Z‘ I El' A International Information and

Engineering Technology Association

Mathematical Modelling of Engineering Problems
Vol. 12, No. 10, October, 2025, pp. 3531-3544

Journal homepage: http://iieta.org/journals/mmep

Heterogeneous Traffic Management in SDN-Enabled Data Center Network Using Machine]

Learning-SPIKE Model

Check for
updates

Sanarya Jamal Al-Azawee), Nadia Adnan Shiltagh Al-Jamali

Department of Computer Engineering, University of Baghdad, Baghdad 10011, Iraq

Corresponding Author Email: gs22.sjalazawee@coeng.uobaghdad.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121019

ABSTRACT

Received: 13 April 2025

Revised: 25 June 2025

Accepted: 4 July 2025

Available online: 31 October 2025

Keywords:

congestion, Dijkstra algorithm, Widest Dijkstra
algorithm, elephant flows, mice flow, spike
neural network, traffic flows

Software-Defined Networking (SDN) has evolved network management by detaching
the control plane from the data forwarding plane, resulting in unparalleled flexibility
and efficiency in network administration. However, the heterogeneity of traffic in SDN
presents issues in achieving Quality of Service (QoS) demands and efficiently
managing network resources. SDN traffic flows are often divided into elephant flows
(EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes
and long durations, account for a small amount of total traffic but require
disproportionate network resources, thus causing congestion and delays for smaller
MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they
account for the vast bulk of traffic in data center networks. The incorrect use of network
resources by EFs frequently disturbs the performance of MFs. To meet these issues,
precise classification of network traffic has become crucial. This classification enables
traffic-aware routing techniques. This paper offers a novel model for classifying SDN
traffic into MF and EF using a spike neural network. Once identified, traffic is routed
based on the classification results. For MF, the model uses the Dijkstra algorithm. For
EF, the Widest Dijkstra algorithm is used. This model solves the difficulties of traffic
heterogeneity in SDNs by integrating advanced classification techniques and strategic
routing algorithms. It enables desirable resource allocation, eliminates congestion, and
increases network performance and dependability. The models used have proven their
efficiency by outperforming the traditional Software Defined Network and other
algorithms in terms of: throughput by 60%, and 20%, bandwidth utilization by 5%, and
7%, packet loss by 50%, and latency by 60%, respectively.

1. INTRODUCTION

holds all packet forwarding choices, such as a routing table.
The data plane is the underlying mechanism that routes traffic

Most professional corporate organizations, regardless of
size, believe that owning data centers (DCs) is essential for
effective competition. However, the rapid increase and
distribution of data centers complicate control and
management operations. Operators can spend hours, days, or
even weeks manually configuring networks for specific
devices [1]. Large-scale data centers require a standardized
approach to managing infrastructure. Controlling data centers
can be challenging due to their dispersed locations and
multiple infrastructure providers [2]. The Software-Defined
Networking (SDN) overcomes the constraints of classical DC.
SDN is the most recent advancement in networking
technology. It makes network administration easier by
separating the control and data planes. This improves network
flexibility and efficiency. SDN architecture promotes simple
configuration and troubleshooting methods [3]. The core
notion of this design is decoupling, or the separation of the
control and data planes [4]. The control plane is the system
that handles traffic management, and hence the logic that
determines where the packets that arrive should be transmitted
[5]. This procedure results in the formation of a structure that

3531

to the next hop (next node) based on the structure created by
the control plane. Currently, this separation results in basic
network devices that just handle packet forwarding and hence
only implement the data plane. The control plane is
implemented as software, which 1is therefore totally
programmable and referred to as a controller. The controller
communicates with the devices via a southbound interface,
with which it sends the information essential for the proper
operation of the SDN switches, and outputs information in the
form of an API using a northbound interface [6]. In today's
systems, however, the controller employs both traditional
artificial intelligence and neural network routing techniques.
Flow routing is critical to enhancing network performance.
The basic purpose of flow routing in a network is to get the
data as rapidly as possible. Routing can increase network
performance, which is an evident advantage [7, 8]. The traffic
flow is diverse, with different arrival rates, durations, and
sizes. The heterogeneity has an influence on both their Quality
of Service (QoS) and network resource needs. They behave
differently when traveling to their goal [9]. SDN data center
traffic flows are often divided into two categories: elephant

https://orcid.org/0009-0003-7863-7044
https://orcid.org/0000-0002-0377-1519
https://crossmark.crossref.org/dialog/?doi=mmep.121019&domain=pdf

flows (EFs) (large, long-lived) and mice flows (MFs) (small,
short-lived). EFs, which are distinguished by their huge packet
sizes and long durations, account for a small amount of total
traffic but require disproportionate network resources. MFs,
on the other hand, have a short lifetime and are latency-
sensitive, but they account for the vast bulk of traffic in DCNs.
The incorrect use of network resources by EFs frequently
disturbs the performance of MFs, resulting in suboptimal
resource use and QoS degradation. As a result, their actions
produce congestion and delays in the vast majority of MF.
However, MFs require high priority due to their delay
sensitivity [9, 10]. In spite of the SDN architecture providing
a global perspective and increased network programmability,
allowing for flexible capabilities and effective QoS
provisioning strategies [11]. Currently, most DCNs suffer
from the exploitation of network resources by huge packets
(elephant flow) that enter the network at any time, affecting
MEF. Poor network performance is mainly because of high
congestion and unequal load due to inappropriate traffic
distribution. Due to these problems, the classification of
network traffic into MF and EF with their precise forecasting
has become a necessity. Such a classification brings routing
techniques of maximizing traffic-aware, which can allocate
network resources depending upon flow characteristics,
reducing packet congestion and delays. Exploiting the
centralized control and programmability of SDN, flexible
traffic management schemes can be constructed to moderate
the conflicting requirements of different traffic types, ensuring
optimal resource utilization and stable QoS.

This paper seeks to construct an SDN-based application
employing supervised machine learning to meet specified
goals.

* Create an SDN-based routing system that identifies flows.
The system has two components that work with the
controller: traffic classification and traffic routing.

* Identify flows as mice or elephants, using spiking neural
networks (SNNs).

* Implement a flow routing algorithm that prioritizes shorter
paths for mice and wider paths for elephants. As a result,
the network becomes more balanced, leading to increased
throughput.

* Optimize route cost calculation and ensure compliance with
real-time data.

The proposed model addresses the challenges of traffic
heterogeneity in SDNs via a combination of state-of-the-art
classification approaches and optimal routing methods. It
enables desirable resource allocation, eliminates congestion,
and increases network performance and dependability.

2. RELATED WORK

Several types of research have been done in the area of
SDNs. SDNs centralize routing control by transferring it from
separate network parts to a single location. Furthermore, the
synchronization and control capabilities of an SDN give all of
the necessary information about the connectivity between
hosts as well as the ability to make quick switching decisions.
SDNs ensure high-level performance [9]. Network
performance degradation is mostly caused by congestion and
imbalanced load. Many researchers recommended strategies
to alleviate network congestion and balance network load,
while others advised enhancing traffic routing. Li et al. [12]
suggested a dynamic multi-controller deployment strategy

3532

based on load balancing, which improves scalability and
reliability in SDN systems. It turns flow requests into a
queuing model and investigates traffic propagation latency and
controller capacity. Zaher et al. [13] introduced Sieve, a
revolutionary distributed SDN-based platform for flow
scheduling that improves network performance and efficiency
via intelligent flow management. Sieve initially organizes a
subset of the flows based on available bandwidth, independent
of class. Shirali-Shahreza and Ganjali [14] addressed the
restricted flow table issue by delaying rule installation and
hastening evictions to alleviate network congestion. Their
approach anticipates TCP flow termination from RST/FIN
packets to accelerate rule evictions while handling non-TCP
flows to delay rule installation. It lowers the drop in traffic.
Liu et al. [15] described a DRL-based intelligent routing
solution for SD-DCN that improves network efficiency and
performance. A DRL agent on an SDN controller learns from
network data and makes adaptive routing decisions depending
on its current state, such as bandwidth and cache, because the
cache should impact routing decisions by removing duplicate
traffic in the DCN. Kumar et al. [16] showed how machine
learning algorithms may determine the least congested path for
routing traffic in an SDN network. Their proposed route
selection method creates a list of possible routes using network
information from the SDN controller. Modi and Swain [17]
proposed a routing approach for SD-DCN that employs RNN
deep learning models (LSTM-RNN and BiLSTM-RNN).
Their proposed model provided a routing path combination
based on past traffic statistics, which improves the SDN
controller's effectiveness. Mu et al. [18] suggested utilizing
reinforcement learning to regulate SDN flow entry. Suggested
an RL-based approach for minimizing control overhead by
selecting appropriate parameters for rule insertion in Ternary
Content Addressable Memory (TCAM) to overcome the
constrained capacity of TCAM used in an OpenFlow-enabled
switch. Improved network performance and traffic load. Lin et
al. [19] proposed an efficient strategy for identifying elephant
traffic in data centers. The OpenFlow controller can send
individual or aggregate statistics messages to acquire
statistical data from OpenFlow switches. The authors
proposed a Hierarchical Statistics-pulling approach that uses
aggregate statistical data to identify elephant movement in a
smaller area. Using aggregate statistical data can significantly
reduce bandwidth consumption during elephant flow
detection. It submits an aggregate statistics request for the full
flow space block. If a block's aggregate stats reply reaches the
threshold, divide it into four equal-sized blocks. After four
repetitions, it sends individual requests to all flows whose
aggregate dependency exceeds the threshold, indicating an
elephant flow. Aymaz and Cavdar [20] proposed an approach
to detect EFs to improve routing efficiency. Their proposed
model employed deep learning to identify EFs. Their classifier
categorizes flow using a convolutional neural network (CNN)
structure. As a result, certain EFs are routed. Yusuf et al. [21]
suggested a method that worked with the SDN controller to
establish paths for each traffic type. As a consequence, their
proposed approach combines composite measurements with
flow classification to detect congestion-prone flows and divert
them along the most appropriate pathways to avoid congestion
and traffic loss. Al-Saadi et al. [22] proposed an SDN
application that uses network performance metrics, like flow
time, number of packets, and average packet size, to select the
optimal path for each flow type. K-means clustering is utilized
to detect flows using these three metrics and classify them into

elephants and mice, then choose the path for each typical flow.
Although relatively new and validated, supervised learning
with SNNs has not been explored for traffic classification. It is
a remarkable oversight, particularly because SNNs reduce
energy consumption significantly, which is perfectly in line
with the goals of the modern industry, where sustainability and
energy efficiency have become paramount. SNNs are
continuously proving themselves to be very efficient in many
applications, including image classification [23] and robotics
[24]. The SNNs draw inspiration from biological systems,
enabling lower-power operation and improved performance,
especially in scenarios involving real-time adaptive decision-
making. Such properties are ideal and resolve the challenges
of traffic heterogeneity in SDN, thereby making SNNs a
promising option for addressing those problems. As
previously stated, researchers have made various
improvements to the SDN layers to address congestion and
load balance by adding additional controllers, increasing the
buffer size of the switches, performing routing operations
based on specific parameters such as bandwidth and cache,
and prioritizing the elephant flow over the MF. Hence, the
SNNs opted to employ them for traffic classification in this
work, as the benefits justify it. This is the first step to explore
their potential for this field study. But the hope is to take
advantage of their unique capability to build a complete but
energy-efficient approach to tag network traffic as mice or
elephants. Then, after classification, equal priority is given to
both the mice and the elephant in the routing process by
sending them in a way that suits the needs of both types and
not encountering them on the same path. Such a novel
approach not only fills existing traffic management research
gaps but also helps to build sustainable, high-throughput SDN

Control plan

systems.

3. METHODOLOGY

This paper introduced two interrelated models, as shown in
Figure 1, to characterize SDN-enabled traffic classification
and routing applications. In the first model, a Spike neural
network is applied to classify network traffic into both EFs and
MFs. It is classified according to important traffic-generating
parameters like flow time, packet size, and byte rate. SNNs are
particularly applicable for implementing this model. The SNN
can classify flows with high accuracy and in real time. The
second model is related to traffic routing, following the
classification technique. After that, the routing system selects
the best path depending on classification results, consumes
efficient network resources, and delivers QoS. On the other
hand, the Dijkstra algorithm allows sending the MFs using the
shortest path to affect the delivery time for the packets that
require low latency. EF are generally bandwidth-intensive,
which are divided over multiple paths instead of a single path
using the Widest Dijkstra algorithm, minimizing congestion
and providing continuous data transfer without interfering
with other traffic flows. The proposed models have the
capability to solve heterogeneous traffic by providing a
combination of advanced traffic classifying and intelligent
routing algorithms in SDNs, as shown in Figure 2. These
interrelated models reduce network congestion as well as
enhance system throughput and performance. Inter-related
models are scalable and applicable for contemporary data
centers and large-scale SDN architectures, and the floor for a
more expressive and agile traffic management strategy.

Traffic classification

Diyjkstra for Mice flowr
Widest Dijkstra for

" elephant flow

Implementmz
Fxu controllsr e FRouting alsorit
Building flow table
Collacting network featuras
from OpenFlow swatches
| facketm |
| FPacketm |

Flow tabla metallztion

Operflow switches

Figure 1. The proposed models

Traffic Analysis

J

Training the algorithm

|

Combine the learning with
the controller

I

‘ Traffic classification ‘

|

Traffic routing

Figure 2. Overview of the workflow
3.1 Feature type selection stage

There are hundreds (potentially thousands) of applications
that change all the time. Making it hard to categorize traffic at
the application level. To identify traffic well, the proposed
models have the power to identify elephants or mice on the
network layer. Mice traffic is mostly query (e.g., Google
searches and Facebook updates). A major portion of software-
defined data center network (SDDCN) traffic is query traffic
with a relatively smaller data transfer volume. Most of the
time, the big upgrades come from the elephant traffic, like
antivirus, updates, and movie downloads. According to Cisco,
an elephant flow contains more than 15 packets, and a short
flow contains fewer than 15 packets. The proposed models
also use the byte size for referring to the flow, e.g., elephants
or mice. Elephant flow usually gets 500 bytes or more for
packets. In OpenSwitch, the mice traffic in data centers is
limited to 10 KB. However, the actual traffic of SDDCN
networks is diverse in nature. As a result, the characteristics
used to distinguish between traffic classes are (flow duration,
byte rate, and packet rate). The proposed models used the
feature constructed for the Network Information Management

Hidden
Layer

; Q. [

F1

B

Dataset F2

e &
@

N\

<

e
Input i@ y
Layer N
& i’,‘“ = o d
weights 2 \ weights

and Security Group (NIMS) dataset, which has around
303,549 traffic flow statistics. It has two classes (Elephant
class and Mice class), with 70% used for training and 30% for
testing. Table 1 shows part of the NIMS dataset.

Table 1. Part of the NIMS dataset

Flow Size Packet Size Byte Counts Traffic Class
120697 3 64 0
4096366 5 44 0
9289799 8 453 0
243187 4 490 0
4300478 63 65749 1
89872447 1188 76304 1
33494941 46290 1372596 1

Presynaptic

‘ l N Time
spike

‘ 4,, y é Output

Traffic class demonstrates the type of traffic where zero
represents mice traffic and one represents elephant traffic.

3.2 Classification stage

The classification process concentrates on the SNNs, which
act as a classifier. Figure 3 (Part A) depicts the fully linked
feed-forward scheme of the SNN. The form of this structure
consists of three layers: the input layer, the hidden layer, and
the output layer. The output layer has one neuron that uses a
spike mechanism to express traffic types such as elephants or
mice. The hidden layer has twenty neurons, whereas the input
layer contains three neurons that correlate to the traffic
characteristic employed. In the SNN, each neuron has five
connections (synapses) with variable delays and weights, as
shown in Figure 3 (Part B). Trial and error determine the count
of hidden neurons and synapses. Each neuron follows a three-
step computational process. First, the membrane potential is
formed by adding all input spikes together. The potential is
then evaluated to see if it exceeds a certain threshold with
value 1, which was determined by trial and error, as illustrated
in Figure 3 (Part C). If the threshold is surpassed, the neuron
will send a spike at a time, which is called the firing time (ft),
and reset the membrane potential to zero, as shown in Figure
3 (Part C). For ease of categorization, the system has three
major components: encoding and decoding functions, neuron
model functions, and a modified learning algorithm.

ik

Spike | PSP

-

|

Postsynaptic
neuron

C

Membrane gotential

Time{ms)

Output spike
Threshold

Figure 3. SNN architecture (A) SNN feedforward; (B) The connection between two neurons; (C) The computational phases of
spiking neuron

3.3 Encoding and decoding operation

SNN operates on pulse information instead of actual data,
as shown in Figure 4. The first step in developing an SNN is
to transform analog input data into spike trains. Therefore, Eq.
(1) is applied to encode the input values as spike timings.

t}}; = T\ — round (Tmin + (Rin—R};nin)(_TgaJ'c—Tmin)) (1)
max min

Tmax and Ty, are the maximum and minimum intervals,
respectively. R4, 1s @ value more than the highest value in
the input, while R,,;, is a value lower than the lowest value in
the input. R;, reflects the current real data. round is an
operation that produces a rounded value.

After training, apply the decoding Eq. (2) to transform the
network's output spike time information to actual data [25].

f
i — ty_Rmin(Rmax‘Rmin)
Rl(ty) - + Runin 2

Tmax—Tmin

Figure 4. Methodology of encoding and decoding
neuron model function

Several types of spiking neuron models have been
proposed. The following models are more physiologically
plausible: the Spike Response Model (SRM), the Izhikevich
Model, the Hodgkin-Huxley Model (HH), and the Integrate
and Fire Model. These models operate with SNNs. Choosing
a suitable model relies on the user's needs [26, 27]. In this
paper, the SRM is utilized due to its simple mathematics [28].
This model represents the SRM's link between input spikes
and membrane potential. In this work, the function of the
hyperbolic tangent is utilized in the SRM. When each spike
arrives, a postsynaptic potential (PSP) is stimulated in the
neuron if its membrane potential is under a particular threshold
(0) [29]. Membrane potential is the sum of all PSPs stimulated
by all incoming spikes. The weights of synapses that convey
these spikes also impact the value of PSP. The equation shows
how to compute the PSP using the spike response function &(7)
[30].

0,t<0
e(t) = {tanh (Ti) t>0 ©)

where,
£(t): Spike response function (SRF)
T¢: Time decay constant with value 2
The derivative of £(t) is described below:

de

1
Frin (1 — tanh?(t/7)) 4)

3.4 Learning method

Once real data is encoded into spike timings, the forward
step begins. The second stage is the feedforward operation,
which determines whether every neuron in the hidden layer is
stimulated or not. Neurons can only spike once when their
membrane potential (mp) surpasses the threshold value (9). If
the neuron is spiked, the algorithm moves to the next neuron
in the same layer; the SNN algorithm calculates the membrane
potential mpy, (t) using Eq. (5) [31].

X K
mp =)) wh©et-t[-d) ©

X denotes the number of input neurons, and K is the number
of synapses that link two neurons. w¥, indicates the synapse
weight coefficient for presynaptic and postsynaptic neurons.
The presynaptic neurons' spike time is t,]: , while the Synaptic
delay is represented by d*.

When the neurons of the hidden layer are complete, the
algorithm moves to the output layer and performs the same
manner, except in this case, the spikes of the hidden layer are
inputs to the output neurons. Then the total error is computed
using Mean Square Error (MSE), as shown in Eq. (6) [32].

1 2
MSE=2>" (- tf) (©)
2 yey

where, the t{, represents the spiking firing time, while tj‘}
represents the desired spiking.

The reverse phase of the process involves adjusting the
weights of synapses for connections. SNN is trained by
updating the weight of each synapse wusing the
backpropagation method (SPIKEPROP) to decrease the MSE
value. Backpropagation begins in the output layer and returns
to the hidden layer.

Synapses weights among the outcome and hidden neurons
are modified using Egs. (7)-(9).

P o)

Y erle z"5:1 Wi’fy %yilf
AW, = a 8,y (®)
wi, (t + 1) = wy, (8) — Aw,)

where, §,, delta function applies to the outcome layer.
Synapse weights among hidden neurons and the input
neuron is adjusted using the Egs. (10)-(12).

H K k 9 k
_ Zh=18y Xie=1Why (&) 3590

o, = 10
h T R T w0 Do (10)
Aw, = a.8py¥ (11)
wyp (t + 1) = wii (8) — Awg, (12)

where, 8, is the delta function of hidden neurons and «
represents the learning rate with value 0.01.

3535

3.5 Traffic routing stage

Routing is a critical element in networking that involves
configuring devices and creating network policies to facilitate
the transfer of data from point A to point B. At its most basic
level, routing manages the flow of data packets to their
destination, taking into account network devices such as
switches and routers to ensure they are delivered optimally.
This process is the routing algorithm which plays an important
role in identifying the optimal path for data packets to travel
all over the network. These algorithms take into consideration
several variables, including the topology of the network, link
capacity, traffic load, latency, and dependability in order to
discover the optimal path. In doing so, they ensure data is
delivered effectively through the use of lower latency and
higher throughput. Modern routing algorithms are not only
efficient but also intended to improve transmission reliability
by circumventing congested or faulty paths. They also
facilitate a network to become more scalable by not only
tolerating the growth of complex and rapid networks like data
centers and wide-area of networks but also adapting to the
modification of network structure and largeness, including,
but not limited to, advanced routing techniques that cater to
varying traffic demands, including load aware algorithms
(e.g., Widest Path) and shortest path algorithm (e.g., Dijkstra).
Besides maximizing resource utilization, these approaches
also address the needs of different types of traffic — bandwidth-
intensive and latency-sensitive flows. Even as networks
advance, reliable and effective communication still relies on
routing as a fundamental component across ever more
elaborate networking circumstances. After finishing both the
learning phase and traffic classification, based on the
classification results, the proper routing algorithms are
executed. For the MF traffic, these are short-lived and latency-
sensitive; thus, the Dijkstra algorithm will be utilized. The
algorithm helps in finding the shortest path from the source to
the destination and it provides low latencies and quickly
delivers packets of data. In contrast, for Elephant flow traffic
with large bandwidth requirements and long lifetimes, the
Widest Dijkstra algorithm is used. These variant places more
weight on paths with larger bandwidth capacity, which lessens
the probability of congestion and accommodates the
processing of heavy traffic loads. The Dijkstra algorithm is a
core component of SDN efficiency and performance. The
shortest path computation in a network increases the routing
efficiency and thereby the overall QoS. The platform
facilitates core network elements like low latency and high
reliability by reducing delays and optimizing path selection.
Finally, the algorithm helps distribute the server load by
balancing the traffic on the network, preventing bottlenecks in
the connection, and ensuring a smoother data flow. Further
refinement of this approach is achieved by the incorporation
of the Widest Dijkstra algorithm for EF—taking into account
the specific difficulties that bandwidth-intensive flows
introduce. The system enhances the responsiveness of MFs
while optimizing the resource usage of EFs by dynamically
allocating resources according to flow characteristics. These
routing strategies work together to ensure that the SDN runs at
optimal performance, managing heterogeneous traffic and
increasing the scalability and reliability of modern network
environments. The SDN routing approach is decomposed into
two general components: obtaining a global network view and
realizing this view in practice.

3536

3.6 Obtaining a global perspective of the network

The first phase consists of collecting network data to
determine the topology, building a base for intelligent and
efficient routing decisions. SDN separates the control and
administration planes and the data-forwarding components,
unlike traditional routing protocols such as Open Shortest Path
First (OSPF). In this method, a centralized SDN controller
makes routing decisions, eliminating the built-in knowledge of
the network within forwarding devices (e.g., switches). For
this, the controller requires real-time and accurate information
about the networks, such as the statuses of dynamic links and
the topological structure. Topology discovery works through
Link Layer Discovery Protocol (LLDP) using the SDN
controllers. LLDP is good for collecting static link status data
such as switch connection, since this data does not change a
lot over time. Through continuous quote LLDP exchanges, the
controller builds an intake view of the entire physical network
topology, including all nodes and links. But in dynamic
scenarios, routing needs more than static measurements. The
capabilities of dynamic link-state metrics, such as capacity,
latency, and available bandwidth are susceptible to real-time
traffic situations. An SDN controller must constantly monitor
these dynamic characteristics in order to ensure correct
Network State Information (NSI). This involves retrieving
updated link-state metrics from frequent queries of the
underlying switches, for each connection. If the SDN
controller is cognizant of not only static topology but also
dynamic link states, then exploit this information to make
judicious routing choices. In order to utilize resources more
efficiently, reduce congestion, and meet QoS requirements,
the controller dynamically changes paths by combining real-
time link-state information with the static topology map
provided by LLDP. SDN proves its flexibility and dominance
in the ability to manage modern, complex networking
environments by maintaining a central, real-time view of the
network.

3.7 Routing algorithms in SDN

In SDN, routing algorithms are responsible for making the
right decision about which path - or paths - traffic will flow,
for example. After this path is established, the controller then
modifies the forwarding devices to make sure that the packets
are sent the right way. Unlike conventional networks, where
routing decisions are spread throughout switches in an SDN
network, they only need to be made at the controller. SDN-
based shortest path finding involves finding a shortest path
from source to destination using Dijkstra's algorithm, choosing
the optimal path based on various attributes of the network like
Latency, Bandwidth, and Hop count. An important component
of this is the SDN controller which absorbs all the analytics
from each and every switch, bandwidth readily available,
which connections are up, and more performance metrics. The
Dijkstra algorithm generates a weighted graph to model the
network. This graph depicts switches along with other network
devices shown as nodes. Edges represent the relationships or
connections existing between these nodes. Each edge is given
a weight according to the cost of traversing the link,
determined through metrics such as latency and bandwidth.
Then, Dijkstra’s Algorithm is used to find the shortest or least
cost path between the source and the destination nodes on the
graph. The method finds the minimum cumulative cost
because it iteratively selects the next node with the lowest

weight until it arrives at the destination. Here, the cost of
traversing the connection is mathematically expressed as in
Eq. (13):
Cij = Lij + Bij + Hij (13)

where,

Cij: The link's cost between nodes

Lij: The link's latency

Bij: The link's available bandwidth

Hij: Hop count for the link

After the best path is calculated, the SDN controller
processes the data into forwarding rules and sends them to the
correlated switches. As each packet moves along its chosen
path, it has to follow certain rules that guide the switches to
forward it correctly, providing optimal data transfer and
quality of service compliance. Reinforcing this dynamic
approach, SDN could keep high performance in several
dynamic traffic conditions, optimize using the resources, and
adapt to the real-time networking environment. The cost of a
link is computed based on multiple matrices, including
(available bandwidth, capability, latency, hop count, etc.).
Then select the path that has the smallest latency and
capability and consider it as the best shortest path. For the
widest Dijkstra follows the same procedure and instead of
choosing one shortest path, it selects multiple shortest paths to
forward the elephant flow that needs many routes due to its
large volume leading to enhancing its throughput as shown in
the algorithm below. To illustrate that assume that a host
(Host) wishes to transmit several packets to a server (Server)
and that there are several routes between the Host and the
Server, as illustrated in Figure 5. The following procedures
will be used to compute the link cost of routes.

500 /l/],@

400M8

C25 N

Cc28
Cc811

° G e
€712

o “ &
6 C1012 e C11s

9 \
e 125 \ '.

Figure 5. The map between the host and server

cos

Find all Possible Routes:

First route R1 passes through switches S1-S3-S6-S9-Server

Second route R2 passes through switches S1-S3-S6-S10-
S12-Server

Third route R3 passes through switches S2-S4-S6-S9-
Server

Fourth route R4 passes through switches S2-S4-S6-S10-

3537

S12-Server

Fifth route RS passes through switches S2-S4-S7-S12-
Server

Sixth route R6 passes through switches S2-S4-S7-S11-
Server

Seventh route R7 passes through switches S2-S8-S11-
Server

Eighth route R8 passes through switches S2-S5-S8-S11-
Server

Ninth route R9 passes through switches S2-S5-S7-S12-
Server

Tenth route R10 passes through switches S2-S5-S7-S11-
Server

Then calculate the available bandwidth,
capability for each route as:

Available Bandwidth for RI

AB1 = AB (HC1) + AB (C13) + AB (C36) + AB (C69) +
AB (C9S)

Available Bandwidth for R2

AB2 = AB (HC1) + AB (C13) + AB (C36) + AB (C610)
+AB (C1012) +AB (C12S)

Available Bandwidth for R3

AB3 = AB (HC2) + AB (C24) + AB (C46) + AB (C69) +
AB (C9S)

Available Bandwidth for R4

AB4 = AB (HC2) + AB (C24) + AB (C46) + AB (C610) +
AB (C1012) + AB (C12S)

Available Bandwidth for RS

AB5 = AB (HC2) + AB (C24) + AB (C47) + AB (C712) +
AB (C12S)

Available Bandwidth for R6

AB6 = AB (HC2) + AB (C24) + AB (C47) + AB (C711) +
AB (C118)

Available Bandwidth for R7

AB7=AB (HC2) + AB (C28) + AB (C811) + AB (C11S)

Available Bandwidth for RS

AB8 = AB (HC2) + AB (C25) + AB (C58) + AB (C811) +
AB (C118)

Available Bandwidth for R9

AB9 = AB (HC2) + AB (C25) + AB (C57) + AB (C721) +
AB (C12S)

Available Bandwidth for R10

AB10 = AB (HC2) + AB (C25) + AB (C57) + AB (C711)
+AB (C11S)

After that compute the latency for each route as follows:

Latency of R1 = 1/ AB1

Latency of R2 = 1/ AB2

Latency of R3 =1/ AB3

Latency of R4 =1/ AB4

Latency of RS =1/ ABS

Latency of R6 = 1/ AB6

Latency of R7 =1/ AB7

Latency of R8 = 1/ ABS

Latency of R9 = 1/ AB9

Latency of R10 =1/ AB10

Finally, compute the capability for each switch using the
Eq. (14).

latency and

ZfeFlow(v) BitS(f)

wivl = capacity(v)

(14)

Then based on the results select the path that has the
smallest latency and capability and consider it as the best
shortest path.

Algorithm 1: Traffic Classification and Traffic Routing
Suggested Models in Generic Form

1: Begin

2: G(*): Classification using SNN

3: T(*): Traffic analysis

4: F(*): extraction of features from traffic analysis
5: E(*): Encoding the actual value of the extracted feature
into the spike

6: EVO: represents Event Occurs

7: 0 represents the Mice class

8: 1: represents the elephant class

9: Y: represents Yes

10: N: represents No

11: FRE: represents Flow Rule Exists

12: Initialize The Traffic (End Host Makes Their
Requests)

13: if EVO = N then

14: wait until EVO =Y

15: Else

16: SDN OFSs Receive the Packets and Check the Flow
Table

17: if FRE =Y then

18: Forwarding Packets Based on Flow Rules

19: end

20: Else

21: Alarm the Controller that there is a flow need to be
forward by sending a packet in msg

22: Continue flow processing in The Controller

23: Z < T(flow)

24:* Z represents the analyzed traffic*\

25: Activate the SNN Classifier

26: M— F(Z)

27:* M is the extracted feature in a real number *\
28: S «— EM)

29:* S is the extracted feature in spike time *\

30: W «— G(s)

19: * W is the outcome of the classes of the SNN
classifier, with probable values of 0 or 1 *\
31:0-W

32:if O=0

33:* Consider the flow as Mice flow*\

34: Implement the Dijkstra Algorithm

35: Find the Shortest Path from Source to Destination
based on Specific QoS

36: else

37:*The flow is classified as Elephant flow™\

38: Implement the Wideset Dijkstra Algorithm

39: Find the Multiple Shortest Paths from Source to
Destination based on Specific QoS

40: The Controller Makes the Flow Rules

41: Install the Flow Rule on OFSs

42: Forwarding Packets Based on Flow Rules

43: End

4. PERFORMANCE METRICS OF THE PROPOSED
MODEL

In this paper, the Mininet emulation framework is employed
to develop and build a realistic SDN environment on a virtual
machine [33-36]. Due to its construction of lightweight
virtualization, Mininet offers great flexibility and facilitates
the development of a dynamic and scalable network topology
tailored to the proposed models. In this paper, two scenarios

3538

were designed to test the performance of the proposed traffic
models on different traffic conditions. The first scenario
topology, as shown in Figure 6(a), has two servers that work
as traffic sources and sinks, one SDN controller, ten OpenFlow
switches composing the network core and edge layers, and six
hosts that are spread through the topology. The small scenario
topology is also implemented as shown in Figure 6(b). These
setups replicated an actual DCN environment and thus
simulated realistic traffic flows and network functionalities.
The flexible Mininet environment facilitated the generation
and control of varied traffic types, enabling extensive
investigations into the performance of the overall SNN
classification and the routing conducted via both the Dijkstra
and Widest Dijkstra algorithms within the same emulation
testbed. These regulated yet realistic environments provided
by this emulation setup allowed for the validation of the
suggested approaches' scalability, effectiveness, and effect on
network performance.

MiniEdit

Fle Edt Aun Help

File Edit Fun Help

el GO m -

h12

h3 | h4 | s

Figure 6. (a) Custom first topology of the network; (b)
Custom second topology of the network

The Ryu controller is used due to its programmability and
wide support for SDN portability. Evaluating the success of a
classification model and its learning process requires a
comprehensive examination of the important metrics that
represent its efficiency. Evaluating the success of a routing
model necessitates a thorough examination of important
parameters that represent its efficiency, reliability, and
adaptability. The suggested routing model is evaluated based
on the following essential performance characteristics:

Throughput, bandwidth utilization, packet loss, and latency.
The evaluation compares the performance of the SDN-Ryu
controller and the approach described in the cited study [22],
which employs K-means clustering for traffic categorization,
to the proposed system based on the Data Center Network
architecture. As shown in Figure 7, the comparison focuses on
two sorts of fluxes: EFs (big, long-lived flows) and MFs
(small, short-lived flows). Throughput, an important statistic
in SDN traffic routing, is used as the major parameter in this
assessment since it directly shows the number of packets
successfully received throughout the simulation time. The
evaluation findings show that the suggested model
outperforms both the Ryu controller and the paper approach in
terms of throughput for two flow types by 60% and 20%
respectively. These benefits demonstrate the model's capacity
to manage a variety of traffic types more successfully than
standard SDN control approaches. As the number of parallel
flows grows, throughput often falls owing to increased
network congestion. However, the suggested technology
outperforms both the Ryu controller and the paper method in
terms of throughput on average. This shows that the suggested
model not only adapts better to larger traffic loads but also
improves network efficiency under challenging conditions.

Throughput-of-two-type-of-flow

Throughput

Figure 7. The comparison of the proposed method to the Ryu
controller and cited paper in terms of throughput for two
types of flows

1 —e— Proposed Method
RYU-Controller
—— Al-saadi et al

Throughput

16 18 20 22
Number of Flows

12

Figure 8. The comparison of the proposed method to the Ryu
controller and the cited paper for elephant flow

Figure 8 compares the throughput performance for EFs
using the recommended strategy to the Ryu controller and the
method given in the cited paper. The findings clearly show

3539

that, on average, the suggested strategy outperforms both the
Ryu controller and the paper's solution. This higher
performance is due to the optimized flow classification and
routing strategy contained in the proposed technology.
Throughput amounts change owing to the dynamic nature of
the routing operation, which is impacted by the unique
properties of each flow. Specifically, the routing algorithm in
the proposed approach chooses the best path for each
representative flow, taking into consideration characteristics
such as flow size and duration. On average, the proposed
model provides an estimated 60% improvement in throughput
over the Ryu controller and a 10% gain over the paper
technique for EFs. This significant gain demonstrates the
proposed technique's capacity to more efficiently prioritize

big, long-lived flows (EFs), hence increasing data
transmission speeds and overall network efficiency.
Throughput Comparison
—-@- Proposed Method /0
18 -@- Al-saadi et al 1"//.
RYU-Controller 'j":,’/
16 P
.4”’4 -
o
5 1 pagvia
2 - .
=) ’,"z’
£ 12 .
= Pl
[o -
10 > -
o«
g1 o
64
12 14 16 18 20 22

Number of flows

Figure 9. The comparison of the proposed method to the Ryu
controller and cited paper in terms of mice flow throughput

70 A

60

50 4

40 1

Bandwidth Used

30 1

—— Proposed Method

—— Al-saadi et al
RYU-Controller

17 18 19 20 21 22
Number of Flows

20 A

15 16

Figure 10. The comparison of the bandwidth utilized by the
proposed model to the Ryu controller and cited paper for
both types

The throughput performance for MFs (small, transient
flows) utilizing the suggested model in comparison to the Ryu
controller and the technique described in the cited paper is
shown in Figure 9. The findings show that the suggested model
outperforms the Ryu controller and the SDN-based solution in
the cited study [22], consistently delivering greater throughput

across all MFs. In particular, the proposed model outperforms
the paper's approach and the conventional SDN configuration
in terms of throughput by about 50% and 12% respectively.
The main reason for this improvement is the model's improved
flow classification and routing system, which is designed to
manage the particularities of mice fluxes. MFs, as opposed to
EFs, require quick processing and effective routing in order to
avoid bottlenecks and guarantee the timely delivery of tiny
data packets. Alongside throughput, another important metric
for assessing network efficiency is bandwidth consumption.
Figure 10 shows that the proposed model not only performs
well in throughput but also in terms of bandwidth usage when
compared to the Ryu controller and the method described in
the cited paper. In particular, the proposed model consistently
uses less bandwidth for the majority of flows while
maintaining high throughput levels, which is due to the
model's sophisticated traffic classification. The proposed
model's categorization techniques allow it to manage these
flows more effectively than conventional SDN techniques,
which frequently over-allocate resources, resulting in
increased bandwidth usage. Furthermore, it is remarkable that
throughput and network performance are not sacrificed in
order to achieve this increase, even if the decreased bandwidth

Throughput Usage Measurement in Experiment 1

utilization may appear expected given the model's emphasis
on classification and adaptive routing. Rather, the model
optimizes in a balanced way, optimizing throughput while
consuming the fewest resources possible. This effective use of
bandwidth is especially helpful in situations where network
resources are expensive or scarce, including in cloud
environments, data center networks, and Internet of Things
deployments. The suggested model reduces bandwidth
consumption over the paper's approach and the conventional
SDN configuration by about 7% and 5% respectively, which
frees up resources for more flows while also lowering
operating costs.

Moving to the second topology, the proposed model
conducted two exhaustive tests in relation to the manner
discussed in previous study [22] in order to evaluate the
mechanism above against the Ryu controller and the proposed
mechanism. The assessment was done on the same parameters
and conditions as the first topology to maintain consistency
and fairness when comparing. Figures 11 and 12 show
throughput and bandwidth utilization metrics acquired during
tests for the proposed technique, the Ryu controller, and the
paper's method. These figures depict how the strategies were
performed under various scenarios.

Throughput Usage Measurement in Experiment 2

800
Proposed Method
W= Ryu Controller
700 - Al-Saadi et al
600
o 300
b
& a0
o
E
g
3
300
200
100
]
60 65 0 ™ 80 a5 20 95 100 105

Number of Flows

Throughput Used

Proposed Method
m— Ayu Controller

700 4 W A-Saads et al

600 4

&
S

a00 4

300 4

100 4

60

65] 75

80 8s %0 E2)
Number of Flows

100 10%

Figure 11. A comparison between the suggested approach to the Ryu controller and the cited paper for both types of flows in the
two experiments in terms of throughput

Bandwidth Usage Measurement in Experiment 1

Bandwidth Usage Measurement in Experiment 2

Proposed Methed
. Ay Cantraller

&0 - . A-Saadietal

Bandwidth Used

0 -

{24
Rurnber of Flaws

a5 30 a5

Bandwidth Used

Proposed Method
. Ryu Cantraller
. U-Saadioetal

(=14 E5 T 75 a0 BS

Humber af Flaws

=l 95 140 105

Figure 12. A comparison between the suggested approach to the Ryu controller and cited paper for both types of flows in the
two experiments in terms of bandwidth

3540

Data Transfer Rate Usage Measurement in Experiment 1
Progosed Method
- Ryu Controller
74 m— AlSeadi et al

w

Data Transfer Rate
»

s 80
Number of Flows

85 90 L) 100 105

Dala Trarsfer Rate

Data Transfer Rate Usage Measurement in Experiment 2

Proposed Method
. Ryu Controller
_— A-Saadi et al

60

65 70

75 80 85

Number of Flows

%0 9% 100 105

Figure 13. A comparison of two types of flows in two experiments using the proposed method, the cited paper, and the Ryu
controller of data transfer rates

In Experiment 2, the suggested mechanism consistently
outperformed both the Ryu controller and the aforementioned
approach in throughput and bandwidth utilization. The charts
in Figure 13 provide a clear illustration of this by showing the
comparison of results across different flows. The proposed
mechanism provided a higher throughput and a more efficient
bandwidth utilization, which indirectly reflected the ability to
handle the network traffic more appropriately. The
performance enhancement was consistent across flows, which
in turn demonstrates the strength of this proposed method and
its adaptation to many situations. Thus, the proposed
mechanism achieved better performance than Ryu controller
while improving the entire network performance significantly.
These improvements show the potential of the described
technique to be a scalable and conditional yet reliable method
for controlling the network resource in dynamic and
overloaded scenarios.

The data transmission rate represented the third
fundamental measure used to evaluate the performance of the
proposed process with respect to both the Ryu controller and
the technique explained in the reference paper. It was supplied
explicitly to give us an idea about how well the proposed
method regulates network data transfer. The proposed strategy
is significantly more efficient than the Ryu controller and the
method provided in the referenced paper in terms of data
transfer for most of the flows, as illustrated in Figure 13. It
proves that in terms of transmission, the proposed method can
make the best use of the relevant resources of the network, and
also the transmission delay and packet loss can be controlled
within a limited range. The remaining shows the performance
pattern across data transmission rate measurements from the
second experiment, which is similar to those given for
throughput and bandwidth utilization. The proposed method
dominates the Ryu controller and the method in previous study
[21] for most of the flows by 15% and 30% respectively,
which proves the better performance of the proposed method
under dynamic network topology and dynamic traffic
requirement.

Packet loss plays a significant role in determining network
performance under a request environment that requires both
integrity and speed of data being transferred. Low PL indicates
a more dependable network with less packet drop, as in the
case of latency-sensitive applications, it is necessary to
maintain quality of service. As shown in Figure 14, the packet

3541

loss is greatly reduced compared to a normal SDN controller
system, with the proposed method performed by 50%. The
improvement comes from a feedback control system that is
complex and embedded in the proposed model, where SNN's
are used to control traffic. The SNN-based controller smartly
prioritizes every traffic stream, determines the optimal route,
and safeguards against packet drops. In contrast to the classic
SDN controller, which might still use static or less adaptive
techniques, the SNN technique continues to learn and adapt to
the changing traffic flows. Ensures that even in the presence
of high network load, packets are transmitted with minimal
latency, and packet drops are significantly minimized. Suitable
only for the most critical, much-needed services requiring true
reliability and packet delivery in real-time, the proposed model
appears to be capable of dynamically adapting to changes in
network topology while minimizing packet loss. Such a
benefit is important for ensuring that service-level agreements
(SLAs) are met, thus increasing service satisfaction and
maintaining trust that the network will continue to function.

Packet Loss Over Time

2.00 Emm Proposed Method

I Ryu-controller

1754

1.50 1

1.25

1.00 1

0.75 1

Packet Loss (Packets)

0.50 1

0.25 1

20

40
Time (s)

60 80 100

Figure 14. A comparison of the proposed method to the Ryu
controller in terms of packet loss

As shown in Figure 15, the delay results prove that the
proposed model for the traffic classification and routing is
much better than the traditional Ryu controller regarding a
reduction in the network delay. It is a key performance
indicator of the time taken by data packets to travel from
source to destination. The optimized flow classification and

adaptive routing mechanisms adopted in the proposed model
give rise to a lower delay in the model than in the Ryu
controller by 60%. The dynamic approach helps to ensure that
all types of traffic are handled in the best possible way at every
point, optimally avoiding congestion and thus supporting
lower overall delay. On the other hand, Ryu is a more generic
controller that does not have traffic type-aware routing
capabilities, causing a significant waste of resource utilization
of the network, as more and more long-lived, large size EFs
obtain a good quality of service of network while starving the
others and causing a bottleneck that increases congestion and
delay of all types of traffic. Hence, the proposed approach is
more optimal than the Ryu controller and indicates that it can
identify the required path with respect to flow type, as shown
in Table 2.

Delay Comparison Between Proposed Method and Ryu-controller

—e— Proposed Method
Ryu-controller

Delay (ms)

2 4 6 8
Packets

Figure 15. A comparison of the proposed method to the Ryu
controller in terms of delay

Table 2. The overall performance of the proposed model
compared to Ryu-Controller and Al-Saadi et al. [22]

The Proposed The Proposed
Performance Method Method
Metrics Enhancement vs. Enhancement vs.
the Ryu-Controller Al-Saadi et al. [22]
Throughput for 60% 20%
two types
Throughput for o o
elephant flow 60% 10%
Thrqughput for 50% 12%
mice flow
Bandwidth 50, 7%
usage
Data transfer 15% 30%
rate
Packet loss 50%
Latency 60%

5. CONCLUSIONS

The SDN enhancements in this paper are divided into two
parts: the traffic classification part and the traffic routing part,
which aim to enhance the efficiency and performance of this
technology. The initial part of the paper presents an SDN-
based classification model utilizing a single SNN under the
supervised learning paradigm based on flow characterization
and classification. The proposed method illustrates the
potential of SNNs for analyzing and classifying network
traffic into EF and MF categories with respect to their

3542

performance traits (e.g., duration, packet size, and byte rate).
Part two of the paper includes how to route traffic by
classification type. MFs have short durations and are latency-
sensitive, so the shortest path is necessary for MFs, and the
Dijkstra algorithm is considered because it ensures faster
performance with less latency time. The Widest Dijkstra
algorithm can be applied to EFs, which are often bandwidth-
intensive and long-lived, to assign paths with the widest links
first to reduce congestion and use the bandwidth more
effectively. This double-routing approach extends the SDN's
traffic diversity by allowing the selection of different routing
actions based on each flow specification. These approaches
significantly increase the global performance and efficiency of
the SDN system, guaranteeing a proper usage of its resources
while still respecting the QoS requirements through
heterogeneous traffic. The models used have proven their
efficiency by outperforming the traditional Software Defined
Network and the K-means algorithm in terms of increasing
throughput by 60% and 20%, enhancing bandwidth utilization
by 5% and 7%, reducing packet loss by 50%, and decreasing
latency by 60%, respectively. Finally, this research presents a
promising work for using SNN-based traffic classification and
adaptive traffic routing, where SDN can be useful. To gain
even more from this work, it can be integrated with the concept
of many controllers to optimize the benefits of both concepts
and provide enormous scalability for SDN, which we are
working on in the near future.

REFERENCES

[1] Ali, T.E., Morad, A.H., Abdala, M.A. (2020). Traffic
management inside software-defined data centre
networking. Bulletin of Electrical Engineering and
Informatics, 9(5): 2045-2054.
https://doi.org/10.11591/eei.v9i5.1928

Darabseh, A., Al-Ayyoub, M., Jararweh, Y., Benkhelifa,
E., Vouk, M., Rindos, A. (2015). SDDC: A software
defined datacenter experimental framework. In 2015 3rd
International Conference on Future Internet of Things
and Cloud, Rome, Italy, pp. 189-194.
https://doi.org/10.1109/FiCloud.2015.127

Thirupathi, V., Sandeep, C.H., Kumar, N., Kumar, P.P.
(2019). A comprehensive review on SDN architecture,
applications and major benifits of SDN. International
Journal of Advanced Science and Technology, 28(20):
607-614.

Al-Kaseem, B.R., Al-Raweshidy, H.S. (2017). SD-NFV
as an energy efficient approach for M2M networks using
cloud-based 6LoWPAN testbed. IEEE Internet of Things
Journal, 4(5): 1787-1797.
https://doi.org/10.1109/ji0t.2017.2704921

Islam, M.S., Al-Mukhtar, M., Khan, M.R K., Hossain,
M. (2023). A survey on SDN and SDCN traffic
measurement: Existing approaches and research
challenges. Eng, 4(2): 1071-1115.
https://doi.org/10.3390/eng4020063

Priyadarsini, M., Bera, P. (2021). Software defined
networking architecture, traffic management, security,
and placement: A survey. Computer Networks, 192:
108047. https://doi.org/10.1016/j.comnet.2021.108047
Mendiola, A., Astorga, J., Jacob, E., Higuero, M. (2016).
A survey on the contributions of software-defined
networking to traffic engineering. IEEE

(2]

(3]

(6]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

Communications Surveys and Tutorials, 19(2): 918-953.
https://doi.org/10.1109/COMST.2016.2633579

Wang, N., Ho, K.H., Pavlou, G., Howarth, M. (2008). An
overview of routing optimization for internet traffic
engineering. IEEE Communications Surveys and
Tutorials, 10(1): 36-56.
http://doi.org/10.1109/COMST.2008.4483669

Yusuf, M.N., bin Abu Bakar, K., Isyaku, B., Saheed,
A.L. (2023). Review of path selection algorithms with
link quality and critical switch aware for heterogeneous
traffic in SDN. International Journal of Electrical and
Computer Engineering Systems, 14(3): 345-370.
https://doi.org/10.32985/ijeces.14.3.12

Kandula, S., Sengupta, S., Greenberg, A., Patel, P.,
Chaiken, R. (2009). The nature of data center traffic:
Measurements and analysis. In Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement,
Ilinois, United States, pp- 202-208.
https://doi.org/10.1145/1644893.1644918

Isyaku, B., Mohd Zahid, M.S., Bte Kamat, M., Abu
Bakar, K., Ghaleb, F.A. (2020). Software defined
networking flow table management of openflow switches
performance and security challenges: A survey. Future
Internet, 12(9): 147. https://doi.org/10.3390/f112090147
Li, G., Wang, X., Zhang, Z. (2019). SDN-based load
balancing scheme for multi-controller deployment. IEEE
Access, 7: 39612-39622.
https://doi.org/10.1109/ACCESS.2019.2906683

Zaher, M., Alawadi, A.H., Molnar, S. (2021). Sieve: A
flow scheduling framework in SDN based data center
networks. Computer Communications, 171: 99-111.
https://doi.org/10.1016/j.comcom.2021.02.013
Shirali-Shahreza, S., Ganjali, Y. (2018). Delayed
installation and expedited eviction: An alternative
approach to reduce flow table occupancy in SDN
switches. IEEE/ACM Transactions on Networking,
26(4): 1547-1561.
https://doi.org/10.1109/TNET.2018.2841397

Liu, W.X., Cai, J., Chen, Q.C., Wang, Y. (2021). DRL-
R: Deep reinforcement learning approach for intelligent
routing in software-defined data-center networks.
Journal of Network and Computer Applications, 177:
102865. https://doi.org/10.1016/j.jnca.2020.102865
Kumar, S., Bansal, G., Shekhawat, V.S. (2020). A
machine learning approach for traffic flow provisioning
in software defined networks. In 2020 International
Conference on Information Networking, Barcelona,
Spain, pp. 602-607.
https://doi.org/10.1109/ICOIN48656.2020.9016529
Modi, T.M., Swain, P. (2023). Enhanced routing using
recurrent neural networks in software defined-data center
network. Concurrency and Computation: Practice and
Experience, 35(5): e7557.
https://doi.org/10.1002/cpe.7557

Mu, T.Y., Al-Fuqaha, A., Shuaib, K., Sallabi, F.M.,
Qadir, J. (2018). SDN flow entry management using
reinforcement learning. ACM Transactions on
Autonomous and Adaptive Systems, 13(2): 1-23.
https://doi.org/10.1145/3281032

Lin, C.Y., Chen, C., Chang, J.W., Chu, Y.H. (2014).
Elephant flow detection in datacenters using openflow-
based hierarchical statistics pulling. In 2014 IEEE Global
Communications Conference, Texas, United States, pp.
2264-2269.

3543

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[31]

[32]

[33]

https://doi.org/10.1109/GLOCOM.2014.7037145
Aymaz, S., Cavdar, T. (2023). Efficient routing by
detecting elephant flows with deep learning method in
SDN. Advances in Electrical and Computer Engineering,
23(3): 57-66. https://doi.org/10.4316/AECE.2023.03007
Yusuf, M.N., Bakar, K.B.A., Isyaku, B., Osman, A.H.,
Nasser, M., Elhaj, F.A. (2023). Adaptive path selection
algorithm with flow classification for software-defined
networks. Mathematics, 11(6): 1404.
https://doi.org/10.3390/math11061404

Al-Saadi, M., Khan, A., Kelefouras, V., Walker, D.J., Al-
Saadi, B. (2023). SDN-based routing framework for
elephant and mice flows using unsupervised machine
learning. Network, 3(1): 218-238.
https://doi.org/10.3390/network3010011

Shears, O., Yazdani, A. (2020). Spiking neural networks
for image classification. Virginia Polytechnic Institute
and State University, 2(6): 1-7.
https://doi.org/10.13140/RG.2.2.27001.80486
Abubaker, B.A., Ahmed, S.R., Guron, A.T., Fadhil, M.,
Algburi, S., Abdulrahman, B.F. (2023). Spiking neural
network for enhanced mobile robots’ navigation control.
In 2023 7th International Symposium on Innovative
Approaches in Smart Technologies, Istanbul, Turkey, pp.
1-8. https://doi.org/10.1109/ISAS60782.2023.10391395
Al-Jamali, N.A.S., Al-Raweshidy, H.S. (2020). Modified
Elman spike neural network for identification and control
of dynamic system. IEEE Access, 8: 61246-61254.
https://doi.org/10.1109/ACCESS.2020.2984311
Yellakuor, B.E., Moses, A.A., Zhen, Q., Olaosebikan,
0O.E., Qin, Z. (2020). A multi-spiking neural network
learning model for data classification. IEEE Access, 8:
72360-72371.
https://doi.org/10.1109/ACCESS.2020.2985257
Yamazaki, K., Vo-Ho, V.K., Bulsara, D., Le, N. (2022).
Spiking neural networks and their applications: A
review. Brain Sciences, 12(7): 863.
https://doi.org/10.3390/brainsci1 2070863

Oniz, Y., Kaynak, O., Abiyev, R. (2013). Spiking neural
networks for the control of a servo system. In 2013 IEEE
International Conference on Mechatronics, Kagawa,
Japan, Pp- 94-98.
https://doi.org/10.1109/ICMECH.2013.6518517

Hu, R., Chang, S., Wang, H., He, J., Huang, Q. (2018).
Efficient multispike learning for spiking neural networks
using probability-modulated timing method. IEEE
Transactions on Neural Networks and Learning Systems,
30(7): 1984-1997.
https://doi.org/10.1109/TNNLS.2018.2875471

Zhou, S.B., Li, X.H. (2021). Spiking neural networks
with single-spike temporal-coded neurons for network
intrusion detection. arXiv preprint arXiv:2010.07803.
https://doi.org/10.48550/arXiv.2010.07803

Xu, Y., Yang, J., Zhong, S. (2017). An online supervised
learning method based on gradient descent for spiking
neurons. Neural Networks, 93: 7-20.
https://doi.org/10.1016/j.neunet.2017.04.010
Thiruvarudchelvan, V., Crane, J.W., Bossomaier, T.
(2013). Analysis of SpikeProp convergence with
alternative spike response functions. In 2013 IEEE
Symposium on Foundations of Computational
Intelligence, Singapore, pp- 98-105.
https://doi.org/10.1109/FOCI.2013.6602461

Lantz, B., Heller, B., McKeown, N. (2010, October). A

network in a laptop: Rapid prototyping for software- (2020) Software defined networks using Mininet.

defined networks. In Proceedings of the 9th ACM International Journal of Recent Technology and

SIGCOMM Workshop on Hot Topics in Networks, New Engineering 9(1): 843-849.

York, United States, pp- 1-6. https://doi.org/10.35940/ijrte.F9375.059120

https://doi.org/10.1145/1868447.1868466 [36] Al-Azawee, S.J., Al-Jamali, N.A.S. (2025). Handling
[34] Kushi, K.S., Enayet, T., Dipa, O.A. (2019). Software- heterogeneous traffic for software defined data-center

defined networking and its implementation by using network using spike neural network. Journal of

Mininet. Doctoral dissertation. East West University. Engineering, 31(5): 21-34.
[35] Patil, P.B., Bhagat, K.S., Kirange, D.K., Patil, S.D. https://doi.org/10.31026/j.eng.2025.05.02

3544

