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Digital image analysis requires segmentation to distinguish regions of interest. This step is
vital in medical imaging, particularly in oncology, for tumor detection and localization,
assisting doctors and surgeons in performing timely interventions. While graph cut methods
are effective, their reliance on manual seed initialization limits reproducibility and clinical
utility. This paper introduces a fully automated graph cut framework to address this
limitation. The method processes co-registered FLAIR and T1-weighted images from the
TCIA Brain-Tumor-Progression dataset. Preprocessing involves skull stripping, median
filtering, and contrast enhancement. Segmentation starts with the ICM algorithm extracting
edema from FLAIR images, which then guides multi-scale FCM to generate probability
maps distinguishing object and background pixels. These pixels serve as initial seeds for
automated graph cut segmentation on T1-weighted images, delineating the tumor region.
Post-processing refines results using FCM clustering. Quantitative evaluation on 20 patient
cases achieved values of 0.96 for specificity, 0.98 for sensitivity, 0.99 for NPV, 0.98 for
PPV, and 0.99 for accuracy, and a mean Dice coefficient of 0.89 + 0.02 for tumor
segmentation, outperforming the interactive graph cut baseline (0.80 +0.05) by 9%. This
fully automated framework provides robust, accurate segmentation without operator

dependence, making it suitable for clinical use.

1. INTRODUCTION

Correct determination of the volume of brain tumor parts is
crucial for tracking evolution, organizing radiation therapy,
assessing results, and conducting follow-up investigations.
Therefore, precise delimitation of tumors is required [1].
Glioma is one of the deadliest primary brain tumors owing to
its poor chance of survival [2]. In this context, the World
Health Organization (WHO) has divided cerebral gliomas into
four groups based on their severity: grades 1 and 2 are
considered Low-Grade Gliomas (LGG) because of their slow-
growing nature, while grades 3 and 4 are considered severe
and High-Grade Gliomas (HGG) [3].

Accurate demarcation of gliomas plays a crucial role in the
diagnosis, treatment planning, and evaluation of treatment
outcomes. Nevertheless, manual delineation is subject to
inaccuracies and is a labor-intensive process that can lead to
discrepancies between observers. Therefore, automated
delineation methods are required to enhance the accuracy and
efficiency of this process. However, automating glioma
delineation remains challenging because of heterogeneity in
the shape, size, and location of gliomas [4-6].

Advancements in image processing have contributed
significantly to the detection of brain tumors. Magnetic
Resonance Imaging (MRI) is a common technique used to
obtain brain images [7]. An MRI scan includes four imaging
modalities: T1-weighted (T1), T2-weighted (T2), TI1-
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withcontrast- enhanced (T1-w), and fluid-attenuated inversion
recovery (FLAIR). These modalities provide additional
information for assessing brain tumor subregions, especially
in gliomas [8, 9].

For many years up to the present day, technologies related
to the acquisition and visualization of MR images have
continued to evolve, this progress has always been
accompanied by the emergence of new brain MRI
segmentation methods and frameworks. Owing to their
robustness, graph-based methods have been widely used to
segment medical images, particularly MR images. Some of
them [10-13] revolve around the basic idea of extracting
features specific to each modality and then integrating them to
construct a fused and unified graph that accomplishes
segmentation. Others [14-16] are commonly utilized in
cascade architectures by many individuals, where graph
entries are generated in the preceding stages, creating a
sequential flow of information through the graph. These
methods allow for a structured and efficient process of
utilizing graph cuts to achieve the desired outcomes. Currently,
efforts are being directed towards using deep neural networks
to predict the energy parameters of graph cuts to benefit from
the power of deep learning and improve the performance of
multimodal image segmentation [17].

Most existing multimodal image segmentation approaches
using graph cuts suffer from a critical limitation: they require
manual or semi-automated seed initialization [18-20]. While
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interactive approaches are accurate, they introduce operator
dependency, making the process time-consuming and
unsuitable for reproducible large-scale clinical application.
Previous attempts at automation using simple heuristics or
intensity thresholding [21] often lack robustness when dealing
with the complex intensity profiles of brain tumors evident in
multimodal MRI. This persistent need for manual intervention
or non-robust automation is a significant bottleneck.

In this work, we address this gap by introducing a novel
initialization pipeline that capitalizes on the theoretical
strengths of graph cut while removing user dependency, thus
ensuring truly automated and reproducible segmentation. Our
main contribution is the introduction of a new graph-cut-based
framework for fully automated brain tumor segmentation from
multimodal MR images, specifically the Flair and T1-w
modalities. This framework automatically selects the
background and tumor seeds without user intervention,
primarily to identify two distinct segments: edema and tumor.
The remainder of this paper is organized as follows: Section 2
presents top studies that have dealt with the segmentation of
multimodal MR images. The proposed fully automated
framework is described in Section 3. Section 4 presents the
results of the segmentation. An interpretation of the results of
our study and a comparison with existing research is presented
to highlight their importance. Finally, Section 5 provides an
overview of the contribution of this study and highlights its
future perspectives.

2. LITERATURE SURVEY

For several decades, to provide efficient vision models and
frameworks, many authors have proposed different methods
for the segmentation of multimodal MRI. Among the first
significant works published is a paper that relied heavily on
Random Forest (RF) classification, marking an important
milestone in this research area. In this context, a fully
automatic brain tumor segmentation technique was suggested
by Bauer et al. [22], where the segmentation task was modeled
as a conditional random field by energy minimization
formulation followed by random forest-based classification.
The authors obtained encouraging results for the BraTS2012
dataset. Zikic et al. [23] then combined initial tissue
probabilities evaluated by a parametric based on Gaussian
Mixture Model (GMM) and Forest-based classification in an
automatic framework. Tustison et al. [24] applied a two stages
based framework for tumor segmentation, where the aim of the
first stage was to generate features images. They then
constructed a Random Forest model and probability images.
Subsequently, Reza and Iftekharuddin [25] proposed fully
automated multiclass abnormal brain tissue segmentation
based on classical random forest-based classification of
extracted image features.

Since 2014, Convolutional Neural Networks (CNN) have
increasingly dominated the field of medical imaging, as
demonstrated by contributions to brain tumor multimodal
segmentation and BraTS challenge submissions [26, 27]. As a
sample, Urban et al. [28] proposed a CNN in which a tiny 3D
patch for each input channel was employed to offer local data
and establish predictions. Zikic et al. [29] also modified a
conventional CNN implementation based on multichannel 2D
convolutions to work on multimodal 3D MRI. Havaei et al.
[30] developed a 2D CNN-based model with a cascaded
architecture that simulated the local dependency of labels, in
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which two parallel CNNs were utilized to extract the local or
global context of the tissue appearance of the input patches. In
the study [31], the authors separated the segmentation issue
into three independent binary segmentation sub-tasks, and a
CNN was fed the 2D image feature patches for each sub-task
to predict which label patches would most likely be present in
the center of each image patch. Kamnitsas et al. [32] used
DeepMedic, a 3D CNN architecture that has previously been
introduced in the study [1]. DeepMedic is an 11-layer 3D CNN
with lingering connections. Wang et al. [33] presented a
cascade of fully convolutional neural networks. The cascade is
designed to break down multiclass segmentation into a string
of three binary segmentations in accordance with the hierarchy
of subregions. SegNet, a technique built on a two-dimensional
convolutional neural network, was used by Yang et al. [34] to
create autonomous segmentation of brain tumors. The authors
contrasted workout plans that included and did not include
slices without well-defined tumor locations, and where MR
images were processed according to the Flair modality.

With an asymmetrically big encoder to extract deep features
from the image and a decoder portion that reconstructs dense
segmentation masks, Myronenko [35] suggested a semantic
segmentation network of tumor subregions from 3D MRI for
BraTS 2018 challenge, where they win first place.

More recently, researchers have turned their attention to
transformer models. SwinBTS proposed by Jiang et al. [36]
integrates Swin Transformers with CNN-based encoder-
decoder structures. These hybrid approaches achieve superior
results in terms of segmentation accuracy and robustness on
multimodal datasets. More recently, Liu et al. [37] proposed
M3AE, a multimodal representation learning framework
designed to handle missing modalities in brain tumor
segmentation. Following this review of the most common
works in the field of tumor segmentation from multimodal
MRI, we conclude that there is not much research on the use
of the graph cut technique within the above-mentioned field.
The majority of tumor segmentation techniques are based on
either machine learning or deep learning approaches.

Despite the advancements in brain tumor segmentation
discussed in the literature, challenges such as the need for
manual intervention and the difficulty in accurately
segmenting tumors due to their heterogeneity persist. Our
proposed framework aims to address these challenges by
introducing a fully automated graph cut-based segmentation
process, as detailed in the following sections.

3. METHODOLOGY

The framework begins with preprocessing using Flair and
T1 modalities, performing skull stripping to separate the
membrane from the skull, followed by median filtering and
contrast enhancement to improve image quality. The second
stage focuses on tumor delineation from the T1 image, starting
with edema pre-segmentation from the Flair image using the
ICM algorithm. Next, the edema mask is applied to the T1
image for Multi-scale FCM processing, generating probability
maps that serve as initial seeds for graph cut. The region
extracted from the Tl image was then automatically
segmented using Graph Cut to separate the tumor from edema.

Finally, standard FCM clustering smoothes the boundaries
of the tumor region, producing a well-defined output. Figure 1
introduces this workflow, which will be explained in detail in
the following sections.
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Figure 2. Preprocessing phase

3.1 Preprocessing stage

We worked with brain scans from 20 patients who
underwent special MR imaging both before and after receiving
the contrast dye. The datasets were sourced from the brain
tumor progression repository in The Cancer Imaging Archive
(TCIA) database [38, 39]. Datasets were organized in DICOM
format and encompassed four sequences: T1-weighted, T1-

2407

weighted post-contrast agent, T2-weighted, and Flair-
weighted T2 modalities. It is important to note that all
multimodal MRI sequences were provided as already spatially
co-registered, ensuring voxel-wise correspondence. The T1-
weighted post-contrast agent series within the datasets
following cranial radiotherapy (CRT) and during the
progression phase were systematically aligned and overlaid as
an initial processing step to evaluate the advancement of



cerebral neoplasms.

The preprocessing pipeline implemented in our framework
comprises three distinct steps, as illustrated in Figure 2.
Although skull stripping is conventionally performed after
image enhancement, our framework demonstrated superior
outcomes after performing skull stripping before image
enhancement. This ordering addresses the specific
characteristics of the data more effectively.

(1) Skull stripping: This step aims to remove the membrane

that surrounds the brain and separates it from the skull.

(2) Median filtering: The Median filter is a non-linear

spatial filter that modifies the center pixel value
basedon the median intensity values of neighboring
pixels, aiming to enhance the smoothness of an image
[40].

The Eq. (1) defining the two-dimensional median filter is as
follows:

fl,y) = median(slt)ESxy{g(s, t)}and (p,t) € P, (1)

Sxy represent an 7 X # subimage of the input noisy image,

g . It is centered at coordinates (x,y). f (x, y) represents the
filter response at those coordinates. For a noisy image g
centered at (x,y) with an m X n subimage S, , the filter
response at (x, y) is defined by f(x, y).

(3) Contrast enhancing: This technique effectively expands
the range of pixel values, resulting in the equalization
of all pixels to generate a uniformly flattened histogram,
consequently yielding an image with enhanced contrast
[41].

3.2 Tumor segmentation stage

This is the second and primary stage of our framework,
which is ultimately responsible for producing the tumor
segment. It involves several steps in which two modalities of
brain MRI, T1-w and FLAIR, are processed. It includes edema
segmentation from the flair image using the ICM algorithm,
probability map generation from the T1-w image using the
multi-scale FCM algorithm, automatic graph-cut segmentation
of the tumor from T1-w, and post-processing enhancement of
the segmented tumor using standard FCM.

3.2.1 Edema segmentation by ICM algorithm

The iterative conditional modes (ICM) algorithm was
proposed by Besag [42] as an approximate solution to MAP
estimation, and elegantly tackles the challenge of
minimization by iteratively refining the labels, aiming to
reduce the subsequent Eq. (2) at every pixel s:

— Us

+ %log(Zno’sz) + U (xs)} (2)

U(x,) is the number of pixels in the neighborhood that have
color. In our case, is the intensity in the Flair image, and the
equation between the brackets that combines Gibbs energy and
negative log-likelihood is referred to as the total energy.

By redefining the conditional distribution of the MRF, as
suggested by Besag [42], we can examine pairwise
interactions.

P(X = xs) & exp (Zs,r ec Bsr 6(3(5 'xr)) 3)
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1 x,=x,
where, 6 (x, , x,) = {0 X, * %,

In this first step, we intend to segment edema from Flair
image by ICM algorithm, we have chose this modality because
it provides ideal contrast between the tumor area and healthy
tissue that facilitates differentiating the edema region. In
addition, it has a higher contrast than the T1-w modality. In
this stage, we defined three regions to be segmented (edema,
background, and other tissues).

3.2.2 Multiscale FCM algorithm for probability maps
generation

Algorithm 1 : Multi-Scale Fuzzy C-Means

Input: Original image T1-w

Output: Probability maps: prob_mapl, prob_map2,
prob_map3

Step 1: Define Parameters

Set num_scales = 3.

Step 2: Initialize Probability Maps

Initialize prob_map1 to zeros of the same size as T1-w.

Initialize prob_map2 to zeros of the same size as T1-w.

Initialize prob_map3 to zeros of the same size as T1-w.

Step 3: Generate Multi-Scale Images

For scale = 1 to num_scales

Resize the image:

scaled_image=Resize(T1-
w,12scale—1\frac{1}{2"{\text{scale

}-1}}2scale—11).

Step 4: Perform FCM Clustering

Step 5: Threshold Membership Values

5.1. Compute threshold

5.2. Generate binary map

Step 6: Resize Binary Maps

Resize the binary map to the original image size:

binary_map = Resize (bw_map, size of T1-w).

Step 7: Store Probability Maps

If scale = 1:

Set prob_mapl = Convert binary_map to double
precision.

Else if scale = 2:

Set prob_map2 = Convert binary_map to double
precision.

Else if scale = 3:

Set prob_map3 = Convert binary_ map to double

precision.
Step 8: Output Probability Maps
Return prob_map1, prob_map2, prob_map3.

The multi-scale FCM processes the T1-w image at full, half,
and quarter resolution to combine precise boundary detection
from the fine scale with robust region identification from the
coarse scale, making the algorithm more accurate and less
sensitive to noise. The FCM is configured with 3 clusters, a
fuzziness parameter of m=2.0, and a stopping criterion of
e=le-5 at each level. The membership maps from all three
scales are averaged to create a final probability map, from
which the tumor seed is automatically generated by applying
a threshold of 0.7. At each scale, the image is resized, and
FCM clustering is applied to partition the image into segments.
As illustrated in the pseudocode of the Algorithm 1. The
output consists of a series of probability maps that indicate the
likelihood of each pixel belonging to the tumor, edema, or
background across different scales. These multiscale



probability maps are subsequently utilized to assign
background and foreground pixels for constructing graph cuts,
as illustrated in the Algorithm 2.

Algorithm 2 : Generate Foreground and Background
Seeds
Input: Segmentation //A  matrix
segmentation map with different labels
Outputs: Foreground seeds (fg_seeds) and Background
seeds (bg seeds)
Step 1: Identify Unique Labels
Check the number of unique labels in the segmentation
map
If the number of unique labels is less than two, report an
error
//Segmentation map must contain at least two different
labels
Step 2: Initialize Seed Arrays
2.1 Initialize fg_seeds = empty set
2.2 Initialize bg_seeds = empty set.
Step 3: Process Each Label
For each label in the segmentation map
Create a mask isolating the current label
Find all connected regions (components) within this
mask
Determine the size of each connected region
Identify the largest connected region for the current
label
If processing the first label
Add the largest region's coordinates to the background
seed list
Else
Add the largest region's coordinates to the foreground
seed list
Step 4: Convert Collected Indices to Coordinates
4.1 Convert linear indices of fg seeds to (X, y)
coordinates
4.2 Convert linear indices of bg seeds to (x, y)
coordinates
Step 5: Prepare the Seed Lists
5.1 Format fg_seeds as a list of (X, y) coordinates
5.2 Format bg_seeds as a list of (X, y) coordinates:
Step 6: Return the Results Return fg seeds and
bg seeds

representing a

3.2.3 Tumor segmentation by Graph cuts method

A set of nodes (vertices) matching the image elements,
which might represent pixels or regions in Euclidean space, is
known as an undirected graph G = (V,E),V = {v,,..,v,}. E
is a collection of edges that joins certain sets of adjacent
vertices. Each edge (vi,vj) € E has a corresponding weight
W(vi, vj) that measures a specific quantity dependent on the
characteristics of the two nodes it connects [43].

Because this approach is based on neighborhood graphs,
each pixel in the image is turned into a node in the graph, and
edges from node connections of pixels that are neighbors. A
graph’s relationship between a cut and a collection of edges as
a result of G being divided into sets A and B, an image
segmentation can be determined by Eq. (4).

cut(4,B) = Z ) Bw(u,v) 4)
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u and v correspond to the vertices of two distinct
components.

Boykov and Funka-Lea [44] presented graph-cut
segmentation. The key significant advance of object extraction
in the graph cuts approach is the segmentation energy, which
is expressed by binary variables whose values only indicate
whether a pixel is present inside or outside the target area,
Greig et al. [45] were the first to realize the strength of graph
cut-based methods from combinatorial optimization for
computer vision issues.

Considering p as a set of pixels and L as a set of labels, the
goal is to find a labelling f: P — L that minimizes the energy:

E(fy=R(H)+. - B(H (5)
where,
R()=2per Rp(fy) (6)
and
B(H= Lip,aeny Bp.ayd Uy, fo) (7
and

_(1 ifHh*f
5(fin o) = {0 Otherwise

The coefficients R, and B{p,q} are region and boundary
terms that specify the penalties for assigning pixel p to
“object” and “background,” and a penalty for a discontinuity
between p and q respectively. The cost function comprises
region terms R, which penalize the assignment of a pixel p to
a label, and boundary terms B{p,q} , which penalize
discontinuities between pixels p and q.

In this second step, after generating the probability maps
previously, the object and background seeds are then
automatically assigned to build the graph, which is used for
binary segmentation on ‘imgtl-w’ in order to extract the tumor
region and produce its mask ‘maskTumor’. We chose the T1-
w modality because it is useful for highlighting active tumors.

3.3 Post-processing Enhancements

The segmentation results were improved by applying
standard fuzzy c-means. The FCM clustering algorithm was
implemented by Professor Jim Bezdek in 1981 [46] based on
the minimization of the following objective function:

Jm = Z?I=1 Z]C'=1 uZ-l ”Xi - CJ'HZ ®)

4. RESULTS AND DISCUSSION

The segmentation outcomes derived from the proposed
framework are defined as follows: First, the ICM algorithm is
launched to perform segmentation of the Flair image into three
regions: edema, background, and other tissues. The contour of
the edema mask was then overlaid on the T1-w image to
highlight the edema region. Figure 3 displays the results of
applying ICM segmentation to three consecutive slices of the
first patient’s case image. The outputs are the segmented



edema region, edema mask “Maskcdema”” and the outlined T1-
w image “imgri.w".

A graph cuts based segmentation is then performed on
“imgri.w” to separate tumor region and produce its
mask “maskrumer”. Segmentation is performed automatically
without user intervention in selecting foreground and
background pixels. Instead, it extracts these from the
probability maps generated during the previous multiscale
FCM segmentation step.

The outcomes of this investigation entail the documentation

of two instances involving patients afflicted with glioblastoma.

Two magnetic resonance examinations were acquired for
every patient, specifically, the first within a period of 90 days
subsequent to the conclusion of chemoradiotherapy and the
second at the stage of disease progression, as illustrated in
Figure 4 and Figure 5.

Image 01
Slice 19

Image 01

Slice 18

Image 01
slice 17

Edema outlined
onTl-w

Flair Image Segmented

edema

Figure 3. Edema segmentation by ICM algorithm: (a) Flair
image; (b) Edema mask; (c) Edema mask outlined on T1-w
image

Extracted Edema Segmented tumor

H

Extracted Edema Segmented tumor

At the progression state

slice 19
Slice 19

slice 18
lice 18

Slice 17
slice 17

Within 90 days after completing CRT

Figure 4. Graph cuts segmentation of tumor region for
instance 1

Extracted Edema Segmented tumor

Extracted Edema Segmented tumor

Slice 13
Slice 16

Slice 12

Slice 15

Slice 11
Slice 14

?

Within 90 days after completing CRT

At the progression state

Figure 5. Graph cuts segmentation of tumor region for
instance 2

2410

Enhanced tumor

Ground Truth

Enhanced tumor

Ground Truth

slice 15
slice 15

Within 90 days after completing CRT At the progression state
Figure 6. FCM-based enhancement of the tumor region for
case 1

Finally, the tumor region “maskrumor’ result obtained by
graph cut segmentation is smoothed and enhanced by a second
segmentation based on a standard FCM algorithm. The results
of this inquiry involve recording two cases of patients
suffering from glioblastoma, the first within a period of ninety
days subsequent to the conclusion of chemoradiotherapy and
the second at the stage of disease progression, as illustrated in
Figures 6 and 7.

Enhanced tumor  Ground Truth

BB
o -
BB

At the progression state

Enhanced tumor  Ground Truth

Slice 19
Slice 19

Slice 18

Slice 18

Slice 17
Slice 17

Within 90 days after completing CRT

Figure 7. FCM-based enhancement of the tumor region for
case 2

4.1 Visual evaluation

We conducted a qualitative assessment of the results
produced by our segmentation framework through visual
inspection and compared the segmented edema and tumor
regions with ground truth annotations. As shown in Figures 8
and 9, the visual observations confirm that our method
achieves highly accurate segmentations, with the segmented
edema and tumor regions closely aligning with the ground
truth.

Slice 19
Slice 19

Figure 8. Final segmentation results for image 01 at the
progression state: segmented tumor and edema regions (left
column), original T1-w image (right column)



Slice 13

Figure 9. Final segmentation results for image 01 at the
progression state: segmented tumor and edema regions (left
column), original T1-w image (right column)

The segmented images accurately captured the complex
boundaries and structures of the tumors and edema, thereby
demonstrating the effectiveness of the proposed method. The
precise delineation of the tumor regions closely matched the
ground truth, highlighting the robustness of our framework for
accurate brain tumor segmentation from multimodal MR
images.

4.2 Quantitative evaluation

The Dice index [47, 48] commonly referred to as the kappa
(x) coefficient, measures the intersection between a segmented
region and a segmented ground-truth region, and takes the
form of a scalar measure in the interval [0, 1]. It is calculated
using this formula [48]:

2XTP

Dice = ———+—
2XTP+FP+FN

9
where,
(1) TP : True positives are the number of pixels
accurately identified as tumor
(2) FP : False Positives are the number of pixels that
were mistakenly classified as tumor
(3) FN : False Negatives are the number of pixels
that were incorrectly identified as background
Along with Dice index, we also evaluate tumor
segmentation using the standard metrics of specificity (TNR),
sensitivity (TPR) and Jaccard index:

TN
TNR = ———— (10)

TN + FP
TPR = —— (11)

TP+FN

TP
]accard = ;;:;E:;; (12)
42.1 Performance evaluation of ICM-based edema

segmentation

Validation of the ICM algorithm for edema segmentation
against expert manual annotations yielded an average Dice
coefficient of 93%, confirming its high reliability.

4.2.2 Performance evaluation of tumor segmentation

We conducted a series of experiments on all 20 images, the
results based on Dice and standard deviations (Std) are
presented in Table 1.
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Table 1. Average, Max. and Min. Dice index for the whole
20 cases, involving the proposed framework

Method Std Average . <Dice Min.Dice
Dice
e 2.15 0.90 0.91 0.87
framework

To demonstrate the contribution of the proposed framework,
interactive-based segmentation of the tumor region from T1-
w images was performed, and the results were compared with
those obtained using the proposed framework. According to
the results presented in Table 2, we can confirm that the
proposed  framework significantly improves tumor
segmentation for the average value of the Dice coefficient
compared with the interactive graph cut method, with an
improvement of approximately 9%.

The mean processing time of our fully-automated
framework was 171.7 = 7.2 seconds. By removing the
variability and time demands of manual segmentation, our
approach supports the incorporation of objective volumetric
data into routine clinical workflows regarding radiation
planning, therapy response assessment, and long-term
surveillance.

Table 2. Comparison of detection outcomes using the Dice
index, obtained by the suggested framework and interactive

graph cut
Method Average Dice  Max.Dice Min.Dice
Our framework 0.90 0.91 0.87
Interactive graph cut 0.81 0.83 0.75

To further test the efficiency and accuracy of the
segmentation framework we developed, we calculated the
Jaccard index, sensitivity, and specificity for all images. As
shown in the Table 3, it gives almost the same values for these
metrics for tumor segmentation from the images of all 20
patients, all images within 90 days after completing CRT, and
at the progression state. These results demonstrate the
robustness and efficiency of the proposed segmentation
framework.

Table 4 provides a comparative analysis of the performance
between the proposed framework and several recent methods,
evaluated in terms of Sensitivity, Specificity, PPV, NPV, and
Accuracy. Our fully automated framework demonstrates
superior results compared to contemporary methods.
Specifically, it achieves values of 0.96 for Specificity, 0.98 for
Sensitivity, 0.99 for NPV, 0.98 for PPV, and 0.99 for
Accuracy.

Figure 10. Impact of ambiguous edema segmentation (case
10) on final tumor delineation



In one case (patient 10), where the intensity contrast is
minimal between the edematous region and the surrounding
healthy tissue, the algorithm's performance degrades. Such

ambiguity affects the initial ICM-based segmentation of
edema, thus impacting the accuracy of the subsequent tumor
delineation, as shown in Figure 10.

Table 3. Jaccard index, sensitivity and specificity results of our framework overall 20 pre- and post-contrast agent images

Within 90 days after completing CRT

Performance metrics
Brain tumor

Jaccard  Sensitivity
0.85

Specificity

0.97 0.96

At the progression state

Performance metrics
Brain tumor

Jaccard Sensitivity Specificity
0.85

0.98 0.96

Table 4. Comparison findings of the suggested workflow with those some of the most recent methods

Method Sensitivity Specificity PPV NPV  Acc
Our framework 0.98 0.96 098 099 0.99
GRU/EHDMO [49] 0.98 0.97 098 098 095
BrainMRNet [50] 0.87 0.87 091 092 0.85
VGG19 [51] 0.70 0.80 0.71 093 0.77
ASSO [52] 0.59 0.65 0.82 090 0.65
CNN/POA [53] 0.95 0.77 0.58 0.86 0.71
YOLOV2 [54] 0.91 0.97 0.65 0.79  0.90
5. CONCLUSION International Workshop on Brainlesion: Glioma,

This study introduced a new graph-cut-based framework for
fully automated brain tumor segmentation from multimodal
MR images. Our method is unique in that it uses only T1-w
and FLAIR modalities to segment both edema and tumors.
Furthermore, the proposed segmentation framework is fully
automatic, which is crucial for clinical applications, beginning
as soon as both the Flair and T1-w images are read, which
could help doctors monitor treatment progress. The most
significant clinical implication of this work lies in its potential
to integrate quantitative tumor burden assessment into
standard radiological workflows. Currently, manual or semi-
automated segmentation methods are too time-consuming for
routine use, leading to a reliance on subjective, visual
assessment of tumor size and evolution. Our fully-automated
system, which requires no manual intervention, can generate
an objective and reproducible segmentation in a matter of
minutes. Perfect for monitoring therapies over time. The use
of multimodal MRI data reinforces the robustness and
versatility of the framework. While the proposed algorithm
showed robust performance on the current dataset, a future
validation on a larger, to further establish its generalizability.
While this study demonstrates a robust fully-automated graph
cut framework, future work will focus on enhancing the
current pipeline. Immediate directions include: validation on
larger datasets to assessing the generalization of our method
across data from different hospitals and MRI scanner
manufacturers. Streamlining the implementation to reduce
processing time, facilitating real-time application in clinical
settings, and adapting the framework to separately segment the
enhancing tumor, necrotic core, and peritumoral edema, which
is of high clinical relevance.
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