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Deep learning has transformed image classification by enabling machines to learn
intricate patterns from large datasets. However, these models are increasingly exposed to
adversarial attacks, small, carefully crafted changes to input images that can mislead even
well-trained classifiers. This review offers a structured examination of such vulnerabilities
by classifying attacks into five major types: white-box, black-box, poisoning, inference,
and extraction. While prior surveys have broadly discussed these threats, this work
distinguishes itself by drawing direct connections between specific attack strategies and
practical defense mechanisms. It places particular emphasis on emerging methods like
spectral signature analysis and feature squeezing, which are gaining traction for their
applicability in real-world systems. The review also critically evaluates the effectiveness
of established defenses such as adversarial training and defensive distillation. It highlights
the persistent gaps and challenges in safeguarding image classification models. This paper
serves as a resource for researchers and practitioners aiming to develop more resilient

deep learning systems in security-sensitive domains.

1. INTRODUCTION

Deep learning has emerged as a foundational pillar of
modern artificial intelligence, enabling breakthroughs across a
range of fields, including image recognition, speech
processing, and natural language understanding. Among these,
image classification has advanced significantly with the
advent of convolutional neural networks (CNNs), which excel
at automatically extracting and learning complex visual
features from large-scale datasets. These capabilities have
facilitated the automation of tasks that once relied heavily on
human judgment, leading to widespread adoption in high-
stakes domains such as autonomous vehicles, medical
diagnostics, and surveillance systems.

However, the increasing dependence on deep learning
models has revealed a critical vulnerability: their susceptibility
to adversarial attacks. These attacks involve subtly altered
inputs, often imperceptible to human observers, that can
mislead models into making incorrect predictions. For
instance, a stop sign manipulated with minute perturbations
might be misclassified by an autonomous vehicle as a speed
limit sign, potentially resulting in catastrophic outcomes. The
growing awareness of such vulnerabilities has fueled extensive
research into understanding, detecting, and defending against
adversarial manipulations.

The motivation behind this research is not merely academic,
but it reflects the urgent need to ensure the safety, reliability,
and trustworthiness of Al systems in real-world deployments.
In sectors like finance, healthcare, and law enforcement,
incorrect predictions due to adversarial interference can lead
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to ethical concerns, financial losses, or even human harm.
Moreover, adversarial examples often exploit inherent
properties of neural networks, such as high-dimensional input
spaces and local linearity, making them challenging to
eliminate completely. This persistent threat has driven the
community to pursue more resilient training algorithms,
improved model architectures, and robust evaluation
frameworks.

Importantly, the challenge of adversarial robustness is not
confined to computer vision alone. Similar vulnerabilities
have been identified in speech recognition systems, language
models, and even reinforcement learning agents. As Al models
are increasingly integrated into interconnected environments
like smart cities and edge computing systems, adversarial risks
become compounded by exposure to dynamic and
unpredictable data streams. This makes it imperative to design
defenses that are not only technically sound but also scalable
and adaptable to evolving threat landscapes.

While a substantial body of work has focused on designing
attack strategies, defense mechanisms have developed in
parallel. Initial approaches centered on input preprocessing
techniques and defensive distillation aimed at reducing model
sensitivity to minor input changes. More recent strategies
include adversarial training, where models are exposed to
adversarial examples during the learning phase, and detection-
based methods that monitor feature space behavior or neuron
activations for anomalies. Yet, despite these efforts, existing
defenses often fail against adaptive or unseen attacks,
highlighting the need for more generalized and robust
solutions.
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This paper offers a structured review of adversarial attacks
and their corresponding defense mechanisms, with a focus on
classifying threats by their nature, i.e., white-box, black-box,
poisoning, inference, and extraction and aligning them with
specific countermeasures. By synthesizing these dimensions,
the work aims to elucidate the core challenges in securing
image classification systems and to identify gaps that warrant
further research. The sections that follow explore the technical
underpinnings of adversarial vulnerabilities, provide a
taxonomy of attack techniques, and evaluate the strengths and
limitations of state-of-the-art defenses.

The upcoming sections provide an in-depth analysis of deep
learning models and their vulnerabilities. Section 2 delves into
different techniques of adversarial attacks, explaining their
mechanisms and notable methods. Section 3 presents defense
strategies against adversarial attacks. Finally, section 4
concludes the paper by outlining key insights and highlighting
subsequent prospects for enhancing the robustness of deep
learning models.

2. ADVERSARIAL ATTACKS

Adversarial attacks exploit vulnerabilities in deep learning
models by introducing imperceptible perturbations to inputs,
causing misclassification. These attacks can be classified into
five major categories: White-box attacks, black-box attacks,
poisoning attacks, extraction attacks, and inference attacks. In
this section, we will describe these attacks.

2.1 White-box attacks

White-box attacks assume the attacker has full knowledge
of the model architecture, parameters, and gradients, allowing
for precise crafting of adversarial examples. White-box attacks,
due to their reliance on internal model details, are often
considered a theoretical concern. However, they are highly
relevant in settings where models are deployed on devices
accessible to attackers. For instance, in mobile applications
using on-device image recognition (e.g., face authentication
apps or AR filters), attackers may reverse-engineer model
parameters and craft adversarial inputs to bypass security
features.

2.1.1 Fast Gradient Sign Method

Fast Gradient Sign Method (FGSM) [1] is the simplest
adversarial attack, generating perturbations by using L. metric.
Given an input x/ with true label y/, the adversarial example
X1 is computed as:

K1 =x1 — € - sign(Vy; J(O,x1,y1)) €))
where, Vi J(.) is the gradient of a cost function of x/. The size
of the perturbations is defined by the error, €. FGSM takes each
pixel of the input image, x/, and adds ¢ to obtain the output
x1. This attack perturbs inputs in the direction of the gradient,
misleading the model while keeping perturbations minimal.

2.1.2 Carlini & Wagner attacks

Carlini and Wagner [2] proposed a family of adversarial
attacks, commonly referred to as C&W attacks, which
leverage continuous optimization to generate minimal
perturbations capable of fooling a classifier. Unlike gradient-
based methods such as FGSM or PGD, C&W attacks
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formulate adversarial example generation as a restrained
optimization issue. The aim of the attack is to identify the
smallest possible perturbation p such that the modified input
xI + p is misclassified by the target model while ensuring
minimal distortion. Mathematically, this is expressed as:

minlipll, + ¢ - f(xI + p)p 2
where, |lipll, represents the norm of the perturbation,
commonly measured using Lo, L», or L., norms. ¢ is a constant
that balances perturbation magnitude and misclassification. f
(xI + p) is an objective function that ensures misclassification,
typically defined such that f (x/ + p) < 0 when x/ + p is
classified as the target adversarial label. They illustrated that
this attack is distinctly effective against defended neural
networks, causing imperceptible perturbations while
achieving a good rate of success. The attack is principally
appreciated for its adaptability to different norm constraints
and its ability to bypass defenses such as defensive distillation.

2.2 Black-box attacks

In this attack assumption is that the attacker has no exposure
to model parameters or gradients, relying on query-based
methods or transferability of adversarial examples. Black-box
attacks pose a significant practical threat since they require no
access to internal model architecture. This makes them
especially dangerous in commercial APIs for image
recognition (e.g., Google Vision API). Attackers have
demonstrated the ability to query such systems and generate
adversarial examples using limited feedback, such as
confidence scores or predicted labels. In some cases,
researchers successfully fooled a commercial facial
recognition system into misidentifying individuals with
minimal queries, exposing risks in surveillance and identity
verification systems.

2.2.1 Boundary attack

Boundary attack is a powerful attack designed to spawn
adversarial examples with minimal perturbations [3]. In this
input image is adjusted iteratively to gradually move
neighboring to the model's decision boundary, while ensuring
that the perturbation remains small and imperceptible. This
attack works on decision boundary queries, making it suitable
for black-box settings rather than requiring exposure to the
model’s gradients or its internal parameters. The attack starts
by initializing a point far from the decision boundary and
progressively reduces the perturbation by exploring points on
the decision boundary. This method works efficiently due to
fewer queries compared to other black-box attack techniques.
These iterations are repeated until they cause the model to
misclassify.

Mathematically, the optimization problem can be worked
out as:

minlldll, s.t. fixI+3)#(x1), o 3)
where, 0 represents the perturbation applied to the input x/.
The model’s output after applying the perturbation is f (x/ +
0). The constraint f'(x/ + d) # f (x1) ensures that the perturbed
input is classified differently from the original input.

This iterative process allows the Boundary Attack to
generate adversarial examples that are difficult to detect, as the
perturbations remain small while still achieving high
adversarial success rates.



2.2.2 One-pixel attack

One-pixel attack is a minimalist adversarial attack that
produces adversarial examples by modifying only a single
pixel of the input image [4]. Despite the small perturbation,
this attack is efficient and can cause current existing deep
learning models to misclassify the image. This attack perturbs
the input images' single pixel, such that the rate of

misclassification increases. It can be used for testing the
strength of models to minimal changes since it can exploit
vulnerabilities in the model with a minute change in the input.
The attack is typically executed by choosing the pixel to
perturb and testing various color values using a random search
or optimization method to find the perturbation until a
successful misclassification is achieved.

Table 1. Summary table of white-box attacks

Method Used Advantages

Disadvantages Suggested Solution

Fast Gradient Sign Method

(FGSM) [1] Fast and computationally efficient

More robust than FGSM, iterative

Carlini & Wagner Attacks [2] refinement

L-BFGS [5] Produces small perturbations

Minimal required perturbations,

DeepFool Attack [3] effective for white box models
Iterative Fast Gradient Sign Improves FGSM with multiple
Method (I-FGSM) [6] iterations

Universal Adversarial

Perturbations (UAPs) [7] Effective across multiple images

Jacobian-Based Saliency Map  Targeted perturbations on specific
Attack (JSMA) [8] pixels

Minimal perturbations, effective
for nonlinear models
Sparse perturbations, effective

NewtonFool Attack [9]

Elastic Net Attack (EAD) [10]

against L1
Targeted Universal Targeted universal perturbations
Adversarial Perturbations (T- are effective across multiple
UAPs) [11] images

Minimal perturbations, effective
for robust models
Realistic perturbations, consider
data distribution
Effective against distillation-based
defences

Brendel & Bethge Attack [12]
Wasserstein Attack [13]

Shadow Attack [14]

Use iterative methods (I-
FGSM, PGD) for stronger
attacks
Reduce iterations while
maintaining effectiveness

Produces easily detectable
perturbations

Computationally expensive

Computationally expensive, Use more efficient gradient-
Impractical for real-time attacks based methods like PGD
Assumes linearity, less effective Apply methods considering

on highly nonlinear models non-linearity

Slower than FGSM Adjust iteration count for

speed efficiency trade-off

Less effective on robust models Adapt pe@rbatlons toa

specific model

Computationally expensive,
requires detailed model

information

Use more efficient
computation methods

Combine with other methods
for better efficiency
Optimize implementation to
reduce computation time

Less effective for linear models
Computationally expensive

Adapt perturbations to specific

Less effective on robust models
models

Optimize implementation to
reduce computation time
Use approximations to reduce
computation time
Optimize implementation to
reduce computation time

Computationally expensive
Computationally expensive

Computationally expensive

Table 2. Summary table of black-box attacks

Methods Used Advantages Disadvantages Suggested Solution
Boundary Attack [15] Does not use gradients, effective May require a la.rge number of Optimize efﬁcwncy.by reduc_lng the
for black box attacks queries number of required queries
. Modifies only one pixel, simple Limited to specific images, less Increase the number of modified
One Pixel Attack [16] and effective effective on robust models pixels or combine with other attacks
Zeroth Order . Computationally expensive, Use dimensionality reduction and
L Does not require surrogate models, . . . .
Optimization (ZOO) L . requires numerous model sampling techniques to improve
effective in black box settings . .
Attack [17] evaluations efficiency
Spatial Transformation Applies spatial transformations, May be less effective on certain ~ Combine with other types of attacks
Attack [11] which are difficult to detect models to improve effectiveness
Upset & Angry Attack Targets binary neural networks, Limited to binary models, less Adapt techniques for non-binary
[18] effective for this model type relevant for standard networks networks
Designed for speech and image
Houdini Attack [19] recognition tasks, effective in these ~ May not generalize to other tasks Adapt the attack for other types of
areas data and models
Simple Black Box Simple to implement, does not Less effective than other Improve efficiency by combining
Adversarial Attack [20] require knowledge of the model sophisticated attacks with other methods

Few Pixel & Threshold Modifies a small number of pixels,

Increase the number of modified

Less effective on robust models . L
pixels or use optimization

Attacks [21] effective for certain images or complex images .
techniques
HopSkipJump Attack Effective in black box settings, May be less effective on highly Combine with other attacks to
[22] requires few queries robust models improve effectiveness
ColorFool Attack [23] Modifies image colors, difficult to May b.e less feffectlve on models Combine with other types of
detect insensitive to colors perturbations
Square Attack [23] Effective in black box §ett1ngs, May be less effective on highly Optlmlze attack parameters to
requires few queries robust models improve efficiency
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Although the perturbation is one pixel, the attack can be
very effective against certain image classification models that
are not robust to minute changes. This attack exemplifies the
vulnerabilities of deep learning frameworks and affects its
robustness in the presence of small, imperceptible
perturbations. Tables 1 and 2 summarize white box and black
box attacks, streamlining their disadvantages and solutions for
the same.

2.3 Poisoning attacks

Poisoning attacks involve the deliberate manipulation of a
model’s training data to degrade its performance or embed
malicious behavior. By injecting crafted examples during the
learning phase, attackers can influence how the model
generalizes to unseen data. These attacks can significantly
reduce a model's accuracy, increase false positives or
negatives, and, in more targeted cases, force the model to
behave incorrectly when presented with specific inputs.

Poisoning attacks are broadly categorized into two types:

e Clean-Label Poisoning: Injected samples appear
benign and are labeled correctly but are crafted to shift
decision boundaries subtly.

e Backdoor Attacks: A specific trigger (such as a
pattern or pixel patch) is embedded into training images
to cause targeted misclassification when the same
trigger appears at test time.

Table 3 gives a summary of various poisoning attacks. The
consequences of poisoning attacks can be severe and often go
undetected due to their subtlety. For example:

e Accuracy Degradation: Even a small percentage of
poisoned data (as little as 0.1-1%) can reduce a model’s
top-1 accuracy by a significant margin.

e Targeted Misclassification: Models can be trained to
classify any image containing a backdoor trigger as a
specific class, despite otherwise correct generalization.

e  Shifted Decision Boundaries: Clean-label attacks can
cause a classifier to misclassify inputs near a particular
class without noticeable changes in test performance.

In safety-critical systems, such attacks may lead to
catastrophic consequences, for instance, misclassifying X-ray
scans in medical diagnostics or misidentifying individuals in
facial recognition. Some real-world examples include:

e Autonomous Vehicles: Backdoor triggers subtly
embedded in traffic signs during data collection can
cause misclassification (e.g., treating stop signs as yield
signs).

e Facial Recognition Systems: Clean-label poisoning
can train a system to misidentify certain faces when
presented with glasses or hats that were used as triggers
during training.

e Content Moderation: Poisoned training data in hate
speech detection systems can shift boundaries, leading
to either over-flagging benign posts or under-detecting
harmful content.

Table 3. Summary table of poisoning attacks

Methods Used Advantages Disadvantages Suggested Solution
Adversarial Allows backdoor injection in machine Can be detected by Develop more sophisticated attack
Backdoor learning models, hard to detect advanced defense methods techniques to bypass defences
Embedding [24] g ’ q yp
Bullseye Polytope Clean label poisoning attack improves May require a large number Optimize sample generation to

Attack [25]
Poisoning Attack on
SVM [26]
Input Model Co-
Optimization Attack

success rate and transferability
Aftects the performance of support vector
machines by altering training data

Simultaneously optimizes inputs and models

of poisoned samples
Can be detected by anomaly
detection techniques

reduce the required quantity
Use more subtle poisoning
techniques to avoid detection

Can be computationally Develop more efficient

[4] to enhance attack efficiency expensive optimization algorithms
Convex Polytope Generates poisoned samples by forr_mng a May require a large number Reduce the.numbe_r of required
convex polytope around the target in the . samples by improving the attack
Attack [4] of poisoned samples
feature space strategy
Table 4. Summary table of inference attacks
Methods used Advantages Disadvantages Suggested Solution for Disadvantages

Model Inversion
Attack [27]

Reconstruction
Attack [27]

Reconstruct sensitive training data by
exploiting model access, raising

privacy concerns

Aims to reconstruct input data from
model outputs, highlighting potential

data leakage

May require full model access
and significant computational
resources
May be limited by model
complexity and the quality of
available data

Develop more effective attack
techniques and explore black box
approaches
Improve reconstruction algorithms and
use deep learning techniques for better
accuracy

Table 5. Summary table of extraction attacks

Methods Used Advantages Disadvantages Suggested Solution
Copycat Networks Can reproduce'the behaviour of a May require a large number of queries to Optimize the npmber of queries
target model using unlabelled data, . and use sampling techniques to
[4] S . the target model, which can be detected .
facilitating model extraction reduce detection
Functionally Extracts a functionally equivalent Limited to neural networks with specific Extend the method to more
Equivalent model using extraction attacks, architectures, such as two dense layers complex neural network

Extraction [28] ensuring high fidelity

with ReLLU activation architectures
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2.4 Extraction and inference attacks

In extraction attack’s goal is to copy model parameters or
replicate the functionality of a trained model. Inference attacks
focus on extracting sensitive information from a trained model,
such as details about the data it was trained on. Tables 4 and 5
summarize extraction and inference attacks.

3. DEFENSE MECHANISMS

Adversarial defense techniques aim to enhance the
robustness of deep learning models against carefully crafted
perturbations. These strategies can be grouped into four major
categories:  architectural modifications, training-based
approaches, auxiliary component additions, and poisoning-
specific defenses. Each category offers trade-offs between
robustness, computational overhead, and generalization.

3.1 Modifications to the ANN

These methods involve structural changes to the neural
network to enhance robustness against adversarial
perturbations.

Defensive Distillation [6]: It is a technique designed to train
neural networks that are less sensitive to adversarial inputs.
Instead of training a model with hard labels, it utilizes soft
probabilities obtained from a first model trained with a higher
temperature in the softmax function:

eZl'/T

“4)

i) = St
]:

where, z; represents the logits (pre-softmax activations), T is
the temperature parameter (typically set 7> 1 for distillation),
oi(z) is the probability assigned to class i. The first model
produces these smoothed probabilities, which are then used as
targets to train a second model at the same temperature 7. Once
trained, the distilled model is deployed with a temperature 7=
1. This approach reduces the model’s sensitivity to small
perturbations, making adversarial examples less effective. It is
effective against simple gradient-based attacks like FGSM;
low additional cost once distilled. It is vulnerable to stronger
or adaptive attacks such as Carlini & Wagner (C&W). Also, it
may slightly reduce model accuracy on clean data. It is best
suited for systems with low resource constraints and relatively
static attack surfaces, such as embedded systems or controlled
APIs.

3.2 Modifications to the training

This category includes training techniques that improve the
model’s resilience against adversarial perturbations.

e Brute-Force Adversarial Training: It aims to

intensify the strength of the model by exposing it to
adversarial examples during training. The process
involves the following steps:
Generation of Adversarial Examples: Adversarial
examples are generated by applying minute
perturbations to the original inputs, designed to mislead
the model while remaining similar to the original data.
Incorporation into Training: These adversarial
examples are then incorporated in the training dataset
alongside the original examples.
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Training Objective: The model is trained not only to
classify original examples correctly but also to
recognize and correctly classify the adversarial
examples.

Reinforcing Decision Boundaries: By being exposed
to these perturbations, the model adjusts its decision
boundaries to be more resilient to future attacks.
Continuous Improvement: As the model is exposed
to new adversarial examples, it becomes increasingly
resistant to future manipulations, reducing the
likelihood of misclassification under attack.

This approach strengthens the model’s security by ensuring
it can handle manipulated data without sacrificing its
performance on normal data. It is considered one of the most
effective strategies for improving robustness across various
attacks. It significantly increases training time and
computational cost; often overfits to specific attack types (e.g.,
FGSM vs. PGD), making it less effective against unseen
threats. It is ideal for critical applications like medical
diagnostics and autonomous systems, where robustness
outweighs cost and training time.

3.3 Additions to the ANN

This category involves adding auxiliary components to
enhance adversarial defense without modifying the model
itself.

e Feature Squeezing: It reduces input complexity to
mitigate adversarial perturbations. This approach
includes reducing the color depth of images, e.g.,
converting RGB images to fewer bits per channel, and
applying median filtering to remove noise-induced
artifacts. It is easy to implement and introduces
minimal computational cost. It may reduce input
quality and affect legitimate classification accuracy;
ineffective against adaptive adversaries. It is useful as
a preprocessing filter in lightweight applications or
online content moderation systems.

Trap Doored Model: Embedding specific patterns in
the model to detect adversarial tampering. It provides a
verifiable integrity check during deployment. It has
limited research and practical deployment experience
and may conflict with privacy regulations. It is mostly
used in secure federated learning or IP-sensitive models
in commercial settings.

Defense against Universal Adversarial
Perturbations (UAPs): It involves detecting
adversarial noise that generalizes across multiple
inputs.

MagNet: A framework using autoencoders to detect
and reform adversarial samples before classification. It
is capable of recovering perturbed inputs to their clean
form. It is susceptible to white-box attacks that are
aware of the autoencoder behaviour, where tuning is
required for each dataset. It is suited for non-critical but
high-accuracy systems like recommender engines or
visual content sorting.

3.4 Defenses against poisoning attacks

These defenses aim to detect and mitigate poisoning attacks
that attempt to corrupt training data. Table 6 summarizes
findings from empirical studies, highlighting detection
performance and practical limitations.



Table 6. Empirical evaluation of poisoning attack defense mechanisms

Defense Method Dataset Used  Detection Accuracy Key Observations Limitations
Spectral Signature CIFAR-10, o DeFectefi backdf)(?r samples Ineffective against clean-label
Analysis [24] SVHN >90% with high precision using poisoning
SVD on feature space
Activation Pattern GTSRB, Tiny o Ideptlﬁed P msonec! feurons High resource use; may yield false
- ~85% via abnormal activation P .
Analysis [29] ImageNet . positives on noisy datasets
clustering
L . Unsupervised clustering A
Activation Clustering RB _ o Less effective if poisoning is highly
(DBSCAN) [29] GTS 82-87% helpeq separate clean vs. distributed across layers
poisoned samples
SentiNet (Region ImageNet, Uses interpretability tools to Limited scalability and sensitive to
g g ~88% p y y
Attribution) [30] CIFAR-10 ’ detect local backdoor regions trigger size/position
STRIP (Entropy-Based MNIST, o Uses input p er'turbat.lons a nd Requires access to runtime prediction
. ) >90% entropy metrics to identify . . L
Detection) [31] CIFAR-10 4 . entropy; ineffective for label flipping
poisoned behavior
4. CONCLUSION USA, pp- 2574-2582.

Adversarial attacks continue to pose serious challenges to
the reliability and trustworthiness of deep learning models,
particularly in image classification tasks. This review provided
a comprehensive synthesis of various attack methodologies
ranging from white-box and black-box attacks to more
sophisticated poisoning and model extraction techniques, as
well as defense mechanisms that attempt to counter these
threats. Despite notable progress in developing defensive
strategies such as adversarial training, spectral signature
analysis, and feature squeezing, no method has proven
universally effective across diverse attack types. The dynamic
nature of adversarial threats calls for a continuous evolution of
both detection and prevention approaches. Looking forward,
several promising research directions warrant attention. The
development of real-time adversarial input detection systems
that are both lightweight and accurate remains a critical need,
particularly for deployment in latency-sensitive environments.
As clean-label poisoning attacks grow more subtle and
complex, advanced anomaly detection techniques and robust
self-supervised training paradigms may help mitigate their
effects. Additionally, the field must invest in designing
defenses that are transferable across modalities and datasets,
addressing the challenge of maintaining robustness in dynamic
or cross-domain applications. Thus, defending deep learning
systems against adversarial attacks remains a dynamic and
urgent challenge. A holistic approach that integrates
algorithmic robustness, transparent design, and ethical data
governance is essential to ensure the safe deployment of Al
systems in real-world applications.
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