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Computer vision-based approaches to bird species classification have been extensively
studied by researchers over the past few decades. Manually classifying bird species
based on their appearance in real-time is a complex and time-consuming task. However,
advancements in image-capturing technology and the integration of machine learning
techniques have made it possible to automatically classify bird species and assist
ecologists in studying bird population trends, identifying endangered species, and
assessing the impacts of habitat loss, climate change, and pollution on bird populations.
Considering this, the present research proposes an approach that integrates multiple
deep architecture models optimized via a genetic algorithm to enhance bird species
classification performance. Eight state-of-the-art deep learning models, namely Vision
Transformer (ViT), EfficientNet, VGG16, VGG19, Xception, Inception, MobileNet
and ResNet, were employed. Experiments were conducted using the Indian bird dataset.
The genetic algorithm is employed to determine the best combining rule and select an
ensemble of deep architectures with the highest fitness. The proposed ensemble method
achieved a classification accuracy of 97% using a median-based ensemble of
EfficientNetV2 and ViT. The findings indicate that the proposed ensemble approach

outperforms existing appearance-based bird species classification methods.

1. INTRODUCTION

Advancements in the field of science and technology in
recent years have motivated researchers and technocrats to
consider addressing some of the very important and real-time
tasks that have a significant impact on society and natural
ecosystems. One such task is the classification of bird species
in real-time environments. Birds can be classified based on
their appearance and sound. Many ecologists and
environmentalists who are quite familiar with birds can
perform classification based on sound and appearance, but this
is a challenging and cumbersome task when the number of
species is more. Furthermore, intra-class variations and
between-class similarities among the species pose many more
challenges in accurately classifying bird species. In this
context, in the past few decades, many attempts have been
made to propose efficient and effective bird species
classification techniques. A review of the literature reveals that
there is scope to improve the classification accuracy and
address many challenges, such as birds in complex
backgrounds, occlusion, different poses, images with noise,
and poor intensity. The capabilities of existing approaches can
be effectively integrated to build a more robust and effective
model that can work in real time and address the challenges
mentioned above.

In view of this, an attempt was made to propose a genetic

algorithm-based ensemble of deep architectures to enhance the
performance of classification. The proposed ensemble
approach explores the best deep models and best combining
rules for integration. A database consisting of 41 bird species,
each with more than 100 samples, was created to evaluate the
performance of the proposed ensemble classification
approach. A total of 6150 images were considered in our
experimental analysis.
The remainder of this paper is organized as follows. Section
2 presents a review of recent literature. Section 3 presents the
proposed methodology. Section 4 presents the details of the
datasets used followed by conclusions and a few important
references.
The key contributions of this work are listed as follows:
®  Proposed a genetic algorithm-based ensemble of deep
classifiers for effective classification of birds’ species.
® Suggested a novel way of applying crossover and
mutation operators for genetic algorithm.
® Created a considerably large database of bird images
to study the performance of the proposed
methodology.

2. LITERATURE REVIEW

Several researchers have attempted to develop techniques
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for effective classification of bird species. A review of these
key contributions is essential for identifying research gaps,
addressing the limitations of existing systems, and proposing
methodologies to enhance efficiency and effectiveness. In
light of this, the following paragraphs summarize the
significant works related to appearance-based bird species
classification.

2.1 CNN and Vision Transformer (ViT)-based approaches

CNN and ViT-based approaches for bird species
classification have been discussed. The following paragraphs
present a brief description and critical analysis of these
approaches.

Chenetal. [1] proposed a hierarchical gate network for fine-
grained visual recognition. HGNet uses the interconnections
among hierarchical classes. LSTM like mechanism is used to
propagate dependencies among classes, which boosts
classification accuracy. Experiments were conducted on
datasets such as Stanford Dogs, CUB-200-2011, Aircraft,
NABiIrds, iNaturalists, DeepFashion2 and DeepFashion. The
proposed methodology achieved 88.7%, 88%, 92.8%, 86.4%,
78.2%, 58.5%, and 68.4% accuracy for the Stanford Dogs,
CUB-200-2011, Aircraft, NABirds, iNaturalists,
DeepFashion2 and DeepFashion datasets respectively.

Branson et al. [2] proposed a classification approach based
on pose-normalized deep convolutional neural networks
(DCNNs). The architecture estimates the pose of a bird to
compute the local image features for classification. A graph-
based clustering algorithm and higher-order geometric
warping functions were used to estimate the normalized bird
pose. Experiments conducted on the CUB-200-2011 dataset
showed an accuracy of 75.7%.

Jaderberg et al. [3] proposed a spatial transformer network
by introducing a learnable module that could be integrated into
any CNN architecture with very little modification. When
incorporated, this module equips the CNN with the ability to
handle image transformations, such as translation, scaling, and
rotation. The experiments conducted on the CUB-200-2011
dataset achieved a classification accuracy of 84.1%.

Manna et al. [4] proposed a various convolutional neural
network, namely Inception V3, DenseNet 201, MobilenetV2,
and ResNet152V2, for bird species classification based on
images. The model was trained on 58388 images and tested on
2000 images belonging to 400 species. According to the study,
ResNet152V2 achieved the highest accuracy of 95.45% and a
loss of 0.8835. Similarly, DenseNet achieved a classification
accuracy of 95.0% with a loss of 0.6845.

Zhang et al. [5] proposed a part-based CNN for fine-grained
category detection to explicitly identify significant differences
in the appearance of specific object parts. Semantic part
localization was utilized for fine-grained categorization, with
bounding box annotations considered during testing to address
the object annotation challenges. The model leveraged
convolutional features obtained through bottom-up region
proposals, learning both whole-object detection and part
detection while enforcing geometric constraints between the
foreground and background of the interest. This approach
enables fine-grained category detection using post normalized
representations. Experiments on the CUB-200-2011 dataset
demonstrate a performance of 76%.

Huang et al. [6] proposed a recognition of endemic birds
using deep-learning models. A transfer learning-based method
using Inception-ResNetV2 was used, which outperformed all
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the other methods, namely InceptionV3, ResNetl101,
MobileNetV2, Xception, and ResNet101. A five-fold cross-
validation was used to review the results. A total of 790 images
of birds consisting of 29 species were used to evaluate the
performance of the model. The proposed model achieved
accuracies of 100% for bird identification and 98.39% for bird
classification.

Wei et al. [7] proposed a mask CNN without fully connected
layers, which localizes parts and selects descriptors for fine-
grained bird species categorization. The fully convolutional
network locates discriminative parts and generates weighted
object masks. A three-stem-masked CNN model was used to
build the descriptors. The experiment was conducted on the
CUB-200-2011 and Birdsnap datasets. The proposed model
achieves 85.7% of accuracy for CUB-200-2011 dataset and
77.3% of accuracy for Birdsnap dataset, respectively.

Kumar and Kondaveeti [8] proposed a bird species
recognition using a hybrid hyperparameter optimization
scheme (HHOS). A few selected models were trained in the
HHOS, which enhanced the classification performance. The
results showed that EfficientNetBO achieved superior
performance compared to the other classification models, with
the highest accuracy of 99.12%. The authors increased the size
of the CUB-200-2011 dataset from 11788 to 40000 by adding
29,000 more images, which are the augmented versions of the
original dataset.

Ngo et al. [9] proposed a survey of different deep-learning
models such as InceptionVV3 and EfficientNetB4. The model
was evaluated on a wide range of datasets, including CUB -
200-2011, Kaggle 325 bird species, and Kaggle-510 bird
species, and a self-generated dataset (100 bird species from
Malaysia) was used in this study. The EfficientNetB4 model
outperformed the models in terms of classification
performance. For the CUB-200-2011 dataset, the result was
74% for the EfficientNetB4 model.

Bold et al. [10] proposed a multiple kernel learning
framework for bird species classification using a CNN was
proposed. A multiple kernel learning technique was used to
combine features from audio and video data. The CUB-200-
2011 dataset and audio data were combined for classification.
78.15% was the highest performance achieved using the
proposed methodology.

Discriminative features for bird species classification were
proposed by Pang et al. [11]. First, the images were cropped
based on patches. The patches are used to form codebooks, and
finally, the code books are used to generate intermediate
features based on the sparse coding algorithm. Intermediate
features were concatenated to form the final feature
representation, which was used for training and classification.
The CUB-200-2011 dataset was used in this study. The
proposed model has achieved 64.6% of performance.

CNN works best in processing spatial patterns while ViT
works best in processing global context and long-range
dependencies. Limitations of the ViT are high computational
cost, low inductive bias and needs huge data. Whereas
limitations of the CNN are high inductive bias, lower
computational cost and weak in handling global context.

CNN-based models utilize convolutional kernels that have
a local receptive field, meaning they process only a small
window of pixels at a time. While stacking multiple layers
allows the network to eventually see the entire image, its
global understanding remains inefficient and implicit. This
limitation can be addressed by transformer-based methods,
which use a self-attention mechanism for a more holistic view.



However, transformer models are extremely dependent on
large amounts of data and require high computational power.
Consequently, the choice between a CNN and a ViT involves
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and superior
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Table 1. Literature review for CNN and ViT based approaches
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Table 2. Literature review of genetic algorithm-based approaches

References Architecture Dataset Accuracy Analysis Limitation
Ensemble learning
based genetic
A new ensemble learning . algorithm estimates  Limitations of the genetic
methodology based on Best performing the best performing algorithm-based
[12] hybridization of classifier 14 datasets  chromosome was chromosome based approaches are
- achieved .
ensemble selection approaches. on trade-off between computationally
accuracy and expensive for training
diversity. model at each iteration,
To obtain the best no guarantee of
hyperparameter optimality, problem
Optimizing DenseNet121 for configuration, specific parameter tuning,
[13] waste classification using genetic Own dataset 97% multiple scenarios premature convergence

algorithm-based down sampling
and data augmentation.

and not suited for all
kinds of solutions.

were tested with
augmentation and
different image
dimensions.

2.2 Genetic algorithm-based approaches

Genetic algorithm-based approaches for bird species
classification were discussed in studies [12, 13]. The following
paragraphs presents a brief description and critical analysis
about these approaches.

Mousavi and Eftekhari [12] proposed a technique for image
classification based on hybridization of classifier ensemble
approaches. The model was evaluated using both static and
dynamic ensemble methodologies, leveraging NSGA-II as a
multi-objective genetic algorithm to optimize both error and
diversity for selecting the best classifier ensemble. A Pareto
optimal solution is suggested to balance the trade-off between
these objectives. The experiments were conducted using six
combined rules and 46 individual classifiers. The proposed
approach outperformed all other ensemble methods across the
14 datasets in terms of classification accuracy.

Dharmawan et al. [13] proposed a novel waste classification
approach that incorporates genetic algorithm hyperparameter
optimization with data augmentation and data down sampling.
To obtain the best hyperparameter configuration, multiple
scenarios were tested with augmentation and different image
dimensions. This configuration enhances the accuracy from
94% to 97%.

Advantages of genetic algorithm are it supports global
optimization, handles nondifferentiable and complex
problems, it is flexible and versatile, it provides a set of good
solutions, it is intuitive and inspired by nature.

Limitations of the Genetic algorithm-based approaches are,
computationally expensive for training model at each iteration,
no guarantee of optimality, problem specific parameter tuning,
premature convergence and not suited for all kinds of solutions
as shown in Table 2.

2.3 Machine learning based approaches

Machine learning-based approaches for bird species
classification are discussed in studies [14-19]. The following
paragraphs presents a brief description and critical analysis
about these approaches.

Kong and Fowlkes [14] proposed a low-rank bilinear
pooling method for fine-grained classification. The study
revealed that a high-dimensional bilinear feature vector,
created by pooling the results of second-order local feature
statistics, outperformed contemporary methods across various
fine-grained bird classification tasks. To address the
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complexity of high-dimensional feature spaces, this study
proposes covariance features and applies them to a low-rank
bilinear classifier. The model was further compressed using a
classifier co-decomposition approach, where a collection of
bilinear classifiers was factorized into a common factor and
compact per class terms. This co-decomposition was
implemented using two convolutional layers and was trained
in an end-to-end architecture. Additionally, an effective
initialization strategy was suggested to avoid the explicit
training and factorization of larger bilinear classifiers. Several
experiments were conducted on various public datasets to
evaluate the efficacy of the proposed methodology, and the
results demonstrated a superior performance. The experiment
conducted on the CUB-200-2011 dataset achieved the highest
accuracy of 84.21%.

Rai et al. [15] proposed various machine learning
techniques for bird species classification were proposed. In
this study, a CNN model was used for feature extraction,
whereas Naive Bayes, SVM, Random Forest, LDA, Decision
Tree, KNN, and Logistic Regression were employed for
classification. Trail experiments were conducted on the CUB-
200-2011 dataset, and it was reported that the KNN classifier
achieved the highest classification accuracy of 33%. These
studies highlight the progress made in appearance-based bird
species classification and underscore the need for further
improvements, particularly in handling complex pose
variations and enhancing classification accuracy in real-world
settings.

Yang et al. [16] proposed an improved transfer learning
methodology for the classification of protected Indonesian
birds based on images. In this study, batch normalization
dropout fully connected (BNDFC) layers were proposed,
which can be incorporated into any CNN network to further
enhance classification accuracy. This study was conducted
using an Indonesian bird dataset. The experiment was
conducted using MobilenetV2 CNN and on average, the
performance was enhanced by 19.88% accuracy, 24.43% F-
measure, 17.93 G-mean, 23.41 of sensitivity, and 18.76 of
precision. The highest accuracy achieved was 88.07% for the
validation set.

Naranchimeg et al. [17] proposed a multi-model bird
species classification for using audio-visual data. CUB-200-
2011 was used to build the visual data module, and originally
collected audio data were used for building the audio module.
The overall classification performance was enhanced by
combining audio and video data using a CNN. The model



achieved a classification accuracy of 78.9%.

Yang et al. [18] proposed an automatic bird image
classification with feature enhancement and contrastive
learning. The proposed methodology includes multiscale
feature fusion to extract information at different scales. An
attention feature enhancement module was integrated to
address occlusion and noise. Furthermore, the Siamese
network was used to compare two images belonging to the

same class and different classes. CUB-200-2011 dataset was
used in the study. With only 5% of the training data, the model
performed fairly well, with a recognition accuracy of 65.2%.
Limitations of the machine learning based approaches,
depends mainly on feature engineering, struggles with
unstructured data, curse of dimensionality and sensitive to data
scaling as shown in Table 3.

Table 3. Literature review of machine learning based approaches

References Architecture Dataset Accuracy Analysis Limitation
A high-dimensional bilinear feature vector,
created by pooling the results of second-order
local feature statistics, outperformed
[14] Low-rank bilinear pooling for =~ CUB-200- 84.21% contemporary methods across various fine-
fine-grained classification 2011 42”0 grained bird classification tasks. To address the
complexity of high-dimensional feature spaces, .
; - Machine
this study proposes covariance features and | -
; bt o earning
applies them to a low-rank bilinear classifier.
Analysis of learning . - . approaches
[15] techniaues: bird species CUB-200- 33% Various classifiers were studied for the purpose depends
gues. bird sp 2011 of bird species classification. mainly on
classification feature
Ie?rnn:nmpmtg\rl?ri;ra;-zfaes: q batch normalization dropout fully connected engineering,
[16] Ing mage: Own dataset 88.07% (BNDFC) layers were proposed which can be  struggles with
species classification of incorporated in any CNN unstructured
protected Indonesians birds P y ' data. curse of
Cross-domain deep feature Multi model bird species classification was dime’nsionalit
combination for bird species ~ CUB-200- 0 5p nairty
[17] R - - 78.9% proposed which enhances the overall and sensitive
classification with audio- 2011 lassificati q
visual data classification accuracy. to I_ata
multiscale feature fusion to extract information at scaling.
Automatic bird species different scales. An attention feature
[18] recognition from images with  CUB-200- 65.2% enhancement module was integrated to address
feature enhancement and 2011 ’ occlusion and noise. Furthermore, the Siamese
contrastive learning network was used to compare two images
belonging to the same class and different classes.
Table 4. Literature review of other optimization-based techniques
References Architecture Dataset Accuracy Analysis Limitation
Handwritten This work is very
On combining digit useful in introducing High computational cost, risk of
[19] e 2 98.19% - L - .
classifiers classification combining rules for overfitting and sensitive to noise.
dataset combination.
. . XAl is incomplete as the single
_Towgrds transparency EfficientNetBO0 has Th"?‘ work h_e Ips in statement rarely tells the complete
in Al: Explainable bird achieved an accurac introducing story. As explanations are filtered
[20] species image CUB-200-2011 Y explainable Al in the Y. /S eXp

classification for
ecological research

of 80.421% on CUB-
200-2011 dataset.

through cognitive biases, Explainable
models are less accurate, creates
false sense of trust and hard to audit.

field of bird species
classification.

2.4 Optimization based approaches

Optimization-based approaches for classification were
discussed in studies [19, 20]. The following paragraphs
presents a brief description and critical analysis about these
approaches.

Kittler et al. [19] proposed a theoretical framework was for
combining multiple classifiers using various combinations of
rules to improve pattern classification performance. Each
classifier utilizes a unique pattern representation technique to
make decisions. Four decision classifiers such as structural,
Gaussian, neural network, and hidden Markov model were
studied. Accuracy of the proposed classifier ensemble was
evaluated through handwritten digit classification, which
achieved a classification accuracy of 98.19% with the median
combining rule. The approach is computational expensive and
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suffers from the risk of overfitting and noise sensitivity.

Kumar and Kondaveeti [20] proposed an explainable
artificial intelligence to increase the clarity of a deep learning
model for bird species classification. Popular deep learning
models such as EfficientNetB0O, DarkNet53, DenseNet201
SqueezeNet, InceptionResNetV2 and NasNetLarge were
trained using CUB-200-2011. The authors have claimed a
highest accuracy of 99.51% for EfficientNetBO0.

Explanations given by XAl are approximations and
incomplete as the single statement rarely tells the complete
story. As explanations are filtered through cognitive biases,
Explainable models are less accurate, creates false sense of
trust and hard to audit, as shown in Table 4.

In the present study optimal chromosome has been achieved
which outperforms all the individual classifiers. It’s the best
combination of the available classifiers, which has enhanced



the classification performance. The classifiers have not
overfitted because of the availability of the validation split.
Genetic algorithm has been best suited in the present scenario.

The ensemble model using genetic algorithm does not
overcome the individual limitations, instead it enhances the
overall performance of the ensemble.

3. METHOD

The methodology proposed in this study aims to identify a
deep architecture combination that can improve the accuracy
of classifying an unknown bird image into one of the known
classes as per the training. The concept of a genetic algorithm
was explored to identify the best deep architecture
combination. The steps involved in the proposed methodology
are depicted in Figure 1 and described in the following
paragraphs.

Initially, the methodology begins by splitting the images of
the benchmark dataset into training, validation, and testing

Training Set
Validation Set

Data Set

—

Test Set

portions. The images in the training set were used to train the
deep learning models, and those in the validation set were used
to fine-tune the trained models. Once the deep models are
trained with the required number of iterations and are found to
perform better in terms of classification accuracy, the training
process is stopped. The classification ability of the trained
individual deep learning model was tested using images in the
test set, and its performance was recorded. It was observed that
the models showed good performance for some classes and
poor performance for some other classes. It has also been
observed that the model that has shown good classification
performance for one class does not show such good
performance for some other classes. Hence, it is evident that
no single model can provide an overall good classification
accuracy for the considered dataset. Therefore, it is thought
that ensembling the models and taking the collective decision
enhance the accuracy of classification. However, to optimize
the classifier combination, it is suggested to explore the
concept of a genetic algorithm that produces the best overall
classification accuracy for the considered dataset.

Input Bird Image

DL Model-1

DL Model-1

DL Model-2

DL Model-2

DL-Model-3

DL-Model-3

Model-N

DL-Model-K

Apply Genetic
Algorithm

Bird Image
Classification

Figure 1. Architecture of the proposed genetic algorithm-based ensemble of deep learning models for appearance-based bird
classification

The following paragraphs present a brief description of the
various deep learning models used in the proposed research
work and the details of the selection of the best combination
through a genetic algorithm-based approach.

3.1 The deep learning model’s overview

Several deep CNN and transformer-based models have been
proposed for various machine learning tasks, such as
segmentation, classification, and prediction. All these models
vary in architecture but have certain common features. The 1st
layer in the deep architecture is the input layer, which accepts
the image data, followed by a convolution layer, which is
responsible for extracting meaningful features by performing
convolutional operations. The subsequent layers, also called
hidden layers, perform different convolution operations and
derive a high-level abstraction from the input image. The
number of hidden layers depends on the architecture that is
designed to solve a particular problem. The final layer of the
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deep architecture was a fully connected layer that produced a
complete set of features extracted from the image for
characterization. The RELU activation function was used in
all layers except the final layer, and the Softmax activation
function was used in the final layer for classification.

Xception: A CNN architecture that depends completely on
depth-wise separable convolution layers [21]. This is an
extension of the inception model, where the inception modules
are substituted with depth wise separable convolution layers.
The Xception model is organized into three blocks, namely,
the entry, middle, and exit flows with skip connections around
the thirty-six layers. The entry flow extracts low-level features
from the input image, the middle flow progressively extracts
higher-level features from the image, and the exit flow refines
these features for final predictions. This hierarchical structure
aids in learning hierarchical representations and in the flow of
data through the network.

VGG16: Deep CNN model used for image classification
tasks [22]. The network was composed of 16 layers of artificial



neurons, which were responsible for incrementally processing
image information and enhancing the accuracy of its
predictions. VGG16 uses convolution layers with a 3 <3 filter
and stride 1 that are in the same padding and max pool layer
of a 2 x 2 filter of stride 2. It follows this arrangement of
convolution and max pool layers consistently throughout the
architecture. It had two fully connected layers at the end,
followed by a Softmax activation function for the output.

VGG19: A variant of the VGG model, which consists of 19
layers, is characterized by its simplicity and uniform
architecture [22]. The network is composed of a series of
convolutional layers, followed by max-pooling layers, and
several fully connected layers at the end. The use of small 3 <
3 convolutional filters throughout the network allows for a
deeper architecture, while maintaining a relatively low number
of parameters. A rectified linear unit (ReLu) was used to
introduce nonlinearity and improve the computational time
and classification ability of the model.

ResNet152: A convolutional neural network that exploits
the concepts of residual learning to dampen the degradation of
deep neural networks and skip connections [23], which adds
new inputs to the network and generates new outputs. This
idea enables the model to be trained more deeply and achieve
better classification accuracy without increasing the
complexity of the model. ResNet152 is proved to be the best
model in terms of its classification accuracy among the ResNet
family members and hence it is considered in this study.

MobileNet: Simple but lightweight and efficient
convolutional neural network model for mobile vision
applications [24]. MobileNet is widely used in many
applications including object detection, fine-grained
classification, semantic segmentation, and localization. The
MobileNet model replaces depth wise convolutions in the
place of standard convolutions to build a very lighter model

with very less parameters when compared with other networks
to come up with lightweight deep CNN. MobileNets
introduced two new global hyperparameters, the width
multiplier and resolution multiplier, that allow model
developers to trade off latency or accuracy for speed and low
size depending on their requirements.

InceptionNet: A convolutional neural network designed for
image-classification tasks [25]. The inception architecture
combines convolutional filters of different sizes in parallel to
extract features from the input image at different scales. The
output of each filter is then concatenated and sent to the next
layer, where the process is done multiple times. This approach
allows the network to capture local and global features of the
input image while minimizing the number of parameters. The
inception modules allow the network to learn temporal and
spatial features from the input data because the module is
composed of pooling and small convolutional layers. The aim
was to make the model more efficient and faster. It has been
widely used in various applications such as object detection,
face recognition, and image classification.

EfficientNetV2: A type of convolutional neural network
that can be trained faster and has better parameter efficiency
than previous models [26]. Both parameter efficiency and
training speed were jointly optimized using a neural
architecture search (NAS). Although EfficientNetV2 is
smaller, it still outperforms the state-of-the-art method by
enriching the search space with newer operations, such as
fused-MBConv.

VIiT: A transformer-based logic derived from NLP is
applied in the field of computer vision. By inserting a new
multi-layer perceptron was used as the head of the encoder, a
ViT was used to classify birds based on the images. Training
the VIiT on large datasets produces better results than the
CNN-based architecture in the field of image classification.

l

Inclusion or exclusion of
deep architecture

l

Combining rule

Figure 2. Diagram representing the structure of a chromosome

3.2 Ensemble of deep learning models using genetic
algorithm

Genetic algorithm is an optimization and search technique
used to find the best ensemble of deep learning classifiers in
the field of image classification. The optimization model
reduces the search space to determine the most optimal
architecture with the highest fitness. The genetic algorithm is
based on evolution and natural selection, which is inspired by
the field of biology and incorporates the knowledge of survival
of the fittest to return the chromosome with the highest
performance.

From a literature survey, it can be inferred that the ensemble
learning system has achieved significant improvement in
classification accuracy, and many ensemble learning
techniques have also been introduced by Mousavi and
Eftekhari [12]. It is well known that the concept of genetic
algorithms has also been explored to determine the most
optimal solution. Based on this observation, the deep learning
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models presented in the previous section were assembled
using a genetic algorithm. Different combining rules, as shown
in Table 5, were used for ensembling.

Table 5. Combining rules and the procedure for ensembling
deep learning models

S| Combining  Description  Procedure Encoding
1 Majority Majority Class Title 000
2 Maximum  Maximum rule Supporting 001
3 Minimum  Minimumrule Supporting 010
4 Mean Mean rule Supporting 011
5 Median Median Supporting 100
6 Product Product rule  Supporting 101

Table 5 presents six different combining rules, and the
corresponding procedures used to ensemble the deep
architecture models. For a given sample, the class-wise
probabilities obtained by the individual learning models were



combined based on the combining rule, and the final decision
for classification was made accordingly. Table 6 presents the
various deep architectures used in the proposed methodology
for ensembling, and their corresponding bits in the
chromosome.

Table 6. Deep architectures used in the experiment and their
encoding bits on the chromosome

Deep Encoding

Xception
Inception
MobileNetV2
ResNet152
VGG19
VGG16
EfficientNetV2
ViT

O~NO O~ WN -

3.3 Representation of a chromosome

The concept of genetic algorithm is based on the
representation of chromosomes. In the present study, a
chromosome is a pattern of bits that represents a list of deep
architectures and their combination rules. A chromosome was
defined with 11 binary bits, where the first 3 bits are used to
define combining rules and remaining 8 bits are used for
inclusion or exclusion of 8 different deep classifiers
considered in this work. The six different combining rules
mentioned in Table 1 can be uniquely identified by 3 bits.
Figure 2 shows the structure of the chromosomes.

3.4 Selection of best deep model ensemble

Algorithm 1: Selection of Best Deep model Ensemble
Input: (i) population size: S

(i) point of crossover ‘pl°,

mutation rate ‘p2’, structure of the chromosome,
fitness metric, number of generations *N’.
Output: Best performing chromosome
Method:

1.

Randomly choose the chromosomes based on the
population size and include the chromosomes
which are expected to perform well.

2. Evaluate the fitness of each of the chromosomes.
3. Loop start:

e From the population, randomly pick two
chromosomes and apply binary tournament
selection.

e Apply crossover or mutation with equal
chances.

e Add newly generated chromosomes to the
existing population.

e Rank all the chromosomes based on fitness.

e Select the top ‘s’ chromosomes based on fitness
to the next generation.

e End the loop, when all the chromosomes in the
population does not change consistently for 4
generations.

Loop end:
4. Return the chromosome with the highest fitness

(classification accuracy).

The concept of a genetic algorithm is used to identify the
best combination of deep models to improve classification
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accuracy. According to the structure of the chromosome
mentioned above, if the brute-force method is used to find the
optimal chromosome structure, then the algorithm should
compute all 1536 (28 x< 6) possible combinations for eight
different deep models and six different combining rules.
However, the proposed genetic algorithm performs only 300
possible combinations and reduces overall complexity. In the
proposed genetic algorithm, classification accuracy is used as
the fitness metric, as mentioned in Algorithm 1.

In prior ensemble methods, crossover and mutation
operations are performed in sequence (mutation followed by
crossover), but in the proposed work these operations are
performed in parallel. By applying mutation and crossover
operators in parallel, the genetic algorithm searches the local
optima (solutions with lower hamming distance) using lower
mutation rate and searches the wider search space with the
crossover operator. But in the prior work, mutation followed
by crossover searches for diverse solutions (solutions with
higher hamming distance).

3.4.1 Binary tournament selection

Binary tournament selection is a methodology used in the
genetic algorithm for the purpose of selecting individuals
based on their fitness. Two chromosomes were randomly
selected from the population, and the accuracy of both
chromosomes was estimated based on the combined rule and
selected deep classifiers. The computed accuracy of
classification was assigned as the fitness of the chromosomes,
the fitness of both individuals was compared, and
chromosomes with the highest fitness were returned as the
output of the binary tournament selection in Algorithm 2.

Algorithm 2: Binary Tournament Selection

Input: Randomly selected two chromosomes from the

population ‘P’

Output: Chromosome with the higher fitness

Method:
1.

let p1, p2 € P, where pl = r and(P) and p2 =
rand(P)

2. Al= pattern(pl) and A2 = pattern(p2) where Al
and A2 are the pattern of the chromosomes
3. fitnessl = F(Al), fitness2 = F(A2) where F(.)
returns the accuracy of the classification for the
given pattern.
. pl if fitness 1 > fitness 2
4. Pi= { .
p2 otherwise
5. Return Pi

Algorithm 3: Crossover

Input: Population, chromosome size ‘N’

Output: Output architecture of the two chromosomes
Method:

1. Let p; and p, be the two chromosomes selected
based on two binary tournament selection
algorithms.

2. P be the point of crossover such that p = rand (0,
N) where rand() is a random function

- plilifi<P o
3. yli]l= {pz[i] otherwise wherei=0...,N
[ plilifi<P .
4. yli] = {pl[i] otherwise wherei=0...,N
5. returny, and y,.




3.4.2 Crossover

Crossover is a genetic operation used to combine genetic
information to produce new offsprings as shown in Algorithm
3. Two chromosomes selected using the tournament selection
technique were subjected to recombination. In the present
experiment, a one-point crossover was used to estimate the
recombination where all the genes were exchanged to produce
new offspring after the crossover point. Example: Let
Chromosome A Chromosome B = 11111111111; if the point
of crossover is the 3rd bit, then the newly generated offspring
are A=111111111 and B = 11000000000. Here, all the genes
after the reference point are exchanged.

3.4.3 Mutation

Mutation is a genetic operator used to produce offspring by
altering the chromosomes. A chromosome selected using the
tournament selection technique was subjected to mutations. In
this experiment, bits of the chromosome were flipped based on
the mutation rate. While processing a chromosome, each bit is
compared with the value generated by a random function in
the interval [0,1]. If the function generates a value less than the
mutation rate, then the bit is flipped. Thus, by flipping the bits
in the chromosomes, the mutation enabled us to find a better
chromosome as presented in Algorithm 4. The higher the
mutation rate, the higher is the chance of flipping the bits.
Hence, the mutation rate is directly related to Hamming
distance between chromosomes before and after the mutation
application.

Algorithm 4: Mutation
Input: Input chromosome
chromosome size ‘N’
Output: Output Chromosome
Method:
1. Let p be the chromosome selected based on two
binary tournament selection algorithms.

‘C’, mutation rate ‘P’,

. _(pli] if rand([0,1]) > P .
2. ylil= {1 — pli] otherwise’ where, i=0, ...,
N
3. Returny

Algorithm 5: Production of New Generation
Input: Population of the present generation P = {p4,p,

Ps..Pm}
Output: Population of the next generation if size ‘N, P; =

{p1, P2 ps..Pn YWheren<m
Method:
1.

A; = accuarcy (p;), where,i = 0, .., m, where,
A; is the accuracy of each of the chromosomes ‘i’
and p; is the i**chromosome of the population P.

2. Fitness; = A; where accuracy is assigned as the
Fitness of each chromosome

3. P =Sort (p1,p2 03 Pm ), Where, P is the sorted
population in decreasing order of the fitness 4; >
A;; wherei =0,..,m.

4. X =A{py,p2 P3..Pn} = {P1. P2 - Pn . Pm} sUch
thatn <m

5. return X, where X is the population of the next
generation.

3.4.4 Production of new generation

During the execution of the genetic, the new generation
replaces the old generation based on the fitness values of the
chromosomes. If the population size is ‘N,’ the population size
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doubles when new offspring are generated and added to the
present population in Algorithm 5. To pass the chromosomes
to a newer generation, all the chromosomes are first ranked
based on fitness; further, the top N chromosomes are
considered as the newer population, as the evolution
methodology is based on the survival of the fittest.

During the workflow of the genetic, whenever new
chromosomes are generated or modified, they are added to the
chromosome bank. This repository helps to observe all
chromosomes that were searched by the genetic algorithm.
This bank is very helpful in displaying the top 10
chromosomes.

3.4.5 Dealing with erroneous chromosomes

During the execution of each step of the genetic algorithm,
there is a chance of generating an erroneous chromosome. As
there are 3 bits allotted for the encoding of the combining
rules, the three bits can generate eight possible combinations,
where there are only six combining rules. The remaining two
possible combinations are erroneous because they do not
represent any combining rules. Furthermore, during crossover
and mutation operations, an erroneous chromosome may be
generated. To address such situations, exception handling is
necessary.

As per the principles of genetic algorithm, whenever
offsprings are generated by crossover or mutation, they are
added to the existing population. If n; is the population size
and n; is the number of chromosomes generated by crossover
or mutation operations, then the total number of chromosomes
to be processed becomes (n3 = ni + ny). However, before
passing all these chromosomes to the next generation, the
chromosomes are sorted, and the top n << nz chromosomes are
passed to the next generation.

4. EXPERIMENTATION AND RESULTS
4.1 Dataset

The Indian bird image dataset was used to conduct
experiments and corroborate the performance of the proposed
methodology for classifying bird species. The dataset
comprises 6150 images splitted into 41 categories, each of
which has approximately 150 images. The dataset contained
non-segmented bird images. There were significant intra-class
variations in the dataset as a single bird was captured at
different angles and poses. The dataset is quite complex when
compared to available datasets, as the birds are captured with
complex backgrounds, bird images are occluded with other
objects, and the birds are captured in different poses and
angles.

4.2 Experimental setup

Several experiments were conducted to study the
performance of the proposed methodology and fine-tune the
parameters to enhance the classification accuracy and
robustness of the classification approach. Segmented and non-
segmented images were studied to understand the performance
of the proposed methodology. The following subsections
provide details of the parameters used for training the model.

4.2.1 Parameters used for training deep learning models
All the bird images (Figure 3) are resized to size of



(224,224,3). A batch size of 32 was used in the experiment.
‘Include top’ parameter was set as False, as the fully connected
layers were not included. Stochastic gradient descent (SGD)
was used as the optimizer of the model. Accuracy was used as
the metric for the optimization of the model. The SGD learning
rate was initialized as 0.001, the SGD decay as 1e-6, and the
SGD momentum as 0.9. The callbacks of the model were
declared with ‘Restore best weights’ as TRUE and with a
patience of 5. The loss was categorized as
categorical_crossentropy, as it was a multiclass classification
problem.

Figure 3. Examples of images from the Indian bird dataset

4.2.2 Results on different ratios of training and testing data

Several experiments were conducted to study the
classification accuracy of the proposed methodology by
considering the parameters considered in the previous
sections.

Table 7 presents the outcomes of the experiments conducted
with different percentages of training and testing for bird
images.

Table 7. Classification results for Indian bird images

Training/Testing  Train-90%  Train-80%  Train-70%

Vs val-5% val-10% val-15%

DL Models Test-5% Test-10% Test-15%
Xception 89% 87% 86%
ResNet152 84% 82% 83%
MobileNet 79% 80% 80%
Inception 84% 80% 78%
EfficientNetV2 91% 90% 86%

4.2.3 Parameters used in genetic algorithm

Some parameters associated with the genetic algorithm
proposed in this study need to be initialized and fine-tuned
during its execution. New chromosomes are generated in each
iteration by performing genetic operations, such as mutation
and crossover. It has been observed that new chromosomes
generated in this manner will be stable after 10 generations.
Therefore, the maximum number of iterations required to
produce stable chromosomes in this experiment was 10. Thus,
the search space computation using a genetic algorithm is
equal to the product of the number of generations and
population size (10 % 30). As 1536 > 300, the search space for
the selection of the best classifier ensemble is reduced using a
genetic algorithm when compared with the brute force
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technique.

The population size should be as large as possible so that a
larger diversity of chromosomes can be considered in the
experiment. The population size should be as small as possible
so that the product of the number of generations and
population size is smaller than the computations done by the
brute force technique. Hence, the population size is a trade-off
between these two conditions. In the experiment, the
population size was empirically chosen as 30, as it optimizes
the trade-off criteria. The point of crossover is chosen as 1, as
it is the standard value used in most genetic algorithm
implementations.

The mutation rate should be as large as possible so that
diverse solutions are explored with fewer generations. The
mutation rate should be chosen as small as possible so that
solutions with local optima can be explored. Hence, the
mutation rate is empirically chosen as 0.5, as it optimizes the
trade-off criteria. Table 8 lists the parameters used in the
experiments.

Table 8. Parameters used in the experiments

Parameters Values in the Experiment
Population size 30
Point of crossover 1
Mutation rate 0.5

Fitness metric
Number of generations is decided
by observing no change in the
population elements consistently
for x generations

Accuracy of classification

X=4

The parameters used in the genetic algorithm are initialized
as mentioned in Table 8. The performance of the individual
deep architectures and their ensemble was observed and is
presented in Table 9. It can be observed from the results
presented in Table 9 that the ensemble of classifiers using the
proposed genetic algorithm has enhanced the accuracy of the
classification by selectively choosing the right combination of
deep classifiers and the right combining rule. Although it is
possible to come up with the right combination of deep
classifiers with brute force methodology, it is a very
cumbersome task, and the complexity of such a technique is
quite high. Time complexity can be drastically reduced by
applying a genetic algorithm, as discussed.

Table 9. Performance of individual deep architecture
classifiers and their ensembles

Deep Individual Performance of
Architectures Performance Classifier Ensemble
Xception 89%
Inception 77%
MobileNet 79%
ResNet152 86%
VGG19 74% 97%

VGG16 68%
EfficientNet 91%
ViT 93%

Figure 4 represents performance of individual deep
architecture classifier and their ensembles. Figure 5 represents
graph depicting training accuracy and validation accuracy.
Figure 6 represents graph depicting training loss and
validation loss. Based on Figures 5 and 6, it is easy to analyze
that the model is not overfitting and not lacking generatability.
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Table 10. Best performing chromosomes in terms of the
fitness of the genetic algorithm

. Deep
ngﬁged Corlglallgmg Architectures
Y Included
First best '00000011100" Median EfflClent_NetVZL
chromosome ViT

4.3 Analysis of fit chromosome

In this context, the fitness of any chromosome is measured
in terms of its classification performance by combining the
different deep architectures considered for the analysis and the
combining rule. The best combination of the deep classifier
ensemble and the best combining rules were analysed by
conducting experiments and fine-tuning the parameters of the
genetic algorithm. Experimental results revealed that the
combination of an EfficientNetV2L and ViT with a median
combining rule produced the highest accuracy of 97%. The
details are presented in Table 10.

From the experiments, the best performing top 10
chromosomes were observed and are presented in Table 11.
The structure of each chromosome indicates the presence (1)
or absence (0) of a particular deep learning model and the
combining rules for ensembling. For example, chromosome
10000011101 indicates that the deep learning models
considered for ensembling are Xception, EfficientNet and ViT
as mentioned in Table 6 and the ‘product’ combining rule as
described in Table 5. From Table 11, it can be observed that
all the top 10 chromosomes have 7th and 8th bit as one, which
indicates that the combination of EfficientNetV2L and ViT
has shown a better classification accuracy of 97% when
compared to other combinations.

The top chromosomes work better because they have the
highest fitness. The researcher does not have any control over
the output of the genetic algorithm, and the genetic algorithm
decides the output.

The pattern of the best-performing chromosome states that
the combination of ViT and Efficient with Median combining
rule is most suited for bird species classification.

Table 11. Best performing top 10 chromosomes for Indian

bird dataset

Chromosome Accuracy
‘00000011100 0.9657
‘00000011011 0.9657
'00000111011 0.9657
'00000001100 0.96261682
‘00000001011 0.96261682
'00000001010 0.96261682
‘00001111011 0.96261682
‘01000011011 0.95950156
‘00000011001 0.95950156
‘00100011011 0.95950156

Individually, ViT and EfficientNetV2 performed very well.
Hence, any combination of these two models performs better.
Table 11 presents all the top 10 chromosomes, where all the
chromosomes have ViT and EfficientNet.

The performance of the proposed ensemble classification
approach was also studied by conducting several experiments
and computing class-wise precision, recall, and F-measures,
and the results are presented in Table 12. From the results, it
was observed that for most of the classes, the results were
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good, with high precision, recall, and F-measure. However, for
a few classes, the results must be improved. One of the reasons
for low precision, recall, and F-measure for some of the classes
is that the samples for those classes are insufficient, and many
more samples with significant intraclass variations need to be
considered for training the model. Such an analysis will be
conducted in future work.

Species such as Swifts, Prinias, Robins, Plovers, Pigeons,
Munias, Nightjars, Flycatchers, Cuckoos, and Doves
performed very poorly, with low F1 scores.

Table 12. Class-wise precision, recall and F1-score obtained
for the Indian bird dataset using the best classifier ensemble
for 90% training, 5% validation, and 5% testing

Bird Class Precision  Recall F1-Score  Support
Babblers 1 1 1 8
Barbets 1 1 1 8
Bulbuls 1 1 1 7
Coots 1 1 1 8
Cranes 1 1 1 6
Cuckoos 1 0.88 0.93 8
Doves 1 0.88 0.93 7
Drongos 0.89 1 0.94 8
Ducks 1 1 1 8
Eagles 1 1 1 8
Egrets 0.89 1 0.94 8
Falcons 1 1 1 8
Finches 1 1 1 8
Flycatchers 0.88 0.88 0.88 8
Herons 1 0.88 0.93 7
Hornbills 1 1 1 8
Jacanas 0.88 0.88 0.88 8
Kingfishers 1 1 1 8
Munias 0.89 1 0.94 7
Nightjars 1 0.88 0.93 8
Orioles 1 1 1 6
Owls 1 1 1 8
Parakeets 1 1 1 6
Peafowl 1 1 1 8
Pheasants 1 1 1 8
Pigeons 0.89 1 0.94 7
Plovers 0.89 1 0.94 8
Prinias 0.88 0.88 0.88 8
Robins 0.89 1 0.94 8
Sandpipers 1 1 1 8
Shrikes 1 0.88 0.93 8
Storks 1 0.88 0.93 8
Sunbirds 1 1 1 8
Swallows 1 0.75 0.86 8
Swamphens 1 1 1 8
Swifts 0.75 1 0.86 3
Terns 1 1 1 7
Wagtails 1 1 1 8
Warblers 1 1 1 8
Woodpeckers 1 1 1 8

5. CONCLUSION

A novel deep architecture ensemble using a genetic
algorithm for bird species classification was proposed. The
genetic algorithm significantly reduced the computational
search space for identifying the best deep classifier ensemble
compared to the brute-force approach.

The process of using selective deep architectures among the
eight was performed using a genetic algorithm. The
mechanism of genetic algorithm was applied by assigning the



accuracy of classification as the fitness. Binary Tournament
selection was used to find the fitter parents during the
execution of the genetic algorithm, which selected the fit
chromosome among two randomly selected chromosomes.

Mutations and crossovers were applied in parallel with
equal probabilities. Based on the experiments, it can be
concluded that a combination of two deep architecture
classifiers namely EfficientNetV2L, and ViT, produced the
highest classification accuracy of 97% for the median
combining rule. This combination was computed only once
and stored in a knowledge base for the classification of
unknown bird images. The proposed model fails with poor-
quality images, and there is still scope for researchers to work
in this domain.
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