
Heterogeneous Traffic Management in SDN-Enabled Data Center Network Using Machine

Learning-SPIKE Model

Sanarya Jamal Al-Azawee* , Nadia Adnan Shiltagh Al-Jamali

Department of Computer Engineering, University of Baghdad, Baghdad 10011, Iraq

Corresponding Author Email: gs22.sjalazawee@coeng.uobaghdad.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121019 ABSTRACT

Received: 13 April 2025

Revised: 25 June 2025

Accepted: 4 July 2025

Available online: 31 October 2025

Software-Defined Networking (SDN) has evolved network management by detaching

the control plane from the data forwarding plane, resulting in unparalleled flexibility

and efficiency in network administration. However, the heterogeneity of traffic in SDN

presents issues in achieving Quality of Service (QoS) demands and efficiently

managing network resources. SDN traffic flows are often divided into elephant flows

(EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes

and long durations, account for a small amount of total traffic but require

disproportionate network resources, thus causing congestion and delays for smaller

MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they

account for the vast bulk of traffic in data center networks. The incorrect use of network

resources by EFs frequently disturbs the performance of MFs. To meet these issues,

precise classification of network traffic has become crucial. This classification enables

traffic-aware routing techniques. This paper offers a novel model for classifying SDN

traffic into MF and EF using a spike neural network. Once identified, traffic is routed

based on the classification results. For MF, the model uses the Dijkstra algorithm. For

EF, the Widest Dijkstra algorithm is used. This model solves the difficulties of traffic

heterogeneity in SDNs by integrating advanced classification techniques and strategic

routing algorithms. It enables desirable resource allocation, eliminates congestion, and

increases network performance and dependability. The models used have proven their

efficiency by outperforming the traditional Software Defined Network and other

algorithms in terms of: throughput by 60%, and 20%, bandwidth utilization by 5%, and

7%, packet loss by 50%, and latency by 60%, respectively.

Keywords:

congestion, Dijkstra algorithm, Widest Dijkstra

algorithm, elephant flows, mice flow, spike

neural network, traffic flows

1. INTRODUCTION

Most professional corporate organizations, regardless of

size, believe that owning data centers (DCs) is essential for

effective competition. However, the rapid increase and

distribution of data centers complicate control and

management operations. Operators can spend hours, days, or

even weeks manually configuring networks for specific

devices [1]. Large-scale data centers require a standardized

approach to managing infrastructure. Controlling data centers

can be challenging due to their dispersed locations and

multiple infrastructure providers [2]. The Software-Defined

Networking (SDN) overcomes the constraints of classical DC.

SDN is the most recent advancement in networking

technology. It makes network administration easier by

separating the control and data planes. This improves network

flexibility and efficiency. SDN architecture promotes simple

configuration and troubleshooting methods [3]. The core

notion of this design is decoupling, or the separation of the

control and data planes [4]. The control plane is the system

that handles traffic management, and hence the logic that

determines where the packets that arrive should be transmitted

[5]. This procedure results in the formation of a structure that

holds all packet forwarding choices, such as a routing table.

The data plane is the underlying mechanism that routes traffic

to the next hop (next node) based on the structure created by

the control plane. Currently, this separation results in basic

network devices that just handle packet forwarding and hence

only implement the data plane. The control plane is

implemented as software, which is therefore totally

programmable and referred to as a controller. The controller

communicates with the devices via a southbound interface,

with which it sends the information essential for the proper

operation of the SDN switches, and outputs information in the

form of an API using a northbound interface [6]. In today's

systems, however, the controller employs both traditional

artificial intelligence and neural network routing techniques.

Flow routing is critical to enhancing network performance.

The basic purpose of flow routing in a network is to get the

data as rapidly as possible. Routing can increase network

performance, which is an evident advantage [7, 8]. The traffic

flow is diverse, with different arrival rates, durations, and

sizes. The heterogeneity has an influence on both their Quality

of Service (QoS) and network resource needs. They behave

differently when traveling to their goal [9]. SDN data center

traffic flows are often divided into two categories: elephant

Mathematical Modelling of Engineering Problems
Vol. 12, No. 10, October, 2025, pp. 3531-3544

Journal homepage: http://iieta.org/journals/mmep

3531

https://orcid.org/0009-0003-7863-7044
https://orcid.org/0000-0002-0377-1519
https://crossmark.crossref.org/dialog/?doi=mmep.121019&domain=pdf

flows (EFs) (large, long-lived) and mice flows (MFs) (small,

short-lived). EFs, which are distinguished by their huge packet

sizes and long durations, account for a small amount of total

traffic but require disproportionate network resources. MFs,

on the other hand, have a short lifetime and are latency-

sensitive, but they account for the vast bulk of traffic in DCNs.

The incorrect use of network resources by EFs frequently

disturbs the performance of MFs, resulting in suboptimal

resource use and QoS degradation. As a result, their actions

produce congestion and delays in the vast majority of MF.

However, MFs require high priority due to their delay

sensitivity [9, 10]. In spite of the SDN architecture providing

a global perspective and increased network programmability,

allowing for flexible capabilities and effective QoS

provisioning strategies [11]. Currently, most DCNs suffer

from the exploitation of network resources by huge packets

(elephant flow) that enter the network at any time, affecting

MF. Poor network performance is mainly because of high

congestion and unequal load due to inappropriate traffic

distribution. Due to these problems, the classification of

network traffic into MF and EF with their precise forecasting

has become a necessity. Such a classification brings routing

techniques of maximizing traffic-aware, which can allocate

network resources depending upon flow characteristics,

reducing packet congestion and delays. Exploiting the

centralized control and programmability of SDN, flexible

traffic management schemes can be constructed to moderate

the conflicting requirements of different traffic types, ensuring

optimal resource utilization and stable QoS.

This paper seeks to construct an SDN-based application

employing supervised machine learning to meet specified

goals.

• Create an SDN-based routing system that identifies flows.

The system has two components that work with the

controller: traffic classification and traffic routing.

• Identify flows as mice or elephants, using spiking neural

networks (SNNs).

• Implement a flow routing algorithm that prioritizes shorter

paths for mice and wider paths for elephants. As a result,

the network becomes more balanced, leading to increased

throughput.

• Optimize route cost calculation and ensure compliance with

real-time data.

The proposed model addresses the challenges of traffic

heterogeneity in SDNs via a combination of state-of-the-art

classification approaches and optimal routing methods. It

enables desirable resource allocation, eliminates congestion,

and increases network performance and dependability.

2. RELATED WORK

Several types of research have been done in the area of

SDNs. SDNs centralize routing control by transferring it from

separate network parts to a single location. Furthermore, the

synchronization and control capabilities of an SDN give all of

the necessary information about the connectivity between

hosts as well as the ability to make quick switching decisions.

SDNs ensure high-level performance [9]. Network

performance degradation is mostly caused by congestion and

imbalanced load. Many researchers recommended strategies

to alleviate network congestion and balance network load,

while others advised enhancing traffic routing. Li et al. [12]

suggested a dynamic multi-controller deployment strategy

based on load balancing, which improves scalability and

reliability in SDN systems. It turns flow requests into a

queuing model and investigates traffic propagation latency and

controller capacity. Zaher et al. [13] introduced Sieve, a

revolutionary distributed SDN-based platform for flow

scheduling that improves network performance and efficiency

via intelligent flow management. Sieve initially organizes a

subset of the flows based on available bandwidth, independent

of class. Shirali-Shahreza and Ganjali [14] addressed the

restricted flow table issue by delaying rule installation and

hastening evictions to alleviate network congestion. Their

approach anticipates TCP flow termination from RST/FIN

packets to accelerate rule evictions while handling non-TCP

flows to delay rule installation. It lowers the drop in traffic.

Liu et al. [15] described a DRL-based intelligent routing

solution for SD-DCN that improves network efficiency and

performance. A DRL agent on an SDN controller learns from

network data and makes adaptive routing decisions depending

on its current state, such as bandwidth and cache, because the

cache should impact routing decisions by removing duplicate

traffic in the DCN. Kumar et al. [16] showed how machine

learning algorithms may determine the least congested path for

routing traffic in an SDN network. Their proposed route

selection method creates a list of possible routes using network

information from the SDN controller. Modi and Swain [17]

proposed a routing approach for SD-DCN that employs RNN

deep learning models (LSTM-RNN and BiLSTM-RNN).

Their proposed model provided a routing path combination

based on past traffic statistics, which improves the SDN

controller's effectiveness. Mu et al. [18] suggested utilizing

reinforcement learning to regulate SDN flow entry. Suggested

an RL-based approach for minimizing control overhead by

selecting appropriate parameters for rule insertion in Ternary

Content Addressable Memory (TCAM) to overcome the

constrained capacity of TCAM used in an OpenFlow-enabled

switch. Improved network performance and traffic load. Lin et

al. [19] proposed an efficient strategy for identifying elephant

traffic in data centers. The OpenFlow controller can send

individual or aggregate statistics messages to acquire

statistical data from OpenFlow switches. The authors

proposed a Hierarchical Statistics-pulling approach that uses

aggregate statistical data to identify elephant movement in a

smaller area. Using aggregate statistical data can significantly

reduce bandwidth consumption during elephant flow

detection. It submits an aggregate statistics request for the full

flow space block. If a block's aggregate stats reply reaches the

threshold, divide it into four equal-sized blocks. After four

repetitions, it sends individual requests to all flows whose

aggregate dependency exceeds the threshold, indicating an

elephant flow. Aymaz and Çavdar [20] proposed an approach

to detect EFs to improve routing efficiency. Their proposed

model employed deep learning to identify EFs. Their classifier

categorizes flow using a convolutional neural network (CNN)

structure. As a result, certain EFs are routed. Yusuf et al. [21]

suggested a method that worked with the SDN controller to

establish paths for each traffic type. As a consequence, their

proposed approach combines composite measurements with

flow classification to detect congestion-prone flows and divert

them along the most appropriate pathways to avoid congestion

and traffic loss. Al-Saadi et al. [22] proposed an SDN

application that uses network performance metrics, like flow

time, number of packets, and average packet size, to select the

optimal path for each flow type. K-means clustering is utilized

to detect flows using these three metrics and classify them into

3532

elephants and mice, then choose the path for each typical flow.

Although relatively new and validated, supervised learning

with SNNs has not been explored for traffic classification. It is

a remarkable oversight, particularly because SNNs reduce

energy consumption significantly, which is perfectly in line

with the goals of the modern industry, where sustainability and

energy efficiency have become paramount. SNNs are

continuously proving themselves to be very efficient in many

applications, including image classification [23] and robotics

[24]. The SNNs draw inspiration from biological systems,

enabling lower-power operation and improved performance,

especially in scenarios involving real-time adaptive decision-

making. Such properties are ideal and resolve the challenges

of traffic heterogeneity in SDN, thereby making SNNs a

promising option for addressing those problems. As

previously stated, researchers have made various

improvements to the SDN layers to address congestion and

load balance by adding additional controllers, increasing the

buffer size of the switches, performing routing operations

based on specific parameters such as bandwidth and cache,

and prioritizing the elephant flow over the MF. Hence, the

SNNs opted to employ them for traffic classification in this

work, as the benefits justify it. This is the first step to explore

their potential for this field study. But the hope is to take

advantage of their unique capability to build a complete but

energy-efficient approach to tag network traffic as mice or

elephants. Then, after classification, equal priority is given to

both the mice and the elephant in the routing process by

sending them in a way that suits the needs of both types and

not encountering them on the same path. Such a novel

approach not only fills existing traffic management research

gaps but also helps to build sustainable, high-throughput SDN

systems.

3. METHODOLOGY

This paper introduced two interrelated models, as shown in

Figure 1, to characterize SDN-enabled traffic classification

and routing applications. In the first model, a Spike neural

network is applied to classify network traffic into both EFs and

MFs. It is classified according to important traffic-generating

parameters like flow time, packet size, and byte rate. SNNs are

particularly applicable for implementing this model. The SNN

can classify flows with high accuracy and in real time. The

second model is related to traffic routing, following the

classification technique. After that, the routing system selects

the best path depending on classification results, consumes

efficient network resources, and delivers QoS. On the other

hand, the Dijkstra algorithm allows sending the MFs using the

shortest path to affect the delivery time for the packets that

require low latency. EF are generally bandwidth-intensive,

which are divided over multiple paths instead of a single path

using the Widest Dijkstra algorithm, minimizing congestion

and providing continuous data transfer without interfering

with other traffic flows. The proposed models have the

capability to solve heterogeneous traffic by providing a

combination of advanced traffic classifying and intelligent

routing algorithms in SDNs, as shown in Figure 2. These

interrelated models reduce network congestion as well as

enhance system throughput and performance. Inter-related

models are scalable and applicable for contemporary data

centers and large-scale SDN architectures, and the floor for a

more expressive and agile traffic management strategy.

Figure 1. The proposed models

3533

Figure 2. Overview of the workflow

3.1 Feature type selection stage

There are hundreds (potentially thousands) of applications

that change all the time. Making it hard to categorize traffic at

the application level. To identify traffic well, the proposed

models have the power to identify elephants or mice on the

network layer. Mice traffic is mostly query (e.g., Google

searches and Facebook updates). A major portion of software-

defined data center network (SDDCN) traffic is query traffic

with a relatively smaller data transfer volume. Most of the

time, the big upgrades come from the elephant traffic, like

antivirus, updates, and movie downloads. According to Cisco,

an elephant flow contains more than 15 packets, and a short

flow contains fewer than 15 packets. The proposed models

also use the byte size for referring to the flow, e.g., elephants

or mice. Elephant flow usually gets 500 bytes or more for

packets. In OpenSwitch, the mice traffic in data centers is

limited to 10 KB. However, the actual traffic of SDDCN

networks is diverse in nature. As a result, the characteristics

used to distinguish between traffic classes are (flow duration,

byte rate, and packet rate). The proposed models used the

feature constructed for the Network Information Management

and Security Group (NIMS) dataset, which has around

303,549 traffic flow statistics. It has two classes (Elephant

class and Mice class), with 70% used for training and 30% for

testing. Table 1 shows part of the NIMS dataset.

Table 1. Part of the NIMS dataset

Flow Size Packet Size Byte Counts Traffic Class

120697 3 64 0

4096366 5 44 0

9289799 8 453 0

243187 4 490 0

4300478 63 65749 1

89872447 1188 76304 1

33494941 46290 1372596 1

Traffic class demonstrates the type of traffic where zero

represents mice traffic and one represents elephant traffic.

3.2 Classification stage

The classification process concentrates on the SNNs, which

act as a classifier. Figure 3 (Part A) depicts the fully linked

feed-forward scheme of the SNN. The form of this structure

consists of three layers: the input layer, the hidden layer, and

the output layer. The output layer has one neuron that uses a

spike mechanism to express traffic types such as elephants or

mice. The hidden layer has twenty neurons, whereas the input

layer contains three neurons that correlate to the traffic

characteristic employed. In the SNN, each neuron has five

connections (synapses) with variable delays and weights, as

shown in Figure 3 (Part B). Trial and error determine the count

of hidden neurons and synapses. Each neuron follows a three-

step computational process. First, the membrane potential is

formed by adding all input spikes together. The potential is

then evaluated to see if it exceeds a certain threshold with

value 1, which was determined by trial and error, as illustrated

in Figure 3 (Part C). If the threshold is surpassed, the neuron

will send a spike at a time, which is called the firing time (ft),

and reset the membrane potential to zero, as shown in Figure

3 (Part C). For ease of categorization, the system has three

major components: encoding and decoding functions, neuron

model functions, and a modified learning algorithm.

Figure 3. SNN architecture (A) SNN feedforward; (B) The connection between two neurons; (C) The computational phases of

spiking neuron

3534

3.3 Encoding and decoding operation

SNN operates on pulse information instead of actual data,

as shown in Figure 4. The first step in developing an SNN is

to transform analog input data into spike trains. Therefore, Eq.

(1) is applied to encode the input values as spike timings.

𝑡ℎ
𝑓

= 𝑇𝑚𝑎𝑥 − 𝑟𝑜𝑢𝑛𝑑 (𝑇𝑚𝑖𝑛 +
(𝑅𝑖𝑛−𝑅𝑚𝑖𝑛)(𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛)

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛
) (1)

𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the maximum and minimum intervals,

respectively. 𝑅𝑚𝑎𝑥 is a value more than the highest value in

the input, while 𝑅𝑚𝑖𝑛 is a value lower than the lowest value in

the input. 𝑅𝑖𝑛 reflects the current real data. round is an

operation that produces a rounded value.

After training, apply the decoding Eq. (2) to transform the

network's output spike time information to actual data [25].

𝑅𝐼(𝑡𝑦
𝑓

) = (
𝑡𝑦−𝑅𝑚𝑖𝑛(𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛)

𝑓

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
) + 𝑅𝑚𝑖𝑛 (2)

Figure 4. Methodology of encoding and decoding

neuron model function

Several types of spiking neuron models have been

proposed. The following models are more physiologically

plausible: the Spike Response Model (SRM), the Izhikevich

Model, the Hodgkin-Huxley Model (HH), and the Integrate

and Fire Model. These models operate with SNNs. Choosing

a suitable model relies on the user's needs [26, 27]. In this

paper, the SRM is utilized due to its simple mathematics [28].

This model represents the SRM's link between input spikes

and membrane potential. In this work, the function of the

hyperbolic tangent is utilized in the SRM. When each spike

arrives, a postsynaptic potential (PSP) is stimulated in the

neuron if its membrane potential is under a particular threshold

(θ) [29]. Membrane potential is the sum of all PSPs stimulated

by all incoming spikes. The weights of synapses that convey

these spikes also impact the value of PSP. The equation shows

how to compute the PSP using the spike response function ɛ(t)

[30].

𝜀(𝑡) = {
0, 𝑡 ≤ 0

tanh (
𝑡

𝜏𝑠
) , 𝑡 > 0

 (3)

where,

𝜀(𝑡): Spike response function (SRF)

𝜏𝑠: Time decay constant with value 2

The derivative of 𝜀(𝑡) is described below:

𝜕𝜀

𝜕𝑡
=

1

𝜏𝑠

(1 − 𝑡𝑎𝑛ℎ2(𝑡 𝜏𝑠⁄)) (4)

3.4 Learning method

Once real data is encoded into spike timings, the forward

step begins. The second stage is the feedforward operation,

which determines whether every neuron in the hidden layer is

stimulated or not. Neurons can only spike once when their

membrane potential (𝑚𝑝) surpasses the threshold value (𝜗). If

the neuron is spiked, the algorithm moves to the next neuron

in the same layer; the SNN algorithm calculates the membrane

potential 𝑚𝑝ℎ(𝑡) using Eq. (5) [31].

𝑚𝑝ℎ(𝑡) = ∑ ∑ 𝑤𝑥ℎ
𝑘 (𝑡)𝜀(𝑡 − 𝑡𝑥

𝑓
𝐾

𝑘=1

𝑋

𝑥=1
− 𝑑𝑘) (5)

𝑋 denotes the number of input neurons, and 𝐾 is the number

of synapses that link two neurons. 𝑤𝑥ℎ
𝑘 indicates the synapse

weight coefficient for presynaptic and postsynaptic neurons.

The presynaptic neurons' spike time is 𝑡𝑥
𝑓
, while the Synaptic

delay is represented by 𝑑𝑘.

When the neurons of the hidden layer are complete, the

algorithm moves to the output layer and performs the same

manner, except in this case, the spikes of the hidden layer are

inputs to the output neurons. Then the total error is computed

using Mean Square Error (MSE), as shown in Eq. (6) [32].

𝑀𝑆𝐸 =
1

2
∑ (𝑡𝑦

𝑓
− 𝑡𝑦

𝑑)
2

𝑦𝜖𝑌
 (6)

where, the 𝑡𝑦
𝑓

 represents the spiking firing time, while 𝑡𝑦
𝑑

represents the desired spiking.

The reverse phase of the process involves adjusting the

weights of synapses for connections. SNN is trained by

updating the weight of each synapse using the

backpropagation method (SPIKEPROP) to decrease the MSE

value. Backpropagation begins in the output layer and returns

to the hidden layer.

Synapses weights among the outcome and hidden neurons

are modified using Eqs. (7)-(9).

𝛿𝑦 =
𝑡𝑦

𝑑−𝑡𝑦
𝑓

∑ ∑ 𝑤ℎ𝑦
𝑘 𝜕

𝜕𝑡
𝑦ℎ

𝑘𝐾
𝑘=1

𝐻
ℎ=1

 (7)

∆𝑤ℎ𝑦
𝑘 = 𝛼 𝛿𝑦𝑦ℎ

𝑘 (8)

𝑤ℎ𝑦
𝑘 (𝑡 + 1) = 𝑤ℎ𝑦

𝑘 (𝑡) − ∆𝑤ℎ𝑦
𝑘 (9)

where, 𝛿𝑦 delta function applies to the outcome layer.

Synapse weights among hidden neurons and the input

neuron is adjusted using the Eqs. (10)-(12).

𝛿ℎ =
∑ 𝛿𝑦 ∑ 𝑤ℎ𝑦

𝑘 (𝑡)
𝜕

𝜕𝑡
𝑦ℎ

𝑘𝐾
𝑘=1

𝐻
ℎ=1

∑ ∑ 𝑤𝑥ℎ
𝑘 (𝑡)

𝜕

𝜕𝑡
𝑦𝑥

𝑘𝐾
𝑘=1

𝑋
𝑥=1

 (10)

∆𝑤𝑥ℎ
𝑘 = 𝛼. 𝛿ℎ𝑦𝑥

𝑘 (11)

𝑤𝑥ℎ
𝑘 (𝑡 + 1) = 𝑤𝑥ℎ

𝑘 (𝑡) − ∆𝑤𝑥ℎ
𝑘 (12)

where, 𝛿ℎ is the delta function of hidden neurons and 𝛼

represents the learning rate with value 0.01.

3535

3.5 Traffic routing stage

Routing is a critical element in networking that involves

configuring devices and creating network policies to facilitate

the transfer of data from point A to point B. At its most basic

level, routing manages the flow of data packets to their

destination, taking into account network devices such as

switches and routers to ensure they are delivered optimally.

This process is the routing algorithm which plays an important

role in identifying the optimal path for data packets to travel

all over the network. These algorithms take into consideration

several variables, including the topology of the network, link

capacity, traffic load, latency, and dependability in order to

discover the optimal path. In doing so, they ensure data is

delivered effectively through the use of lower latency and

higher throughput. Modern routing algorithms are not only

efficient but also intended to improve transmission reliability

by circumventing congested or faulty paths. They also

facilitate a network to become more scalable by not only

tolerating the growth of complex and rapid networks like data

centers and wide-area of networks but also adapting to the

modification of network structure and largeness, including,

but not limited to, advanced routing techniques that cater to

varying traffic demands, including load aware algorithms

(e.g., Widest Path) and shortest path algorithm (e.g., Dijkstra).

Besides maximizing resource utilization, these approaches

also address the needs of different types of traffic – bandwidth-

intensive and latency-sensitive flows. Even as networks

advance, reliable and effective communication still relies on

routing as a fundamental component across ever more

elaborate networking circumstances. After finishing both the

learning phase and traffic classification, based on the

classification results, the proper routing algorithms are

executed. For the MF traffic, these are short-lived and latency-

sensitive; thus, the Dijkstra algorithm will be utilized. The

algorithm helps in finding the shortest path from the source to

the destination and it provides low latencies and quickly

delivers packets of data. In contrast, for Elephant flow traffic

with large bandwidth requirements and long lifetimes, the

Widest Dijkstra algorithm is used. These variant places more

weight on paths with larger bandwidth capacity, which lessens

the probability of congestion and accommodates the

processing of heavy traffic loads. The Dijkstra algorithm is a

core component of SDN efficiency and performance. The

shortest path computation in a network increases the routing

efficiency and thereby the overall QoS. The platform

facilitates core network elements like low latency and high

reliability by reducing delays and optimizing path selection.

Finally, the algorithm helps distribute the server load by

balancing the traffic on the network, preventing bottlenecks in

the connection, and ensuring a smoother data flow. Further

refinement of this approach is achieved by the incorporation

of the Widest Dijkstra algorithm for EF—taking into account

the specific difficulties that bandwidth-intensive flows

introduce. The system enhances the responsiveness of MFs

while optimizing the resource usage of EFs by dynamically

allocating resources according to flow characteristics. These

routing strategies work together to ensure that the SDN runs at

optimal performance, managing heterogeneous traffic and

increasing the scalability and reliability of modern network

environments. The SDN routing approach is decomposed into

two general components: obtaining a global network view and

realizing this view in practice.

3.6 Obtaining a global perspective of the network

The first phase consists of collecting network data to

determine the topology, building a base for intelligent and

efficient routing decisions. SDN separates the control and

administration planes and the data-forwarding components,

unlike traditional routing protocols such as Open Shortest Path

First (OSPF). In this method, a centralized SDN controller

makes routing decisions, eliminating the built-in knowledge of

the network within forwarding devices (e.g., switches). For

this, the controller requires real-time and accurate information

about the networks, such as the statuses of dynamic links and

the topological structure. Topology discovery works through

Link Layer Discovery Protocol (LLDP) using the SDN

controllers. LLDP is good for collecting static link status data

such as switch connection, since this data does not change a

lot over time. Through continuous quote LLDP exchanges, the

controller builds an intake view of the entire physical network

topology, including all nodes and links. But in dynamic

scenarios, routing needs more than static measurements. The

capabilities of dynamic link-state metrics, such as capacity,

latency, and available bandwidth are susceptible to real-time

traffic situations. An SDN controller must constantly monitor

these dynamic characteristics in order to ensure correct

Network State Information (NSI). This involves retrieving

updated link-state metrics from frequent queries of the

underlying switches, for each connection. If the SDN

controller is cognizant of not only static topology but also

dynamic link states, then exploit this information to make

judicious routing choices. In order to utilize resources more

efficiently, reduce congestion, and meet QoS requirements,

the controller dynamically changes paths by combining real-

time link-state information with the static topology map

provided by LLDP. SDN proves its flexibility and dominance

in the ability to manage modern, complex networking

environments by maintaining a central, real-time view of the

network.

3.7 Routing algorithms in SDN

In SDN, routing algorithms are responsible for making the

right decision about which path - or paths - traffic will flow,

for example. After this path is established, the controller then

modifies the forwarding devices to make sure that the packets

are sent the right way. Unlike conventional networks, where

routing decisions are spread throughout switches in an SDN

network, they only need to be made at the controller. SDN-

based shortest path finding involves finding a shortest path

from source to destination using Dijkstra's algorithm, choosing

the optimal path based on various attributes of the network like

Latency, Bandwidth, and Hop count. An important component

of this is the SDN controller which absorbs all the analytics

from each and every switch, bandwidth readily available,

which connections are up, and more performance metrics. The

Dijkstra algorithm generates a weighted graph to model the

network. This graph depicts switches along with other network

devices shown as nodes. Edges represent the relationships or

connections existing between these nodes. Each edge is given

a weight according to the cost of traversing the link,

determined through metrics such as latency and bandwidth.

Then, Dijkstra’s Algorithm is used to find the shortest or least

cost path between the source and the destination nodes on the

graph. The method finds the minimum cumulative cost

because it iteratively selects the next node with the lowest

3536

weight until it arrives at the destination. Here, the cost of

traversing the connection is mathematically expressed as in

Eq. (13):

Cij = Lij + Bij + Hij (13)

where,

Cij: The link's cost between nodes

Lij: The link's latency

Bij: The link's available bandwidth

Hij: Hop count for the link

After the best path is calculated, the SDN controller

processes the data into forwarding rules and sends them to the

correlated switches. As each packet moves along its chosen

path, it has to follow certain rules that guide the switches to

forward it correctly, providing optimal data transfer and

quality of service compliance. Reinforcing this dynamic

approach, SDN could keep high performance in several

dynamic traffic conditions, optimize using the resources, and

adapt to the real-time networking environment. The cost of a

link is computed based on multiple matrices, including

(available bandwidth, capability, latency, hop count, etc.).

Then select the path that has the smallest latency and

capability and consider it as the best shortest path. For the

widest Dijkstra follows the same procedure and instead of

choosing one shortest path, it selects multiple shortest paths to

forward the elephant flow that needs many routes due to its

large volume leading to enhancing its throughput as shown in

the algorithm below. To illustrate that assume that a host

(Host) wishes to transmit several packets to a server (Server)

and that there are several routes between the Host and the

Server, as illustrated in Figure 5. The following procedures

will be used to compute the link cost of routes.

Figure 5. The map between the host and server

Find all Possible Routes:

First route R1 passes through switches S1-S3-S6-S9-Server

Second route R2 passes through switches S1-S3-S6-S10-

S12-Server

Third route R3 passes through switches S2-S4-S6-S9-

Server

Fourth route R4 passes through switches S2-S4-S6-S10-

S12-Server

Fifth route R5 passes through switches S2-S4-S7-S12-

Server

Sixth route R6 passes through switches S2-S4-S7-S11-

Server

Seventh route R7 passes through switches S2-S8-S11-

Server

Eighth route R8 passes through switches S2-S5-S8-S11-

Server

Ninth route R9 passes through switches S2-S5-S7-S12-

Server

Tenth route R10 passes through switches S2-S5-S7-S11-

Server

Then calculate the available bandwidth, latency and

capability for each route as:

Available Bandwidth for RI

AB1 = AB (HC1) + AB (C13) + AB (C36) + AB (C69) +

AB (C9S)

Available Bandwidth for R2

AB2 = AB (HC1) + AB (C13) + AB (C36) + AB (C610)

+AB (C1012) +AB (C12S)

Available Bandwidth for R3

AB3 = AB (HC2) + AB (C24) + AB (C46) + AB (C69) +

AB (C9S)

Available Bandwidth for R4

AB4 = AB (HC2) + AB (C24) + AB (C46) + AB (C610) +

AB (C1012) + AB (C12S)

Available Bandwidth for R5

AB5 = AB (HC2) + AB (C24) + AB (C47) + AB (C712) +

AB (C12S)

Available Bandwidth for R6

AB6 = AB (HC2) + AB (C24) + AB (C47) + AB (C711) +

AB (C11S)

Available Bandwidth for R7

AB7 = AB (HC2) + AB (C28) + AB (C811) + AB (C11S)

Available Bandwidth for R8

AB8 = AB (HC2) + AB (C25) + AB (C58) + AB (C811) +

AB (C11S)

Available Bandwidth for R9

AB9 = AB (HC2) + AB (C25) + AB (C57) + AB (C721) +

AB (C12S)

Available Bandwidth for R10

AB10 = AB (HC2) + AB (C25) + AB (C57) + AB (C711)

+AB (C11S)

After that compute the latency for each route as follows:

Latency of R1 = 1/ AB1

Latency of R2 = 1/ AB2

Latency of R3 = 1/ AB3

Latency of R4 = 1/ AB4

Latency of R5 = 1/ AB5

Latency of R6 = 1/ AB6

Latency of R7 = 1/ AB7

Latency of R8 = 1/ AB8

Latency of R9 = 1/ AB9

Latency of R10 = 1/ AB10

Finally, compute the capability for each switch using the

Eq. (14).

w[v] =
∑  𝑓∈𝐹𝑙𝑜𝑤(𝑣) Bits(𝑓)

capacity(𝑣)
 (14)

Then based on the results select the path that has the

smallest latency and capability and consider it as the best

shortest path.

3537

Algorithm 1: Traffic Classification and Traffic Routing

Suggested Models in Generic Form

1: Begin

2: G(*): Classification using SNN

3: T(*): Traffic analysis

4: F(*): extraction of features from traffic analysis

5: E(*): Encoding the actual value of the extracted feature

into the spike

6: EVO: represents Event Occurs

7: 0 represents the Mice class

8: 1: represents the elephant class

9: Y: represents Yes

10: N: represents No

11: FRE: represents Flow Rule Exists

12: Initialize The Traffic (End Host Makes Their

Requests)

13: if EVO = N then

14: wait until EVO =Y

15: Else

16: SDN OFSs Receive the Packets and Check the Flow

Table

17: if FRE = Y then

18: Forwarding Packets Based on Flow Rules

19: end

20: Else

21: Alarm the Controller that there is a flow need to be

forward by sending a packet in msg

22: Continue flow processing in The Controller

23: Z ← T(flow)

24: * Z represents the analyzed traffic*\

25: Activate the SNN Classifier

26: M← F(Z)

27: * M is the extracted feature in a real number *\

28: S ← E(M)

29: * S is the extracted feature in spike time *\

30: W ← G(s)

19: * W is the outcome of the classes of the SNN

classifier, with probable values of 0 or 1 *\

31:O←W

32: if O=0

33: * Consider the flow as Mice flow*\

34: Implement the Dijkstra Algorithm

35: Find the Shortest Path from Source to Destination

based on Specific QoS

36: else

37: *The flow is classified as Elephant flow*\

38: Implement the Wideset Dijkstra Algorithm

39: Find the Multiple Shortest Paths from Source to

Destination based on Specific QoS

40: The Controller Makes the Flow Rules

41: Install the Flow Rule on OFSs

42: Forwarding Packets Based on Flow Rules

43: End

4. PERFORMANCE METRICS OF THE PROPOSED

MODEL

In this paper, the Mininet emulation framework is employed

to develop and build a realistic SDN environment on a virtual

machine [33-36]. Due to its construction of lightweight

virtualization, Mininet offers great flexibility and facilitates

the development of a dynamic and scalable network topology

tailored to the proposed models. In this paper, two scenarios

were designed to test the performance of the proposed traffic

models on different traffic conditions. The first scenario

topology, as shown in Figure 6(a), has two servers that work

as traffic sources and sinks, one SDN controller, ten OpenFlow

switches composing the network core and edge layers, and six

hosts that are spread through the topology. The small scenario

topology is also implemented as shown in Figure 6(b). These

setups replicated an actual DCN environment and thus

simulated realistic traffic flows and network functionalities.

The flexible Mininet environment facilitated the generation

and control of varied traffic types, enabling extensive

investigations into the performance of the overall SNN

classification and the routing conducted via both the Dijkstra

and Widest Dijkstra algorithms within the same emulation

testbed. These regulated yet realistic environments provided

by this emulation setup allowed for the validation of the

suggested approaches' scalability, effectiveness, and effect on

network performance.

(a)

(b)

Figure 6. (a) Custom first topology of the network; (b)

Custom second topology of the network

The Ryu controller is used due to its programmability and

wide support for SDN portability. Evaluating the success of a

classification model and its learning process requires a

comprehensive examination of the important metrics that

represent its efficiency. Evaluating the success of a routing

model necessitates a thorough examination of important

parameters that represent its efficiency, reliability, and

adaptability. The suggested routing model is evaluated based

on the following essential performance characteristics:

3538

Throughput, bandwidth utilization, packet loss, and latency.

The evaluation compares the performance of the SDN-Ryu

controller and the approach described in the cited study [22],

which employs K-means clustering for traffic categorization,

to the proposed system based on the Data Center Network

architecture. As shown in Figure 7, the comparison focuses on

two sorts of fluxes: EFs (big, long-lived flows) and MFs

(small, short-lived flows). Throughput, an important statistic

in SDN traffic routing, is used as the major parameter in this

assessment since it directly shows the number of packets

successfully received throughout the simulation time. The

evaluation findings show that the suggested model

outperforms both the Ryu controller and the paper approach in

terms of throughput for two flow types by 60% and 20%

respectively. These benefits demonstrate the model's capacity

to manage a variety of traffic types more successfully than

standard SDN control approaches. As the number of parallel

flows grows, throughput often falls owing to increased

network congestion. However, the suggested technology

outperforms both the Ryu controller and the paper method in

terms of throughput on average. This shows that the suggested

model not only adapts better to larger traffic loads but also

improves network efficiency under challenging conditions.

Figure 7. The comparison of the proposed method to the Ryu

controller and cited paper in terms of throughput for two

types of flows

Figure 8. The comparison of the proposed method to the Ryu

controller and the cited paper for elephant flow

Figure 8 compares the throughput performance for EFs

using the recommended strategy to the Ryu controller and the

method given in the cited paper. The findings clearly show

that, on average, the suggested strategy outperforms both the

Ryu controller and the paper's solution. This higher

performance is due to the optimized flow classification and

routing strategy contained in the proposed technology.

Throughput amounts change owing to the dynamic nature of

the routing operation, which is impacted by the unique

properties of each flow. Specifically, the routing algorithm in

the proposed approach chooses the best path for each

representative flow, taking into consideration characteristics

such as flow size and duration. On average, the proposed

model provides an estimated 60% improvement in throughput

over the Ryu controller and a 10% gain over the paper

technique for EFs. This significant gain demonstrates the

proposed technique's capacity to more efficiently prioritize

big, long-lived flows (EFs), hence increasing data

transmission speeds and overall network efficiency.

Figure 9. The comparison of the proposed method to the Ryu

controller and cited paper in terms of mice flow throughput

Figure 10. The comparison of the bandwidth utilized by the

proposed model to the Ryu controller and cited paper for

both types

The throughput performance for MFs (small, transient

flows) utilizing the suggested model in comparison to the Ryu

controller and the technique described in the cited paper is

shown in Figure 9. The findings show that the suggested model

outperforms the Ryu controller and the SDN-based solution in

the cited study [22], consistently delivering greater throughput

3539

across all MFs. In particular, the proposed model outperforms

the paper's approach and the conventional SDN configuration

in terms of throughput by about 50% and 12% respectively.

The main reason for this improvement is the model's improved

flow classification and routing system, which is designed to

manage the particularities of mice fluxes. MFs, as opposed to

EFs, require quick processing and effective routing in order to

avoid bottlenecks and guarantee the timely delivery of tiny

data packets. Alongside throughput, another important metric

for assessing network efficiency is bandwidth consumption.

Figure 10 shows that the proposed model not only performs

well in throughput but also in terms of bandwidth usage when

compared to the Ryu controller and the method described in

the cited paper. In particular, the proposed model consistently

uses less bandwidth for the majority of flows while

maintaining high throughput levels, which is due to the

model's sophisticated traffic classification. The proposed

model's categorization techniques allow it to manage these

flows more effectively than conventional SDN techniques,

which frequently over-allocate resources, resulting in

increased bandwidth usage. Furthermore, it is remarkable that

throughput and network performance are not sacrificed in

order to achieve this increase, even if the decreased bandwidth

utilization may appear expected given the model's emphasis

on classification and adaptive routing. Rather, the model

optimizes in a balanced way, optimizing throughput while

consuming the fewest resources possible. This effective use of

bandwidth is especially helpful in situations where network

resources are expensive or scarce, including in cloud

environments, data center networks, and Internet of Things

deployments. The suggested model reduces bandwidth

consumption over the paper's approach and the conventional

SDN configuration by about 7% and 5% respectively, which

frees up resources for more flows while also lowering

operating costs.

Moving to the second topology, the proposed model

conducted two exhaustive tests in relation to the manner

discussed in previous study [22] in order to evaluate the

mechanism above against the Ryu controller and the proposed

mechanism. The assessment was done on the same parameters

and conditions as the first topology to maintain consistency

and fairness when comparing. Figures 11 and 12 show

throughput and bandwidth utilization metrics acquired during

tests for the proposed technique, the Ryu controller, and the

paper's method. These figures depict how the strategies were

performed under various scenarios.

Figure 11. A comparison between the suggested approach to the Ryu controller and the cited paper for both types of flows in the

two experiments in terms of throughput

Figure 12. A comparison between the suggested approach to the Ryu controller and cited paper for both types of flows in the

two experiments in terms of bandwidth

3540

Figure 13. A comparison of two types of flows in two experiments using the proposed method, the cited paper, and the Ryu

controller of data transfer rates

In Experiment 2, the suggested mechanism consistently

outperformed both the Ryu controller and the aforementioned

approach in throughput and bandwidth utilization. The charts

in Figure 13 provide a clear illustration of this by showing the

comparison of results across different flows. The proposed

mechanism provided a higher throughput and a more efficient

bandwidth utilization, which indirectly reflected the ability to

handle the network traffic more appropriately. The

performance enhancement was consistent across flows, which

in turn demonstrates the strength of this proposed method and

its adaptation to many situations. Thus, the proposed

mechanism achieved better performance than Ryu controller

while improving the entire network performance significantly.

These improvements show the potential of the described

technique to be a scalable and conditional yet reliable method

for controlling the network resource in dynamic and

overloaded scenarios.

The data transmission rate represented the third

fundamental measure used to evaluate the performance of the

proposed process with respect to both the Ryu controller and

the technique explained in the reference paper. It was supplied

explicitly to give us an idea about how well the proposed

method regulates network data transfer. The proposed strategy

is significantly more efficient than the Ryu controller and the

method provided in the referenced paper in terms of data

transfer for most of the flows, as illustrated in Figure 13. It

proves that in terms of transmission, the proposed method can

make the best use of the relevant resources of the network, and

also the transmission delay and packet loss can be controlled

within a limited range. The remaining shows the performance

pattern across data transmission rate measurements from the

second experiment, which is similar to those given for

throughput and bandwidth utilization. The proposed method

dominates the Ryu controller and the method in previous study

[21] for most of the flows by 15% and 30% respectively,

which proves the better performance of the proposed method

under dynamic network topology and dynamic traffic

requirement.

Packet loss plays a significant role in determining network

performance under a request environment that requires both

integrity and speed of data being transferred. Low PL indicates

a more dependable network with less packet drop, as in the

case of latency-sensitive applications, it is necessary to

maintain quality of service. As shown in Figure 14, the packet

loss is greatly reduced compared to a normal SDN controller

system, with the proposed method performed by 50%. The

improvement comes from a feedback control system that is

complex and embedded in the proposed model, where SNNs

are used to control traffic. The SNN-based controller smartly

prioritizes every traffic stream, determines the optimal route,

and safeguards against packet drops. In contrast to the classic

SDN controller, which might still use static or less adaptive

techniques, the SNN technique continues to learn and adapt to

the changing traffic flows. Ensures that even in the presence

of high network load, packets are transmitted with minimal

latency, and packet drops are significantly minimized. Suitable

only for the most critical, much-needed services requiring true

reliability and packet delivery in real-time, the proposed model

appears to be capable of dynamically adapting to changes in

network topology while minimizing packet loss. Such a

benefit is important for ensuring that service-level agreements

(SLAs) are met, thus increasing service satisfaction and

maintaining trust that the network will continue to function.

Figure 14. A comparison of the proposed method to the Ryu

controller in terms of packet loss

As shown in Figure 15, the delay results prove that the

proposed model for the traffic classification and routing is

much better than the traditional Ryu controller regarding a

reduction in the network delay. It is a key performance

indicator of the time taken by data packets to travel from

source to destination. The optimized flow classification and

3541

adaptive routing mechanisms adopted in the proposed model

give rise to a lower delay in the model than in the Ryu

controller by 60%. The dynamic approach helps to ensure that

all types of traffic are handled in the best possible way at every

point, optimally avoiding congestion and thus supporting

lower overall delay. On the other hand, Ryu is a more generic

controller that does not have traffic type-aware routing

capabilities, causing a significant waste of resource utilization

of the network, as more and more long-lived, large size EFs

obtain a good quality of service of network while starving the

others and causing a bottleneck that increases congestion and

delay of all types of traffic. Hence, the proposed approach is

more optimal than the Ryu controller and indicates that it can

identify the required path with respect to flow type, as shown

in Table 2.

Figure 15. A comparison of the proposed method to the Ryu

controller in terms of delay

Table 2. The overall performance of the proposed model

compared to Ryu-Controller and Al-Saadi et al. [22]

Performance

Metrics

The Proposed

Method

Enhancement vs.

the Ryu-Controller

The Proposed

Method

Enhancement vs.

Al-Saadi et al. [22]
Throughput for

two types
60% 20%

Throughput for

elephant flow
60% 10%

Throughput for

mice flow
50% 12%

Bandwidth

usage
5% 7%

Data transfer

rate
15% 30%

Packet loss 50%
Latency 60%

5. CONCLUSIONS

The SDN enhancements in this paper are divided into two

parts: the traffic classification part and the traffic routing part,

which aim to enhance the efficiency and performance of this

technology. The initial part of the paper presents an SDN-

based classification model utilizing a single SNN under the

supervised learning paradigm based on flow characterization

and classification. The proposed method illustrates the

potential of SNNs for analyzing and classifying network

traffic into EF and MF categories with respect to their

performance traits (e.g., duration, packet size, and byte rate).

Part two of the paper includes how to route traffic by

classification type. MFs have short durations and are latency-

sensitive, so the shortest path is necessary for MFs, and the

Dijkstra algorithm is considered because it ensures faster

performance with less latency time. The Widest Dijkstra

algorithm can be applied to EFs, which are often bandwidth-

intensive and long-lived, to assign paths with the widest links

first to reduce congestion and use the bandwidth more

effectively. This double-routing approach extends the SDN's

traffic diversity by allowing the selection of different routing

actions based on each flow specification. These approaches

significantly increase the global performance and efficiency of

the SDN system, guaranteeing a proper usage of its resources

while still respecting the QoS requirements through

heterogeneous traffic. The models used have proven their

efficiency by outperforming the traditional Software Defined

Network and the K-means algorithm in terms of increasing

throughput by 60% and 20%, enhancing bandwidth utilization

by 5% and 7%, reducing packet loss by 50%, and decreasing

latency by 60%, respectively. Finally, this research presents a

promising work for using SNN-based traffic classification and

adaptive traffic routing, where SDN can be useful. To gain

even more from this work, it can be integrated with the concept

of many controllers to optimize the benefits of both concepts

and provide enormous scalability for SDN, which we are

working on in the near future.

REFERENCES

[1] Ali, T.E., Morad, A.H., Abdala, M.A. (2020). Traffic

management inside software-defined data centre

networking. Bulletin of Electrical Engineering and

Informatics, 9(5): 2045-2054.

https://doi.org/10.11591/eei.v9i5.1928

[2] Darabseh, A., Al-Ayyoub, M., Jararweh, Y., Benkhelifa,

E., Vouk, M., Rindos, A. (2015). SDDC: A software

defined datacenter experimental framework. In 2015 3rd

International Conference on Future Internet of Things

and Cloud, Rome, Italy, pp. 189-194.

https://doi.org/10.1109/FiCloud.2015.127

[3] Thirupathi, V., Sandeep, C.H., Kumar, N., Kumar, P.P.

(2019). A comprehensive review on SDN architecture,

applications and major benifits of SDN. International

Journal of Advanced Science and Technology, 28(20):

607-614.

[4] Al-Kaseem, B.R., Al-Raweshidy, H.S. (2017). SD-NFV

as an energy efficient approach for M2M networks using

cloud-based 6LoWPAN testbed. IEEE Internet of Things

Journal, 4(5): 1787-1797.

https://doi.org/10.1109/jiot.2017.2704921

[5] Islam, M.S., Al-Mukhtar, M., Khan, M.R.K., Hossain,

M. (2023). A survey on SDN and SDCN traffic

measurement: Existing approaches and research

challenges. Eng, 4(2): 1071-1115.

https://doi.org/10.3390/eng4020063

[6] Priyadarsini, M., Bera, P. (2021). Software defined

networking architecture, traffic management, security,

and placement: A survey. Computer Networks, 192:

108047. https://doi.org/10.1016/j.comnet.2021.108047

[7] Mendiola, A., Astorga, J., Jacob, E., Higuero, M. (2016).

A survey on the contributions of software-defined

networking to traffic engineering. IEEE

3542

Communications Surveys and Tutorials, 19(2): 918-953.

https://doi.org/10.1109/COMST.2016.2633579

[8] Wang, N., Ho, K.H., Pavlou, G., Howarth, M. (2008). An

overview of routing optimization for internet traffic

engineering. IEEE Communications Surveys and

Tutorials, 10(1): 36-56.

http://doi.org/10.1109/COMST.2008.4483669

[9] Yusuf, M.N., bin Abu Bakar, K., Isyaku, B., Saheed,

A.L. (2023). Review of path selection algorithms with

link quality and critical switch aware for heterogeneous

traffic in SDN. International Journal of Electrical and

Computer Engineering Systems, 14(3): 345-370.

https://doi.org/10.32985/ijeces.14.3.12

[10] Kandula, S., Sengupta, S., Greenberg, A., Patel, P.,

Chaiken, R. (2009). The nature of data center traffic:

Measurements and analysis. In Proceedings of the 9th

ACM SIGCOMM Conference on Internet Measurement,

Illinois, United States, pp. 202-208.

https://doi.org/10.1145/1644893.1644918

[11] Isyaku, B., Mohd Zahid, M.S., Bte Kamat, M., Abu

Bakar, K., Ghaleb, F.A. (2020). Software defined

networking flow table management of openflow switches

performance and security challenges: A survey. Future

Internet, 12(9): 147. https://doi.org/10.3390/fi12090147

[12] Li, G., Wang, X., Zhang, Z. (2019). SDN-based load

balancing scheme for multi-controller deployment. IEEE

Access, 7: 39612-39622.

https://doi.org/10.1109/ACCESS.2019.2906683

[13] Zaher, M., Alawadi, A.H., Molnár, S. (2021). Sieve: A

flow scheduling framework in SDN based data center

networks. Computer Communications, 171: 99-111.

https://doi.org/10.1016/j.comcom.2021.02.013

[14] Shirali-Shahreza, S., Ganjali, Y. (2018). Delayed

installation and expedited eviction: An alternative

approach to reduce flow table occupancy in SDN

switches. IEEE/ACM Transactions on Networking,

26(4): 1547-1561.

https://doi.org/10.1109/TNET.2018.2841397

[15] Liu, W.X., Cai, J., Chen, Q.C., Wang, Y. (2021). DRL-

R: Deep reinforcement learning approach for intelligent

routing in software-defined data-center networks.

Journal of Network and Computer Applications, 177:

102865. https://doi.org/10.1016/j.jnca.2020.102865

[16] Kumar, S., Bansal, G., Shekhawat, V.S. (2020). A

machine learning approach for traffic flow provisioning

in software defined networks. In 2020 International

Conference on Information Networking, Barcelona,

Spain, pp. 602-607.

https://doi.org/10.1109/ICOIN48656.2020.9016529

[17] Modi, T.M., Swain, P. (2023). Enhanced routing using

recurrent neural networks in software defined‐data center

network. Concurrency and Computation: Practice and

Experience, 35(5): e7557.

https://doi.org/10.1002/cpe.7557

[18] Mu, T.Y., Al-Fuqaha, A., Shuaib, K., Sallabi, F.M.,

Qadir, J. (2018). SDN flow entry management using

reinforcement learning. ACM Transactions on

Autonomous and Adaptive Systems, 13(2): 1-23.

https://doi.org/10.1145/3281032

[19] Lin, C.Y., Chen, C., Chang, J.W., Chu, Y.H. (2014).

Elephant flow detection in datacenters using openflow-

based hierarchical statistics pulling. In 2014 IEEE Global

Communications Conference, Texas, United States, pp.

2264-2269.

https://doi.org/10.1109/GLOCOM.2014.7037145

[20] Aymaz, Ş., Çavdar, T. (2023). Efficient routing by

detecting elephant flows with deep learning method in

SDN. Advances in Electrical and Computer Engineering,

23(3): 57-66. https://doi.org/10.4316/AECE.2023.03007

[21] Yusuf, M.N., Bakar, K.B.A., Isyaku, B., Osman, A.H.,

Nasser, M., Elhaj, F.A. (2023). Adaptive path selection

algorithm with flow classification for software-defined

networks. Mathematics, 11(6): 1404.

https://doi.org/10.3390/math11061404

[22] Al-Saadi, M., Khan, A., Kelefouras, V., Walker, D.J., Al-

Saadi, B. (2023). SDN-based routing framework for

elephant and mice flows using unsupervised machine

learning. Network, 3(1): 218-238.

https://doi.org/10.3390/network3010011

[23] Shears, O., Yazdani, A. (2020). Spiking neural networks

for image classification. Virginia Polytechnic Institute

and State University, 2(6): 1-7.

https://doi.org/10.13140/RG.2.2.27001.80486

[24] Abubaker, B.A., Ahmed, S.R., Guron, A.T., Fadhil, M.,

Algburi, S., Abdulrahman, B.F. (2023). Spiking neural

network for enhanced mobile robots’ navigation control.

In 2023 7th International Symposium on Innovative

Approaches in Smart Technologies, Istanbul, Turkey, pp.

1-8. https://doi.org/10.1109/ISAS60782.2023.10391395

[25] Al-Jamali, N.A.S., Al-Raweshidy, H.S. (2020). Modified

Elman spike neural network for identification and control

of dynamic system. IEEE Access, 8: 61246-61254.

https://doi.org/10.1109/ACCESS.2020.2984311

[26] Yellakuor, B.E., Moses, A.A., Zhen, Q., Olaosebikan,

O.E., Qin, Z. (2020). A multi-spiking neural network

learning model for data classification. IEEE Access, 8:

72360-72371.

https://doi.org/10.1109/ACCESS.2020.2985257

[27] Yamazaki, K., Vo-Ho, V.K., Bulsara, D., Le, N. (2022).

Spiking neural networks and their applications: A

review. Brain Sciences, 12(7): 863.

https://doi.org/10.3390/brainsci12070863

[28] Oniz, Y., Kaynak, O., Abiyev, R. (2013). Spiking neural

networks for the control of a servo system. In 2013 IEEE

International Conference on Mechatronics, Kagawa,

Japan, pp. 94-98.

https://doi.org/10.1109/ICMECH.2013.6518517

[29] Hu, R., Chang, S., Wang, H., He, J., Huang, Q. (2018).

Efficient multispike learning for spiking neural networks

using probability-modulated timing method. IEEE

Transactions on Neural Networks and Learning Systems,

30(7): 1984-1997.

https://doi.org/10.1109/TNNLS.2018.2875471

[30] Zhou, S.B., Li, X.H. (2021). Spiking neural networks

with single-spike temporal-coded neurons for network

intrusion detection. arXiv preprint arXiv:2010.07803.

https://doi.org/10.48550/arXiv.2010.07803

[31] Xu, Y., Yang, J., Zhong, S. (2017). An online supervised

learning method based on gradient descent for spiking

neurons. Neural Networks, 93: 7-20.

https://doi.org/10.1016/j.neunet.2017.04.010

[32] Thiruvarudchelvan, V., Crane, J.W., Bossomaier, T.

(2013). Analysis of SpikeProp convergence with

alternative spike response functions. In 2013 IEEE

Symposium on Foundations of Computational

Intelligence, Singapore, pp. 98-105.

https://doi.org/10.1109/FOCI.2013.6602461

[33] Lantz, B., Heller, B., McKeown, N. (2010, October). A

3543

network in a laptop: Rapid prototyping for software-

defined networks. In Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks, New

York, United States, pp. 1-6.

https://doi.org/10.1145/1868447.1868466

[34] Kushi, K.S., Enayet, T., Dipa, O.A. (2019). Software-

defined networking and its implementation by using

Mininet. Doctoral dissertation. East West University.

[35] Patil, P.B., Bhagat, K.S., Kirange, D.K., Patil, S.D.

(2020) Software defined networks using Mininet.

International Journal of Recent Technology and

Engineering 9(1): 843-849.

https://doi.org/10.35940/ijrte.F9375.059120

[36] Al-Azawee, S.J., Al-Jamali, N.A.S. (2025). Handling

heterogeneous traffic for software defined data-center

network using spike neural network. Journal of

Engineering, 31(5): 21-34.

https://doi.org/10.31026/j.eng.2025.05.02

3544

