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In recent years, with the demand for pattern information in the field of bioinformatics research, 

frequent subtree mining algorithms have become a research hotspot. In this paper, a fast and 

efficient mining algorithm based on frequent embedded subtree is proposed to solve the 

problem of large-scale of biological data and high sequence pattern similarity in the process of 

biological data mining. The algorithm uses a unique string coding method to represent the tree, 

and uses a scope-list for substring amplification and frequency testing. The pruning technique 

greatly compresses the search space and reduces the computational time. Compared with the 

classical pattern mining algorithm, the proposed algorithm improves the efficiency of mining 

greatly. 
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1. INTRODUCTION

In recent years, a growing attention has been paid to the 

mining of frequent patterns in transaction databases, 

sequences, trees and graphs [1, 2]. The essence of frequent 

pattern mining is to discover useful correlations between 

patterns in numerous databases. Currently, frequent subtree 

mining is a research hotspot due to the increasing complexity 

of new structures and the rising demand for pattern 

information in bioinformatics.  

In bioinformatics, frequent pattern mining of graphs and 

trees are critical to predicting and analyzing protein structure, 

as well as excavating compounds. Many ribonucleic acid 

(RNA) structures have been found and identified as tree 

structures. There is only one way to acquire information of a 

newly generated RNA structure: judge whether there is a 

common topology pattern between the new structure and 

known RNA structures. The judgement provides important 

reference for determining the molecular functions of new 

RNAs. 

Many algorithms have emerged for the mining of frequent 

subtrees. Due to the influence of Apriori algorithm [3], most 

of the current subtree mining algorithms adopt a breadth-first 

search strategy. By this strategy, the common subtrees of all 

the trees in the dataset must be listed clearly. The common 

trees are enumerated in two common ways [4]: the depth-first 

strategy of pattern growth and the breadth-first strategy of 

layer-by-layer mining.  

The Tree Finder algorithm [5] is a typical method to mine 

unordered subtrees. However, the algorithm cannot mine out 

all frequent subtrees if different trees have the same tags or the 

support is very small. The popular algorithms for mining 

unordered direct subtrees include HybridTreeMiner, uNot, 

uFreqt, FreeTreeMiner and PathJoin [6-10]. If applied directly, 

these algorithms cannot achieve a high efficiency or make 

effective use biological features of deoxyribonucleic acid 

(DNA) or the data of protein sequence.  

The inefficiency arises from the wide adoption of Apriori 

algorithm and its improved versions in frequent subtree 

algorithms. Relying on candidate set generation-screening, the 

original and improved Apriori algorithms only work 

efficiently in handling simple patterns. Facing a large 

candidate set, these algorithms will be very time-consuming, 

requiring multiple scans of the database.  

The ineffective use of biological information is attributable 

to the limited ability of frequent pattern mining algorithms. 

These algorithms are only suitable for processing simple 

frequent sequence patterns and frequent items, but not capable 

of tackling complex biological data. 

To solve the two problems, this paper proposes a frequent 

subtree mining algorithm based on biological data. The 

proposed algorithm describes the trees by a unique string 

encoding method, and uses the scope-list for subtree expansion 

and frequency testing. Experimental results show that the 

proposed algorithm greatly reduces the search space and 

shortens the runtime. 

2. BASIC CONCEPTS AND PROBLEM DEFINITION

2.1 Frequent subtree mining 

Definition 1 (Subtree) Let T be a rooted tree, in which each 

node is denoted as x. Then, a subgraph derived from all the sub 

nodes of x is called a subtree of T, with x be its root. 

Let |T| be the number of nodes of T, i.e. the size of the tree. 

Each node of the tree is given a serial number i(i=0…|T-1|) 

based on its position in the depth-first search. The node given 

the serial number i is denoted as ni. Then, the items of a node

can be allocated to a set L={0,1,2,3,…,m-1}, where m is the 

number of tags in the tree. For any node vi ∈ N, L(vi) is the

tag of node vI, and n(vi) is the serial number of node vi. Each

branch b consists of an ordered pair of nodes, where node vx
is the parent of vy. If it is not connected, the branch is called a
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subtree of T. In Figure 1, S1, S2 and S3 are all subtrees of T. 
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Figure 1. A rooted tree and its subtrees 

 

Definition 2 (Rooted subtree) Let T′(𝑉′, E′, Σ′, L′, 𝑟) 

be a subtree of tree T(V, E, Σ, L, 𝑟). If and only if, 𝑉′ ∈ 𝑉 , 

E′ ∈ 𝐸 , Σ′ ∈ Σ  and L′ ∈ 𝐿 , 𝑟  is the root node of trees 

T′and T. 

Definition 3 (Maximum frequent subtree and closed 

frequent subtree) For a tree data setD = {𝑇1, 𝑇2, … , 𝑇𝑛}, then a 

subtree T is the maximum frequent subtree in the data set, if T 

is frequent and any of its hyper trees is infrequent, and the 

subtree T is a closed frequent subtree, if T is frequent and 

greater than the support of any hyper tree. 

 

Table 1. The tags and node fields of each node of tree T 

 
Tags Node fields 

L(A)=0 S(A)=[0, 6] 

L(B)=1 S(B)=[1, 5] 

L(D)=3 S(D)=[2, 4] 

L(F)=1 S(F)=[3, 3] 

L(G)=2 S(G)=[4, 4] 

L(E)=2 S(E)=[5, 5] 

L(C)=2 

L(H)=1 

S(C)=[6, 6] 

S(H)=[1, 4] 

L(I)=2 S(I)=[2, 2] 

L(J)=1 S(J)=[3, 2] 

L(K)=2 S(K)=[0, 2] 

L(L)=2 S(L)=[5, 1] 

L(M)=3 S(M)=[4, 3] 

L(N)=1 S(N)=[4, 3] 

L(O)=2 S(O)=[1, 1] 

L(P)=2 S(P)=[1, 2] 

L(Q)=3 S(Q)=[2, 3] 

L(R)=1 S(R)=[2,4] 

L(S)=2 S(S)=[3,1] 

L(T)=1 S(T)=[4,2] 

L(U)=2 S(U)=[3,2] 

L(V)=2 S(V)=[6,2] 

L(W)=2 S(W)=[6,3] 

 

 

Table 1 lists the tags and node fields of each node of tree T 

in Figure 1. The set of nodes and the set of tagged nodes are 

respectively L={0,1,2,3} and 

N={A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W}. 

The serial number of each node in the tree of Figure 1 were 

determined by the sequence of the depth-first search (Table 2). 

 

Table 2. The serial number of each node 

 
Node A B C D E F G 

Serial 

number 

0 1 6 2 5 3 4 

 
Node A B C D E F G H I J 

Serial 

number 

0 1 8 9 2 6 3 4 7 5 

 

From Figure 1, it can be seen that L(A)=0, and the rightmost 

leaf node is D, then the root A domain s=[n(A), n(C)]=[0,9].  

According to the above definitions, there must be fewer 

maximum frequent subtrees than closed frequent subtrees. 

Therefore, it is more efficient to mine the maximum frequent 

subtrees than the closed frequent subtrees, despite a slightly 

more information loss. 

 

2.2 Subtree scalability check 

 

In general, the tree structure can be represented by depth-

first method or breadth-first method. Nevertheless, neither the 

depth-first method nor the breadth-first method can describe a 

tree structure alone without additional information. 

The results of the two methods are known as the depth-first 

sequence and the breadth-first sequence, respectively. In the 

depth-first sequence, the nodes of a subtree are described as 

adjacent to each other; in the breadth-first sequence, the nodes 

of the same layer are illustrated as adjacent to each other. 

Based on these two methods, this paper attempts to design 

a closed frequent subtree mining algorithm that identifies the 

subtree structure efficiently and completely. Since the subtree 

nodes of a column are not adjacent to each other, the depth-

first method was applied several times to get all the nodes of 

each subtree. Then, the breadth-first sequence was obtained 

directly according to the hierarchical relationship between the 

nodes of the subtree. This hierarchical depth-first method can 

reflect the tree-shape data structure and pinpoint the nodes on 

subtrees of different root nodes. 

Definition 4 (node level): Each tree can be defined by the 

level of its root node. 

Definition 5 (node representation): Let R be a node on a tree, 

S be its parent and L be the level of the parent. Then, the node 

R can be expressed as <R, S, L>. If R is the root node, then the 

parent node and its level are both zeros. 

Definition 6 (linear regular expression): For each tree, the 

depth-first sequence obtained by each node is a linear regular 

expression of the tree. 

According to Definition 6, the tree in Figure 2(a) can be 

described as the sequence: <A, 0, 0>, <B, A, 1>, <D, B, 2>, 

<E, B, 2>, <C, A, 1>. 

Based on the sequence, the three can be restored uniquely. 

For example, Figure 2(b) is the tree structure restored from the 

sequence <A, 0, 0>, <B, A, 1>, <D, B, 2>, <E, B, 2>, <C, A, 

1>, <F, C, 2>. 
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Figure 2. A tree and a restored tree 

 

 

3. FREQUENT SUBTREE MINING ALGORITHM 

 

Through the above analysis, a new algorithm was developed 

to mine frequent subtrees in biological data. In the algorithm, 

a scope-list is initialized based on the input tree database, and 

a string encoding method for these trees is adopted to create a 

string set. Specifically, a candidate set is generated from a 

node on the smallest subtree, and then expanded on each 

subtree by gradually adding the rightmost leaf node. This is to 

eliminate any redundant candidate subtree. During the subtree 

expansion, the support of each subtree was calculated to reflect 

the subtree frequency. To ensure the diversity of the candidate 

set, all infrequent subtrees are removed, leaving only the 

frequent ones. 

The extension to the candidate subtree Ti  is realized by 

performing the rightmost expansion with the code string C(Ti) 
corresponding to that subtree. During the rightmost expansion 

of C(Ti) , a new string C′  is formed simply by adding a 

character after the string C(Ti) . Since the algorithm only 

extends the scalable substring corresponding to the subtree, the 

resulting new string C′ does not necessarily represent a subtree. 

Hence, the scalability of the new string must be verified. The 

scope-lists are created to extend all extensible subtrees. This 

process is repeated until all eligible subtrees have been 

generated. Finally, the acceptable frequent subtrees are 

identified through frequency testing. 

During the computation, the search space is greatly 

compressed by the scalability check of subtrees and the use of 

scope-lists. This greatly enhances the overall performance of 

our algorithm. 

Node insertion and deletion is the key to the compression of 

the search space. Node insertion should not undermine the 

position of the current node in the original tree, i.e. its 

relationship with other nodes in the sequence. For each 

compressed edge, a node is inserted into the compressed 

structure. Meanwhile, the corresponding edge in the original 

tree is hidden.  

Node deletion is also indispensable to search space 

compression. To delete a node, a child node should be inserted 

to the position of the parent of the deleted node, and the 

information of the parent node of the deleted node should be 

updated accordingly. After the positions of all related nodes 

have been processed, the current node should be removed.  

The overall framework of the proposed algorithm is as 

follows: 

Algorithm 1 Frequent Subtree Mining Algorithm 

Input: Tree database TDB, Minimum support min _sup; 

Output: All frequent subtrees; 

 

Scan (Edge a,min_sup){ 

child_node=a.second; 

            parent_node=a.first; 

Insert Node (child_node, parent_node); 

For each(n in child_node. children) { 

parent_node.children.add(n); 

           } 

           DelNode (child_node); 

           If n<min_sup; 

           Return parent_node; 

} 
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Figure 3. Complete process of frequent subtree mining 

77



Figure 3 details the entire process of frequent subtree 

mining for a tree structure ACBGHEDF. Firstly, the edge CB 

is compressed, with the sequence of node C’ being <C, A, 1>, 

<B, C, 2>. Then, edges BG and BH are compressed, with the 

sequence of node C’’ being <C, A, 1>, <B, C, 2>, <H, B, 3>, 

<G, B, 3>. After that, edges CE and DF are compressed, with 

the sequence of node C’’ being <C, A, 1>, <E, C, 2>, <B, C, 

2>, <H, B, 3>, <G, B, 3>, and that of node D' being <D, A, 1>, 

<F, D, 2>. Finally, edges AC and AD are compressed, with the 

sequence of node A being <A, 0, 0>, <D, A, 1>, <F, D, 2>, <C, 

A, 1>, <E, C, 2>, <B, C, 2>, <H, B, 3>, <G, B, 3>. Through 

the above process, the original tree is fully compressed into a 

point. In each step, each edge being compressed can be 

regarded as a candidate frequent subtree, that generates 

frequent subtrees while compressing the space. The search 

efficiency is thus improved. 

The obtained representation can restore the tree structure in 

a unique manner. As shown in Figure 4, the final tree sequence 

is <A,0,0>, <D,A,1>, <F,D,2>, <C,A,1>, <E,C,2>, <B,C,2>, 

<H,B,3>, <G,B,3>. Based on this sequence, the tree structure 

can be restored as follows: 

Starting with the first node, the root node is <A, 0, 0>, the 

parent node is 0, and the level of the parent node is 0. Thus, 

node A is a root node. The next step is to search for the child 

node of A, i.e. the node whose parent node level is 1 below 

node A. Through the search, two sequences of children nodes 

can be identified, namely, <D, A, 1> and <C, A, 1>. This 

means D and C are the children of node A. The sequence 

between the two children is the subtree with D as the root node, 

and that between C and X is the subtree with C as the root node. 

Then, the tree structure can be restored recursively based on 

the two children sequences. 
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Figure 4. Restoration of tree structure 

 

 

4. EXPERIMENT AND RESULTS ANALYSIS 

 

4.1 Comparison of algorithm performance 

 

The data on tree structure for our experiment are two 

popular datasets, namely, F5 and D10, which are manually 

generated based on real trees. The experiment aims to generate 

a parent tree with q tags and p nodes. The values of q and p 

were set to 5,000 and 200, respectively.  

Firstly, the proposed algorithm was compared with two 

typical subtree mining algorithms (i.e. PatternMatcher (PM) 

algorithm [11] and TreeMiner (TM) algorithm [12]) in terms 

of runtime, as the data scale increased from t = 100 to t =106, 

with the support remains at 0.5. 

 

 
 

Figure 5. Time variation of the number of trees  

 

The results in Figure 5 show that the runtime of all three 

algorithms extended with the growing scale of data. However, 

when the data volume exceeded 100,000, the runtime of the 

PM algorithm rose sharply. This is mainly because the PM 

algorithm needs to scan the database repeatedly, and check the 

large candidate set via pattern matching. By contrast, both the 

TM and our algorithm consumed a much shorter time than the 

PM. In addition, the runtime of our algorithm increased slower 

than that of the TM, thanks to its superior pruning strategy. In 

summary, our algorithm outperformed the PM and the TM in 

an environment of massive data. 

Next, the three algorithms were simulated again under 

different supports (from 0.1 to 1), while the input data scale 

was fixed on two scales (t=104 and t=105). This simulation 

attempts to compare the adaptability of each algorithm to 

support, which is generally negatively correlated with the 

runtime. 

According to the runtime-support curves in Figures 6 and 7, 

the three algorithms consumed shorter runtimes with the 

increase of support, under whoever data scale. In the beginning, 

the runtime of the PM was much longer than that of the TM 

and that of our algorithm. Once the support reached 0.9, the 

PM saw greater decline in runtime than the TM and our 

algorithm. These results can be explained as follows: 

 

 
 

Figure 6. The relationship between the support and time 

(T=10,000) 

 

In horizontal mining, the pruning operation can be 

performed in an Apriori manner. The specific strategy is to 

eliminate some infrequent subtrees through hierarchical search. 
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When the support is approximately 1, most of the candidate 

modes will be removed. In practice, however, the user-defined 

support is generally smaller than 0.5, which is far below 1. 

When the support is less than 0.9, the runtime of the vertical 

mining algorithm TM and our algorithm is obviously shorter 

than the PM.  

It can also be seen that the runtime of our algorithm under 

both data scales was little affected by the change of support, 

showing a relatively stable trend. Hence, our algorithm is more 

adaptable than the PM. Moreover, our algorithm consumed 

fewer time than the TM, a sign of its excellent efficiency. 

 

 
 

Figure 7. The relationship between the support and time 

(T=100,000) 

 

4.2 RNA experiments 

 

From the RNase P Database [13], some RNA molecular 

structures were extracted to develop a tree model. Then, the 

common tree topology of 30 trees was mined by our algorithm.  

Figure 8 shows the relationship between support and the 

runtime of our algorithm. With the decline in support, the 

number of acceptable frequent patterns being mined gradually 

increased, and the runtime was also extended. 

 

 
 

Figure 8. Relationship between runtime and support 

 

Figure 9 shows the variation in the number of frequent 

patterns mined by our algorithm under different supports. 

Obviously, the number of frequent patterns being mined 

gradually increased with the decrease of support. However, 

when the support approximated zero, the number of frequent 

patterns being mined was not significantly affected. The 

growth rate of frequent patterns was relatively stable, when the 

support varied in [0.3, 0.5]. In this case, the frequent patterns 

obtained by our algorithm are typical representations of the 

selected 30 tree structures.  

 
 

Figure 9. Relatinship between the number of frequent 

patterns and support 

 

Figure 10 shows a subtree mined at least 9 times by the 

proposed algorithm in 30 trees, which was not found by other 

algorithms. Therefore, compared with other direct subtree 

mining algorithms, the proposed algorithm can mine more 

“hidden” information for the mining of RNA subtrees, and at 

the same time, it makes the mined results more biologically 

meaningful. 
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Figure 10. A subtree that is mined 

 

 

5. CONCLUSIONS 

 

This paper designs a fast and effective frequent subtree 

mining algorithm for biological data mining. The algorithm 

adopts a tree structure compression method, which is inspired 

by the representation of tree structure. The compression 

method optimizes the mining of frequent subtrees, and records 

the intermediate results in the mining process. In addition, our 

algorithm compresses multiple edges according to the current 

frequency at each time, and then judges whether the 

compressed subtree is a frequent pattern. Therefore, our 

algorithm can process multiple nodes and edges in each round, 

and achieve an efficiency about 118% of the traditional 

method. If the compressed subtree is not frequent, the frequent 

subtrees are mined on smaller datasets by prefix matching, 

such that our algorithm can mine all frequent subtrees. Finally, 

the feasibility and efficiency of the algorithm were verified 

through experiments on real datasets. 
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