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Deep learning has transformed image classification by enabling machines to learn 

intricate patterns from large datasets. However, these models are increasingly exposed to 

adversarial attacks, small, carefully crafted changes to input images that can mislead even 

well-trained classifiers. This review offers a structured examination of such vulnerabilities 

by classifying attacks into five major types: white-box, black-box, poisoning, inference, 

and extraction. While prior surveys have broadly discussed these threats, this work 

distinguishes itself by drawing direct connections between specific attack strategies and 

practical defense mechanisms. It places particular emphasis on emerging methods like 

spectral signature analysis and feature squeezing, which are gaining traction for their 

applicability in real-world systems. The review also critically evaluates the effectiveness 

of established defenses such as adversarial training and defensive distillation. It highlights 

the persistent gaps and challenges in safeguarding image classification models. This paper 

serves as a resource for researchers and practitioners aiming to develop more resilient 

deep learning systems in security-sensitive domains. 
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1. INTRODUCTION

Deep learning has emerged as a foundational pillar of 

modern artificial intelligence, enabling breakthroughs across a 

range of fields, including image recognition, speech 

processing, and natural language understanding. Among these, 

image classification has advanced significantly with the 

advent of convolutional neural networks (CNNs), which excel 

at automatically extracting and learning complex visual 

features from large-scale datasets. These capabilities have 

facilitated the automation of tasks that once relied heavily on 

human judgment, leading to widespread adoption in high-

stakes domains such as autonomous vehicles, medical 

diagnostics, and surveillance systems. 

However, the increasing dependence on deep learning 

models has revealed a critical vulnerability: their susceptibility 

to adversarial attacks. These attacks involve subtly altered 

inputs, often imperceptible to human observers, that can 

mislead models into making incorrect predictions. For 

instance, a stop sign manipulated with minute perturbations 

might be misclassified by an autonomous vehicle as a speed 

limit sign, potentially resulting in catastrophic outcomes. The 

growing awareness of such vulnerabilities has fueled extensive 

research into understanding, detecting, and defending against 

adversarial manipulations. 

The motivation behind this research is not merely academic, 

but it reflects the urgent need to ensure the safety, reliability, 

and trustworthiness of AI systems in real-world deployments. 

In sectors like finance, healthcare, and law enforcement, 

incorrect predictions due to adversarial interference can lead 

to ethical concerns, financial losses, or even human harm. 

Moreover, adversarial examples often exploit inherent 

properties of neural networks, such as high-dimensional input 

spaces and local linearity, making them challenging to 

eliminate completely. This persistent threat has driven the 

community to pursue more resilient training algorithms, 

improved model architectures, and robust evaluation 

frameworks. 

Importantly, the challenge of adversarial robustness is not 

confined to computer vision alone. Similar vulnerabilities 

have been identified in speech recognition systems, language 

models, and even reinforcement learning agents. As AI models 

are increasingly integrated into interconnected environments 

like smart cities and edge computing systems, adversarial risks 

become compounded by exposure to dynamic and 

unpredictable data streams. This makes it imperative to design 

defenses that are not only technically sound but also scalable 

and adaptable to evolving threat landscapes. 

While a substantial body of work has focused on designing 

attack strategies, defense mechanisms have developed in 

parallel. Initial approaches centered on input preprocessing 

techniques and defensive distillation aimed at reducing model 

sensitivity to minor input changes. More recent strategies 

include adversarial training, where models are exposed to 

adversarial examples during the learning phase, and detection-

based methods that monitor feature space behavior or neuron 

activations for anomalies. Yet, despite these efforts, existing 

defenses often fail against adaptive or unseen attacks, 

highlighting the need for more generalized and robust 

solutions. 
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This paper offers a structured review of adversarial attacks 

and their corresponding defense mechanisms, with a focus on 

classifying threats by their nature, i.e., white-box, black-box, 

poisoning, inference, and extraction and aligning them with 

specific countermeasures. By synthesizing these dimensions, 

the work aims to elucidate the core challenges in securing 

image classification systems and to identify gaps that warrant 

further research. The sections that follow explore the technical 

underpinnings of adversarial vulnerabilities, provide a 

taxonomy of attack techniques, and evaluate the strengths and 

limitations of state-of-the-art defenses. 

The upcoming sections provide an in-depth analysis of deep 

learning models and their vulnerabilities. Section 2 delves into 

different techniques of adversarial attacks, explaining their 

mechanisms and notable methods. Section 3 presents defense 

strategies against adversarial attacks. Finally, section 4 

concludes the paper by outlining key insights and highlighting 

subsequent prospects for enhancing the robustness of deep 

learning models. 

 

 

2. ADVERSARIAL ATTACKS 

 

Adversarial attacks exploit vulnerabilities in deep learning 

models by introducing imperceptible perturbations to inputs, 

causing misclassification. These attacks can be classified into 

five major categories: White-box attacks, black-box attacks, 

poisoning attacks, extraction attacks, and inference attacks. In 

this section, we will describe these attacks. 

 

2.1 White-box attacks 

 

White-box attacks assume the attacker has full knowledge 

of the model architecture, parameters, and gradients, allowing 

for precise crafting of adversarial examples. White-box attacks, 

due to their reliance on internal model details, are often 

considered a theoretical concern. However, they are highly 

relevant in settings where models are deployed on devices 

accessible to attackers. For instance, in mobile applications 

using on-device image recognition (e.g., face authentication 

apps or AR filters), attackers may reverse-engineer model 

parameters and craft adversarial inputs to bypass security 

features.  

 

2.1.1 Fast Gradient Sign Method 

Fast Gradient Sign Method (FGSM) [1] is the simplest 

adversarial attack, generating perturbations by using L∞ metric. 

Given an input x1 with true label y1, the adversarial example 

𝑥̂1 is computed as: 

 

x̂1 = x1 − ϵ · sign(∇x1 J(θ,x1,y1)) (1) 

 

where, ∇x1 J(.) is the gradient of a cost function of x1. The size 

of the perturbations is defined by the error, ϵ. FGSM takes each 

pixel of the input image, x1, and adds ϵ to obtain the output 

x1̂. This attack perturbs inputs in the direction of the gradient, 

misleading the model while keeping perturbations minimal. 

 

2.1.2 Carlini & Wagner attacks 

Carlini and Wagner [2] proposed a family of adversarial 

attacks, commonly referred to as C&W attacks, which 

leverage continuous optimization to generate minimal 

perturbations capable of fooling a classifier. Unlike gradient-

based methods such as FGSM or PGD, C&W attacks 

formulate adversarial example generation as a restrained 

optimization issue. The aim of the attack is to identify the 

smallest possible perturbation ρ such that the modified input 

x1 + ρ is misclassified by the target model while ensuring 

minimal distortion. Mathematically, this is expressed as: 

 

min∥ρ∥p + c · f (x1 + ρ)ρ (2) 

 

where, ∥ρ∥p represents the norm of the perturbation, 

commonly measured using L0, L2, or L∞ norms. c is a constant 

that balances perturbation magnitude and misclassification. f 

(x1 + ρ) is an objective function that ensures misclassification, 

typically defined such that f (x1 + ρ) ≤ 0 when x1 + ρ is 

classified as the target adversarial label. They illustrated that 

this attack is distinctly effective against defended neural 

networks, causing imperceptible perturbations while 

achieving a good rate of success. The attack is principally 

appreciated for its adaptability to different norm constraints 

and its ability to bypass defenses such as defensive distillation. 
 

2.2 Black-box attacks 
 

In this attack assumption is that the attacker has no exposure 

to model parameters or gradients, relying on query-based 

methods or transferability of adversarial examples. Black-box 

attacks pose a significant practical threat since they require no 

access to internal model architecture. This makes them 

especially dangerous in commercial APIs for image 

recognition (e.g., Google Vision API). Attackers have 

demonstrated the ability to query such systems and generate 

adversarial examples using limited feedback, such as 

confidence scores or predicted labels. In some cases, 

researchers successfully fooled a commercial facial 

recognition system into misidentifying individuals with 

minimal queries, exposing risks in surveillance and identity 

verification systems. 
 

2.2.1 Boundary attack 

Boundary attack is a powerful attack designed to spawn 

adversarial examples with minimal perturbations [3]. In this 

input image is adjusted iteratively to gradually move 

neighboring to the model's decision boundary, while ensuring 

that the perturbation remains small and imperceptible. This 

attack works on decision boundary queries, making it suitable 

for black-box settings rather than requiring exposure to the 

model’s gradients or its internal parameters. The attack starts 

by initializing a point far from the decision boundary and 

progressively reduces the perturbation by exploring points on 

the decision boundary. This method works efficiently due to 

fewer queries compared to other black-box attack techniques. 

These iterations are repeated until they cause the model to 

misclassify.  

Mathematically, the optimization problem can be worked 

out as: 

 

min∥δ∥p s.t. f(x1+δ)≠f(x1), δ (3) 

 

where, δ represents the perturbation applied to the input x1. 

The model’s output after applying the perturbation is f (x1 + 

δ). The constraint f (x1 + δ) ≠ f (x1) ensures that the perturbed 

input is classified differently from the original input. 

This iterative process allows the Boundary Attack to 

generate adversarial examples that are difficult to detect, as the 

perturbations remain small while still achieving high 

adversarial success rates. 
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2.2.2 One-pixel attack 

One-pixel attack is a minimalist adversarial attack that 

produces adversarial examples by modifying only a single 

pixel of the input image [4]. Despite the small perturbation, 

this attack is efficient and can cause current existing deep 

learning models to misclassify the image. This attack perturbs 

the input images' single pixel, such that the rate of 

misclassification increases. It can be used for testing the 

strength of models to minimal changes since it can exploit 

vulnerabilities in the model with a minute change in the input. 

The attack is typically executed by choosing the pixel to 

perturb and testing various color values using a random search 

or optimization method to find the perturbation until a 

successful misclassification is achieved. 

 

Table 1. Summary table of white-box attacks 

 
Method Used Advantages Disadvantages Suggested Solution 

Fast Gradient Sign Method 

(FGSM) [1] 
Fast and computationally efficient 

Produces easily detectable 

perturbations 

Use iterative methods (I-

FGSM, PGD) for stronger 

attacks 

Carlini & Wagner Attacks [2] 
More robust than FGSM, iterative 

refinement 
Computationally expensive 

Reduce iterations while 

maintaining effectiveness 

L-BFGS [5] Produces small perturbations 
Computationally expensive, 

Impractical for real-time attacks 

Use more efficient gradient-

based methods like PGD 

DeepFool Attack [3] 
Minimal required perturbations, 

effective for white box models 

Assumes linearity, less effective 

on highly nonlinear models 

Apply methods considering 

non-linearity 

Iterative Fast Gradient Sign 

Method (I-FGSM) [6] 

Improves FGSM with multiple 

iterations 
Slower than FGSM 

Adjust iteration count for 

speed efficiency trade-off 

Universal Adversarial 

Perturbations (UAPs) [7] 
Effective across multiple images Less effective on robust models 

Adapt perturbations to a 

specific model 

Jacobian-Based Saliency Map 

Attack (JSMA) [8] 

Targeted perturbations on specific 

pixels 

Computationally expensive, 

requires detailed model 

information 

Use more efficient 

computation methods 

NewtonFool Attack [9] 
Minimal perturbations, effective 

for nonlinear models 
Less effective for linear models 

Combine with other methods 

for better efficiency 

Elastic Net Attack (EAD) [10] 
Sparse perturbations, effective 

against L1 
Computationally expensive 

Optimize implementation to 

reduce computation time 

Targeted Universal 

Adversarial Perturbations (T-

UAPs) [11] 

Targeted universal perturbations 

are effective across multiple 

images 

Less effective on robust models 
Adapt perturbations to specific 

models 

Brendel & Bethge Attack [12] 
Minimal perturbations, effective 

for robust models 
Computationally expensive 

Optimize implementation to 

reduce computation time 

Wasserstein Attack [13] 
Realistic perturbations, consider 

data distribution 
Computationally expensive 

Use approximations to reduce 

computation time 

Shadow Attack [14] 
Effective against distillation-based 

defences 
Computationally expensive 

Optimize implementation to 

reduce computation time 

 

Table 2. Summary table of black-box attacks  

 
Methods Used Advantages Disadvantages Suggested Solution 

Boundary Attack [15] 
Does not use gradients, effective 

for black box attacks 

May require a large number of 

queries 

Optimize efficiency by reducing the 

number of required queries 

One Pixel Attack [16] 
Modifies only one pixel, simple 

and effective 

Limited to specific images, less 

effective on robust models 

Increase the number of modified 

pixels or combine with other attacks 

Zeroth Order 

Optimization (ZOO) 

Attack [17] 

Does not require surrogate models, 

effective in black box settings 

Computationally expensive, 

requires numerous model 

evaluations 

Use dimensionality reduction and 

sampling techniques to improve 

efficiency 

Spatial Transformation 

Attack [11] 

Applies spatial transformations, 

which are difficult to detect 

May be less effective on certain 

models 

Combine with other types of attacks 

to improve effectiveness 

Upset & Angry Attack 

[18] 

Targets binary neural networks, 

effective for this model type 

Limited to binary models, less 

relevant for standard networks 

Adapt techniques for non-binary 

networks 

Houdini Attack [19] 

Designed for speech and image 

recognition tasks, effective in these 

areas 

May not generalize to other tasks 
Adapt the attack for other types of 

data and models 

Simple Black Box 

Adversarial Attack [20] 

Simple to implement, does not 

require knowledge of the model 

Less effective than other 

sophisticated attacks 

Improve efficiency by combining 

with other methods 

Few Pixel & Threshold 

Attacks [21] 

Modifies a small number of pixels, 

effective for certain images 

Less effective on robust models 

or complex images 

Increase the number of modified 

pixels or use optimization 

techniques 

HopSkipJump Attack 

[22] 

Effective in black box settings, 

requires few queries 

May be less effective on highly 

robust models 

Combine with other attacks to 

improve effectiveness 

ColorFool Attack [23] 
Modifies image colors, difficult to 

detect 

May be less effective on models 

insensitive to colors 

Combine with other types of 

perturbations 

Square Attack [23] 
Effective in black box settings, 

requires few queries 

May be less effective on highly 

robust models 

Optimize attack parameters to 

improve efficiency 
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Although the perturbation is one pixel, the attack can be 

very effective against certain image classification models that 

are not robust to minute changes. This attack exemplifies the 

vulnerabilities of deep learning frameworks and affects its 

robustness in the presence of small, imperceptible 

perturbations. Tables 1 and 2 summarize white box and black 

box attacks, streamlining their disadvantages and solutions for 

the same. 

 

2.3 Poisoning attacks 

 

Poisoning attacks involve the deliberate manipulation of a 

model’s training data to degrade its performance or embed 

malicious behavior. By injecting crafted examples during the 

learning phase, attackers can influence how the model 

generalizes to unseen data. These attacks can significantly 

reduce a model's accuracy, increase false positives or 

negatives, and, in more targeted cases, force the model to 

behave incorrectly when presented with specific inputs. 

Poisoning attacks are broadly categorized into two types: 

• Clean-Label Poisoning: Injected samples appear 

benign and are labeled correctly but are crafted to shift 

decision boundaries subtly. 

• Backdoor Attacks: A specific trigger (such as a 

pattern or pixel patch) is embedded into training images 

to cause targeted misclassification when the same 

trigger appears at test time. 

 

Table 3 gives a summary of various poisoning attacks. The 

consequences of poisoning attacks can be severe and often go 

undetected due to their subtlety. For example: 

• Accuracy Degradation: Even a small percentage of 

poisoned data (as little as 0.1–1%) can reduce a model’s 

top-1 accuracy by a significant margin. 

• Targeted Misclassification: Models can be trained to 

classify any image containing a backdoor trigger as a 

specific class, despite otherwise correct generalization. 

• Shifted Decision Boundaries: Clean-label attacks can 

cause a classifier to misclassify inputs near a particular 

class without noticeable changes in test performance. 

In safety-critical systems, such attacks may lead to 

catastrophic consequences, for instance, misclassifying X-ray 

scans in medical diagnostics or misidentifying individuals in 

facial recognition. Some real-world examples include: 

• Autonomous Vehicles: Backdoor triggers subtly 

embedded in traffic signs during data collection can 

cause misclassification (e.g., treating stop signs as yield 

signs). 

• Facial Recognition Systems: Clean-label poisoning 

can train a system to misidentify certain faces when 

presented with glasses or hats that were used as triggers 

during training. 

• Content Moderation: Poisoned training data in hate 

speech detection systems can shift boundaries, leading 

to either over-flagging benign posts or under-detecting 

harmful content. 

 

Table 3. Summary table of poisoning attacks 

 
Methods Used Advantages Disadvantages Suggested Solution 

Adversarial 

Backdoor 

Embedding [24] 

Allows backdoor injection in machine 

learning models, hard to detect 

Can be detected by 

advanced defense methods 

Develop more sophisticated attack 

techniques to bypass defences 

Bullseye Polytope 

Attack [25]  

Clean label poisoning attack improves 

success rate and transferability 

May require a large number 

of poisoned samples 

Optimize sample generation to 

reduce the required quantity 

Poisoning Attack on 

SVM [26] 

Affects the performance of support vector 

machines by altering training data 

Can be detected by anomaly 

detection techniques 

Use more subtle poisoning 

techniques to avoid detection 

Input Model Co-

Optimization Attack 

[4] 

Simultaneously optimizes inputs and models 

to enhance attack efficiency 

Can be computationally 

expensive 

Develop more efficient 

optimization algorithms 

Convex Polytope 

Attack [4] 

Generates poisoned samples by forming a 

convex polytope around the target in the 

feature space 

May require a large number 

of poisoned samples 

Reduce the number of required 

samples by improving the attack 

strategy 

 

Table 4. Summary table of inference attacks 

 
Methods used Advantages Disadvantages Suggested Solution for Disadvantages 

Model Inversion 

Attack [27] 

Reconstruct sensitive training data by 

exploiting model access, raising 

privacy concerns 

May require full model access 

and significant computational 

resources 

Develop more effective attack 

techniques and explore black box 

approaches 

Reconstruction 

Attack [27] 

Aims to reconstruct input data from 

model outputs, highlighting potential 

data leakage 

May be limited by model 

complexity and the quality of 

available data 

Improve reconstruction algorithms and 

use deep learning techniques for better 

accuracy 

 

Table 5. Summary table of extraction attacks 

 
Methods Used Advantages Disadvantages Suggested Solution 

Copycat Networks 

[4] 

Can reproduce the behaviour of a 

target model using unlabelled data, 

facilitating model extraction 

May require a large number of queries to 

the target model, which can be detected 

Optimize the number of queries 

and use sampling techniques to 

reduce detection 

Functionally 

Equivalent 

Extraction [28] 

Extracts a functionally equivalent 

model using extraction attacks, 

ensuring high fidelity 

Limited to neural networks with specific 

architectures, such as two dense layers 

with ReLU activation 

Extend the method to more 

complex neural network 

architectures 
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2.4 Extraction and inference attacks 

 

In extraction attack’s goal is to copy model parameters or 

replicate the functionality of a trained model. Inference attacks 

focus on extracting sensitive information from a trained model, 

such as details about the data it was trained on. Tables 4 and 5 

summarize extraction and inference attacks. 

 

 

3. DEFENSE MECHANISMS 

 

Adversarial defense techniques aim to enhance the 

robustness of deep learning models against carefully crafted 

perturbations. These strategies can be grouped into four major 

categories: architectural modifications, training-based 

approaches, auxiliary component additions, and poisoning-

specific defenses. Each category offers trade-offs between 

robustness, computational overhead, and generalization. 

 

3.1 Modifications to the ANN 

 

These methods involve structural changes to the neural 

network to enhance robustness against adversarial 

perturbations. 

Defensive Distillation [6]: It is a technique designed to train 

neural networks that are less sensitive to adversarial inputs. 

Instead of training a model with hard labels, it utilizes soft 

probabilities obtained from a first model trained with a higher 

temperature in the softmax function: 

   

𝜎𝑖(𝑧) =
𝑒𝑧𝑖/𝑇

∑ 𝑒𝑧𝑖/𝑇𝑛−1
𝑗=0

 (4) 

 

where, zi represents the logits (pre-softmax activations), T is 

the temperature parameter (typically set T > 1 for distillation), 

σi(z) is the probability assigned to class i. The first model 

produces these smoothed probabilities, which are then used as 

targets to train a second model at the same temperature T. Once 

trained, the distilled model is deployed with a temperature T = 

1. This approach reduces the model’s sensitivity to small 

perturbations, making adversarial examples less effective. It is 

effective against simple gradient-based attacks like FGSM; 

low additional cost once distilled. It is vulnerable to stronger 

or adaptive attacks such as Carlini & Wagner (C&W). Also, it 

may slightly reduce model accuracy on clean data. It is best 

suited for systems with low resource constraints and relatively 

static attack surfaces, such as embedded systems or controlled 

APIs. 

 

3.2 Modifications to the training 

 

This category includes training techniques that improve the 

model’s resilience against adversarial perturbations.  

• Brute-Force Adversarial Training: It aims to 

intensify the strength of the model by exposing it to 

adversarial examples during training. The process 

involves the following steps:  

• Generation of Adversarial Examples: Adversarial 

examples are generated by applying minute 

perturbations to the original inputs, designed to mislead 

the model while remaining similar to the original data.  

• Incorporation into Training: These adversarial 

examples are then incorporated in the training dataset 

alongside the original examples.  

• Training Objective: The model is trained not only to 

classify original examples correctly but also to 

recognize and correctly classify the adversarial 

examples.  

• Reinforcing Decision Boundaries: By being exposed 

to these perturbations, the model adjusts its decision 

boundaries to be more resilient to future attacks.  

• Continuous Improvement: As the model is exposed 

to new adversarial examples, it becomes increasingly 

resistant to future manipulations, reducing the 

likelihood of misclassification under attack.  

This approach strengthens the model’s security by ensuring 

it can handle manipulated data without sacrificing its 

performance on normal data. It is considered one of the most 

effective strategies for improving robustness across various 

attacks. It significantly increases training time and 

computational cost; often overfits to specific attack types (e.g., 

FGSM vs. PGD), making it less effective against unseen 

threats. It is ideal for critical applications like medical 

diagnostics and autonomous systems, where robustness 

outweighs cost and training time. 
 

3.3 Additions to the ANN 
 

This category involves adding auxiliary components to 

enhance adversarial defense without modifying the model 

itself. 

• Feature Squeezing: It reduces input complexity to 

mitigate adversarial perturbations. This approach 

includes reducing the color depth of images, e.g., 

converting RGB images to fewer bits per channel, and 

applying median filtering to remove noise-induced 

artifacts. It is easy to implement and introduces 

minimal computational cost. It may reduce input 

quality and affect legitimate classification accuracy; 

ineffective against adaptive adversaries. It is useful as 

a preprocessing filter in lightweight applications or 

online content moderation systems. 

• Trap Doored Model: Embedding specific patterns in 

the model to detect adversarial tampering. It provides a 

verifiable integrity check during deployment. It has 

limited research and practical deployment experience 

and may conflict with privacy regulations. It is mostly 

used in secure federated learning or IP-sensitive models 

in commercial settings. 

• Defense against Universal Adversarial 

Perturbations (UAPs): It involves detecting 

adversarial noise that generalizes across multiple 

inputs.  

• MagNet: A framework using autoencoders to detect 

and reform adversarial samples before classification. It 

is capable of recovering perturbed inputs to their clean 

form. It is susceptible to white-box attacks that are 

aware of the autoencoder behaviour, where tuning is 

required for each dataset. It is suited for non-critical but 

high-accuracy systems like recommender engines or 

visual content sorting. 

 

3.4 Defenses against poisoning attacks 

 

These defenses aim to detect and mitigate poisoning attacks 

that attempt to corrupt training data. Table 6 summarizes 

findings from empirical studies, highlighting detection 

performance and practical limitations. 
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Table 6. Empirical evaluation of poisoning attack defense mechanisms 

 
Defense Method Dataset Used Detection Accuracy Key Observations Limitations 

Spectral Signature 

Analysis [24] 

CIFAR-10, 

SVHN 
> 90% 

Detected backdoor samples 

with high precision using 

SVD on feature space 

Ineffective against clean-label 

poisoning 

Activation Pattern 

Analysis [29] 

GTSRB, Tiny 

ImageNet 
~85% 

Identified poisoned neurons 

via abnormal activation 

clustering 

High resource use; may yield false 

positives on noisy datasets 

Activation Clustering 

(DBSCAN) [29] 
GTSRB ~82-87% 

Unsupervised clustering 

helped separate clean vs. 

poisoned samples 

Less effective if poisoning is highly 

distributed across layers 

SentiNet (Region 

Attribution) [30] 

ImageNet, 

CIFAR-10 
~88% 

Uses interpretability tools to 

detect local backdoor regions 

Limited scalability and sensitive to 

trigger size/position 

STRIP (Entropy-Based 

Detection) [31] 

MNIST, 

CIFAR-10 
> 90% 

Uses input perturbations and 

entropy metrics to identify 

poisoned behavior 

Requires access to runtime prediction 

entropy; ineffective for label flipping 

 

 

4. CONCLUSION 

 

Adversarial attacks continue to pose serious challenges to 

the reliability and trustworthiness of deep learning models, 

particularly in image classification tasks. This review provided 

a comprehensive synthesis of various attack methodologies 

ranging from white-box and black-box attacks to more 

sophisticated poisoning and model extraction techniques, as 

well as defense mechanisms that attempt to counter these 

threats. Despite notable progress in developing defensive 

strategies such as adversarial training, spectral signature 

analysis, and feature squeezing, no method has proven 

universally effective across diverse attack types. The dynamic 

nature of adversarial threats calls for a continuous evolution of 

both detection and prevention approaches. Looking forward, 

several promising research directions warrant attention. The 

development of real-time adversarial input detection systems 

that are both lightweight and accurate remains a critical need, 

particularly for deployment in latency-sensitive environments. 

As clean-label poisoning attacks grow more subtle and 

complex, advanced anomaly detection techniques and robust 

self-supervised training paradigms may help mitigate their 

effects. Additionally, the field must invest in designing 

defenses that are transferable across modalities and datasets, 

addressing the challenge of maintaining robustness in dynamic 

or cross-domain applications. Thus, defending deep learning 

systems against adversarial attacks remains a dynamic and 

urgent challenge. A holistic approach that integrates 

algorithmic robustness, transparent design, and ethical data 

governance is essential to ensure the safe deployment of AI 

systems in real-world applications. 
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