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Computer vision-based approaches to bird species classification have been extensively 

studied by researchers over the past few decades. Manually classifying bird species 

based on their appearance in real-time is a complex and time-consuming task. However, 

advancements in image-capturing technology and the integration of machine learning 

techniques have made it possible to automatically classify bird species and assist 

ecologists in studying bird population trends, identifying endangered species, and 

assessing the impacts of habitat loss, climate change, and pollution on bird populations. 

Considering this, the present research proposes an approach that integrates multiple 

deep architecture models optimized via a genetic algorithm to enhance bird species 

classification performance. Eight state-of-the-art deep learning models, namely Vision 

Transformer (ViT), EfficientNet, VGG16, VGG19, Xception, Inception, MobileNet 

and ResNet, were employed. Experiments were conducted using the Indian bird dataset. 

The genetic algorithm is employed to determine the best combining rule and select an 

ensemble of deep architectures with the highest fitness. The proposed ensemble method 

achieved a classification accuracy of 97% using a median-based ensemble of 

EfficientNetV2 and ViT. The findings indicate that the proposed ensemble approach 

outperforms existing appearance-based bird species classification methods. 
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1. INTRODUCTION

Advancements in the field of science and technology in 

recent years have motivated researchers and technocrats to 

consider addressing some of the very important and real-time 

tasks that have a significant impact on society and natural 

ecosystems. One such task is the classification of bird species 

in real-time environments. Birds can be classified based on 

their appearance and sound. Many ecologists and 

environmentalists who are quite familiar with birds can 

perform classification based on sound and appearance, but this 

is a challenging and cumbersome task when the number of 

species is more. Furthermore, intra-class variations and 

between-class similarities among the species pose many more 

challenges in accurately classifying bird species. In this 

context, in the past few decades, many attempts have been 

made to propose efficient and effective bird species 

classification techniques. A review of the literature reveals that 

there is scope to improve the classification accuracy and 

address many challenges, such as birds in complex 

backgrounds, occlusion, different poses, images with noise, 

and poor intensity. The capabilities of existing approaches can 

be effectively integrated to build a more robust and effective 

model that can work in real time and address the challenges 

mentioned above. 

In view of this, an attempt was made to propose a genetic 

algorithm-based ensemble of deep architectures to enhance the 

performance of classification. The proposed ensemble 

approach explores the best deep models and best combining 

rules for integration. A database consisting of 41 bird species, 

each with more than 100 samples, was created to evaluate the 

performance of the proposed ensemble classification 

approach. A total of 6150 images were considered in our 

experimental analysis.  

The remainder of this paper is organized as follows. Section 

2 presents a review of recent literature. Section 3 presents the 

proposed methodology. Section 4 presents the details of the 

datasets used followed by conclusions and a few important 

references.  

The key contributions of this work are listed as follows: 

⚫ Proposed a genetic algorithm-based ensemble of deep

classifiers for effective classification of birds’ species.

⚫ Suggested a novel way of applying crossover and

mutation operators for genetic algorithm.

⚫ Created a considerably large database of bird images

to study the performance of the proposed

methodology.

2. LITERATURE REVIEW

Several researchers have attempted to develop techniques 
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for effective classification of bird species. A review of these 

key contributions is essential for identifying research gaps, 

addressing the limitations of existing systems, and proposing 

methodologies to enhance efficiency and effectiveness. In 

light of this, the following paragraphs summarize the 

significant works related to appearance-based bird species 

classification. 

 

2.1 CNN and Vision Transformer (ViT)-based approaches 

 

CNN and ViT-based approaches for bird species 

classification have been discussed. The following paragraphs 

present a brief description and critical analysis of these 

approaches. 

Chen et al. [1] proposed a hierarchical gate network for fine-

grained visual recognition. HGNet uses the interconnections 

among hierarchical classes. LSTM like mechanism is used to 

propagate dependencies among classes, which boosts 

classification accuracy. Experiments were conducted on 

datasets such as Stanford Dogs, CUB-200-2011, Aircraft, 

NABirds, iNaturalists, DeepFashion2 and DeepFashion. The 

proposed methodology achieved 88.7%, 88%, 92.8%, 86.4%, 

78.2%, 58.5%, and 68.4% accuracy for the Stanford Dogs, 

CUB-200-2011, Aircraft, NABirds, iNaturalists, 

DeepFashion2 and DeepFashion datasets respectively. 

Branson et al. [2] proposed a classification approach based 

on pose-normalized deep convolutional neural networks 

(DCNNs). The architecture estimates the pose of a bird to 

compute the local image features for classification. A graph-

based clustering algorithm and higher-order geometric 

warping functions were used to estimate the normalized bird 

pose. Experiments conducted on the CUB-200-2011 dataset 

showed an accuracy of 75.7%. 

Jaderberg et al. [3] proposed a spatial transformer network 

by introducing a learnable module that could be integrated into 

any CNN architecture with very little modification. When 

incorporated, this module equips the CNN with the ability to 

handle image transformations, such as translation, scaling, and 

rotation. The experiments conducted on the CUB-200-2011 

dataset achieved a classification accuracy of 84.1%. 

Manna et al. [4] proposed a various convolutional neural 

network, namely Inception V3, DenseNet 201, MobilenetV2, 

and ResNet152V2, for bird species classification based on 

images. The model was trained on 58388 images and tested on 

2000 images belonging to 400 species. According to the study, 

ResNet152V2 achieved the highest accuracy of 95.45% and a 

loss of 0.8835. Similarly, DenseNet achieved a classification 

accuracy of 95.0% with a loss of 0.6845.  

Zhang et al. [5] proposed a part-based CNN for fine-grained 

category detection to explicitly identify significant differences 

in the appearance of specific object parts. Semantic part 

localization was utilized for fine-grained categorization, with 

bounding box annotations considered during testing to address 

the object annotation challenges. The model leveraged 

convolutional features obtained through bottom-up region 

proposals, learning both whole-object detection and part 

detection while enforcing geometric constraints between the 

foreground and background of the interest. This approach 

enables fine-grained category detection using post normalized 

representations. Experiments on the CUB-200-2011 dataset 

demonstrate a performance of 76%. 

Huang et al. [6] proposed a recognition of endemic birds 

using deep-learning models. A transfer learning-based method 

using Inception-ResNetV2 was used, which outperformed all 

the other methods, namely InceptionV3, ResNet101, 

MobileNetV2, Xception, and ResNet101. A five-fold cross-

validation was used to review the results. A total of 790 images 

of birds consisting of 29 species were used to evaluate the 

performance of the model. The proposed model achieved 

accuracies of 100% for bird identification and 98.39% for bird 

classification. 

Wei et al. [7] proposed a mask CNN without fully connected 

layers, which localizes parts and selects descriptors for fine-

grained bird species categorization. The fully convolutional 

network locates discriminative parts and generates weighted 

object masks. A three-stem-masked CNN model was used to 

build the descriptors. The experiment was conducted on the 

CUB-200-2011 and Birdsnap datasets. The proposed model 

achieves 85.7% of accuracy for CUB-200-2011 dataset and 

77.3% of accuracy for Birdsnap dataset, respectively. 

Kumar and Kondaveeti [8] proposed a bird species 

recognition using a hybrid hyperparameter optimization 

scheme (HHOS). A few selected models were trained in the 

HHOS, which enhanced the classification performance. The 

results showed that EfficientNetB0 achieved superior 

performance compared to the other classification models, with 

the highest accuracy of 99.12%. The authors increased the size 

of the CUB-200-2011 dataset from 11788 to 40000 by adding 

29,000 more images, which are the augmented versions of the 

original dataset. 

Ngo et al. [9] proposed a survey of different deep-learning 

models such as InceptionV3 and EfficientNetB4. The model 

was evaluated on a wide range of datasets, including CUB -

200-2011, Kaggle 325 bird species, and Kaggle-510 bird 

species, and a self-generated dataset (100 bird species from 

Malaysia) was used in this study. The EfficientNetB4 model 

outperformed the models in terms of classification 

performance. For the CUB-200-2011 dataset, the result was 

74% for the EfficientNetB4 model. 

Bold et al. [10] proposed a multiple kernel learning 

framework for bird species classification using a CNN was 

proposed. A multiple kernel learning technique was used to 

combine features from audio and video data. The CUB-200-

2011 dataset and audio data were combined for classification. 

78.15% was the highest performance achieved using the 

proposed methodology. 

Discriminative features for bird species classification were 

proposed by Pang et al. [11]. First, the images were cropped 

based on patches. The patches are used to form codebooks, and 

finally, the code books are used to generate intermediate 

features based on the sparse coding algorithm. Intermediate 

features were concatenated to form the final feature 

representation, which was used for training and classification. 

The CUB-200-2011 dataset was used in this study. The 

proposed model has achieved 64.6% of performance.  

CNN works best in processing spatial patterns while ViT 

works best in processing global context and long-range 

dependencies. Limitations of the ViT are high computational 

cost, low inductive bias and needs huge data. Whereas 

limitations of the CNN are high inductive bias, lower 

computational cost and weak in handling global context.  

CNN-based models utilize convolutional kernels that have 

a local receptive field, meaning they process only a small 

window of pixels at a time. While stacking multiple layers 

allows the network to eventually see the entire image, its 

global understanding remains inefficient and implicit. This 

limitation can be addressed by transformer-based methods, 

which use a self-attention mechanism for a more holistic view. 
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However, transformer models are extremely dependent on 

large amounts of data and require high computational power. 

Consequently, the choice between a CNN and a ViT involves 

a trade-off: CNNs offer greater efficiency and lower 

computational demands, while ViTs deliver higher 

performance and superior holistic modelling—requires 

adequate data and significant computational resources as 

shown in Table 1. 

 

Table 1. Literature review for CNN and ViT based approaches 

 
Refs.  Architecture  Dataset  Accuracy Analysis  Limitation  

[1] 

Hierarchical gate 

network for fine-

grained visual 

recognition 

Stanford Dogs, CUB-

200-2011, Aircraft 

NABirds, and 

iNaturalists. 

DeepFashion2 and 

DeepFashion. 

88.7%, 88%, 92.8%, 86.4%, 

78.2%, 58.5%, and 68.4% 

accuracy for the Stanford 

Dogs, CUB-200-2011, 

Aircraft NABirds, 

iNaturalists, DeepFashion2, 

and DeepFashion datasets, 

respectively. 

Interconnection among hierarchical 

classes and LSTM is used to 

propagate dependencies. 

The ViT-based 

approaches are 

computationally 

expensive, low 

inductive bias 

and needs huge 

data. Whereas 

the CNN based 

approaches are 

having high 

inductive bias 

and weak in 

handling global 

context. 

[2] 

Classification approach 

based on pose-

normalized DCNNs 

CUB-200-2011 75.7% 

With DCNN, graph-based 

clustering algorithm and higher-

order geometric warping functions 

were used to estimate the 

normalized bird pose. 

[3] 
Spatial transformer 

networks 
CUB-200-2011 84.1% 

A learnable mod named spatial 

transformer is used to handle image 

transformation, scaling and 

rotation. 

[4] 

Bird image 

classification using 

convolutional neural 

network transfer 

learning architectures 

The model was 

trained on 58388 

images and tested on 

2000 images 

belonging to 400 

species (own dataset). 

ResNet152V2 achieved the 

highest accuracy of 95.45% 

and a loss of 0.8835. 

Similarly, DenseNet achieved 

a classification accuracy of 

95.0% with a loss of 0.6845. 

Various deep learning architectures 

are compared. 

[5] 

Part-based R-CNNs for 

fine-grained category 

detection 

CUB-200-2011 76% 

The model leveraged convolutional 

features obtained through bottom-

up region proposals, learning both 

whole-object detection and part 

detection while enforcing 

geometric constraints between the 

foreground and background of the 

interest. 

[6] 

Recognition of 

endemic bird species 

using deep learning 

models 

Own dataset 

100% for bird identification 

and 98.39% for bird 

classification. 

Various deep learning model 

performance is compared. 

[7] 

Bird species 

recognition using 

transfer learning with a 

hybrid hyperparameter 

optimization scheme 

(HHOS) 

CUB-200-2011 

The model achieved highest 

accuracy of 99.12%. The 

authors increased the size of 

the CUB-200-2011 dataset 

from 11788 to 40000 by 

adding 29,000 more images, 

which are the augmented 

versions of the original 

dataset. 

Augmentation is used to build 

more robust models. 

[8] 

Bird species 

identification using 

deep learning on GPU 

platform 

CUB-200-2011 

Google Net was used for this 

purpose, which performed 

with 88% classification 

accuracy. 

Deep learning model named 

GooLeNet was used in this purpose 

which proves that any deep 

learning models can be used.  

[9] 

Mask-CNN: Localizing 

parts and selecting 

descriptors for fine-

grained image 

recognition 

CUB-200-2011 and 

Birdsnap datasets 

85% of accuracy for CUB-

200-2011 dataset and 77.3% 

of accuracy for Birdsnap 

dataset, respectively. 

This study proves that EfficientNet 

model is the best model for bird 

species classification. 

[10] 

Bird species 

recognition system 

with fine-tuned model 

CUB-200-2011 74% 

Fusion of audio and video 

enhances classification 

performance. 

[11] 

Bird species 

classification with 

audio-visual data using 

CNN and multiple 

kernel learning 

CUB-200-2011 78.15% 

Images were cropped based on 

patches. The patches are used to 

form codebooks, and finally, the 

code books are used to generate 

intermediate features based on the 

sparse coding algorithm. 
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Table 2. Literature review of genetic algorithm-based approaches 

 
References Architecture  Dataset  Accuracy  Analysis  Limitation  

[12] 

A new ensemble learning 

methodology based on 

hybridization of classifier 

ensemble selection approaches. 

14 datasets 

Best performing 

chromosome was 

achieved 

Ensemble learning 

based genetic 

algorithm estimates 

the best performing 

chromosome based 

on trade-off between 

accuracy and 

diversity. 

Limitations of the genetic 

algorithm-based 

approaches are 

computationally 

expensive for training 

model at each iteration, 

no guarantee of 

optimality, problem 

specific parameter tuning, 

premature convergence 

and not suited for all 

kinds of solutions. 

[13] 

Optimizing DenseNet121 for 

waste classification using genetic 

algorithm-based down sampling 

and data augmentation. 

Own dataset 97% 

To obtain the best 

hyperparameter 

configuration, 

multiple scenarios 

were tested with 

augmentation and 

different image 

dimensions. 

 

2.2 Genetic algorithm-based approaches  

 

Genetic algorithm-based approaches for bird species 

classification were discussed in studies [12, 13]. The following 

paragraphs presents a brief description and critical analysis 

about these approaches. 

Mousavi and Eftekhari [12] proposed a technique for image 

classification based on hybridization of classifier ensemble 

approaches. The model was evaluated using both static and 

dynamic ensemble methodologies, leveraging NSGA-II as a 

multi-objective genetic algorithm to optimize both error and 

diversity for selecting the best classifier ensemble. A Pareto 

optimal solution is suggested to balance the trade-off between 

these objectives. The experiments were conducted using six 

combined rules and 46 individual classifiers. The proposed 

approach outperformed all other ensemble methods across the 

14 datasets in terms of classification accuracy.  

Dharmawan et al. [13] proposed a novel waste classification 

approach that incorporates genetic algorithm hyperparameter 

optimization with data augmentation and data down sampling. 

To obtain the best hyperparameter configuration, multiple 

scenarios were tested with augmentation and different image 

dimensions. This configuration enhances the accuracy from 

94% to 97%. 

Advantages of genetic algorithm are it supports global 

optimization, handles nondifferentiable and complex 

problems, it is flexible and versatile, it provides a set of good 

solutions, it is intuitive and inspired by nature. 

Limitations of the Genetic algorithm-based approaches are, 

computationally expensive for training model at each iteration, 

no guarantee of optimality, problem specific parameter tuning, 

premature convergence and not suited for all kinds of solutions 

as shown in Table 2. 

 

2.3 Machine learning based approaches  

 

Machine learning-based approaches for bird species 

classification are discussed in studies [14-19]. The following 

paragraphs presents a brief description and critical analysis 

about these approaches. 

Kong and Fowlkes [14] proposed a low-rank bilinear 

pooling method for fine-grained classification. The study 

revealed that a high-dimensional bilinear feature vector, 

created by pooling the results of second-order local feature 

statistics, outperformed contemporary methods across various 

fine-grained bird classification tasks. To address the 

complexity of high-dimensional feature spaces, this study 

proposes covariance features and applies them to a low-rank 

bilinear classifier. The model was further compressed using a 

classifier co-decomposition approach, where a collection of 

bilinear classifiers was factorized into a common factor and 

compact per class terms. This co-decomposition was 

implemented using two convolutional layers and was trained 

in an end-to-end architecture. Additionally, an effective 

initialization strategy was suggested to avoid the explicit 

training and factorization of larger bilinear classifiers. Several 

experiments were conducted on various public datasets to 

evaluate the efficacy of the proposed methodology, and the 

results demonstrated a superior performance. The experiment 

conducted on the CUB-200-2011 dataset achieved the highest 

accuracy of 84.21%. 

Rai et al. [15] proposed various machine learning 

techniques for bird species classification were proposed. In 

this study, a CNN model was used for feature extraction, 

whereas Naive Bayes, SVM, Random Forest, LDA, Decision 

Tree, KNN, and Logistic Regression were employed for 

classification. Trail experiments were conducted on the CUB-

200-2011 dataset, and it was reported that the KNN classifier 

achieved the highest classification accuracy of 33%. These 

studies highlight the progress made in appearance-based bird 

species classification and underscore the need for further 

improvements, particularly in handling complex pose 

variations and enhancing classification accuracy in real-world 

settings. 

Yang et al. [16] proposed an improved transfer learning 

methodology for the classification of protected Indonesian 

birds based on images. In this study, batch normalization 

dropout fully connected (BNDFC) layers were proposed, 

which can be incorporated into any CNN network to further 

enhance classification accuracy. This study was conducted 

using an Indonesian bird dataset. The experiment was 

conducted using MobilenetV2 CNN and on average, the 

performance was enhanced by 19.88% accuracy, 24.43% F-

measure, 17.93 G-mean, 23.41 of sensitivity, and 18.76 of 

precision. The highest accuracy achieved was 88.07% for the 

validation set. 

Naranchimeg et al. [17] proposed a multi-model bird 

species classification for using audio-visual data. CUB-200-

2011 was used to build the visual data module, and originally 

collected audio data were used for building the audio module. 

The overall classification performance was enhanced by 

combining audio and video data using a CNN. The model 

3566



 

achieved a classification accuracy of 78.9%. 

Yang et al. [18] proposed an automatic bird image 

classification with feature enhancement and contrastive 

learning. The proposed methodology includes multiscale 

feature fusion to extract information at different scales. An 

attention feature enhancement module was integrated to 

address occlusion and noise. Furthermore, the Siamese 

network was used to compare two images belonging to the 

same class and different classes. CUB-200-2011 dataset was 

used in the study. With only 5% of the training data, the model 

performed fairly well, with a recognition accuracy of 65.2%. 

Limitations of the machine learning based approaches, 

depends mainly on feature engineering, struggles with 

unstructured data, curse of dimensionality and sensitive to data 

scaling as shown in Table 3. 

 

Table 3. Literature review of machine learning based approaches 

 
References  Architecture  Dataset  Accuracy  Analysis Limitation  

[14] 
Low-rank bilinear pooling for 

fine-grained classification 

CUB-200-

2011 
84.21% 

A high-dimensional bilinear feature vector, 

created by pooling the results of second-order 

local feature statistics, outperformed 

contemporary methods across various fine-

grained bird classification tasks. To address the 

complexity of high-dimensional feature spaces, 

this study proposes covariance features and 

applies them to a low-rank bilinear classifier. 

Machine 

learning 

approaches 

depends 

mainly on 

feature 

engineering, 

struggles with 

unstructured 

data, curse of 

dimensionality 

and sensitive 

to data 

scaling. 

[15] 

Analysis of learning 

techniques: bird species 

classification 

CUB-200-

2011 
33% 

Various classifiers were studied for the purpose 

of bird species classification. 

[16] 

An improved transfer-

learning for image-based 

species classification of 

protected Indonesians birds 

Own dataset 88.07% 

batch normalization dropout fully connected 

(BNDFC) layers were proposed which can be 

incorporated in any CNN. 

[17] 

Cross-domain deep feature 

combination for bird species 

classification with audio-

visual data 

CUB-200-

2011 
78.9% 

Multi model bird species classification was 

proposed which enhances the overall 

classification accuracy. 

[18] 

Automatic bird species 

recognition from images with 

feature enhancement and 

contrastive learning 

CUB-200-

2011 
65.2% 

multiscale feature fusion to extract information at 

different scales. An attention feature 

enhancement module was integrated to address 

occlusion and noise. Furthermore, the Siamese 

network was used to compare two images 

belonging to the same class and different classes. 

 

Table 4. Literature review of other optimization-based techniques 

 
References  Architecture  Dataset  Accuracy  Analysis  Limitation  

[19] 
On combining 

classifiers 

Handwritten 

digit 

classification 

dataset 

98.19% 

This work is very 

useful in introducing 

combining rules for 

combination. 

High computational cost, risk of 

overfitting and sensitive to noise. 

[20] 

Towards transparency 

in AI: Explainable bird 

species image 

classification for 

ecological research 

CUB-200-2011 

EfficientNetB0 has 

achieved an accuracy 

of 80.421% on CUB-

200-2011 dataset. 

This work helps in 

introducing 

explainable AI in the 

field of bird species 

classification. 

XAI is incomplete as the single 

statement rarely tells the complete 

story. As explanations are filtered 

through cognitive biases, Explainable 

models are less accurate, creates 

false sense of trust and hard to audit. 

 

2.4 Optimization based approaches  

 

Optimization-based approaches for classification were 

discussed in studies [19, 20]. The following paragraphs 

presents a brief description and critical analysis about these 

approaches. 

Kittler et al. [19] proposed a theoretical framework was for 

combining multiple classifiers using various combinations of 

rules to improve pattern classification performance. Each 

classifier utilizes a unique pattern representation technique to 

make decisions. Four decision classifiers such as structural, 

Gaussian, neural network, and hidden Markov model were 

studied. Accuracy of the proposed classifier ensemble was 

evaluated through handwritten digit classification, which 

achieved a classification accuracy of 98.19% with the median 

combining rule. The approach is computational expensive and 

suffers from the risk of overfitting and noise sensitivity.  

Kumar and Kondaveeti [20] proposed an explainable 

artificial intelligence to increase the clarity of a deep learning 

model for bird species classification. Popular deep learning 

models such as EfficientNetB0, DarkNet53, DenseNet201 

SqueezeNet, InceptionResNetV2 and NasNetLarge were 

trained using CUB-200-2011. The authors have claimed a 

highest accuracy of 99.51% for EfficientNetB0. 

Explanations given by XAI are approximations and 

incomplete as the single statement rarely tells the complete 

story. As explanations are filtered through cognitive biases, 

Explainable models are less accurate, creates false sense of 

trust and hard to audit, as shown in Table 4. 

In the present study optimal chromosome has been achieved 

which outperforms all the individual classifiers. It’s the best 

combination of the available classifiers, which has enhanced 
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the classification performance. The classifiers have not 

overfitted because of the availability of the validation split. 

Genetic algorithm has been best suited in the present scenario. 

The ensemble model using genetic algorithm does not 

overcome the individual limitations, instead it enhances the 

overall performance of the ensemble.  

 

 

3. METHOD 

 

The methodology proposed in this study aims to identify a 

deep architecture combination that can improve the accuracy 

of classifying an unknown bird image into one of the known 

classes as per the training. The concept of a genetic algorithm 

was explored to identify the best deep architecture 

combination. The steps involved in the proposed methodology 

are depicted in Figure 1 and described in the following 

paragraphs. 

Initially, the methodology begins by splitting the images of 

the benchmark dataset into training, validation, and testing 

portions. The images in the training set were used to train the 

deep learning models, and those in the validation set were used 

to fine-tune the trained models. Once the deep models are 

trained with the required number of iterations and are found to 

perform better in terms of classification accuracy, the training 

process is stopped. The classification ability of the trained 

individual deep learning model was tested using images in the 

test set, and its performance was recorded. It was observed that 

the models showed good performance for some classes and 

poor performance for some other classes. It has also been 

observed that the model that has shown good classification 

performance for one class does not show such good 

performance for some other classes. Hence, it is evident that 

no single model can provide an overall good classification 

accuracy for the considered dataset. Therefore, it is thought 

that ensembling the models and taking the collective decision 

enhance the accuracy of classification. However, to optimize 

the classifier combination, it is suggested to explore the 

concept of a genetic algorithm that produces the best overall 

classification accuracy for the considered dataset.  

 

 
 

Figure 1. Architecture of the proposed genetic algorithm-based ensemble of deep learning models for appearance-based bird 

classification 

 

The following paragraphs present a brief description of the 

various deep learning models used in the proposed research 

work and the details of the selection of the best combination 

through a genetic algorithm-based approach. 

 

3.1 The deep learning model’s overview  

 

Several deep CNN and transformer-based models have been 

proposed for various machine learning tasks, such as 

segmentation, classification, and prediction. All these models 

vary in architecture but have certain common features. The 1st 

layer in the deep architecture is the input layer, which accepts 

the image data, followed by a convolution layer, which is 

responsible for extracting meaningful features by performing 

convolutional operations. The subsequent layers, also called 

hidden layers, perform different convolution operations and 

derive a high-level abstraction from the input image. The 

number of hidden layers depends on the architecture that is 

designed to solve a particular problem. The final layer of the 

deep architecture was a fully connected layer that produced a 

complete set of features extracted from the image for 

characterization. The RELU activation function was used in 

all layers except the final layer, and the Softmax activation 

function was used in the final layer for classification. 

Xception: A CNN architecture that depends completely on 

depth-wise separable convolution layers [21]. This is an 

extension of the inception model, where the inception modules 

are substituted with depth wise separable convolution layers. 

The Xception model is organized into three blocks, namely, 

the entry, middle, and exit flows with skip connections around 

the thirty-six layers. The entry flow extracts low-level features 

from the input image, the middle flow progressively extracts 

higher-level features from the image, and the exit flow refines 

these features for final predictions. This hierarchical structure 

aids in learning hierarchical representations and in the flow of 

data through the network.  

VGG16: Deep CNN model used for image classification 

tasks [22]. The network was composed of 16 layers of artificial 
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neurons, which were responsible for incrementally processing 

image information and enhancing the accuracy of its 

predictions. VGG16 uses convolution layers with a 3 × 3 filter 

and stride 1 that are in the same padding and max pool layer 

of a 2 × 2 filter of stride 2. It follows this arrangement of 

convolution and max pool layers consistently throughout the 

architecture. It had two fully connected layers at the end, 

followed by a Softmax activation function for the output. 

VGG19: A variant of the VGG model, which consists of 19 

layers, is characterized by its simplicity and uniform 

architecture [22]. The network is composed of a series of 

convolutional layers, followed by max-pooling layers, and 

several fully connected layers at the end. The use of small 3 × 

3 convolutional filters throughout the network allows for a 

deeper architecture, while maintaining a relatively low number 

of parameters. A rectified linear unit (ReLu) was used to 

introduce nonlinearity and improve the computational time 

and classification ability of the model.  

ResNet152: A convolutional neural network that exploits 

the concepts of residual learning to dampen the degradation of 

deep neural networks and skip connections [23], which adds 

new inputs to the network and generates new outputs. This 

idea enables the model to be trained more deeply and achieve 

better classification accuracy without increasing the 

complexity of the model. ResNet152 is proved to be the best 

model in terms of its classification accuracy among the ResNet 

family members and hence it is considered in this study.  

MobileNet: Simple but lightweight and efficient 

convolutional neural network model for mobile vision 

applications [24]. MobileNet is widely used in many 

applications including object detection, fine-grained 

classification, semantic segmentation, and localization. The 

MobileNet model replaces depth wise convolutions in the 

place of standard convolutions to build a very lighter model 

with very less parameters when compared with other networks 

to come up with lightweight deep CNN. MobileNets 

introduced two new global hyperparameters, the width 

multiplier and resolution multiplier, that allow model 

developers to trade off latency or accuracy for speed and low 

size depending on their requirements.  

InceptionNet: A convolutional neural network designed for 

image-classification tasks [25]. The inception architecture 

combines convolutional filters of different sizes in parallel to 

extract features from the input image at different scales. The 

output of each filter is then concatenated and sent to the next 

layer, where the process is done multiple times. This approach 

allows the network to capture local and global features of the 

input image while minimizing the number of parameters. The 

inception modules allow the network to learn temporal and 

spatial features from the input data because the module is 

composed of pooling and small convolutional layers. The aim 

was to make the model more efficient and faster. It has been 

widely used in various applications such as object detection, 

face recognition, and image classification.  

EfficientNetV2: A type of convolutional neural network 

that can be trained faster and has better parameter efficiency 

than previous models [26]. Both parameter efficiency and 

training speed were jointly optimized using a neural 

architecture search (NAS). Although EfficientNetV2 is 

smaller, it still outperforms the state-of-the-art method by 

enriching the search space with newer operations, such as 

fused-MBConv. 

ViT: A transformer-based logic derived from NLP is 

applied in the field of computer vision. By inserting a new 

multi-layer perceptron was used as the head of the encoder, a 

ViT was used to classify birds based on the images. Training 

the ViT on large datasets produces better results than the 

CNN-based architecture in the field of image classification.   
 

 
 

Figure 2. Diagram representing the structure of a chromosome  
 

3.2 Ensemble of deep learning models using genetic 

algorithm  
 

Genetic algorithm is an optimization and search technique 

used to find the best ensemble of deep learning classifiers in 

the field of image classification. The optimization model 

reduces the search space to determine the most optimal 

architecture with the highest fitness. The genetic algorithm is 

based on evolution and natural selection, which is inspired by 

the field of biology and incorporates the knowledge of survival 

of the fittest to return the chromosome with the highest 

performance. 

From a literature survey, it can be inferred that the ensemble 

learning system has achieved significant improvement in 

classification accuracy, and many ensemble learning 

techniques have also been introduced by Mousavi and 

Eftekhari [12]. It is well known that the concept of genetic 

algorithms has also been explored to determine the most 

optimal solution. Based on this observation, the deep learning 

models presented in the previous section were assembled 

using a genetic algorithm. Different combining rules, as shown 

in Table 5, were used for ensembling. 

 

Table 5. Combining rules and the procedure for ensembling 

deep learning models 

 
Sl Combining Description Procedure  Encoding 

1 Majority Majority Class Title 000 

2 Maximum Maximum rule  Supporting 001 

3 Minimum Minimum rule  Supporting 010 

4 Mean Mean rule  Supporting 011 

5 Median Median Supporting 100 

6 Product Product rule  Supporting 101 

 

Table 5 presents six different combining rules, and the 

corresponding procedures used to ensemble the deep 

architecture models. For a given sample, the class-wise 

probabilities obtained by the individual learning models were 
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combined based on the combining rule, and the final decision 

for classification was made accordingly. Table 6 presents the 

various deep architectures used in the proposed methodology 

for ensembling, and their corresponding bits in the 

chromosome.  

 

Table 6. Deep architectures used in the experiment and their 

encoding bits on the chromosome 

 
Deep  Encoding 

Xception 1 

Inception 2 

MobileNetV2 3 

ResNet152 4 

VGG19 5 

VGG16 6 

EfficientNetV2 7 

ViT 8 

 

3.3 Representation of a chromosome 

 

The concept of genetic algorithm is based on the 

representation of chromosomes. In the present study, a 

chromosome is a pattern of bits that represents a list of deep 

architectures and their combination rules. A chromosome was 

defined with 11 binary bits, where the first 3 bits are used to 

define combining rules and remaining 8 bits are used for 

inclusion or exclusion of 8 different deep classifiers 

considered in this work. The six different combining rules 

mentioned in Table 1 can be uniquely identified by 3 bits. 

Figure 2 shows the structure of the chromosomes. 

 

3.4 Selection of best deep model ensemble 

 

Algorithm 1: Selection of Best Deep model Ensemble 

Input: (i) population size: S  

            (ii) point of crossover ‘p1’,  

             mutation rate ‘p2’, structure of the chromosome, 

fitness metric, number of generations ’N’. 

Output: Best performing chromosome  

Method: 

1. Randomly choose the chromosomes based on the 

population size and include the chromosomes 

which are expected to perform well. 

2. Evaluate the fitness of each of the chromosomes. 

3. Loop start: 

● From the population, randomly pick two 

chromosomes and apply binary tournament 

selection.  

● Apply crossover or mutation with equal 

chances. 

● Add newly generated chromosomes to the 

existing population. 

● Rank all the chromosomes based on fitness. 

● Select the top ‘s’ chromosomes based on fitness 

to the next generation.  

● End the loop, when all the chromosomes in the 

population does not change consistently for 4 

generations. 

Loop end: 

4. Return the chromosome with the highest fitness 

(classification accuracy). 

 

The concept of a genetic algorithm is used to identify the 

best combination of deep models to improve classification 

accuracy. According to the structure of the chromosome 

mentioned above, if the brute-force method is used to find the 

optimal chromosome structure, then the algorithm should 

compute all 1536 (28 × 6) possible combinations for eight 

different deep models and six different combining rules. 

However, the proposed genetic algorithm performs only 300 

possible combinations and reduces overall complexity. In the 

proposed genetic algorithm, classification accuracy is used as 

the fitness metric, as mentioned in Algorithm 1.  

In prior ensemble methods, crossover and mutation 

operations are performed in sequence (mutation followed by 

crossover), but in the proposed work these operations are 

performed in parallel. By applying mutation and crossover 

operators in parallel, the genetic algorithm searches the local 

optima (solutions with lower hamming distance) using lower 

mutation rate and searches the wider search space with the 

crossover operator. But in the prior work, mutation followed 

by crossover searches for diverse solutions (solutions with 

higher hamming distance). 
 

3.4.1 Binary tournament selection 

Binary tournament selection is a methodology used in the 

genetic algorithm for the purpose of selecting individuals 

based on their fitness. Two chromosomes were randomly 

selected from the population, and the accuracy of both 

chromosomes was estimated based on the combined rule and 

selected deep classifiers. The computed accuracy of 

classification was assigned as the fitness of the chromosomes, 

the fitness of both individuals was compared, and 

chromosomes with the highest fitness were returned as the 

output of the binary tournament selection in Algorithm 2.  

 

Algorithm 2: Binary Tournament Selection 

Input: Randomly selected two chromosomes from the 

population ‘P’ 

Output: Chromosome with the higher fitness 

Method: 

1. let p1, p2  ∈  P, where p1 = r and(P) and p2 = 

rand(P) 

2. A1= pattern(p1) and A2 = pattern(p2) where A1 

and A2 are the pattern of the chromosomes  

3. fitness1 = F(A1), fitness2 = F(A2) where F(.) 

returns the accuracy of the classification for the 

given pattern. 

4. Pi =  {
𝑝1  if fitness 1 > fitness 2

𝑝2                          otherwise 
 

5. Return Pi 

 

Algorithm 3: Crossover 

Input: Population, chromosome size ‘N’ 

Output: Output architecture of the two chromosomes  

Method: 

1. Let  𝑝1  and 𝑝2  be the two chromosomes selected 

based on two binary tournament selection 

algorithms. 

2. P be the point of crossover such that p = rand (0, 

N) where rand() is a random function 

3. 𝑦1[𝑖] = {
𝑝1[𝑖] if 𝑖 < 𝑃

𝑝2[𝑖] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 where i = 0…, N 

4. 𝑦2[𝑖] = {
𝑝2[𝑖] if 𝑖 < 𝑃

𝑝1[𝑖] otherwise
 where i = 0…, N 

5. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑦1 and 𝑦2. 
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3.4.2 Crossover 

Crossover is a genetic operation used to combine genetic 

information to produce new offsprings as shown in Algorithm 

3. Two chromosomes selected using the tournament selection

technique were subjected to recombination. In the present

experiment, a one-point crossover was used to estimate the

recombination where all the genes were exchanged to produce

new offspring after the crossover point. Example: Let

Chromosome A Chromosome B = 11111111111; if the point

of crossover is the 3rd bit, then the newly generated offspring

are A = 111111111 and B = 11000000000. Here, all the genes

after the reference point are exchanged.

3.4.3 Mutation 

Mutation is a genetic operator used to produce offspring by 

altering the chromosomes. A chromosome selected using the 

tournament selection technique was subjected to mutations. In 

this experiment, bits of the chromosome were flipped based on 

the mutation rate. While processing a chromosome, each bit is 

compared with the value generated by a random function in 

the interval [0,1]. If the function generates a value less than the 

mutation rate, then the bit is flipped. Thus, by flipping the bits 

in the chromosomes, the mutation enabled us to find a better 

chromosome as presented in Algorithm 4. The higher the 

mutation rate, the higher is the chance of flipping the bits. 

Hence, the mutation rate is directly related to Hamming 

distance between chromosomes before and after the mutation 

application. 

Algorithm 4: Mutation 

Input: Input chromosome ‘C’, mutation rate ‘P’, 

chromosome size ‘N’ 

Output: Output Chromosome  

Method: 

1. Let 𝑝 be the chromosome selected based on two

binary tournament selection algorithms.

2. y[i] = {
𝑝[𝑖]   if  rand([0,1]) > 𝑃

1 − 𝑝[𝑖]             otherwise 
, where, i = 0, …, 

N

3. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑦

Algorithm 5: Production of New Generation 

Input: Population of the present generation P = {𝑝1, 𝑝2,
𝑝3…. 𝑝𝑚}

Output: Population of the next generation if size ‘N’, 𝑃𝑖  =
{𝑝1, 𝑝2, 𝑝3…. 𝑝𝑛 }where n < m

Method: 

1. 𝐴𝑖 = 𝑎𝑐𝑐𝑢𝑎𝑟𝑐𝑦 (𝑝𝑖), where, 𝑖 = 0, …, m, where,

𝐴𝑖 is the accuracy of each of the chromosomes ‘i’

and 𝑝𝑖  is the 𝑖𝑡ℎchromosome of the population P.

2. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 𝐴𝑖 where accuracy is assigned as the

Fitness of each chromosome

3. P = Sort (𝑝1, 𝑝2, 𝑝3…. 𝑝𝑚 ), where, P is the sorted

population in decreasing order of the fitness 𝐴𝑖 ≥
𝐴𝑖+1 where 𝑖 = 0, …, m.

4. X = {𝑝1, 𝑝2, 𝑝3…. 𝑝𝑛} = {𝑝1, 𝑝2, … 𝑝𝑛 … 𝑝𝑚} such

that n < m 

5. return X, where X is the population of the next

generation.

3.4.4 Production of new generation 

During the execution of the genetic, the new generation 

replaces the old generation based on the fitness values of the 

chromosomes. If the population size is ‘N,’ the population size 

doubles when new offspring are generated and added to the 

present population in Algorithm 5. To pass the chromosomes 

to a newer generation, all the chromosomes are first ranked 

based on fitness; further, the top N chromosomes are 

considered as the newer population, as the evolution 

methodology is based on the survival of the fittest.  

During the workflow of the genetic, whenever new 

chromosomes are generated or modified, they are added to the 

chromosome bank. This repository helps to observe all 

chromosomes that were searched by the genetic algorithm. 

This bank is very helpful in displaying the top 10 

chromosomes.  

3.4.5 Dealing with erroneous chromosomes 

During the execution of each step of the genetic algorithm, 

there is a chance of generating an erroneous chromosome. As 

there are 3 bits allotted for the encoding of the combining 

rules, the three bits can generate eight possible combinations, 

where there are only six combining rules. The remaining two 

possible combinations are erroneous because they do not 

represent any combining rules. Furthermore, during crossover 

and mutation operations, an erroneous chromosome may be 

generated. To address such situations, exception handling is 

necessary.  

As per the principles of genetic algorithm, whenever 

offsprings are generated by crossover or mutation, they are 

added to the existing population. If n1 is the population size 

and n2 is the number of chromosomes generated by crossover 

or mutation operations, then the total number of chromosomes 

to be processed becomes (n3 = n1 + n2). However, before 

passing all these chromosomes to the next generation, the 

chromosomes are sorted, and the top n << n3 chromosomes are 

passed to the next generation.  

4. EXPERIMENTATION AND RESULTS

4.1 Dataset 

The Indian bird image dataset was used to conduct 

experiments and corroborate the performance of the proposed 

methodology for classifying bird species. The dataset 

comprises 6150 images splitted into 41 categories, each of 

which has approximately 150 images. The dataset contained 

non-segmented bird images. There were significant intra-class 

variations in the dataset as a single bird was captured at 

different angles and poses. The dataset is quite complex when 

compared to available datasets, as the birds are captured with 

complex backgrounds, bird images are occluded with other 

objects, and the birds are captured in different poses and 

angles. 

4.2 Experimental setup 

Several experiments were conducted to study the 

performance of the proposed methodology and fine-tune the 

parameters to enhance the classification accuracy and 

robustness of the classification approach. Segmented and non-

segmented images were studied to understand the performance 

of the proposed methodology. The following subsections 

provide details of the parameters used for training the model. 

4.2.1 Parameters used for training deep learning models 

All the bird images (Figure 3) are resized to size of 
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(224,224,3). A batch size of 32 was used in the experiment. 

‘Include top’ parameter was set as False, as the fully connected 

layers were not included. Stochastic gradient descent (SGD) 

was used as the optimizer of the model. Accuracy was used as 

the metric for the optimization of the model. The SGD learning 

rate was initialized as 0.001, the SGD decay as 1e-6, and the 

SGD momentum as 0.9. The callbacks of the model were 

declared with ‘Restore best weights’ as TRUE and with a 

patience of 5. The loss was categorized as 

categorical_crossentropy, as it was a multiclass classification 

problem.  

 

 
 

Figure 3. Examples of images from the Indian bird dataset 

 

4.2.2 Results on different ratios of training and testing data 

Several experiments were conducted to study the 

classification accuracy of the proposed methodology by 

considering the parameters considered in the previous 

sections.  

Table 7 presents the outcomes of the experiments conducted 

with different percentages of training and testing for bird 

images.  

 

Table 7. Classification results for Indian bird images 

 
Training/Testing Train-90% Train-80% Train-70% 

vs val-5% val-10% val-15% 

DL Models Test-5% Test-10% Test-15% 

Xception 89% 87% 86% 

ResNet152 84% 82% 83% 

MobileNet 79% 80% 80% 

Inception 84% 80% 78% 

EfficientNetV2 91% 90% 86% 

 

4.2.3 Parameters used in genetic algorithm 

Some parameters associated with the genetic algorithm 

proposed in this study need to be initialized and fine-tuned 

during its execution. New chromosomes are generated in each 

iteration by performing genetic operations, such as mutation 

and crossover. It has been observed that new chromosomes 

generated in this manner will be stable after 10 generations. 

Therefore, the maximum number of iterations required to 

produce stable chromosomes in this experiment was 10. Thus, 

the search space computation using a genetic algorithm is 

equal to the product of the number of generations and 

population size (10 × 30). As 1536 > 300, the search space for 

the selection of the best classifier ensemble is reduced using a 

genetic algorithm when compared with the brute force 

technique. 

The population size should be as large as possible so that a 

larger diversity of chromosomes can be considered in the 

experiment. The population size should be as small as possible 

so that the product of the number of generations and 

population size is smaller than the computations done by the 

brute force technique. Hence, the population size is a trade-off 

between these two conditions. In the experiment, the 

population size was empirically chosen as 30, as it optimizes 

the trade-off criteria. The point of crossover is chosen as 1, as 

it is the standard value used in most genetic algorithm 

implementations.  

The mutation rate should be as large as possible so that 

diverse solutions are explored with fewer generations. The 

mutation rate should be chosen as small as possible so that 

solutions with local optima can be explored. Hence, the 

mutation rate is empirically chosen as 0.5, as it optimizes the 

trade-off criteria. Table 8 lists the parameters used in the 

experiments.  

 

Table 8. Parameters used in the experiments 

 
Parameters  Values in the Experiment 

Population size  30 

Point of crossover  1 

Mutation rate 0.5 

Fitness metric Accuracy of classification 

Number of generations is decided 

by observing no change in the 

population elements consistently 

for x generations  

x = 4 

 

The parameters used in the genetic algorithm are initialized 

as mentioned in Table 8. The performance of the individual 

deep architectures and their ensemble was observed and is 

presented in Table 9. It can be observed from the results 

presented in Table 9 that the ensemble of classifiers using the 

proposed genetic algorithm has enhanced the accuracy of the 

classification by selectively choosing the right combination of 

deep classifiers and the right combining rule. Although it is 

possible to come up with the right combination of deep 

classifiers with brute force methodology, it is a very 

cumbersome task, and the complexity of such a technique is 

quite high. Time complexity can be drastically reduced by 

applying a genetic algorithm, as discussed.  

 

Table 9. Performance of individual deep architecture 

classifiers and their ensembles 

 
Deep 

Architectures 

Individual 

Performance 

Performance of 

Classifier Ensemble 

Xception 89% 

97% 

Inception 77% 

MobileNet 79% 

ResNet152 86% 

VGG19 74% 

VGG16 68% 

EfficientNet 91% 

ViT  93% 

 

Figure 4 represents performance of individual deep 

architecture classifier and their ensembles. Figure 5 represents 

graph depicting training accuracy and validation accuracy. 

Figure 6 represents graph depicting training loss and 

validation loss. Based on Figures 5 and 6, it is easy to analyze 

that the model is not overfitting and not lacking generatability. 
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Figure 4. Accuracies of individual and ensemble techniques 

Figure 5. Graph plotted between accuracy and epochs 

Figure 6. Graph plotted between loss and epochs 
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Table 10. Best performing chromosomes in terms of the 

fitness of the genetic algorithm 

Encoded 

String 

Combining 

Rule 

Deep 

Architectures 

Included 

First best 

chromosome 
'00000011100' Median 

EfficientNetV2L 

ViT 

4.3 Analysis of fit chromosome 

In this context, the fitness of any chromosome is measured 

in terms of its classification performance by combining the 

different deep architectures considered for the analysis and the 

combining rule. The best combination of the deep classifier 

ensemble and the best combining rules were analysed by 

conducting experiments and fine-tuning the parameters of the 

genetic algorithm. Experimental results revealed that the 

combination of an EfficientNetV2L and ViT with a median 

combining rule produced the highest accuracy of 97%. The 

details are presented in Table 10. 

From the experiments, the best performing top 10 

chromosomes were observed and are presented in Table 11. 

The structure of each chromosome indicates the presence (1) 

or absence (0) of a particular deep learning model and the 

combining rules for ensembling. For example, chromosome 

10000011101 indicates that the deep learning models 

considered for ensembling are Xception, EfficientNet and ViT 

as mentioned in Table 6 and the ‘product’ combining rule as 

described in Table 5. From Table 11, it can be observed that 

all the top 10 chromosomes have 7th and 8th bit as one, which 

indicates that the combination of EfficientNetV2L and ViT 

has shown a better classification accuracy of 97% when 

compared to other combinations.  

The top chromosomes work better because they have the 

highest fitness. The researcher does not have any control over 

the output of the genetic algorithm, and the genetic algorithm 

decides the output. 

The pattern of the best-performing chromosome states that 

the combination of ViT and Efficient with Median combining 

rule is most suited for bird species classification.  

Table 11. Best performing top 10 chromosomes for Indian 

bird dataset 

Chromosome Accuracy 

'00000011100' 0.9657 

'00000011011 0.9657 

'00000111011 0.9657 

'00000001100 0.96261682 

'00000001011' 0.96261682 

'00000001010 0.96261682 

'00001111011 0.96261682 

'01000011011 0.95950156 

'00000011001 0.95950156 

'00100011011' 0.95950156 

Individually, ViT and EfficientNetV2 performed very well. 

Hence, any combination of these two models performs better. 

Table 11 presents all the top 10 chromosomes, where all the 

chromosomes have ViT and EfficientNet. 

The performance of the proposed ensemble classification 

approach was also studied by conducting several experiments 

and computing class-wise precision, recall, and F-measures, 

and the results are presented in Table 12. From the results, it 

was observed that for most of the classes, the results were 

good, with high precision, recall, and F-measure. However, for 

a few classes, the results must be improved. One of the reasons 

for low precision, recall, and F-measure for some of the classes 

is that the samples for those classes are insufficient, and many 

more samples with significant intraclass variations need to be 

considered for training the model. Such an analysis will be 

conducted in future work. 

Species such as Swifts, Prinias, Robins, Plovers, Pigeons, 

Munias, Nightjars, Flycatchers, Cuckoos, and Doves 

performed very poorly, with low F1 scores. 

Table 12. Class-wise precision, recall and F1-score obtained 

for the Indian bird dataset using the best classifier ensemble 

for 90% training, 5% validation, and 5% testing 

Bird Class Precision Recall F1-Score Support 

Babblers 1 1 1 8 

Barbets 1 1 1 8 

Bulbuls 1 1 1 7 

Coots 1 1 1 8 

Cranes 1 1 1 6 

Cuckoos 1 0.88 0.93 8 

Doves 1 0.88 0.93 7 

Drongos 0.89 1 0.94 8 

Ducks 1 1 1 8 

Eagles 1 1 1 8 

Egrets 0.89 1 0.94 8 

Falcons 1 1 1 8 

Finches 1 1 1 8 

Flycatchers 0.88 0.88 0.88 8 

Herons 1 0.88 0.93 7 

Hornbills 1 1 1 8 

Jacanas 0.88 0.88 0.88 8 

Kingfishers 1 1 1 8 

Munias 0.89 1 0.94 7 

Nightjars 1 0.88 0.93 8 

Orioles 1 1 1 6 

Owls 1 1 1 8 

Parakeets 1 1 1 6 

Peafowl 1 1 1 8 

Pheasants 1 1 1 8 

Pigeons 0.89 1 0.94 7 

Plovers 0.89 1 0.94 8 

Prinias 0.88 0.88 0.88 8 

Robins 0.89 1 0.94 8 

Sandpipers 1 1 1 8 

Shrikes 1 0.88 0.93 8 

Storks 1 0.88 0.93 8 

Sunbirds 1 1 1 8 

Swallows 1 0.75 0.86 8 

Swamphens 1 1 1 8 

Swifts 0.75 1 0.86 3 

Terns 1 1 1 7 

Wagtails 1 1 1 8 

Warblers 1 1 1 8 

Woodpeckers 1 1 1 8 

5. CONCLUSION

A novel deep architecture ensemble using a genetic 

algorithm for bird species classification was proposed. The 

genetic algorithm significantly reduced the computational 

search space for identifying the best deep classifier ensemble 

compared to the brute-force approach.  

The process of using selective deep architectures among the 

eight was performed using a genetic algorithm. The 

mechanism of genetic algorithm was applied by assigning the 

3574



accuracy of classification as the fitness. Binary Tournament 

selection was used to find the fitter parents during the 

execution of the genetic algorithm, which selected the fit 

chromosome among two randomly selected chromosomes.  

Mutations and crossovers were applied in parallel with 

equal probabilities. Based on the experiments, it can be 

concluded that a combination of two deep architecture 

classifiers namely EfficientNetV2L, and ViT, produced the 

highest classification accuracy of 97% for the median 

combining rule. This combination was computed only once 

and stored in a knowledge base for the classification of 

unknown bird images. The proposed model fails with poor-

quality images, and there is still scope for researchers to work 

in this domain. 
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