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The increasing requirement for the fast and accurate detection of abnormal
network traffic has led to an increase in the popularity of automated intrusion
detection systems (IDS). Despite advancements in machine learning (ML) and
deep learning (DL) for anomaly detection, many IDS models rely on
handcrafted features. This reliance results in the feature drift phenomenon, and
the old handcrafted features will become outdated to accommodate newer attack
patterns, diminishing detection performance. Furthermore, if traditional ML or
DL methods frequently involve computing with large amounts of network traffic
which is computationally expensive and does not allow real-time performance.
To address these limitations, this paper presents an IDS pipeline that applies
natural language processing (NLP) techniques to construct a new surface of
automatic feature extraction from network data. This mitigates feature drift and
maintains the ability to adapt to evolving behaviours in maliciousness. The
pipeline combines an attention mechanism with NLP models, including
Word2Vec, program vector, and latent semantic indexing (LSI) to produce
powerful hybrid feature vectors. The BERT-based classifier is trained with these
vectors, and its performance in terms of accuracy, precision, recall, and F1-score
is evaluated. Experimental results demonstrate the superior performance of the
proposed approach over previous methods, achieving an F1-score of 0.99 with
automatically extracted features. Integrating Apache Spark's processing power
makes our system fast enough to be good in case of real-time intrusion detection,
and also scalable.

1. INTRODUCTION

1.1 Challenges

Smart cities, smart houses, etc., have made our lives more
intelligent. One of the main requirements for being intelligent
is being connected, and most of the items we use daily are
linked thanks to networks, which makes life easier. The shift
in technology is a good thing, but increased connection also
makes hackers more likely to target security features like
availability, confidentiality, and integrity. Understanding the
locations of incoming and outgoing traffic on any network is
crucial for handling different kinds of security assaults, and
this is often accomplished through the use of an intrusion
detection system (IDS). Though the current IDS uses
machine learning (ML)/deep learning (DL)-based algorithms
for segregating normal and abnormal traffic, one major
concern with them is their inability to understand the new
forms of attack, resulting in a decrease in detection accuracy
and an increase in the number of false alarms [1].
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Most of the ML models used for improving the detection
accuracy of the classification model are dependent on the
features that are used for classification. As a result, feature
reduction techniques are used in ML techniques [2] to
increase detection accuracy. Although it functions well for
the current samples, they encounter problems in terms of
generalization when the features. Furthermore, domain
expertise plays a crucial role in determining which traits are
optimal, necessitating manual dealing with adversarial
samples [3], as the detection accuracy is largely dependent
on the optimal selection of involvement in this technique [4].
Because of the feature drift issue [5], these manually
extracted features are more prone to becoming out of date and
becoming targets for assaults.

In contrast to ML, DL algorithms can automatically extract
packets from raw packets without the need for feature
engineering [6]. A few studies employed CNN and LSTM
networks with natural language processing (NLP) techniques


https://orcid.org/0009-0003-1385-8137
https://orcid.org/0000-0002-6152-8189
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsse.150803&domain=pdf

to automate feature extraction using DL-based approaches
[7]. While the use of NLP in IDS is not new, it is currently
limited to hand-crafted feature datasets such as NSL-KDD,
Trace, and others that are prone to feature drift.

1.2 Motivation

Understanding the viability of sophisticated NLP
approaches for feature extraction from raw data packets
rather than analyzing hand-crafted feature datasets is the
driving force behind this project, which is motivated by the
difficulties encountered with ML and DL methods. This
concept is covered in the study [8], where notable results on
the DARPA 2009 dataset are obtained by processing the raw
packets to produce vectors used for categorization. The
proposed strategy is expected to perform well even in the
presence of newer types of traffic data that are not included
in the dataset samples. These sample sets that are completely
new are considered to be adversarial samples, and if the
model performs well with the set of adversarial samples, then
the problem of feature drift is addressed, and thus, it can
perform well. In this study, we try to tackle the issue of
feature drift and investigate the impact of including temporal
information in the DL model, drawing inspiration from the
Packet2Vec work. Since the Word2Vec approach used in the
study [8] produces more duplicated samples and we also try
to use a hybrid embedding approach and observed the
variation in performance.

1.3 Contributions

Our proposed methodology emphasizes the analysis of
complete packet data, moving beyond reliance on manually
crafted features. This strategy employs automatic feature
extraction techniques to enhance the accuracy of
categorization.

The process consists of several distinct phases:

1. N-grams: In this initial phase, we convert the entire
packet data into a sequence of words that includes IP
address information, enabling us to capture the
temporal dynamics present in the data. By
representing packets as n-grams, we provide
important context that aids in understanding the flow
and interaction of network traffic, ultimately
contributing to more accurate categorization.

2. Embeddings: Following the extraction of n-grams, we
utilize lexical embeddings along with an attention
mechanism from NLP. This step involves generating
vector representations for each sequence of n-grams.
The attention mechanism allows the model to
concentrate on the most relevant portions of the data,
effectively emphasizing key characteristics that
enhance the representation of the packets.

3. Feature Vectors: After creating embeddings, we
compute a comprehensive vectorized representation
for each packet. This is done by averaging the word
embeddings derived from a combination of Global
Vectors for Word Representation (GloVe) and the
attention mechanism. The result is a succinct
representation of each packet that captures its critical
features in a format suitable for further analysis.

4. Classification: In the final phase, we take the
vectorized representations of the packets and input
them into a transformer architecture, which is
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specifically designed to process sequential data. This
allows the model to capture essential temporal
information necessary for distinguishing between
attack and non-attack patterns in network traffic. By
leveraging this advanced classification technique, we
aim to enhance our capability to effectively identify
and categorize network threats. This refined
methodology facilitates a deeper understanding of
network traffic behavior, ultimately improving our
ability to detect anomalies and potential security
threats.

One of the most crucial fields of research is intrusion
detection as it is essential to safeguarding people's and
organisations' safety and privacy. But according to recent
studies from Symantec Corporation, the number of IoT-based
assaults has grown by about 20% [9], and similar findings
have been made regarding malware for Macs and mobile
devices. These statistics suggest that attackers have become
more coordinated. We see our contribution in this
circumstance as a strong defense against the attackers who
are always changing. Today, it is necessary to identify
assaults quickly and cheaply with the least amount of
interaction. Since our method depends on the auto feature
extraction method, it may improve classification accuracy
and differentiate bot activity from human conduct.

This document offers an in-depth review of n-gram
encoding techniques and their application for automatic
feature selection across various fields, including image
processing. The entire structure of the paper is structured as
below:

In Section 2, we delve into these techniques, discussing
their advantages and how they can significantly enhance the
performance of IDS. A detailed exploration of the
methodology behind n-gram encoding is provided,
highlighting its effectiveness in extracting relevant features
from complex datasets.

Section 3 presents a comprehensive overview of the entire
pipeline designed to manage and process invasive raw data.
This section outlines the steps from data collection and
preprocessing to feature extraction and model training,
emphasizing the challenges encountered at each stage and the
strategies implemented to overcome them.

In Section 4, we conduct a thorough analysis of the results
obtained from the implementation of the n-gram approach.
This section evaluates its effectiveness by comparing the
overall processing costs and time required to analyze
intrusion data with those of other methodologies. We include
statistical data and performance metrics to support our
findings and provide insights into the operational efficiency
of this technique.

Finally, Section 5 offers concluding thoughts on the
proposed n-gram approach, summarizing its strengths and
weaknesses. We also discuss potential future directions for
research in this domain, suggesting improvements and new
applications that could further enhance the effectiveness of
n-gram encoding in feature selection and IDS.

2. RELATED WORKS

Text analysis and image processing have advanced
significantly with automatic feature extraction. In text
processing, word embeddings are frequently created without
the requirement for manual feature extraction using several



models, Word2Vec, GloVe, fastText, and BERT [10]. The
created embeddings have grown to be tailored for other
domains, such as the one indicated in the study [11], since
they can solve a variety of text processing-related issues. To
give the embedding models a thorough understanding of
medical knowledge that cannot be attained by the training of
a small corpus of medical data, the embedding model with
the medical knowledge base.

The Word2Vec model found its application in
understanding the emotions of the text in various domains,
like the one mentioned in the study [12]. Similar to text
processing, automatic feature extraction is highly beneficial
in image processing for the improvement of object detection
and classification analysis. The Word2Vec is used in the
studies [13, 14] for detecting objects in the sea and for food
classification. This shows that the use of embedding models
is greatly beneficial for solving various types of classification
problems.

Since the problem of intrusion detection is a classification
problem with the packet, including the textual form of traffic
data, the usage of embedding models in the IDS can be
beneficial not only for the improvement of detection
accuracy but also for reducing the associated cost and
response time. A similar concept of ours is proposed in the
study [15] called Deep Packet, which uses raw traffic packet
data as input and solves the problems of traffic type
identification and application identification. In a deep packet,
the entire packet is fed into the DL model for the auto-
selection of features; this method is not ideal for the
complicated multiple-channel input types.

The concept of auto-extracting features that give
importance to the semantic relationship is presented in the
study [16], where embedding models like Word2Vec and
Glove are initially used and the challenges associated with
the auto-extract are verified so that the more appropriate
embedding model for packet analysis is identified. Though
the automatic feature extraction is done, one of the significant
problems with this approach lies in identifying its suitability
in a multiclass environment. The word embedding approach
is used in malware analysis [17]. In contrast to previous
methods discussed above, the features recovered through the
use of the Hidden Markov Model (HMM) for the embedding
vectors in this study should lead to an improvement in
classification accuracy when compared to the straight opcode
sequence data. Thus, this research suggests that embedding
vectors are a viable substitute for the feature engineering
method when it comes to malware identification.

The transformer model BERT is another model used
widely for the detection of anomalies in intrusive data. The
problem of data imbalance is addressed using transfer
learning, and the classification is carried out using the BERT
model [18]. The BERT model is further enhanced to make
the transformer model lightweight [19]. Though the BERT
model is used in the identification of anomalies, it is not used
here for the auto-feature extraction. Packet2Vec [8] presents
the automated feature extraction procedure in which the raw
packet is transformed into a sequence of words, upon which
the Word2Vec model is used for the identification of frequent
n-grams, and then the classification of attacks is carried out
using a supervised ML algorithm. Similar to fast text
processing, an approach called FastPacket [20] enhances the
Packet2Vec by performing encoding on the raw data in
packet format.
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Though the idea of creating an auto-feature extraction
model is not new, as observed in the literature survey we have
done so far, certain research gaps are identified and they are
as follows:

1. The current DL models that perform the process of
auto feature extraction include the entire packet. Thus,
when the complexity of the packet increases with
multiple channel inputs, the methods like Deep Packet
cannot perform the extraction effectively.

2. As the number of target classes increases, the auto
feature extraction needs to consider the semantic
importance of the packet. However, this creates a lot
of complexity as there exists similar packet
information for multiple classes.

3. The Packet2Vec [9] excludes the source of
information, like the port and IP number from the
packet; however, this is equally important as the
context of the information, as a quick identification of
the repeated traffic from the same IP or port could also
sometimes be an attack. If this information is tracked
promptly, a distinction between real and fake traffic
can be identified, and this is what is addressed in our
proposed work.

3. PROPOSED SYSTEM

In this section, the overall approach for the automatic
feature extraction and classification of the IDS is presented.
As shown in Figure 1, the overall approach is carried out as
multiple phases, and under each phase, we have achieved
parallelization. As this work attempts to identify the auto
extraction of features and then perform the classification, it
is important to identify the presence of an attack in lesser time
and lesser computation cost irrespective of the volume and
variety of the data. Thus, each of the phases mentioned in the
architecture requires parallelization and that is performed in
this work using Spark. The phases are as follows:

3.1 N-gram construction

The initial phase of the auto-feature extraction process for
intrusion traffic data involves creating a comprehensive
dictionary that maps n-grams to integers. This approach is
consistent with traditional n-gram methods commonly used
in text processing; however, its application in the realm of
intrusion detection traffic remains largely unexplored. This
lack of exploration is primarily due to the complexities
associated with the vast volume and diverse nature of the data
typically encountered in this field. Given the emergence of
big data, distributed processing techniques are particularly
effective solutions.

Making a dictionary, which is needed to create the integer
vector, is the first stage. Following that, word embedding is
done, and the resulting altered vectors are known as feature
vectors.

Algorithm 1: N-gram Dictionary Creation

Input: User input traffic in the form of PCAP files
that will serve as the training set (75)

Each T, includes multiuser traffic with multiple
packets

Packs denotes the individual packet inside a traffic
users




Output: Dictionary mapping n-gram to numerical
form

Process:
Step 1 Load the PCAP files into the spark dataframe

Step 2 Call ngram procedure ()

Step3 for all usery; € Ty do

Step 4 for all pack, € usery do

Step 5 initialize n gram generator ngram <

ngramgenerator(pack;)
Step 6 for all ngram € ngramdo
Step 7 assign to dictionary D and increment the counter
Step 8 end for
Step 9 end for
Step 10 end for
Step 11 Build the pipeline
Step 12 Sort the dictionary D
pipe < sortp
whilei < ngramsize do
D[pipelil]
i++

Step 13

Step 14
Step 15

.*»

User Generated Traffic

end while
extract D

fegrams on the
PCAP Files basis of 2 bytes

l Embedding Layer

Vector Input
Dictionary Files

Classic Vector
Embedding Using Word 2|
Vec/Glove

Latent Semantic
Indexing Embedding
(LSI)

Paragraph Vector
Embedding

Averaged Word Embeddings
Classification Layer

Feature Vector

Port Number

Tp Number

DataSet

Classifier
output

Transformer
Network

Target Vector
Attack

Normal

Figure 1. Architecture for identifying IDS attacks

The process begins by iterating through each packet
contained in the packet capture (PCAP) files. For every
packet, an n-gram analysis is performed, generating
subsequences of n items from the data stream. After
processing each packet, a loop counter is incremented,
ensuring systematic traversal through the dataset. The size of
each n-gram—determined by the parameter 'n'—is crucial, as
it acts as a hyperparameter that can be adjusted to optimize
the model’s performance. This n-gram generation process
needs to be applied to all PCAP files in the dataset. However,
this repetitive task can be resource-intensive, consuming
significant amounts of memory and processing time. To
alleviate these constraints, the algorithm is designed to utilize
distributed computing capabilities. By distributing the
packets across multiple processing units, the task of
generating n-grams can be executed in parallel, thereby
accelerating the overall computation.

The output of the n-gram generation algorithm is a vector
composed of various grams, which are then combined to
form a single, cohesive vector. This consolidated vector is
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subsequently mapped to the previously constructed
dictionary, enabling efficient data representation and
retrieval for further analysis. The comprehensive
methodology and steps involved in the n-gram generation
process are outlined in the accompanying algorithm, which
serves as a guide for implementing this structured approach.

A dictionary containing the necessary data is created using
Algorithm 1 to transform PCAP files into the appropriate
numeric format. The training set here is the user traffic data
that is generated from multiple users with varied types. This
variety of traffic and packet are denoted as user; and pack;.
Two loops are thus used for iterating the entire type of traffic
from multiple users, within which the conversion of the
integer files that are indexed at the packet level with the help
of the dictionary denoted as list,,.

3.2 Embedding layer

The indexed integer file is then processed for the creation
of embeddings. This process is the most crucial step, as this
is the phase where the intrusion data is made to fit into the
transformer architecture. The corpus of packets gets
converted to vectors at this stage and here the embeddings
are carried out using the conventional method and semantic
work embedding. For the conventional method, Word2Vec
[21] is used and the process aims to obtain the vector
representation for each of the n-grams in the PCAP traffic
file. Semantic embedding is obtained using the latent
semantic indexing (LSI) and paragraph vector. Algorithm 2
explains the general procedure involved for the embedding.

Algorithm 2: Vector Generation Using Various
Embedding Approaches

Input: set of n gram files

Output: Updated Model embeddings

Procedure

List; « TRUE
Step 1  Set the initial vale of the model to be true
Step2 foralllin List; do
a. if (List; « TRUE
Embed; « generatemodel(l)
Set List; « FALSE)

b. Else
Embed; < generatemodel(l)
endif
c. End for
d. Output (Embed;)

As mentioned in Algorithm 2, the vector representation in
the form of an embedding is obtained by processing the
dictionary-converted integers. Thus, after the embedding, a
matrix is obtained with dimensions including the matrix size
x embedding size, and each row determines the vector of n-
grams. This matrix is used consecutively for the next iteration
with different integer forms of a PCAP file. The embedding
matrix is mathematically obtained using Eq. (1) for various
models.

P(pcapcontext = Contextlpcapcenter = Center)
T
_ exp (UeC:lcontextveczcenter)

X

(1)

window € vocabexp

T
(vectl ) inaowVeCt2center)



The Word2Vec model considers an n-gram and tries to
identify its closeness with other n-grams in terms of the
distance value. So basically, given a center word, we aim to
maximize the probability of predicting the context word
given the center word. As far as the PCAP files are
concerned, the center word is not chosen randomly as we do
in the regular Word2Vec; instead, the center word is chosen
based on the layer. As far as the intrusion PCAP traffic file is
concerned, certain attributes get generated from each layer.
If we consider the datalink layer, the IP information and port
information are generated. So, the center word for each of the
layers is chosen, and the context concerning the center word
is identified for the prediction of the next word.

Mathematically if we consider the center position of the
PCAP as pcap enter and the context word as pcap.ontext
then the window is defined based on the layer denoted as
pcapywinaow then the Word2Vec basically look for attributes
from pcapcenter — PCAPwindow and PCaPcenter *
DCaPyindow for identifying their context. The relevance of
the context word is predicted to that the center word is
identified with the computation of the probability as
mentioned in Eq. (1), where vecl and vec2 represent the two
vectors of each entry of the n-gram. As observed from Eq.
(1), since the dot product of context and center is taken, we
can find the similarity between them, and the higher
probability denotes the higher similarity, and hence the
features can be auto-extracted.

To strengthen the embeddings based on the contextual and
semantic basis, the classification model has not only been
trained with the embeddings from Word2Vec, but it is also
supported by other embedding methodologies as well.
Paragraph vector embeddings have also been done in this
work because it is important that the model not ignore the
information relative to the context of the word. In this
method, the words are replaced by the document ID so that
the same word with different meanings in different contexts
is well identified.

How this incorporation benefits better feature extraction
can be understood with a sample scenario. As far as this
intrusion data is concerned, PCAP traffic includes the n-
grams frame, time relative and tcp. time relative, within
which time relative is the same word used in both cases;
however, the difference comes from the origin of this feature.
As the name denotes, frame.time_relative originates from the
data link, and tcp.time relative comes from the transport
layer. This understandability is also needed for the model, so
the paragraph vector embeddings are also considered for the
model training. Except for the inclusion of the document, the
probability computation uses the same probability
computation as mentioned in Eq. (1).

The final embedding design that is used in this work is the
LSI to further strengthen the embeddings generated based on
the semantics. Since this method aims to find out the
relevance of the words and documents using frequency
computation, this can assist us in giving a more crisp feature
set. In this case, the document group defines the category,
and the words denote the actual parameters in the PCAP
capture. So, for instance, the presence of a frame.
relative _time and its occurrence in the training samples are
computed for the identification of its relevance to that of the
category using Eq. (2).

D]

log——1_ 2
X9 s, 2)

Term frquency = freq; ;
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where, freq; ; represents the occurrence of the parameter in
the category, |D| denotes the entire PCAP dataset, and the t;
denotes the total number of times the parameter is used in the
entire PCAP dataset.

After the extraction of embeddings using all three
methods, the final word embeddings are needed in a fixed-
size vector representation for all the considered packets. This
is created by the simple averaging approach, as shown in Eq.

Q).

Xeep emb(t)
featureg,, = T

€)

where, P denotes the packet, emb(f) denotes the individual
embeddings of each approach and t € P represents the n-
grams of the packet. The procedure for obtaining the feature
vectors is mentioned in Algorithm 3.

Algorithm 3: Aggregation Process of the Word
Embeddings
Input: 3 set of files as 2D vector 1% 2 and the word
embeddings D obtained from Algorithm 1
Output: Single vector (FV)
fori « 1|1 x Z|do
v« 1 x ?[i]
forj « 1|1 x Z|do
v « vu[j]
forallinteger
DeD+v

endfor
D

D« —
vV
FV[jl < D
endfor
write(FV)
endfor

Thus, with the simple averaging of the embeddings, a
single representation for the entire packet is obtained, making
it suitable for further processing. The format obtained as a
feature vector using the embedding method is suitable to be
used in any machine or DL model. Thus, the output of this
embedding layer results in a set of files that are the auto-
extracted feature vectors of each entry in the PCAP file and
another set of files that are multiclass label files denoting the
various DoS attacks and the normal class of data.

3.3 Attention blocks

In our study, we focus on automating feature extraction
while also prioritizing cost minimization to improve
computational efficiency. To achieve this, we have
incorporated an attention block into our proposed system.
This attention block is essential for constructing a context
vector, which is generated from a streamlined set of feature
sets obtained from the embedding layer.

As illustrated in Figure 2, each feature produced during the
embedding process is fed into the attention block. The
purpose of this block is to create the context vector based on
the relevance and significance of each embedding in relation
to the targeted class we are analyzing. This approach ensures
that only the most important features contribute to the
classification process, resulting in more efficient



computations.

Within the attention mechanism framework, the generated
embeddings are considered as keys. The mechanism utilizes
two input sequences and a query to identify the most relevant
embedding for the task at hand. In our implementation, the
two input sequences consist of "feature frame.time_relative"
and "tcp.time relative." These sequences provide crucial
temporal information about the frames and TCP connections,
respectively. Meanwhile, the query is designed to determine
the class to which a specific observation belongs.

To facilitate this classification, we employ a compatibility
function, which aids in assessing how well each embedding
aligns with the given class. For the calculation of
compatibility, we define a straightforward similarity
function, as detailed in Eq. (4). This function allows us to
quantify the degree of similarity between the embeddings and
the query, guiding the attention mechanism in selecting the
most relevant features for accurate classification. Through
this method, we aim to enhance both the effectiveness and
efficiency of our proposed system.

f(a.k) = (K,q) 4)
where, K and ¢ are the key and query. The process of the
attention block is also illustrated in Figure 2, which helps in
identifying the most relevant feature vectors.

A —

= tep.time_relative
frame time_relative

tep.time_relative
frame time_relative

Figure 2. The overall mechanism used in the attention
block for the identification of the most relevant feature
vectors

3.4 Classification network

With the help of the embedding layer, the lexical features
of the PCAP file are constructed using the various language
models and the attention block. These features and label
vectors are used for the training of the classification network
for the detection of normal and abnormal traffic. Algorithm
4 details the overall training and testing of the classification
network.

Algorithm 4: Attack Traffic Identification
/* String Extraction */

Step 1  for all packets of normal traffic m in the PCAP
file do
a. nm <« extract strings for normal traffic
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b call Algorithm1()

Step 2 end for

Step 3  for all packets in attack traffic a in PCAP file do
a. dos « extract strings for attack traffic

Step 4 end for

/* Perform steps for the embedding’s generation*/
Step 5 enm « selecting frequent words from m

Step 6 edos « selecting frequent words from a

/* Construct a Word2Vec model*/

Step 7 Construct a Word2Vec model for enm,edos using
Algorithm 2

/* Construct a Program vector model*/

Step 8 Construct a program vector model for enm,edos
using Algorithm 2

/* Construct a LSI model*/

Step 9 Construct a LSI model for enm,edos using
Algorithm 2

/* Apply Aggregation and Attention*/

Step 10 for all normal traffic nm

a. call Algorithm 3()

Step 11 end for

Step 12 for all attack traffic dos

a. call Algorithm 3()

Step 13 end for

/* Classification */

Step 14 Train transformer(normal,attack)

Step 15 Test transformer

Step 16 for all unknown vectors do

Step 17 label(normal,attack)

Step 18 end for

Step 19 return

The final stage of this effort is the detection of assaults, as
method 4 indicates. A transformer network is used for this
purpose for the following reasons:

1. Transformer networks can gather a large number of
contextual and structural bits of data in the pre-
training stage, which improves their ability to identify
attacks efficiently and raises the model's
generalization capacity.

2. As far as the dataset is concerned, there exists an
imbalance where the number of non-attack samples is
slightly higher than the number of attack samples, and
hence, the non-attack samples are learned effectively.
Since the transformer network can effectively learn
these differences and can effectively balance the
imbalance, this is another reason for choosing this as
the base network for performing the classification of
PCAP intrusive data.

3. The transformer network is ideal to be used in the
detection of anomalies under prompt-based learning,
as the task downstream is not dependent on the layers
but rather on the keys.

BERT is the transformer model that is used in this work,
and the overall process is carried out using three steps in the
form of preprocessing, training, and score computation.

Many IDS rely on existing datasets for training and
evaluation; however, this approach often proves inadequate
when applied to real-world scenarios. This limitation arises
because these systems have typically not been tested against
new or diverse sets of cyberattacks. To ensure robustness and
reliability, it is essential to evaluate how an IDS performs
when faced with adversarial samples—data inputs that have
been intentionally altered to deceive the ML algorithms into



making incorrect classifications. Adversarial examples are
created by making small perturbations to the original data,
which can lead to significant misclassification by the system.
In our approach, we employ the Jacobian Saliency Map
Attack (JSMA) to generate these adversarial samples. JISMA
is a sophisticated technique that emphasizes feature selection
by identifying the parts of the input data that most
significantly affect the model's decision-making process. The
process begins with calculating the saliency values of the
features in the input data, which indicate their importance in
the model's predictions. The algorithm then iteratively
applies perturbations to the features, starting with those that
have the highest saliency scores, while keeping the number
of altered features to a minimum. This targeted strategy not
only helps generate effective adversarial examples but also
enhances our understanding of the system's vulnerabilities,
allowing for improvements in its overall resistance to
malicious attacks. By rigorously testing our system using
these adversarial samples, we aim to strengthen its ability to
detect and respond effectively to new and evolving threats in
dynamic environments.

3.4.1 Dataset and pre-processing

This section offers a detailed overview of the dataset
generated through the MQTT sensors simulation. The dataset
consists of five distinct recorded scenarios: one that
represents normal operational conditions and four that depict
various types of cyberattack attempts. Each of the four attack
scenarios is documented independently, facilitating a
thorough examination of the characteristics and impacts of
each attack. This dataset is particularly advantageous when
compared to older IDS datasets, such as NSL-KDD and
CICIDS 2017, as it more accurately reflects patterns of
normal network traffic. The authenticity of this dataset is
crucial because it enables more effective training and testing
of intrusion detection models in realistic environments.

tep_flags wem 0.087789127

tep_len  —— (.373099
0.995631
matt_conflag_uname 0993648
] 0.947579
E matt_hdrflags  ee— (375797
E 0.350425
v matt_msg  e—— (523738
I?: 0.716777
3 mgtt_msgtype  e—— (),375797
o e (),5590425
matt_gos 0.837003
0.399621
maqtt_ver 0.990425
= (.027805
0 0.2 0.4 0.6 08 1 12

Importance Values

Figure 3. Visualization of the features extracted

The original raw dataset comprised unstructured packet
characteristics along with both unidirectional and
bidirectional flow information. Due to the complexity
inherent in this data, it was essential to restructure and format
the layers clearly, designating a transport label for both User
Datagram Protocol (UDP) and Transmission Control
Protocol (TCP) traffic. In preparing the data for analysis, the
preprocessed sequences underwent training using the
embedding models discussed in the section dedicated to the
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embedding layer. Notably, this training was conducted
without the use of the BERT tokenizer, allowing for a
focused examination of the specific data structures within the
context of this simulation. The embedding process was
carefully designed to ensure that each layer-level feature is
effectively learned from the outset, thereby optimizing the
performance of the models built upon this dataset. The
features extracted and their importance is shown in Figure 3.

4. EXPERIMENTAL RESULTS
4.1 Dataset

For carrying out this study, the MQTT-IOT-IDS2020
dataset is used as the benchmark so that a fair comparison can
be made with the other existing ML and DL approaches that
were used in the literature and to understand the contribution
of the embedding approaches ineffective handling of the
unknown traffic. The sample distribution percentage and the
classes are shown in Figure 4. As shown in the figure, there
is a data imbalance as the normal traffic samples are more
than 70%. However, this is not a concern in this work because
we are taking the raw PCAP and performing the feature
extraction based on layers. The data imbalance and the model
generalization are well-balanced in this work.

# Nomal # Scan-U » Scan-A © Sparta ® BruteForce

BruteForce, 5.82%, 6%

Sparta, 5.60%, 6%,;//////7/
7

Scan-A, 8.03%, 8% (

Scan-U, 4.52%, 4%

Figure 4. Sample distribution percentage of the dataset

The training and testing ratio is set to 70:30 and there
existed redundant data as the feature extraction was
automatically done using the PCAP raw files. Here, the
various categories of the attacks are considered as a single
class named as attack class and hence this becomes a binary
classification problem.

5. RESULT ANALYSIS

Since this work concentrated on building a pipeline to
solve the problem of feature drift, raw PCAP with auto
feature extraction and classification was performed. Thus,
the results are analyzed in various aspects, and this section
lets us understand the contribution of this pipeline in dealing
with the feature drift problem of the IDS so that the
adversarial samples are well handled.



5.1 Performance analysis

The performance analysis of this approach is verified with
the classification results obtained in the form of the
evaluation metrics like Accuracy, Precision, Recall, and F1-
score, and they are defined using the equations from Egs. (5)
to (8).

TP

- 7
TP +FN M

Recall =

2 X recall X precision

F1-score = ()

recall + precision

Two methods are used to do the experimentation in this
case. The MMQT dataset with hand-crafted features was first

Accuracy = TP +TN (5) used, and the assessment criteria listed above were used to
TP+TN +FP+FN assess the dataset's performance. The transformer model
p produced superior classification results with its handmade
Precision = 6 characteristics; Table 1 displays the findings.
recision TP T FN (6)

Table 1. Performance result analysis for the MQTT dataset with varied ML and DL models

Dataset  Classifier Accuracy  Precision Recall F1-Score
MQTT  Transformer 99.91 99.90 99.90 99.90
MQTT SVM 94.35 93.21 94.21 94.35
MQTT  Ensembled 99.88 99.89 99.88 99.88

Table 2. Meta-analysis of the various detection techniques used on various datasets

Method Feature Extraction Dataset F1-Score
Dugat-LSTM [22] Principal Component Analysis (PCA) NSL-KDD 0.99
Two-layer [23] Common Correlated Feature Selection (CCFS) NSL-KDD 0.92
HAD-IDS [24] CL-GAN NSL-KDD, CICIDS2018, HAD-IDS 0.96
TS-IDS [25] Graphical Neural Network (GNN) CICIDS2018, BotI-\II](;]l“,STon-IoT, UNSW- 0.95
ADESSA [26] Democratic colearning NSL-KDD, SWAT 0.98
Ensembled [27] Hybrid AWID 0.99
Packet2Vec [28] NLP Darpa 0.65
NLP [22] Word2Vec MAWI 0.82
ML [29] PCA MMTQ 0.90
DL [30] Neural Network MMTQ 0.92
Proposed Hybrid MMTQ 0.99

The problem here is when the newer packet arrives with a
whole set of entries that do not match those of the handmade
features. As Table 1 illustrates, the detection rate utilizing the
handcrafted features in various models is exhibiting superior
results. As a result, the antagonistic samples are frequently
not handled well. Therefore, each kind of data that is received
ought to automatically extract its characteristics before
classifying it. In the second experiment, we used the
suggested pipeline to test, and the loss value was used to
assess the testing and training efficiency. The findings are
displayed visually in Figure 5. As shown in Figure 5, training
loss and accuracy were observed in varied cases. In the first
case, only the unidirectional features were considered, and
their training loss and accuracy were measured. As far as the
first case is concerned, since there is an absence of
acknowledgment, it opens doors for many forms of attack.
However, using the embedding approach, due to the correct
identification of features that contribute mainly to attack
detection, the accuracy and loss were very good. Similar
results were observed for Case 2, considering only the biflow
features. The amount of accuracy declined a little bit when
the uniflow and biflow were combined, which might have
resulted from the existence of duplicate features. The
confusion matrix after the inclusion of adversarial samples is
shown in Figures 6 and 7 for the training and testing sets.

Table 2 shows the F1-score of the proposed pipeline and
eight additional models that are a combination of the
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supervised, semisupervised, and unsupervised learning
approaches. It is important to note that the performance of
these models is obtained from their respective original
studies. The results indicate that the handcrafted features set
on varied data exhibited good accuracy. However, there is no
notable evidence in this work regarding how the adversarial
samples are dealt with. Except for the ADESSA, other works
did not make any notable points about the data imbalance
issues. And in the case of the two-layer network, which is
formed by the combination of KNN and SVM, there was the
highest number of false alarms.

Since this work concentrated on the auto feature extraction
using NLP techniques, the Packet2Vec and NLP, though
using a different dataset, were verified for their F1-scores,
and the Packet2Vec showed very low accuracy among all
three approaches. Though the comparison is made with
different datasets since our concentration is focused on the
consideration of the feature drift problem, the PCAP was
sampled using the Euclidean Jacobian Saliency Map [1] and
those newer samples were evaluated, and their results were
also verified through the performance analysis, and the F1-
score was observed to be 0.94. So, the problems that are
generally faced with training the model using handcrafted
features are substantially reduced with the auto-feature
extraction approach. Thus, this approach can handle the
problem of feature drift effectively. Figure 8 presents the
training and testing accuracy with the adversarial samples.
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Figure 5. Performance analysis of the proposed pipeline in terms of the accuracy and loss, considering varied features
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Figure 6. Confusion matrix for the adversarial sample
inclusion in the training set

5.2 Processing time

Another important aspect of carrying out this work is to
reduce the processing time of the intrusion data, as the
intrusion data is generally huge in volume and variety. So, in
this approach, distributed processing is achieved using Spark.
Though the testing time is less than that of the training time,
since this approach comprises several steps, the way this is
handled in Spark and how that contributed to the lesser
processing time is reviewed in this section. Reading the
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Figure 7. Confusion matrix for the adversarial sample
inclusion in the test set

PCAP file is a serial operation; however, the creation of
embeddings needs to be performed in parallel, and thus, all
the other subsequent operations that are performed using the
embedding and classification layers are distributed using the
Spark environment. The processing times for the spark-based
operation and serial operation are presented in Figure 9, and
the results show that there is a considerable amount of time
reduction when the processes are distributed, resulting in the
overall processing time.
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Figure 9. The time taken for the testing of one PCAP file
and to obtain the classification results as the processes are
distributed the time taken is also considerably reduced

6. CONCLUSIONS

This system, utilizing Spark-based contextual embeddings
for automated feature extraction in intrusion detection,
presents an innovative pipeline designed for the effective
management of PCAP intrusion files, a vital aspect of
cybersecurity monitoring and analysis. The proposed
pipeline utilizes a robust methodology to transform network
packets into vector representations, eliminating the need for
predefined handcrafted features. This flexible and adaptive
analysis of network traffic allows for the effective detection
of intrusions based on the patterns identified within the
generated vectors. At the heart of this pipeline is a BERT-
based contextual learning model, which has been skillfully
integrated for traffic classification.

This model is proficient in understanding the context of
both normal and abnormal traffic data, capturing complex
patterns and behaviors that may indicate potential threats.
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Rigorous testing was conducted using samples generated
through the Euclidean Jacobian Saliency Attack, and the
model demonstrated remarkable performance metrics,
including a low prediction error and a high predictive
probability value, thus affirming its reliability for real-world
applications. Additionally, the proposed method underwent
systematic evaluation alongside various alternative
supervised and unsupervised learning approaches. The
results indicated that our pipeline consistently outperformed
these methods, even when relying on auto-extracted feature
sets with an overall accuracy of more than 99% with minimal
false alarms. The introduction of an attention layer further
enhanced efficiency by optimizing the model's focus on
relevant features while reducing computational costs.

A significant advancement of this work is the
implementation of distributed processing using Apache
Spark. This technology has streamlined processing
capabilities, significantly decreasing the time required for
analysis without compromising the quality of results. Despite
the promising outcomes related to feature auto-extraction,
several areas for future enhancement have been identified.
Notably, the current approach has framed the classification
problem as binary, which restricts its applicability in more
complex scenarios. Therefore, it is essential to extend the
methodology to  support multiclass classification.
Additionally, while the method was validated using a single
dataset, it is crucial to evaluate its effectiveness across a
wider range of common intrusion datasets to establish its
generalizability and robustness. These considerations will
not only inform the ongoing development of our approach
but also shape future research directions in the field of
intrusion detection and cybersecurity.
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