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Railway safety relies on the early detection of track defects that can lead to derailments 

and service disruptions. Traditional inspections are labor-intensive and error-prone, 

whereas many vision-based studies only focus on detection and fail to link predictions 

to maintenance execution. This study addresses this perception-to-action gap. In the 

Collect phase, unmanned aerial vehicles (UAVs) acquire high‑resolution images of 

track segments. In the Organize phase, images are standardized, binary‑masked to 

generate ground truth, and embedded into fixed‑length feature vectors. In the Analyze 

phase, four classifiers including Artificial Neural Networks (ANNs), Support Vector 

Machines (SVMs), Random Forest (RF), and K-Nearest Neighbors (KNNs) are 

compared using Area Under the Curve (AUC), accuracy, F1‑score, and Matthews 

Correlation Coefficient (MCC). In the Infuse phase, the optimal model is integrated into 

an enterprise resource planning (ERP) maintenance module to support real‑time defect 

flagging, automated work orders, and dashboard visualization. ANN model achieves 

the highest performance (AUC = 0.935; accuracy = 0.884; F1‑score = 0.884; MCC = 

0.768). The AI Ladder-guided machine-learning (ML)-ERP pipeline demonstrates a 

practical pathway from aerial sensing to actionable maintenance, aligning with 

Sustainable Development Goals (SDGs) 9. By directly embedding classification into 

ERP workflows, operators can transition from periodic, manual inspections to 

continuous, predictive maintenance, featuring automated scheduling, notifications, and 

auditable condition histories.  
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1. INTRODUCTION

The railway industry is a vital component of Indonesia’s 

transportation infrastructure, particularly on Java and Sumatra, 

Investments in both super-and sub-structures, including 

ballast, slab track, and subgrade, are essential to maintaining 

operational reliability and long-term capacity of the national 

rail system [1]. Recent developments, such as the inauguration 

of Southeast Asia’s first high-speed railway connecting 

Jakarta and Bandung, underscore Indonesia’s commitment for 

the adoption of advanced engineering standards for track 

construction and system performance [2, 3]. Despite these 

advancements, safety remains a pressing concern. Historical 

incidents, highlight persistent vulnerabilities in Indonesia’s 

railway operations. A total of 143 train accidents occurred in 

Indonesia between 2015 and 2021, causing 132 fatalities and 

nearly 300 injuries [4], highlighting the continuing instability 

of railway safety performance. Earlier, around 2004 to 2010, 

over 700 railway accidents were reported, mostly involving 

derailments and vehicle collisions. Although train-to-train 

crashes made up only about 5% of the total, road-related 

collisions accounted for nearly 20%, resulting in more than 

360 deaths and 1,200 injuries [5]. It reflects long-standing 

structural and operational safety deficiencies in the national 

rail system. 

Similar incidents have also occurred globally, further 

underscoring the universal nature of railway safety challenges. 

Studies have shown that fatalities and injuries among track 

maintenance workers often occur under high-risk working 

conditions (especially at night) and can be exacerbated by 

communication failures and insufficient safety coordination 

[6]. In South Korea, 240 human errors were found on Korean 

Railway system [7]. In the United Kingdom, Network Rail was 

fined £3.75 million after two maintenance workers were 

fatally struck by a train in Margam, Wales; the investigation 

revealed systemic safety failures and led to significant 

operational reforms [8]. 

Railway defects are a critical issue in transportation safety 

[9], as they can lead to derailments, service disruptions, and 

costly repairs [10]. Traditional inspection methods are often 
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inefficient and prone to human error [11]. In the modern 

context, human safety and industrial efficiency are global 

concerns, as emphasized in the Sustainable Development 

Goals (SDGs). In particular, SDG 9 (Industry, Innovation and 

Infrastructure) underlines the importance of resilient 

infrastructure and technological innovation. In the railway 

sector, this translates into maintaining advanced, safe, and 

sustainable transportation systems.  

Recent studies have explored visual inspection methods for 

railway defect detection using image processing and computer 

vision. Zhuang et al. [12] developed an automated visual 

inspection system using a cascading classifier ensemble 

trained with LogitBoost to identify cracks and deformations. 

Infrared thermography (IRT) has also been applied to detect 

hidden cracks, although it requires specialized equipment and 

is sensitive to environmental conditions [13]. Classical 

techniques such as canny edge detection and the Hough 

transform face challenges in recognizing complex or novel 

defect types due to reliance on handcrafted features [14]. 

Collectively, these studies demonstrate promise but also reveal 

limitations in generalizability, real-time applicability, and 

integration with maintenance decision-making systems. 

To support intelligent and scalable infrastructure 

maintenance, this study adopts the AI Ladder Model 

comprising four stages: Collect, Organize, Analyze, and 

Infuse as a guiding framework for embedding AI into 

operational workflows [15]. In this framework, unmanned 

aerial vehicles (UAVs) provide real-time data acquisition 

(Collect); feature extraction, annotation, and preprocessing 

tools prepare and structure image data (Organize); machine-

learning (ML) algorithms enable pattern recognition and 

classification (Analyze); and outputs are translated into 

actionable maintenance strategies (Infuse). This structure 

ensures end-to-end alignment between data, analytics, and 

infrastructure decisions, while supporting SDG 9 through 

digital innovation. Building on this framework, we evaluate 

four ML algorithms: Artificial Neural Networks (ANNs), 

Support Vector Machines (SVMs), Random Forest (RF), and 

K-Nearest Neighbors (KNNs) for railway defect detection. RF 

is recognized for handling high-dimensional data and 

mitigating overfitting [16]; KNN is effective for similarity-

based classification [17]; ANN excels at learning nonlinear 

patterns and extracting complex features [18]; and SVM 

performs well with limited datasets and high-dimensional 

feature spaces [19]. We further incorporate a deep-learning-

based feature embedding to enhance performance and 

generalizability across diverse track conditions, with all 

classification outcomes expressed consistently in defective 

(bad) /non-defective (good) terms. 

Unlike most railway inspection studies that do not frame 

their approach within a systematic framework, this work 

explicitly employs the AI Ladder (Collect-Organize-Analyze-

Infuse) [15] as an end-to-end backbone: In the Collect phase, 

we use UAVs for scalable and high-frequency RGB image 

acquisition; The Organize phase arranges 

annotation/normalization and extracts deep feature 

embeddings with standardized outputs of good/bad across 

track conditions; The Analyze phase conducts a controlled 

comparison of four models (ANN, SVM, RF, KNN) based on 

AUC, accuracy, F1-score, and MCC, rather than merely 

reporting a single accuracy number [16, 19]; and the Infuse 

phase links predictions to enterprise resource planning (ERP) 

to trigger work orders, scheduling, and resource prioritization, 

components that are generally absent in the literature yet 

crucial to bridge the perception-to-action gap [20]. Thus, our 

uniqueness lies not only in UAVs, deep embeddings, and 

multi-model comparison, but especially in the use of the AI 

Ladder as an operational framework that ensures analytical 

findings culminate in measurable maintenance impact. 

The integration of predictive-maintenance outputs into ERP 

systems, particularly maintenance modules, is crucial for 

operational reliability and decision-making in infrastructure-

intensive sectors. Prior work shows that combining ML with 

SAP plant maintenance can improve maintenance scheduling 

and failure prediction [21], ERP-based modules reduce non-

value-added tasks and streamline workflows [22], and 

integrating Reliability-Centered Maintenance (RCM) with 

Computerized Maintenance Management Systems (CMMS) 

improves metrics such as Mean Time Between Failures 

(MTBF) and Mean Time to Repair (MTTR) [23]. A review 

further highlights that intelligent ERP optimization using ML 

improves failure forecasting and resource allocation for 

preventive and corrective actions [24].  

Despite the progress in perception, recent surveys note that 

most UAV studies stop at reporting detection accuracy without 

demonstrating how predictions trigger scheduled maintenance 

in enterprise systems. The absence of end-to-end pipelines that 

connect computer-vision outputs to asset-management 

workflows (ERP) remains a key barrier to operational 

adoption [20]. While prior studies demonstrate effective visual 

inspection techniques and promising ML-based approaches 

[12], three key gaps persist:  

(i) limited use of UAVs for scalable, high-frequency data 

collection directly tied to automated defective/non-defective 

classification;  

(ii) insufficient generalization across varied track conditions 

without deep feature embeddings;  

(iii) weak integration between defect-detection outputs and 

ERP maintenance modules for actionable scheduling and 

resource optimization [20-22]. 

This study proposes a comprehensive UAV-based 

predictive-maintenance framework that integrates UAV data 

acquisition, deep feature embedding, and comparative 

evaluation of ANN, SVM, RF, and KNN within the AI Ladder 

workflow, and infuses predictive insights into ERP 

maintenance modules. 

This work makes three key contributions that explicitly 

bridge the perception-to-action gap. First, it advances the 

theoretical/methodological frontier by introducing an end-to-

end, layered analytics pipeline that couples UAV-captured 

imagery with deep-learning-based feature embeddings and 

multiple ML classifiers, enabling robust defective (bad)/non-

defective (good) classification across diverse track conditions. 

Second, it delivers operational system integration by infusing 

classifier outputs into ERP maintenance modules, converting 

predictions into scheduled actions automated work orders, 

prioritization, and optimized resource allocation consistent 

with prior evidence on ERP-enabled reliability improvements 

[20, 22]. Third, it provides practical impact through a scalable, 

future-ready approach that increases inspection frequency and 

accuracy while reducing reliance on labor-intensive methods, 

thereby advancing SDG 9 objectives. Collectively, these 

contributions close the loop from UAV-based perception to 

enterprise maintenance execution.  
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2. METHODS AND MATERIALS 
 

2.1 AI Ladder framework 

 

The proposed framework, grounded in International 

Business Machines (IBM)’s AI Ladder methodology, provides 

a comprehensive and structured approach for implementing 

machine learning-based railway defect detection using UAVs 

imagery [25]. Each stage of the AI Ladder: Collect, Organize, 

Analyze, and Infuse [15], is carefully adapted to reflect the 

technical and operational realities of railway infrastructure 

monitoring, as presented below in Figure 1.

 

 
 

Figure 1. New scheme for UAV-based railway track on ERP maintenance module using machine learning within the AI Ladder 

Model framework 

 

In the Collect phase, data acquisition is performed at the 

edge using UAVs, enabling the capture of high-resolution 

imagery directly from the railway environment [26]. The 

captured images are then transmitted to the core infrastructure 

(data center), where the organize stage takes place. Here, data 

undergoes preprocessing activities including image 

embedding, cleaning, labeling, and cataloguing [27], ensuring 

that the dataset is structured, consistent, and ready for analysis. 

During the Analyze phase, the framework supports on-premise 

training of various machine learning models [28]. The training 

process is guided by a rigorous evaluation pipeline using 

performance metrics [29]. This enables objective model 

selection and ensures that the chosen model is well-suited to 

the characteristics of the dataset. While infuse phase focuses 

on real-world deployment, wherein the selected model is 

integrated into an ERP-based railway maintenance module. 

This integration supports real-time classification of track 

conditions and provides actionable insights directly to 

maintenance teams, enhancing operational efficiency and 

predictive maintenance capabilities. 

 

2.2 Phase 1: Collect 

 

Collect phase is the first rung of the AI Ladder. It is a 

foundational role for collecting and acquiring high-quality and 

relevant data. It is intended to build essential data management 

capabilities, ideally by simplifying data access and ensuring 

availability, regardless of its format or storage location [30]. 

Within this context, the proposed research introduces a railway 

inspection system that use UAVs to systematically capture 

real-time, high-resolution imagery of railway tracks. 

 

2.2.1 UAV acquired data-based model 

To address the growing demand for intelligent and 

automated infrastructure monitoring, particularly in the 

railway sector, this research propose a novel model of UAV 

acquired data-based. This model encourages recent 

advancements in Internet of Things (IoT) technology, and 

machine learning to enable advanced inspection of railway 

tracks [31]. The system integrates UAV, centralized data 

processing units, and predictive analytics tools to ensure early 

detection of defects and proactive maintenance decision-

making. Figure 2 illustrates the overall workflow of the UAV 

acquiring data mechanism, outlining the major components 

and the flow of data from image acquisition to visualization 

and analysis. 

 

2.2.2 UAV systematic coverage  

Systematic coverage aims to capture imagery of every 

sleeper, every fastener, and every meter of the rail surface 

within the target zone. Flight plan is conducted; it incorporates 

a specific percentage of forward overlap (70%) and side 

overlap (40%). This overlap ensures that the edges of one 

image are covered by the next, guaranteeing no gaps. This 

flight route is designed as a 'flying corridor' that precisely 

follows the alignment of the railway track, with a constant 

flying altitude of 15 meters above the rails. This parameter was 

chosen to obtain the optimal Ground Sampling Distance 

(GSD), thus, sharp images are provided with efficient area 

coverage. Moving at a steady speed of approximately 40 km/h, 

UAV's camera operates continuously. It systematically 

captures thousands of digital images, photographing every 

sleeper, every set of fasteners, and every inch of the rail 

surface. The gimbal system ensures the camera remains 

focused on the target despite light winds. This is a non-contact 

inspection process, conducted at the 'edge' or directly in the 

field environment. Once an area is covered, the UAV performs 

an initial data upload via a 4G/5G connection to the central 

data lake ('core').  
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Figure 2. UAV acquiring data mechanism 

 

2.2.3 Data transmission to core 

In this research, an IoT-enabled UAV is proposed to use 

wireless transmission, to efficiently send real-time images 

from the 'edge' to the 'core' infrastructure. For storage, this 

scenario locates the data in the operator's own data center for 

control and security. The research suggests using a data lake 

as the primary repository for raw images due to its ability to 

handle large volumes of unstructured data, and may be 

supported by additional databases to manage metadata, 

ensuring data can be accessed, organized, and analyzed 

efficiently. 

The data acquisition (the 'Collect' phase) is performed at the 

'edge', directly within the railway environment. These UAVs 

are envisioned to act as intelligent, mobile data acquisition 

points. The raw images captured that represents the real-time 

visual state of the tracks, are then transmitted from the UAVs 

to the 'core' infrastructure, typically a central database or data 

center (data lake).  

The proposed railway track inspection system uses a closed-

loop architecture with three main components: image 

capturing, data processing, and data visualization. IoT-enabled 

UAVs with high-resolution cameras capture real-time images 

of the tracks for automated, non-contact inspection.  

The study collected 201 total images of railway tracks using 

UAVs, consisting of 52% non-defective (good) and 48% Nb 

defective (bad) samples. These images are transmitted to a 

central database and processing system, where advanced 

image processing and machine learning models (KNN, SVM, 

RF, ANN) detect and classify defects. The most suitable model 

is selected based on data characteristics and accuracy needs. 

Finally, processed data is visualized to support timely 

interventions and long-term maintenance planning.  

 

2.3 Phase 2: Organize 

 

Organize phase is preparing and structuring raw inputs into 

a consistent and usable format for downstream analysis. It 

involves standardizing data workflows, ensuring quality and 

coherence, and enabling traceability across the machine 

learning pipeline. It emphasizes transforming raw inputs into 

a well-structured and accessible format suitable and trusted for 

further analysis [30]. In the context of this study, organize 

phase encompasses several key activities including image 

preprocessing, binary mask generation for ground truth 

labeling, feature embedding, and structured dataset formation.  

 

2.3.1 Image processing and labeling using binary masks 

The dataset has undergone a feature extraction and 

embedding process, converting rail track images into 

numerical representations. Initially, the dataset consisted of 

raw images categorized as either non-defective (good) or 

defective (bad) based on track conditions. After processing, 

each image was transformed into a structured numerical 

format, allowing machine learning models to interpret the 

images mathematically [32], with numerical patterns, 

computer can observe image distinctive characteristics in 

detail. 

Raw images must be standardized in terms of resolution and 

format. Each railway track image is resized to a fixed width of 

160 pixels, with the height varying (from 333 to 427 pixels) to 

preserve aspect ratio. Images are also saved in lossless formats 

such as PNG or BMP.  

Each image captured by the UAV is annotated using a 

corresponding binary mask, an image of the same dimensions 

consisting solely of black (0) and white (1) pixel values. White 

pixels indicate regions where visible rail defects such as 

cracks, deformations, or wear are present, while black pixels 

represent defect-free areas. They serve as the ground truth 

labels during model training [33], enabling the machine 

learning algorithms to learn the visual patterns associated with 

defective and non-defective track segments.  

 

2.3.2 Feature embedding and dataset quality validation 

Following the labeling process, each image undergoes 

feature embedding using a pre-trained deep learning model to 

numerical representations. This embedding process converts 

each image into a fixed-length feature vector comprising 

numerical attributes that capture relevant visual 

characteristics, such as texture, edges, and structural patterns. 

Importantly, to prevent data leakage, the embedding process is 

performed separately for the training and testing subsets after 

the dataset is split [34]. The dataset was stratified into 80% 
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training and 20% testing, ensuring class proportions are 

preserved. These features are then compiled into a structured 

dataset for model training and validation. Exploratory data 

analysis (EDA), including distance-based clustering and 

scatter plots, is conducted to assess class separability and 

validate dataset quality before feeding it into classification 

models.  

 

2.4 Phase 3: Analyze 

 

Analyze phase is a critical rung in AI Ladder and has a 

significant role on transforming raw data into actionable 

insights through advanced analytics and machine learning. It 

involves not only building predictive models but also 

understanding their performance and impact to support 

informed decision-making and continuous improvement [15]. 

Aligning with this framework, the study focuses on conducting 

a comparative evaluation of four prominent machine learning 

algorithms.  

 

2.4.1 Machine learning model for image-based railways  

To systematically evaluate machine learning models for 

railway track defect detection, a structured research 

framework was developed to guide the entire process from 

data acquisition to performance evaluation. This framework 

ensures a coherent pipeline that integrates image processing, 

feature extraction, exploratory data analysis, classification, 

and validation, providing a reproducible and scalable 

methodology for intelligent defect detection systems. It is 

illustrated in Figure 3.

 

 
 

Figure 3. Framework of machine learning model for image-based railways 
 

The process begins with the capture and collection of 

railway track images using UAVs, which are compiled into an 

image dataset representing both defective and non-defective 

rail segments. This dataset is then divided into training and 

testing sets. Image embedding is conducted to convert raw 

images into structured numerical representations. These 

numerical vectors serve as inputs for subsequent analysis. The 

embedded data is further processed through EDA using 

distance-based metrics and hierarchical clustering to assess the 

natural separability of the dataset and guide model selection 

and validation. If exploratory checks indicate class imbalance 

between non-defective and defective images (e.g., skewed 

class ratios or degraded minority-class recall), the Synthetic 

Minority Over-sampling Technique (SMOTE) will be applied 

only to the training partitions [35]. SMOTE generates 

synthetic minority samples by interpolating between nearest 

neighbors, creating plausible examples that enrich decision 

boundaries without simply duplicating data. If no imbalance is 

detected, SMOTE is skipped and the original class distribution 

is retained. 

The dataset is then split into training and validation sets, 

which are utilized to train and fine-tune four distinct machine 

learning classifiers: SVM, RF, ANN, and KNN. These models 

are systematically evaluated through various performance 

metrics to determine their effectiveness in classifying railway 

track defects. 

 

2.4.2 Comparative analysis of machine learning algorithms 

This section presents the four machine learning algorithms 

employed in this study: ANN, SVM, RF, KNN, used for 

classifying railway track conditions as either “non-defective” 

or “defective” based on image-derived feature embeddings. 

The SVM aims to construct an optimal hyperplane that 

separates two classes with the maximum possible margin. The 

fundamental prediction function of a linear SVM is expressed 

as: 

 

𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖〈𝑥, 𝑥𝑖〉

𝑛

𝑖=1

 (1) 
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where, α1, …, αn and β0 are parameters estimated based on the 

inner product between pairs of training data points. By 

replacing the inner product with a kernel function K(xi,xi), the 

model applies a kernel-based approach. A linear kernel 

defined as: 

 

𝐾(𝑥𝑖 , 𝑥𝑖
′) = ∑ 𝑥𝑖𝑗𝑥𝑖𝑗

′

𝑝

𝑗=1

 (2) 

 

While ANN utilizes a multi-layer feedforward architecture 

to learn non-linear mappings from inputs to outputs. For a 

network with 𝐿 layers, the forward propagation is defined as: 

 

𝑎(1) =  𝜎(𝑊(1)𝑥 + 𝑏(1)), 

𝑎(2) = 𝜎(𝑊(2)𝑎(1) + 𝑏(2)), . ., 

𝑦̂ = 𝜎(𝑊(𝐿)𝑎(𝐿−1) + 𝑏(1)) 

(3) 

 

where, 𝑊(𝑙) and 𝑏(𝑙) denote the weights and biases at layer 𝑙, 
𝜎 is a non-linear activation function (ReLU or sigmoid), and 

𝑦̂ ∈ [0,1]  represents the predicted probability of the track 

being defective (bad). The ANN model showed strong 

performance in this study due to its ability to model complex, 

non-linear relationships in high-dimensional image data.  

RF is an ensemble learning method that combines the 

outputs of multiple decision trees to improve classification 

robustness. The prediction function of RF is defined as: 

 

𝑦̂ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒{ℎ𝑡(𝑥)}𝑡=1
𝑇  (4) 

 

where, ℎ𝑡(𝑥) is the prediction from the t-th decision tree, and 

𝑇 is the total number of trees in the ensemble. Each tree is 

trained on a random subset of the training data and features 

(bagging), allowing the model to reduce variance and improve 

generalization. RF is particularly effective in noisy datasets, as 

it aggregates multiple decision boundaries. 

KNNs is a non-parametric, instance-based learning 

algorithm that classifies input samples based on their 

proximity to training examples. The distance between a test 

point x and a training point xi is typically calculated using 

Euclidean distance: 

 

𝑑(𝑥, 𝑥𝑖) = √ ∑ (𝑥𝑗 − 𝑥𝑖𝑗)2

2047

𝑗=1

 (5) 

 

The predicted label 𝑦̂ is determined by the majority class 

among the 𝑘 nearest neighbors: 

 

𝑦̂ = 𝑚𝑜𝑑𝑒{𝑥𝑖𝜖𝑁𝑘(𝑥)} (6) 

 

where, 𝑁𝑘(𝑥)  represents the set of the 𝑘  nearest training 

instance to 𝑥 . While KNN is simple and intuitive, its 

effectiveness diminishes in high-dimensional spaces and when 

the data is not well-separated. 

 

2.5 Phase 4: Infuse 

 

This diagram illustrates the development of an ERP 

maintenance module that integrates AI into business 

processes. The approach follows the Infuse phase of the IBM 

AI Ladder, which focuses on embedding AI into workflows to 

enable smarter operations and enhanced decision-making. 

Infusing AI into the core ERP workflows drives more systemic 

with learning capabilities, enabling them to transform data into 

predictive insights and smarter decisions [36]. 

 

2.5.1 Business process re-engineering 

The process starts with business process re-engineering 

activities, including the preparation phase, analysis of the 

current state (As-Is), and the design of the desired future state 

(To-Be). These steps are crucial to ensure that existing 

processes are clearly mapped and improved before introducing 

AI. 

A Focus Group Discussion (FGD) is used to gather expert 

input on the current maintenance system. This input informs 

the design of a new maintenance process that is integrated with 

ERP as we can see in Figure 4. 

In practical terms, integration between the ML model and 

the ERP was exercised through a lightweight REST adaptor. 

The adaptor receives JSON outputs from the inference service 

and forwards them to the ERP using its standard remote-

procedure API (JSON-RPC depending on version). This 

pattern ensures the ML pipeline remains vendor-neutral and 

portable, with the adaptor encapsulating system-specific 

details. The prototype was validated in a pilot (non-

production) ERP environment through user-acceptance tests, 

rather than in a full live system. To prevent model 

obsolescence, the classifier is periodically retrained when 

sufficient new labeled imagery becomes available, keeping 

predictions calibrated over time. The focus of this study is 

therefore not on ERP software, but on the integration pattern 

itself within the AI Ladder’s Infuse phase, embedding AI 

predictions into maintenance workflows for automated work 

orders, scheduling, and dashboard visualization.  

ERP V15 is deployed on a Droplet Server running Ubuntu 

20 LTS. The configuration is defined through a blueprinting 

process, followed by User Acceptance Testing (UAT) to 

validate system readiness. AI is infused into the maintenance 

process by embedding intelligent decision support within ERP 

functionalities. Development and customization are carried 

out using ERP V15 Studio, resulting in a fully integrated and 

AI-enhanced ERP maintenance module ready for live 

deployment. 

 

 
 

Figure 4. Business process re-engineering scheme 
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Table 1. Experts involved in FGD 

 

No. Company Nature Job Nature 
Experience 

(in years) 

1 

Railway 

Infrastructure 

Contractor 

Senior Track 

Engineer 
10 

2 
National Railway 

Operator 

Maintenance 

Planning Specialist 
8 

3 
ERP Consulting 

Firm 

Lead ERP Functional 

Consultant 
12 

4 

UAV and Sensor 

Integration 

Company 

UAV Systems 

Engineer 
6 

5 

Software 

Development 

Firm 

ERP Module 

Developer 
7 

6 
University / 

Research Institute 

AI and Predictive 

Analytics Researcher 
5 

 

To ensure that the development of ERP features aligns with 

user needs and strategic priorities, the FGD method was 

subsequently applied. The following table presents the experts 

involved in the FGD process for determining the priority of 

ERP features and modules. 

In the preparation engineering phase of an ERP project, the 

FGD method can be effectively applied to support complex 

decision-making involving multiple stakeholders, as shown in 

Table 1. One of its applications is in determining which ERP 

features and modules should be prioritized. By involving a 

panel of experts from various related departments, the 

company can gather in-depth opinions on the most critical and 

relevant features for the business needs. This approach aligns 

with findings from a study by Ifinedo and Nahar [37], which 

emphasizes the importance of incorporating diverse 

stakeholder perspectives to effectively prioritize ERP system 

features and ensure successful implementation. 

 

 

3. RESULT 
 

This part will demonstrate the outcomes obtained from each 

stage of the AI Ladder, which includes collect, organize, 

analyze, and infuse data. These stages serve as the 

foundational framework for implementing AI within the 

company. By thoroughly examining each phase, the study 

aims to provide a clear understanding of how data is 

transformed into actionable insights and integrated into 

business processes, ultimately driving more informed 

decision-making and enhancing organizational performance. 

 

 
 

Figure 5. Image data and its binary mask (0 (black), 1 

(white)) as ground truth labels 

 

3.1 Collect 

 

3.1.1 Dataset collected from UAVs 

The dataset utilized in this study comprises rail track images 

captured by the UAVs. The images in the dataset exhibit 

various forms of defects, such as cracks, deformations, and 

surface wear, which could compromise the operational 

integrity of railway infrastructure. 

Each image captured by the UAV is annotated using a 

corresponding binary mask, an image of the same dimensions 

consisting solely of black (0) and white (1) pixel values 

(Figure 5). White pixels indicate regions where visible rail 

defects such as cracks, deformations, or wear are present, 

while black pixels represent defect-free areas. They serve as 

the ground truth labels during model training [33], enabling 

the machine learning algorithms to learn the visual patterns 

associated with defective and non-defective track segments. 

 

3.2 Organize 

 

3.2.1 Feature embedding and extraction 

After transferring data to the core, all data is processed and 

embedded to adjust with the model easily, it is the next step of 

AI Ladder: organize. The size column represents the file size 

of each image in bytes. Larger file sizes generally indicate 

more detailed images [32], which could result from higher 

resolution or more complex visual content. Meanwhile, the 

width and height columns specify the image dimensions in 

pixels. In this dataset, the width is consistently 160 pixels, 

while the height varies across images, ranging from 333 to 427 

pixels. It means that the images may have different aspect 

ratios, possibly due to variations in how they were captured or 

processed, as shown in Table 2. 

Table 2. Images after embedded and converted into numerical values 

 
Category Image name Image Size Width Height n0 n1 n2 n3 n4 

bad rail_63_top bad/rail_63_ 112755 160 427 0.025431 0.040893 0 0.247499 0.655503 

bad rail_9_top bad/rail_9_t... 89094 160 333 0.050763 0 0.000776 0.062975 0.316339 

bad rail_26_down bad/rail_26_ 107820 160 420 0.249109 0.004444 0 0.108371 0.238146 

bad rail_50_down bad/rail_50_ 122348 160 428 0.107908 0.008462 0.002033 0.583412 0.499811 

bad rail_3_down bad/rail_3_d... 87257 160 334 0.218566 0 0.01038 0.027712 0.32916 

bad rail_2_down bad/rail_2_d... 89057 160 334 0.131713 0.000146 0.001676 0.050996 0.485504 

bad rail_60_mid bad/rail_60_ 126045 160 427 0.112627 0.367399 0 0.406943 0.556458 

bad rail_12_mid bad/rail_12_ 88780 160 333 0.191149 0 0.021315 0.181009 0.336767 

bad rail_19_down bad/rail_19_ 120354 160 420 0.438061 0.00319 0.004395 0.236694 0.598159 

bad rail_18_top bad/rail_18_t... 113431 160 420 0.279714 0.000176 0.008263 0.268504 0.41349 

bad rail_34_mid bad/rail_34_ 121197 160 420 0.280254 0 0 0.145305 0.132375 

bad rail_24_mid bad/rail_24_ 115051 160 420 0.212019 0 0.027149 0.280935 0.124773 
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Figure 6. Distance and clustering of data through heatmap and scatter plot 

 

 
 

Figure 7. The dendrogram of hierarchical clustering 

 

While the numerical columns labeled n0, n1, n2, n3, n4, and 

extending up to n2047, correspond to extracted feature values 

obtained through an image embedding process. These values 

are derived using a feature extraction technique, likely based 

on a deep learning model, where pre-trained data converted 

high-dimensional image data into lower-dimensional vectors 

[38]. These vectors capture essential features of the images, 

such as texture, shape, and patterns, while discarding 

unnecessary information. Each floating-point number encodes 

specific visual characteristics of the image, such as texture, 

structural patterns, or edges. 

 

3.2.2 EDA 

Before classification, this research uses distance metrics, 

scatter plots, and hierarchical clustering (Figure 6) to verify 

data suitability, cleanliness, and the distribution of "non-

defective" and "defective" railway track features. 

The analysis, particularly the distance matrix and 

dendrogram in Figure 6, reveals distinct clusters and well-

defined separability. This confirms that the chosen features 

effectively differentiate between track conditions, validating 

the dataset's readiness and providing guidance for supervised 

learning models [39]. 

A hierarchical clustering heatmap (Figure 6), ranging from 

blue (high similarity) to yellow (high variability), alongside 

dendrograms, reveals strong intra-cluster similarity and 

distinct groupings within rail track image data. This indicates 

that the images naturally cluster, suggesting good potential for 

separating non-defective and defective tracks using 

unsupervised methods. This visualization helps in evaluating 

how well the data points cluster together [40]. 

Furthermore, a scatter plot clearly distinguishes non-

defective (red) and defective (blue) classes, demonstrating 

high separability in the feature space. This strong visual 

distinction reinforces the idea that classification models 

should perform well on this dataset. 

Normalization using Euclidean distance is crucial [40]. It 

standardizes feature scales, preventing larger-magnitude 
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features from skewing similarity calculations and ensuring that 

distance-based models operate effectively and without bias. 

This preprocessing step helps maintain meaningful 

relationships and supports accurate clustering and 

classification [41]. 

Visual analysis, employing both a hierarchical clustering 

heatmap and a scatter plot (Figure 7), strongly supports the 

feasibility of classifying rail track images. The heatmap (blue 

= similar, yellow = different) and its accompanying 

dendrograms reveal significant intra-cluster similarity, 

identifying two primary groups: C1 (largely "non-defective" 

tracks) and C2 (mainly "defective" tracks), while also 

highlighting potential transitional states through its 

hierarchical structure. This clear separability, further 

emphasized by distinct red ("non-defective") and blue 

("defective") groups in the scatter plot, is achieved through 

crucial Euclidean distance normalization, which ensures 

unbiased feature representation. These findings confirm that 

extracted features effectively differentiate track conditions and 

provide practical guidance for classification: they help 

determine the appropriate number of classes, inform 

hyperparameter tuning, aid in selecting balanced training data, 

and suggest that different defect types may require distinct 

handling approaches. 

 
3.3 Analyze 

 
3.3.1 Model evaluation 

Model evaluation is part of Analyze phase in AI Ladder, 

where machine learning models are applied to interpret and 

extract meaningful insights from collected and organized data, 

using performance metrics and visualizations to facilitate 

understanding and guide decision-making. 

Precision-recall curve 

Precision–recall curves for RF, ANNs, KNNs, and SVMs 

demonstrate strong classification performance for the “non-

defective (good)” class (left panel), it can be seen in Figure 8. 

All models maintain high precision across a wide range of 

recall, indicating accurate identification of non-defective 

tracks with minimal false positives. The curves’ proximity to 

the top-right region reflects robust predictive power and a 

favorable precision-recall trade-off for this class [42]. 

In contrast, the precision-recall curves for the defective 

class reveal markedly weaker performance. Across most recall 

levels, precision is low, implying a higher rate of false 

positives when predicting defective tracks. The curves’ 

closeness to the baseline suggests the classifiers struggle to 

effectively separate defective instances [43]. This highlights a 

clear disparity: models excel on the non-defective class but 

face substantial challenges on the defective class. 

ROC curve diagram 

For the ROC curves, the non-defective class (left) shows 

stronger separability than the defective class (right). ANN 

(orange) and SVM (pink) trace the closest trajectories to the 

top-left corner, achieving higher True Positive Rates (TPR) at 

lower False Positive Rates (FPR). RF attains mid-tier 

performance, while KNN consistently yields the weakest 

curves as shown in Figure 9. 

KNN shows the weakest performance, struggling to 

differentiate classes. While models handle non-defective 

tracks well, their sensitivity drops when predicting the 

defective class, increasing the risk of false negatives (missed 

defects), particularly for RF and KNN. 

The confusion matrices provide a detailed breakdown of the 

classification performance of each model by illustrating the 

distribution of true positives, true negatives, false positives, 

and false negatives [43]. 

The confusion matrices in Table 3 provide a detailed 

comparison of the four classifiers in identifying rail tracks as 

defective or non-defective. ANN achieves the most balanced 

results, correctly classifying 84 defective and 89 non-defective 

tracks, with 37 misclassifications (21 FN, 16 FP). RF follows 

closely (85/86 correct; 39 errors: 20 FN, 19 FP), showing 

moderate, well-balanced performance. SVM attains 84 correct 

defective and 83 correct non-defective predictions, with 43 

errors (21 FN, 22 FP). KNN performs the weakest, correctly 

identifying 69 defective and 95 non-defective tracks but 

incurring 46 errors, driven largely by 36 false negatives. Using 

SMOTE, we obtained a class distribution that is approximately 

even across categories [35]. Overall, ANN emerged as the 

most reliable models for rail defect detection.  

The ANN achieved the best performance due to its natural 

ability to exploit the complexity of feature representations 

produced through embedding. The embeddings generated in 

the Organize stage are nonlinear and high-dimensional, 

enabling models with greater representational capacity to form 

more flexible decision boundaries compared to other 

algorithms. This explains why RF, SVM, and KNN lagged 

behind: while RF provides stability, SVM offers margin-based 

robustness, and KNN delivers local simplicity, none of these 

possess the layered learning mechanism required to capture 

subtle patterns and complex nonlinear interactions within the 

embeddings [44]. 

Although overfitting is a potential concern for ANN, this 

issue was mitigated through model regularization strategies, 

including cross-validation and careful monitoring of 

performance. The outcomes across Accuracy, F1, MCC, and 

AUC indicate that the model did not merely “memorize” the 

training data but truly generalized. We also observed that 

ANN maintained stability under small input perturbations, 

reflecting robustness and an indication of generalization, 

consistent with the findings of Novak et al. [45], who 

demonstrated that the model can generalize effectively. 

The sample prediction results (Table 4) provide a detailed 

comparison of how different machine learning models classify 

rail track images as either defective or non-defective. 

Observing the classification trends, the Neural Network and 

SVM models show higher consistency in labeling the images 

correctly, aligning with their previously reported higher 

accuracy, F1-score, and MCC values. The Neural Network, in 

particular, consistently outperforms others by correctly 

classifying more images as non-defective or defective without 

frequent misclassification. 

Conversely, the KNN model appears to be the least reliable, 

as it often disagrees with the more accurate models, frequently 

misclassifying defective tracks as non-defective. This reflects 

its lower recall and precision scores, making it less suitable for 

defect detection. The RF model performs moderately well but 

still exhibits occasional misclassifications. These results 

reinforce the conclusion that neural network models are the 

best choices for rail defect detection due to their superior 

classification accuracy, reducing the risk of safety hazards 

caused by undetected rail defects. 

Figure 10 displays a set of randomly selected, unlabeled test 

images used for classification by the models, serving as a basis 

to evaluate prediction accuracy. Accurate railway track defect 

detection is vital for safety and structural integrity. Early 

identification allows timely maintenance, reducing derailment 
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risks and operational costs. Machine learning models like RF, 

SVM, ANN, and KNN enhance detection precision and 

efficiency. Their implementation supports safer railways and 

more effective maintenance, contributing to a more reliable 

and efficient rail network. 

 

 
 

Figure 8. Precision-recall curve (“non-defective (good)” on the left, “defective (bad)” on the right) 
 

 
 

Figure 9. ROC curve and comparison between models (“non-defective (good)” on the left, “defective (bad)” on the right) 

Table 3. Confusion matrices of four models 
 

Predicted (RF) Predicted (KNN) 

Actual (RF) 

 bad good  

Actual (KNN) 

 bad good  

bad 85 20 105 bad 69 36 105 

good 19 86 105 good 10 95 105 

 104 106 210  79 131 210 

Predicted (ANN) Predicted (SVM) 

Actual (ANN) 

 bad good  

Actual (SVM) 

 bad good  

bad 84 21 105 bad 84 21 105 

good 16 89 105 good 22 83 105 

 100 110 210  106 104 210 

 

Table 4. Prediction result with implementing each model 
 

RF (1) KNN (1) SVM (1) Neural Network (1) Image Name Image Size Width Height 

bad bad bad bad rail_63_top rail_63_top... 112755 160 427 

good good bad bad rail_50_down rail_50_dow... 122348 160 428 

bad good bad bad rail_60_mid rail_60_mid... 126045 160 427 

good good good good rail_65_down rail_65_dow... 113633 160 428 

good good good good rail_64_down rail_64_dow... 120172 160 428 

bad bad bad bad rail_56_mid rail_56_mid... 94058 160 427 

bad bad bad bad rail_55_top rail_55_top... 109177 160 427 

bad bad bad bad rail_57_mid rail_57_mid... 135654 160 427 

good good good good rail_62_top rail_62_top... 117386 160 427 

good good good good rail_61_mid rail_61_mid... 126217 160 427 
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Figure 10. Sample image test data 

 

Table 5. Performance metrics of four models 

 
Model AUC CA F1-score Precision Recall MCC 

Random Forest 0.895 0.814 0.814 0.814 0.814 0.629 

Artificial Neural Network 0.903 0.824 0.824 0.825 0.824 0.648 

K-Nearest Neighbor 0.869 0.781 0.778 0.799 0.781 0.580 

Support Vector Machine 0.856 0.795 0.795 0.795 0.795 0.591 

 

Model performance 

To assess the effectiveness in classifying railway track 

conditions, four machine learning models (ANN, SVM, RF, 

and KNN) were compared. This evaluation used key metrics 

like Area Under the Curve (AUC) (distinguishing ability), 

Classification Accuracy (CA) (overall accuracy), F1-score 

(balancing precision and recall), Precision, Recall, and 

Matthews Correlation Coefficient (MCC). 

As shown in Table 5, the ANN attains the strongest results, 

with AUC 0.903, CA 0.824, F1-score 0.824, Precision 0.825, 

Recall 0.824, and MCC 0.648, indicating robust 

discrimination and a balanced precision-recall trade-off. The 

RF follows closely, achieving AUC 0.895, CA 0.814, F1-score 

0.814, Precision 0.814, Recall 0.814, and MCC 0.629, 

reflecting stable and well-balanced predictions. SVM records 

AUC 0.856, CA 0.795, F1-score 0.795, Precision 0.795, 

Recall 0.795, and MCC 0.591, showing competent 

discrimination while trailing ANN and RF. KNN model yields 

the weakest scores, with AUC 0.869, CA 0.781, F1-score 

0.778, Precision 0.799, Recall 0.781, and MCC 0.580, 

suggesting higher sensitivity to local noise and class overlap 

in this context. Taken together, the results point to ANN as the 

most effective and balanced classifier for this task, with RF a 

close second. SVM delivers solid but lower scores, while kNN 

is least suited here. If prioritizing missed defects, consider 

threshold tuning or recall-oriented settings for the selected 

model. 

 

3.4 Infuse 

 

3.4.1 Focus group discussion 

Recommended ERP dashboard features 

Experts agreed that the dashboard should prioritize clarity 

and quick decision-making [46]. Since the classification is 

binary (defective/non-defective), the interface can remain 

simple yet informative. Recommended features are included 

in Table 6. 

 

Table 6. Recommended ERP dashboard elements 

 
Dashboard Element Description Purpose 

Track Map Visualization 
Railway line displayed with segments marked green (non-

defective) or red (defective) 

Enables quick identification of damaged 

areas 

Track Segment List Tabular view of segment IDs and their status 
For data logging, inspection reference, and 

filtering 

Condition Statistics 
Pie chart or bar graph showing percentage of non-defective vs 

defective segments 

Provides an overview of overall 

infrastructure health 

Defective Status 

Notifications 
Real-time alert when a segment is detected as defective 

Facilitates immediate response from 

maintenance teams 

Condition Change Log Historical view of changes in segment status 
Useful for trend analysis and planning re-

inspections 
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Table 7. Required ERP integration components 

ERP Module Integration Function Explanation 

Maintenance 

Management 
Auto-generates work orders for defective segments Ensures immediate action is assigned and tracked 

Asset Management Stores segment status and metadata 
Treats each track segment as an asset with condition 

history 

Scheduling 
Allocates inspection or repair tasks based on defective 

segments 
Helps prioritize and organize fieldwork 

Notification System Sends alerts to relevant personnel Reduces delay in information flow 

Reporting Periodic export of condition summaries and work logs 
Supports documentation, audit, and performance 

tracking 

Required ERP integration components 

The discussion emphasized smooth and automated 

integration between UAVs-ML outputs and ERP modules, 

ensuring that detected defective segments trigger relevant 

business processes without manual intervention [47]. The key 

ERP modules and their roles are shown in Table 7. 

The discussion concluded that a minimalist yet actionable 

dashboard is suitable for this project, as the system only 

classifies track segments into non-defective or defective 

conditions. Key emphasis was placed on real-time visual 

feedback (via map and segment list), automatic ERP-triggered 

responses (such as maintenance work orders), and alert 

mechanisms to ensure operational agility [47]. The required 

integration aligns with the Analyze and Infuse stages of the AI 

Ladder Model, where simple AI outputs are effectively 

embedded into core business processes to improve decision-

making and responsiveness [48]. The simplicity of the 

classification model is not a limitation; rather, it supports 

faster deployment and higher user acceptance in field 

operations. 

Business process re-engineering flow 

The following section presents the reengineering of the 

railway track maintenance process, transitioning from a 

conventional manual approach to a data-driven, AI-integrated 

workflow. 

3.4.2 As-Is process (Before AI and ERP integration) 

Before digital transformation, railway track inspection and 

maintenance relied heavily on manual visual checks and 

periodic patrols. This process posed several limitations in 

speed, accuracy, consistency, and safety. 

The manual workflow often resulted in delayed detection of 

track issues, inefficient use of maintenance resources, and 

safety. This reactive model (Table 8) lacked the agility and 

intelligence needed for modern railway infrastructure 

management [49]. 

To-be process (After AI, UAVs and ERP integration) 

After reengineering, the system integrates UAVs for 

automated data collection, machine learning for defect 

detection, and ERP for seamless action execution (Table 9). 

In this proposed model, each component plays a strategic 

role, UAVs offer wide and efficient scanning, ML ensures fast 

and consistent classification of track conditions, and ERP 

handles operational execution from asset status updates to 

automated work orders. This end-to-end pipeline enables 

predictive and intelligent maintenance. It significantly 

enhances predictive maintenance by enabling real-time asset 

monitoring and automated decision-making [47]. 

Table 8. As-Is process 

Step Description 

1 Manual field inspections are conducted periodically. 

2 
Engineers identify track issues visually and record them 

manually. 

3 
Maintenance teams rely on reports or technician feedback 

to schedule tasks. 

4 
Limited coordination between inspection, scheduling, and 

asset records. 

Table 9. To-Be process 

Step Description 

1 UAVs capture high-resolution images of railway tracks. 

2 
ML models classify segments as non-defective or 

defective from image datasets. 

3 Results are sent to ERP through middleware. 

4 
ERP updates asset condition, triggers work orders 

automatically. 

5 
Maintenance is scheduled and teams are notified 

instantly. 

6 
Dashboard visualizes current status, and logs are updated 

in real time. 

3.4.3 ERP system blueprint 

This section defines the system blueprint, which outlines 

how data captured from UAVs inspections is processed and 

utilized within the ERP ecosystem to enable predictive 

maintenance. 

Input pipeline 

The input pipeline begins with UAVs capturing aerial 

images of the track, which are then analyzed by machine 

learning models and converted into structured data inputs 

(Table 10). It supports efficient transformation of unstructured 

visual data into actionable insights for railway maintenance 

[20]. 

This pipeline ensures that only processed, meaningful data 

enters the ERP system. The use of an integration layer 

standardizes the format, enabling consistent updates of track 

segment conditions and activation of business logic. 

Table 10. Input pipeline 

Source Type Processing 

UAVs System Image Dataset (.jpg, .png, .tiff) ML classifies condition per segment (non-defective / defective) 

ML Output Structured JSON Image 

Integration API / Middleware Sends data to ERP and links with asset IDs 
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Table 11. ERP module used 

 
Module Function Purpose 

Asset Management Stores railway segment metadata Tracks segment ID, GPS, length, condition 

Condition Monitoring Receives ML classification Updates asset condition status automatically 

Maintenance Management Generates work orders Automates WO creation for defective segments 

Scheduling Assigns maintenance tasks Technician calendars, job queues 

Notification System Alerts team members Sends ERP/email alerts on new defective status 

Reporting Tracks KPIs and logs Provides maintenance history, SLA performance 

 

Table 12. Dashboard elements 

 
Component Description Visual Type 

Track Map Viewer Map with green/red segment status Interactive Map 

Segment Table List of segment metadata & status Table with filters 

Condition Stats Non-defective vs defective summary Pie/bar charts 

Alerts Panel Real-time issue notifications Notification cards/logs 

History Log Condition change tracking Timeline per segment 

 

Table 13. Dashboard elements of UAT 

 
No. Component Test Case Expected Result Status 

1 Map Viewer Load segment condition map Segments shown in green (non-defective) or red (non-defective) Passed 

2 Segment Table List track segments & statuses Correct data, sortable & filterable Passed 

3 Stats Summary Display condition ratio Accurate chart from ML inputs Passed 

4 Alerts Panel Trigger new defective status alert ERP and email notifications received Passed 

5 History Log Track segment status updates Logs show correct timestamps and actions Passed 

 

Table 14. ERP module used for UAT 

 
No. Module Test Case Expected Result Status 

1 Asset Management Register/update asset condition Status reflects latest ML classification Passed 

2 Maintenance Trigger work order on defective status WO is created and linked to asset Passed 

3 Scheduling Assign jobs to crew Task appears in technician dashboard Passed 

4 Notification Alert for defective segments Email/ERP alert reaches correct personnel Passed 

5 Reporting Export condition log PDF/Excel report includes timestamped updates Passed 

 

ERP module used 

The ERP system comprises several interconnected modules, 

each with a specific function in the maintenance cycle as 

shown in Table 11. 

Together, these modules allow for automated and intelligent 

workflows. For example, a "Bad" classification triggers a new 

maintenance request, which is then scheduled, tracked, and 

reported, all within the ERP environment. This closed-loop 

system enhances operational efficiency and accountability 

[12]. 

Dashboard elements 

The dashboard is the visual layer of the system, enabling 

users to monitor track conditions, review alerts, and access 

historical records. 

By combining geospatial visualization (map viewer), data 

analytics (charts and stats), and operational logs, the 

dashboard empowers decision-makers with real-time insights. 

This helps prioritize responses and streamline coordination 

across departments [50]. 

 

3.4.4 UAT matrix 

UAT was conducted to evaluate whether the developed 

system functions according to its intended design and meets 

user requirements. 

 

3.4.5 Dashboard element 

Table 12 lists each core component of the dashboard and 

summarizes its test results as shown in Table 13. All dashboard 

elements performed as expected during UAT. Users were able 

to interact with the map, access filtered tables, receive 

condition alerts, and trace updates. 

This confirmed that the dashboard is both user-friendly and 

functionally reliable. It significantly enhanced usability and 

reliability in operational contexts [51]. 

ERP modules 

Each ERP module was tested individually to ensure proper 

response to AI input and seamless integration across 

workflows. 

The system successfully automated key actions such as 

condition updates and work order creation. Notifications and 

reports were generated accurately, confirming that the ERP 

system can reliably manage predictive maintenance 

workflows triggered by ML-based track assessments. 

Accurate generation of notifications and reports confirms that 

ERP systems integrated with machine learning assessments 

can effectively support and automate predictive maintenance 

workflows [52] as shown in Table 14. 

 

 

4. CONCLUSION 

 

Ensuring the reliability of railway infrastructure demands 

not only accurate detection but also a seamless bridge from 

perception to action a gap that many vision-only studies leave 

unaddressed. This work operationalizes the AI Ladder end-to-

end Collect, Organize, Analyze, infuse by deploying UAVs for 

systematic image capture; standardizing imagery; producing 

binary-masked ground truth; and embedding samples into 
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fixed-length feature vectors for learning. Across four 

classifiers (ANN, SVM, RF, KNN) and metrics suited to class 

imbalance (AUC, accuracy, F1-score, MCC), ANN emerges 

as the strongest performer (AUC = 0.935; accuracy = 0.884; 

F1-score = 0.884; MCC = 0.768). Crucially, we translate 

model outputs into execution via ERP integration that provides 

real-time defect flags, dashboard visualization, automated 

work orders, automated scheduling, and notifications, while 

maintaining auditable condition histories. By embedding 

classification directly within maintenance workflows, 

operators can shift from periodic, manual inspections to 

continuous, predictive maintenance at scale. Beyond technical 

accuracy, the implemented ML-ERP pipeline delivers a 

practical path from aerial sensing to actionable decision-

making and aligns with SDG 9, offering a replicable blueprint 

for intelligent, accountable railway asset management. 

We note several scope qualifications. The evaluation was 

conducted on a subset of corridors and operating 

configurations; variation across seasons and weather, camera 

viewpoints, and track characteristics has not been exhaustively 

assessed. The ERP integration was demonstrated in a limited 

pilot, so evidence of full-scale operational performance 

remains pending. In addition, probability calibration and 

corridor-specific operating thresholds have not yet been 

finalised, and a comprehensive end-to-end cost–benefit 

assessment with systematic stress testing under adverse field 

conditions (e.g., glare, precipitation, vegetation occlusion) is 

outstanding. 

The concrete directions are outlined as follows:  

(i) probability calibration and cost-aware thresholding 

tailored per corridor;  

(ii) multi-corridor, multi-season field trials with operational 

metrics (e.g., MTTR, actionable-alarm rate);  

(iii) MLOps for drift monitoring, alerting, A/B testing, and 

scheduled retraining;  

(iv) edge deployment with model compression to meet 

latency constraints;  

(v) uncertainty estimation to prioritise human review;  

(vi) human-in-the-loop and active learning within the ERP;  

(vii) exploration of modern detection/segmentation 

architectures alongside self-supervised pretraining for 

improved robustness;  

(viii) multi-sensor fusion (UAV imagery with 

GNSS/IMU/LiDAR) and geospatial hotspot mapping;  

(ix) standardisation of defect taxonomy and severity levels 

with external benchmarking;   

(x) quantitative economic analysis to substantiate safety and 

maintenance value at scale. 
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