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Children with Autism Spectrum Disorder (ASD) often struggle with activity recognition
and routine following, requiring continuous assistance that is not always available.
Automated recognition of activity prompts could provide support for independent daily
functioning and enable personalized therapeutic interventions. This work focuses on
enhancing robustness under complex visual conditions while maintaining real-time
computational feasibility. The proposed approach introduces a novel integration of
Contrast Limited Adaptive Histogram Equalization (CLAHE) for contrast optimization
and Motion History Image (MHI) for temporal representation within Convolutional
Neural Network (CNN) architectures, namely VGG19 and MobileNetV2. The dataset
consists of 1.083 videos of eating and drinking activities, categorized by physical,
gesture, and verbal prompts. CLAHE improves visual clarity, yielding an Means Square
Error (MSE) of 10.586, a Peak Signal to Noise Ratio (PSNR) of 38.275, and an
Structural Similarity Index Measure (SSIM) of 0.997, indicating enhanced image
quality. The proposed model achieved an accuracy of 73.96% with a computation time
of 308 seconds, compared to 72.92% accuracy and 420 seconds without enhancement.
While the integration of CLAHE and MHI with VGG19 enhances computational
efficiency, accuracy improvements are modest due to the dataset’s inherent complexity.
These findings highlight that integrating motion-based features with image
enhancement supports practical real-time deployment of assistive technologies.

1. INTRODUCTION

bringing a cup to the mouth, indicates their understanding,
attention, and task execution, providing valuable insight into

Autism Spectrum Disorder (ASD) is a mental and
neurological disease in children that affects social interaction,
communication, and behavior [1]. The prevalence of ASD
increases globally, from 1 in 54 children in 2016 to 1 in 44 in
2018, and in Indonesia from 1 in 500 in 1995 to 1 in 50 in
2013, affecting an estimated 2.4 million individuals [2].
Children with ASD may not be fully independent, but they
need to be able to perform daily activities, such as eating and
drinking [3]. However, they often refuse food, become overly
selective, or chew too slowly. Meal planning and support are
essential to help them with their nutrition intake [4].

Prompts play a crucial role in helping children with ASD
follow structured routines such as eating and drinking, and
their consistent use across various settings enhances the
effectiveness of daily activity support. Prompts can be
physical, gestural, or verbal [5]. Prompts—whether verbal
(e.g., “drinking”) or gestural (e.g., pointing to a spoon)—serve
as cues that guide the child through each step for a task. A
child’s response to prompts, such as picking up a spoon or
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functional performance in daily life.

Technologies in this field include activity prompt
recognition, where image processing methods such as
Histogram Equalization (HE), Contrast Stretching (CS), and
Contrast Limited Adaptive Histogram Equalization (CLAHE)
enhance image quality and reduce noise [6] and improve
Convolutional Neural Network (CNN) performance [7].

Deep learning is effective for classification tasks due to its
adaptable architecture and ability to automatically extract
meaningful features from raw data [8]. The architecture of
CNN can identify patterns within images by leveraging
convolutional, pooling, and activation layers—collectively
known as convolutional features [9].

To complement CNNs in recognizing motion information,
Motion History Image (MHI), which is known for its
computational efficiency and low memory usage [10]. MHI
converts video sequences into static images. It is effective for
motion representation as it can highlight recent object
movements while minimizing background changes. In CNN,
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MHI is a preprocessing step for motion recognition [11].
Numerous studies have employed MHI for action and activity
recognition. MHI and Support Vector Machines (SVM) were
used in a study by Tsai et al. [12] to recognize human actions.
MHI and CNN were used in a study by Ahn et al. [13] to
recognize cow actions. A study by Nufiez et al. [14] integrated
MHI with deep learning techniques to recognize daily
activities, while Sahoo et al. [15] employed historical images
along with CNN for activity recognition.

Previous studies [6, 16-19] employed CNN to identify ASD.
The study by Singh et al. [16] demonstrated that CNN can be
used to diagnose ASD from children’s video recordings,
achieving an accuracy of 85%. However, the study did not
consider the impact of image or video quality on the model’s
performance, even though the dataset was collected from
highly diverse YouTube sources with significant variations in
lighting, noise, and resolution. Meanwhile, Haweel et al. [17]
identified ASD using a CNN algorithm using brain image
datasets, distinguishing between children with ASD and
typically developing youngsters, and reached an 78%
accuracy. However, this method remains limited to
neuroimaging data characterized by low temporal resolution,
high cost, and dependence on clinical facilities. Moreover, the
proposed model primarily focuses on brain frequency features
and does not incorporate directly observable behavioral
aspects relevant to ASD  detection. Furthermore,
Sherkatghanad et al. [18] utilized open-access brain imaging
datasets, and the experiments demonstrated that the CNN-
based model achieved an accuracy of 70.22% in classifying
individuals with ASD. Next, Huang [19] employed fMRI data
and an SVM technique, attaining an accuracy of 70% in ASD
classification. Both studies [18, 19] focused on diagnosing
ASD in children using deep learning or machine learning
approaches; however, these studies did not include feature
extraction processes and were limited to neuroimaging data
without considering behavioral aspects of ASD. In addition,
previous work [6] on identifying daily activities in children
with ASD included six drinking and eight eating sequences,
achieving an accuracy of 85%. Although the performance was
satisfactory, the study did not incorporate feature extraction,
resulting in high computational complexity. This limitation
makes such an approach less suitable for real-time applications
that require efficient processing.

This study extends the work presented in reference [6] by
focusing on detecting prompts within daily activities and
integrating image enhancement with motion-based feature
extraction using MHI within CNN architectures. Unlike
previous studies that utilized uncontrolled online video
sources, this work employs real-world activity videos recorded
by therapists and parents under guided observation to ensure
data reliability. The video was processed using three video
enhancement techniques—HE, CS, and CLAHE—as applied
in the reference [6]. Enhancement results were quantitatively
evaluated to assess image quality improvement, and the best-
performing method was integrated with MHI-based motion
features for temporal representation before CNN-based
prompt recognition. This integration addresses the visual
variability and motion inconsistency commonly found in real-
world ASD datasets, improving both recognition robustness
and computational efficiency.

The proposed study introduces a novel integration of image
enhancement and MHI within CNN architectures, namely
VGG19 and MobileNetV2. This study contributes to literature
in three key ways. First, the study employs real-world video
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performed by children with ASD, recorded by therapists and
parents in natural, uncontrolled environments. Second, the
study investigates image enhancement techniques to improve
the recognition accuracy of these prompts under challenging
visual conditions. Third, it proposes a method for classifying
prompt types by applying motion-based feature extraction
using MHI and image enhancement techniques, followed by
activity recognition using a CNN across multiple datasets with
enhanced image contrast. Together, these contributions
highlight the study’s novelty in bridging temporal and visual
domains through image enhancement and motion
representation for robust and efficient prompt recognition in
children with ASD.

2. METHODOLOGY

The study is conducted in seven steps: collecting data,
labeling videos, converting to grayscale, enhancing videos,
extracting features, performing recognition, and evaluating
results. The study stages are depicted in Figure 1.

Data Collection
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Video
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Figure 1. The study stages



2.1 Collecting data

The Ethics Committee of the Faculty of Public Health,
Universitas Airlangga, reviewed and approved the data
collection process for this study (clearance number:
76/EA/KEPK/2023). A total of 18 children aged 4 to 12 years
participated in the study, consisting of eight students from the
Public Special Needs School (SLB) Indonesia and ten from the
Regional Technical Implementation Unit (UPTD) for children
with Special Needs (ABK) Indonesia.

The collection of videos was performed after parents
provided informed consent, which involved a detailed
explanation of the study, followed by the completion and
signing of consent forms by those who agreed to participate.
The process was conducted on July 12-13, 2023. Data
collection starts on July 17, 2023.

The video recording technique was carried out as follows:
At UPTD ABK Indonesia, therapists and parents recorded
activities during snack time, and at SLB Indonesia collected
the data after school hours. At home, parents used mobile
phones to record their children during breakfast or lunch. Each
video captured either the full activity or selected segments,
lasting between 2 and 5 minutes. Activities were recorded in
portrait orientation with children seated on a chair or the floor,
and the videos were later submitted to therapists or teachers.

2.2 Labeling videos

The recordings included entire sequences or specific
segments of eating and drinking activities. Segmented videos
were labeled individually, while full-length videos were
manually divided and labeled according to therapist
instructions. Eating activities had eight sequences, and
drinking activities had six, each guided by specific prompts for
the children.

According to Roncati et al. [5], prompts can be physical,
gestural, or verbal. A physical prompt involves hand-over-
hand guidance to assist with correct actions. A gestural prompt
uses body movements, like pointing or hand gestures, to
indicate the correct action. A verbal prompt provides spoken
cues, including instructions, keywords, reminders, or
questions [20].

(c) Verbal

Figure 2. Prompt types
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Figure 2 illustrates three types of prompts. Figure 2(a)
depicts a physical prompt, where the therapist helps through
direct physical contact; this image was extracted from the file
physical (35) at frame 24. Figure 2(b) represents a gestural
prompt, in which the therapist offers guidance through body
movements without physical touch; it was taken from the file
gesture (36) at frame 35. Figure 2(c) illustrates a verbal
prompt, where the therapist delivers instructions orally; this
image was obtained from the file verbal (307) at frame 101.

The dataset contained 1,083 videos, with 606 eating videos
and 477 drinking videos. The eating videos were divided into
physical, gesture, and verbal, with respective counts of 159,
97, and 350. Similarly, drinking videos were split into
physical, gesture, and verbal, with respective counts of 98, 75,
and 304. Tables 1 and 2 provide details about the eating and
drinking videos.

Table 1. Number of prompts in the eating sequence dataset

.. Number of Videos
Activity Label Physical  Gesture  Verbal

Wash_hands 22 3 32
Grab plate 11 2 15
Prepare food 53 11 58
Take packed food 5 11 12
Open_packed food 4 10 26
Pray 29 38 147

Eat 14 7 34
Finish_eating 21 15 26
Total 159 97 350

Table 2. Number of prompts in the drinking sequence dataset

Number of Videos

Activity Label Physical  Gesture Verbal
Grab_cup 18 25 59
Open_bottle 10 6 33
Pour_water 20 5 30
Drink 20 14 80
Close_bottle 9 5 34
Finish_drinking 21 20 68
Total 98 75 304

2.3 Converting to grayscale

Video frames were converted to gray scale to reduce
computational complexity while maintaining recognition
accuracy. A greyscale image shows different shades of grey
based on pixel intensity, which is determined by bit depth. For
example, an 8-bit image has 256 levels ranging from 0 to 255.
In this study, video data were processed by extracting frames
at a rate of 25-30 frames per second. converting each frame to
grayscale, and applying a masking technique to preserve the
anonymity of the children [21].

2.4 Enhancing videos

Image enhancement improves visual quality by refining
contrast, sharpness, and clarity [22]. This study employs HE,
CS, and CLAHE for video enhancement. HE redistributes
pixel intensity for balanced contrast, CS increases intensity
differences, and CLAHE enhances local contrast to reveal
details in dark or bright areas.

Figure 3 illustrates the results of contrast enhancement. The
original grayscale image is displayed in Figure 3(a), which
features a black-to-white gradient representing the baseline



before enhancement. In Figure 3(b), the enhancement lightens
the dark areas and darkens the light areas, resulting in
increased contrast. More enhanced contrast, sharpened details,
and clearer separation between light and dark regions are
observed, as illustrated in Figure 3(c), while adaptively
enhanced contrast that reveals obscured details is presented in

Figure 3(d).

(a) Grayscale (bj HE

R

(c) CS (d) CLAHE

Figure 3. Result of image enhancement
2.5 Extracting features

Before feature extraction, Gaussian filtering was applied to
the enhanced images obtained from the best-performing
enhancement method. This process aimed to reduce high-
frequency noise while preserving spatial smoothness and
structural continuity across frames [23]. Gaussian filtering was
chosen over median filtering because it is more suitable for
real-world video data, effectively suppressing natural noise
without distorting fine motion details or disrupting temporal
consistency. This balanced smoothing maintains the integrity
of subtle gestures and object edges, providing stable inputs for
subsequent motion-based feature extraction such as MHI.

MHI was used for feature extraction due to its
computational efficiency and low memory requirements.
Unlike more complex temporal modeling approaches such as
optical flow, 3D CNNs, or RNN-based architectures, MHI
effectively captures recent motion cues through frame
differencing while suppressing background information. This
balance between accuracy and computational efficiency
makes MHI particularly suitable for real-time applications.

Feature extraction occurs in three stages: object
segmentation, MEI, and MHI. First, object segmentation is
performed frame by frame using Otsu thresholding to separate
image regions based on grayscale intensity. Otsu thresholding
is a common segmentation technique that separates objects
from the background based on pixel intensity while providing
information on object size, position, and noise [24, 25].

Motion detection is deferred until the final stage, where
segmentation is integrated with MEI and MHI to represent
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both object presence and movement. The objective is to
separate objects from the background, creating binary images
where objects are marked as 1 and the background as 0. After
segmentation, MEI is extracted, representing motion-active
regions with white pixels and static areas with black pixels.

We utilize only MEI and MHI. MHI at time t is calculated
from MHI at time t —1 and the current motion image
D(x,y), whereas MEI is obtained by MHI thresholding. This
recursive approach does not need to store or process previous
image histories or their motion fields, making it
computationally efficient and memory-saving. In comparison,
various projection operators, such as pixel-wise summation
over time, require retaining all D, (x,y) for t, < t <t,.

Figure 4 shows a person sitting down. The top row
represents critical frames from sitting sequences, while the
bottom row displays cumulative binary motion pictures
computed from the initial frame to the frame above. The
cumulative binary motion images are known as MEI. Let
I(x,y,t) represent an image sequence and let D(x,y,t) be a
binary image sequence marking motion regions, where, in
many applications, simple image differencing is sufficient to
generate D. Thus, the binary MEI, denoted as E.(x,y,t), is
defined in Eq. (1) [26].

E.(x,y,t) =UIZ) D(x,y,t — i) (1)

To extract the features of dynamic gestures and convert
them into static images, MHI is employed as it displays the
cumulative motion of objects along with a gradient trail. MHI
is represented as H,(x, y, t), computed using Eq. (2) [10].

Frame 0 20 30 40

Figure 4. Sitting down keyframes (top) and cumulative
motion images from Frame 0 (bottom) [26]

T, if Y(x,y,t) =1

max (0, H;(x,y,t — 1) — §, otherwise 2)

H (x,y,t) {

where, x and y indicate the position of pixels within the
picture, and t denotes time. Y (x,y,t) is a binary image that
records object motion in the present video frame and refreshes
with each newly processed frame in the sequence. In this
image, white pixels are assigned a value of 255, and black
pixels 0. The period t represents the timespan of a motion
(measured in frames) and is usually defined by the total frame
count of the video segment. A smaller value of T will cause
motion information in the MHI to decay too quickly, while a
greater number may mask pixel value fluctuations (brightness
variations) in the MHI. The decay parameter § quantifies the



decrease in pixel values from prior frames as new frames are
processed. If no new movement overlaps pixels previously
occupied by motion in earlier frames, their values will
decrease by &, which is typically set to 1.

Frame subtraction is then performed to generate a binary
image. If the discrepancies D(x,y,t) between two
consecutive frames surpass the threshold &, a binary image
Y(x,y,t) is produced using Eq. (3).

Y(x,y,t) = {1 if D(x,y,t) = & 5

0 otherwise

In this context, ¥ (x, y, t)denotes the binary image at the th
frame, while ¢ is employed as a threshold to suppress
background noise in the MHI. The frame discrepancy
D(x,y,t) is determined in Eq. (4).

D(x,y,t) = |I(x,y,6) = I(x,y,t =A) | (4)

where, I(x,y,t) denotes the intensity at pixel coordinates
(x,v) in the th frame of the image sequence, ranging from
[0,255]. The symbol A symbolizes the temporal difference
between two pixels at the same place. It is set to one to
consider all frames.

2.6 Performing recognition

After the feature extraction, the recognition process was
performed using CNN based on the VGG 19 and MobileNetV2
architectures. Before the recognition procedure, the dataset
was randomly separated into two subsets: 80% training and
20% testing. Following splitting, data augmentation was
applied only to the training set to increase variability and
improve model generalization. Three augmentation techniques
were used: zoom, shear, and horizontal flip. Specifically, 20%
shearing was applied to introduce slanted transformations and
increase viewpoint variation, 20% zooming was used to
randomly scale the images for robustness to object size, and
horizontal flipping was employed to introduce orientation
diversity by randomly flipping the images left or right. Figure
5 illustrates the outcomes of the image augmentation process.
Figure 5(a) shows the original image, while Figure 5(b) shows
the effect of the shearing transformation, Figure 5(c) shows the
result of the zoom transformation, and Figure 5(d) shows the
output of the horizontal flip.

The next stage of model training utilized VGG19 and
MobileNetV2. VGG19 is a deep CNN with 19 layers and 3 x
3 convolutional filters that were fine-tuned with a pre-trained
ImageNet model [27] and resized input data of 224 x 224
pixels. MobileNetV2 is an improved version of MobileNetV1
optimized for resource-limited devices [28]. The VGG19
architecture employed in this study, as illustrated in Table 3,
was generated from our Python-based implementation and
used as the base training model, following Durai et al. [29].

Like VGG19, the pre-trained layers remained unchanged.
The final convolutional layer used Global Average Pooling
(GAP) to minimize feature dimensions, and the output was
input into the classification layer using three neurons.
MobileNetV2 architecture is presented in Table 4.

Table 5 presents eight proposed approaches: (1) MHI and
VGG19 with CLAHE, (2) MHI and VGG19 with Grayscale,
(3) MHI and MobileNetV2 with CLAHE, and (4) MHI and
MobileNetV2 with grayscale. Four models for each of the
eating and drinking datasets.
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(a) Original
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Figure 5. Results of data augmentation

Table 3. VGG19 architecture based on our Python
implementation, following the model by Durai et al. [29]

Layer (Type) Output Shape Param #
input_1 (InputLayer) (None, §)2 4,224, 0
blockl_convl (Conv2p) ~ (None, 6242)4’ 224, 1,792
blockl conv2 (Conv2D)y  (Nome, 6242)4’ 224, 36,928
blockl pool (None, 112, 112, 0
(MaxPooling2D) 64)
block2_conv1 (Conv2D) (None’l ;é)z 12, 73,856
block2_conv2 (Conv2D) (N"“e’l;;)z’ 12, 147,584
block2 pool (None, 56, 56, 0
(MaxPooling2D) 128)
block3_convl (Conv2D) (Nong’sgf’ 36, 295,168
block3_conv2 (Conv2D) (N"“;’ng’ 36, 590,080
block3_conv3 (Conv2D) (N"“;’ng’ 56, 590,080
block3_conv4 (Conv2D) (Nong’sgf’ 36, 590,080
block3 pool (None, 28, 28, 0
(MaxPooling2D) 256)
block4_conv1 (Conv2D) (N"“Se’é)& 28, 1,180,160
block4_conv2 (Conv2D) (N"“Se’] 5)8 28, 2,359,808
block4_conv3 (Conv2D) (N"n;’é;g’ 28, 2,359,808
block4_conv4 (Conv2D) (N"n;’é;g’ 28, 2,359,808
block4 pool (None, 14, 14, 0
(MaxPooling2D) 512)
block5_conv1 (Conv2D) (N"“Se’] ;;‘ 14, 2,359,808
block5_conv2 (Conv2D) (N"n_g’l ;;‘ 14, 2,359,808
block5_conv3 (Conv2D) (N"n_g’l ;;‘ 14, 2,359,808




(None, 14, 14,

block5_conv4 (Conv2D) 512) 2,359,808
block5 pool
(MaxPooling2D) (None, 7,7, 512) 0
flatten (Flatten) (None, 25088) 0
fcl (Dense) (None, 4096) 102,764,544

fc2 (Dense) (None, 4096)
dense (Dense) (None, 3)
Total params: 139,582,531
Trainable params: 119,558,147
Non-trainable params: 20,024,384

16,781,312
12,291

Table 4. MobileNetV2 architecture based on our Python implementation

Layer (Type) Output Shape Param #
mobilenetv2 1.00 224 input (InputLayer) [(None, 320, 320, 3)] 0
mobilenetv2 1.00 224 (Functional) (None, 10, 10, 1280) 2,257,984
global average pooling2d 3 (GlobalAveragePooling2D) (None, 1280) 0
fcl (Dense) (None, 4096) 5,246,976
fc2 (Dense) (None, 4096) 16,781,312
predictions (Dense) (None, 3) 12,291

Total params: 41,079,875
Trainable params: 38,821,891
Non-trainable params: 2,257,984

Table 5. The proposed approaches

Proposed Approach Dataset Video Enhancement Features Extraction Model
! CLAHE VGG19
2 Eating activities Without
3 CLAHE MobileNetV2
4 Without MHI
5 CLAHE
. VGG19
6 L o Without
Drinking activities
7 CLAHE MobileNetV2
8 Without

2.7 Evaluating results

Video enhancement evaluation using Means Square Error
(MSE), Structural Similarity Index Measure (SSIM), and Peak
Signal to Noise Ratio (PSNR). MSE is used to measure the
similarity between reconstructed images or videos and their
originals, as described in Eq. (5) [30].

MSE = Yin=o Xn=o ll(c(m,n) — s(m,n)]| )
where, m and n denote the width and height of the cover
image. The cover image is denoted by c , and the
steganographic image after embedding as s.

The PSNR, measured in dB, evaluates the quality of
processed images using pixel-wise comparisons to assess
coding effectiveness, as shown in Eq. (6). The SSIM compares
reconstructed image/video quality to its originals, as shown in

Eq. (7).

2552
PSNR = 10'10g10\/ﬁ (6)
SSIM — (Zﬂaﬂb+C1)+(20ab+Cz) (7)

(U3 + uf + C1)+ (03+ 6f +C1)

In this case, a and p, indicate the original image and its
mean, whereas b and y;, denote the modified image and its
mean. The covariance of both images is represented by .
The variables C; and C, are used to stabilise the division when
the denominator is weak. The differences between the original
and changed photographs are given as o2 and of ,
respectively.

Here, a and p, denote the original image and its
corresponding mean, whereas b and y,, refer to the modified
image and its mean. The covariance between the two images

is expressed as og,, . To prevent instability when the
denominator is close to zero, the constants C; and C, are
introduced. The variances of the original and modified images
are represented by 2 and o, respectively.

Evaluation measures (accuracy, precision, recall, and F1
Score) are used to assess the efficiency of the technique, as
shown in Egs. (8)-(11). The performance of the CNN
technique is further tested using a confusion matrix [8].

TP +TN
Accuracy = ———— 3
TP +FP+ TN+ FN
.. TP
Precision = ©
TP+FP
TP
Recall = (10)
TP+FN
2XPrecisionxRecall
F1Score = ——— (11)

Precision+Recall

2.8 Area under Curve - Receiver Operating Characteristic
(AUC-ROC)

The Receiver Operating Characteristic (ROC) curve
assesses the effectiveness of classification models [31], which
has a metric called the Area Under Curve (AUC), ranging
between 0.5 and 1, indicating how effectively a test
distinguishes between populations based on a specific
condition. An AUC score of 0.5 reflects a test with no
discriminative  capability, equivalent to chance-level
performance, whereas an AUC of 1.0 signifies ideal class
separation [32]. The optimal point for an ROC curve is the
upper left-hand corner, where the TPR is 1 and the FPR is 0,
corresponding to an AUC-ROC of 1.
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3. RESULTS AND DISCUSSION

This part describes the experimental findings of recognition
(integration of CLAHE and MHI with CNN), compares them
to state-of-the-art methods, and discusses.

3.1 Video enhancement evaluation

Video enhancement evaluation for eating activities is
displayed in Tables 6-8. The average MSE for HE is 98.702,
CS is 91.937, and CLAHE is 10.246. The average PSNR
values are 17.431 for HE, 11.302 for CS, and 38.391 for
CLAHE. The average SSIM is 0.860 for HE, 0.801 for CS, and
0.997 for CLAHE.

Table 6. The average MSE of eating activities

No. Prompts HE CS CLAHE
1 Physical 95.431 81.603 8.313
2 Gesture 98.855 100.625 11.570
3 Verbal 101.821 93.583 10.856

Average 98.702 91.937 10.246

Table 7. The average PSNR of eating activities

No. Prompts HE CS CLAHE
1 Physical 16.988 11.605 39.270
2 Gesture 18.321 11.103 37.748
3 Verbal 16.986 11.197 38.155

Average 17.431 11.302 38.391

Table 8. The average SSIM of eating activities

No. Prompts HE CS CLAHE
1 Physical 0.869 0.817 0.998
2 Gesture 0.871 0.799 0.997
3 Verbal 0.841 0.786 0.997

Average 0.860 0.860 0.997

Table 9. The average MSE of drinking activities

No. Prompts HE CS CLAHE
1 Physical 93.834 89.433 9.968
2 Gesture 97.468 94.987 11.303
3 Verbal 101.697  96.660 10.485

Average 97.667 93.693 10.586

Table 10. The average PSNR of drinking activities

No. Prompts HE CS CLAHE
1 Physical 17.475 11.285 38.635
2 Gesture 16.921 11.237 37.960
3 Verbal 16.675 11.249 38.229

Average 17.024 11.257 38.275

Table 11. The average SSIM of drinking activities

No. Prompts HE CS CLAHE
1 Physical 0.867 0.812 0.998
2 Gesture 0.834 0.781 0.997
3 Verbal 0.828 0.793 0.998

Average 0.843 0.796 0.997

Tables 9-11 display video enhancement evaluation for
drinking activities. The average MSE result is 97.667 for HE,
93.693 for CS, and 10.586 for CLAHE. The average PSNR for

HE is 17.024, CS is 11.257, and CLAHE is 38.275, while the
average SSIM values are 0.843 for HE, 0.796 for CS, and
0.997 for CLAHE.

3.2 Extracting features

The feature extraction process was applied to a sample
video from the eating activity dataset, specifically "Verbal
(235).mp4," which consists of 124 extracted frames, as
illustrated in Figure 6. A MHI representation is shown for
frames 15 to 30. The frames were first enhanced using
CLAHE, as depicted in Figure 6(a). Object segmentation was
performed using Otsu thresholding, with the result shown in
Figure 6(b). Subsequently, an MEI was generated in Figure
6(c), followed by the final MHI representation shown in
Figure 6(d).

Frame 15 Frame 22 Frame 25 Frame 30

(b) Object segmentation
Frame 22
Motion energy

Frame 25 Frame 30

Motion energy

Frame 15

Motion energy Motion energy

(d) MHI

Figure 6. Result of feature extraction
3.3 Evaluation of activity prompts recognition

This study applies integration of CLAHE and MHI with
VGG19 or MobileNetV2 to enhance recognition activity



prompts, specifically for eating and drinking, using evaluation
metrics and AUC-ROC.

Table 12 presents the recognition result of the proposed
approach. Proposed approach 1 achieved the highest accuracy
of 71.31%, while proposed approach 4 yielded the lowest
accuracy at 68.85%. Meanwhile, proposed approach 5
obtained the best performance with an accuracy of 73.96%,
whereas proposed approach 8 recorded the lowest accuracy at
67.71%.

Table 12. Recognition results of the proposed approach for
eating and drinking activities

Proposed Accuracy  Precision Recall F1 Score
Approach (%) (%) (%) (%)
1 71.31 70.12 71.31 67.70
2 69.67 59.25 69.67 62.70
3 70.49 74.08 70.49 69.26
4 68.85 73.39 68.85 63.39
5 73.96 73.51 73.96 73.70
6 72.92 71.02 72.92 71.05
7 69.79 69.07 69.79 63.08
8 67.71 66.16 67.71 60.70

Table 13. Computation time of the proposed method

Proposed Approach Computation Time (seconds)
543
648
566
596
308
420
308
452

0NN B W~

Table 13 presents the computation time of the proposed
method. Proposed approach 1 achieved the highest accuracy
with a computation time of 543 seconds, while proposed
approach 4 yielded the lowest accuracy with a computation
time of 596 seconds. Meanwhile, proposed approach 5
obtained the best performance with a computation time of 308

seconds, whereas proposed approach 8 recorded the lowest
accuracy with a computation time of 452 seconds.

Based on Tables 12 and 13, MHI and (VGGI19 and
MobilenetV2) with enhancement (CLAHE) yield higher
accuracy than MHI and (VGG-9 and MobileNetV2) without
enhancement (grayscale) models. The use of CLAHE and
MHI with (VGG19 and MobileNetV2) improves accuracy,
indicating that CLAHE enhances the visibility of motion
features in MHI, enabling more effective pattern recognition,
while MHI and CLAHE reduce computation time.

Table 14 presents the AUC-ROC results of the eight
proposed methods. The average AUC-ROC for the physical
prompt is 0.82, for the gesture prompt 0.65, and the verbal
prompt 0.75. The physical prompt has the highest average
score, while the gesture prompt has the lowest. The fourth
method achieves the highest AUC-ROC (0.94) for physical
prompts, indicating strong classification ability with minimal
misclassification risk. In contrast, the eighth method has the
lowest AUC-ROC (0.60) for gesture prompts, showing
difficulty in gesture classification.

Table 14. Results of AUC-ROC

Proposed The Prompting Method
Approach Physical Gesture Verbal
1 0.92 0.77 0.82
2 0.92 0.77 0.82
3 0.92 0.62 0.81
4 0.94 0.69 0.8
5 0.86 0.88 0.85
6 0.87 0.85 0.85
7 0.82 0.65 0.75
8 0.83 0.60 0.76
Average 0.89 0.75 0.81

3.4 Comparison of proposed approaches

The suggested approach's conclusions are evaluated by
comparing them to current approaches. Table 15 provides a
comparison of the recommended techniques.

Table 15. Comparison of proposed approaches

Computation Time

Reference Dataset Baseline Architecture Accuracy (%)
(seconds)
Tsai et al. [12] KTH human action MHI and SVM 67.17 1.278
Ahn et al. [13] Real Time cow action MHI and SVM 72 -
Nufiez et al. [14] MSRDailyActivity3D CNN 63.10 -
Sahoo et al. [15] HMDBS51 History Image and CNN 69.74 996
Huang et al. [19] SVM 70 -
Sherkatghanad et al. [18] fMRI CNN 70.22 -
Haweel et al. [17] CNN 78 -
Singh et al. [16] Activity videos MobileNetV1 85 -
S Primary Data
Werdiningsih et al. [6] (cating and drinking data) CLAHE + CNN 85 39.448
Proposed Approach - 1 MHI and VGG19 with CLAHE 71.31 543
Proposed Approach - 2 Primarv Data MHI and VGG 19 with Grayscale 69.67 648
Proposed Approach - 3 ary MHI and MobilenetV2 with CLAHE 70.49 566
(eating data) . .
MHI and MobilenetV2 with
Proposed Approach - 4 68.85 596
Grayscale
Proposed Approach - 5 MHI and VGG19 with CLAHE 73.96 308
Proposed Approach - 6 Primary Data MHI and VGG 19 with Grayscale 72.92 420
Proposed Approach - 7 imary MHI and MobilenetV2 with CLAHE 69.79 308
(drinking data) MHI and MobilenetV2 with
Proposed Approach - 8 67.71 452

Grayscale




Table 15 provides a comparative analysis of this study and
previous research, emphasizing the impact of image
enhancement on model performance. Previous studies [12-15]
have shown that MHI combined with SVM achieved
accuracies ranging from 67% to 72%, while CNN-based
approaches for activity recognition reported accuracies
between 63% and 70%. Nonetheless, the two methods have
limitations in terms of precision and computational efficiency,
with computation times in some situations exceeding 900
seconds. These findings underscore the need for approaches
that improve both recognition performance and computational
efficiency. In addition, several studies [16-19] investigated
ASD diagnosis using secondary data obtained from public
repositories. While most existing studies on ASD activity
recognition report accuracy as the primary evaluation metric,
they rarely address computational efficiency. In contrast, our
study emphasizes real-time feasibility by reducing
computation time while maintaining competitive accuracy.

Regarding comparison with prior studies in Table 15,
several referenced works did not report computation time,
limiting direct efficiency comparison. To ensure transparency,
the current study explicitly reports computation time for each
tested configuration, demonstrating that CLAHE integration
not only improves accuracy but also reduces processing time,
indicating practical gains in real-time applicability.

3.5 Discussion

Tables 6-11 reveal that CLAHE proves to be effective, as it
achieves an average of 10.246 for MSE, 38.391 for PSNR, and
0.997 for SSIM in the eating dataset, as well as an average of
10.586 for MSE, 38.275 for PSNR, and 0.997 for SSIM in the
drinking dataset. An MSE value near 0 and <30 indicates good
results and reduced error. PSNR reflects image processing
quality, with values >35 dB indicating high accuracy and <35
dB, suggesting otherwise. SSIM ranges from -1 to 1, where 1
signifies identical images, and a value near zero or negative
reflects negligible similarity [33]. Considering these results,
CLAHE was chosen as the image enhancement method for
recognition.

Tables 12 and 13 show that CLAHE preprocessing
improves classification performance compared to grayscale,
increasing accuracy from 69.67% to 71.31% for eating
activities and from 72.92% to 73.96% for drinking activities.
This improvement is attributed to CLAHE’s ability to enhance
local contrast, which is particularly useful under varied
lighting and background conditions common in real-world
ASD recordings. Moreover, CLAHE integration reduced
computation time, from 648 to 543 seconds for eating
activities and from 420 to 308 seconds for drinking activities,
demonstrating its dual benefit of improving accuracy and
efficiency [34]. Although the numerical improvements in
accuracy are modest (around 1-2%), the consistent gains
across all metrics and the substantial reduction in computation
time demonstrate the practical advantage of integrating
CLAHE and MHI with CNN for real-time recognition tasks.
These results indicate that between contrast optimization
(CLAHE) and temporal motion encoding (MHI) enhances not
only improve image quality but also facilitate faster
convergence and more efficient feature extraction in CNN-
based models.

In this study, each configuration was trained and tested
multiple times, and the best-performing result was reported to
reflect the model’s optimal capability under each enhancement
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setting. Formal statistical significance testing (e.g., p-value
computation) was not conducted because the evaluation
focused on best-performing results rather than averaged
outcomes across repeated runs. Future work will include
statistical validation through multiple-run averaging to
strengthen empirical reliability.

Table 14 presents the AUC-ROC results of the proposed
approach, with the physical prompt achieving a score of 0.89,
indicating strong classification performance. This suggests the
model effectively distinguishes classes with minimal errors
[31]. The AUC-ROC for the gesture prompt is the lowest at
0.75, indicating adequate performance but a higher likelihood
of errors [32]. Gesture prompting is the least effective due to
its ambiguity compared to physical and verbal methods.
Physical prompts offer clear, direct cues, while verbal prompts
provide explicit linguistic meaning, which is easier to
interpret. Additionally, labeling gesture data is challenging, as
it requires visual movement interpretation, increasing the risk
of errors that can impact model accuracy.

Table 15 shows that applying video enhancement improves
CNN classification accuracy. For the eating activities dataset,
the MHI-VGG19 model with CLAHE achieves 71.31%,
compared to 69.67% without enhancement (grayscale). For
drinking activities, the same model reaches 73.96% with
CLAHE, compared to 72.92% without enhancement. This
improvement can be attributed to CLAHE, which increases
image contrast and clarity, thereby enabling CNN to extract
more discriminative features for classification. In addition,
VGG19 demonstrates higher accuracy than MobileNetV2.
Specifically, for eating activities, MHI-VGG19 with CLAHE
achieves 71.31% while MHI-MobileNetV2 with CLAHE
achieves 70.49%. For drinking activities, MHI-VGG19 with
CLAHE achieves 73.96% compared to 69.79% for MHI-
MobileNetV2. The superior performance of VGG19 can be
explained by its deeper 19-layer architecture [27], which
allows the extraction of more complex features and better
detection of subtle motion patterns in MHI.

The relatively low classification accuracy in this study is
primarily due to the dataset’s inherent complexity and
variability, like the Real-Time Cow Action [13] and HMDBS51
[15] datasets, the data used in our experiments exhibit
substantial variations in motion patterns, camera angles, and
background clutter, which pose significant challenges for
action recognition models. In addition, many gestures
exhibited by children with autism tend to be subtle, non-
standardized, and vary significantly across individuals,
making them difficult to interpret—even for trained human
observers [35]. These factors collectively represent a major
challenge in developing robust image-based activity
recognition systems for this population.

These characteristics restrict the model's ability to
generalize across samples, lowering overall performance
despite the robustness of the proposed strategy. Furthermore,
the usage of MHI as the dominant temporal representation may
add to the reduced accuracy, as MHI tends to oversimplify
motion dynamics in complex scenes with overlapping actions,
background motion, or occlusions. This limitation makes it
difficult to capture fine-grained temporal cues required for
distinguishing subtle action differences in highly variable
datasets. Similar challenges in applying MHI to complex
datasets have also been reported in previous studies, where the
method showed limited effectiveness in capturing temporal
nuances in unconstrained video scenarios [13, 15].

Table 15 shows that the accuracy achieved in this study is



lower than that reported in the study [6]. However, it reduces
the computational time of from 39.448 seconds to 308
seconds. Notably, this shorter processing time corresponds to
the highest accuracy obtained in our experiments, reaching
73.96%. This substantial improvement in computational
efficiency enhances the system’s feasibility for real-time
detection scenarios, which is crucial in practical applications.
Fast processing time directly contributes to better scalability
[36], enabling the system to provide prompt responses during
daily routines for children with ASD. By reducing the number
of processed frames to one per video using MHI, the
computational cost is minimized. Although this results in a
loss of temporal information and may have a modest impact
on classification accuracy, the trade-off is acceptable in the
real world, resource-constrained environments where real-
time interaction is essential.

Enhancing MHI with preprocessing methods (e.g., Gamma
Correction [37], Gaussian Blur [38] can preserve motion
patterns, while leveraging diverse datasets, pose estimation,
and optical flow may reduce gesture ambiguity. Integrating
CNN and RNN is expected to further improve recognition
accuracy, reliability, and overall system performance.

4. CONCLUSIONS

This study introduced CNN-based approach for prompt
activity recognition of children with ASD by integrating
CLAHE and MHI with CNN architectures (VGG19 and
MobileNetV2). The integration enhanced recognition
robustness and computational efficiency, demonstrating that
combining visual enhancement and temporal motion encoding
supports accurate and real-time performance. Physical
prompts were recognized with high confidence (AUC-ROC =
0.94), while gesture prompts remained more challenging
(AUC-ROC = 0.60), highlighting the need for improved
temporal feature modelling.

The relatively modest classification accuracy reflects the
dataset’s inherent complexity and variability. Variations in
motion patterns, camera angles, and background clutter, along
with subtle and inconsistent gestures among children with
ASD, pose recognition challenges even for human observers.
Moreover, this study did not include formal statistical
validation, as the reported results represent best-performing
outcomes rather than averaged experiments. These factors
collectively represent key limitations in achieving consistent
and statistically verified model performance.

Future work will address these limitations by incorporating
multimodal learning (e.g., depth, skeletal, and audio cues),
attention-based temporal modeling, and statistical validation
through multiple-run averaging to strengthen empirical
reliability and improve generalization across diverse real-
world activities.
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