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Railway safety relies on the early detection of track defects that can lead to derailments
and service disruptions. Traditional inspections are labor-intensive and error-prone,
whereas many vision-based studies only focus on detection and fail to link predictions
to maintenance execution. This study addresses this perception-to-action gap. In the
Collect phase, unmanned aerial vehicles (UAVS) acquire high-resolution images of
track segments. In the Organize phase, images are standardized, binary-masked to
generate ground truth, and embedded into fixed-length feature vectors. In the Analyze
phase, four classifiers including Artificial Neural Networks (ANNSs), Support Vector
Machines (SVMs), Random Forest (RF), and K-Nearest Neighbors (KNNSs) are
compared using Area Under the Curve (AUC), accuracy, Fl-score, and Matthews
Correlation Coefficient (MCC). In the Infuse phase, the optimal model is integrated into
an enterprise resource planning (ERP) maintenance module to support real-time defect
flagging, automated work orders, and dashboard visualization. ANN model achieves
the highest performance (AUC = 0.935; accuracy = 0.884; Fl1-score = 0.884; MCC =
0.768). The Al Ladder-guided machine-learning (ML)-ERP pipeline demonstrates a
practical pathway from aerial sensing to actionable maintenance, aligning with
Sustainable Development Goals (SDGs) 9. By directly embedding classification into
ERP workflows, operators can transition from periodic, manual inspections to
continuous, predictive maintenance, featuring automated scheduling, notifications, and
auditable condition histories.

1. INTRODUCTION

crashes made up only about 5% of the total, road-related
collisions accounted for nearly 20%, resulting in more than

The railway industry is a vital component of Indonesia’s
transportation infrastructure, particularly on Java and Sumatra,
Investments in both super-and sub-structures, including
ballast, slab track, and subgrade, are essential to maintaining
operational reliability and long-term capacity of the national
rail system [1]. Recent developments, such as the inauguration
of Southeast Asia’s first high-speed railway connecting
Jakarta and Bandung, underscore Indonesia’s commitment for
the adoption of advanced engineering standards for track
construction and system performance [2, 3]. Despite these
advancements, safety remains a pressing concern. Historical
incidents, highlight persistent vulnerabilities in Indonesia’s
railway operations. A total of 143 train accidents occurred in
Indonesia between 2015 and 2021, causing 132 fatalities and
nearly 300 injuries [4], highlighting the continuing instability
of railway safety performance. Earlier, around 2004 to 2010,
over 700 railway accidents were reported, mostly involving
derailments and vehicle collisions. Although train-to-train
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360 deaths and 1,200 injuries [5]. It reflects long-standing
structural and operational safety deficiencies in the national
rail system.

Similar incidents have also occurred globally, further
underscoring the universal nature of railway safety challenges.
Studies have shown that fatalities and injuries among track
maintenance workers often occur under high-risk working
conditions (especially at night) and can be exacerbated by
communication failures and insufficient safety coordination
[6]. In South Korea, 240 human errors were found on Korean
Railway system [7]. In the United Kingdom, Network Rail was
fined £3.75 million after two maintenance workers were
fatally struck by a train in Margam, Wales; the investigation
revealed systemic safety failures and led to significant
operational reforms [8].

Railway defects are a critical issue in transportation safety
[9], as they can lead to derailments, service disruptions, and
costly repairs [10]. Traditional inspection methods are often
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inefficient and prone to human error [11]. In the modern
context, human safety and industrial efficiency are global
concerns, as emphasized in the Sustainable Development
Goals (SDGs). In particular, SDG 9 (Industry, Innovation and
Infrastructure) underlines the importance of resilient
infrastructure and technological innovation. In the railway
sector, this translates into maintaining advanced, safe, and
sustainable transportation systems.

Recent studies have explored visual inspection methods for
railway defect detection using image processing and computer
vision. Zhuang et al. [12] developed an automated visual
inspection system using a cascading classifier ensemble
trained with LogitBoost to identify cracks and deformations.
Infrared thermography (IRT) has also been applied to detect
hidden cracks, although it requires specialized equipment and
is sensitive to environmental conditions [13]. Classical
techniques such as canny edge detection and the Hough
transform face challenges in recognizing complex or novel
defect types due to reliance on handcrafted features [14].
Collectively, these studies demonstrate promise but also reveal
limitations in generalizability, real-time applicability, and
integration with maintenance decision-making systems.

To support intelligent and scalable infrastructure
maintenance, this study adopts the AI Ladder Model
comprising four stages: Collect, Organize, Analyze, and
Infuse as a guiding framework for embedding Al into
operational workflows [15]. In this framework, unmanned
aerial vehicles (UAVs) provide real-time data acquisition
(Collect); feature extraction, annotation, and preprocessing
tools prepare and structure image data (Organize); machine-
learning (ML) algorithms enable pattern recognition and
classification (Analyze); and outputs are translated into
actionable maintenance strategies (Infuse). This structure
ensures end-to-end alignment between data, analytics, and
infrastructure decisions, while supporting SDG 9 through
digital innovation. Building on this framework, we evaluate
four ML algorithms: Artificial Neural Networks (ANNs),
Support Vector Machines (SVMs), Random Forest (RF), and
K-Nearest Neighbors (KNNs) for railway defect detection. RF
is recognized for handling high-dimensional data and
mitigating overfitting [16]; KNN is effective for similarity-
based classification [17]; ANN excels at learning nonlinear
patterns and extracting complex features [18]; and SVM
performs well with limited datasets and high-dimensional
feature spaces [19]. We further incorporate a deep-learning-
based feature embedding to enhance performance and
generalizability across diverse track conditions, with all
classification outcomes expressed consistently in defective
(bad) /non-defective (good) terms.

Unlike most railway inspection studies that do not frame
their approach within a systematic framework, this work
explicitly employs the AI Ladder (Collect-Organize-Analyze-
Infuse) [15] as an end-to-end backbone: In the Collect phase,
we use UAVs for scalable and high-frequency RGB image
acquisition; The Organize phase arranges
annotation/normalization and extracts deep feature
embeddings with standardized outputs of good/bad across
track conditions; The Analyze phase conducts a controlled
comparison of four models (ANN, SVM, RF, KNN) based on
AUC, accuracy, Fl-score, and MCC, rather than merely
reporting a single accuracy number [16, 19]; and the Infuse
phase links predictions to enterprise resource planning (ERP)
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to trigger work orders, scheduling, and resource prioritization,
components that are generally absent in the literature yet
crucial to bridge the perception-to-action gap [20]. Thus, our
uniqueness lies not only in UAVs, deep embeddings, and
multi-model comparison, but especially in the use of the Al
Ladder as an operational framework that ensures analytical
findings culminate in measurable maintenance impact.

The integration of predictive-maintenance outputs into ERP
systems, particularly maintenance modules, is crucial for
operational reliability and decision-making in infrastructure-
intensive sectors. Prior work shows that combining ML with
SAP plant maintenance can improve maintenance scheduling
and failure prediction [21], ERP-based modules reduce non-
value-added tasks and streamline workflows [22], and
integrating Reliability-Centered Maintenance (RCM) with
Computerized Maintenance Management Systems (CMMS)
improves metrics such as Mean Time Between Failures
(MTBF) and Mean Time to Repair (MTTR) [23]. A review
further highlights that intelligent ERP optimization using ML
improves failure forecasting and resource allocation for
preventive and corrective actions [24].

Despite the progress in perception, recent surveys note that
most UAV studies stop at reporting detection accuracy without
demonstrating how predictions trigger scheduled maintenance
in enterprise systems. The absence of end-to-end pipelines that
connect computer-vision outputs to asset-management
workflows (ERP) remains a key barrier to operational
adoption [20]. While prior studies demonstrate effective visual
inspection techniques and promising ML-based approaches
[12], three key gaps persist:

(i) limited use of UAVs for scalable, high-frequency data
collection directly tied to automated defective/non-defective
classification;

(i) insufficient generalization across varied track conditions
without deep feature embeddings;

(iii) weak integration between defect-detection outputs and
ERP maintenance modules for actionable scheduling and
resource optimization [20-22].

This study proposes a comprehensive UAV-based
predictive-maintenance framework that integrates UAV data
acquisition, deep feature embedding, and comparative
evaluation of ANN, SVM, RF, and KNN within the AI Ladder
workflow, and infuses predictive insights into ERP
maintenance modules.

This work makes three key contributions that explicitly
bridge the perception-to-action gap. First, it advances the
theoretical/methodological frontier by introducing an end-to-
end, layered analytics pipeline that couples UAV-captured
imagery with deep-learning-based feature embeddings and
multiple ML classifiers, enabling robust defective (bad)/non-
defective (good) classification across diverse track conditions.
Second, it delivers operational system integration by infusing
classifier outputs into ERP maintenance modules, converting
predictions into scheduled actions automated work orders,
prioritization, and optimized resource allocation consistent
with prior evidence on ERP-enabled reliability improvements
[20, 22]. Third, it provides practical impact through a scalable,
future-ready approach that increases inspection frequency and
accuracy while reducing reliance on labor-intensive methods,
thereby advancing SDG 9 objectives. Collectively, these
contributions close the loop from UAV-based perception to
enterprise maintenance execution.



2. METHODS AND MATERIALS
2.1 Al Ladder framework

The proposed framework, grounded in International
Business Machines (IBM)’s Al Ladder methodology, provides

a comprehensive and structured approach for implementing
machine learning-based railway defect detection using UAVs
imagery [25]. Each stage of the Al Ladder: Collect, Organize,
Analyze, and Infuse [15], is carefully adapted to reflect the
technical and operational realities of railway infrastructure
monitoring, as presented below in Figure 1.

AI Ladder Data
EDGE
Image capturing usin CORE
u u;

— Collect ge cap . & -g Image data collected in data

Unmanned Aerial Vehicle ter (data lake)

L. center (data lake
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Real-time Al integration with

L] Infuse . g J

ERP maintenance module

System Deployment

Figure 1. New scheme for UAV-based railway track on ERP maintenance module using machine learning within the Al Ladder
Model framework

In the Collect phase, data acquisition is performed at the
edge using UAVs, enabling the capture of high-resolution
imagery directly from the railway environment [26]. The
captured images are then transmitted to the core infrastructure
(data center), where the organize stage takes place. Here, data
undergoes  preprocessing  activities including image
embedding, cleaning, labeling, and cataloguing [27], ensuring
that the dataset is structured, consistent, and ready for analysis.
During the Analyze phase, the framework supports on-premise
training of various machine learning models [28]. The training
process is guided by a rigorous evaluation pipeline using
performance metrics [29]. This enables objective model
selection and ensures that the chosen model is well-suited to
the characteristics of the dataset. While infuse phase focuses
on real-world deployment, wherein the selected model is
integrated into an ERP-based railway maintenance module.
This integration supports real-time classification of track
conditions and provides actionable insights directly to
maintenance teams, enhancing operational efficiency and
predictive maintenance capabilities.

2.2 Phase 1: Collect

Collect phase is the first rung of the Al Ladder. It is a
foundational role for collecting and acquiring high-quality and
relevant data. It is intended to build essential data management
capabilities, ideally by simplifying data access and ensuring
availability, regardless of its format or storage location [30].
Within this context, the proposed research introduces a railway
inspection system that use UAVs to systematically capture
real-time, high-resolution imagery of railway tracks.

2.2.1 UAV acquired data-based model
To address the growing demand for intelligent and
automated infrastructure monitoring, particularly in the
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railway sector, this research propose a novel model of UAV
acquired data-based. This model encourages recent
advancements in Internet of Things (loT) technology, and
machine learning to enable advanced inspection of railway
tracks [31]. The system integrates UAV, centralized data
processing units, and predictive analytics tools to ensure early
detection of defects and proactive maintenance decision-
making. Figure 2 illustrates the overall workflow of the UAV
acquiring data mechanism, outlining the major components
and the flow of data from image acquisition to visualization
and analysis.

2.2.2 UAV systematic coverage

Systematic coverage aims to capture imagery of every
sleeper, every fastener, and every meter of the rail surface
within the target zone. Flight plan is conducted,; it incorporates
a specific percentage of forward overlap (70%) and side
overlap (40%). This overlap ensures that the edges of one
image are covered by the next, guaranteeing no gaps. This
flight route is designed as a 'flying corridor' that precisely
follows the alignment of the railway track, with a constant
flying altitude of 15 meters above the rails. This parameter was
chosen to obtain the optimal Ground Sampling Distance
(GSD), thus, sharp images are provided with efficient area
coverage. Moving at a steady speed of approximately 40 km/h,
UAV's camera operates continuously. It systematically
captures thousands of digital images, photographing every
sleeper, every set of fasteners, and every inch of the rail
surface. The gimbal system ensures the camera remains
focused on the target despite light winds. This is a non-contact
inspection process, conducted at the 'edge’ or directly in the
field environment. Once an area is covered, the UAV performs
an initial data upload via a 4G/5G connection to the central
data lake (‘core’).
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Figure 2. UAV acquiring data mechanism

2.2.3 Data transmission to core

In this research, an loT-enabled UAV is proposed to use
wireless transmission, to efficiently send real-time images
from the 'edge’ to the 'core' infrastructure. For storage, this
scenario locates the data in the operator's own data center for
control and security. The research suggests using a data lake
as the primary repository for raw images due to its ability to
handle large volumes of unstructured data, and may be
supported by additional databases to manage metadata,
ensuring data can be accessed, organized, and analyzed
efficiently.

The data acquisition (the 'Collect’ phase) is performed at the
‘edge’, directly within the railway environment. These UAVs
are envisioned to act as intelligent, mobile data acquisition
points. The raw images captured that represents the real-time
visual state of the tracks, are then transmitted from the UAVs
to the 'core' infrastructure, typically a central database or data
center (data lake).

The proposed railway track inspection system uses a closed-
loop architecture with three main components: image
capturing, data processing, and data visualization. loT-enabled
UAVs with high-resolution cameras capture real-time images
of the tracks for automated, non-contact inspection.

The study collected 201 total images of railway tracks using
UAVs, consisting of 52% non-defective (good) and 48% Nb
defective (bad) samples. These images are transmitted to a
central database and processing system, where advanced
image processing and machine learning models (KNN, SVM,
RF, ANN) detect and classify defects. The most suitable model
is selected based on data characteristics and accuracy needs.
Finally, processed data is visualized to support timely
interventions and long-term maintenance planning.

2.3 Phase 2: Organize

Organize phase is preparing and structuring raw inputs into
a consistent and usable format for downstream analysis. It
involves standardizing data workflows, ensuring quality and
coherence, and enabling traceability across the machine
learning pipeline. It emphasizes transforming raw inputs into
a well-structured and accessible format suitable and trusted for
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further analysis [30]. In the context of this study, organize
phase encompasses several key activities including image
preprocessing, binary mask generation for ground truth
labeling, feature embedding, and structured dataset formation.

2.3.1 Image processing and labeling using binary masks

The dataset has undergone a feature extraction and
embedding process, converting rail track images into
numerical representations. Initially, the dataset consisted of
raw images categorized as either non-defective (good) or
defective (bad) based on track conditions. After processing,
each image was transformed into a structured numerical
format, allowing machine learning models to interpret the
images mathematically [32], with numerical patterns,
computer can observe image distinctive characteristics in
detail.

Raw images must be standardized in terms of resolution and
format. Each railway track image is resized to a fixed width of
160 pixels, with the height varying (from 333 to 427 pixels) to
preserve aspect ratio. Images are also saved in lossless formats
such as PNG or BMP.

Each image captured by the UAV is annotated using a
corresponding binary mask, an image of the same dimensions
consisting solely of black (0) and white (1) pixel values. White
pixels indicate regions where visible rail defects such as
cracks, deformations, or wear are present, while black pixels
represent defect-free areas. They serve as the ground truth
labels during model training [33], enabling the machine
learning algorithms to learn the visual patterns associated with
defective and non-defective track segments.

2.3.2 Feature embedding and dataset quality validation
Following the labeling process, each image undergoes
feature embedding using a pre-trained deep learning model to
numerical representations. This embedding process converts
each image into a fixed-length feature vector comprising
numerical  attributes that capture relevant visual
characteristics, such as texture, edges, and structural patterns.
Importantly, to prevent data leakage, the embedding process is
performed separately for the training and testing subsets after
the dataset is split [34]. The dataset was stratified into 80%



training and 20% testing, ensuring class proportions are
preserved. These features are then compiled into a structured
dataset for model training and validation. Exploratory data
analysis (EDA), including distance-based clustering and
scatter plots, is conducted to assess class separability and
validate dataset quality before feeding it into classification
models.

2.4 Phase 3: Analyze

Analyze phase is a critical rung in Al Ladder and has a
significant role on transforming raw data into actionable
insights through advanced analytics and machine learning. It
involves not only building predictive models but also
understanding their performance and impact to support

Railway Track Image
Capture & Collection

informed decision-making and continuous improvement [15].
Aligning with this framework, the study focuses on conducting
a comparative evaluation of four prominent machine learning
algorithms.

2.4.1 Machine learning model for image-based railways

To systematically evaluate machine learning models for
railway track defect detection, a structured research
framework was developed to guide the entire process from
data acquisition to performance evaluation. This framework
ensures a coherent pipeline that integrates image processing,
feature extraction, exploratory data analysis, classification,
and validation, providing a reproducible and scalable
methodology for intelligent defect detection systems. It is
illustrated in Figure 3.
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Figure 3. Framework of machine learning model for image-based railways

The process begins with the capture and collection of
railway track images using UAVs, which are compiled into an
image dataset representing both defective and non-defective
rail segments. This dataset is then divided into training and
testing sets. Image embedding is conducted to convert raw
images into structured numerical representations. These
numerical vectors serve as inputs for subsequent analysis. The
embedded data is further processed through EDA using
distance-based metrics and hierarchical clustering to assess the
natural separability of the dataset and guide model selection
and validation. If exploratory checks indicate class imbalance
between non-defective and defective images (e.g., skewed
class ratios or degraded minority-class recall), the Synthetic
Minority Over-sampling Technique (SMOTE) will be applied
only to the training partitions [35]. SMOTE generates
synthetic minority samples by interpolating between nearest
neighbors, creating plausible examples that enrich decision
boundaries without simply duplicating data. If no imbalance is
detected, SMOTE is skipped and the original class distribution
is retained.
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The dataset is then split into training and validation sets,
which are utilized to train and fine-tune four distinct machine
learning classifiers: SVM, RF, ANN, and KNN. These models
are systematically evaluated through various performance
metrics to determine their effectiveness in classifying railway
track defects.

2.4.2 Comparative analysis of machine learning algorithms

This section presents the four machine learning algorithms
employed in this study: ANN, SVM, RF, KNN, used for
classifying railway track conditions as either “non-defective”
or “defective” based on image-derived feature embeddings.
The SVM aims to construct an optimal hyperplane that
separates two classes with the maximum possible margin. The
fundamental prediction function of a linear SVM is expressed
as:

FG) = o+ ) ailxx) (1)



where, ay, ..., a, and By are parameters estimated based on the
inner product between pairs of training data points. By
replacing the inner product with a kernel function K(x;,x;), the
model applies a kernel-based approach. A linear kernel
defined as:

p

K(x;,x;) = Z XijX{j

j=1

2

While ANN utilizes a multi-layer feedforward architecture
to learn non-linear mappings from inputs to outputs. For a
network with L layers, the forward propagation is defined as:

a® = o(WWx + bD),
a®@ = O—(W(Z)a(i) + b(z)),..,
y = O—(W(L)a(L—l) + b(l))

3)

where, W® and b® denote the weights and biases at layer [,
o is a non-linear activation function (ReLU or sigmoid), and
¥y € ]0,1] represents the predicted probability of the track
being defective (bad). The ANN model showed strong
performance in this study due to its ability to model complex,
non-linear relationships in high-dimensional image data.

RF is an ensemble learning method that combines the
outputs of multiple decision trees to improve classification
robustness. The prediction function of RF is defined as:

y = majority_vote{h,(x)}I_, 4)
where, h;(x) is the prediction from the #-th decision tree, and
T is the total number of trees in the ensemble. Each tree is
trained on a random subset of the training data and features
(bagging), allowing the model to reduce variance and improve
generalization. RF is particularly effective in noisy datasets, as
it aggregates multiple decision boundaries.

KNNs is a non-parametric, instance-based learning
algorithm that classifies input samples based on their
proximity to training examples. The distance between a test
point x and a training point x; is typically calculated using
Euclidean distance:

d(x,x;) = (5)

The predicted label y is determined by the majority class
among the k nearest neighbors:

y = mode{x;eN; (x)} (6)

where, N, (x) represents the set of the k nearest training

instance to x . While KNN is simple and intuitive, its

effectiveness diminishes in high-dimensional spaces and when
the data is not well-separated.

2.5 Phase 4: Infuse

This diagram illustrates the development of an ERP
maintenance module that integrates Al into business
processes. The approach follows the Infuse phase of the IBM
Al Ladder, which focuses on embedding Al into workflows to
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enable smarter operations and enhanced decision-making.
Infusing Al into the core ERP workflows drives more systemic
with learning capabilities, enabling them to transform data into
predictive insights and smarter decisions [36].

2.5.1 Business process re-engineering

The process starts with business process re-engineering
activities, including the preparation phase, analysis of the
current state (As-Is), and the design of the desired future state
(To-Be). These steps are crucial to ensure that existing
processes are clearly mapped and improved before introducing
Al.

A Focus Group Discussion (FGD) is used to gather expert
input on the current maintenance system. This input informs
the design of a new maintenance process that is integrated with
ERP as we can see in Figure 4.

In practical terms, integration between the ML model and
the ERP was exercised through a lightweight REST adaptor.
The adaptor receives JSON outputs from the inference service
and forwards them to the ERP using its standard remote-
procedure APl (JSON-RPC depending on version). This
pattern ensures the ML pipeline remains vendor-neutral and
portable, with the adaptor encapsulating system-specific
details. The prototype was validated in a pilot (non-
production) ERP environment through user-acceptance tests,
rather than in a full live system. To prevent model
obsolescence, the classifier is periodically retrained when
sufficient new labeled imagery becomes available, keeping
predictions calibrated over time. The focus of this study is
therefore not on ERP software, but on the integration pattern
itself within the AI Ladder’s Infuse phase, embedding Al
predictions into maintenance workflows for automated work
orders, scheduling, and dashboard visualization.

ERP V15 is deployed on a Droplet Server running Ubuntu
20 LTS. The configuration is defined through a blueprinting
process, followed by User Acceptance Testing (UAT) to
validate system readiness. Al is infused into the maintenance
process by embedding intelligent decision support within ERP
functionalities. Development and customization are carried
out using ERP V15 Studio, resulting in a fully integrated and
Al-enhanced ERP maintenance module ready for live
deployment.
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Figure 4. Business process re-engineering scheme



Table 1. Experts involved in FGD

No. Company Nature Job Nature E{(penence
(in years)
Railway .
1 Infrastructure Seéllllorh;rer;Ck 10
Contractor g
’ National Railway Maintenance 8
Operator Planning Specialist
ERP Consulting Lead ERP Functional
3 . 12
Firm Consultant
UAV and Sensor UAV Systems
4 Integration . 6
Engineer
Company
Software ERP Module
5 Development 7
. Developer
Firm
6 University / Al and Predictive 5

Research Institute  Analytics Researcher

To ensure that the development of ERP features aligns with
user needs and strategic priorities, the FGD method was
subsequently applied. The following table presents the experts
involved in the FGD process for determining the priority of
ERP features and modules.

In the preparation engineering phase of an ERP project, the
FGD method can be effectively applied to support complex
decision-making involving multiple stakeholders, as shown in
Table 1. One of its applications is in determining which ERP
features and modules should be prioritized. By involving a
panel of experts from various related departments, the
company can gather in-depth opinions on the most critical and
relevant features for the business needs. This approach aligns
with findings from a study by Ifinedo and Nahar [37], which
emphasizes the importance of incorporating diverse
stakeholder perspectives to effectively prioritize ERP system
features and ensure successful implementation.

3. RESULT

This part will demonstrate the outcomes obtained from each
stage of the Al Ladder, which includes collect, organize,
analyze, and infuse data. These stages serve as the
foundational framework for implementing Al within the
company. By thoroughly examining each phase, the study
aims to provide a clear understanding of how data is
transformed into actionable insights and integrated into
business processes, ultimately driving more informed
decision-making and enhancing organizational performance.

Figure 5. Image data and its binary mask (0 (black), 1
(white)) as ground truth labels

3.1 Collect

3.1.1 Dataset collected from UAVs

The dataset utilized in this study comprises rail track images
captured by the UAVs. The images in the dataset exhibit
various forms of defects, such as cracks, deformations, and
surface wear, which could compromise the operational
integrity of railway infrastructure.

Each image captured by the UAV is annotated using a
corresponding binary mask, an image of the same dimensions
consisting solely of black (0) and white (1) pixel values
(Figure 5). White pixels indicate regions where visible rail
defects such as cracks, deformations, or wear are present,
while black pixels represent defect-free areas. They serve as
the ground truth labels during model training [33], enabling
the machine learning algorithms to learn the visual patterns
associated with defective and non-defective track segments.

3.2 Organize

3.2.1 Feature embedding and extraction

After transferring data to the core, all data is processed and
embedded to adjust with the model easily, it is the next step of
Al Ladder: organize. The size column represents the file size
of each image in bytes. Larger file sizes generally indicate
more detailed images [32], which could result from higher
resolution or more complex visual content. Meanwhile, the
width and height columns specify the image dimensions in
pixels. In this dataset, the width is consistently 160 pixels,
while the height varies across images, ranging from 333 to 427
pixels. It means that the images may have different aspect
ratios, possibly due to variations in how they were captured or
processed, as shown in Table 2.

Table 2. Images after embedded and converted into numerical values

Category  Image name Image Size Width  Height n0 nl n2 n3 n4
bad rail_63_top bad/rail_63_ 112755 160 427 0.025431  0.040893 0 0.247499  0.655503
bad rail_9_top bad/rail_9_t... 89094 160 333 0.050763 0 0.000776  0.062975 0.316339
bad rail_26_down bad/rail_26_ 107820 160 420 0.249109 0.004444 0 0.108371 0.238146
bad rail_50_down bad/rail_50_ 122348 160 428 0.107908 0.008462 0.002033 0.583412 0.499811
bad rail_3_down  bad/rail_3_d... 87257 160 334 0.218566 0 0.01038  0.027712  0.32916
bad rail_2_down  bad/rail_2_d... 89057 160 334 0.131713 0.000146 0.001676 0.050996 0.485504
bad rail_60_mid bad/rail_60_ 126045 160 427 0.112627 0.367399 0 0.406943  0.556458
bad rail_12_mid bad/rail_12_ 88780 160 333 0.191149 0 0.021315 0.181009 0.336767
bad rail_19 down bad/rail_19 120354 160 420 0.438061 0.00319  0.004395 0.236694 0.598159
bad rail_18 top bad/rail_18_t... 113431 160 420 0.279714 0.000176 0.008263 0.268504  0.41349
bad rail_34_mid bad/rail_34_ 121197 160 420 0.280254 0 0 0.145305 0.132375
bad rail_24 mid bad/rail_24 115051 160 420 0.212019 0 0.027149  0.280935 0.124773
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category

Figure 6. Distance and clustering of data through heatmap and scatter plot
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Figure 7. The dendrogram of hierarchical clustering

While the numerical columns labeled n0, n1, n2, n3, n4, and
extending up to n2047, correspond to extracted feature values
obtained through an image embedding process. These values
are derived using a feature extraction technique, likely based
on a deep learning model, where pre-trained data converted
high-dimensional image data into lower-dimensional vectors
[38]. These vectors capture essential features of the images,
such as texture, shape, and patterns, while discarding
unnecessary information. Each floating-point number encodes
specific visual characteristics of the image, such as texture,
structural patterns, or edges.

3.2.2 EDA

Before classification, this research uses distance metrics,
scatter plots, and hierarchical clustering (Figure 6) to verify
data suitability, cleanliness, and the distribution of "non-
defective" and "defective" railway track features.

The analysis, particularly the distance matrix and
dendrogram in Figure 6, reveals distinct clusters and well-
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defined separability. This confirms that the chosen features
effectively differentiate between track conditions, validating
the dataset's readiness and providing guidance for supervised
learning models [39].

A hierarchical clustering heatmap (Figure 6), ranging from
blue (high similarity) to yellow (high variability), alongside
dendrograms, reveals strong intra-cluster similarity and
distinct groupings within rail track image data. This indicates
that the images naturally cluster, suggesting good potential for
separating non-defective and defective tracks using
unsupervised methods. This visualization helps in evaluating
how well the data points cluster together [40].

Furthermore, a scatter plot clearly distinguishes non-
defective (red) and defective (blue) classes, demonstrating
high separability in the feature space. This strong visual
distinction reinforces the idea that classification models
should perform well on this dataset.

Normalization using Euclidean distance is crucial [40]. It
standardizes feature scales, preventing larger-magnitude



features from skewing similarity calculations and ensuring that
distance-based models operate effectively and without bias.
This preprocessing step helps maintain meaningful
relationships and supports accurate clustering and
classification [41].

Visual analysis, employing both a hierarchical clustering
heatmap and a scatter plot (Figure 7), strongly supports the
feasibility of classifying rail track images. The heatmap (blue
= similar, yellow different) and its accompanying
dendrograms reveal significant intra-cluster similarity,
identifying two primary groups: C1 (largely "non-defective"
tracks) and C2 (mainly "defective" tracks), while also
highlighting potential transitional states through its
hierarchical structure. This clear separability, further
emphasized by distinct red ("non-defective™) and blue
("defective™) groups in the scatter plot, is achieved through
crucial Euclidean distance normalization, which ensures
unbiased feature representation. These findings confirm that
extracted features effectively differentiate track conditions and
provide practical guidance for classification: they help
determine the appropriate number of classes, inform
hyperparameter tuning, aid in selecting balanced training data,
and suggest that different defect types may require distinct
handling approaches.

3.3 Analyze

3.3.1 Model evaluation

Model evaluation is part of Analyze phase in Al Ladder,
where machine learning models are applied to interpret and
extract meaningful insights from collected and organized data,
using performance metrics and visualizations to facilitate
understanding and guide decision-making.

Precision-recall curve

Precision—recall curves for RF, ANNs, KNNs, and SVMs
demonstrate strong classification performance for the “non-
defective (good)” class (left panel), it can be seen in Figure 8.
All models maintain high precision across a wide range of
recall, indicating accurate identification of non-defective
tracks with minimal false positives. The curves’ proximity to
the top-right region reflects robust predictive power and a
favorable precision-recall trade-off for this class [42].

In contrast, the precision-recall curves for the defective
class reveal markedly weaker performance. Across most recall
levels, precision is low, implying a higher rate of false
positives when predicting defective tracks. The curves’
closeness to the baseline suggests the classifiers struggle to
effectively separate defective instances [43]. This highlights a
clear disparity: models excel on the non-defective class but
face substantial challenges on the defective class.

ROC curve diagram

For the ROC curves, the non-defective class (left) shows
stronger separability than the defective class (right). ANN
(orange) and SVM (pink) trace the closest trajectories to the
top-left corner, achieving higher True Positive Rates (TPR) at
lower False Positive Rates (FPR). RF attains mid-tier
performance, while KNN consistently yields the weakest
curves as shown in Figure 9.

KNN shows the weakest performance, struggling to
differentiate classes. While models handle non-defective
tracks well, their sensitivity drops when predicting the
defective class, increasing the risk of false negatives (missed
defects), particularly for RF and KNN.

The confusion matrices provide a detailed breakdown of the
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classification performance of each model by illustrating the
distribution of true positives, true negatives, false positives,
and false negatives [43].

The confusion matrices in Table 3 provide a detailed
comparison of the four classifiers in identifying rail tracks as
defective or non-defective. ANN achieves the most balanced
results, correctly classifying 84 defective and 89 non-defective
tracks, with 37 misclassifications (21 FN, 16 FP). RF follows
closely (85/86 correct; 39 errors: 20 FN, 19 FP), showing
moderate, well-balanced performance. SVM attains 84 correct
defective and 83 correct non-defective predictions, with 43
errors (21 FN, 22 FP). KNN performs the weakest, correctly
identifying 69 defective and 95 non-defective tracks but
incurring 46 errors, driven largely by 36 false negatives. Using
SMOTE, we obtained a class distribution that is approximately
even across categories [35]. Overall, ANN emerged as the
most reliable models for rail defect detection.

The ANN achieved the best performance due to its natural
ability to exploit the complexity of feature representations
produced through embedding. The embeddings generated in
the Organize stage are nonlinear and high-dimensional,
enabling models with greater representational capacity to form
more flexible decision boundaries compared to other
algorithms. This explains why RF, SVM, and KNN lagged
behind: while RF provides stability, SVM offers margin-based
robustness, and KNN delivers local simplicity, none of these
possess the layered learning mechanism required to capture
subtle patterns and complex nonlinear interactions within the
embeddings [44].

Although overfitting is a potential concern for ANN, this
issue was mitigated through model regularization strategies,
including cross-validation and careful monitoring of
performance. The outcomes across Accuracy, F1, MCC, and
AUC indicate that the model did not merely “memorize” the
training data but truly generalized. We also observed that
ANN maintained stability under small input perturbations,
reflecting robustness and an indication of generalization,
consistent with the findings of Novak et al. [45], who
demonstrated that the model can generalize effectively.

The sample prediction results (Table 4) provide a detailed
comparison of how different machine learning models classify
rail track images as either defective or non-defective.
Observing the classification trends, the Neural Network and
SVM models show higher consistency in labeling the images
correctly, aligning with their previously reported higher
accuracy, F1-score, and MCC values. The Neural Network, in
particular, consistently outperforms others by correctly
classifying more images as non-defective or defective without
frequent misclassification.

Conversely, the KNN model appears to be the least reliable,
as it often disagrees with the more accurate models, frequently
misclassifying defective tracks as non-defective. This reflects
its lower recall and precision scores, making it less suitable for
defect detection. The RF model performs moderately well but
still exhibits occasional misclassifications. These results
reinforce the conclusion that neural network models are the
best choices for rail defect detection due to their superior
classification accuracy, reducing the risk of safety hazards
caused by undetected rail defects.

Figure 10 displays a set of randomly selected, unlabeled test
images used for classification by the models, serving as a basis
to evaluate prediction accuracy. Accurate railway track defect
detection is vital for safety and structural integrity. Early
identification allows timely maintenance, reducing derailment



risks and operational costs. Machine learning models like RF, more effective maintenance, contributing to a more reliable
SVM, ANN, and KNN enhance detection precision and and efficient rail network.
efficiency. Their implementation supports safer railways and
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Table 3. Confusion matrices of four models

Predicted (RF) Predicted (KNN)
bad good 3 bad good >
bad 85 20 105 bad 69 36 105
Actual (RF) good 19 86 105 Actual (KNN) good 10 95 105
Py 104 106 210 ) 79 131 210
Predicted (ANN) Predicted (SVM)
bad good z bad good z
bad 84 21 105 bad 84 21 105
Actual (ANN) good 16 89 105 Actual (SVM) good 22 83 105
2 100 110 210 ) 106 104 210

Table 4. Prediction result with implementing each model

RF (1) KNN (1) SVM (1) Neural Network (1) Image Name Image Size Width Height
bad bad bad bad rail_63_top rail_63_top... 112755 160 427
good good bad bad rail_50_down rail_50_dow... 122348 160 428
bad good bad bad rail_60_mid rail_60_mid... 126045 160 427
good good good good rail_65_down rail_65_dow... 113633 160 428
good good good good rail_64_down rail_64_dow... 120172 160 428
bad bad bad bad rail_56_mid rail_56_mid... 94058 160 427
bad bad bad bad rail_55_top rail_55_top... 109177 160 427
bad bad bad bad rail_57_mid rail_57_mid... 135654 160 427
good good good good rail_62_top rail_62_top... 117386 160 427
good good good good rail 61 mid rail 61 mid... 126217 160 427
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Figure 10. Sample image test data

Table 5. Performance metrics of four models

Model AUC CA F1-score Precision Recall MCC

Random Forest 0.895 0.814 0.814 0.814 0.814 0.629
Artificial Neural Network 0.903 0.824 0.824 0.825 0.824 0.648
K-Nearest Neighbor 0.869 0.781 0.778 0.799 0.781 0.580
Support Vector Machine 0.856 0.795 0.795 0.795 0.795 0.591

Model performance

To assess the effectiveness in classifying railway track
conditions, four machine learning models (ANN, SVM, RF,
and KNN) were compared. This evaluation used key metrics
like Area Under the Curve (AUC) (distinguishing ability),
Classification Accuracy (CA) (overall accuracy), Fl-score
(balancing precision and recall), Precision, Recall, and
Matthews Correlation Coefficient (MCC).

As shown in Table 5, the ANN attains the strongest results,
with AUC 0.903, CA 0.824, F1-score 0.824, Precision 0.825,
Recall 0.824, and MCC 0.648, indicating robust
discrimination and a balanced precision-recall trade-off. The
RF follows closely, achieving AUC 0.895, CA 0.814, F1-score
0.814, Precision 0.814, Recall 0.814, and MCC 0.629,
reflecting stable and well-balanced predictions. SVM records
AUC 0.856, CA 0.795, Fl-score 0.795, Precision 0.795,
Recall 0.795, and MCC 0.591, showing competent
discrimination while trailing ANN and RF. KNN model yields
the weakest scores, with AUC 0.869, CA 0.781, F1-score

0.778, Precision 0.799, Recall 0.781, and MCC 0.580,
suggesting higher sensitivity to local noise and class overlap
in this context. Taken together, the results point to ANN as the
most effective and balanced classifier for this task, with RF a
close second. SVM delivers solid but lower scores, while KNN
is least suited here. If prioritizing missed defects, consider
threshold tuning or recall-oriented settings for the selected
model.

3.4 Infuse

3.4.1 Focus group discussion

Recommended ERP dashboard features

Experts agreed that the dashboard should prioritize clarity
and quick decision-making [46]. Since the classification is
binary (defective/non-defective), the interface can remain
simple yet informative. Recommended features are included
in Table 6.

Table 6. Recommended ERP dashboard elements

Dashboard Element Description

Purpose

Track Map Visualization
Track Segment List

Condition Statistics

Defective Status
Notifications

Condition Change Log

Railway line displayed with segments marked green (non-
defective) or red (defective) areas

Tabular view of segment IDs and their status

Pie chart or bar graph showing percentage of non-defective vs
defective segments

Real-time alert when a segment is detected as defective

Historical view of changes in segment status

Enables quick identification of damaged

For data logging, inspection reference, and
filtering
Provides an overview of overall
infrastructure health
Facilitates immediate response from

maintenance teams

Useful for trend analysis and planning re-

inspections
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Table 7. Required ERP integration components

ERP Module Integration Function Explanation
Maintenance . . . L .

Auto-generates work orders for defective segments Ensures immediate action is assigned and tracked
Management

Asset Management

Scheduling segments

Notification System

Reporting

Stores segment status and metadata

Allocates inspection or repair tasks based on defective

Sends alerts to relevant personnel

Periodic export of condition summaries and work logs

Treats each track segment as an asset with condition
history

Helps prioritize and organize fieldwork

Reduces delay in information flow
Supports documentation, audit, and performance
tracking

Required ERP integration components

The discussion emphasized smooth and automated
integration between UAVs-ML outputs and ERP modules,
ensuring that detected defective segments trigger relevant
business processes without manual intervention [47]. The key
ERP modules and their roles are shown in Table 7.

The discussion concluded that a minimalist yet actionable
dashboard is suitable for this project, as the system only
classifies track segments into non-defective or defective
conditions. Key emphasis was placed on real-time visual
feedback (via map and segment list), automatic ERP-triggered
responses (such as maintenance work orders), and alert
mechanisms to ensure operational agility [47]. The required
integration aligns with the Analyze and Infuse stages of the Al
Ladder Model, where simple Al outputs are effectively
embedded into core business processes to improve decision-
making and responsiveness [48]. The simplicity of the
classification model is not a limitation; rather, it supports
faster deployment and higher user acceptance in field
operations.

Business process re-engineering flow

The following section presents the reengineering of the
railway track maintenance process, transitioning from a
conventional manual approach to a data-driven, Al-integrated
workflow.

3.4.2 As-Is process (Before Al and ERP integration)

Before digital transformation, railway track inspection and
maintenance relied heavily on manual visual checks and
periodic patrols. This process posed several limitations in
speed, accuracy, consistency, and safety.

The manual workflow often resulted in delayed detection of
track issues, inefficient use of maintenance resources, and
safety. This reactive model (Table 8) lacked the agility and
intelligence needed for modern railway infrastructure
management [49].

To-be process (After Al, UAVs and ERP integration)

After reengineering, the system integrates UAVs for
automated data collection, machine learning for defect
detection, and ERP for seamless action execution (Table 9).

In this proposed model, each component plays a strategic
role, UAVs offer wide and efficient scanning, ML ensures fast
and consistent classification of track conditions, and ERP
handles operational execution from asset status updates to

automated work orders. This end-to-end pipeline enables
predictive and intelligent maintenance. It significantly
enhances predictive maintenance by enabling real-time asset
monitoring and automated decision-making [47].

Table 8. As-Is process

Step Description
1 Manual field inspections are conducted periodically.
) Engineers identify track issues visually and record them
manually.
Maintenance teams rely on reports or technician feedback
3
to schedule tasks.
4 Limited coordination between inspection, scheduling, and
asset records.
Table 9. To-Be process
Step Description
1 UAVs capture high-resolution images of railway tracks.
ML models classify segments as non-defective or
2 . .
defective from image datasets.
3 Results are sent to ERP through middleware.
4 ERP updates asset condition, triggers work orders
automatically.
5 Maintenance is scheduled and teams are notified
instantly.
6 Dashboard visualizes current status, and logs are updated

in real time.

3.4.3 ERP system blueprint

This section defines the system blueprint, which outlines
how data captured from UAVs inspections is processed and
utilized within the ERP ecosystem to enable predictive
maintenance.

Input pipeline

The input pipeline begins with UAVs capturing aerial
images of the track, which are then analyzed by machine
learning models and converted into structured data inputs
(Table 10). It supports efficient transformation of unstructured
visual data into actionable insights for railway maintenance
[20].

This pipeline ensures that only processed, meaningful data
enters the ERP system. The use of an integration layer
standardizes the format, enabling consistent updates of track
segment conditions and activation of business logic.

Table 10. Input pipeline

Processing

Source Type
UAVs System Image Dataset (.jpg, .png, .tiff)
ML Output Structured JSON
Integration API / Middleware

ML classifies condition per segment (non-defective / defective)

Image
Sends data to ERP and links with asset IDs




Table 11. ERP module used

Module Function

Purpose

Asset Management
Condition Monitoring
Maintenance Management

Stores railway segment metadata
Receives ML classification
Generates work orders

Tracks segment ID, GPS, length, condition
Updates asset condition status automatically
Automates WO creation for defective segments

Scheduling Assigns maintenance tasks Technician calendars, job queues
Notification System Alerts team members Sends ERP/email alerts on new defective status
Reporting Tracks KPIs and logs Provides maintenance history, SLA performance
Table 12. Dashboard elements
Component Description Visual Type
Track Map Viewer Map with green/red segment status Interactive Map
Segment Table List of segment metadata & status Table with filters
Condition Stats Non-defective vs defective summary Pie/bar charts

Alerts Panel

Real-time issue notifications

Notification cards/logs

History Log Condition change tracking Timeline per segment
Table 13. Dashboard elements of UAT
No. Component Test Case Expected Result Status
1 Map Viewer Load segment condition map Segments shown in green (non-defective) or red (non-defective) Passed
2 Segment Table List track segments & statuses Correct data, sortable & filterable Passed
3 Stats Summary Display condition ratio Accurate chart from ML inputs Passed
4 Alerts Panel Trigger new defective status alert ERP and email notifications received Passed
5 History Log Track segment status updates Logs show correct timestamps and actions Passed
Table 14. ERP module used for UAT
No. Module Test Case Expected Result Status
1 Asset Management Register/update asset condition Status reflects latest ML classification Passed
2 Maintenance Trigger work order on defective status WO is created and linked to asset Passed
3 Scheduling Assign jobs to crew Task appears in technician dashboard Passed
4 Notification Alert for defective segments Email/ERP alert reaches correct personnel Passed
5 Reporting Export condition log PDF/Excel report includes timestamped updates Passed

ERP module used

The ERP system comprises several interconnected modules,
each with a specific function in the maintenance cycle as
shown in Table 11.

Together, these modules allow for automated and intelligent
workflows. For example, a "Bad" classification triggers a new
maintenance request, which is then scheduled, tracked, and
reported, all within the ERP environment. This closed-loop
system enhances operational efficiency and accountability
[12].

Dashboard elements

The dashboard is the visual layer of the system, enabling
users to monitor track conditions, review alerts, and access
historical records.

By combining geospatial visualization (map viewer), data
analytics (charts and stats), and operational logs, the
dashboard empowers decision-makers with real-time insights.
This helps prioritize responses and streamline coordination
across departments [50].

3.4.4 UAT matrix

UAT was conducted to evaluate whether the developed
system functions according to its intended design and meets
user requirements.

3.4.5 Dashboard element

Table 12 lists each core component of the dashboard and
summarizes its test results as shown in Table 13. All dashboard
elements performed as expected during UAT. Users were able
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to interact with the map, access filtered tables, receive
condition alerts, and trace updates.

This confirmed that the dashboard is both user-friendly and
functionally reliable. It significantly enhanced usability and
reliability in operational contexts [51].

ERP modules

Each ERP module was tested individually to ensure proper
response to Al input and seamless integration across
workflows.

The system successfully automated key actions such as
condition updates and work order creation. Notifications and
reports were generated accurately, confirming that the ERP
system can reliably manage predictive maintenance
workflows triggered by ML-based track assessments.
Accurate generation of notifications and reports confirms that
ERP systems integrated with machine learning assessments
can effectively support and automate predictive maintenance
workflows [52] as shown in Table 14.

4. CONCLUSION

Ensuring the reliability of railway infrastructure demands
not only accurate detection but also a seamless bridge from
perception to action a gap that many vision-only studies leave
unaddressed. This work operationalizes the Al Ladder end-to-
end Collect, Organize, Analyze, infuse by deploying UAVs for
systematic image capture; standardizing imagery; producing
binary-masked ground truth; and embedding samples into



fixed-length feature vectors for learning. Across four
classifiers (ANN, SVM, RF, KNN) and metrics suited to class
imbalance (AUC, accuracy, Fl-score, MCC), ANN emerges
as the strongest performer (AUC = 0.935; accuracy = 0.884;
Fl-score = 0.884; MCC = 0.768). Crucially, we translate
model outputs into execution via ERP integration that provides
real-time defect flags, dashboard visualization, automated
work orders, automated scheduling, and notifications, while
maintaining auditable condition histories. By embedding
classification directly within maintenance workflows,
operators can shift from periodic, manual inspections to
continuous, predictive maintenance at scale. Beyond technical
accuracy, the implemented ML-ERP pipeline delivers a
practical path from aerial sensing to actionable decision-
making and aligns with SDG 9, offering a replicable blueprint
for intelligent, accountable railway asset management.

We note several scope qualifications. The evaluation was
conducted on a subset of corridors and operating
configurations; variation across seasons and weather, camera
viewpoints, and track characteristics has not been exhaustively
assessed. The ERP integration was demonstrated in a limited
pilot, so evidence of full-scale operational performance
remains pending. In addition, probability calibration and
corridor-specific operating thresholds have not yet been
finalised, and a comprehensive end-to-end cost—benefit
assessment with systematic stress testing under adverse field
conditions (e.g., glare, precipitation, vegetation occlusion) is
outstanding.

The concrete directions are outlined as follows:

(i) probability calibration and cost-aware thresholding
tailored per corridor;

(i1) multi-corridor, multi-season field trials with operational
metrics (e.g., MTTR, actionable-alarm rate);

(iii)) MLOps for drift monitoring, alerting, A/B testing, and
scheduled retraining;

(iv) edge deployment with model compression to meet
latency constraints;

(V) uncertainty estimation to prioritise human review;

(vi) human-in-the-loop and active learning within the ERP;

(vii) exploration of modern detection/segmentation
architectures alongside self-supervised pretraining for
improved robustness;

(viii) multi-sensor  fusion (UAV imagery with
GNSS/IMU/LiDAR) and geospatial hotspot mapping;

(ix) standardisation of defect taxonomy and severity levels
with external benchmarking;

(x) quantitative economic analysis to substantiate safety and
maintenance value at scale.
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