
Integrated Framework for Real-Time Cyber Threat Detection and Mitigation in IoT and 

Healthcare Systems Using Deep Learning and Blockchain 

Zainab Qahtan Mohammed1* , Chasib Hasan Abooddy1 , Omar Hatem Zaidan2

1 Basic Education College, University of Diyala, Baqubah 32001, Iraq 
2 Department of Scholarships and Cultural Relations, University of Diyala, Baqubah 61209, Iraq 

Corresponding Author Email: Zainabkahtan@uodiyala.edu.iq 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ijsse.150807 ABSTRACT 

Received: 6 April 2025 

Revised: 5 June 2025 

Accepted: 12 June 2025 

Available online: 31 August 2025 

This study proposes a new model that integrates artificial intelligence (AI), deep learning 

(DL), and blockchain technology with the goal of enhancing the Internet of Things (IoT) 

ecosystems’ security threats mitigation and detection mechanisms. The model solves the 

specific security problems in these fields by proposing a DL-based real-time threat 

detection AI model. Moreover, blockchain technology is applied to ensure data integrity 

and provide tamper-proof records. The model is tested thoroughly on both IoT and 

healthcare settings to ensure that it is streamlined and effective in shielding critical 

systems from security threats. 
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1. INTRODUCTION

1.1 Background on IoT security challenges 

Industries have changed because of the automation of data 

and the ability of different devices to communicate with each 

other via the Internet of Things (IoT). A multitude of different 

devices are also interconnected, which makes it easier for 

attackers and hackers to infiltrate and use every device as a 

possible cyber weapon. IoT devices mostly use the same 

hardware and software systems, which causes a lack of 

differentiation across integrated systems. The lack of 

difference across integrated systems simplifies the mass 

deployment of devices, but that also means that there is a 

universal security inadequacy across the devices. In other 

words, if one device of a specific type or one version of a 

device has a security gap, thousands or millions of other 

devices of the same type or version are also compromised. A 

perfect example of this is the 2016 Mirai botnet attack, where 

600,000 devices were infected worldwide because of default 

credentials in IoT routers and cameras [1]. 

An increased attack surface and a lack of suitable responsive 

security measures in resource-scarce situations, such as in the 

healthcare or industrial sectors, are a few of the negative 

impacts that a homogeneous system breakdown may incur.   

These systems have been in the spotlight as a result of 

security system weakness, for example, the lack of encryption 

in several IoT systems, as a result of their limited 

computational resources. Such an adverse security resource 

scenario may be harnessed to devise effective and less 

burdensome alternative security measures. Due to the rapid 

growth of IoT systems, reliance on static security measures to 

formulate policies regarding control and movement of \ device 

systems should be loosened. This increased movement 

aggravates the challenges of maintaining system integrity, and 

weak centralized control aggravates compromise and risk. 

Integrating security will entail the coordination and use of 

contemporary technology such as blockchain and artificial 

intelligence (AI) [2].  

1.2 Importance of detecting threats in real-time 

To adapt to the digital IoT ecosystems, the need for 

instantaneous threat detection and mitigation to balance the 

cyber-attack is crucial. As illustrated in Figure 1, IoT's sensor 

networks and digital devices operate unattended and bring a 

new unique set of challenges. These environments are 

challenges for an all-in-one digital protection security. Most 

incident response automation tries to tackle to reduce and 

contain the risks, security, and digital protection the 

opportunistic attacks within seconds. This is more multi-

dimensional and systemic. Along with system enhancement to 

avert damage and augmented protection, it aids in vision and 

systemic response.  Rapid and successful damage containment 

is also critical to the protection and confidentiality of the 

information. The fast containment and response to probable 

cybersecurity risks in the health and critical national 

infrastructure are extremely crucial, as the data breaches are 

more catastrophic compared to others. Smart grid 

environments represent a clear example of such critical 

infrastructure, where blockchain-based integrity and 

trustworthy event logging can significantly strengthen 

resilience against real-time cyber threats [3]. 

The additional value comes from the immutable audit logs 
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provided by the AI-enhanced blockchain technology, which 

also fortifies the system by providing audit trails for 

transactions and data to which users cannot alter. These 

organizations can easily demonstrate the adaptive and 

mitigating security mechanisms in place to respond to the 

system vulnerabilities as digital security is created in real time 

[4]. 

 

 
 

Figure 1. A model conceptually based on the NIST framework proposal 

 

1.3 Overview of the integrated framework 

 

This architecture leverages the combination of blockchain, 

AI, and deep learning (DL) technology and specifically 

addresses the relevant security challenges of IoT. Thanks to 

the peer-to-peer blockchain, the system is able to maintain 

transparency as well as confidentiality. A blockchain 

environment contains security challenges by minimizing the 

amount of exploitable primary datasets and the chances of 

single points of failure. Threat detection is accelerated by DL 

algorithms specialized for monitoring high-velocity data 

streams to find operational anomalies. An Adaptive system’s 

protocol modifies IoT defenses in response to the detected 

anomalies. Boosting the flexibility of IoT threat adaptation is 

why this system is most advanced. Streams of permanent and 

immutable data serve as the channels of communication 

among the IoT devices, and the data’s integrity and 

authenticity are guaranteed by the decentralized ledger, which 

is also unchangeable. By allowing the framework to 

automatically perform defined actions when threats are 

detected, smart contracts further reduce the time systems are 

left vulnerable to adaptive malicious attacks. 

This also fosters a collaborative environment among 

different stakeholders aimed at the same goals in efficient 

threat detection and response [4]. 

 

 

2. LITERATURE REVIEW 

 

2.1 Current methods in IoT security 

 

Security risks that are presented by the IoT come from its 

complex interlinkage of devices. The traditional defense 

mechanisms, especially intrusion detection systems (IDS) 

based systems, are not able to address the challenges provided 

by IoT interfaces, especially in environments where signature-

based detection systems are the only option, since the evolving 

cyber threats cannot be neutralized. This has compelled the 

shift towards machine learning (ML) based anomaly detection, 

where the system is trained to flag behavior that is considered 

unusual for possible attacks. The advancements captured in 

DL recently offer increased promise value towards better 

threat detection of IoT systems by processing large streams of 

data instantaneously for rapid threat detection. Also, 
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collaborative intrusion detection with data privacy breach of 

various IoT devices is being looked into with the help of 

federated learning. Table 1 shows an analysis of existing 

studies on operative threat intelligence for enhanced security 

aimed at IoT security enhancement. 

Blockchain technology is also gaining attention as a means 

to enhance data integrity and secure communications within 

IoT frameworks by creating immutable transaction records, 

thereby addressing concerns related to data manipulation and 

unauthorized access. Collectively, these innovative strategies 

aim to develop stronger security architectures for IoT 

applications [4-6]. 

 

Table 1. A critical comparative analysis of existing studies on operative threat intelligence for enhanced security aimed at IoT 

security enhancement 

 
Ref. Key Contributions Methodology/Framework Main Findings 

Saxena 

and 

Gayathri 
[7] 

Identified CTI data sharing 

issues and proposed the CCTI 

system utilizing AI-based 

classification and blockchain 

immutability. 

Execution of AI computations on 

blockchain platforms. 

This study identifies CTI challenges and 

proposes a collaborative framework for secure 

threat information sharing. 

Sarhan et 

al. [8] 

Introduced HBFL: A privacy-

preserving IDS using federated 

learning and decentralized 

blockchain storage. 

Implementing hierarchical federated 

learning over blockchain infrastructure. 

Privacy-preserving and secure intrusion 

detection in collaborative IoT environments. 

Demonstrated feasibility with evaluation and 

implementation using a key IoT dataset. 

Arshad et 

al. [9] 

Proposed COLIDE framework 

enabling energy-efficient 

detection via cooperative 

communication between border 

and sensor nodes. 

Facilitated collaboration among border 

nodes and resource-constrained sensors. 

Efficient intrusion detection in IoT systems 

with collaboration. Implementation and 

experimentation using Contiki OS 

demonstrated effectiveness with respect to 

energy and processing overheads. 

Sarhan et 

al. [10] 

Developed a federated learning 

scheme supporting CTI sharing 

with uniform data structures, 

enabling cross-organization ML 

training. 

Leveraged a common data format and 

federated learning. 

By employing an efficient ML-based 

architecture that removes the need for inter-

organizational data exchange, the system was 

evaluated using NetFlow datasets and 

demonstrated accurate classification of diverse 

traffic types. 

Kumar et 

al. [11] 

Proposed the P2TIF framework, 

integrating scalable blockchain 

with CNN-based analytics to 

secure IIoT data sharing. 

Combining DL modules and a scalable 

blockchain. 

Validation on the ToN-IoT and IoT-Botnet 

datasets demonstrated that the proposed 

solution, which addresses security, privacy, 

and scalability challenges in IIoT, achieves 

high efficiency and scalability. 

Our Study 

Designed an end-to-end AI-

enhanced CTI framework 

combining user reporting, 

blockchain immutability, and 

ML-based classification. 

Underpinned by blockchain-secured 

data sharing, the framework integrates 

human expertise with ML-driven 

analysis. 

This work addresses a research gap by 

presenting a comprehensive synthesis of 

collaborative threat intelligence approaches for 

IoT security. 

 

2.2 Role of AI in threat detection 

 

AI is improving the way we detect threats in IoT security 

frameworks. Cyber threats have changed, and traditional 

security techniques do not work and new threats require new 

measures. As illustrated in Figure 2, AI methods like DL and 

ML automate threat detection by reviewing and offline data 

from IoT devices and identifying patterns and threats during 

an attack. This allows threats and data breach risks to be 

mitigated quickly. 

AI's contribution to IoT security helps to improve, adapt, 

and overcome. Security protocols in real time and on the fly to 

changes by threats and vulnerabilities. NLP helps by 

monitoring, reporting, and allowing humans to focus on 

critical tasks. 

Neural networks in AI-driven IDS learn to distinguish the 

benign from the malicious actions in heterogeneous IoT 

environments. These systems do not have fixed sizes but are 

elastic to accommodate new attack patterns and a plethora of 

users. 

Strengthening the security posture of IoT networks, 

organizations utilize AI to aid in the safeguarding of sensitive 

data to protect against unauthorized access or data breaches 

[12]. 

 
 

Figure 2. Integration of IoT, ML, and blockchain for 

enhanced security and transaction management 
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2.3 Application of blockchain in data integrity 

 

The integration of IoT and blockchain increases the chance 

of a security breach and a cyber-attack focused on the 

blockchain technology that protects smart devices. As shown 

in Figure 3, blockchain can be integrated across the layered 

IoT architecture to secure identity, validate transactions, and 

preserve tamper-resistant logs of security events. At the center 

of this combination is a decentralized approach where every 

documented security breach is immutable and can only be 

verified by a full conspectus of the network. Hence, every 

piece of data is unalterable. It is this unalterable data that gives 

the security records their integrity. It is this raw, unmodified 

data that gives the security records their integrity and builds 

trust among the IoT stakeholders.  

These participants will be able to share to improve security 

breach data triangulation in an ecosystem. With the adoption 

of blockchain technology, trust, transparency, and 

accountability can be brought to the system. The promising 

data on security breaches will be the driver for ML models to 

mature and be trained to predict unknown malicious threats. 

Furthermore, the blockchain’s decentralized model provides 

stronger protection against potential cyber-attacks, as the 

absence of singular integration means there’s no one point of 

failure. 

Besides, the smart blockchain technology contracts have the 

capability to react on their own to threats by giving a fast 

mitigation of the attack. This reduces response lag and 

enhances the system’s efficiency. 

When integrated with the system, the surviving attributes 

and the AI algorithms with published threat detection 

capability, and the attacks in real time, passive to cyber threats 

to the integrity and confidentiality of the data, facilitates a 

more robust data defense system in place and in real time, the 

attributes [13]. 

To clarify how blockchain supports the proposed IoT 

security framework, the main benefits and their security 

implications are summarized in Table 2. 

 

 
 

Figure 3. IoT system architecture 

 

Table 2. Key blockchain contributions to integrity, trust, and automated response in the IoT security framework 

 
Blockchain Benefits in 

IoT Security 
Description 

Immutability and Data 

Integrity 
By guaranteeing data immutability and integrity, blockchain technology prevents unauthorized modifications or 

deletions, thereby ensuring the security incident records. 

Transparency and Trust 

Blockchain’s decentralized, transparent ledger cultivates trust among IoT stakeholders by enabling all 

participants to access and verify security incident information, thereby promoting transparency and 

accountability. 

Security Incident History 
By maintaining a comprehensive history of security incidents alongside expert validations, blockchain provides 

the essential data needed for effective threat detection and trend analysis. 

Decentralization and 

Resilience 

Leveraging a decentralized blockchain architecture enhances system resilience by eliminating single points of 

failure; consequently, even if individual nodes are compromised, the blockchain’s overall integrity is preserved. 

Smart Contracts for 

Automation 

Blockchain platforms’ support for smart contracts facilitates automated security incident responses, thereby 

improving response times and overall system efficiency. 
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3. FRAMEWORK DESIGN 

 

3.1 Architecture of the proposed framework 

 

An incorporated architectural framework combining AI 

with blockchain was used to analyze the cybersecurity issues 

seen within IoT systems. The framework demonstrates the 

integration of a multi-tiered structure with AI-enabled cyber 

threat identification and the storage abilities of blockchain. 

The first layer consists of the IoT edge devices that send and 

receive data while communicating over a network. The next 

layer contains the algorithm-based AIs, such as ML and DL, 

which monitor the data streams for possible attack vectors. 

Figure 4 demonstrates the interaction and data flow within 

the layers of the proposed framework that adheres to a defined 

three-layer design: the perception layer (sensing devices), the 

network layer (data transfer and blockchain record-keeping), 

and the application layer (AI-driven threat analysis). The data 

generated by IoT sensors positioned in the perception layer is 

transferred to the network layer that utilizes blockchain 

technology to ensure that the recorded data is immutable. The 

application layer then uses ML models to further analyze the 

validated data to detect and classify different types of cyber-

attacks. The system also uses data captured from the 

application layer to change the rules of detection, allowing the 

system to modify itself in real time and assist in the further 

evolution of the system. 

 

 
 

Figure 4. Interaction and data flow between layers 

 

The fourth layer of the core of the blockchain contains cyber 

threat intelligence that is provably immutable in the fourth 

layer of the core of the blockchain. Here lies the transparency 

and the accountability of the interaction of the devices. Thus, 

in this case, the absence of detours to the central authorities is 

a good thing concerning the trust in the data that has been 

secured and encrypted. The fact that all the interactions that 

happen on the blockchain are systematically and provably 

time-stamped creates trust within the system. 

In addition, the AI system’s live alerts are posted publicly 

using a graphical interface to enable rapid human or automated 

responses from security teams. By combining AI’s predictive 

power for finding abnormalities with the secure data 

management principles that blockchain provides, this model 

creates a powerful system that is not only resistant to threats 

that exist today but can also evolve to challenge security in the 

IoT world, both now and in the future [14]. 

To position the proposed framework within recent IoT 

security research, Table 3 summarizes representative studies 

that employ ML, blockchain, and mobile/iOS-oriented 

applications in different combinations. 

 

Table 3. An analysis of research initiatives in IoT security: 

iOS applications, blockchain, and Emphasizing ML 

 
Ref. Blockchain ML iOS Application 

[15]  ✓  

[16]   ✓ 

[17]  ✓  

[18] ✓   

[19]  ✓  

[20]  ✓  

[21] ✓   

[22] ✓   

[23] ✓   

[24] ✓ ✓  

[25] 

[26] 

[27] 

[28] 

  ✓ 

This study ✓ ✓ ✓ 

 

3.2 Components involved: AI, blockchain, DL 

 

Integration of AI, blockchain, and DL technologies is 

crucial to IoT security expansion. AI helps with automated 

threat detection by providing algorithms that analyze data 

traffic and look for signs of a breach, such as unusual whirs. 

The prediction becomes more accurate as the system adapts 

using ML.  

With IoT devices facing the throttle of the ‘black box’ issue 

of AI, blockchain will be the gatekeeper, the security incident 

logging ledger of AI. Its decentralized structure ensures that 

data will remain immutable since there is a low possibility of 

hacking and tampering. It takes user trust to the next level and 

does it without creating friction in data sharing in IoT.  

Neural nets are the tools AI uses to process data, which is 

essential for a development running into action needing 

immediate attention, and for this, DL comes to the rescue. The 

framework is therefore significantly more secure thanks to the 

use of these three technologies that not only boost the violation 

detection rate but also reduce the number of times violations 

are responded to by mistake. These technologies provided a 

foolproof solution by not establishing an IoT system security 

hole [13]. 

 

3.3 Synergy between technologies for enhanced security 

 

AI and blockchain together can advance the level of 

protection offered in IoT ecosystems. On one side, AI systems 

analyze large volumes of device and network data to detect 

trends and anomalies across the attack surface and support 

(near) real-time reaction. On the other side, blockchain stores 
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identities, transactions, and security-relevant events in a 

decentralized and immutable ledger. In this way, when 

suspicious activities are flagged by AI, they are backed by a 

trustworthy record that cannot be altered after validation. This 

interaction and feedback-driven data flow is summarized in 

Figure 5. 

 

 
 

Figure 5. Data flow within the IoT security framework 

 

In the framework, the blended AI models are not fixed. 

They continue to learn from the past. Information about events 

detected by the model is recorded on the blockchain and 

subsequently used within a learning cycle. Over the course of 

many iterations, this logging and retraining will fine-tune the 

models to identify atypical and suspicious actions with 

increasing precision. The instantiation of this feedback cycle, 

along with real-time surveillance and semi-automated reaction 

to events, allows the system to close the gap on its defenses 

more quickly in response to an observed threat rather than 

waiting on a human operator for every single event. 

From a broader view, AI and blockchain operate as one 

connected safety layer rather than two separate tools. AI 

improves threat recognition and prioritization, while 

blockchain helps preserve the integrity of the underlying data 

and maintains a traceable history of response actions with 

timestamps. Because these actions are stored on an immutable 

ledger, they can later be reviewed and audited, supporting 

accountability and more reliable post-incident analysis. In 

practical terms, this setup reduces average response time and 

strengthens the resilience of IoT infrastructures against 

persistent and evolving threats [29]. 

 

 

4. METHODOLOGY 

 

4.1 Data collection and preprocessing techniques 

 

In any AI-driven IoT security system, a system needs to be 

created to manage and control data from various sources. 

These sources include IoT devices, gateways, and networks, 

which all produce data in the form of system and user logs and 

network traffic. These data sources continually produce 

information and need to be controlled for effectiveness. 

Streams of information need to be captured in a fashion so they 

can be logs that are useful for later analysis, and not be logs 

that are unusable. 

Once a system to control the data streams is complete, the 
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information captured rarely arrives as a digital fingerprint. In 

order to prep the information, a phase needs to occur to 

improve data quality, and information is corrected, duplicate 

entries are erased, and missing values are dealt with as best as 

possible. In order to prep the data for the ML algorithms to be 

fair, the information needs to be normalized in order to reduce 

bias. Feature selection is also used in order to determine which 

values are useful to classify data. In ML, poorly performing 

features can often lead to the training process of different 

models being baffled. 

When real-time streams are added into the pipeline, another 

difficulty appears: the volume of incoming information. In 

such cases, effective filtering techniques are required to strip 

out redundant or irrelevant records before deeper analytics are 

applied. This step prevents the models from being 

overwhelmed while still preserving enough context to build a 

robust dataset that can support accurate threat detection by 

advanced AI algorithms [30]. 

Privacy compliance in data collection. In scenarios 

involving sensitive information—especially healthcare data—

privacy concerns become central rather than secondary. In this 

study, all data were anonymized before any analysis took 

place. Personally identifiable information (PII) was removed 

or masked using hashing and related techniques, and the 

datasets were either obtained from public sources or generated 

synthetically to avoid direct exposure of real patients. The 

collection and processing procedures followed key principles 

inspired by regulations such as HIPAA and GDPR, so that no 

individual’s sensitive health information could be traced back, 

leaked, or misused during model training and evaluation. 

 

4.2 Development of DL models for threat detection 

 

Modern IoT environments are complex and advanced, and 

require more than simple signature-based and rule-based 

approaches to capture all informing security threats. To 

capture all informing security threats, DL models are used to 

learn what typical activity looks like and point out anomalies 

that could suggest illegal entry. These models have been used 

on both supervised and unsupervised learning to differentiate 

between legitimate network traffic and suspicious activity on 

network flow and device logs. Particularly, when input is 

treated as spatial patterns, convolutional neural networks 

(CNNs) are very useful. Also, recurrent neural networks 

(RNNs) as well as other architectures are very useful for 

temporal sequences like video, audio, or other events that have 

been time-stamped. 

When several devices or organizations cooperate on 

training a joint model while keeping their raw data private, 

Federated Learning introduces an additional complementary 

strategy. Local model parameters are updated, and only 

aggregated updates are sent, ensuring stronger privacy while 

still advancing detection. Popular DL frameworks like 

TensorFlow and PyTorch are customizable and offer modular 

parts that facilitate developing models specific to different IoT 

devices and/or use cases that have different hardware 

constraints and vary in workloads and latency needs. 

Among all these methods, the detection of abnormalities 

among the normal behavior patterns remains the primary 

focus. Ensemble methods help in improving the reliability of 

the solution by aggregating the outputs/probabilities of 

different models. For example, if one model misclassifies a 

given pattern, the collection of other models could still detect 

the pattern in question, ultimately providing a more reliable 

prediction in the final answer. Experimental studies in the 

literature show that such DL-based and ensemble techniques 

often reach state-of-the-art accuracy in threat detection and 

outperform traditional rule-based mechanisms by a noticeable 

margin. Furthermore, optimization steps such as careful 

hyperparameter tuning, model regularization, and architecture 

search can further refine performance, especially when real-

time threat hunting is required in live IoT deployments [6, 31]. 

 

4.3 Implementation of blockchain for data integrity 

 

To complement the learning capabilities of AI, blockchain 

is integrated into the framework as a mechanism for preserving 

data integrity and providing an auditable history of security-

relevant events. A private or permissioned blockchain is 

adopted so that participation and access rights can be aligned 

with the security requirements of the specific IoT 

environment. Because entries on the ledger are immutable 

once confirmed, attempts to alter or falsify recorded 

information can be detected, which is particularly important 

when sensor readings or logs might be targeted by attackers. 

The main blockchain protocols and the key features that 

support IoT integrity are summarized in Figure 6. 

 

 
 

Figure 6. Blockchain for IoT, protocols, and features 

 

Smart contracts can help automate rule enforcement 

concerning when and how to log threat detection, flushing out 

response workflows, and ensuring consistent logging of 

detection results. They sit at the top of the ledger and help in 

the key verification and feedback center process. Along with 

these, additional safeguards to address data confidentiality and 

protection include digital signatures and other forms of 

cryptographic network protection. Only those with the 

appropriate access may view, modify, or annotate sensitive 

information, and these cryptographic protective devices allow 

their movement across the network. 

Trust with data storage and the decentralized framework of 

a blockchain allows the framework to sidestep the problem of 

a single point of failure. Each logged event and associated data 

is time-stamped and cryptographically linked to all previous 

data, ensuring a single secure path for all future data to be 

added. This framework will integrate with other IoT devices 

to enable rapid response and threat mitigation, and will also 

support the assurance of data accuracy and provenance across 

all connected devices [4]. 
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5. EXPERIMENTAL SETUP AND TESTING 

 

5.1 Test environments: IoT settings vs. healthcare settings 

 

In this part, we continue by looking more closely at the test 

environments that were set up to validate the proposed AI-

blockchain security framework. The goal was to see how the 

framework behaves in two different worlds: a general IoT 

environment on one side, and a healthcare-focused IoT 

environment on the other. In a typical IoT setting, there are 

many interconnected devices producing continuous streams of 

data. Every individual device has unique security challenges, 

as the biggest concern remains keeping communication 

secure, keeping data protected, and maintaining data integrity 

while everything is simultaneously online and vulnerable to 

cyber-attacks. Within this context, the scope of hypothetical 

tests of this problem is likely to include deliberate attempts to 

gain unauthorized access, attempts to introduce malicious 

data, and cases where attempts at intrusion might fall under the 

detection gap.  

The challenges brought by the healthcare field are even 

more prominent as the data in question is no longer just 

technical data, but data about patients and their conditions. As 

a result, privacy becomes a non-negotiable given alongside 

compliance with relevant legislation such as HIPAA. Any AI-

based mechanism has to analyze the data in real-time while 

maintaining the utmost confidentiality. In this case, the use of 

Blockchain technology to store Electronic Health Records and 

ensure that only relevant personnel are granted access in real-

time during the processing of sensitive data is of great 

importance. 

Two kinds of environments were simulated to check the 

adaptability of the framework to varying levels of security and 

sensitivity of the data [32, 33]. Therefore, the experimental 

arrangement was divided into two cases. In the overall IoT 

case, the devices were ordinary smart sensors, smart devices 

in homes, and industrial controllers. The data amounts were of 

moderate size, and the primary security concern was the 

integrity of the devices and control of network access by 

selective downstream control. In the case of IoT in the 

Healthcare environment, the devices included medical 

sensors, wearables for remote monitoring, and data gateways 

for capturing patients’ data. This second environment dealt 

with larger volumes of much more sensitive data and had to 

implement stronger safeguards to meet real-time anomaly 

detection, end-to-end encryption of data in transit, and 

healthcare data privacy compliance. Testers understood these 

considerations, and the resulting balance in constancy and 

variability compared across the two domains was the result of 

this being a case of true, and not artificial, testing. 

 

5.2 Performance metrics for evaluation 

 

In order to evaluate the effectiveness of the AI blockchain 

framework performance, the application of particular 

standardized metrics will be considered. The metrics under 

consideration include: accuracy, precision, recall, F1-score, 

and area under the ROC curve (ROC AUC). Each of these 

metrics describes particular characteristics of the detection 

model's behavior. Accuracy describes the overall picture of 

how many instances (both attacks and normal events) are 

correctly classified. Precision describes the subset of alerts that 

the model predicts to be threats and asks the question: how 

many of those are truly malicious? A high precision indicates 

that there are fewer false alarms. 

In contrast, recall answers the question: how many of the 

actual threats that are present in the data set did the model 

capture? A low recall indicates that there are dangerous events 

that the model is missing. Because precision and recall can 

move in opposite directions, the F1-score calculates them into 

a single value, which is useful in scenarios where the dataset 

is skewed, which is common in the IoT, where real attacks are 

much less frequent than regular activities. 

In order to have a complete analysis, we look at the ROC-

AUC metric. The ROC curve shows the relation of true 

positives to false positives at the different levels of a decision. 

The area of the curve shows the model's ability to determine 

benign and malicious actions at varying levels of the metric. 

Considering all of these metrics explains in a more complete 

manner the framework's suitability for real-time threat 

detection.   

Practical considerations must also be incorporated beyond 

the classification's quality. These practical considerations 

include the model’s answering speed, the consumption of 

resources, and its execution efficiency depending on the 

workload. The aim is to show the model's ability to detect 

threats in a precise manner while also proving the model's 

suitability for use in real IoT and healthcare environments, 

with acceptable response times and costs [13, 32]. 

 

5.3 Tools and technologies used in the testing phase 

 

Evaluating the advantage of this potential framework was 

done through various means of tools and techniques. The 

implementation of IoT devices into healthcare systems 

facilitated the collection of device-anchored usage and 

network communication data in real-time, which is crucial in 

adapting the system performance to various conditions. 

Equally applicable to the case were techniques like 

preprocessing, normalization and the filtering of noise signals 

from the data, which smoothen the data for entry to the DL 

algorithms. Threat detection DL models were developed with 

TensorFlow and Keras, being a high-level TensorFlow API 

which facilitates the building and training of neural networks. 

Moreover, during the testing phase of the solution, 

blockchain technology was introduced to ensure the integrity 

of the data. Event logging and all interactions between IoT 

devices were secured through private blockchain protocols to 

prevent unauthorized access. Four applications have been 

investigated and developed on Ethereum and Hyperledger 

Fabric with the purpose of creating decentralized applications 

that meet the framework's security requirements. This will 

allow outlining the principal concept behind innovative works 

on possible approaches on how AI can be integrated with 

blockchain technology to improve security inside IoT, and 

which methods have been taken among others [32, 33]. 

 

 

6. RESULTS AND DISCUSSION 

 

6.1 Effectiveness of the AI-driven model in detecting 

threats 

 

IoT threat detection model (AI-powered): The proposed 

model shows strong capability in classifying IoT threats with 

high accuracy. It relies on ML and DL techniques, including 

decision trees and neural networks, to analyze large volumes 

of IoT data and identify irregular behavioral patterns that may 
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indicate security incidents. In practical testing, DL-based 

methods are particularly useful for capturing subtle anomalies 

that can be missed by traditional rule-based systems, 

especially in dynamic IoT environments. The main features 

and expected advantages of the proposed framework are 

summarized in Figure 7. 

 

 
 

Figure 7. Features of the proposed framework 

 

To develop a model in a more comprehensive manner, a 

blockchain technology layer is added in order to link data 

integrity to a permanent record of a security event's details. In 

other words, the AI is not just anomaly detection, but also 

works with a ledger that records every attack and every 

countermeasure taken against that attack. A logging and 

anomaly detection cycle is created so the information 

inscribed on the ledger can be recycled to retrain the ML 

models, improving detection efficacy and reducing false 

positives over time. 

Such a model, especially in highly challenging areas like 

healthcare, is expected to outperform actioners of ML, 

particularly SVM and KNN, on various dimensions, including, 

but not limited to, precision, recall, interpretability, and F1. 

The indifferent model, Latin other data comes in, is able to 

gain increments while the blockchain stores expert annotations 

on the anomalous events that constitute an empirical country 

to the system. Ultimately, the integrated system is able to more 

accurately task genuine anomalies and harmless threats, while 

moving in the complex real world [6, 34]. 

 

6.2 Impact of blockchain on data integrity during attacks 

 

Developments of trust management have seen blockchain 

software engineers build cross-disciplinary, integrated IoT 

blockchain applications. In IoT blockchain applications, the 

most significant feature is the management of evidence of the 

attack. With interlinked blocks, significant events are recorded 

in a way that is difficult to modify without detection. It 

produces a sequence of events detailing the attacks, breaches, 

and responses that are permanently available to attack, vary, 

or shut down the attack. In defending the domain, trusted 

consecutive events record a precise approximation of the 

events, enhancing security for `tethered dumping` of sensor 

logs or evidence of the network. 

The ledger's consistency is protected due to the lack of 

single points of failure, and smart contracts support the 

integrity of the shared security view. Decentralization 

contributes even more to this protection. Compromising a few 

of the nodes does not disrupt the ledger's consistency. Trigger 

workflows and automated responses to validated alerts issued 

to suspicious events. Access restrictions and responsiveness 

are supported to further mitigate the time it takes to fully 

respond to the situation. Overall, organizations are under 

constant evolving attacks and are focused on IoT security, 

separating blockchain from an operational form of security. 

Increasingly useful and reliable defense should be the goal of 

organizations and attack conditions [2, 13]. 

To provide a broader view of how blockchain has been 

integrated with IoT across different application domains—

along with the main benefits and recurring limitations reported 

in the literature—the key representative studies are 

summarized in Table 4. 
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Table 4. A review of the integration of IoT and blockchain across various domains 

 
Ref. No. Focus Advantages Limitations 

Dorri et al. 

[35] 

Improving blockchain to 

support IoT. 

Enhancing blockchain technology to 

facilitate efficient, cost-effective 

deployment in IoT applications. 

Trade-off between scalability and security, with 

potential for vulnerabilities inherent to the 

consensus mechanisms underpinning the system. 

Novo [36] 
Hybrid blockchain architecture 

for IoT. 

Scalable and decentralized infrastructure 

for secure data exchange in IoT 

networks. 

The adoption of blockchain introduces greater 

complexity compared to conventional 

architectures and may result in scalability 

bottlenecks under high transaction loads. 

Fernández-

Caramés 

and Fraga-

Lamas 

[37] 

Ensuring dependable IoT 

infrastructures through the 

integration of blockchain 

technology. 

Utilizing blockchain to improve fault 

tolerance and ensure data integrity in 

IoT systems. 

Scalability challenges and potential for network 

congestion as the number of devices increases. 

Dutta et al. 

[38] 

Benefits of blockchain in the 

supply chain. 

Enhancing transparency, reducing fraud, 

and ensuring traceability in supply chain 

management with blockchain. 

Integration challenges between existing systems 

and potential privacy concerns regarding data 

visibility. 

Tian [39] 
Leveraging blockchain and 

IoT in SCM. 

Combining IoT and blockchain to 

improve and reduce costs and supply 

chain visibility. 

Increased complexity in implementation and 

potential interoperability issues between 

different systems. 

Khan and 

Salah [40] 
Function of blockchain in IoT. 

Utilizing blockchain technology for 

maintaining data integrity, transparency, 

and decentralized control in IoT 

systems. 

Potential scalability limitations and increased 

energy consumption compared to centralized 

approaches. 

Khrais 

[41] 

Function of blockchain and 

IoT in a smart city. 

Utilizing IoT and blockchain to improve 

efficiency and enhance data security in 

smart city applications. 

Integration challenges between various systems 

and potential privacy concerns regarding 

collected data. 

Atlam and 

Wills [42] 

Blockchain framework for 

IoT. 

Developing a blockchain framework for 

reliable data management and security 

in IoT networks. 

Scalability limitations and potential performance 

bottlenecks as the network grows. 

Azaria et 

al. [43] 

Monitoring and securing 

healthcare data. 

Enabling tamper-proof healthcare data 

records and enhanced security through 

blockchain technology. 

Privacy concerns regarding potential regulatory 

hurdles and sensitive health data in healthcare 

data management. 

Balhareth 

et al. [44] 

Security perspective of IoT 

integration. 

Enhancing data security and reducing 

fraud risk through blockchain 

integration with IoT systems. 

Increased potential performance overhead and 

complexity due to the blockchain's distributed 

nature. 

Ahad et al. 

[45] 

Blockchain, IoT, and 5G in 

smart healthcare. 

Leveraging the combined benefits of 

blockchain, 5G technology, and IoT to 

improve privacy and security in smart 

healthcare systems. 

Integration challenges between these disparate 

technologies and potential scalability issues. 

Ferrag et 

al. [46] 

Security issues and privacy in 

blockchain-based IoT systems. 

Identifying and addressing privacy and 

security vulnerabilities in blockchain-

based IoT systems. 

Balancing privacy concerns with the need for 

data transparency and potential security exploits 

in the underlying blockchain technology. 

Fromhart 

and 

Therattil 

[47] 

Loyalty management systems 

powered by blockchain. 

Utilizing blockchain to reduce costs and 

incentivize customer loyalty in loyalty 

programs. 

Requirement for a generic platform to address 

potential integration challenges and facilitate 

widespread adoption with existing systems. 

Jafar et al. 

[48] 

Verifiability and privacy in e-

voting. 

Achieving both verifiability and privacy 

in electronic voting systems using 

cryptographic primitives enabled by 

blockchain. 

Increased complexity due to potential usability 

challenges and cryptographic techniques for 

voters. 

Atlam et 

al. [49] 

Examination of IoT 

applications and 

privacy/security concerns. 

Analyzing privacy and security risks 

associated with various IoT applications 

and proposing scalable. 

Difficulty in implementing effective solutions 

and adapting existing policy frameworks to 

address the evolving nature of IoT threats. 

Wang et 

al. [50] 

Revolutionizing healthcare 

data sharing using a secure 

hybrid blockchain approach. 

Unlocking the power of secure and 

private health data exchange. 

Navigating the intricacies: Implementation 

complexity and potential scalability hurdles. 

 

In all fields considered, while supporting integrity and 

traceability, blockchain consistently experiences limitations 

with scalability, interoperability, and deployment 

complexities. 

 

6.3 Comparative analysis between traditional methods 

and proposed framework results 

 

Traditional IoT security still depends largely on 

centralized or semi-centralized controls such as firewalls, 

segmented access rules, and static policy enforcement. These 

measures are useful in controlled settings or against 

straightforward attacks, but they often struggle when threats 

become distributed, coordinated, or adaptive across a large 

number of connected nodes. In such cases, the security 

system may detect events but still lack reliable, tamper-

resistant records that preserve what actually happened. This 

is where blockchain can add practical value by providing 

immutable logging and stronger trust in incident records, 

rather than relying only on conventional device-centric 

defenses. 

From the ML side, classical baselines such as SVM and 
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KNN can deliver reasonable performance on certain traffic 

patterns. CNN-based detection can also be effective, 

particularly when data representation supports deep pattern 

extraction. However, performance stability becomes more 

challenging as the deployment scale grows and the number 

of nodes increases. The proposed BBMDA-based framework 

appears more consistent under these conditions, especially 

when the environment is larger and more dynamic. 

As shown in Figure 8, BBMDA achieves the highest 

accuracy across all tested node settings (from 10 to 100 

nodes) compared with SVM, KNN, and CNN. The gap 

becomes more noticeable at higher node counts, which 

suggests that the proposed structure handles scale-related 

complexity better than the baseline methods. This trend 

supports the idea that combining advanced ML with a 

blockchain-backed integrity layer can improve not only 

detection outcomes but also the trustworthiness of the 

recorded results. 

In addition, retaining security-relevant actions and 

authentication events on an immutable ledger provides a 

clearer audit trail during or after an attack. This is particularly 

important in sensitive IoT domains, where incident 

investigation requires reliable evidence and consistent event 

reconstruction. 

There are positive aspects to deployment, but there are still 

financial and operational restrictions to consider. In tandem 

with all of the blockchain infrastructure, deep models 

running would require additional computational and storage 

resources, and complications may arise from trying to fit it to 

existing structures. These challenges may be more 

pronounced in healthcare-oriented IoT environments due to 

the volume and sensitivity of data. Still, the performance 

gains and enhanced accountability offered by the framework 

can justify the added complexity in scenarios where trust, 

integrity, and fast detection are critical 

 

 
 

Figure 8. Full-size image of the proposed BBMDA model 

accuracy 

 

 

7. CASE STUDIES: APPLICATIONS IN REAL-

WORLD SCENARIOS 

 

7.1 Security threats faced in IoT environments 

 

IoT ecosystems have various security issues ecosystems 

that impact both the service and security of the ecosystems. 

The most simple and critical of these issues is the fact that 

many of these devices have lower than normal security and 

can be subjected to data breaches, cyber incidents, and 

intrusions. Because these systems are typically built as 

distributed architectures, they increase the surface of the 

attachable area. Malicious users can exploit weak 

authentication and default passwords. Common examples of 

this are DDoS attacks, where a significant number of 

compromised devices are used as bots to send superfluous 

traffic to the targeted network, and man-in-the-middle 

attacks, where an adversary discretely intrudes to alter the 

data that is released between the systems. 

A great number of IoT devices and sensors are also 

afflicted with the same problem of low processing power and 

memory. This makes it hard for such end devices to 

implement strong encryption and robust security measures, 

and thus, they are more vulnerable to a wider scope of 

attacks. The impact of such frailties becomes especially 

glaring in certain sectors like healthcare and industrial 

control, where one mistake or instance of malpractice can be 

catastrophic and, in some cases, fatal. 

An adversary targeting a single network protocol might be 

able to modify or remove critical data. In addition, gaining 

physical access to a device might be sufficient to obtain or 

obliterate extremely confidential data saved on the device as 

well. 

These compound challenges go on to call for security 

solutions capable of addressing both present and future 

threats, while still enabling trust among the various IoT 

ecosystem constituent parts [4, 31, 51, 52]. 

 

7.2 Case study for healthcare security 

 

Various industries use the IoT at different levels, but the 

healthcare sector is particularly susceptible to cyberattacks 

because most IoT devices deal with sensitive patient data. A 

framework for supporting medical IoT devices based on AI 

and a blockchain-based healthcare model. Utilis' data breach 

prevention AI algorithm detects anomalies and predictive 

analytics instantly, allowing the security team to identify 

threats like unusual access to electronic health records.  

This enhanced security would be inaccessible through any 

other method because the data would be protected at the 

source, and priority filtering would be executed using smart 

contracts on the blockchain to allow regulated and secure 

access to patient information. This protects you from 

unauthorized access and, due to that, maintains a high level 

of trust among the patients and the healthcare professionals.  

This case study underlines the significance of blockchain 

in protecting the integrity of medical information from a 

cyberattack. The system's resistance to corruption is based on 

decentralization; when health record storage is decentralized, 

even if one node is compromised, others are not. AI and 

blockchain together provide a strong basis that helps prevent 

security breaches and boosts the operations in healthcare [33, 

53].  

 

7.3 Advantages received from instituting the framework 

 

The implementation of the suggested security framework 

is a great step towards improving the security of the IoT 

system since it utilizes AI and blockchain technology. The 

first of these is the removal of integrated mobile payment 

systems and accompanying apps on the provider's website. 
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Even if we ignore the costs of removing the apps, high 

ongoing costs must be incurred. For example, ongoing 

software maintenance, especially with platform migration 

and upgrades, and ongoing predictive analytics and reporting 

must be performed. Even ignoring costs incurred by 

maintaining the apps, these costs must be incurred. 

Analytical costs must be incurred not as self-assigning tools, 

but to determine value-added savings and efficiencies to be 

derived through the app. 

The ongoing costs incurred through the targeted analytics 

must not be self-assigning in nature. They must be genuinely 

targeted towards the costs of the apps and associated 

efficiencies in service delivery, or focused on determining 

savings and efficiencies to be derived from the removal of 

the apps. 

In conclusion, if the integrated mobile payments and apps 

were removed from the online systems, high average costs 

would be incurred by removing the systems, and the ongoing 

predictive costs would be deeply incurred through the 

analytical system built on self-assigning attributes, which 

wouldn't be acceptable. 

In summary, integrated mobile payment systems can 

significantly worsen the overall analytics system, especially 

predictive analytics systems, to a great degree. It is in the best 

interest of the provider to remove those integrated mobile 

payment systems. Thus, it was shown that by combining the 

actual benefits of SIEM and SOAR, one can achieve better 

operational efficiency through automated threat responses 

alongside incident management processes [4, 51].  

 

 

8. LIMITATIONS AND CHALLENGES 

 

8.1 Challenges encountered during enactment 

 

Bringing blockchain and AI together to secure IoT systems 

is promising, but it is far from straightforward. One of the 

main problems is the scalability of blockchain itself. As more 

and more devices connect to the network, the number of 

transactions that must be written and validated on the chain 

increases, which can slow down the processing rate. When 

this happens, it becomes harder to support near-real-time 

logging and detection of security events. At the same time, 

many modern AI models are large and complex, and they 

require significant computation and memory, which makes 

the combined setup even heavier to deploy. 

Another difficulty comes from the IoT devices at the edge. 

Most of them were not designed to run heavy cryptography 

or DL; they have limited processing power, storage, and 

battery life. Complicated blockchain protocols or costly AI 

workflows would hit issues such as lag or interruptions, and 

there would be excessive battery drain. The performance and 

safety trade-off would need to be engineered to spend as little 

energy as spent, as little time is wasted, and energy is used to 

as little as possible. The trade-off to safety fundamentals here 

would be that large tasks can be offloaded to gateways or 

edge servers, rather than letting the sensor deal with them 

alone. 

The intricate difficulty of gaining access to data can 

complicate things even further. For AI-based security to 

function correctly, it needs massive amounts of data to 

authenticate and test. This is especially true for personal and 

medical information, which is extremely sensitive. This 

doesn't make it easier to attempt using verifiable real-world 

datasets, and it may even act as a deterrent. Other options, 

like the generation of synthetic data or the use of extremely 

anonymized logs, may be needed to determine whether and 

to what extent the framework meets the required functioning. 

Furthermore, the cyber threat landscape is ever-changing. 

New attack models are introduced with alarming frequency, 

and changes to the models, rules, and security policies are 

required to be adaptive. Keeping layers of defenses both 

current and capable of pulling back the threat is an enduring 

challenge, and in most cases, the answer won't be as simple 

as 'just make a model and it will work [32, 51]. 

 

8.2 The evolution of IoT security and challenges ahead 

 

The number of connected devices keeps growing, and so 

does the challenge of securing the IoT. Each of these devices 

can potentially be an attack vector. Today's IoT ecosystems 

also tend to be quite heterogeneous: there are different 

vendors, devices, platforms, and communication standards. 

The absence of a common standard means there is no way to 

implement a unified security strategy. then there are new, 

rapidly evolving technologies such as AI and blockchain. 

these add new systems and require ongoing oversight and 

adjustments, which tend to annoy people. the more systems 

there are to oversee, the more attackers will try to find and 

exploit weaknesses. 

Another problem is the Privacy of the data, which is in 

many cases very sensitive. Examples of this are health data, 

localization data, and data on the metrics of a certain 

industrial process. Privacy concerns are a demand. The 

foremost concern is the need for the enactment of policies 

focused on Access Control, Strong Encryption, Privacy-

Enhancing Technologies, and the minimization of harmful 

use of the user's data. The Interoperability Problems of 

disparate IoT systems, which undermine global Security, are 

cause for concern. The need for the development of Secure 

communication systems designed to be Interoperable is 

apparent. Standardized secure communication protocols will 

solve the diverse and interdependent nature of the problem. 

Problems abound in the area of compliance with 

regulations too. Notably, the legal structure and the tech 

world do not move in synch, and in most instances, there is a 

disconnect between the legal frameworks and what is 

actually happening in the real world, giving rise to an absence 

of a legal approach to the integration of the new dimension 

of the IoT and AI-blockchain. It is extremely hard to 

conceptualize and articulate a plan to defend against cyber 

threats and simultaneously address the fundamental 

problems of privacy being used as a throttle to inhibit 

innovation. The right balance, if there is to be any, can be 

only achieved with the joint effort of the three stakeholders 

of the IoT ecosystems: the industry, the academia, and the 

policy makers, if the IoT of tomorrow is to be safe and 

sustainable [31, 33]. 

 

 

9. CONCLUSIONS AND FUTURE WORK 

 

This synergy demonstrates how AI and Blockchain can be 

utilized together to enhance the IoT ecosystem's security. The 

strength of the proposed system is the amalgamation of the 

components of AI, which are the ability to detect threats and 

an adaptive real-time response to changing attack patterns, 

with the characteristics of Blockchain, which provide data 
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integrity and transparency, and a verifiable trail of events. 

The AI system is capable of adapting to an attack and 

strengthening the defense system of the secured mechanism, 

while the Blockchain makes credible the information that 

was transmitted during the attack and ensures that the 

recorded events are valid. 

The appraisal also indicates that the integrated DL model 

is better at complex pattern recognition as compared to 

homogeneous systems (IDS). This is particularly relevant in 

cases where confidentiality is pivotal, such as the healthcare 

industry. In such cases, the marginal cost of a false negative 

is high; thus, the additional accuracy brought in by the 

framework is of great importance. In totality, the blend of AI 

and Blockchain is a great improvement, and the analyzed 

case studies show the value of the approach in data 

protection, visibility of threats, and the safe disposal of 

classified data [2, 31, 34, 54]. 

That said, the framework possesses shortcomings and does 

not provide a complete solution to the problem at stake. In 

the case of massive IoT networks, containing thousands and 

tens of thousands of devices, scalability can represent a major 

challenge. If the system is not appropriately configured, there 

can be a negative impact on real-time operation due to 

transaction delays in the blockchain and the computational 

demands of the DL models. In addition, the current system 

design has a hypothesis of a stable correlation along with a 

minimum level of device tampering. These assumptions are 

not likely to be the case in highly flexible or severely 

restricted circumstances. These shortcomings point naturally 

to areas where future work can refine and extend the 

framework to make it more flexible, lighter, and better 

adapted to a wider range of IoT scenarios. 

 

9.1 Recommendations for future enhancements to the 

framework 

 

The ways the proposed AI-blockchain security framework 

can be improved must be in several different directions. One 

of the most important of these is integrating more 

sophisticated ML processes. The more sophisticated the ML 

processes are, the better they will be able to enhance the 

functioning of the blockchain in regard to the detection of 

incidents in real time, as well as the responses to such 

incidents. Predictably, the use of distributed or edge AI 

models would enhance the ability of the organization to 

perform security analytics more proximal to the point of data 

generation, while also preserving the majority of training 

data sequestered, thus not losing control over the data while 

avoiding sentry uploads to a primary server. Ideally, such 

systems would be more difficult to compromise while also 

providing more sophisticated responses in a timely manner 

to hostile activities. 

An equally important field of study is user-centered 

security. If the interface, alerts, and the overall organization 

of data in the system are designed with the user and operator 

in mind, they can serve security management as an active 

counter and as a tool to better understand the discipline and 

mechanisms of the IoT, as opposed to a user simply 

functioning as an automatic decision endpoint. User-friendly, 

simple, and designed icons, dashboards, and status lamps on 

the control panel can elevate the security culture and make 

the user more sensitive to the system and active in responding 

to the system when problems arise. The large-scale 

expansion of the IoT intensifies the need for robust 

interoperability and seamless plug-and-play capabilities. 

Future research is likely to emphasize scalable Layer 1/Layer 

2 blockchain infrastructures and lightweight decentralized 

consensus mechanisms tailored to IoT constraints. As 

blockchain ecosystems become increasingly heterogeneous, 

cross-chain interoperability will be essential to enable secure, 

low-latency event exchange across IoT domains. In parallel, 

effective deployment will require alignment between 

technological development, regulatory frameworks, and 

business strategies to support the integration of blockchain 

and AI in real-world IoT environments. 
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