
Spark-Based Contextual Embeddings for Automated Feature Extraction in Intrusion

Detection

R. Panneerselvi* , J. Visumathi

Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and

Technology, Chennai 600062, India

Corresponding Author Email: panneerselvir@veltech.edu.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.150803 ABSTRACT

Received: 15 April 2025

Revised: 25 May 2025

Accepted: 8 July 2025

Available online: 31 August 2025

The increasing requirement for the fast and accurate detection of abnormal

network traffic has led to an increase in the popularity of automated intrusion

detection systems (IDS). Despite advancements in machine learning (ML) and

deep learning (DL) for anomaly detection, many IDS models rely on

handcrafted features. This reliance results in the feature drift phenomenon, and

the old handcrafted features will become outdated to accommodate newer attack

patterns, diminishing detection performance. Furthermore, if traditional ML or

DL methods frequently involve computing with large amounts of network traffic

which is computationally expensive and does not allow real-time performance.

To address these limitations, this paper presents an IDS pipeline that applies

natural language processing (NLP) techniques to construct a new surface of

automatic feature extraction from network data. This mitigates feature drift and

maintains the ability to adapt to evolving behaviours in maliciousness. The

pipeline combines an attention mechanism with NLP models, including

Word2Vec, program vector, and latent semantic indexing (LSI) to produce

powerful hybrid feature vectors. The BERT-based classifier is trained with these

vectors, and its performance in terms of accuracy, precision, recall, and F1-score

is evaluated. Experimental results demonstrate the superior performance of the

proposed approach over previous methods, achieving an F1-score of 0.99 with

automatically extracted features. Integrating Apache Spark's processing power

makes our system fast enough to be good in case of real-time intrusion detection,

and also scalable.

Keywords:

Word2Vec, latent semantic indexing,

Doc2Vec, BERT, natural language processing

1. INTRODUCTION

Smart cities, smart houses, etc., have made our lives more

intelligent. One of the main requirements for being intelligent

is being connected, and most of the items we use daily are

linked thanks to networks, which makes life easier. The shift

in technology is a good thing, but increased connection also

makes hackers more likely to target security features like

availability, confidentiality, and integrity. Understanding the

locations of incoming and outgoing traffic on any network is

crucial for handling different kinds of security assaults, and

this is often accomplished through the use of an intrusion

detection system (IDS). Though the current IDS uses

machine learning (ML)/deep learning (DL)-based algorithms

for segregating normal and abnormal traffic, one major

concern with them is their inability to understand the new

forms of attack, resulting in a decrease in detection accuracy

and an increase in the number of false alarms [1].

1.1 Challenges

Most of the ML models used for improving the detection

accuracy of the classification model are dependent on the

features that are used for classification. As a result, feature

reduction techniques are used in ML techniques [2] to

increase detection accuracy. Although it functions well for

the current samples, they encounter problems in terms of

generalization when the features. Furthermore, domain

expertise plays a crucial role in determining which traits are

optimal, necessitating manual dealing with adversarial

samples [3], as the detection accuracy is largely dependent

on the optimal selection of involvement in this technique [4].

Because of the feature drift issue [5], these manually

extracted features are more prone to becoming out of date and

becoming targets for assaults.

In contrast to ML, DL algorithms can automatically extract

packets from raw packets without the need for feature

engineering [6]. A few studies employed CNN and LSTM

networks with natural language processing (NLP) techniques

International Journal of Safety and Security Engineering
Vol. 15, No. 8, August, 2025, pp. 1565-1575

Journal homepage: http://iieta.org/journals/ijsse

1565

https://orcid.org/0009-0003-1385-8137
https://orcid.org/0000-0002-6152-8189
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsse.150803&domain=pdf

to automate feature extraction using DL-based approaches

[7]. While the use of NLP in IDS is not new, it is currently

limited to hand-crafted feature datasets such as NSL-KDD,

Trace, and others that are prone to feature drift.

1.2 Motivation

Understanding the viability of sophisticated NLP

approaches for feature extraction from raw data packets

rather than analyzing hand-crafted feature datasets is the

driving force behind this project, which is motivated by the

difficulties encountered with ML and DL methods. This

concept is covered in the study [8], where notable results on

the DARPA 2009 dataset are obtained by processing the raw

packets to produce vectors used for categorization. The

proposed strategy is expected to perform well even in the

presence of newer types of traffic data that are not included

in the dataset samples. These sample sets that are completely

new are considered to be adversarial samples, and if the

model performs well with the set of adversarial samples, then

the problem of feature drift is addressed, and thus, it can

perform well. In this study, we try to tackle the issue of

feature drift and investigate the impact of including temporal

information in the DL model, drawing inspiration from the

Packet2Vec work. Since the Word2Vec approach used in the

study [8] produces more duplicated samples and we also try

to use a hybrid embedding approach and observed the

variation in performance.

1.3 Contributions

Our proposed methodology emphasizes the analysis of

complete packet data, moving beyond reliance on manually

crafted features. This strategy employs automatic feature

extraction techniques to enhance the accuracy of

categorization.

The process consists of several distinct phases:

1. N-grams: In this initial phase, we convert the entire

packet data into a sequence of words that includes IP

address information, enabling us to capture the

temporal dynamics present in the data. By

representing packets as n-grams, we provide

important context that aids in understanding the flow

and interaction of network traffic, ultimately

contributing to more accurate categorization.

2. Embeddings: Following the extraction of n-grams, we

utilize lexical embeddings along with an attention

mechanism from NLP. This step involves generating

vector representations for each sequence of n-grams.

The attention mechanism allows the model to

concentrate on the most relevant portions of the data,

effectively emphasizing key characteristics that

enhance the representation of the packets.

3. Feature Vectors: After creating embeddings, we

compute a comprehensive vectorized representation

for each packet. This is done by averaging the word

embeddings derived from a combination of Global

Vectors for Word Representation (GloVe) and the

attention mechanism. The result is a succinct

representation of each packet that captures its critical

features in a format suitable for further analysis.

4. Classification: In the final phase, we take the

vectorized representations of the packets and input

them into a transformer architecture, which is

specifically designed to process sequential data. This

allows the model to capture essential temporal

information necessary for distinguishing between

attack and non-attack patterns in network traffic. By

leveraging this advanced classification technique, we

aim to enhance our capability to effectively identify

and categorize network threats. This refined

methodology facilitates a deeper understanding of

network traffic behavior, ultimately improving our

ability to detect anomalies and potential security

threats.

One of the most crucial fields of research is intrusion

detection as it is essential to safeguarding people's and

organisations' safety and privacy. But according to recent

studies from Symantec Corporation, the number of IoT-based

assaults has grown by about 20% [9], and similar findings

have been made regarding malware for Macs and mobile

devices. These statistics suggest that attackers have become

more coordinated. We see our contribution in this

circumstance as a strong defense against the attackers who

are always changing. Today, it is necessary to identify

assaults quickly and cheaply with the least amount of

interaction. Since our method depends on the auto feature

extraction method, it may improve classification accuracy

and differentiate bot activity from human conduct.

This document offers an in-depth review of n-gram

encoding techniques and their application for automatic

feature selection across various fields, including image

processing. The entire structure of the paper is structured as

below:

In Section 2, we delve into these techniques, discussing

their advantages and how they can significantly enhance the

performance of IDS. A detailed exploration of the

methodology behind n-gram encoding is provided,

highlighting its effectiveness in extracting relevant features

from complex datasets.

Section 3 presents a comprehensive overview of the entire

pipeline designed to manage and process invasive raw data.

This section outlines the steps from data collection and

preprocessing to feature extraction and model training,

emphasizing the challenges encountered at each stage and the

strategies implemented to overcome them.

In Section 4, we conduct a thorough analysis of the results

obtained from the implementation of the n-gram approach.

This section evaluates its effectiveness by comparing the

overall processing costs and time required to analyze

intrusion data with those of other methodologies. We include

statistical data and performance metrics to support our

findings and provide insights into the operational efficiency

of this technique.

Finally, Section 5 offers concluding thoughts on the

proposed n-gram approach, summarizing its strengths and

weaknesses. We also discuss potential future directions for

research in this domain, suggesting improvements and new

applications that could further enhance the effectiveness of

n-gram encoding in feature selection and IDS.

2. RELATED WORKS

Text analysis and image processing have advanced

significantly with automatic feature extraction. In text

processing, word embeddings are frequently created without

the requirement for manual feature extraction using several

1566

models, Word2Vec, GloVe, fastText, and BERT [10]. The

created embeddings have grown to be tailored for other

domains, such as the one indicated in the study [11], since

they can solve a variety of text processing-related issues. To

give the embedding models a thorough understanding of

medical knowledge that cannot be attained by the training of

a small corpus of medical data, the embedding model with

the medical knowledge base.

The Word2Vec model found its application in

understanding the emotions of the text in various domains,

like the one mentioned in the study [12]. Similar to text

processing, automatic feature extraction is highly beneficial

in image processing for the improvement of object detection

and classification analysis. The Word2Vec is used in the

studies [13, 14] for detecting objects in the sea and for food

classification. This shows that the use of embedding models

is greatly beneficial for solving various types of classification

problems.

Since the problem of intrusion detection is a classification

problem with the packet, including the textual form of traffic

data, the usage of embedding models in the IDS can be

beneficial not only for the improvement of detection

accuracy but also for reducing the associated cost and

response time. A similar concept of ours is proposed in the

study [15] called Deep Packet, which uses raw traffic packet

data as input and solves the problems of traffic type

identification and application identification. In a deep packet,

the entire packet is fed into the DL model for the auto-

selection of features; this method is not ideal for the

complicated multiple-channel input types.

The concept of auto-extracting features that give

importance to the semantic relationship is presented in the

study [16], where embedding models like Word2Vec and

Glove are initially used and the challenges associated with

the auto-extract are verified so that the more appropriate

embedding model for packet analysis is identified. Though

the automatic feature extraction is done, one of the significant

problems with this approach lies in identifying its suitability

in a multiclass environment. The word embedding approach

is used in malware analysis [17]. In contrast to previous

methods discussed above, the features recovered through the

use of the Hidden Markov Model (HMM) for the embedding

vectors in this study should lead to an improvement in

classification accuracy when compared to the straight opcode

sequence data. Thus, this research suggests that embedding

vectors are a viable substitute for the feature engineering

method when it comes to malware identification.

The transformer model BERT is another model used

widely for the detection of anomalies in intrusive data. The

problem of data imbalance is addressed using transfer

learning, and the classification is carried out using the BERT

model [18]. The BERT model is further enhanced to make

the transformer model lightweight [19]. Though the BERT

model is used in the identification of anomalies, it is not used

here for the auto-feature extraction. Packet2Vec [8] presents

the automated feature extraction procedure in which the raw

packet is transformed into a sequence of words, upon which

the Word2Vec model is used for the identification of frequent

n-grams, and then the classification of attacks is carried out

using a supervised ML algorithm. Similar to fast text

processing, an approach called FastPacket [20] enhances the

Packet2Vec by performing encoding on the raw data in

packet format.

Though the idea of creating an auto-feature extraction

model is not new, as observed in the literature survey we have

done so far, certain research gaps are identified and they are

as follows:

1. The current DL models that perform the process of

auto feature extraction include the entire packet. Thus,

when the complexity of the packet increases with

multiple channel inputs, the methods like Deep Packet

cannot perform the extraction effectively.

2. As the number of target classes increases, the auto

feature extraction needs to consider the semantic

importance of the packet. However, this creates a lot

of complexity as there exists similar packet

information for multiple classes.

3. The Packet2Vec [9] excludes the source of

information, like the port and IP number from the

packet; however, this is equally important as the

context of the information, as a quick identification of

the repeated traffic from the same IP or port could also

sometimes be an attack. If this information is tracked

promptly, a distinction between real and fake traffic

can be identified, and this is what is addressed in our

proposed work.

3. PROPOSED SYSTEM

In this section, the overall approach for the automatic

feature extraction and classification of the IDS is presented.

As shown in Figure 1, the overall approach is carried out as

multiple phases, and under each phase, we have achieved

parallelization. As this work attempts to identify the auto

extraction of features and then perform the classification, it

is important to identify the presence of an attack in lesser time

and lesser computation cost irrespective of the volume and

variety of the data. Thus, each of the phases mentioned in the

architecture requires parallelization and that is performed in

this work using Spark. The phases are as follows:

3.1 N-gram construction

The initial phase of the auto-feature extraction process for

intrusion traffic data involves creating a comprehensive

dictionary that maps n-grams to integers. This approach is

consistent with traditional n-gram methods commonly used

in text processing; however, its application in the realm of

intrusion detection traffic remains largely unexplored. This

lack of exploration is primarily due to the complexities

associated with the vast volume and diverse nature of the data

typically encountered in this field. Given the emergence of

big data, distributed processing techniques are particularly

effective solutions.

Making a dictionary, which is needed to create the integer

vector, is the first stage. Following that, word embedding is

done, and the resulting altered vectors are known as feature

vectors.

Algorithm 1: N-gram Dictionary Creation

Input: User input traffic in the form of PCAP files

that will serve as the training set (Ts)

Each Ts includes multiuser traffic with multiple

packets

Packs denotes the individual packet inside a traffic

users

1567

Output: Dictionary mapping n-gram to numerical

form

Process:

Step 1 Load the PCAP files into the spark dataframe

Step 2 Call ngram procedure ()

Step 3 for all 𝑢𝑠𝑒𝑟𝑠 ∈ 𝑇𝑠 do

Step 4 for all 𝑝𝑎𝑐𝑘𝑠 ∈ 𝑢𝑠𝑒𝑟𝑠 do

Step 5 initialize n gram generator 𝑛𝑔𝑟𝑎𝑚 ←
𝑛𝑔𝑟𝑎𝑚𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑝𝑎𝑐𝑘𝑠)

Step 6 for all 𝑛𝑔𝑟𝑎𝑚 ∈ 𝑛𝑔𝑟𝑎𝑚𝑑𝑜

Step 7 assign to dictionary D and increment the counter

Step 8 end for

Step 9 end for

Step 10 end for

Step 11 Build the pipeline

Step 12 Sort the dictionary D

𝑝𝑖𝑝𝑒 ← 𝑠𝑜𝑟𝑡𝐷
Step 13 while𝑖 ≤ 𝑛𝑔𝑟𝑎𝑚𝑠𝑖𝑧𝑒 do

𝐷[𝑝𝑖𝑝𝑒[𝑖]]

𝑖 + +
Step 14 end while

Step 15 extract D

Figure 1. Architecture for identifying IDS attacks

The process begins by iterating through each packet

contained in the packet capture (PCAP) files. For every

packet, an n-gram analysis is performed, generating

subsequences of n items from the data stream. After

processing each packet, a loop counter is incremented,

ensuring systematic traversal through the dataset. The size of

each n-gram—determined by the parameter 'n'—is crucial, as

it acts as a hyperparameter that can be adjusted to optimize

the model’s performance. This n-gram generation process

needs to be applied to all PCAP files in the dataset. However,

this repetitive task can be resource-intensive, consuming

significant amounts of memory and processing time. To

alleviate these constraints, the algorithm is designed to utilize

distributed computing capabilities. By distributing the

packets across multiple processing units, the task of

generating n-grams can be executed in parallel, thereby

accelerating the overall computation.

The output of the n-gram generation algorithm is a vector

composed of various grams, which are then combined to

form a single, cohesive vector. This consolidated vector is

subsequently mapped to the previously constructed

dictionary, enabling efficient data representation and

retrieval for further analysis. The comprehensive

methodology and steps involved in the n-gram generation

process are outlined in the accompanying algorithm, which

serves as a guide for implementing this structured approach.

A dictionary containing the necessary data is created using

Algorithm 1 to transform PCAP files into the appropriate

numeric format. The training set here is the user traffic data

that is generated from multiple users with varied types. This

variety of traffic and packet are denoted as 𝑢𝑠𝑒𝑟𝑠 and 𝑝𝑎𝑐𝑘𝑠.

Two loops are thus used for iterating the entire type of traffic

from multiple users, within which the conversion of the

integer files that are indexed at the packet level with the help

of the dictionary denoted as 𝑙𝑖𝑠𝑡𝑤.

3.2 Embedding layer

The indexed integer file is then processed for the creation

of embeddings. This process is the most crucial step, as this

is the phase where the intrusion data is made to fit into the

transformer architecture. The corpus of packets gets

converted to vectors at this stage and here the embeddings

are carried out using the conventional method and semantic

work embedding. For the conventional method, Word2Vec

[21] is used and the process aims to obtain the vector

representation for each of the n-grams in the PCAP traffic

file. Semantic embedding is obtained using the latent

semantic indexing (LSI) and paragraph vector. Algorithm 2

explains the general procedure involved for the embedding.

Algorithm 2: Vector Generation Using Various

Embedding Approaches

Input: set of n gram files

Output: Updated Model embeddings

Procedure

𝐿𝑖𝑠𝑡𝑖 ← 𝑇𝑅𝑈𝐸
Step 1 Set the initial vale of the model to be true

Step 2 for all l in 𝐿𝑖𝑠𝑡𝑖 do

a. if (𝐿𝑖𝑠𝑡𝑖 ← 𝑇𝑅𝑈𝐸

𝐸𝑚𝑏𝑒𝑑𝑖 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑚𝑜𝑑𝑒𝑙(𝑙)
 Set 𝐿𝑖𝑠𝑡𝑖 ← 𝐹𝐴𝐿𝑆𝐸)

b. Else

𝐸𝑚𝑏𝑒𝑑𝑖 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑚𝑜𝑑𝑒𝑙(𝑙)
𝑒𝑛𝑑𝑖𝑓

c. End for

d. Output (𝐸𝑚𝑏𝑒𝑑𝑖)

As mentioned in Algorithm 2, the vector representation in

the form of an embedding is obtained by processing the

dictionary-converted integers. Thus, after the embedding, a

matrix is obtained with dimensions including the matrix size

× embedding size, and each row determines the vector of n-

grams. This matrix is used consecutively for the next iteration

with different integer forms of a PCAP file. The embedding

matrix is mathematically obtained using Eq. (1) for various

models.

𝑃(𝑝𝑐𝑎𝑝𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑝𝑐𝑎𝑝𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑐𝑒𝑛𝑡𝑒𝑟)

=
exp⁡(𝑣𝑒𝑐1𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑇 𝑣𝑒𝑐2𝑐𝑒𝑛𝑡𝑒𝑟)

∑
𝑤𝑖𝑛𝑑𝑜𝑤 ∈ 𝑣𝑜𝑐𝑎𝑏𝑒𝑥𝑝

(𝑣𝑒𝑐𝑡1𝑤𝑖𝑛𝑑𝑜𝑤
𝑇 𝑣𝑒𝑐𝑡2𝑐𝑒𝑛𝑡𝑒𝑟)

 (1)

1568

The Word2Vec model considers an n-gram and tries to

identify its closeness with other n-grams in terms of the

distance value. So basically, given a center word, we aim to

maximize the probability of predicting the context word

given the center word. As far as the PCAP files are

concerned, the center word is not chosen randomly as we do

in the regular Word2Vec; instead, the center word is chosen

based on the layer. As far as the intrusion PCAP traffic file is

concerned, certain attributes get generated from each layer.

If we consider the datalink layer, the IP information and port

information are generated. So, the center word for each of the

layers is chosen, and the context concerning the center word

is identified for the prediction of the next word.

Mathematically if we consider the center position of the

PCAP as 𝑝𝑐𝑎𝑝𝑐𝑒𝑛𝑡𝑒𝑟 and the context word as 𝑝𝑐𝑎𝑝𝑐𝑜𝑛𝑡𝑒𝑥𝑡

then the window is defined based on the layer denoted as

𝑝𝑐𝑎𝑝𝑤𝑖𝑛𝑑𝑜𝑤 then the Word2Vec basically look for attributes

from 𝑝𝑐𝑎𝑝𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑝𝑐𝑎𝑝𝑤𝑖𝑛𝑑𝑜𝑤 and 𝑝𝑐𝑎𝑝𝑐𝑒𝑛𝑡𝑒𝑟 ±
𝑝𝑐𝑎𝑝𝑤𝑖𝑛𝑑𝑜𝑤 for identifying their context. The relevance of

the context word is predicted to that the center word is

identified with the computation of the probability as

mentioned in Eq. (1), where vec1 and vec2 represent the two

vectors of each entry of the n-gram. As observed from Eq.

(1), since the dot product of context and center is taken, we

can find the similarity between them, and the higher

probability denotes the higher similarity, and hence the

features can be auto-extracted.

To strengthen the embeddings based on the contextual and

semantic basis, the classification model has not only been

trained with the embeddings from Word2Vec, but it is also

supported by other embedding methodologies as well.

Paragraph vector embeddings have also been done in this

work because it is important that the model not ignore the

information relative to the context of the word. In this

method, the words are replaced by the document ID so that

the same word with different meanings in different contexts

is well identified.

How this incorporation benefits better feature extraction

can be understood with a sample scenario. As far as this

intrusion data is concerned, PCAP traffic includes the n-

grams frame, time_relative and tcp. time relative, within

which time relative is the same word used in both cases;

however, the difference comes from the origin of this feature.

As the name denotes, frame.time_relative originates from the

data link, and tcp.time_relative comes from the transport

layer. This understandability is also needed for the model, so

the paragraph vector embeddings are also considered for the

model training. Except for the inclusion of the document, the

probability computation uses the same probability

computation as mentioned in Eq. (1).

The final embedding design that is used in this work is the

LSI to further strengthen the embeddings generated based on

the semantics. Since this method aims to find out the

relevance of the words and documents using frequency

computation, this can assist us in giving a more crisp feature

set. In this case, the document group defines the category,

and the words denote the actual parameters in the PCAP

capture. So, for instance, the presence of a frame.

relative_time and its occurrence in the training samples are

computed for the identification of its relevance to that of the

category using Eq. (2).

𝑇𝑒𝑟𝑚⁡𝑓𝑟𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓𝑟𝑒𝑞𝑖,𝑗 × 𝑙𝑜𝑔
|𝐷|

𝑑: 𝑑 ∋ 𝑡𝑖
 (2)

where, 𝑓𝑟𝑒𝑞𝑖,𝑗 represents the occurrence of the parameter in

the category, |D| denotes the entire PCAP dataset, and the 𝑡𝑖
denotes the total number of times the parameter is used in the

entire PCAP dataset.

After the extraction of embeddings using all three

methods, the final word embeddings are needed in a fixed-

size vector representation for all the considered packets. This

is created by the simple averaging approach, as shown in Eq.

(3).

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑎𝑣𝑔 =
∑ 𝑒𝑚𝑏(𝑡)𝑡∈𝑃

|𝑝|
 (3)

where, P denotes the packet, emb(t) denotes the individual

embeddings of each approach and 𝑡 ∈ 𝑃 represents the n-

grams of the packet. The procedure for obtaining the feature

vectors is mentioned in Algorithm 3.

Algorithm 3: Aggregation Process of the Word

Embeddings

Input: 3 set of files as 2D vector 1⃗ × 2⃗ and the word

embeddings D obtained from Algorithm 1

Output: Single vector (FV)

𝑓𝑜𝑟𝑖 ← 1|1⃗ × 2⃗ |𝑑𝑜

𝑣𝑣 ← 1⃗ × 2⃗ [𝑖]

𝑓𝑜𝑟𝑗 ← 1|1⃗ × 2⃗ |𝑑𝑜

𝑣 ← 𝑣𝑣[𝑗]
𝑓𝑜𝑟𝑎𝑙𝑙𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝐷 ← 𝐷 + 𝑣
𝑒𝑛𝑑𝑓𝑜𝑟

𝐷 ←
𝐷

𝑣 ∨

𝐹𝑉[𝑗] ← 𝐷
𝑒𝑛𝑑𝑓𝑜𝑟

𝑤𝑟𝑖𝑡𝑒(𝐹𝑉)
𝑒𝑛𝑑𝑓𝑜𝑟

Thus, with the simple averaging of the embeddings, a

single representation for the entire packet is obtained, making

it suitable for further processing. The format obtained as a

feature vector using the embedding method is suitable to be

used in any machine or DL model. Thus, the output of this

embedding layer results in a set of files that are the auto-

extracted feature vectors of each entry in the PCAP file and

another set of files that are multiclass label files denoting the

various DoS attacks and the normal class of data.

3.3 Attention blocks

In our study, we focus on automating feature extraction

while also prioritizing cost minimization to improve

computational efficiency. To achieve this, we have

incorporated an attention block into our proposed system.

This attention block is essential for constructing a context

vector, which is generated from a streamlined set of feature

sets obtained from the embedding layer.

As illustrated in Figure 2, each feature produced during the

embedding process is fed into the attention block. The

purpose of this block is to create the context vector based on

the relevance and significance of each embedding in relation

to the targeted class we are analyzing. This approach ensures

that only the most important features contribute to the

classification process, resulting in more efficient

1569

computations.

Within the attention mechanism framework, the generated

embeddings are considered as keys. The mechanism utilizes

two input sequences and a query to identify the most relevant

embedding for the task at hand. In our implementation, the

two input sequences consist of "feature frame.time_relative"

and "tcp.time_relative." These sequences provide crucial

temporal information about the frames and TCP connections,

respectively. Meanwhile, the query is designed to determine

the class to which a specific observation belongs.

To facilitate this classification, we employ a compatibility

function, which aids in assessing how well each embedding

aligns with the given class. For the calculation of

compatibility, we define a straightforward similarity

function, as detailed in Eq. (4). This function allows us to

quantify the degree of similarity between the embeddings and

the query, guiding the attention mechanism in selecting the

most relevant features for accurate classification. Through

this method, we aim to enhance both the effectiveness and

efficiency of our proposed system.

𝑓(𝑞, 𝑘) = (𝐾, 𝑞) (4)

where, K and q are the key and query. The process of the

attention block is also illustrated in Figure 2, which helps in

identifying the most relevant feature vectors.

Figure 2. The overall mechanism used in the attention

block for the identification of the most relevant feature

vectors

3.4 Classification network

With the help of the embedding layer, the lexical features

of the PCAP file are constructed using the various language

models and the attention block. These features and label

vectors are used for the training of the classification network

for the detection of normal and abnormal traffic. Algorithm

4 details the overall training and testing of the classification

network.

Algorithm 4: Attack Traffic Identification

/* String Extraction */

Step 1 for all packets of normal traffic m in the PCAP

file do

a. nm ← extract strings for normal traffic

b. call Algorithm1()

Step 2 end for

Step 3 for all packets in attack traffic a in PCAP file do

a. dos ← extract strings for attack traffic

Step 4 end for

/* Perform steps for the embedding’s generation*/

Step 5 enm ←⁡selecting frequent words from m

Step 6 edos ← selecting frequent words from a

/* Construct a Word2Vec model*/

Step 7 Construct a Word2Vec model for enm,edos using

Algorithm 2

/* Construct a Program vector model*/

Step 8 Construct a program vector model for enm,edos

using Algorithm 2

/* Construct a LSI model*/

Step 9 Construct a LSI model for enm,edos using

Algorithm 2

/* Apply Aggregation and Attention*/

Step 10 for all normal traffic nm

a. call Algorithm 3()

Step 11 end for

Step 12 for all attack traffic dos

a. call Algorithm 3()

Step 13 end for

/* Classification */

Step 14 Train transformer(normal,attack)

Step 15 Test transformer

Step 16 for all unknown vectors do

Step 17 label(normal,attack)

Step 18 end for

Step 19 return

The final stage of this effort is the detection of assaults, as

method 4 indicates. A transformer network is used for this

purpose for the following reasons:

1. Transformer networks can gather a large number of

contextual and structural bits of data in the pre-

training stage, which improves their ability to identify

attacks efficiently and raises the model's

generalization capacity.

2. As far as the dataset is concerned, there exists an

imbalance where the number of non-attack samples is

slightly higher than the number of attack samples, and

hence, the non-attack samples are learned effectively.

Since the transformer network can effectively learn

these differences and can effectively balance the

imbalance, this is another reason for choosing this as

the base network for performing the classification of

PCAP intrusive data.

3. The transformer network is ideal to be used in the

detection of anomalies under prompt-based learning,

as the task downstream is not dependent on the layers

but rather on the keys.

BERT is the transformer model that is used in this work,

and the overall process is carried out using three steps in the

form of preprocessing, training, and score computation.

Many IDS rely on existing datasets for training and

evaluation; however, this approach often proves inadequate

when applied to real-world scenarios. This limitation arises

because these systems have typically not been tested against

new or diverse sets of cyberattacks. To ensure robustness and

reliability, it is essential to evaluate how an IDS performs

when faced with adversarial samples—data inputs that have

been intentionally altered to deceive the ML algorithms into

1570

making incorrect classifications. Adversarial examples are

created by making small perturbations to the original data,

which can lead to significant misclassification by the system.

In our approach, we employ the Jacobian Saliency Map

Attack (JSMA) to generate these adversarial samples. JSMA

is a sophisticated technique that emphasizes feature selection

by identifying the parts of the input data that most

significantly affect the model's decision-making process. The

process begins with calculating the saliency values of the

features in the input data, which indicate their importance in

the model's predictions. The algorithm then iteratively

applies perturbations to the features, starting with those that

have the highest saliency scores, while keeping the number

of altered features to a minimum. This targeted strategy not

only helps generate effective adversarial examples but also

enhances our understanding of the system's vulnerabilities,

allowing for improvements in its overall resistance to

malicious attacks. By rigorously testing our system using

these adversarial samples, we aim to strengthen its ability to

detect and respond effectively to new and evolving threats in

dynamic environments.

3.4.1 Dataset and pre-processing

This section offers a detailed overview of the dataset

generated through the MQTT sensors simulation. The dataset

consists of five distinct recorded scenarios: one that

represents normal operational conditions and four that depict

various types of cyberattack attempts. Each of the four attack

scenarios is documented independently, facilitating a

thorough examination of the characteristics and impacts of

each attack. This dataset is particularly advantageous when

compared to older IDS datasets, such as NSL-KDD and

CICIDS 2017, as it more accurately reflects patterns of

normal network traffic. The authenticity of this dataset is

crucial because it enables more effective training and testing

of intrusion detection models in realistic environments.

Figure 3. Visualization of the features extracted

The original raw dataset comprised unstructured packet

characteristics along with both unidirectional and

bidirectional flow information. Due to the complexity

inherent in this data, it was essential to restructure and format

the layers clearly, designating a transport label for both User

Datagram Protocol (UDP) and Transmission Control

Protocol (TCP) traffic. In preparing the data for analysis, the

preprocessed sequences underwent training using the

embedding models discussed in the section dedicated to the

embedding layer. Notably, this training was conducted

without the use of the BERT tokenizer, allowing for a

focused examination of the specific data structures within the

context of this simulation. The embedding process was

carefully designed to ensure that each layer-level feature is

effectively learned from the outset, thereby optimizing the

performance of the models built upon this dataset. The

features extracted and their importance is shown in Figure 3.

4. EXPERIMENTAL RESULTS

4.1 Dataset

For carrying out this study, the MQTT-IOT-IDS2020

dataset is used as the benchmark so that a fair comparison can

be made with the other existing ML and DL approaches that

were used in the literature and to understand the contribution

of the embedding approaches ineffective handling of the

unknown traffic. The sample distribution percentage and the

classes are shown in Figure 4. As shown in the figure, there

is a data imbalance as the normal traffic samples are more

than 70%. However, this is not a concern in this work because

we are taking the raw PCAP and performing the feature

extraction based on layers. The data imbalance and the model

generalization are well-balanced in this work.

Figure 4. Sample distribution percentage of the dataset

The training and testing ratio is set to 70:30 and there

existed redundant data as the feature extraction was

automatically done using the PCAP raw files. Here, the

various categories of the attacks are considered as a single

class named as attack class and hence this becomes a binary

classification problem.

5. RESULT ANALYSIS

Since this work concentrated on building a pipeline to

solve the problem of feature drift, raw PCAP with auto

feature extraction and classification was performed. Thus,

the results are analyzed in various aspects, and this section

lets us understand the contribution of this pipeline in dealing

with the feature drift problem of the IDS so that the

adversarial samples are well handled.

1571

5.1 Performance analysis

The performance analysis of this approach is verified with

the classification results obtained in the form of the

evaluation metrics like Accuracy, Precision, Recall, and F1-

score, and they are defined using the equations from Eqs. (5)

to (8).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7)

𝐹1‐ 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (8)

Two methods are used to do the experimentation in this

case. The MMQT dataset with hand-crafted features was first

used, and the assessment criteria listed above were used to

assess the dataset's performance. The transformer model

produced superior classification results with its handmade

characteristics; Table 1 displays the findings.

Table 1. Performance result analysis for the MQTT dataset with varied ML and DL models

Dataset Classifier Accuracy Precision Recall F1-Score

MQTT Transformer 99.91 99.90 99.90 99.90

MQTT SVM 94.35 93.21 94.21 94.35

MQTT Ensembled 99.88 99.89 99.88 99.88

Table 2. Meta-analysis of the various detection techniques used on various datasets

Method Feature Extraction Dataset F1-Score

Dugat-LSTM [22] Principal Component Analysis (PCA) NSL-KDD 0.99

Two-layer [23] Common Correlated Feature Selection (CCFS) NSL-KDD 0.92

HAD-IDS [24] CL-GAN NSL-KDD, CICIDS2018, HAD-IDS 0.96

TS-IDS [25] Graphical Neural Network (GNN)
CICIDS2018, Bot-IoT, Ton-IoT, UNSW-

NB15
0.95

ADESSA [26] Democratic colearning NSL-KDD, SWAT 0.98

Ensembled [27] Hybrid AWID 0.99

Packet2Vec [28] NLP Darpa 0.65

NLP [22] Word2Vec MAWI 0.82

ML [29] PCA MMTQ 0.90

DL [30] Neural Network MMTQ 0.92

Proposed Hybrid MMTQ 0.99

The problem here is when the newer packet arrives with a

whole set of entries that do not match those of the handmade

features. As Table 1 illustrates, the detection rate utilizing the

handcrafted features in various models is exhibiting superior

results. As a result, the antagonistic samples are frequently

not handled well. Therefore, each kind of data that is received

ought to automatically extract its characteristics before

classifying it. In the second experiment, we used the

suggested pipeline to test, and the loss value was used to

assess the testing and training efficiency. The findings are

displayed visually in Figure 5. As shown in Figure 5, training

loss and accuracy were observed in varied cases. In the first

case, only the unidirectional features were considered, and

their training loss and accuracy were measured. As far as the

first case is concerned, since there is an absence of

acknowledgment, it opens doors for many forms of attack.

However, using the embedding approach, due to the correct

identification of features that contribute mainly to attack

detection, the accuracy and loss were very good. Similar

results were observed for Case 2, considering only the biflow

features. The amount of accuracy declined a little bit when

the uniflow and biflow were combined, which might have

resulted from the existence of duplicate features. The

confusion matrix after the inclusion of adversarial samples is

shown in Figures 6 and 7 for the training and testing sets.

Table 2 shows the F1-score of the proposed pipeline and

eight additional models that are a combination of the

supervised, semisupervised, and unsupervised learning

approaches. It is important to note that the performance of

these models is obtained from their respective original

studies. The results indicate that the handcrafted features set

on varied data exhibited good accuracy. However, there is no

notable evidence in this work regarding how the adversarial

samples are dealt with. Except for the ADESSA, other works

did not make any notable points about the data imbalance

issues. And in the case of the two-layer network, which is

formed by the combination of KNN and SVM, there was the

highest number of false alarms.

Since this work concentrated on the auto feature extraction

using NLP techniques, the Packet2Vec and NLP, though

using a different dataset, were verified for their F1-scores,

and the Packet2Vec showed very low accuracy among all

three approaches. Though the comparison is made with

different datasets since our concentration is focused on the

consideration of the feature drift problem, the PCAP was

sampled using the Euclidean Jacobian Saliency Map [1] and

those newer samples were evaluated, and their results were

also verified through the performance analysis, and the F1-

score was observed to be 0.94. So, the problems that are

generally faced with training the model using handcrafted

features are substantially reduced with the auto-feature

extraction approach. Thus, this approach can handle the

problem of feature drift effectively. Figure 8 presents the

training and testing accuracy with the adversarial samples.

1572

Figure 5. Performance analysis of the proposed pipeline in terms of the accuracy and loss, considering varied features

Figure 6. Confusion matrix for the adversarial sample

inclusion in the training set

Figure 7. Confusion matrix for the adversarial sample

inclusion in the test set

5.2 Processing time

Another important aspect of carrying out this work is to

reduce the processing time of the intrusion data, as the

intrusion data is generally huge in volume and variety. So, in

this approach, distributed processing is achieved using Spark.

Though the testing time is less than that of the training time,

since this approach comprises several steps, the way this is

handled in Spark and how that contributed to the lesser

processing time is reviewed in this section. Reading the

PCAP file is a serial operation; however, the creation of

embeddings needs to be performed in parallel, and thus, all

the other subsequent operations that are performed using the

embedding and classification layers are distributed using the

Spark environment. The processing times for the spark-based

operation and serial operation are presented in Figure 9, and

the results show that there is a considerable amount of time

reduction when the processes are distributed, resulting in the

overall processing time.

1573

Figure 8. Training and testing loss and accuracy results

with the adversarial samples

Figure 9. The time taken for the testing of one PCAP file

and to obtain the classification results as the processes are

distributed the time taken is also considerably reduced

6. CONCLUSIONS

This system, utilizing Spark-based contextual embeddings

for automated feature extraction in intrusion detection,

presents an innovative pipeline designed for the effective

management of PCAP intrusion files, a vital aspect of

cybersecurity monitoring and analysis. The proposed

pipeline utilizes a robust methodology to transform network

packets into vector representations, eliminating the need for

predefined handcrafted features. This flexible and adaptive

analysis of network traffic allows for the effective detection

of intrusions based on the patterns identified within the

generated vectors. At the heart of this pipeline is a BERT-

based contextual learning model, which has been skillfully

integrated for traffic classification.

This model is proficient in understanding the context of

both normal and abnormal traffic data, capturing complex

patterns and behaviors that may indicate potential threats.

Rigorous testing was conducted using samples generated

through the Euclidean Jacobian Saliency Attack, and the

model demonstrated remarkable performance metrics,

including a low prediction error and a high predictive

probability value, thus affirming its reliability for real-world

applications. Additionally, the proposed method underwent

systematic evaluation alongside various alternative

supervised and unsupervised learning approaches. The

results indicated that our pipeline consistently outperformed

these methods, even when relying on auto-extracted feature

sets with an overall accuracy of more than 99% with minimal

false alarms. The introduction of an attention layer further

enhanced efficiency by optimizing the model's focus on

relevant features while reducing computational costs.

A significant advancement of this work is the

implementation of distributed processing using Apache

Spark. This technology has streamlined processing

capabilities, significantly decreasing the time required for

analysis without compromising the quality of results. Despite

the promising outcomes related to feature auto-extraction,

several areas for future enhancement have been identified.

Notably, the current approach has framed the classification

problem as binary, which restricts its applicability in more

complex scenarios. Therefore, it is essential to extend the

methodology to support multiclass classification.

Additionally, while the method was validated using a single

dataset, it is crucial to evaluate its effectiveness across a

wider range of common intrusion datasets to establish its

generalizability and robustness. These considerations will

not only inform the ongoing development of our approach

but also shape future research directions in the field of

intrusion detection and cybersecurity.

REFERENCES

[1] Vijayakumar, D.S., Ganapathy, S. (2023). Adversarial

sample generation using the Euclidean Jacobian-based

Saliency Map Attack (EJSMA) and classification for

IEEE 802.11 using the Deep Deterministic Policy

Gradient (DDPG). International Journal on Recent and

Innovation Trends in Computing and Communication,

11(8): 204-216.

https://doi.org/10.17762/ijritcc.v11i8.7946

[2] Azimjonov, J., Kim, T. (2024). Stochastic gradient

descent classifier-based lightweight intrusion detection

systems using the efficient feature subsets of datasets.

Expert Systems with Applications, 237: 121493.

https://doi.org/10.1016/j.eswa.2023.121493

[3] Sharma, B., Pokhrel, S.R., Murali, S. (2024).

Explainable artificial intelligence for intrusion

detection in IoT networks: A deep learning based

approach. Expert Systems with Applications, 238:

121751. https://doi.org/10.1016/j.eswa.2023.121751

[4] Xu, Y., Cao, J., Song, K., Xiang, Q., et al. (2023).

FastTraffic: A lightweight method for encrypted traffic

fast classification. Computer Networks, 235: 109965.

https://doi.org/10.1016/j.comnet.2023.109965

[5] Barddal, J.P., Gomes, H.M., Enembreck, F., Pfahringer,

B. (2017). A survey on feature drift adaptation:

Definition, benchmark, challenges and future

directions. Journal of Systems and Software, 127: 278-

294. https://doi.org/10.1016/j.jss.2016.07.005

1574

[6] Khan, M.A., Khan, M.A., Khan, K.M., Arif, S., et al.

(2023). An optimized ensemble prediction model using

AutoML based on soft voting classifier for network

intrusion detection. Journal of Network and Computer

Applications, 212: 103560.

https://doi.org/10.1016/j.jnca.2022.103560

[7] Mananayaka, A.K., Chung, S.S. (2023). Network

intrusion detection with two-phased hybrid ensemble

learning and automatic feature selection. IEEE Access,

11: 45154-45167.

https://doi.org/10.1109/ACCESS.2023.3274474

[8] Goodman, E.L., Zimmerman, C., Hudson, C. (2020).

Packet2Vec: Utilizing Word2Vec for feature extraction

in packet data. arXiv preprint arXiv:2004.14477.

https://doi.org/10.48550/arXiv.2004.14477

[9] Hajiheidari, S., Wakil, K., Badri, M., Navimipour, N.J.

(2019). Intrusion detection systems in the Internet of

Things: A comprehensive investigation. Computer

Networks, 160: 165-191.

[10] Mvula, P.K., Branco, P., Jourdan, G.V., Dobre, C.

(2023). Evaluating word embedding feature extraction

techniques for host-based intrusion detection systems.

Discover Data, 1(1): 2. https://doi.org/10.1007/s44248-

023-00002-y

[11] Khine, A.H., Wettayaprasit, W., Duangsuwan, J.

(2024). A new word embedding model integrated with

medical knowledge for deep learning-based sentiment

classification. Artificial Intelligence in Medicine, 148:

102758. https://doi.org/10.1016/j.artmed.2023.102758

[12] Ghosal, S., Jain, A. (2023). Weighted aspect based

sentiment analysis using extended OWA operators and

Word2Vec for tourism. Multimedia Tools and

Applications, 82(12): 18353-18380.

https://doi.org/10.1007/s11042-022-13800-4

[13] Liu, K., Wang, W., Chen, J., Zhang, X. (2024).

YOLOv5s maritime distress target detection method

based on swin transformer. IET Image Processing,

18(5): 1258-1267. https://doi.org/10.1049/ipr2.13024

[14] Saklani, A., Tiwari, S., Pannu, H.S. (2024).

Ameliorating multimodal food classification using state

of the art deep learning techniques. Multimedia Tools

and Applications, 83: 60189-60212.

https://doi.org/10.1007/s11042-023-17850-0

[15] Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein

Zade, R., Saberian, M. (2020). Deep packet: A novel

approach for encrypted traffic classification using deep

learning. Soft Computing, 24(3): 1999-2012.

https://doi.org/10.1007/s00500-019-04030-2

[16] Kumar, Y., Subba, B. (2023). Stacking ensemble-based

HIDS framework for detecting anomalous system

processes in windows based operating systems using

multiple word embedding. Computers & Security, 125:

102961. https://doi.org/10.1016/j.cose.2022.102961

[17] Kale, A.S., Bhandari, A., Almeida, R., Yang, Y. (2023).

Malware classification with Word2Vec, HMM2Vec,

BERT, and ELMo. Journal of Computer Virology and

Hacking Techniques, 19(1): 1-16.

https://doi.org/10.1007/s11416-022-00424-3

[18] Wang, Z., Liu, J., Zhang, Y., Li, H. (2024). A

lightweight IoT intrusion detection model based on

improved BERT-of-Theseus. Expert Systems with

Applications, 238: 122045.

https://doi.org/10.1016/j.eswa.2023.122045

[19] Ullah, F., Ullah, S., Srivastava, G., Lin, J.C.W. (2024).

IDS-INT: Intrusion detection system using transformer-

based transfer learning for imbalanced network traffic.

Digital Communications and Networks, 10(1): 190-

204. https://doi.org/10.1016/j.dcan.2023.03.008

[20] Jallad, K.A. (2022). FastPacket: Towards pre-trained

packets embedding based on FastText for next-

generation NIDS. arXiv preprint arXiv:2209.14727.

https://doi.org/10.48550/arXiv.2209.14727

[21] Word2Vec implementation. (2019). GitHub repository.

https://github.com/dav/word2vec.

[22] Mimura, M., Ito, R. (2022). Applying NLP techniques

to malware detection in a practical environment.

International Journal of Information Security, 21: 279-

291. https://doi.org/10.1007/s10207-021-00553-8

[23] Devendiran, R., Turukmane, A.V. (2024). Dugat-

LSTM: Deep learning based network intrusion

detection system using chaotic optimization strategy.

Expert Systems with Applications, 245: 123027.

https://doi.org/10.1016/j.eswa.2023.123027

[24] Patthi, S., Singh, S., P, I.C.K. (2024). 2-layer

classification model with correlated common feature

selection for intrusion detection system in networks.

Multimedia Tools and Applications, 83(22): 61213-

61238. https://doi.org/10.1007/s11042-023-17781-w

[25] Li, S., Zhao, S., Yang, Y., Cheng, X. (2024). HDA-IDS:

A hybrid DoS attacks intrusion detection system for IoT

by using semi-supervised CL-GAN. Expert Systems

with Applications, 238: 122198.

https://doi.org/10.1016/j.eswa.2023.122198

[26] Nguyen, H., Kashef, R. (2023). TS-IDS: Traffic-aware

self-supervised learning for IoT network intrusion

detection. Knowledge-Based Systems, 279: 110966.

https://doi.org/10.1016/j.knosys.2023.110966

[27] Niu, Z., Xu, H., Sun, Y., Sun, Z., et al. (2023). A novel

anomaly detection approach based on ensemble semi-

supervised active learning (ADESSA). Computers &

Security, 129: 103190.

https://doi.org/10.1016/j.cose.2023.103190

[28] Vijayakumar, D.S., Ganapathy, S. (2022). Multistage

ensembled classifier for wireless intrusion detection

system. Wireless Personal Communications, 122: 645-

668. https://doi.org/10.1007/s11277-021-08917-y

[29] Hindy, H., Bayne, E., Bures, M., Atkinson, R., et al.

(2021). Machine learning based IoT intrusion detection

system: An MQTT case study (MQTT-IoT-IDS2020

dataset). In Selected Papers from the 12th International

Networking Conference, pp. 134-153.

https://doi.org/10.1007/978-3-030-64758-2_6

[30] Khan, M.A., Khan, M.A., Jan, S.U., Ahmad, J., et al.

(2021). A deep learning-based intrusion detection

system for MQTT enabled IoT. Sensors, 21(21): 7016.

https://doi.org/10.3390/s21217016

1575

