
Impact of Image Enhancement on Deep Learning-Based Recognition of Activity Prompts in 

Children with Autism Using Motion History Images 

Indah Werdiningsih1,2 , Ira Puspitasari2,3* , Rimuljo Hendradi2

1 Doctoral Program of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas Airlangga, 

Surabaya 60115, Indonesia 
2 Information Systems Study Program, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia 
3 Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Surabaya 

60115, Indonesia 

Corresponding Author Email: ira-p@fst.unair.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.121035 ABSTRACT 

Received: 28 August 2025 

Revised: 8 October 2025 

Accepted: 17 October 2025 

Available online: 31 October 2025 

Children with Autism Spectrum Disorder (ASD) often struggle with activity recognition 

and routine following, requiring continuous assistance that is not always available. 

Automated recognition of activity prompts could provide support for independent daily 

functioning and enable personalized therapeutic interventions. This work focuses on 

enhancing robustness under complex visual conditions while maintaining real-time 

computational feasibility. The proposed approach introduces a novel integration of 

Contrast Limited Adaptive Histogram Equalization (CLAHE) for contrast optimization 

and Motion History Image (MHI) for temporal representation within Convolutional 

Neural Network (CNN) architectures, namely VGG19 and MobileNetV2. The dataset 

consists of 1.083 videos of eating and drinking activities, categorized by physical, 

gesture, and verbal prompts. CLAHE improves visual clarity, yielding an Means Square 

Error (MSE) of 10.586, a Peak Signal to Noise Ratio (PSNR) of 38.275, and an 

Structural Similarity Index Measure (SSIM) of 0.997, indicating enhanced image 

quality. The proposed model achieved an accuracy of 73.96% with a computation time 

of 308 seconds, compared to 72.92% accuracy and 420 seconds without enhancement. 

While the integration of CLAHE and MHI with VGG19 enhances computational 

efficiency, accuracy improvements are modest due to the dataset’s inherent complexity. 

These findings highlight that integrating motion-based features with image 

enhancement supports practical real-time deployment of assistive technologies. 
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1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a mental and 

neurological disease in children that affects social interaction, 

communication, and behavior [1]. The prevalence of ASD 

increases globally, from 1 in 54 children in 2016 to 1 in 44 in 

2018, and in Indonesia from 1 in 500 in 1995 to 1 in 50 in 

2013, affecting an estimated 2.4 million individuals [2]. 

Children with ASD may not be fully independent, but they 

need to be able to perform daily activities, such as eating and 

drinking [3]. However, they often refuse food, become overly 

selective, or chew too slowly. Meal planning and support are 

essential to help them with their nutrition intake [4]. 

Prompts play a crucial role in helping children with ASD 

follow structured routines such as eating and drinking, and 

their consistent use across various settings enhances the 

effectiveness of daily activity support. Prompts can be 

physical, gestural, or verbal [5]. Prompts—whether verbal 

(e.g., “drinking”) or gestural (e.g., pointing to a spoon)—serve 

as cues that guide the child through each step for a task. A 

child’s response to prompts, such as picking up a spoon or 

bringing a cup to the mouth, indicates their understanding, 

attention, and task execution, providing valuable insight into 

functional performance in daily life. 

Technologies in this field include activity prompt 

recognition, where image processing methods such as 

Histogram Equalization (HE), Contrast Stretching (CS), and 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

enhance image quality and reduce noise [6] and improve 

Convolutional Neural Network (CNN) performance [7].  

Deep learning is effective for classification tasks due to its 

adaptable architecture and ability to automatically extract 

meaningful features from raw data [8]. The architecture of 

CNN can identify patterns within images by leveraging 

convolutional, pooling, and activation layers—collectively 

known as convolutional features [9].  

To complement CNNs in recognizing motion information, 

Motion History Image (MHI), which is known for its 

computational efficiency and low memory usage [10]. MHI 

converts video sequences into static images. It is effective for 

motion representation as it can highlight recent object 

movements while minimizing background changes. In CNN, 
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MHI is a preprocessing step for motion recognition [11]. 

Numerous studies have employed MHI for action and activity 

recognition. MHI and Support Vector Machines (SVM) were 

used in a study by Tsai et al. [12] to recognize human actions. 

MHI and CNN were used in a study by Ahn et al. [13] to 

recognize cow actions. A study by Núñez et al. [14] integrated 

MHI with deep learning techniques to recognize daily 

activities, while Sahoo et al. [15] employed historical images 

along with CNN for activity recognition. 

Previous studies [6, 16-19] employed CNN to identify ASD. 

The study by Singh et al. [16] demonstrated that CNN can be 

used to diagnose ASD from children’s video recordings, 

achieving an accuracy of 85%. However, the study did not 

consider the impact of image or video quality on the model’s 

performance, even though the dataset was collected from 

highly diverse YouTube sources with significant variations in 

lighting, noise, and resolution. Meanwhile, Haweel et al. [17] 

identified ASD using a CNN algorithm using brain image 

datasets, distinguishing between children with ASD and 

typically developing youngsters, and reached an 78% 

accuracy. However, this method remains limited to 

neuroimaging data characterized by low temporal resolution, 

high cost, and dependence on clinical facilities. Moreover, the 

proposed model primarily focuses on brain frequency features 

and does not incorporate directly observable behavioral 

aspects relevant to ASD detection. Furthermore, 

Sherkatghanad et al. [18] utilized open-access brain imaging 

datasets, and the experiments demonstrated that the CNN-

based model achieved an accuracy of 70.22% in classifying 

individuals with ASD. Next, Huang [19] employed fMRI data 

and an SVM technique, attaining an accuracy of 70% in ASD 

classification. Both studies [18, 19] focused on diagnosing 

ASD in children using deep learning or machine learning 

approaches; however, these studies did not include feature 

extraction processes and were limited to neuroimaging data 

without considering behavioral aspects of ASD. In addition, 

previous work [6] on identifying daily activities in children 

with ASD included six drinking and eight eating sequences, 

achieving an accuracy of 85%. Although the performance was 

satisfactory, the study did not incorporate feature extraction, 

resulting in high computational complexity. This limitation 

makes such an approach less suitable for real-time applications 

that require efficient processing. 

This study extends the work presented in reference [6] by 

focusing on detecting prompts within daily activities and 

integrating image enhancement with motion-based feature 

extraction using MHI within CNN architectures. Unlike 

previous studies that utilized uncontrolled online video 

sources, this work employs real-world activity videos recorded 

by therapists and parents under guided observation to ensure 

data reliability. The video was processed using three video 

enhancement techniques—HE, CS, and CLAHE—as applied 

in the reference [6]. Enhancement results were quantitatively 

evaluated to assess image quality improvement, and the best-

performing method was integrated with MHI-based motion 

features for temporal representation before CNN-based 

prompt recognition. This integration addresses the visual 

variability and motion inconsistency commonly found in real-

world ASD datasets, improving both recognition robustness 

and computational efficiency. 

The proposed study introduces a novel integration of image 

enhancement and MHI within CNN architectures, namely 

VGG19 and MobileNetV2. This study contributes to literature 

in three key ways. First, the study employs real-world video 

performed by children with ASD, recorded by therapists and 

parents in natural, uncontrolled environments. Second, the 

study investigates image enhancement techniques to improve 

the recognition accuracy of these prompts under challenging 

visual conditions. Third, it proposes a method for classifying 

prompt types by applying motion-based feature extraction 

using MHI and image enhancement techniques, followed by 

activity recognition using a CNN across multiple datasets with 

enhanced image contrast. Together, these contributions 

highlight the study’s novelty in bridging temporal and visual 

domains through image enhancement and motion 

representation for robust and efficient prompt recognition in 

children with ASD. 

2. METHODOLOGY

The study is conducted in seven steps: collecting data, 

labeling videos, converting to grayscale, enhancing videos, 

extracting features, performing recognition, and evaluating 

results. The study stages are depicted in Figure 1. 

Figure 1. The study stages 
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2.1 Collecting data 

The Ethics Committee of the Faculty of Public Health, 

Universitas Airlangga, reviewed and approved the data 

collection process for this study (clearance number: 

76/EA/KEPK/2023). A total of 18 children aged 4 to 12 years 

participated in the study, consisting of eight students from the 

Public Special Needs School (SLB) Indonesia and ten from the 

Regional Technical Implementation Unit (UPTD) for children 

with Special Needs (ABK) Indonesia.  

The collection of videos was performed after parents 

provided informed consent, which involved a detailed 

explanation of the study, followed by the completion and 

signing of consent forms by those who agreed to participate. 

The process was conducted on July 12–13, 2023. Data 

collection starts on July 17, 2023.  

The video recording technique was carried out as follows: 

At UPTD ABK Indonesia, therapists and parents recorded 

activities during snack time, and at SLB Indonesia collected 

the data after school hours. At home, parents used mobile 

phones to record their children during breakfast or lunch. Each 

video captured either the full activity or selected segments, 

lasting between 2 and 5 minutes. Activities were recorded in 

portrait orientation with children seated on a chair or the floor, 

and the videos were later submitted to therapists or teachers.  

2.2 Labeling videos 

The recordings included entire sequences or specific 

segments of eating and drinking activities. Segmented videos 

were labeled individually, while full-length videos were 

manually divided and labeled according to therapist 

instructions. Eating activities had eight sequences, and 

drinking activities had six, each guided by specific prompts for 

the children. 

According to Roncati et al. [5], prompts can be physical, 

gestural, or verbal. A physical prompt involves hand-over-

hand guidance to assist with correct actions. A gestural prompt 

uses body movements, like pointing or hand gestures, to 

indicate the correct action. A verbal prompt provides spoken 

cues, including instructions, keywords, reminders, or 

questions [20]. 

(a) Physical (b) Gestural

(c) Verbal

Figure 2. Prompt types 

Figure 2 illustrates three types of prompts. Figure 2(a) 

depicts a physical prompt, where the therapist helps through 

direct physical contact; this image was extracted from the file 

physical (35) at frame 24. Figure 2(b) represents a gestural 

prompt, in which the therapist offers guidance through body 

movements without physical touch; it was taken from the file 

gesture (36) at frame 35. Figure 2(c) illustrates a verbal 

prompt, where the therapist delivers instructions orally; this 

image was obtained from the file verbal (307) at frame 101. 

The dataset contained 1,083 videos, with 606 eating videos 

and 477 drinking videos. The eating videos were divided into 

physical, gesture, and verbal, with respective counts of 159, 

97, and 350. Similarly, drinking videos were split into 

physical, gesture, and verbal, with respective counts of 98, 75, 

and 304. Tables 1 and 2 provide details about the eating and 

drinking videos. 

Table 1. Number of prompts in the eating sequence dataset 

Activity Label 
Number of Videos 

Physical Gesture Verbal 

Wash_hands 22 3 32 

Grab_plate 11 2 15 

Prepare_food 53 11 58 

Take_packed_food 5 11 12 

Open_packed_food 4 10 26 

Pray 29 38 147 

Eat 14 7 34 

Finish_eating 21 15 26 

Total 159 97 350 

Table 2. Number of prompts in the drinking sequence dataset 

Activity Label 
Number of Videos 

Physical Gesture Verbal 

Grab_cup 18 25 59 

Open_bottle 10 6 33 

Pour_water 20 5 30 

Drink 20 14 80 

Close_bottle 9 5 34 

Finish_drinking 21 20 68 

Total 98 75 304 

2.3 Converting to grayscale 

Video frames were converted to gray scale to reduce 

computational complexity while maintaining recognition 

accuracy. A greyscale image shows different shades of grey 

based on pixel intensity, which is determined by bit depth. For 

example, an 8-bit image has 256 levels ranging from 0 to 255. 

In this study, video data were processed by extracting frames 

at a rate of 25–30 frames per second. converting each frame to 

grayscale, and applying a masking technique to preserve the 

anonymity of the children [21]. 

2.4 Enhancing videos 

Image enhancement improves visual quality by refining 

contrast, sharpness, and clarity [22]. This study employs HE, 

CS, and CLAHE for video enhancement. HE redistributes 

pixel intensity for balanced contrast, CS increases intensity 

differences, and CLAHE enhances local contrast to reveal 

details in dark or bright areas. 

Figure 3 illustrates the results of contrast enhancement. The 

original grayscale image is displayed in Figure 3(a), which 

features a black-to-white gradient representing the baseline 
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before enhancement. In Figure 3(b), the enhancement lightens 

the dark areas and darkens the light areas, resulting in 

increased contrast. More enhanced contrast, sharpened details, 

and clearer separation between light and dark regions are 

observed, as illustrated in Figure 3(c), while adaptively 

enhanced contrast that reveals obscured details is presented in 

Figure 3(d). 

(a) Grayscale (b) HE

(c) CS (d) CLAHE

Figure 3. Result of image enhancement 

2.5 Extracting features 

Before feature extraction, Gaussian filtering was applied to 

the enhanced images obtained from the best-performing 

enhancement method. This process aimed to reduce high-

frequency noise while preserving spatial smoothness and 

structural continuity across frames [23]. Gaussian filtering was 

chosen over median filtering because it is more suitable for 

real-world video data, effectively suppressing natural noise 

without distorting fine motion details or disrupting temporal 

consistency. This balanced smoothing maintains the integrity 

of subtle gestures and object edges, providing stable inputs for 

subsequent motion-based feature extraction such as MHI. 

MHI was used for feature extraction due to its 

computational efficiency and low memory requirements. 

Unlike more complex temporal modeling approaches such as 

optical flow, 3D CNNs, or RNN-based architectures, MHI 

effectively captures recent motion cues through frame 

differencing while suppressing background information. This 

balance between accuracy and computational efficiency 

makes MHI particularly suitable for real-time applications. 

Feature extraction occurs in three stages: object 

segmentation, MEI, and MHI. First, object segmentation is 

performed frame by frame using Otsu thresholding to separate 

image regions based on grayscale intensity. Otsu thresholding 

is a common segmentation technique that separates objects 

from the background based on pixel intensity while providing 

information on object size, position, and noise [24, 25].  

Motion detection is deferred until the final stage, where 

segmentation is integrated with MEI and MHI to represent 

both object presence and movement. The objective is to 

separate objects from the background, creating binary images 

where objects are marked as 1 and the background as 0. After 

segmentation, MEI is extracted, representing motion-active 

regions with white pixels and static areas with black pixels. 

We utilize only MEI and MHI. MHI at time t is calculated 

from MHI at time 𝑡 − 1  and the current motion image 

𝐷𝑡(𝑥, 𝑦), whereas MEI is obtained by MHI thresholding. This

recursive approach does not need to store or process previous 

image histories or their motion fields, making it 

computationally efficient and memory-saving. In comparison, 

various projection operators, such as pixel-wise summation 

over time, require retaining all 𝐷𝑡(𝑥, 𝑦) for 𝑡0 < 𝑡 < 𝑡τ.

Figure 4 shows a person sitting down. The top row 

represents critical frames from sitting sequences, while the 

bottom row displays cumulative binary motion pictures 

computed from the initial frame to the frame above. The 

cumulative binary motion images are known as MEI. Let 

𝐼(𝑥, 𝑦, 𝑡) represent an image sequence and let 𝐷(𝑥, 𝑦, 𝑡) be a 

binary image sequence marking motion regions, where, in 

many applications, simple image differencing is sufficient to 

generate 𝐷.  Thus, the binary MEI, denoted as 𝐸𝜏(𝑥, 𝑦, 𝑡),  is
defined in Eq. (1) [26]. 

𝐸𝜏(𝑥, 𝑦, 𝑡) =∪𝑖=0
𝜏−1 𝐷(𝑥, 𝑦, 𝑡 − 𝑖) (1) 

To extract the features of dynamic gestures and convert 

them into static images, MHI is employed as it displays the 

cumulative motion of objects along with a gradient trail. MHI 

is represented as 𝐻𝜏(𝑥, 𝑦, 𝑡), computed using Eq. (2) [10].

Figure 4. Sitting down keyframes (top) and cumulative 

motion images from Frame 0 (bottom) [26] 

𝐻𝜏(𝑥, 𝑦, 𝑡) {
 𝜏,  𝑖𝑓 𝜓(𝑥, 𝑦, 𝑡) = 1

max (0, 𝐻𝜏(𝑥, 𝑦, 𝑡 − 1) − 𝛿, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2) 

where, 𝑥  and 𝑦  indicate the position of pixels within the 

picture, and 𝑡  denotes time. 𝜓(𝑥, 𝑦, 𝑡) is a binary image that 

records object motion in the present video frame and refreshes 

with each newly processed frame in the sequence. In this 

image, white pixels are assigned a value of 255, and black 

pixels 0. The period 𝜏  represents the timespan of a motion 

(measured in frames) and is usually defined by the total frame 

count of the video segment. A smaller value of 𝜏 will cause 

motion information in the MHI to decay too quickly, while a 

greater number may mask pixel value fluctuations (brightness 

variations) in the MHI. The decay parameter 𝛿 quantifies the 
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decrease in pixel values from prior frames as new frames are 

processed. If no new movement overlaps pixels previously 

occupied by motion in earlier frames, their values will 

decrease by 𝛿, which is typically set to 1. 

Frame subtraction is then performed to generate a binary 

image. If the discrepancies 𝐷(𝑥, 𝑦, 𝑡)  between two 

consecutive frames surpass the threshold 𝜉 , a binary image 

𝜓(𝑥, 𝑦, 𝑡) is produced using Eq. (3). 

𝜓(𝑥, 𝑦, 𝑡) = {
1  𝑖𝑓 𝐷(𝑥, 𝑦, 𝑡)  ≥  𝜉
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 

In this context, 𝜓(𝑥, 𝑦, 𝑡)denotes the binary image at the th 

frame, while 𝜉  is employed as a threshold to suppress 

background noise in the MHI. The frame discrepancy 

𝐷(𝑥, 𝑦, 𝑡) is determined in Eq. (4). 

𝐷(𝑥, 𝑦, 𝑡) =  |𝐼(𝑥, 𝑦, 𝑡) −  𝐼(𝑥, 𝑦, 𝑡 −△) | (4) 

where, 𝐼(𝑥, 𝑦, 𝑡) denotes the intensity at pixel coordinates 
(𝑥, 𝑦) in the th frame of the image sequence, ranging from 

[0,255]. The symbol △  symbolizes the temporal difference 

between two pixels at the same place. It is set to one to 

consider all frames. 

2.6 Performing recognition 

After the feature extraction, the recognition process was 

performed using CNN based on the VGG19 and MobileNetV2 

architectures. Before the recognition procedure, the dataset 

was randomly separated into two subsets: 80% training and 

20% testing. Following splitting, data augmentation was 

applied only to the training set to increase variability and 

improve model generalization. Three augmentation techniques 

were used: zoom, shear, and horizontal flip. Specifically, 20% 

shearing was applied to introduce slanted transformations and 

increase viewpoint variation, 20% zooming was used to 

randomly scale the images for robustness to object size, and 

horizontal flipping was employed to introduce orientation 

diversity by randomly flipping the images left or right. Figure 

5 illustrates the outcomes of the image augmentation process. 

Figure 5(a) shows the original image, while Figure 5(b) shows 

the effect of the shearing transformation, Figure 5(c) shows the 

result of the zoom transformation, and Figure 5(d) shows the 

output of the horizontal flip. 

The next stage of model training utilized VGG19 and 

MobileNetV2. VGG19 is a deep CNN with 19 layers and 3 × 

3 convolutional filters that were fine-tuned with a pre-trained 

ImageNet model [27] and resized input data of 224 × 224 

pixels. MobileNetV2 is an improved version of MobileNetV1 

optimized for resource-limited devices [28]. The VGG19 

architecture employed in this study, as illustrated in Table 3, 

was generated from our Python-based implementation and 

used as the base training model, following Durai et al. [29]. 

Like VGG19, the pre-trained layers remained unchanged. 

The final convolutional layer used Global Average Pooling 

(GAP) to minimize feature dimensions, and the output was 

input into the classification layer using three neurons. 

MobileNetV2 architecture is presented in Table 4. 

Table 5 presents eight proposed approaches: (1) MHI and 

VGG19 with CLAHE, (2) MHI and VGG19 with Grayscale, 

(3) MHI and MobileNetV2 with CLAHE, and (4) MHI and

MobileNetV2 with grayscale. Four models for each of the

eating and drinking datasets.

(a) Original (b) Shear

(c) Zoom (d) Horizontal Flip

Figure 5. Results of data augmentation 

Table 3. VGG19 architecture based on our Python 

implementation, following the model by Durai et al. [29] 

Layer (Type) Output Shape Param # 

input_1 (InputLayer) 
(None, 224, 224, 

3) 
0 

block1_conv1 (Conv2D) 
(None, 224, 224, 

64) 
1,792 

block1_conv2 (Conv2D) 
(None, 224, 224, 

64) 
36,928 

block1_pool 

(MaxPooling2D) 

(None, 112, 112, 

64) 
0 

block2_conv1 (Conv2D) 
(None, 112, 112, 

128) 
73,856 

block2_conv2 (Conv2D) 
(None, 112, 112, 

128) 
147,584 

block2_pool 

(MaxPooling2D) 

(None, 56, 56, 

128) 
0 

block3_conv1 (Conv2D) 
(None, 56, 56, 

256) 
295,168 

block3_conv2 (Conv2D) 
(None, 56, 56, 

256) 
590,080 

block3_conv3 (Conv2D) 
(None, 56, 56, 

256) 
590,080 

block3_conv4 (Conv2D) 
(None, 56, 56, 

256) 
590,080 

block3_pool 

(MaxPooling2D) 

(None, 28, 28, 

256) 
0 

block4_conv1 (Conv2D) 
(None, 28, 28, 

512) 
1,180,160 

block4_conv2 (Conv2D) 
(None, 28, 28, 

512) 
2,359,808 

block4_conv3 (Conv2D) 
(None, 28, 28, 

512) 
2,359,808 

block4_conv4 (Conv2D) 
(None, 28, 28, 

512) 
2,359,808 

block4_pool 

(MaxPooling2D) 

(None, 14, 14, 

512) 
0 

block5_conv1 (Conv2D) 
(None, 14, 14, 

512) 
2,359,808 

block5_conv2 (Conv2D) 
(None, 14, 14, 

512) 
2,359,808 

block5_conv3 (Conv2D) 
(None, 14, 14, 

512) 
2,359,808 
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block5_conv4 (Conv2D) 
(None, 14, 14, 

512) 
2,359,808 

block5_pool 

(MaxPooling2D) 
(None, 7, 7, 512) 0 

flatten (Flatten) (None, 25088) 0 

fc1 (Dense) (None, 4096) 102,764,544 

fc2 (Dense) (None, 4096) 16,781,312 

dense (Dense) (None, 3) 12,291 

Total params: 139,582,531 

Trainable params: 119,558,147 

Non-trainable params: 20,024,384 

Table 4. MobileNetV2 architecture based on our Python implementation 

Layer (Type) Output Shape Param # 

mobilenetv2_1.00_224_input (InputLayer) [(None, 320, 320, 3)] 0 

mobilenetv2_1.00_224 (Functional) (None, 10, 10, 1280) 2,257,984 

global_average_pooling2d_3 (GlobalAveragePooling2D) (None, 1280) 0 

fc1 (Dense) (None, 4096) 5,246,976 

fc2 (Dense) (None, 4096) 16,781,312 

predictions (Dense) (None, 3) 12,291 

Total params: 41,079,875 

Trainable params: 38,821,891 

Non-trainable params: 2,257,984 

Table 5. The proposed approaches 

Proposed Approach Dataset Video Enhancement Features Extraction Model 

1 

Eating activities 

CLAHE 

MHI 

VGG19 
2 Without 

3 CLAHE 
MobileNetV2 

4 Without 

5 

Drinking activities 

CLAHE 
VGG19 

6 Without 

7 CLAHE 
MobileNetV2 

8 Without 

2.7 Evaluating results 

Video enhancement evaluation using Means Square Error 

(MSE), Structural Similarity Index Measure (SSIM), and Peak 

Signal to Noise Ratio (PSNR). MSE is used to measure the 

similarity between reconstructed images or videos and their 

originals, as described in Eq. (5) [30]. 

𝑀𝑆𝐸 = ∑ ∑ ||(𝑐(𝑚, 𝑛) − 𝑠(𝑚, 𝑛)||𝑛
𝑛=0

𝑚
𝑚=0  (5) 

where, 𝑚  and 𝑛  denote the width and height of the cover 

image. The cover image is denoted by 𝑐 , and the 

steganographic image after embedding as 𝑠. 

The PSNR, measured in dB, evaluates the quality of 

processed images using pixel-wise comparisons to assess 

coding effectiveness, as shown in Eq. (6). The SSIM compares 

reconstructed image/video quality to its originals, as shown in 

Eq. (7). 

𝑃𝑆𝑁𝑅 = 10 . log10
2552

√𝑀𝑆𝐸
(6) 

𝑆𝑆𝐼𝑀 =  
(2𝜇𝑎𝜇𝑏+𝐶1)+(2𝜎𝑎𝑏+𝐶2) 

(𝜇𝑎
2+ 𝜇𝑏

2 + 𝐶1)+ (𝜎𝑎
2+ 𝜎𝑏

2 + 𝐶1)
 (7) 

In this case, 𝑎 and 𝜇𝑎  indicate the original image and its

mean, whereas 𝑏  and 𝜇𝑏  denote the modified image and its

mean. The covariance of both images is represented by 𝜎𝑎𝑏.

The variables 𝐶1 and 𝐶2 are used to stabilise the division when

the denominator is weak. The differences between the original 

and changed photographs are given as 𝜎𝑎
2  and 𝜎𝑏

2 ,

respectively. 

Here, 𝑎  and 𝜇𝑎  denote the original image and its

corresponding mean, whereas 𝑏 and 𝜇𝑏 refer to the modified

image and its mean. The covariance between the two images 

is expressed as 𝜎𝑎𝑏 . To prevent instability when the

denominator is close to zero, the constants 𝐶1 and 𝐶2  are

introduced. The variances of the original and modified images 

are represented by 𝜎𝑎
2 and 𝜎𝑏

2, respectively.

Evaluation measures (accuracy, precision, recall, and F1 

Score) are used to assess the efficiency of the technique, as 

shown in Eqs. (8)-(11). The performance of the CNN 

technique is further tested using a confusion matrix [8].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
(9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
(10) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(11) 

2.8 Area under Curve - Receiver Operating Characteristic 

(AUC-ROC) 

The Receiver Operating Characteristic (ROC) curve 

assesses the effectiveness of classification models [31], which 

has a metric called the Area Under Curve (AUC), ranging 

between 0.5 and 1, indicating how effectively a test 

distinguishes between populations based on a specific 

condition. An AUC score of 0.5 reflects a test with no 

discriminative capability, equivalent to chance-level 

performance, whereas an AUC of 1.0 signifies ideal class 

separation [32]. The optimal point for an ROC curve is the 

upper left-hand corner, where the TPR is 1 and the FPR is 0, 

corresponding to an AUC-ROC of 1. 
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3. RESULTS AND DISCUSSION

This part describes the experimental findings of recognition

(integration of CLAHE and MHI with CNN), compares them 

to state-of-the-art methods, and discusses. 

3.1 Video enhancement evaluation 

Video enhancement evaluation for eating activities is 

displayed in Tables 6-8. The average MSE for HE is 98.702, 

CS is 91.937, and CLAHE is 10.246. The average PSNR 

values are 17.431 for HE, 11.302 for CS, and 38.391 for 

CLAHE. The average SSIM is 0.860 for HE, 0.801 for CS, and 

0.997 for CLAHE. 

Table 6. The average MSE of eating activities 

No. Prompts HE CS CLAHE 

1 Physical 95.431 81.603 8.313 

2 Gesture 98.855 100.625 11.570 

3 Verbal 101.821 93.583 10.856 

Average 98.702 91.937 10.246 

Table 7. The average PSNR of eating activities 

No. Prompts HE CS CLAHE 

1 Physical 16.988 11.605 39.270 

2 Gesture 18.321 11.103 37.748 

3 Verbal 16.986 11.197 38.155 

Average 17.431 11.302 38.391 

Table 8. The average SSIM of eating activities 

No. Prompts HE CS CLAHE 

1 Physical 0.869 0.817 0.998 

2 Gesture 0.871 0.799 0.997 

3 Verbal 0.841 0.786 0.997 

Average 0.860 0.860 0.997 

Table 9. The average MSE of drinking activities 

No. Prompts HE CS CLAHE 

1 Physical 93.834 89.433 9.968 

2 Gesture 97.468 94.987 11.303 

3 Verbal 101.697 96.660 10.485 

Average 97.667 93.693 10.586 

Table 10. The average PSNR of drinking activities 

No. Prompts HE CS CLAHE 

1 Physical 17.475 11.285 38.635 

2 Gesture 16.921 11.237 37.960 

3 Verbal 16.675 11.249 38.229 

Average 17.024 11.257 38.275 

Table 11. The average SSIM of drinking activities 

No. Prompts HE CS CLAHE 

1 Physical 0.867 0.812 0.998 

2 Gesture 0.834 0.781 0.997 

3 Verbal 0.828 0.793 0.998 

Average 0.843 0.796 0.997 

Tables 9-11 display video enhancement evaluation for 

drinking activities. The average MSE result is 97.667 for HE, 

93.693 for CS, and 10.586 for CLAHE. The average PSNR for 

HE is 17.024, CS is 11.257, and CLAHE is 38.275, while the 

average SSIM values are 0.843 for HE, 0.796 for CS, and 

0.997 for CLAHE. 

3.2 Extracting features 

The feature extraction process was applied to a sample 

video from the eating activity dataset, specifically "Verbal 

(235).mp4," which consists of 124 extracted frames, as 

illustrated in Figure 6. A MHI representation is shown for 

frames 15 to 30. The frames were first enhanced using 

CLAHE, as depicted in Figure 6(a). Object segmentation was 

performed using Otsu thresholding, with the result shown in 

Figure 6(b). Subsequently, an MEI was generated in Figure 

6(c), followed by the final MHI representation shown in 

Figure 6(d). 

(a) CLAHE

(b) Object segmentation

(c) MEI

(d) MHI

Figure 6. Result of feature extraction 

3.3 Evaluation of activity prompts recognition 

This study applies integration of CLAHE and MHI with 

VGG19 or MobileNetV2 to enhance recognition activity 
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prompts, specifically for eating and drinking, using evaluation 

metrics and AUC-ROC.  

Table 12 presents the recognition result of the proposed 

approach. Proposed approach 1 achieved the highest accuracy 

of 71.31%, while proposed approach 4 yielded the lowest 

accuracy at 68.85%. Meanwhile, proposed approach 5 

obtained the best performance with an accuracy of 73.96%, 

whereas proposed approach 8 recorded the lowest accuracy at 

67.71%. 

Table 12. Recognition results of the proposed approach for 

eating and drinking activities 

Proposed 

Approach 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

1 71.31 70.12 71.31 67.70 

2 69.67 59.25 69.67 62.70 

3 70.49 74.08 70.49 69.26 

4 68.85 73.39 68.85 63.39 

5 73.96 73.51 73.96 73.70 

6 72.92 71.02 72.92 71.05 

7 69.79 69.07 69.79 63.08 

8 67.71 66.16 67.71 60.70 

Table 13. Computation time of the proposed method 

Proposed Approach Computation Time (seconds) 

1 543 

2 648 

3 566 

4 596 

5 308 

6 420 

7 308 

8 452 

Table 13 presents the computation time of the proposed 

method. Proposed approach 1 achieved the highest accuracy 

with a computation time of 543 seconds, while proposed 

approach 4 yielded the lowest accuracy with a computation 

time of 596 seconds. Meanwhile, proposed approach 5 

obtained the best performance with a computation time of 308 

seconds, whereas proposed approach 8 recorded the lowest 

accuracy with a computation time of 452 seconds. 

Based on Tables 12 and 13, MHI and (VGG19 and 

MobilenetV2) with enhancement (CLAHE) yield higher 

accuracy than MHI and (VGG-9 and MobileNetV2) without 

enhancement (grayscale) models. The use of CLAHE and 

MHI with (VGG19 and MobileNetV2) improves accuracy, 

indicating that CLAHE enhances the visibility of motion 

features in MHI, enabling more effective pattern recognition, 

while MHI and CLAHE reduce computation time. 

Table 14 presents the AUC-ROC results of the eight 

proposed methods. The average AUC-ROC for the physical 

prompt is 0.82, for the gesture prompt 0.65, and the verbal 

prompt 0.75. The physical prompt has the highest average 

score, while the gesture prompt has the lowest. The fourth 

method achieves the highest AUC-ROC (0.94) for physical 

prompts, indicating strong classification ability with minimal 

misclassification risk. In contrast, the eighth method has the 

lowest AUC-ROC (0.60) for gesture prompts, showing 

difficulty in gesture classification. 

Table 14. Results of AUC-ROC 

Proposed 

Approach 

The Prompting Method 

Physical Gesture Verbal 

1 0.92 0.77 0.82 

2 0.92 0.77 0.82 

3 0.92 0.62 0.81 

4 0.94 0.69 0.8 

5 0.86 0.88 0.85 

6 0.87 0.85 0.85 

7 0.82 0.65 0.75 

8 0.83 0.60 0.76 

Average 0.89 0.75 0.81 

3.4 Comparison of proposed approaches 

The suggested approach's conclusions are evaluated by 

comparing them to current approaches. Table 15 provides a 

comparison of the recommended techniques. 

Table 15. Comparison of proposed approaches 

Reference Dataset Baseline Architecture Accuracy (%) 
Computation Time 

(seconds) 

Tsai et al. [12] KTH human action MHI and SVM 67.17 1.278 

Ahn et al. [13] Real Time cow action MHI and SVM 72 - 

Núñez et al. [14] MSRDailyActivity3D CNN 63.10 - 

Sahoo et al. [15] HMDB51 History Image and CNN 69.74 996 

Huang et al. [19] 

fMRI 

SVM 70 - 

Sherkatghanad et al. [18] CNN 70.22 - 

Haweel et al. [17] CNN 78 - 

Singh et al. [16] Activity videos MobileNetV1 85 - 

Werdiningsih et al. [6] 
Primary Data 

(eating and drinking data) 
CLAHE + CNN 85 39.448 

Proposed Approach - 1 

Primary Data 

(eating data) 

MHI and VGG19 with CLAHE 71.31 543 

Proposed Approach - 2 MHI and VGG 19 with Grayscale 69.67 648 

Proposed Approach - 3 MHI and MobilenetV2 with CLAHE 70.49 566 

Proposed Approach - 4 
MHI and MobilenetV2 with 

Grayscale 
68.85 596 

Proposed Approach - 5 

Primary Data 

(drinking data) 

MHI and VGG19 with CLAHE 73.96 308 

Proposed Approach - 6 MHI and VGG 19 with Grayscale 72.92 420 

Proposed Approach - 7 MHI and MobilenetV2 with CLAHE 69.79 308 

Proposed Approach - 8 
MHI and MobilenetV2 with 

Grayscale 
67.71 452 
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Table 15 provides a comparative analysis of this study and 

previous research, emphasizing the impact of image 

enhancement on model performance. Previous studies [12-15] 

have shown that MHI combined with SVM achieved 

accuracies ranging from 67% to 72%, while CNN-based 

approaches for activity recognition reported accuracies 

between 63% and 70%. Nonetheless, the two methods have 

limitations in terms of precision and computational efficiency, 

with computation times in some situations exceeding 900 

seconds. These findings underscore the need for approaches 

that improve both recognition performance and computational 

efficiency. In addition, several studies [16-19] investigated 

ASD diagnosis using secondary data obtained from public 

repositories. While most existing studies on ASD activity 

recognition report accuracy as the primary evaluation metric, 

they rarely address computational efficiency. In contrast, our 

study emphasizes real-time feasibility by reducing 

computation time while maintaining competitive accuracy. 

Regarding comparison with prior studies in Table 15, 

several referenced works did not report computation time, 

limiting direct efficiency comparison. To ensure transparency, 

the current study explicitly reports computation time for each 

tested configuration, demonstrating that CLAHE integration 

not only improves accuracy but also reduces processing time, 

indicating practical gains in real-time applicability. 

3.5 Discussion 

Tables 6-11 reveal that CLAHE proves to be effective, as it 

achieves an average of 10.246 for MSE, 38.391 for PSNR, and 

0.997 for SSIM in the eating dataset, as well as an average of 

10.586 for MSE, 38.275 for PSNR, and 0.997 for SSIM in the 

drinking dataset. An MSE value near 0 and <30 indicates good 

results and reduced error. PSNR reflects image processing 

quality, with values >35 dB indicating high accuracy and <35 

dB, suggesting otherwise. SSIM ranges from -1 to 1, where 1 

signifies identical images, and a value near zero or negative 

reflects negligible similarity [33]. Considering these results, 

CLAHE was chosen as the image enhancement method for 

recognition.  

Tables 12 and 13 show that CLAHE preprocessing 

improves classification performance compared to grayscale, 

increasing accuracy from 69.67% to 71.31% for eating 

activities and from 72.92% to 73.96% for drinking activities. 

This improvement is attributed to CLAHE’s ability to enhance 

local contrast, which is particularly useful under varied 

lighting and background conditions common in real-world 

ASD recordings. Moreover, CLAHE integration reduced 

computation time, from 648 to 543 seconds for eating 

activities and from 420 to 308 seconds for drinking activities, 

demonstrating its dual benefit of improving accuracy and 

efficiency [34]. Although the numerical improvements in 

accuracy are modest (around 1–2%), the consistent gains 

across all metrics and the substantial reduction in computation 

time demonstrate the practical advantage of integrating 

CLAHE and MHI with CNN for real-time recognition tasks. 

These results indicate that between contrast optimization 

(CLAHE) and temporal motion encoding (MHI) enhances not 

only improve image quality but also facilitate faster 

convergence and more efficient feature extraction in CNN-

based models. 

In this study, each configuration was trained and tested 

multiple times, and the best-performing result was reported to 

reflect the model’s optimal capability under each enhancement 

setting. Formal statistical significance testing (e.g., p-value 

computation) was not conducted because the evaluation 

focused on best-performing results rather than averaged 

outcomes across repeated runs. Future work will include 

statistical validation through multiple-run averaging to 

strengthen empirical reliability.  

Table 14 presents the AUC-ROC results of the proposed 

approach, with the physical prompt achieving a score of 0.89, 

indicating strong classification performance. This suggests the 

model effectively distinguishes classes with minimal errors 

[31]. The AUC-ROC for the gesture prompt is the lowest at 

0.75, indicating adequate performance but a higher likelihood 

of errors [32]. Gesture prompting is the least effective due to 

its ambiguity compared to physical and verbal methods. 

Physical prompts offer clear, direct cues, while verbal prompts 

provide explicit linguistic meaning, which is easier to 

interpret. Additionally, labeling gesture data is challenging, as 

it requires visual movement interpretation, increasing the risk 

of errors that can impact model accuracy. 

Table 15 shows that applying video enhancement improves 

CNN classification accuracy. For the eating activities dataset, 

the MHI–VGG19 model with CLAHE achieves 71.31%, 

compared to 69.67% without enhancement (grayscale). For 

drinking activities, the same model reaches 73.96% with 

CLAHE, compared to 72.92% without enhancement. This 

improvement can be attributed to CLAHE, which increases 

image contrast and clarity, thereby enabling CNN to extract 

more discriminative features for classification. In addition, 

VGG19 demonstrates higher accuracy than MobileNetV2. 

Specifically, for eating activities, MHI–VGG19 with CLAHE 

achieves 71.31% while MHI–MobileNetV2 with CLAHE 

achieves 70.49%. For drinking activities, MHI–VGG19 with 

CLAHE achieves 73.96% compared to 69.79% for MHI–

MobileNetV2. The superior performance of VGG19 can be 

explained by its deeper 19-layer architecture [27], which 

allows the extraction of more complex features and better 

detection of subtle motion patterns in MHI. 

The relatively low classification accuracy in this study is 

primarily due to the dataset’s inherent complexity and 

variability, like the Real-Time Cow Action [13] and HMDB51 

[15] datasets, the data used in our experiments exhibit

substantial variations in motion patterns, camera angles, and

background clutter, which pose significant challenges for

action recognition models. In addition, many gestures

exhibited by children with autism tend to be subtle, non-

standardized, and vary significantly across individuals,

making them difficult to interpret—even for trained human

observers [35]. These factors collectively represent a major

challenge in developing robust image-based activity

recognition systems for this population.

These characteristics restrict the model's ability to 

generalize across samples, lowering overall performance 

despite the robustness of the proposed strategy. Furthermore, 

the usage of MHI as the dominant temporal representation may 

add to the reduced accuracy, as MHI tends to oversimplify 

motion dynamics in complex scenes with overlapping actions, 

background motion, or occlusions. This limitation makes it 

difficult to capture fine-grained temporal cues required for 

distinguishing subtle action differences in highly variable 

datasets. Similar challenges in applying MHI to complex 

datasets have also been reported in previous studies, where the 

method showed limited effectiveness in capturing temporal 

nuances in unconstrained video scenarios [13, 15]. 

Table 15 shows that the accuracy achieved in this study is 
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lower than that reported in the study [6]. However, it reduces 

the computational time of from 39.448 seconds to 308 

seconds. Notably, this shorter processing time corresponds to 

the highest accuracy obtained in our experiments, reaching 

73.96%. This substantial improvement in computational 

efficiency enhances the system’s feasibility for real-time 

detection scenarios, which is crucial in practical applications. 

Fast processing time directly contributes to better scalability 

[36], enabling the system to provide prompt responses during 

daily routines for children with ASD. By reducing the number 

of processed frames to one per video using MHI, the 

computational cost is minimized. Although this results in a 

loss of temporal information and may have a modest impact 

on classification accuracy, the trade-off is acceptable in the 

real world, resource-constrained environments where real-

time interaction is essential. 

Enhancing MHI with preprocessing methods (e.g., Gamma 

Correction [37], Gaussian Blur [38] can preserve motion 

patterns, while leveraging diverse datasets, pose estimation, 

and optical flow may reduce gesture ambiguity. Integrating 

CNN and RNN is expected to further improve recognition 

accuracy, reliability, and overall system performance. 

4. CONCLUSIONS

This study introduced CNN-based approach for prompt 

activity recognition of children with ASD by integrating 

CLAHE and MHI with CNN architectures (VGG19 and 

MobileNetV2). The integration enhanced recognition 

robustness and computational efficiency, demonstrating that 

combining visual enhancement and temporal motion encoding 

supports accurate and real-time performance. Physical 

prompts were recognized with high confidence (AUC-ROC = 

0.94), while gesture prompts remained more challenging 

(AUC-ROC = 0.60), highlighting the need for improved 

temporal feature modelling. 

The relatively modest classification accuracy reflects the 

dataset’s inherent complexity and variability. Variations in 

motion patterns, camera angles, and background clutter, along 

with subtle and inconsistent gestures among children with 

ASD, pose recognition challenges even for human observers. 

Moreover, this study did not include formal statistical 

validation, as the reported results represent best-performing 

outcomes rather than averaged experiments. These factors 

collectively represent key limitations in achieving consistent 

and statistically verified model performance. 

Future work will address these limitations by incorporating 

multimodal learning (e.g., depth, skeletal, and audio cues), 

attention-based temporal modeling, and statistical validation 

through multiple-run averaging to strengthen empirical 

reliability and improve generalization across diverse real-

world activities. 
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