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The increasing requirement for the fast and accurate detection of abnormal 

network traffic has led to an increase in the popularity of automated intrusion 

detection systems (IDS). Despite advancements in machine learning (ML) and 

deep learning (DL) for anomaly detection, many IDS models rely on 

handcrafted features. This reliance results in the feature drift phenomenon, and 

the old handcrafted features will become outdated to accommodate newer attack 

patterns, diminishing detection performance. Furthermore, if traditional ML or 

DL methods frequently involve computing with large amounts of network traffic 

which is computationally expensive and does not allow real-time performance. 

To address these limitations, this paper presents an IDS pipeline that applies 

natural language processing (NLP) techniques to construct a new surface of 

automatic feature extraction from network data. This mitigates feature drift and 

maintains the ability to adapt to evolving behaviours in maliciousness. The 

pipeline combines an attention mechanism with NLP models, including 

Word2Vec, program vector, and latent semantic indexing (LSI) to produce 

powerful hybrid feature vectors. The BERT-based classifier is trained with these 

vectors, and its performance in terms of accuracy, precision, recall, and F1-score 

is evaluated. Experimental results demonstrate the superior performance of the 

proposed approach over previous methods, achieving an F1-score of 0.99 with 

automatically extracted features. Integrating Apache Spark's processing power 

makes our system fast enough to be good in case of real-time intrusion detection, 

and also scalable. 
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1. INTRODUCTION

Smart cities, smart houses, etc., have made our lives more 

intelligent. One of the main requirements for being intelligent 

is being connected, and most of the items we use daily are 

linked thanks to networks, which makes life easier. The shift 

in technology is a good thing, but increased connection also 

makes hackers more likely to target security features like 

availability, confidentiality, and integrity. Understanding the 

locations of incoming and outgoing traffic on any network is 

crucial for handling different kinds of security assaults, and 

this is often accomplished through the use of an intrusion 

detection system (IDS). Though the current IDS uses 

machine learning (ML)/deep learning (DL)-based algorithms 

for segregating normal and abnormal traffic, one major 

concern with them is their inability to understand the new 

forms of attack, resulting in a decrease in detection accuracy 

and an increase in the number of false alarms [1]. 

1.1 Challenges 

Most of the ML models used for improving the detection 

accuracy of the classification model are dependent on the 

features that are used for classification. As a result, feature 

reduction techniques are used in ML techniques [2] to 

increase detection accuracy. Although it functions well for 

the current samples, they encounter problems in terms of 

generalization when the features. Furthermore, domain 

expertise plays a crucial role in determining which traits are 

optimal, necessitating manual dealing with adversarial 

samples [3], as the detection accuracy is largely dependent 

on the optimal selection of involvement in this technique [4]. 

Because of the feature drift issue [5], these manually 

extracted features are more prone to becoming out of date and 

becoming targets for assaults. 

In contrast to ML, DL algorithms can automatically extract 

packets from raw packets without the need for feature 

engineering [6]. A few studies employed CNN and LSTM 

networks with natural language processing (NLP) techniques 
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to automate feature extraction using DL-based approaches 

[7]. While the use of NLP in IDS is not new, it is currently 

limited to hand-crafted feature datasets such as NSL-KDD, 

Trace, and others that are prone to feature drift. 

 

1.2 Motivation 

 

Understanding the viability of sophisticated NLP 

approaches for feature extraction from raw data packets 

rather than analyzing hand-crafted feature datasets is the 

driving force behind this project, which is motivated by the 

difficulties encountered with ML and DL methods. This 

concept is covered in the study [8], where notable results on 

the DARPA 2009 dataset are obtained by processing the raw 

packets to produce vectors used for categorization. The 

proposed strategy is expected to perform well even in the 

presence of newer types of traffic data that are not included 

in the dataset samples. These sample sets that are completely 

new are considered to be adversarial samples, and if the 

model performs well with the set of adversarial samples, then 

the problem of feature drift is addressed, and thus, it can 

perform well. In this study, we try to tackle the issue of 

feature drift and investigate the impact of including temporal 

information in the DL model, drawing inspiration from the 

Packet2Vec work. Since the Word2Vec approach used in the 

study [8] produces more duplicated samples and we also try 

to use a hybrid embedding approach and observed the 

variation in performance. 

 

1.3 Contributions 

 

Our proposed methodology emphasizes the analysis of 

complete packet data, moving beyond reliance on manually 

crafted features. This strategy employs automatic feature 

extraction techniques to enhance the accuracy of 

categorization.  

The process consists of several distinct phases: 

1. N-grams: In this initial phase, we convert the entire 

packet data into a sequence of words that includes IP 

address information, enabling us to capture the 

temporal dynamics present in the data. By 

representing packets as n-grams, we provide 

important context that aids in understanding the flow 

and interaction of network traffic, ultimately 

contributing to more accurate categorization.  

2. Embeddings: Following the extraction of n-grams, we 

utilize lexical embeddings along with an attention 

mechanism from NLP. This step involves generating 

vector representations for each sequence of n-grams. 

The attention mechanism allows the model to 

concentrate on the most relevant portions of the data, 

effectively emphasizing key characteristics that 

enhance the representation of the packets.  

3. Feature Vectors: After creating embeddings, we 

compute a comprehensive vectorized representation 

for each packet. This is done by averaging the word 

embeddings derived from a combination of Global 

Vectors for Word Representation (GloVe) and the 

attention mechanism. The result is a succinct 

representation of each packet that captures its critical 

features in a format suitable for further analysis.  

4. Classification: In the final phase, we take the 

vectorized representations of the packets and input 

them into a transformer architecture, which is 

specifically designed to process sequential data. This 

allows the model to capture essential temporal 

information necessary for distinguishing between 

attack and non-attack patterns in network traffic. By 

leveraging this advanced classification technique, we 

aim to enhance our capability to effectively identify 

and categorize network threats. This refined 

methodology facilitates a deeper understanding of 

network traffic behavior, ultimately improving our 

ability to detect anomalies and potential security 

threats. 

One of the most crucial fields of research is intrusion 

detection as it is essential to safeguarding people's and 

organisations' safety and privacy. But according to recent 

studies from Symantec Corporation, the number of IoT-based 

assaults has grown by about 20% [9], and similar findings 

have been made regarding malware for Macs and mobile 

devices. These statistics suggest that attackers have become 

more coordinated. We see our contribution in this 

circumstance as a strong defense against the attackers who 

are always changing. Today, it is necessary to identify 

assaults quickly and cheaply with the least amount of 

interaction. Since our method depends on the auto feature 

extraction method, it may improve classification accuracy 

and differentiate bot activity from human conduct. 

This document offers an in-depth review of n-gram 

encoding techniques and their application for automatic 

feature selection across various fields, including image 

processing. The entire structure of the paper is structured as 

below: 

In Section 2, we delve into these techniques, discussing 

their advantages and how they can significantly enhance the 

performance of IDS. A detailed exploration of the 

methodology behind n-gram encoding is provided, 

highlighting its effectiveness in extracting relevant features 

from complex datasets.  

Section 3 presents a comprehensive overview of the entire 

pipeline designed to manage and process invasive raw data. 

This section outlines the steps from data collection and 

preprocessing to feature extraction and model training, 

emphasizing the challenges encountered at each stage and the 

strategies implemented to overcome them.  

In Section 4, we conduct a thorough analysis of the results 

obtained from the implementation of the n-gram approach. 

This section evaluates its effectiveness by comparing the 

overall processing costs and time required to analyze 

intrusion data with those of other methodologies. We include 

statistical data and performance metrics to support our 

findings and provide insights into the operational efficiency 

of this technique. 

Finally, Section 5 offers concluding thoughts on the 

proposed n-gram approach, summarizing its strengths and 

weaknesses. We also discuss potential future directions for 

research in this domain, suggesting improvements and new 

applications that could further enhance the effectiveness of 

n-gram encoding in feature selection and IDS. 

 

 

2. RELATED WORKS 

 

Text analysis and image processing have advanced 

significantly with automatic feature extraction. In text 

processing, word embeddings are frequently created without 

the requirement for manual feature extraction using several 
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models, Word2Vec, GloVe, fastText, and BERT [10]. The 

created embeddings have grown to be tailored for other 

domains, such as the one indicated in the study [11], since 

they can solve a variety of text processing-related issues. To 

give the embedding models a thorough understanding of 

medical knowledge that cannot be attained by the training of 

a small corpus of medical data, the embedding model with 

the medical knowledge base. 

The Word2Vec model found its application in 

understanding the emotions of the text in various domains, 

like the one mentioned in the study [12]. Similar to text 

processing, automatic feature extraction is highly beneficial 

in image processing for the improvement of object detection 

and classification analysis. The Word2Vec is used in the 

studies [13, 14] for detecting objects in the sea and for food 

classification. This shows that the use of embedding models 

is greatly beneficial for solving various types of classification 

problems. 

Since the problem of intrusion detection is a classification 

problem with the packet, including the textual form of traffic 

data, the usage of embedding models in the IDS can be 

beneficial not only for the improvement of detection 

accuracy but also for reducing the associated cost and 

response time. A similar concept of ours is proposed in the 

study [15] called Deep Packet, which uses raw traffic packet 

data as input and solves the problems of traffic type 

identification and application identification. In a deep packet, 

the entire packet is fed into the DL model for the auto-

selection of features; this method is not ideal for the 

complicated multiple-channel input types. 

The concept of auto-extracting features that give 

importance to the semantic relationship is presented in the 

study [16], where embedding models like Word2Vec and 

Glove are initially used and the challenges associated with 

the auto-extract are verified so that the more appropriate 

embedding model for packet analysis is identified. Though 

the automatic feature extraction is done, one of the significant 

problems with this approach lies in identifying its suitability 

in a multiclass environment. The word embedding approach 

is used in malware analysis [17]. In contrast to previous 

methods discussed above, the features recovered through the 

use of the Hidden Markov Model (HMM) for the embedding 

vectors in this study should lead to an improvement in 

classification accuracy when compared to the straight opcode 

sequence data. Thus, this research suggests that embedding 

vectors are a viable substitute for the feature engineering 

method when it comes to malware identification. 

The transformer model BERT is another model used 

widely for the detection of anomalies in intrusive data. The 

problem of data imbalance is addressed using transfer 

learning, and the classification is carried out using the BERT 

model [18]. The BERT model is further enhanced to make 

the transformer model lightweight [19]. Though the BERT 

model is used in the identification of anomalies, it is not used 

here for the auto-feature extraction. Packet2Vec [8] presents 

the automated feature extraction procedure in which the raw 

packet is transformed into a sequence of words, upon which 

the Word2Vec model is used for the identification of frequent 

n-grams, and then the classification of attacks is carried out 

using a supervised ML algorithm. Similar to fast text 

processing, an approach called FastPacket [20] enhances the 

Packet2Vec by performing encoding on the raw data in 

packet format.   

Though the idea of creating an auto-feature extraction 

model is not new, as observed in the literature survey we have 

done so far, certain research gaps are identified and they are 

as follows: 

1. The current DL models that perform the process of 

auto feature extraction include the entire packet. Thus, 

when the complexity of the packet increases with 

multiple channel inputs, the methods like Deep Packet 

cannot perform the extraction effectively. 

2. As the number of target classes increases, the auto 

feature extraction needs to consider the semantic 

importance of the packet. However, this creates a lot 

of complexity as there exists similar packet 

information for multiple classes.  

3. The Packet2Vec [9] excludes the source of 

information, like the port and IP number from the 

packet; however, this is equally important as the 

context of the information, as a quick identification of 

the repeated traffic from the same IP or port could also 

sometimes be an attack. If this information is tracked 

promptly, a distinction between real and fake traffic 

can be identified, and this is what is addressed in our 

proposed work. 

 

 

3. PROPOSED SYSTEM 

 

In this section, the overall approach for the automatic 

feature extraction and classification of the IDS is presented. 

As shown in Figure 1, the overall approach is carried out as 

multiple phases, and under each phase, we have achieved 

parallelization. As this work attempts to identify the auto 

extraction of features and then perform the classification, it 

is important to identify the presence of an attack in lesser time 

and lesser computation cost irrespective of the volume and 

variety of the data. Thus, each of the phases mentioned in the 

architecture requires parallelization and that is performed in 

this work using Spark. The phases are as follows: 

 

3.1 N-gram construction 

 

The initial phase of the auto-feature extraction process for 

intrusion traffic data involves creating a comprehensive 

dictionary that maps n-grams to integers. This approach is 

consistent with traditional n-gram methods commonly used 

in text processing; however, its application in the realm of 

intrusion detection traffic remains largely unexplored. This 

lack of exploration is primarily due to the complexities 

associated with the vast volume and diverse nature of the data 

typically encountered in this field. Given the emergence of 

big data, distributed processing techniques are particularly 

effective solutions.  

Making a dictionary, which is needed to create the integer 

vector, is the first stage. Following that, word embedding is 

done, and the resulting altered vectors are known as feature 

vectors. 

 

Algorithm 1: N-gram Dictionary Creation 

Input: User input traffic in the form of PCAP files 

that will serve as the training set (Ts)  

Each Ts includes multiuser traffic with multiple 

packets  

Packs denotes the individual packet inside a traffic 

users 
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Output: Dictionary mapping n-gram to numerical 

form 

Process: 

Step 1 Load the PCAP files into the spark dataframe 

Step 2 Call ngram procedure () 

Step 3 for all 𝑢𝑠𝑒𝑟𝑠 ∈ 𝑇𝑠   do 

Step 4 for all 𝑝𝑎𝑐𝑘𝑠 ∈ 𝑢𝑠𝑒𝑟𝑠  do 

Step 5 initialize n gram generator 𝑛𝑔𝑟𝑎𝑚 ←
𝑛𝑔𝑟𝑎𝑚𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑝𝑎𝑐𝑘𝑠)  

Step 6 for all 𝑛𝑔𝑟𝑎𝑚 ∈ 𝑛𝑔𝑟𝑎𝑚𝑑𝑜 

Step 7 assign to dictionary D and increment the counter 

Step 8 end for 

Step 9 end for 

Step 10 end for 

Step 11 Build the pipeline 

Step 12 Sort the dictionary D 

𝑝𝑖𝑝𝑒 ← 𝑠𝑜𝑟𝑡𝐷 
Step 13 while𝑖 ≤ 𝑛𝑔𝑟𝑎𝑚𝑠𝑖𝑧𝑒 do 

𝐷[𝑝𝑖𝑝𝑒[𝑖]] 

𝑖 + + 
Step 14 end while 

Step 15 extract D 

 

 
 

Figure 1. Architecture for identifying IDS attacks 

 

The process begins by iterating through each packet 

contained in the packet capture (PCAP) files. For every 

packet, an n-gram analysis is performed, generating 

subsequences of n items from the data stream. After 

processing each packet, a loop counter is incremented, 

ensuring systematic traversal through the dataset. The size of 

each n-gram—determined by the parameter 'n'—is crucial, as 

it acts as a hyperparameter that can be adjusted to optimize 

the model’s performance. This n-gram generation process 

needs to be applied to all PCAP files in the dataset. However, 

this repetitive task can be resource-intensive, consuming 

significant amounts of memory and processing time. To 

alleviate these constraints, the algorithm is designed to utilize 

distributed computing capabilities. By distributing the 

packets across multiple processing units, the task of 

generating n-grams can be executed in parallel, thereby 

accelerating the overall computation.  

The output of the n-gram generation algorithm is a vector 

composed of various grams, which are then combined to 

form a single, cohesive vector. This consolidated vector is 

subsequently mapped to the previously constructed 

dictionary, enabling efficient data representation and 

retrieval for further analysis. The comprehensive 

methodology and steps involved in the n-gram generation 

process are outlined in the accompanying algorithm, which 

serves as a guide for implementing this structured approach. 

A dictionary containing the necessary data is created using 

Algorithm 1 to transform PCAP files into the appropriate 

numeric format. The training set here is the user traffic data 

that is generated from multiple users with varied types. This 

variety of traffic and packet are denoted as 𝑢𝑠𝑒𝑟𝑠 and 𝑝𝑎𝑐𝑘𝑠. 

Two loops are thus used for iterating the entire type of traffic 

from multiple users, within which the conversion of the 

integer files that are indexed at the packet level with the help 

of the dictionary denoted as 𝑙𝑖𝑠𝑡𝑤. 

 

3.2 Embedding layer 

 

The indexed integer file is then processed for the creation 

of embeddings. This process is the most crucial step, as this 

is the phase where the intrusion data is made to fit into the 

transformer architecture. The corpus of packets gets 

converted to vectors at this stage and here the embeddings 

are carried out using the conventional method and semantic 

work embedding. For the conventional method, Word2Vec 

[21] is used and the process aims to obtain the vector 

representation for each of the n-grams in the PCAP traffic 

file. Semantic embedding is obtained using the latent 

semantic indexing (LSI) and paragraph vector. Algorithm 2 

explains the general procedure involved for the embedding. 

 

Algorithm 2: Vector Generation Using Various 

Embedding Approaches 

Input: set of n gram files 

Output: Updated Model embeddings 

Procedure 

𝐿𝑖𝑠𝑡𝑖 ← 𝑇𝑅𝑈𝐸 
Step 1 Set the initial vale of the model to be true  

Step 2 for all l in 𝐿𝑖𝑠𝑡𝑖  do  

a. if (𝐿𝑖𝑠𝑡𝑖 ← 𝑇𝑅𝑈𝐸  

𝐸𝑚𝑏𝑒𝑑𝑖 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑚𝑜𝑑𝑒𝑙(𝑙) 
                       Set 𝐿𝑖𝑠𝑡𝑖 ← 𝐹𝐴𝐿𝑆𝐸) 
 

b. Else 

𝐸𝑚𝑏𝑒𝑑𝑖 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑚𝑜𝑑𝑒𝑙(𝑙) 
𝑒𝑛𝑑𝑖𝑓 

c. End for 

d. Output (𝐸𝑚𝑏𝑒𝑑𝑖) 

 

As mentioned in Algorithm 2, the vector representation in 

the form of an embedding is obtained by processing the 

dictionary-converted integers. Thus, after the embedding, a 

matrix is obtained with dimensions including the matrix size 

× embedding size, and each row determines the vector of n-

grams. This matrix is used consecutively for the next iteration 

with different integer forms of a PCAP file. The embedding 

matrix is mathematically obtained using Eq. (1) for various 

models. 

 

𝑃(𝑝𝑐𝑎𝑝𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑝𝑐𝑎𝑝𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑐𝑒𝑛𝑡𝑒𝑟) 

=
exp⁡(𝑣𝑒𝑐1𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑇 𝑣𝑒𝑐2𝑐𝑒𝑛𝑡𝑒𝑟)

∑
𝑤𝑖𝑛𝑑𝑜𝑤 ∈ 𝑣𝑜𝑐𝑎𝑏𝑒𝑥𝑝

(𝑣𝑒𝑐𝑡1𝑤𝑖𝑛𝑑𝑜𝑤
𝑇 𝑣𝑒𝑐𝑡2𝑐𝑒𝑛𝑡𝑒𝑟)

 (1) 
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The Word2Vec model considers an n-gram and tries to 

identify its closeness with other n-grams in terms of the 

distance value. So basically, given a center word, we aim to 

maximize the probability of predicting the context word 

given the center word. As far as the PCAP files are 

concerned, the center word is not chosen randomly as we do 

in the regular Word2Vec; instead, the center word is chosen 

based on the layer. As far as the intrusion PCAP traffic file is 

concerned, certain attributes get generated from each layer. 

If we consider the datalink layer, the IP information and port 

information are generated. So, the center word for each of the 

layers is chosen, and the context concerning the center word 

is identified for the prediction of the next word.  

Mathematically if we consider the center position of the 

PCAP as 𝑝𝑐𝑎𝑝𝑐𝑒𝑛𝑡𝑒𝑟  and the context word as 𝑝𝑐𝑎𝑝𝑐𝑜𝑛𝑡𝑒𝑥𝑡 

then the window is defined based on the layer denoted as 

𝑝𝑐𝑎𝑝𝑤𝑖𝑛𝑑𝑜𝑤 then the Word2Vec basically look for attributes 

from 𝑝𝑐𝑎𝑝𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑝𝑐𝑎𝑝𝑤𝑖𝑛𝑑𝑜𝑤  and 𝑝𝑐𝑎𝑝𝑐𝑒𝑛𝑡𝑒𝑟 ±
𝑝𝑐𝑎𝑝𝑤𝑖𝑛𝑑𝑜𝑤  for identifying their context. The relevance of 

the context word is predicted to that the center word is 

identified with the computation of the probability as 

mentioned in Eq. (1), where vec1 and vec2 represent the two 

vectors of each entry of the n-gram. As observed from Eq. 

(1), since the dot product of context and center is taken, we 

can find the similarity between them, and the higher 

probability denotes the higher similarity, and hence the 

features can be auto-extracted.  

To strengthen the embeddings based on the contextual and 

semantic basis, the classification model has not only been 

trained with the embeddings from Word2Vec, but it is also 

supported by other embedding methodologies as well. 

Paragraph vector embeddings have also been done in this 

work because it is important that the model not ignore the 

information relative to the context of the word. In this 

method, the words are replaced by the document ID so that 

the same word with different meanings in different contexts 

is well identified.  

How this incorporation benefits better feature extraction 

can be understood with a sample scenario. As far as this 

intrusion data is concerned, PCAP traffic includes the n-

grams frame, time_relative and tcp. time relative, within 

which time relative is the same word used in both cases; 

however, the difference comes from the origin of this feature. 

As the name denotes, frame.time_relative originates from the 

data link, and tcp.time_relative comes from the transport 

layer. This understandability is also needed for the model, so 

the paragraph vector embeddings are also considered for the 

model training. Except for the inclusion of the document, the 

probability computation uses the same probability 

computation as mentioned in Eq. (1). 

The final embedding design that is used in this work is the 

LSI to further strengthen the embeddings generated based on 

the semantics. Since this method aims to find out the 

relevance of the words and documents using frequency 

computation, this can assist us in giving a more crisp feature 

set. In this case, the document group defines the category, 

and the words denote the actual parameters in the PCAP 

capture. So, for instance, the presence of a frame. 

relative_time and its occurrence in the training samples are 

computed for the identification of its relevance to that of the 

category using Eq. (2). 

 

𝑇𝑒𝑟𝑚⁡𝑓𝑟𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓𝑟𝑒𝑞𝑖,𝑗 × 𝑙𝑜𝑔
|𝐷|

𝑑: 𝑑 ∋ 𝑡𝑖
 (2) 

where, 𝑓𝑟𝑒𝑞𝑖,𝑗 represents the occurrence of the parameter in 

the category, |D| denotes the entire PCAP dataset, and the 𝑡𝑖 
denotes the total number of times the parameter is used in the 

entire PCAP dataset.  

After the extraction of embeddings using all three 

methods, the final word embeddings are needed in a fixed-

size vector representation for all the considered packets. This 

is created by the simple averaging approach, as shown in Eq. 

(3). 

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑎𝑣𝑔 =
∑ 𝑒𝑚𝑏(𝑡)𝑡∈𝑃

|𝑝|
 (3) 

 

where, P denotes the packet, emb(t) denotes the individual 

embeddings of each approach and 𝑡 ∈ 𝑃  represents the n-

grams of the packet. The procedure for obtaining the feature 

vectors is mentioned in Algorithm 3. 

 

Algorithm 3: Aggregation Process of the Word 

Embeddings 

Input: 3 set of files as 2D vector 1⃗ × 2⃗  and the word 

embeddings D obtained from Algorithm 1 

Output: Single vector (FV) 

𝑓𝑜𝑟𝑖 ← 1|1⃗ × 2⃗ |𝑑𝑜 

𝑣𝑣 ← 1⃗ × 2⃗ [𝑖] 

𝑓𝑜𝑟𝑗 ← 1|1⃗ × 2⃗ |𝑑𝑜 

𝑣 ← 𝑣𝑣[𝑗] 
𝑓𝑜𝑟𝑎𝑙𝑙𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

𝐷 ← 𝐷 + 𝑣 
𝑒𝑛𝑑𝑓𝑜𝑟 

𝐷 ←
𝐷

𝑣 ∨
 

𝐹𝑉[𝑗] ← 𝐷 
𝑒𝑛𝑑𝑓𝑜𝑟 

𝑤𝑟𝑖𝑡𝑒(𝐹𝑉) 
𝑒𝑛𝑑𝑓𝑜𝑟 

 

Thus, with the simple averaging of the embeddings, a 

single representation for the entire packet is obtained, making 

it suitable for further processing. The format obtained as a 

feature vector using the embedding method is suitable to be 

used in any machine or DL model. Thus, the output of this 

embedding layer results in a set of files that are the auto-

extracted feature vectors of each entry in the PCAP file and 

another set of files that are multiclass label files denoting the 

various DoS attacks and the normal class of data. 

 

3.3 Attention blocks 

 

In our study, we focus on automating feature extraction 

while also prioritizing cost minimization to improve 

computational efficiency. To achieve this, we have 

incorporated an attention block into our proposed system. 

This attention block is essential for constructing a context 

vector, which is generated from a streamlined set of feature 

sets obtained from the embedding layer. 

As illustrated in Figure 2, each feature produced during the 

embedding process is fed into the attention block. The 

purpose of this block is to create the context vector based on 

the relevance and significance of each embedding in relation 

to the targeted class we are analyzing. This approach ensures 

that only the most important features contribute to the 

classification process, resulting in more efficient 
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computations. 

Within the attention mechanism framework, the generated 

embeddings are considered as keys. The mechanism utilizes 

two input sequences and a query to identify the most relevant 

embedding for the task at hand. In our implementation, the 

two input sequences consist of "feature frame.time_relative" 

and "tcp.time_relative." These sequences provide crucial 

temporal information about the frames and TCP connections, 

respectively. Meanwhile, the query is designed to determine 

the class to which a specific observation belongs. 

To facilitate this classification, we employ a compatibility 

function, which aids in assessing how well each embedding 

aligns with the given class. For the calculation of 

compatibility, we define a straightforward similarity 

function, as detailed in Eq. (4). This function allows us to 

quantify the degree of similarity between the embeddings and 

the query, guiding the attention mechanism in selecting the 

most relevant features for accurate classification. Through 

this method, we aim to enhance both the effectiveness and 

efficiency of our proposed system. 

 

𝑓(𝑞, 𝑘) = (𝐾, 𝑞) (4) 

 

where, K and q are the key and query. The process of the 

attention block is also illustrated in Figure 2, which helps in 

identifying the most relevant feature vectors. 

 

 
 

Figure 2. The overall mechanism used in the attention 

block for the identification of the most relevant feature 

vectors 

 

3.4 Classification network 

 

With the help of the embedding layer, the lexical features 

of the PCAP file are constructed using the various language 

models and the attention block. These features and label 

vectors are used for the training of the classification network 

for the detection of normal and abnormal traffic. Algorithm 

4 details the overall training and testing of the classification 

network.  

 

Algorithm 4: Attack Traffic Identification 

/* String Extraction */ 

Step 1 for all packets of normal traffic m in the PCAP 

file do  

a. nm ← extract strings for normal traffic 

b. call Algorithm1() 

Step 2 end for 

Step 3 for all packets in attack traffic a in PCAP file do  

a. dos ← extract strings for attack traffic 

Step 4 end for 

/* Perform steps for the embedding’s generation*/ 

Step 5 enm ←⁡selecting frequent words from m 

Step 6 edos ← selecting frequent words from a 

/* Construct a Word2Vec model*/ 

Step 7 Construct a Word2Vec model for enm,edos using 

Algorithm 2 

/* Construct a Program vector model*/ 

Step 8 Construct a program vector model for enm,edos 

using Algorithm 2 

/* Construct a LSI model*/ 

Step 9 Construct a LSI model for enm,edos using 

Algorithm 2 

/* Apply Aggregation and Attention*/ 

Step 10 for all normal traffic nm 

a. call Algorithm 3() 

Step 11 end for 

Step 12 for all attack traffic dos 

a. call Algorithm 3() 

Step 13 end for 

/* Classification */ 

Step 14 Train transformer(normal,attack) 

Step 15 Test transformer  

Step 16 for all unknown vectors do 

Step 17 label(normal,attack) 

Step 18 end for 

Step 19 return  

 

The final stage of this effort is the detection of assaults, as 

method 4 indicates. A transformer network is used for this 

purpose for the following reasons: 

1. Transformer networks can gather a large number of 

contextual and structural bits of data in the pre-

training stage, which improves their ability to identify 

attacks efficiently and raises the model's 

generalization capacity. 

2. As far as the dataset is concerned, there exists an 

imbalance where the number of non-attack samples is 

slightly higher than the number of attack samples, and 

hence, the non-attack samples are learned effectively. 

Since the transformer network can effectively learn 

these differences and can effectively balance the 

imbalance, this is another reason for choosing this as 

the base network for performing the classification of 

PCAP intrusive data. 

3. The transformer network is ideal to be used in the 

detection of anomalies under prompt-based learning, 

as the task downstream is not dependent on the layers 

but rather on the keys. 

BERT is the transformer model that is used in this work, 

and the overall process is carried out using three steps in the 

form of preprocessing, training, and score computation.  

Many IDS rely on existing datasets for training and 

evaluation; however, this approach often proves inadequate 

when applied to real-world scenarios. This limitation arises 

because these systems have typically not been tested against 

new or diverse sets of cyberattacks. To ensure robustness and 

reliability, it is essential to evaluate how an IDS performs 

when faced with adversarial samples—data inputs that have 

been intentionally altered to deceive the ML algorithms into 
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making incorrect classifications. Adversarial examples are 

created by making small perturbations to the original data, 

which can lead to significant misclassification by the system. 

In our approach, we employ the Jacobian Saliency Map 

Attack (JSMA) to generate these adversarial samples. JSMA 

is a sophisticated technique that emphasizes feature selection 

by identifying the parts of the input data that most 

significantly affect the model's decision-making process. The 

process begins with calculating the saliency values of the 

features in the input data, which indicate their importance in 

the model's predictions. The algorithm then iteratively 

applies perturbations to the features, starting with those that 

have the highest saliency scores, while keeping the number 

of altered features to a minimum. This targeted strategy not 

only helps generate effective adversarial examples but also 

enhances our understanding of the system's vulnerabilities, 

allowing for improvements in its overall resistance to 

malicious attacks. By rigorously testing our system using 

these adversarial samples, we aim to strengthen its ability to 

detect and respond effectively to new and evolving threats in 

dynamic environments. 

 

3.4.1 Dataset and pre-processing 

This section offers a detailed overview of the dataset 

generated through the MQTT sensors simulation. The dataset 

consists of five distinct recorded scenarios: one that 

represents normal operational conditions and four that depict 

various types of cyberattack attempts. Each of the four attack 

scenarios is documented independently, facilitating a 

thorough examination of the characteristics and impacts of 

each attack. This dataset is particularly advantageous when 

compared to older IDS datasets, such as NSL-KDD and 

CICIDS 2017, as it more accurately reflects patterns of 

normal network traffic. The authenticity of this dataset is 

crucial because it enables more effective training and testing 

of intrusion detection models in realistic environments. 

 

 
 

Figure 3. Visualization of the features extracted 

 

The original raw dataset comprised unstructured packet 

characteristics along with both unidirectional and 

bidirectional flow information. Due to the complexity 

inherent in this data, it was essential to restructure and format 

the layers clearly, designating a transport label for both User 

Datagram Protocol (UDP) and Transmission Control 

Protocol (TCP) traffic. In preparing the data for analysis, the 

preprocessed sequences underwent training using the 

embedding models discussed in the section dedicated to the 

embedding layer. Notably, this training was conducted 

without the use of the BERT tokenizer, allowing for a 

focused examination of the specific data structures within the 

context of this simulation. The embedding process was 

carefully designed to ensure that each layer-level feature is 

effectively learned from the outset, thereby optimizing the 

performance of the models built upon this dataset. The 

features extracted and their importance is shown in Figure 3. 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 Dataset 

 

For carrying out this study, the MQTT-IOT-IDS2020 

dataset is used as the benchmark so that a fair comparison can 

be made with the other existing ML and DL approaches that 

were used in the literature and to understand the contribution 

of the embedding approaches ineffective handling of the 

unknown traffic. The sample distribution percentage and the 

classes are shown in Figure 4. As shown in the figure, there 

is a data imbalance as the normal traffic samples are more 

than 70%. However, this is not a concern in this work because 

we are taking the raw PCAP and performing the feature 

extraction based on layers. The data imbalance and the model 

generalization are well-balanced in this work. 

 

 
 

Figure 4. Sample distribution percentage of the dataset 

 

The training and testing ratio is set to 70:30 and there 

existed redundant data as the feature extraction was 

automatically done using the PCAP raw files. Here, the 

various categories of the attacks are considered as a single 

class named as attack class and hence this becomes a binary 

classification problem.  

 

 

5. RESULT ANALYSIS 

 

Since this work concentrated on building a pipeline to 

solve the problem of feature drift, raw PCAP with auto 

feature extraction and classification was performed. Thus, 

the results are analyzed in various aspects, and this section 

lets us understand the contribution of this pipeline in dealing 

with the feature drift problem of the IDS so that the 

adversarial samples are well handled. 
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5.1 Performance analysis 

 

The performance analysis of this approach is verified with 

the classification results obtained in the form of the 

evaluation metrics like Accuracy, Precision, Recall, and F1-

score, and they are defined using the equations from Eqs. (5) 

to (8). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 

𝐹1‐ 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (8) 

 

Two methods are used to do the experimentation in this 

case. The MMQT dataset with hand-crafted features was first 

used, and the assessment criteria listed above were used to 

assess the dataset's performance. The transformer model 

produced superior classification results with its handmade 

characteristics; Table 1 displays the findings. 

Table 1. Performance result analysis for the MQTT dataset with varied ML and DL models 

 
Dataset Classifier Accuracy Precision Recall F1-Score 

MQTT Transformer 99.91 99.90 99.90 99.90 

MQTT SVM 94.35 93.21 94.21 94.35 

MQTT Ensembled 99.88 99.89 99.88 99.88 

 

Table 2. Meta-analysis of the various detection techniques used on various datasets 

 

Method Feature Extraction Dataset F1-Score 

Dugat-LSTM [22] Principal Component Analysis (PCA) NSL-KDD 0.99 

Two-layer [23] Common Correlated Feature Selection (CCFS) NSL-KDD 0.92 

HAD-IDS [24] CL-GAN NSL-KDD, CICIDS2018, HAD-IDS 0.96 

TS-IDS [25] Graphical Neural Network (GNN) 
CICIDS2018, Bot-IoT, Ton-IoT, UNSW-

NB15 
0.95 

ADESSA [26] Democratic colearning NSL-KDD, SWAT 0.98 

Ensembled [27] Hybrid AWID 0.99 

Packet2Vec [28] NLP Darpa 0.65 

NLP [22] Word2Vec MAWI 0.82 

ML [29] PCA MMTQ 0.90 

DL [30] Neural Network MMTQ 0.92 

Proposed Hybrid MMTQ 0.99 

 

The problem here is when the newer packet arrives with a 

whole set of entries that do not match those of the handmade 

features. As Table 1 illustrates, the detection rate utilizing the 

handcrafted features in various models is exhibiting superior 

results. As a result, the antagonistic samples are frequently 

not handled well. Therefore, each kind of data that is received 

ought to automatically extract its characteristics before 

classifying it. In the second experiment, we used the 

suggested pipeline to test, and the loss value was used to 

assess the testing and training efficiency. The findings are 

displayed visually in Figure 5. As shown in Figure 5, training 

loss and accuracy were observed in varied cases. In the first 

case, only the unidirectional features were considered, and 

their training loss and accuracy were measured. As far as the 

first case is concerned, since there is an absence of 

acknowledgment, it opens doors for many forms of attack. 

However, using the embedding approach, due to the correct 

identification of features that contribute mainly to attack 

detection, the accuracy and loss were very good. Similar 

results were observed for Case 2, considering only the biflow 

features. The amount of accuracy declined a little bit when 

the uniflow and biflow were combined, which might have 

resulted from the existence of duplicate features. The 

confusion matrix after the inclusion of adversarial samples is 

shown in Figures 6 and 7 for the training and testing sets. 

Table 2 shows the F1-score of the proposed pipeline and 

eight additional models that are a combination of the 

supervised, semisupervised, and unsupervised learning 

approaches. It is important to note that the performance of 

these models is obtained from their respective original 

studies. The results indicate that the handcrafted features set 

on varied data exhibited good accuracy. However, there is no 

notable evidence in this work regarding how the adversarial 

samples are dealt with. Except for the ADESSA, other works 

did not make any notable points about the data imbalance 

issues. And in the case of the two-layer network, which is 

formed by the combination of KNN and SVM, there was the 

highest number of false alarms. 

Since this work concentrated on the auto feature extraction 

using NLP techniques, the Packet2Vec and NLP, though 

using a different dataset, were verified for their F1-scores, 

and the Packet2Vec showed very low accuracy among all 

three approaches. Though the comparison is made with 

different datasets since our concentration is focused on the 

consideration of the feature drift problem, the PCAP was 

sampled using the Euclidean Jacobian Saliency Map [1] and 

those newer samples were evaluated, and their results were 

also verified through the performance analysis, and the F1-

score was observed to be 0.94. So, the problems that are 

generally faced with training the model using handcrafted 

features are substantially reduced with the auto-feature 

extraction approach. Thus, this approach can handle the 

problem of feature drift effectively. Figure 8 presents the 

training and testing accuracy with the adversarial samples. 
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Figure 5. Performance analysis of the proposed pipeline in terms of the accuracy and loss, considering varied features 

 

 
 

Figure 6. Confusion matrix for the adversarial sample 

inclusion in the training set 

 
 

Figure 7. Confusion matrix for the adversarial sample 

inclusion in the test set 

5.2 Processing time 

 

Another important aspect of carrying out this work is to 

reduce the processing time of the intrusion data, as the 

intrusion data is generally huge in volume and variety. So, in 

this approach, distributed processing is achieved using Spark. 

Though the testing time is less than that of the training time, 

since this approach comprises several steps, the way this is 

handled in Spark and how that contributed to the lesser 

processing time is reviewed in this section. Reading the 

PCAP file is a serial operation; however, the creation of 

embeddings needs to be performed in parallel, and thus, all 

the other subsequent operations that are performed using the 

embedding and classification layers are distributed using the 

Spark environment. The processing times for the spark-based 

operation and serial operation are presented in Figure 9, and 

the results show that there is a considerable amount of time 

reduction when the processes are distributed, resulting in the 

overall processing time. 
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Figure 8. Training and testing loss and accuracy results 

with the adversarial samples 

 

 
 

Figure 9. The time taken for the testing of one PCAP file 

and to obtain the classification results as the processes are 

distributed the time taken is also considerably reduced 

 

 

6. CONCLUSIONS 

 

This system, utilizing Spark-based contextual embeddings 

for automated feature extraction in intrusion detection, 

presents an innovative pipeline designed for the effective 

management of PCAP intrusion files, a vital aspect of 

cybersecurity monitoring and analysis. The proposed 

pipeline utilizes a robust methodology to transform network 

packets into vector representations, eliminating the need for 

predefined handcrafted features. This flexible and adaptive 

analysis of network traffic allows for the effective detection 

of intrusions based on the patterns identified within the 

generated vectors. At the heart of this pipeline is a BERT-

based contextual learning model, which has been skillfully 

integrated for traffic classification. 

This model is proficient in understanding the context of 

both normal and abnormal traffic data, capturing complex 

patterns and behaviors that may indicate potential threats. 

Rigorous testing was conducted using samples generated 

through the Euclidean Jacobian Saliency Attack, and the 

model demonstrated remarkable performance metrics, 

including a low prediction error and a high predictive 

probability value, thus affirming its reliability for real-world 

applications. Additionally, the proposed method underwent 

systematic evaluation alongside various alternative 

supervised and unsupervised learning approaches. The 

results indicated that our pipeline consistently outperformed 

these methods, even when relying on auto-extracted feature 

sets with an overall accuracy of more than 99% with minimal 

false alarms. The introduction of an attention layer further 

enhanced efficiency by optimizing the model's focus on 

relevant features while reducing computational costs.  

A significant advancement of this work is the 

implementation of distributed processing using Apache 

Spark. This technology has streamlined processing 

capabilities, significantly decreasing the time required for 

analysis without compromising the quality of results. Despite 

the promising outcomes related to feature auto-extraction, 

several areas for future enhancement have been identified. 

Notably, the current approach has framed the classification 

problem as binary, which restricts its applicability in more 

complex scenarios. Therefore, it is essential to extend the 

methodology to support multiclass classification. 

Additionally, while the method was validated using a single 

dataset, it is crucial to evaluate its effectiveness across a 

wider range of common intrusion datasets to establish its 

generalizability and robustness. These considerations will 

not only inform the ongoing development of our approach 

but also shape future research directions in the field of 

intrusion detection and cybersecurity. 
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