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This study proposes a new model that integrates artificial intelligence (Al), deep learning
(DL), and blockchain technology with the goal of enhancing the Internet of Things (IoT)
ecosystems’ security threats mitigation and detection mechanisms. The model solves the
specific security problems in these fields by proposing a DL-based real-time threat
detection Al model. Moreover, blockchain technology is applied to ensure data integrity
and provide tamper-proof records. The model is tested thoroughly on both IoT and
healthcare settings to ensure that it is streamlined and effective in shielding critical
systems from security threats.

1. INTRODUCTION
1.1 Background on IoT security challenges

Industries have changed because of the automation of data
and the ability of different devices to communicate with each
other via the Internet of Things (IoT). A multitude of different
devices are also interconnected, which makes it easier for
attackers and hackers to infiltrate and use every device as a
possible cyber weapon. IoT devices mostly use the same
hardware and software systems, which causes a lack of
differentiation across integrated systems. The lack of
difference across integrated systems simplifies the mass
deployment of devices, but that also means that there is a
universal security inadequacy across the devices. In other
words, if one device of a specific type or one version of a
device has a security gap, thousands or millions of other
devices of the same type or version are also compromised. A
perfect example of this is the 2016 Mirai botnet attack, where
600,000 devices were infected worldwide because of default
credentials in [oT routers and cameras [1].

An increased attack surface and a lack of suitable responsive
security measures in resource-scarce situations, such as in the
healthcare or industrial sectors, are a few of the negative
impacts that a homogeneous system breakdown may incur.

These systems have been in the spotlight as a result of
security system weakness, for example, the lack of encryption
in several IoT systems, as a result of their limited
computational resources. Such an adverse security resource
scenario may be harnessed to devise effective and less
burdensome alternative security measures. Due to the rapid
growth of IoT systems, reliance on static security measures to
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formulate policies regarding control and movement of \ device
systems should be loosened. This increased movement
aggravates the challenges of maintaining system integrity, and
weak centralized control aggravates compromise and risk.
Integrating security will entail the coordination and use of
contemporary technology such as blockchain and artificial
intelligence (AI) [2].

1.2 Importance of detecting threats in real-time

To adapt to the digital IoT ecosystems, the need for
instantaneous threat detection and mitigation to balance the
cyber-attack is crucial. As illustrated in Figure 1, IoT's sensor
networks and digital devices operate unattended and bring a
new unique set of challenges. These environments are
challenges for an all-in-one digital protection security. Most
incident response automation tries to tackle to reduce and
contain the risks, security, and digital protection the
opportunistic attacks within seconds. This is more multi-
dimensional and systemic. Along with system enhancement to
avert damage and augmented protection, it aids in vision and
systemic response. Rapid and successful damage containment
is also critical to the protection and confidentiality of the
information. The fast containment and response to probable
cybersecurity risks in the health and critical national
infrastructure are extremely crucial, as the data breaches are
more catastrophic compared to others. Smart grid
environments represent a clear example of such critical
infrastructure, where blockchain-based integrity and
trustworthy event logging can significantly strengthen
resilience against real-time cyber threats [3].

The additional value comes from the immutable audit logs
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provided by the Al-enhanced blockchain technology, which
also fortifies the system by providing audit trails for
transactions and data to which users cannot alter. These
organizations can easily demonstrate the adaptive and

mitigating security mechanisms in place to respond to the
system vulnerabilities as digital security is created in real time

[4].
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Figure 1. A model conceptually based on the NIST framework proposal

1.3 Overview of the integrated framework

This architecture leverages the combination of blockchain,
Al, and deep learning (DL) technology and specifically
addresses the relevant security challenges of IoT. Thanks to
the peer-to-peer blockchain, the system is able to maintain
transparency as well as confidentiality. A blockchain
environment contains security challenges by minimizing the
amount of exploitable primary datasets and the chances of
single points of failure. Threat detection is accelerated by DL
algorithms specialized for monitoring high-velocity data
streams to find operational anomalies. An Adaptive system’s
protocol modifies loT defenses in response to the detected
anomalies. Boosting the flexibility of IoT threat adaptation is
why this system is most advanced. Streams of permanent and
immutable data serve as the channels of communication
among the IoT devices, and the data’s integrity and
authenticity are guaranteed by the decentralized ledger, which
is also unchangeable. By allowing the framework to
automatically perform defined actions when threats are
detected, smart contracts further reduce the time systems are
left vulnerable to adaptive malicious attacks.

This also fosters a collaborative environment among
different stakeholders aimed at the same goals in efficient
threat detection and response [4].

2. LITERATURE REVIEW
2.1 Current methods in IoT security

Security risks that are presented by the IoT come from its
complex interlinkage of devices. The traditional defense
mechanisms, especially intrusion detection systems (IDS)
based systems, are not able to address the challenges provided
by IoT interfaces, especially in environments where signature-
based detection systems are the only option, since the evolving
cyber threats cannot be neutralized. This has compelled the
shift towards machine learning (ML) based anomaly detection,
where the system is trained to flag behavior that is considered
unusual for possible attacks. The advancements captured in
DL recently offer increased promise value towards better
threat detection of IoT systems by processing large streams of
data instantaneously for rapid threat detection. Also,
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collaborative intrusion detection with data privacy breach of
various [oT devices is being looked into with the help of
federated learning. Table 1 shows an analysis of existing
studies on operative threat intelligence for enhanced security
aimed at [oT security enhancement.

Blockchain technology is also gaining attention as a means

to enhance data integrity and secure communications within
IoT frameworks by creating immutable transaction records,
thereby addressing concerns related to data manipulation and
unauthorized access. Collectively, these innovative strategies
aim to develop stronger security architectures for IoT
applications [4-6].

Table 1. A critical comparative analysis of existing studies on operative threat intelligence for enhanced security aimed at [oT
security enhancement

Ref. Key Contributions

Methodology/Framework

Main Findings

Identified CTI data sharing

Saxena issues and proposed the CCTI
and e
Gavathri system utilizing Al-based
%/7] classification and blockchain
immutability.
Introduced HBFL: A privacy-
Sarhan et preserving IDS using federated

al. [8] learning and decentralized
blockchain storage.
Proposed COLIDE framework
enabling energy-efficient

Arshad et . . .
al. [9] detection via cooperative
' communication between border
and sensor nodes.
Developed a federated learning
Sarhan et schgme sppportmg CTI sharing
al. [10] with uniform data structures,
) enabling cross-organization ML
training.
Proposed the P2TIF framework,
Kumar et integrating scalable blockchain
al. [11] with CNN-based analytics to
secure IIoT data sharing.
Designed an end-to-end Al-
enhanced CTI framework
Our Study combining user reporting,

blockchain immutability, and
ML-based classification.

Execution of Al computations on
blockchain platforms.

Implementing hierarchical federated
learning over blockchain infrastructure.

Facilitated collaboration among border
nodes and resource-constrained sensors.

Leveraged a common data format and
federated learning.

Combining DL modules and a scalable
blockchain.

Underpinned by blockchain-secured
data sharing, the framework integrates
human expertise with ML-driven
analysis.

This study identifies CTI challenges and
proposes a collaborative framework for secure
threat information sharing.

Privacy-preserving and secure intrusion
detection in collaborative IoT environments.
Demonstrated feasibility with evaluation and

implementation using a key IoT dataset.

Efficient intrusion detection in [oT systems
with collaboration. Implementation and
experimentation using Contiki OS
demonstrated effectiveness with respect to
energy and processing overheads.

By employing an efficient ML-based
architecture that removes the need for inter-
organizational data exchange, the system was
evaluated using NetFlow datasets and
demonstrated accurate classification of diverse
traffic types.

Validation on the ToN-IoT and IoT-Botnet
datasets demonstrated that the proposed
solution, which addresses security, privacy,
and scalability challenges in IIoT, achieves
high efficiency and scalability.

This work addresses a research gap by
presenting a comprehensive synthesis of
collaborative threat intelligence approaches for
0T security.

2.2 Role of Al in threat detection

Al is improving the way we detect threats in IoT security
frameworks. Cyber threats have changed, and traditional
security techniques do not work and new threats require new
measures. As illustrated in Figure 2, Al methods like DL and
ML automate threat detection by reviewing and offline data
from IoT devices and identifying patterns and threats during
an attack. This allows threats and data breach risks to be
mitigated quickly.

AlT's contribution to IoT security helps to improve, adapt,
and overcome. Security protocols in real time and on the fly to
changes by threats and vulnerabilities. NLP helps by
monitoring, reporting, and allowing humans to focus on
critical tasks.

Neural networks in Al-driven IDS learn to distinguish the
benign from the malicious actions in heterogeneous IoT
environments. These systems do not have fixed sizes but are
elastic to accommodate new attack patterns and a plethora of
users.

Strengthening the security posture of IoT networks,
organizations utilize Al to aid in the safeguarding of sensitive
data to protect against unauthorized access or data breaches
[12].
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Figure 2. Integration of IoT, ML, and blockchain for
enhanced security and transaction management



2.3 Application of blockchain in data integrity

The integration of [oT and blockchain increases the chance
of a security breach and a cyber-attack focused on the
blockchain technology that protects smart devices. As shown
in Figure 3, blockchain can be integrated across the layered
IoT architecture to secure identity, validate transactions, and
preserve tamper-resistant logs of security events. At the center
of this combination is a decentralized approach where every
documented security breach is immutable and can only be
verified by a full conspectus of the network. Hence, every
piece of data is unalterable. It is this unalterable data that gives
the security records their integrity. It is this raw, unmodified
data that gives the security records their integrity and builds
trust among the IoT stakeholders.

These participants will be able to share to improve security
breach data triangulation in an ecosystem. With the adoption
of blockchain technology, trust, transparency, and
accountability can be brought to the system. The promising

data on security breaches will be the driver for ML models to
mature and be trained to predict unknown malicious threats.
Furthermore, the blockchain’s decentralized model provides
stronger protection against potential cyber-attacks, as the
absence of singular integration means there’s no one point of
failure.

Besides, the smart blockchain technology contracts have the
capability to react on their own to threats by giving a fast
mitigation of the attack. This reduces response lag and
enhances the system’s efficiency.

When integrated with the system, the surviving attributes
and the Al algorithms with published threat detection
capability, and the attacks in real time, passive to cyber threats
to the integrity and confidentiality of the data, facilitates a
more robust data defense system in place and in real time, the
attributes [13].

To clarify how blockchain supports the proposed IoT
security framework, the main benefits and their security
implications are summarized in Table 2.
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Table 2. Key blockchain contributions to integrity, trust, and automated response in the loT security framework

Blockchain Benefits in
IoT Security
Immutability and Data
Integrity

Description

By guaranteeing data immutability and integrity, blockchain technology prevents unauthorized modifications or
deletions, thereby ensuring the security incident records.

Blockchain’s decentralized, transparent ledger cultivates trust among loT stakeholders by enabling all
participants to access and verify security incident information, thereby promoting transparency and
accountability.

By maintaining a comprehensive history of security incidents alongside expert validations, blockchain provides
the essential data needed for effective threat detection and trend analysis.

Leveraging a decentralized blockchain architecture enhances system resilience by eliminating single points of

Transparency and Trust

Security Incident History

Decentralization and

Resilience failure; consequently, even if individual nodes are compromised, the blockchain’s overall integrity is preserved.
Smart Contracts for Blockchain platforms’ support for smart contracts facilitates automated security incident responses, thereby
Automation improving response times and overall system efficiency.
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3. FRAMEWORK DESIGN
3.1 Architecture of the proposed framework

An incorporated architectural framework combining Al
with blockchain was used to analyze the cybersecurity issues
seen within IoT systems. The framework demonstrates the
integration of a multi-tiered structure with Al-enabled cyber
threat identification and the storage abilities of blockchain.
The first layer consists of the IoT edge devices that send and
receive data while communicating over a network. The next
layer contains the algorithm-based Als, such as ML and DL,
which monitor the data streams for possible attack vectors.

Figure 4 demonstrates the interaction and data flow within
the layers of the proposed framework that adheres to a defined
three-layer design: the perception layer (sensing devices), the
network layer (data transfer and blockchain record-keeping),
and the application layer (Al-driven threat analysis). The data
generated by [oT sensors positioned in the perception layer is
transferred to the network layer that utilizes blockchain
technology to ensure that the recorded data is immutable. The
application layer then uses ML models to further analyze the
validated data to detect and classify different types of cyber-
attacks. The system also uses data captured from the
application layer to change the rules of detection, allowing the
system to modify itself in real time and assist in the further
evolution of the system.

Perception Layer
(IoT Sensors)

Network Layer
(Blockchain Logging)

Verified Data
/

Application Layer
(AI Threat Detection)

Detection Results

Feedback Loop
(Update Detection Rules)

Figure 4. Interaction and data flow between layers

The fourth layer of the core of the blockchain contains cyber
threat intelligence that is provably immutable in the fourth
layer of the core of the blockchain. Here lies the transparency
and the accountability of the interaction of the devices. Thus,
in this case, the absence of detours to the central authorities is
a good thing concerning the trust in the data that has been
secured and encrypted. The fact that all the interactions that
happen on the blockchain are systematically and provably
time-stamped creates trust within the system.
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In addition, the Al system’s live alerts are posted publicly
using a graphical interface to enable rapid human or automated
responses from security teams. By combining AI’s predictive
power for finding abnormalities with the secure data
management principles that blockchain provides, this model
creates a powerful system that is not only resistant to threats
that exist today but can also evolve to challenge security in the
IoT world, both now and in the future [14].

To position the proposed framework within recent IoT
security research, Table 3 summarizes representative studies
that employ ML, blockchain, and mobile/iOS-oriented
applications in different combinations.

Table 3. An analysis of research initiatives in loT security:
i0S applications, blockchain, and Emphasizing ML

Ref. Blockchain ML iOS Application
[15] v
[16] v
[17] v
[18] v
[19] v
[20] v
[21] v
[22] v
[23] v
[24] v v
[25]
26
2 Y
(28]
This study v N v

3.2 Components involved: Al, blockchain, DL

Integration of Al, blockchain, and DL technologies is
crucial to IoT security expansion. Al helps with automated
threat detection by providing algorithms that analyze data
traffic and look for signs of a breach, such as unusual whirs.
The prediction becomes more accurate as the system adapts
using ML.

With IoT devices facing the throttle of the ‘black box’ issue
of Al blockchain will be the gatekeeper, the security incident
logging ledger of Al Its decentralized structure ensures that
data will remain immutable since there is a low possibility of
hacking and tampering. It takes user trust to the next level and
does it without creating friction in data sharing in IoT.

Neural nets are the tools Al uses to process data, which is
essential for a development running into action needing
immediate attention, and for this, DL comes to the rescue. The
framework is therefore significantly more secure thanks to the
use of these three technologies that not only boost the violation
detection rate but also reduce the number of times violations
are responded to by mistake. These technologies provided a
foolproof solution by not establishing an IoT system security
hole [13].

3.3 Synergy between technologies for enhanced security

Al and blockchain together can advance the level of
protection offered in IoT ecosystems. On one side, Al systems
analyze large volumes of device and network data to detect
trends and anomalies across the attack surface and support
(near) real-time reaction. On the other side, blockchain stores



identities, transactions, and security-relevant events in a
decentralized and immutable ledger. In this way, when
suspicious activities are flagged by Al, they are backed by a

trustworthy record that cannot be altered after validation. This
interaction and feedback-driven data flow is summarized in
Figure 5.

loT Security Ecosystem

1. loT Security Ecosystem generates data and network traffic.
2. Continuous data collection feeds the ML layer.

3. Diverse algorithms in the ML layer analyze the data.

4. It identifies security threats and data deviations.

Machine Learning Enhancement

| 1. The feedback loop enhances ML
models.
2. ML models improve threat detection.
3. Refinement alds in proactive threat
detection.

BlockChain technology

. Blockchain stores validated security
records.

. ML algorithms analyze accumulated
feedback.

. Feedback enhances threat detection
and adaptation.

. The iterative process improves ML
model performance over time.

\
{

Machine Learning Layer

1. The ML layer detects threats.

2. It generates alerts.

3. Alerts are sent to the iOS Control
Center.

4. The iOS Control Center notifies the loT
Security Expert.

iOS Control Center

1. Upon receiving notifications, an loT
expert investigates.

2. The iOS Control Center grants access
to threat data.

3. Human expertise validates the threat.

4. An loT security expert determines the

legitimacy of the threat.

Human Expertise

1. The expert validates the alarms and
records the findings.
2. Details enter into the feedback loop.

Feedback Loop

A

1. The feedback loop bridges human
expertise and blockchain.

2. It securely validates the incident on the
blockchain.

Figure 5. Data flow within the IoT security framework

In the framework, the blended AI models are not fixed.
They continue to learn from the past. Information about events
detected by the model is recorded on the blockchain and
subsequently used within a learning cycle. Over the course of
many iterations, this logging and retraining will fine-tune the
models to identify atypical and suspicious actions with
increasing precision. The instantiation of this feedback cycle,
along with real-time surveillance and semi-automated reaction
to events, allows the system to close the gap on its defenses
more quickly in response to an observed threat rather than
waiting on a human operator for every single event.

From a broader view, Al and blockchain operate as one
connected safety layer rather than two separate tools. Al
improves threat recognition and prioritization, while
blockchain helps preserve the integrity of the underlying data
and maintains a traceable history of response actions with
timestamps. Because these actions are stored on an immutable
ledger, they can later be reviewed and audited, supporting
accountability and more reliable post-incident analysis. In
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practical terms, this setup reduces average response time and
strengthens the resilience of IoT infrastructures against
persistent and evolving threats [29].

4. METHODOLOGY
4.1 Data collection and preprocessing techniques

In any Al-driven IoT security system, a system needs to be
created to manage and control data from various sources.
These sources include IoT devices, gateways, and networks,
which all produce data in the form of system and user logs and
network traffic. These data sources continually produce
information and need to be controlled for effectiveness.
Streams of information need to be captured in a fashion so they
can be logs that are useful for later analysis, and not be logs
that are unusable.

Once a system to control the data streams is complete, the



information captured rarely arrives as a digital fingerprint. In
order to prep the information, a phase needs to occur to
improve data quality, and information is corrected, duplicate
entries are erased, and missing values are dealt with as best as
possible. In order to prep the data for the ML algorithms to be
fair, the information needs to be normalized in order to reduce
bias. Feature selection is also used in order to determine which
values are useful to classify data. In ML, poorly performing
features can often lead to the training process of different
models being baffled.

When real-time streams are added into the pipeline, another
difficulty appears: the volume of incoming information. In
such cases, effective filtering techniques are required to strip
out redundant or irrelevant records before deeper analytics are
applied. This step prevents the models from being
overwhelmed while still preserving enough context to build a
robust dataset that can support accurate threat detection by
advanced Al algorithms [30].

Privacy compliance in data collection. In scenarios
involving sensitive information—especially healthcare data—
privacy concerns become central rather than secondary. In this
study, all data were anonymized before any analysis took
place. Personally identifiable information (PII) was removed
or masked using hashing and related techniques, and the
datasets were either obtained from public sources or generated
synthetically to avoid direct exposure of real patients. The
collection and processing procedures followed key principles
inspired by regulations such as HIPAA and GDPR, so that no
individual’s sensitive health information could be traced back,
leaked, or misused during model training and evaluation.

4.2 Development of DL models for threat detection

Modern IoT environments are complex and advanced, and
require more than simple signature-based and rule-based
approaches to capture all informing security threats. To
capture all informing security threats, DL models are used to
learn what typical activity looks like and point out anomalies
that could suggest illegal entry. These models have been used
on both supervised and unsupervised learning to differentiate
between legitimate network traffic and suspicious activity on
network flow and device logs. Particularly, when input is
treated as spatial patterns, convolutional neural networks
(CNNs) are very useful. Also, recurrent neural networks
(RNNs) as well as other architectures are very useful for
temporal sequences like video, audio, or other events that have
been time-stamped.

When several devices or organizations cooperate on
training a joint model while keeping their raw data private,
Federated Learning introduces an additional complementary
strategy. Local model parameters are updated, and only
aggregated updates are sent, ensuring stronger privacy while
still advancing detection. Popular DL frameworks like
TensorFlow and PyTorch are customizable and offer modular
parts that facilitate developing models specific to different IoT
devices and/or use cases that have different hardware
constraints and vary in workloads and latency needs.

Among all these methods, the detection of abnormalities
among the normal behavior patterns remains the primary
focus. Ensemble methods help in improving the reliability of
the solution by aggregating the outputs/probabilities of
different models. For example, if one model misclassifies a
given pattern, the collection of other models could still detect
the pattern in question, ultimately providing a more reliable
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prediction in the final answer. Experimental studies in the
literature show that such DL-based and ensemble techniques
often reach state-of-the-art accuracy in threat detection and
outperform traditional rule-based mechanisms by a noticeable
margin. Furthermore, optimization steps such as careful
hyperparameter tuning, model regularization, and architecture
search can further refine performance, especially when real-
time threat hunting is required in live loT deployments [6, 31].

4.3 Implementation of blockchain for data integrity

To complement the learning capabilities of Al, blockchain
is integrated into the framework as a mechanism for preserving
data integrity and providing an auditable history of security-
relevant events. A private or permissioned blockchain is
adopted so that participation and access rights can be aligned
with the security requirements of the specific IoT
environment. Because entries on the ledger are immutable
once confirmed, attempts to alter or falsify recorded
information can be detected, which is particularly important
when sensor readings or logs might be targeted by attackers.
The main blockchain protocols and the key features that
support [oT integrity are summarized in Figure 6.

| Ethereum L lmrmutebiity
2. H Fabric 2. Decentralzation
3 I0TA 3, Smort Contracts
4 Corda 4. Security
5. E0S 5, Scddbity

| \ /
\ / \ /
N 4 \ J

Figure 6. Blockchain for IoT, protocols, and features

Smart contracts can help automate rule enforcement
concerning when and how to log threat detection, flushing out
response workflows, and ensuring consistent logging of
detection results. They sit at the top of the ledger and help in
the key verification and feedback center process. Along with
these, additional safeguards to address data confidentiality and
protection include digital signatures and other forms of
cryptographic network protection. Only those with the
appropriate access may view, modify, or annotate sensitive
information, and these cryptographic protective devices allow
their movement across the network.

Trust with data storage and the decentralized framework of
a blockchain allows the framework to sidestep the problem of
a single point of failure. Each logged event and associated data
is time-stamped and cryptographically linked to all previous
data, ensuring a single secure path for all future data to be
added. This framework will integrate with other [oT devices
to enable rapid response and threat mitigation, and will also
support the assurance of data accuracy and provenance across
all connected devices [4].



5. EXPERIMENTAL SETUP AND TESTING
5.1 Test environments: IoT settings vs. healthcare settings

In this part, we continue by looking more closely at the test
environments that were set up to validate the proposed Al-
blockchain security framework. The goal was to see how the
framework behaves in two different worlds: a general IoT
environment on one side, and a healthcare-focused IoT
environment on the other. In a typical IoT setting, there are
many interconnected devices producing continuous streams of
data. Every individual device has unique security challenges,
as the biggest concern remains keeping communication
secure, keeping data protected, and maintaining data integrity
while everything is simultaneously online and vulnerable to
cyber-attacks. Within this context, the scope of hypothetical
tests of this problem is likely to include deliberate attempts to
gain unauthorized access, attempts to introduce malicious
data, and cases where attempts at intrusion might fall under the
detection gap.

The challenges brought by the healthcare field are even
more prominent as the data in question is no longer just
technical data, but data about patients and their conditions. As
a result, privacy becomes a non-negotiable given alongside
compliance with relevant legislation such as HIPAA. Any Al-
based mechanism has to analyze the data in real-time while
maintaining the utmost confidentiality. In this case, the use of
Blockchain technology to store Electronic Health Records and
ensure that only relevant personnel are granted access in real-
time during the processing of sensitive data is of great
importance.

Two kinds of environments were simulated to check the
adaptability of the framework to varying levels of security and
sensitivity of the data [32, 33]. Therefore, the experimental
arrangement was divided into two cases. In the overall IoT
case, the devices were ordinary smart sensors, smart devices
in homes, and industrial controllers. The data amounts were of
moderate size, and the primary security concern was the
integrity of the devices and control of network access by
selective downstream control. In the case of IoT in the
Healthcare environment, the devices included medical
sensors, wearables for remote monitoring, and data gateways
for capturing patients’ data. This second environment dealt
with larger volumes of much more sensitive data and had to
implement stronger safeguards to meet real-time anomaly
detection, end-to-end encryption of data in transit, and
healthcare data privacy compliance. Testers understood these
considerations, and the resulting balance in constancy and
variability compared across the two domains was the result of
this being a case of true, and not artificial, testing.

5.2 Performance metrics for evaluation

In order to evaluate the effectiveness of the Al blockchain
framework performance, the application of particular
standardized metrics will be considered. The metrics under
consideration include: accuracy, precision, recall, Fl-score,
and area under the ROC curve (ROC AUC). Each of these
metrics describes particular characteristics of the detection
model's behavior. Accuracy describes the overall picture of
how many instances (both attacks and normal events) are
correctly classified. Precision describes the subset of alerts that
the model predicts to be threats and asks the question: how
many of those are truly malicious? A high precision indicates
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that there are fewer false alarms.

In contrast, recall answers the question: how many of the
actual threats that are present in the data set did the model
capture? A low recall indicates that there are dangerous events
that the model is missing. Because precision and recall can
move in opposite directions, the F1-score calculates them into
a single value, which is useful in scenarios where the dataset
is skewed, which is common in the 0T, where real attacks are
much less frequent than regular activities.

In order to have a complete analysis, we look at the ROC-
AUC metric. The ROC curve shows the relation of true
positives to false positives at the different levels of a decision.
The area of the curve shows the model's ability to determine
benign and malicious actions at varying levels of the metric.
Considering all of these metrics explains in a more complete
manner the framework's suitability for real-time threat
detection.

Practical considerations must also be incorporated beyond
the classification's quality. These practical considerations
include the model’s answering speed, the consumption of
resources, and its execution efficiency depending on the
workload. The aim is to show the model's ability to detect
threats in a precise manner while also proving the model's
suitability for use in real IoT and healthcare environments,
with acceptable response times and costs [13, 32].

5.3 Tools and technologies used in the testing phase

Evaluating the advantage of this potential framework was
done through various means of tools and techniques. The
implementation of I[oT devices into healthcare systems
facilitated the collection of device-anchored usage and
network communication data in real-time, which is crucial in
adapting the system performance to various conditions.

Equally applicable to the case were techniques like
preprocessing, normalization and the filtering of noise signals
from the data, which smoothen the data for entry to the DL
algorithms. Threat detection DL models were developed with
TensorFlow and Keras, being a high-level TensorFlow API
which facilitates the building and training of neural networks.

Moreover, during the testing phase of the solution,
blockchain technology was introduced to ensure the integrity
of the data. Event logging and all interactions between IoT
devices were secured through private blockchain protocols to
prevent unauthorized access. Four applications have been
investigated and developed on Ethereum and Hyperledger
Fabric with the purpose of creating decentralized applications
that meet the framework's security requirements. This will
allow outlining the principal concept behind innovative works
on possible approaches on how Al can be integrated with
blockchain technology to improve security inside IoT, and
which methods have been taken among others [32, 33].

6. RESULTS AND DISCUSSION

6.1 Effectiveness of the Al-driven model in detecting
threats

IoT threat detection model (AI-powered): The proposed
model shows strong capability in classifying [oT threats with
high accuracy. It relies on ML and DL techniques, including
decision trees and neural networks, to analyze large volumes
of IoT data and identify irregular behavioral patterns that may



indicate security incidents. In practical testing, DL-based
methods are particularly useful for capturing subtle anomalies
that can be missed by traditional rule-based systems,
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Figure 7. Features of the proposed framework

To develop a model in a more comprehensive manner, a
blockchain technology layer is added in order to link data
integrity to a permanent record of a security event's details. In
other words, the Al is not just anomaly detection, but also
works with a ledger that records every attack and every
countermeasure taken against that attack. A logging and
anomaly detection cycle is created so the information
inscribed on the ledger can be recycled to retrain the ML
models, improving detection efficacy and reducing false
positives over time.

Such a model, especially in highly challenging areas like
healthcare, is expected to outperform actioners of ML,
particularly SVM and KNN, on various dimensions, including,
but not limited to, precision, recall, interpretability, and F1.
The indifferent model, Latin other data comes in, is able to
gain increments while the blockchain stores expert annotations
on the anomalous events that constitute an empirical country
to the system. Ultimately, the integrated system is able to more
accurately task genuine anomalies and harmless threats, while
moving in the complex real world [6, 34].

6.2 Impact of blockchain on data integrity during attacks

Developments of trust management have seen blockchain
software engineers build cross-disciplinary, integrated IoT
blockchain applications. In IoT blockchain applications, the
most significant feature is the management of evidence of the
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attack. With interlinked blocks, significant events are recorded
in a way that is difficult to modify without detection. It
produces a sequence of events detailing the attacks, breaches,
and responses that are permanently available to attack, vary,
or shut down the attack. In defending the domain, trusted
consecutive events record a precise approximation of the
events, enhancing security for ‘tethered dumping® of sensor
logs or evidence of the network.

The ledger's consistency is protected due to the lack of
single points of failure, and smart contracts support the
integrity of the shared security view. Decentralization
contributes even more to this protection. Compromising a few
of the nodes does not disrupt the ledger's consistency. Trigger
workflows and automated responses to validated alerts issued
to suspicious events. Access restrictions and responsiveness
are supported to further mitigate the time it takes to fully
respond to the situation. Overall, organizations are under
constant evolving attacks and are focused on IoT security,
separating blockchain from an operational form of security.
Increasingly useful and reliable defense should be the goal of
organizations and attack conditions [2, 13].

To provide a broader view of how blockchain has been
integrated with IoT across different application domains—
along with the main benefits and recurring limitations reported
in the literature—the key representative studies are
summarized in Table 4.



Table 4. A review of the integration of [oT and blockchain across various domains

Ref. No.

Focus

Advantages

Limitations

Dorri et al.
[35]

Novo [36]

Fernandez-
Caramés
and Fraga-
Lamas
[37]

Dutta et al.
[38]

Tian [39]

Khan and
Salah [40]

Khrais
[41]

Atlam and
Wills [42]

Azaria et
al. [43]

Balhareth
et al. [44]

Ahad et al.
[45]

Ferrag et
al. [46]

Fromhart
and
Therattil
[47]

Jafar et al.
[48]

Atlam et
al. [49]

Wang et
al. [50]

Improving blockchain to
support [oT.

Hybrid blockchain architecture
for IoT.

Ensuring dependable IoT
infrastructures through the
integration of blockchain
technology.

Benefits of blockchain in the
supply chain.

Leveraging blockchain and
IoT in SCM.

Function of blockchain in IoT.

Function of blockchain and
10T in a smart city.

Blockchain framework for
IoT.

Monitoring and securing
healthcare data.

Security perspective of loT
integration.

Blockchain, IoT, and 5G in
smart healthcare.

Security issues and privacy in
blockchain-based IoT systems.

Loyalty management systems
powered by blockchain.

Verifiability and privacy in e-
voting.

Examination of IoT
applications and
privacy/security concerns.
Revolutionizing healthcare
data sharing using a secure
hybrid blockchain approach.

Enhancing blockchain technology to
facilitate efficient, cost-effective
deployment in IoT applications.

Scalable and decentralized infrastructure
for secure data exchange in IoT
networks.

Utilizing blockchain to improve fault
tolerance and ensure data integrity in
IoT systems.

Enhancing transparency, reducing fraud,
and ensuring traceability in supply chain
management with blockchain.
Combining IoT and blockchain to
improve and reduce costs and supply
chain visibility.

Utilizing blockchain technology for
maintaining data integrity, transparency,
and decentralized control in IoT
systems.

Utilizing [oT and blockchain to improve
efficiency and enhance data security in
smart city applications.
Developing a blockchain framework for
reliable data management and security
in [oT networks.

Enabling tamper-proof healthcare data
records and enhanced security through
blockchain technology.
Enhancing data security and reducing
fraud risk through blockchain
integration with IoT systems.
Leveraging the combined benefits of
blockchain, 5G technology, and IoT to
improve privacy and security in smart
healthcare systems.
Identifying and addressing privacy and
security vulnerabilities in blockchain-
based IoT systems.

Utilizing blockchain to reduce costs and
incentivize customer loyalty in loyalty
programs.

Achieving both verifiability and privacy
in electronic voting systems using
cryptographic primitives enabled by
blockchain.

Analyzing privacy and security risks
associated with various IoT applications
and proposing scalable.

Unlocking the power of secure and
private health data exchange.

Trade-off between scalability and security, with
potential for vulnerabilities inherent to the
consensus mechanisms underpinning the system.
The adoption of blockchain introduces greater
complexity compared to conventional
architectures and may result in scalability
bottlenecks under high transaction loads.

Scalability challenges and potential for network
congestion as the number of devices increases.

Integration challenges between existing systems
and potential privacy concerns regarding data
visibility.

Increased complexity in implementation and
potential interoperability issues between
different systems.

Potential scalability limitations and increased
energy consumption compared to centralized
approaches.

Integration challenges between various systems
and potential privacy concerns regarding
collected data.

Scalability limitations and potential performance
bottlenecks as the network grows.

Privacy concerns regarding potential regulatory
hurdles and sensitive health data in healthcare
data management.

Increased potential performance overhead and
complexity due to the blockchain's distributed
nature.

Integration challenges between these disparate
technologies and potential scalability issues.

Balancing privacy concerns with the need for
data transparency and potential security exploits
in the underlying blockchain technology.

Requirement for a generic platform to address
potential integration challenges and facilitate
widespread adoption with existing systems.

Increased complexity due to potential usability
challenges and cryptographic techniques for
voters.

Difficulty in implementing effective solutions
and adapting existing policy frameworks to
address the evolving nature of [oT threats.

Navigating the intricacies: Implementation
complexity and potential scalability hurdles.

In all fields considered, while supporting integrity and
traceability, blockchain consistently experiences limitations
with  scalability, interoperability, and deployment
complexities.

6.3 Comparative analysis between traditional methods
and proposed framework results

Traditional IoT security still depends largely on
centralized or semi-centralized controls such as firewalls,
segmented access rules, and static policy enforcement. These
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measures are useful in controlled settings or against
straightforward attacks, but they often struggle when threats
become distributed, coordinated, or adaptive across a large
number of connected nodes. In such cases, the security
system may detect events but still lack reliable, tamper-
resistant records that preserve what actually happened. This
is where blockchain can add practical value by providing
immutable logging and stronger trust in incident records,
rather than relying only on conventional device-centric
defenses.

From the ML side, classical baselines such as SVM and



KNN can deliver reasonable performance on certain traffic
patterns. CNN-based detection can also be effective,
particularly when data representation supports deep pattern
extraction. However, performance stability becomes more
challenging as the deployment scale grows and the number
of nodes increases. The proposed BBMDA -based framework
appears more consistent under these conditions, especially
when the environment is larger and more dynamic.

As shown in Figure 8§, BBMDA achieves the highest
accuracy across all tested node settings (from 10 to 100
nodes) compared with SVM, KNN, and CNN. The gap
becomes more noticeable at higher node counts, which
suggests that the proposed structure handles scale-related
complexity better than the baseline methods. This trend
supports the idea that combining advanced ML with a
blockchain-backed integrity layer can improve not only
detection outcomes but also the trustworthiness of the
recorded results.

In addition, retaining security-relevant actions and
authentication events on an immutable ledger provides a
clearer audit trail during or after an attack. This is particularly
important in sensitive IoT domains, where incident
investigation requires reliable evidence and consistent event
reconstruction.

There are positive aspects to deployment, but there are still
financial and operational restrictions to consider. In tandem
with all of the blockchain infrastructure, deep models
running would require additional computational and storage
resources, and complications may arise from trying to fit it to
existing structures. These challenges may be more
pronounced in healthcare-oriented IoT environments due to
the volume and sensitivity of data. Still, the performance
gains and enhanced accountability offered by the framework
can justify the added complexity in scenarios where trust,
integrity, and fast detection are critical
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7. CASE STUDIES: APPLICATIONS IN REAL-
WORLD SCENARIOS

7.1 Security threats faced in IoT environments

IoT ecosystems have various security issues ecosystems
that impact both the service and security of the ecosystems.

The most simple and critical of these issues is the fact that
many of these devices have lower than normal security and
can be subjected to data breaches, cyber incidents, and
intrusions. Because these systems are typically built as
distributed architectures, they increase the surface of the
attachable area. Malicious users can exploit weak
authentication and default passwords. Common examples of
this are DDoS attacks, where a significant number of
compromised devices are used as bots to send superfluous
traffic to the targeted network, and man-in-the-middle
attacks, where an adversary discretely intrudes to alter the
data that is released between the systems.

A great number of IoT devices and sensors are also
afflicted with the same problem of low processing power and
memory. This makes it hard for such end devices to
implement strong encryption and robust security measures,
and thus, they are more vulnerable to a wider scope of
attacks. The impact of such frailties becomes especially
glaring in certain sectors like healthcare and industrial
control, where one mistake or instance of malpractice can be
catastrophic and, in some cases, fatal.

An adversary targeting a single network protocol might be
able to modify or remove critical data. In addition, gaining
physical access to a device might be sufficient to obtain or
obliterate extremely confidential data saved on the device as
well.

These compound challenges go on to call for security
solutions capable of addressing both present and future
threats, while still enabling trust among the various IoT
ecosystem constituent parts [4, 31, 51, 52].

7.2 Case study for healthcare security

Various industries use the IoT at different levels, but the
healthcare sector is particularly susceptible to cyberattacks
because most IoT devices deal with sensitive patient data. A
framework for supporting medical IoT devices based on Al
and a blockchain-based healthcare model. Utilis' data breach
prevention Al algorithm detects anomalies and predictive
analytics instantly, allowing the security team to identify
threats like unusual access to electronic health records.

This enhanced security would be inaccessible through any
other method because the data would be protected at the
source, and priority filtering would be executed using smart
contracts on the blockchain to allow regulated and secure
access to patient information. This protects you from
unauthorized access and, due to that, maintains a high level
of trust among the patients and the healthcare professionals.

This case study underlines the significance of blockchain
in protecting the integrity of medical information from a
cyberattack. The system's resistance to corruption is based on
decentralization; when health record storage is decentralized,
even if one node is compromised, others are not. Al and
blockchain together provide a strong basis that helps prevent
security breaches and boosts the operations in healthcare [33,
53].

7.3 Advantages received from instituting the framework

The implementation of the suggested security framework
is a great step towards improving the security of the IoT
system since it utilizes Al and blockchain technology. The
first of these is the removal of integrated mobile payment
systems and accompanying apps on the provider's website.



Even if we ignore the costs of removing the apps, high
ongoing costs must be incurred. For example, ongoing
software maintenance, especially with platform migration
and upgrades, and ongoing predictive analytics and reporting
must be performed. Even ignoring costs incurred by
maintaining the apps, these costs must be incurred.
Analytical costs must be incurred not as self-assigning tools,
but to determine value-added savings and efficiencies to be
derived through the app.

The ongoing costs incurred through the targeted analytics
must not be self-assigning in nature. They must be genuinely
targeted towards the costs of the apps and associated
efficiencies in service delivery, or focused on determining
savings and efficiencies to be derived from the removal of
the apps.

In conclusion, if the integrated mobile payments and apps
were removed from the online systems, high average costs
would be incurred by removing the systems, and the ongoing
predictive costs would be deeply incurred through the
analytical system built on self-assigning attributes, which
wouldn't be acceptable.

In summary, integrated mobile payment systems can
significantly worsen the overall analytics system, especially
predictive analytics systems, to a great degree. It is in the best
interest of the provider to remove those integrated mobile
payment systems. Thus, it was shown that by combining the
actual benefits of SIEM and SOAR, one can achieve better
operational efficiency through automated threat responses
alongside incident management processes [4, 51].

8. LIMITATIONS AND CHALLENGES
8.1 Challenges encountered during enactment

Bringing blockchain and Al together to secure [oT systems
is promising, but it is far from straightforward. One of the
main problems is the scalability of blockchain itself. As more
and more devices connect to the network, the number of
transactions that must be written and validated on the chain
increases, which can slow down the processing rate. When
this happens, it becomes harder to support near-real-time
logging and detection of security events. At the same time,
many modern Al models are large and complex, and they
require significant computation and memory, which makes
the combined setup even heavier to deploy.

Another difficulty comes from the loT devices at the edge.
Most of them were not designed to run heavy cryptography
or DL; they have limited processing power, storage, and
battery life. Complicated blockchain protocols or costly Al
workflows would hit issues such as lag or interruptions, and
there would be excessive battery drain. The performance and
safety trade-off would need to be engineered to spend as little
energy as spent, as little time is wasted, and energy is used to
as little as possible. The trade-off to safety fundamentals here
would be that large tasks can be offloaded to gateways or
edge servers, rather than letting the sensor deal with them
alone.

The intricate difficulty of gaining access to data can
complicate things even further. For Al-based security to
function correctly, it needs massive amounts of data to
authenticate and test. This is especially true for personal and
medical information, which is extremely sensitive. This
doesn't make it easier to attempt using verifiable real-world
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datasets, and it may even act as a deterrent. Other options,
like the generation of synthetic data or the use of extremely
anonymized logs, may be needed to determine whether and
to what extent the framework meets the required functioning.
Furthermore, the cyber threat landscape is ever-changing.
New attack models are introduced with alarming frequency,
and changes to the models, rules, and security policies are
required to be adaptive. Keeping layers of defenses both
current and capable of pulling back the threat is an enduring
challenge, and in most cases, the answer won't be as simple
as 'just make a model and it will work [32, 51].

8.2 The evolution of IoT security and challenges ahead

The number of connected devices keeps growing, and so
does the challenge of securing the IoT. Each of these devices
can potentially be an attack vector. Today's IoT ecosystems
also tend to be quite heterogeneous: there are different
vendors, devices, platforms, and communication standards.
The absence of a common standard means there is no way to
implement a unified security strategy. then there are new,
rapidly evolving technologies such as Al and blockchain.
these add new systems and require ongoing oversight and
adjustments, which tend to annoy people. the more systems
there are to oversee, the more attackers will try to find and
exploit weaknesses.

Another problem is the Privacy of the data, which is in
many cases very sensitive. Examples of this are health data,
localization data, and data on the metrics of a certain
industrial process. Privacy concerns are a demand. The
foremost concern is the need for the enactment of policies
focused on Access Control, Strong Encryption, Privacy-
Enhancing Technologies, and the minimization of harmful
use of the user's data. The Interoperability Problems of
disparate IoT systems, which undermine global Security, are
cause for concern. The need for the development of Secure
communication systems designed to be Interoperable is
apparent. Standardized secure communication protocols will
solve the diverse and interdependent nature of the problem.

Problems abound in the area of compliance with
regulations too. Notably, the legal structure and the tech
world do not move in synch, and in most instances, there is a
disconnect between the legal frameworks and what is
actually happening in the real world, giving rise to an absence
of a legal approach to the integration of the new dimension
of the IoT and Al-blockchain. It is extremely hard to
conceptualize and articulate a plan to defend against cyber
threats and simultaneously address the fundamental
problems of privacy being used as a throttle to inhibit
innovation. The right balance, if there is to be any, can be
only achieved with the joint effort of the three stakeholders
of the IoT ecosystems: the industry, the academia, and the
policy makers, if the IoT of tomorrow is to be safe and
sustainable [31, 33].

9. CONCLUSIONS AND FUTURE WORK

This synergy demonstrates how Al and Blockchain can be
utilized together to enhance the [oT ecosystem's security. The
strength of the proposed system is the amalgamation of the
components of Al, which are the ability to detect threats and
an adaptive real-time response to changing attack patterns,
with the characteristics of Blockchain, which provide data



integrity and transparency, and a verifiable trail of events.
The Al system is capable of adapting to an attack and
strengthening the defense system of the secured mechanism,
while the Blockchain makes credible the information that
was transmitted during the attack and ensures that the
recorded events are valid.

The appraisal also indicates that the integrated DL model
is better at complex pattern recognition as compared to
homogeneous systems (IDS). This is particularly relevant in
cases where confidentiality is pivotal, such as the healthcare
industry. In such cases, the marginal cost of a false negative
is high; thus, the additional accuracy brought in by the
framework is of great importance. In totality, the blend of Al
and Blockchain is a great improvement, and the analyzed
case studies show the value of the approach in data
protection, visibility of threats, and the safe disposal of
classified data [2, 31, 34, 54].

That said, the framework possesses shortcomings and does
not provide a complete solution to the problem at stake. In
the case of massive loT networks, containing thousands and
tens of thousands of devices, scalability can represent a major
challenge. If the system is not appropriately configured, there
can be a negative impact on real-time operation due to
transaction delays in the blockchain and the computational
demands of the DL models. In addition, the current system
design has a hypothesis of a stable correlation along with a
minimum level of device tampering. These assumptions are
not likely to be the case in highly flexible or severely
restricted circumstances. These shortcomings point naturally
to areas where future work can refine and extend the
framework to make it more flexible, lighter, and better
adapted to a wider range of IoT scenarios.

9.1 Recommendations for future enhancements to the
framework

The ways the proposed Al-blockchain security framework
can be improved must be in several different directions. One
of the most important of these is integrating more
sophisticated ML processes. The more sophisticated the ML
processes are, the better they will be able to enhance the
functioning of the blockchain in regard to the detection of
incidents in real time, as well as the responses to such
incidents. Predictably, the use of distributed or edge Al
models would enhance the ability of the organization to
perform security analytics more proximal to the point of data
generation, while also preserving the majority of training
data sequestered, thus not losing control over the data while
avoiding sentry uploads to a primary server. Ideally, such
systems would be more difficult to compromise while also
providing more sophisticated responses in a timely manner
to hostile activities.

An equally important field of study is user-centered
security. If the interface, alerts, and the overall organization
of data in the system are designed with the user and operator
in mind, they can serve security management as an active
counter and as a tool to better understand the discipline and
mechanisms of the IoT, as opposed to a user simply
functioning as an automatic decision endpoint. User-friendly,
simple, and designed icons, dashboards, and status lamps on
the control panel can elevate the security culture and make
the user more sensitive to the system and active in responding
to the system when problems arise. The large-scale
expansion of the IoT intensifies the need for robust
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interoperability and seamless plug-and-play capabilities.
Future research is likely to emphasize scalable Layer 1/Layer
2 blockchain infrastructures and lightweight decentralized
consensus mechanisms tailored to IoT constraints. As
blockchain ecosystems become increasingly heterogeneous,
cross-chain interoperability will be essential to enable secure,
low-latency event exchange across IoT domains. In parallel,
effective deployment will require alignment between
technological development, regulatory frameworks, and
business strategies to support the integration of blockchain
and Al in real-world IoT environments.
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