequent subtree

mining is a research hotspot due to the increasing complexity

of new structures and the rising demand for pattern

information in bioinformatics.

In bioinformatics, frequent pattern mining of graphs and

trees are critical to predicting and analyzing protein structure,

as well as excavating compounds. Many ribonucleic acid

(RNA) structures have been found and identified as tree

structures. There is only one way to acquire information of a

newly generated RNA structure: judge whether there is a

common topology pattern between the new structure and

known RNA structures. The judgement provides important

reference for determining the molecular functions of new

RNAs.

Many algorithms have emerged for the mining of frequent

subtrees. Due to the influence of Apriori algorithm [3], most

of the current subtree mining algorithms adopt a breadth-first

search strategy. By this strategy, the common subtrees of all

the trees in the dataset must be listed clearly. The common

trees are enumerated in two common ways [4]: the depth-first

strategy of pattern growth and the breadth-first strategy of

layer-by-layer mining.

The Tree Finder algorithm [5] is a typical method to mine

unordered subtrees. However, the algorithm cannot mine out

all frequent subtrees if different trees have the same tags or the

support is very small. The popular algorithms for mining

unordered direct subtrees include HybridTreeMiner, uNot,

uFreqt, FreeTreeMiner and PathJoin [6-10]. If applied directly,

these algorithms cannot achieve a high efficiency or make

effective use biological features of deoxyribonucleic acid

(DNA) or the data of protein sequence.

The inefficiency arises from the wide adoption of Apriori

algorithm and its improved versions in frequent subtree

algorithms. Relying on candidate set generation-screening, the

original and improved Apriori algorithms only work

efficiently in handling simple patterns. Facing a large

candidate set, these algorithms will be very time-consuming,

requiring multiple scans of the database.

The ineffective use of biological information is attributable

to the limited ability of frequent pattern mining algorithms.

These algorithms are only suitable for processing simple

frequent sequence patterns and frequent items, but not capable

of tackling complex biological data.

To solve the two problems, this paper proposes a frequent

subtree mining algorithm based on biological data. The

proposed algorithm describes the trees by a unique string

encoding method, and uses the scope-list for subtree expansion

and frequency testing. Experimental results show that the

proposed algorithm greatly reduces the search space and

shortens the runtime.

2. BASIC CONCEPTS AND PROBLEM DEFINITION

2.1 Frequent subtree mining

Definition 1 (Subtree) Let T be a rooted tree, in which each

node is denoted as x. Then, a subgraph derived from all the sub

nodes of x is called a subtree of T, with x be its root.

Let |T| be the number of nodes of T, i.e. the size of the tree.

Each node of the tree is given a serial number i(i=0…|T-1|)

based on its position in the depth-first search. The node given

the serial number i is denoted as ni. Then, the items of a node

can be allocated to a set L={0,1,2,3,…,m-1}, where m is the

number of tags in the tree. For any node vi ∈ N, L(vi) is the

tag of node vI, and n(vi) is the serial number of node vi. Each

branch b consists of an ordered pair of nodes, where node vx
is the parent of vy. If it is not connected, the branch is called a

Revue d'Intelligence Artificielle
Vol. 33, No. 1, February, 2019, pp. 75-80

Journal homepage: http://iieta.org/journals/ria

75

subtree of T. In Figure 1, S1, S2 and S3 are all subtrees of T.

A

B C D

E F

G H I

J

T

K

L M

S1

N

O

P

Q

R

S

S2

T

U V W

S3

Figure 1. A rooted tree and its subtrees

Definition 2 (Rooted subtree) Let T′(𝑉′, E′, Σ′, L′, 𝑟)

be a subtree of tree T(V, E, Σ, L, 𝑟). If and only if, 𝑉′ ∈ 𝑉 ,

E′ ∈ 𝐸 , Σ′ ∈ Σ and L′ ∈ 𝐿 , 𝑟 is the root node of trees

T′and T.

Definition 3 (Maximum frequent subtree and closed

frequent subtree) For a tree data setD = {𝑇1, 𝑇2, … , 𝑇𝑛}, then a

subtree T is the maximum frequent subtree in the data set, if T

is frequent and any of its hyper trees is infrequent, and the

subtree T is a closed frequent subtree, if T is frequent and

greater than the support of any hyper tree.

Table 1. The tags and node fields of each node of tree T

Tags Node fields

L(A)=0 S(A)=[0, 6]

L(B)=1 S(B)=[1, 5]

L(D)=3 S(D)=[2, 4]

L(F)=1 S(F)=[3, 3]

L(G)=2 S(G)=[4, 4]

L(E)=2 S(E)=[5, 5]

L(C)=2

L(H)=1

S(C)=[6, 6]

S(H)=[1, 4]

L(I)=2 S(I)=[2, 2]

L(J)=1 S(J)=[3, 2]

L(K)=2 S(K)=[0, 2]

L(L)=2 S(L)=[5, 1]

L(M)=3 S(M)=[4, 3]

L(N)=1 S(N)=[4, 3]

L(O)=2 S(O)=[1, 1]

L(P)=2 S(P)=[1, 2]

L(Q)=3 S(Q)=[2, 3]

L(R)=1 S(R)=[2,4]

L(S)=2 S(S)=[3,1]

L(T)=1 S(T)=[4,2]

L(U)=2 S(U)=[3,2]

L(V)=2 S(V)=[6,2]

L(W)=2 S(W)=[6,3]

Table 1 lists the tags and node fields of each node of tree T

in Figure 1. The set of nodes and the set of tagged nodes are

respectively L={0,1,2,3} and

N={A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W}.

The serial number of each node in the tree of Figure 1 were

determined by the sequence of the depth-first search (Table 2).

Table 2. The serial number of each node

Node A B C D E F G

Serial

number

0 1 6 2 5 3 4

Node A B C D E F G H I J

Serial

number

0 1 8 9 2 6 3 4 7 5

From Figure 1, it can be seen that L(A)=0, and the rightmost

leaf node is D, then the root A domain s=[n(A), n(C)]=[0,9].

According to the above definitions, there must be fewer

maximum frequent subtrees than closed frequent subtrees.

Therefore, it is more efficient to mine the maximum frequent

subtrees than the closed frequent subtrees, despite a slightly

more information loss.

2.2 Subtree scalability check

In general, the tree structure can be represented by depth-

first method or breadth-first method. Nevertheless, neither the

depth-first method nor the breadth-first method can describe a

tree structure alone without additional information.

The results of the two methods are known as the depth-first

sequence and the breadth-first sequence, respectively. In the

depth-first sequence, the nodes of a subtree are described as

adjacent to each other; in the breadth-first sequence, the nodes

of the same layer are illustrated as adjacent to each other.

Based on these two methods, this paper attempts to design

a closed frequent subtree mining algorithm that identifies the

subtree structure efficiently and completely. Since the subtree

nodes of a column are not adjacent to each other, the depth-

first method was applied several times to get all the nodes of

each subtree. Then, the breadth-first sequence was obtained

directly according to the hierarchical relationship between the

nodes of the subtree. This hierarchical depth-first method can

reflect the tree-shape data structure and pinpoint the nodes on

subtrees of different root nodes.

Definition 4 (node level): Each tree can be defined by the

level of its root node.

Definition 5 (node representation): Let R be a node on a tree,

S be its parent and L be the level of the parent. Then, the node

R can be expressed as <R, S, L>. If R is the root node, then the

parent node and its level are both zeros.

Definition 6 (linear regular expression): For each tree, the

depth-first sequence obtained by each node is a linear regular

expression of the tree.

According to Definition 6, the tree in Figure 2(a) can be

described as the sequence: <A, 0, 0>, <B, A, 1>, <D, B, 2>,

<E, B, 2>, <C, A, 1>.

Based on the sequence, the three can be restored uniquely.

For example, Figure 2(b) is the tree structure restored from the

sequence <A, 0, 0>, <B, A, 1>, <D, B, 2>, <E, B, 2>, <C, A,

1>, <F, C, 2>.

76

A

B C

D E

A

B C

D E F

(a) (b)

Figure 2. A tree and a restored tree

3. FREQUENT SUBTREE MINING ALGORITHM

Through the above analysis, a new algorithm was developed

to mine frequent subtrees in biological data. In the algorithm,

a scope-list is initialized based on the input tree database, and

a string encoding method for these trees is adopted to create a

string set. Specifically, a candidate set is generated from a

node on the smallest subtree, and then expanded on each

subtree by gradually adding the rightmost leaf node. This is to

eliminate any redundant candidate subtree. During the subtree

expansion, the support of each subtree was calculated to reflect

the subtree frequency. To ensure the diversity of the candidate

set, all infrequent subtrees are removed, leaving only the

frequent ones.

The extension to the candidate subtree Ti is realized by

performing the rightmost expansion with the code string C(Ti)
corresponding to that subtree. During the rightmost expansion

of C(Ti) , a new string C′ is formed simply by adding a

character after the string C(Ti) . Since the algorithm only

extends the scalable substring corresponding to the subtree, the

resulting new string C′ does not necessarily represent a subtree.

Hence, the scalability of the new string must be verified. The

scope-lists are created to extend all extensible subtrees. This

process is repeated until all eligible subtrees have been

generated. Finally, the acceptable frequent subtrees are

identified through frequency testing.

During the computation, the search space is greatly

compressed by the scalability check of subtrees and the use of

scope-lists. This greatly enhances the overall performance of

our algorithm.

Node insertion and deletion is the key to the compression of

the search space. Node insertion should not undermine the

position of the current node in the original tree, i.e. its

relationship with other nodes in the sequence. For each

compressed edge, a node is inserted into the compressed

structure. Meanwhile, the corresponding edge in the original

tree is hidden.

Node deletion is also indispensable to search space

compression. To delete a node, a child node should be inserted

to the position of the parent of the deleted node, and the

information of the parent node of the deleted node should be

updated accordingly. After the positions of all related nodes

have been processed, the current node should be removed.

The overall framework of the proposed algorithm is as

follows:

Algorithm 1 Frequent Subtree Mining Algorithm

Input: Tree database TDB, Minimum support min _sup;

Output: All frequent subtrees;

Scan (Edge a,min_sup){

child_node=a.second;

 parent_node=a.first;

Insert Node (child_node, parent_node);

For each(n in child_node. children) {

parent_node.children.add(n);

 }

 DelNode (child_node);

 If n<min_sup;

 Return parent_node;

}

A

C D

B E

A

C’ D

G EF

(a) (b)

G H

H F

Compress CB edge

A

C’’ D

E F

Compress BG and BH edges

(c)

A

C’’’ D’

Compress CE and DF edges

(d)

A’

(e)

Compress AC and AD edges

Figure 3. Complete process of frequent subtree mining

77

Figure 3 details the entire process of frequent subtree

mining for a tree structure ACBGHEDF. Firstly, the edge CB

is compressed, with the sequence of node C’ being <C, A, 1>,

<B, C, 2>. Then, edges BG and BH are compressed, with the

sequence of node C’’ being <C, A, 1>, <B, C, 2>, <H, B, 3>,

<G, B, 3>. After that, edges CE and DF are compressed, with

the sequence of node C’’ being <C, A, 1>, <E, C, 2>, <B, C,

2>, <H, B, 3>, <G, B, 3>, and that of node D' being <D, A, 1>,

<F, D, 2>. Finally, edges AC and AD are compressed, with the

sequence of node A being <A, 0, 0>, <D, A, 1>, <F, D, 2>, <C,

A, 1>, <E, C, 2>, <B, C, 2>, <H, B, 3>, <G, B, 3>. Through

the above process, the original tree is fully compressed into a

point. In each step, each edge being compressed can be

regarded as a candidate frequent subtree, that generates

frequent subtrees while compressing the space. The search

efficiency is thus improved.

The obtained representation can restore the tree structure in

a unique manner. As shown in Figure 4, the final tree sequence

is <A,0,0>, <D,A,1>, <F,D,2>, <C,A,1>, <E,C,2>, <B,C,2>,

<H,B,3>, <G,B,3>. Based on this sequence, the tree structure

can be restored as follows:

Starting with the first node, the root node is <A, 0, 0>, the

parent node is 0, and the level of the parent node is 0. Thus,

node A is a root node. The next step is to search for the child

node of A, i.e. the node whose parent node level is 1 below

node A. Through the search, two sequences of children nodes

can be identified, namely, <D, A, 1> and <C, A, 1>. This

means D and C are the children of node A. The sequence

between the two children is the subtree with D as the root node,

and that between C and X is the subtree with C as the root node.

Then, the tree structure can be restored recursively based on

the two children sequences.

A’

ACBGHEDF A

C’’’ D’ DFCEBHG

A

C D

E FB’

BGH

A

C D

B E F

G H

Figure 4. Restoration of tree structure

4. EXPERIMENT AND RESULTS ANALYSIS

4.1 Comparison of algorithm performance

The data on tree structure for our experiment are two

popular datasets, namely, F5 and D10, which are manually

generated based on real trees. The experiment aims to generate

a parent tree with q tags and p nodes. The values of q and p

were set to 5,000 and 200, respectively.

Firstly, the proposed algorithm was compared with two

typical subtree mining algorithms (i.e. PatternMatcher (PM)

algorithm [11] and TreeMiner (TM) algorithm [12]) in terms

of runtime, as the data scale increased from t = 100 to t =106,

with the support remains at 0.5.

Figure 5. Time variation of the number of trees

The results in Figure 5 show that the runtime of all three

algorithms extended with the growing scale of data. However,

when the data volume exceeded 100,000, the runtime of the

PM algorithm rose sharply. This is mainly because the PM

algorithm needs to scan the database repeatedly, and check the

large candidate set via pattern matching. By contrast, both the

TM and our algorithm consumed a much shorter time than the

PM. In addition, the runtime of our algorithm increased slower

than that of the TM, thanks to its superior pruning strategy. In

summary, our algorithm outperformed the PM and the TM in

an environment of massive data.

Next, the three algorithms were simulated again under

different supports (from 0.1 to 1), while the input data scale

was fixed on two scales (t=104 and t=105). This simulation

attempts to compare the adaptability of each algorithm to

support, which is generally negatively correlated with the

runtime.

According to the runtime-support curves in Figures 6 and 7,

the three algorithms consumed shorter runtimes with the

increase of support, under whoever data scale. In the beginning,

the runtime of the PM was much longer than that of the TM

and that of our algorithm. Once the support reached 0.9, the

PM saw greater decline in runtime than the TM and our

algorithm. These results can be explained as follows:

Figure 6. The relationship between the support and time

(T=10,000)

In horizontal mining, the pruning operation can be

performed in an Apriori manner. The specific strategy is to

eliminate some infrequent subtrees through hierarchical search.

78

When the support is approximately 1, most of the candidate

modes will be removed. In practice, however, the user-defined

support is generally smaller than 0.5, which is far below 1.

When the support is less than 0.9, the runtime of the vertical

mining algorithm TM and our algorithm is obviously shorter

than the PM.

It can also be seen that the runtime of our algorithm under

both data scales was little affected by the change of support,

showing a relatively stable trend. Hence, our algorithm is more

adaptable than the PM. Moreover, our algorithm consumed

fewer time than the TM, a sign of its excellent efficiency.

Figure 7. The relationship between the support and time

(T=100,000)

4.2 RNA experiments

From the RNase P Database [13], some RNA molecular

structures were extracted to develop a tree model. Then, the

common tree topology of 30 trees was mined by our algorithm.

Figure 8 shows the relationship between support and the

runtime of our algorithm. With the decline in support, the

number of acceptable frequent patterns being mined gradually

increased, and the runtime was also extended.

Figure 8. Relationship between runtime and support

Figure 9 shows the variation in the number of frequent

patterns mined by our algorithm under different supports.

Obviously, the number of frequent patterns being mined

gradually increased with the decrease of support. However,

when the support approximated zero, the number of frequent

patterns being mined was not significantly affected. The

growth rate of frequent patterns was relatively stable, when the

support varied in [0.3, 0.5]. In this case, the frequent patterns

obtained by our algorithm are typical representations of the

selected 30 tree structures.

Figure 9. Relatinship between the number of frequent

patterns and support

Figure 10 shows a subtree mined at least 9 times by the

proposed algorithm in 30 trees, which was not found by other

algorithms. Therefore, compared with other direct subtree

mining algorithms, the proposed algorithm can mine more

“hidden” information for the mining of RNA subtrees, and at

the same time, it makes the mined results more biologically

meaningful.

1

2

6

3

54

7 98

Figure 10. A subtree that is mined

5. CONCLUSIONS

This paper designs a fast and effective frequent subtree

mining algorithm for biological data mining. The algorithm

adopts a tree structure compression method, which is inspired

by the representation of tree structure. The compression

method optimizes the mining of frequent subtrees, and records

the intermediate results in the mining process. In addition, our

algorithm compresses multiple edges according to the current

frequency at each time, and then judges whether the

compressed subtree is a frequent pattern. Therefore, our

algorithm can process multiple nodes and edges in each round,

and achieve an efficiency about 118% of the traditional

method. If the compressed subtree is not frequent, the frequent

subtrees are mined on smaller datasets by prefix matching,

such that our algorithm can mine all frequent subtrees. Finally,

the feasibility and efficiency of the algorithm were verified

through experiments on real datasets.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science

Foundation of China (No.61841603), Guangxi Natural

79

Science Foundation (No.2018JJA170050,

No.2014GXNSFBA118268), Science and Technology

Research Foundation of Guangxi Universities

(201204LX339).

REFERENCES

[1] Arnold, R., Goldenberg, F., Mewes, H.W. (2014).

SIMAP-the database of all-against-all protein sequence

similarities and annotations with new interfaces and

increased coverage. Nucleic Acids Research, 42(1): 279-

284. https://doi.org/10.1093/nar/gkt970

[2] Slater, G.S.C., Ewan, B. (2005). Automated generation

of heuristics for biological sequence comparison. Bmc

Bioinformatics, 6(1): 1-11. https://doi.org/10.1186/1471-

2105-6-31

[3] Toivonen, H. (2011). Apriori Algorithm. Encyclopedia

of Machine Learning, 39-40.

https://doi.org/10.1007/978-0-387-30164-8_27

[4] Tan, Z., Sharma, G., Mathews, D.H. (2017). Modeling

RNA secondary structure with sequence comparison and

experimental mapping data. Biophysical Journal, 113(2):

330-341. https://doi.org/10.1016/j.bpj.2017.06.039

[5] Termier, A., Rousset, M.C. (2002). TreeFinder: A first

step towards XML data mining. IEEE International

Conference on Data Mining, IEEE Computer Society,

450-458. https://doi.org/10.1109/ICDM.2002.1183987

[6] Zaki, M.J. (2004). TreeMiner: An efficient algorithm for

mining embedded ordered frequent trees. Advanced

Information & Knowledge Processing, 123-151.
https://doi.org/10.1007/1-84628-284-5_5

[7] Pasquier, C., Sanhes, J., Flouvat, F. (2016). Frequent

pattern mining in attributed trees: algorithms and

applications. Knowledge and Information Systems, 46(3):

491-514. https://doi.org/10.1007/s10115-015-0831-x

[8] Jiang, C., Coenen, F., Zito, M. (2013). A survey of

frequent subgraph mining algorithms. The Knowledge

Engineering Review, 28(1): 75-105.
https://doi.org/10.1017/s0269888912000331

[9] Asai, T., Arimura, H., Uno, T. (2003). Discovering

frequent substructures in large unordered trees. Lnai,

2843: 47-61. https://doi.org/10.1007/978-3-540-39644-

4_6

[10] Babbar, A., Singh, A., Singh, D. (2014). A survey on

problems and solutions of frequent pattern mining with

the use of pre-processing techniques. International

Journal of Computer Applications, 95(1): 23-28.
https://doi.org/10.5120/16559-4125

[11] Okosun, J., Csaba, B., Wang, J. (2014). Integrated

genomic analysis identifies recurrent mutations and

evolution patterns driving the initiation and progression

of follicular lymphoma. Nature Genetics, 46(2): 176-181.
https://doi.org/10.1038/ng.2856

[12] Zhang, S., Du, Z., Wang, J.T. (2015). New techniques for

mining frequent patterns in unordered trees. IEEE

Transactions on Cybernetics, 45(6): 1113-1125.
https://doi.org/10.1109/tcyb.2014.2345579

[13] Liu, M.H., Yuan, Y., Reddy, R. (1994). Human RNaseP

RNA and nucleolar 7-2 RNA share conserved 'To'

antigen-binding domains. Molecular & Cellular

Biochemistry, 130(1): 75-82.
https://doi.org/10.1007/BF01084270

80

