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Software-Defined Networking (SDN) has evolved network management by detaching 

the control plane from the data forwarding plane, resulting in unparalleled flexibility 

and efficiency in network administration. However, the heterogeneity of traffic in SDN 

presents issues in achieving Quality of Service (QoS) demands and efficiently 

managing network resources. SDN traffic flows are often divided into elephant flows 

(EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes 

and long durations, account for a small amount of total traffic but require 

disproportionate network resources, thus causing congestion and delays for smaller 

MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they 

account for the vast bulk of traffic in data center networks. The incorrect use of network 

resources by EFs frequently disturbs the performance of MFs. To meet these issues, 

precise classification of network traffic has become crucial. This classification enables 

traffic-aware routing techniques. This paper offers a novel model for classifying SDN 

traffic into MF and EF using a spike neural network. Once identified, traffic is routed 

based on the classification results. For MF, the model uses the Dijkstra algorithm. For 

EF, the Widest Dijkstra algorithm is used. This model solves the difficulties of traffic 

heterogeneity in SDNs by integrating advanced classification techniques and strategic 

routing algorithms. It enables desirable resource allocation, eliminates congestion, and 

increases network performance and dependability. The models used have proven their 

efficiency by outperforming the traditional Software Defined Network and other 

algorithms in terms of: throughput by 60%, and 20%, bandwidth utilization by 5%, and 

7%, packet loss by 50%, and latency by 60%, respectively. 
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1. INTRODUCTION

Most professional corporate organizations, regardless of 

size, believe that owning data centers (DCs) is essential for 

effective competition. However, the rapid increase and 

distribution of data centers complicate control and 

management operations. Operators can spend hours, days, or 

even weeks manually configuring networks for specific 

devices [1]. Large-scale data centers require a standardized 

approach to managing infrastructure. Controlling data centers 

can be challenging due to their dispersed locations and 

multiple infrastructure providers [2]. The Software-Defined 

Networking (SDN) overcomes the constraints of classical DC. 

SDN is the most recent advancement in networking 

technology. It makes network administration easier by 

separating the control and data planes. This improves network 

flexibility and efficiency. SDN architecture promotes simple 

configuration and troubleshooting methods [3]. The core 

notion of this design is decoupling, or the separation of the 

control and data planes [4]. The control plane is the system 

that handles traffic management, and hence the logic that 

determines where the packets that arrive should be transmitted 

[5]. This procedure results in the formation of a structure that 

holds all packet forwarding choices, such as a routing table. 

The data plane is the underlying mechanism that routes traffic 

to the next hop (next node) based on the structure created by 

the control plane. Currently, this separation results in basic 

network devices that just handle packet forwarding and hence 

only implement the data plane. The control plane is 

implemented as software, which is therefore totally 

programmable and referred to as a controller. The controller 

communicates with the devices via a southbound interface, 

with which it sends the information essential for the proper 

operation of the SDN switches, and outputs information in the 

form of an API using a northbound interface [6]. In today's 

systems, however, the controller employs both traditional 

artificial intelligence and neural network routing techniques. 

Flow routing is critical to enhancing network performance. 

The basic purpose of flow routing in a network is to get the 

data as rapidly as possible. Routing can increase network 

performance, which is an evident advantage [7, 8]. The traffic 

flow is diverse, with different arrival rates, durations, and 

sizes. The heterogeneity has an influence on both their Quality 

of Service (QoS) and network resource needs. They behave 

differently when traveling to their goal [9]. SDN data center 

traffic flows are often divided into two categories: elephant 
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flows (EFs) (large, long-lived) and mice flows (MFs) (small, 

short-lived). EFs, which are distinguished by their huge packet 

sizes and long durations, account for a small amount of total 

traffic but require disproportionate network resources. MFs, 

on the other hand, have a short lifetime and are latency-

sensitive, but they account for the vast bulk of traffic in DCNs. 

The incorrect use of network resources by EFs frequently 

disturbs the performance of MFs, resulting in suboptimal 

resource use and QoS degradation. As a result, their actions 

produce congestion and delays in the vast majority of MF. 

However, MFs require high priority due to their delay 

sensitivity [9, 10]. In spite of the SDN architecture providing 

a global perspective and increased network programmability, 

allowing for flexible capabilities and effective QoS 

provisioning strategies [11]. Currently, most DCNs suffer 

from the exploitation of network resources by huge packets 

(elephant flow) that enter the network at any time, affecting 

MF. Poor network performance is mainly because of high 

congestion and unequal load due to inappropriate traffic 

distribution. Due to these problems, the classification of 

network traffic into MF and EF with their precise forecasting 

has become a necessity. Such a classification brings routing 

techniques of maximizing traffic-aware, which can allocate 

network resources depending upon flow characteristics, 

reducing packet congestion and delays. Exploiting the 

centralized control and programmability of SDN, flexible 

traffic management schemes can be constructed to moderate 

the conflicting requirements of different traffic types, ensuring 

optimal resource utilization and stable QoS. 

This paper seeks to construct an SDN-based application 

employing supervised machine learning to meet specified 

goals. 

• Create an SDN-based routing system that identifies flows. 

The system has two components that work with the 

controller: traffic classification and traffic routing. 

• Identify flows as mice or elephants, using spiking neural 

networks (SNNs). 

• Implement a flow routing algorithm that prioritizes shorter 

paths for mice and wider paths for elephants. As a result, 

the network becomes more balanced, leading to increased 

throughput. 

• Optimize route cost calculation and ensure compliance with 

real-time data. 

The proposed model addresses the challenges of traffic 

heterogeneity in SDNs via a combination of state-of-the-art 

classification approaches and optimal routing methods. It 

enables desirable resource allocation, eliminates congestion, 

and increases network performance and dependability. 

 

 

2. RELATED WORK 
 

Several types of research have been done in the area of 

SDNs. SDNs centralize routing control by transferring it from 

separate network parts to a single location. Furthermore, the 

synchronization and control capabilities of an SDN give all of 

the necessary information about the connectivity between 

hosts as well as the ability to make quick switching decisions. 

SDNs ensure high-level performance [9]. Network 

performance degradation is mostly caused by congestion and 

imbalanced load. Many researchers recommended strategies 

to alleviate network congestion and balance network load, 

while others advised enhancing traffic routing. Li et al. [12] 

suggested a dynamic multi-controller deployment strategy 

based on load balancing, which improves scalability and 

reliability in SDN systems. It turns flow requests into a 

queuing model and investigates traffic propagation latency and 

controller capacity. Zaher et al. [13] introduced Sieve, a 

revolutionary distributed SDN-based platform for flow 

scheduling that improves network performance and efficiency 

via intelligent flow management. Sieve initially organizes a 

subset of the flows based on available bandwidth, independent 

of class. Shirali-Shahreza and Ganjali [14] addressed the 

restricted flow table issue by delaying rule installation and 

hastening evictions to alleviate network congestion. Their 

approach anticipates TCP flow termination from RST/FIN 

packets to accelerate rule evictions while handling non-TCP 

flows to delay rule installation. It lowers the drop in traffic. 

Liu et al. [15] described a DRL-based intelligent routing 

solution for SD-DCN that improves network efficiency and 

performance. A DRL agent on an SDN controller learns from 

network data and makes adaptive routing decisions depending 

on its current state, such as bandwidth and cache, because the 

cache should impact routing decisions by removing duplicate 

traffic in the DCN. Kumar et al. [16] showed how machine 

learning algorithms may determine the least congested path for 

routing traffic in an SDN network. Their proposed route 

selection method creates a list of possible routes using network 

information from the SDN controller. Modi and Swain [17] 

proposed a routing approach for SD-DCN that employs RNN 

deep learning models (LSTM-RNN and BiLSTM-RNN). 

Their proposed model provided a routing path combination 

based on past traffic statistics, which improves the SDN 

controller's effectiveness. Mu et al. [18] suggested utilizing 

reinforcement learning to regulate SDN flow entry. Suggested 

an RL-based approach for minimizing control overhead by 

selecting appropriate parameters for rule insertion in Ternary 

Content Addressable Memory (TCAM) to overcome the 

constrained capacity of TCAM used in an OpenFlow-enabled 

switch. Improved network performance and traffic load. Lin et 

al. [19] proposed an efficient strategy for identifying elephant 

traffic in data centers. The OpenFlow controller can send 

individual or aggregate statistics messages to acquire 

statistical data from OpenFlow switches. The authors 

proposed a Hierarchical Statistics-pulling approach that uses 

aggregate statistical data to identify elephant movement in a 

smaller area. Using aggregate statistical data can significantly 

reduce bandwidth consumption during elephant flow 

detection. It submits an aggregate statistics request for the full 

flow space block. If a block's aggregate stats reply reaches the 

threshold, divide it into four equal-sized blocks. After four 

repetitions, it sends individual requests to all flows whose 

aggregate dependency exceeds the threshold, indicating an 

elephant flow. Aymaz and Çavdar [20] proposed an approach 

to detect EFs to improve routing efficiency. Their proposed 

model employed deep learning to identify EFs. Their classifier 

categorizes flow using a convolutional neural network (CNN) 

structure. As a result, certain EFs are routed. Yusuf et al. [21] 

suggested a method that worked with the SDN controller to 

establish paths for each traffic type. As a consequence, their 

proposed approach combines composite measurements with 

flow classification to detect congestion-prone flows and divert 

them along the most appropriate pathways to avoid congestion 

and traffic loss. Al-Saadi et al. [22] proposed an SDN 

application that uses network performance metrics, like flow 

time, number of packets, and average packet size, to select the 

optimal path for each flow type. K-means clustering is utilized 

to detect flows using these three metrics and classify them into 
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elephants and mice, then choose the path for each typical flow. 

Although relatively new and validated, supervised learning 

with SNNs has not been explored for traffic classification. It is 

a remarkable oversight, particularly because SNNs reduce 

energy consumption significantly, which is perfectly in line 

with the goals of the modern industry, where sustainability and 

energy efficiency have become paramount. SNNs are 

continuously proving themselves to be very efficient in many 

applications, including image classification [23] and robotics 

[24]. The SNNs draw inspiration from biological systems, 

enabling lower-power operation and improved performance, 

especially in scenarios involving real-time adaptive decision-

making. Such properties are ideal and resolve the challenges 

of traffic heterogeneity in SDN, thereby making SNNs a 

promising option for addressing those problems. As 

previously stated, researchers have made various 

improvements to the SDN layers to address congestion and 

load balance by adding additional controllers, increasing the 

buffer size of the switches, performing routing operations 

based on specific parameters such as bandwidth and cache, 

and prioritizing the elephant flow over the MF. Hence, the 

SNNs opted to employ them for traffic classification in this 

work, as the benefits justify it. This is the first step to explore 

their potential for this field study. But the hope is to take 

advantage of their unique capability to build a complete but 

energy-efficient approach to tag network traffic as mice or 

elephants. Then, after classification, equal priority is given to 

both the mice and the elephant in the routing process by 

sending them in a way that suits the needs of both types and 

not encountering them on the same path. Such a novel 

approach not only fills existing traffic management research 

gaps but also helps to build sustainable, high-throughput SDN 

systems. 

 

 

3. METHODOLOGY 

 
This paper introduced two interrelated models, as shown in 

Figure 1, to characterize SDN-enabled traffic classification 

and routing applications. In the first model, a Spike neural 

network is applied to classify network traffic into both EFs and 

MFs. It is classified according to important traffic-generating 

parameters like flow time, packet size, and byte rate. SNNs are 

particularly applicable for implementing this model. The SNN 

can classify flows with high accuracy and in real time. The 

second model is related to traffic routing, following the 

classification technique. After that, the routing system selects 

the best path depending on classification results, consumes 

efficient network resources, and delivers QoS. On the other 

hand, the Dijkstra algorithm allows sending the MFs using the 

shortest path to affect the delivery time for the packets that 

require low latency. EF are generally bandwidth-intensive, 

which are divided over multiple paths instead of a single path 

using the Widest Dijkstra algorithm, minimizing congestion 

and providing continuous data transfer without interfering 

with other traffic flows. The proposed models have the 

capability to solve heterogeneous traffic by providing a 

combination of advanced traffic classifying and intelligent 

routing algorithms in SDNs, as shown in Figure 2. These 

interrelated models reduce network congestion as well as 

enhance system throughput and performance. Inter-related 

models are scalable and applicable for contemporary data 

centers and large-scale SDN architectures, and the floor for a 

more expressive and agile traffic management strategy. 

 

 
 

Figure 1. The proposed models 
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Figure 2. Overview of the workflow 

 

3.1 Feature type selection stage 

 

There are hundreds (potentially thousands) of applications 

that change all the time. Making it hard to categorize traffic at 

the application level. To identify traffic well, the proposed 

models have the power to identify elephants or mice on the 

network layer. Mice traffic is mostly query (e.g., Google 

searches and Facebook updates). A major portion of software-

defined data center network (SDDCN) traffic is query traffic 

with a relatively smaller data transfer volume. Most of the 

time, the big upgrades come from the elephant traffic, like 

antivirus, updates, and movie downloads. According to Cisco, 

an elephant flow contains more than 15 packets, and a short 

flow contains fewer than 15 packets. The proposed models 

also use the byte size for referring to the flow, e.g., elephants 

or mice. Elephant flow usually gets 500 bytes or more for 

packets. In OpenSwitch, the mice traffic in data centers is 

limited to 10 KB. However, the actual traffic of SDDCN 

networks is diverse in nature. As a result, the characteristics 

used to distinguish between traffic classes are (flow duration, 

byte rate, and packet rate). The proposed models used the 

feature constructed for the Network Information Management 

and Security Group (NIMS) dataset, which has around 

303,549 traffic flow statistics. It has two classes (Elephant 

class and Mice class), with 70% used for training and 30% for 

testing. Table 1 shows part of the NIMS dataset. 

 

Table 1. Part of the NIMS dataset 

 
Flow Size Packet Size Byte Counts Traffic Class 

120697 3 64 0 

4096366 5 44 0 

9289799 8 453 0 

243187 4 490 0 

4300478 63 65749 1 

89872447 1188 76304 1 

33494941 46290 1372596 1 

 

Traffic class demonstrates the type of traffic where zero 

represents mice traffic and one represents elephant traffic. 

 

3.2 Classification stage 

 

The classification process concentrates on the SNNs, which 

act as a classifier. Figure 3 (Part A) depicts the fully linked 

feed-forward scheme of the SNN. The form of this structure 

consists of three layers: the input layer, the hidden layer, and 

the output layer. The output layer has one neuron that uses a 

spike mechanism to express traffic types such as elephants or 

mice. The hidden layer has twenty neurons, whereas the input 

layer contains three neurons that correlate to the traffic 

characteristic employed. In the SNN, each neuron has five 

connections (synapses) with variable delays and weights, as 

shown in Figure 3 (Part B). Trial and error determine the count 

of hidden neurons and synapses. Each neuron follows a three-

step computational process. First, the membrane potential is 

formed by adding all input spikes together. The potential is 

then evaluated to see if it exceeds a certain threshold with 

value 1, which was determined by trial and error, as illustrated 

in Figure 3 (Part C). If the threshold is surpassed, the neuron 

will send a spike at a time, which is called the firing time (ft), 

and reset the membrane potential to zero, as shown in Figure 

3 (Part C). For ease of categorization, the system has three 

major components: encoding and decoding functions, neuron 

model functions, and a modified learning algorithm. 

 

 
 

Figure 3. SNN architecture (A) SNN feedforward; (B) The connection between two neurons; (C) The computational phases of 

spiking neuron 
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3.3 Encoding and decoding operation 

 

SNN operates on pulse information instead of actual data, 

as shown in Figure 4. The first step in developing an SNN is 

to transform analog input data into spike trains. Therefore, Eq. 

(1) is applied to encode the input values as spike timings. 

 

𝑡ℎ
𝑓

= 𝑇𝑚𝑎𝑥 − 𝑟𝑜𝑢𝑛𝑑 (𝑇𝑚𝑖𝑛 +
(𝑅𝑖𝑛−𝑅𝑚𝑖𝑛)(𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛)

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛
)  (1) 

 

𝑇𝑚𝑎𝑥  and 𝑇𝑚𝑖𝑛  are the maximum and minimum intervals, 

respectively. 𝑅𝑚𝑎𝑥 is a value more than the highest value in 

the input, while 𝑅𝑚𝑖𝑛 is a value lower than the lowest value in 

the input. 𝑅𝑖𝑛  reflects the current real data. round is an 

operation that produces a rounded value. 

After training, apply the decoding Eq. (2) to transform the 

network's output spike time information to actual data [25]. 

 

𝑅𝐼(𝑡𝑦
𝑓

) = (
𝑡𝑦−𝑅𝑚𝑖𝑛(𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛)

𝑓

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
) + 𝑅𝑚𝑖𝑛  (2) 

 

 
 

Figure 4. Methodology of encoding and decoding 

neuron model function 

 

Several types of spiking neuron models have been 

proposed. The following models are more physiologically 

plausible: the Spike Response Model (SRM), the Izhikevich 

Model, the Hodgkin-Huxley Model (HH), and the Integrate 

and Fire Model. These models operate with SNNs. Choosing 

a suitable model relies on the user's needs [26, 27]. In this 

paper, the SRM is utilized due to its simple mathematics [28]. 

This model represents the SRM's link between input spikes 

and membrane potential. In this work, the function of the 

hyperbolic tangent is utilized in the SRM. When each spike 

arrives, a postsynaptic potential (PSP) is stimulated in the 

neuron if its membrane potential is under a particular threshold 

(θ) [29]. Membrane potential is the sum of all PSPs stimulated 

by all incoming spikes. The weights of synapses that convey 

these spikes also impact the value of PSP. The equation shows 

how to compute the PSP using the spike response function ɛ(t) 

[30]. 

 

𝜀(𝑡) = {
0, 𝑡 ≤ 0

tanh (
𝑡

𝜏𝑠
) , 𝑡 > 0

  (3) 

 

where,  

𝜀(𝑡): Spike response function (SRF) 

𝜏𝑠: Time decay constant with value 2 

The derivative of 𝜀(𝑡) is described below: 

𝜕𝜀

𝜕𝑡
=

1

𝜏𝑠

(1 − 𝑡𝑎𝑛ℎ2(𝑡 𝜏𝑠⁄ )) (4) 

 

3.4 Learning method 

 

Once real data is encoded into spike timings, the forward 

step begins. The second stage is the feedforward operation, 

which determines whether every neuron in the hidden layer is 

stimulated or not. Neurons can only spike once when their 

membrane potential (𝑚𝑝) surpasses the threshold value (𝜗). If 

the neuron is spiked, the algorithm moves to the next neuron 

in the same layer; the SNN algorithm calculates the membrane 

potential 𝑚𝑝ℎ(𝑡) using Eq. (5) [31]. 

 

𝑚𝑝ℎ(𝑡) = ∑ ∑ 𝑤𝑥ℎ
𝑘 (𝑡)𝜀(𝑡 − 𝑡𝑥

𝑓
𝐾

𝑘=1

𝑋

𝑥=1
− 𝑑𝑘) (5) 

 

𝑋 denotes the number of input neurons, and 𝐾 is the number 

of synapses that link two neurons. 𝑤𝑥ℎ
𝑘  indicates the synapse 

weight coefficient for presynaptic and postsynaptic neurons. 

The presynaptic neurons' spike time is 𝑡𝑥
𝑓
, while the Synaptic 

delay is represented by 𝑑𝑘. 

When the neurons of the hidden layer are complete, the 

algorithm moves to the output layer and performs the same 

manner, except in this case, the spikes of the hidden layer are 

inputs to the output neurons. Then the total error is computed 

using Mean Square Error (MSE), as shown in Eq. (6) [32]. 

 

𝑀𝑆𝐸 =
1

2
∑ (𝑡𝑦

𝑓
− 𝑡𝑦

𝑑)
2

𝑦𝜖𝑌
 (6) 

 

where, the 𝑡𝑦
𝑓

 represents the spiking firing time, while 𝑡𝑦
𝑑 

represents the desired spiking. 

The reverse phase of the process involves adjusting the 

weights of synapses for connections. SNN is trained by 

updating the weight of each synapse using the 

backpropagation method (SPIKEPROP) to decrease the MSE 

value. Backpropagation begins in the output layer and returns 

to the hidden layer. 

Synapses weights among the outcome and hidden neurons 

are modified using Eqs. (7)-(9). 

 

𝛿𝑦 =
𝑡𝑦

𝑑−𝑡𝑦
𝑓

∑ ∑ 𝑤ℎ𝑦 
𝑘 𝜕

𝜕𝑡
𝑦ℎ

𝑘𝐾
𝑘=1

𝐻
ℎ=1

  (7) 

 

∆𝑤ℎ𝑦
𝑘 = 𝛼 𝛿𝑦𝑦ℎ

𝑘 (8) 

 

𝑤ℎ𝑦
𝑘 (𝑡 + 1) = 𝑤ℎ𝑦

𝑘 (𝑡) − ∆𝑤ℎ𝑦
𝑘  (9) 

 

where, 𝛿𝑦 delta function applies to the outcome layer. 

Synapse weights among hidden neurons and the input 

neuron is adjusted using the Eqs. (10)-(12). 

 

𝛿ℎ =
∑ 𝛿𝑦 ∑ 𝑤ℎ𝑦

𝑘 (𝑡) 
𝜕

𝜕𝑡
𝑦ℎ

𝑘𝐾
𝑘=1

𝐻
ℎ=1

∑ ∑ 𝑤𝑥ℎ
𝑘 (𝑡) 

𝜕

𝜕𝑡
𝑦𝑥

𝑘𝐾
𝑘=1

𝑋
𝑥=1

  (10) 

 

∆𝑤𝑥ℎ
𝑘 = 𝛼. 𝛿ℎ𝑦𝑥

𝑘  (11) 

 

𝑤𝑥ℎ
𝑘 (𝑡 + 1) = 𝑤𝑥ℎ

𝑘 (𝑡) − ∆𝑤𝑥ℎ
𝑘   (12) 

 

where, 𝛿ℎ  is the delta function of hidden neurons and 𝛼 

represents the learning rate with value 0.01. 
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3.5 Traffic routing stage 

 

Routing is a critical element in networking that involves 

configuring devices and creating network policies to facilitate 

the transfer of data from point A to point B. At its most basic 

level, routing manages the flow of data packets to their 

destination, taking into account network devices such as 

switches and routers to ensure they are delivered optimally. 

This process is the routing algorithm which plays an important 

role in identifying the optimal path for data packets to travel 

all over the network. These algorithms take into consideration 

several variables, including the topology of the network, link 

capacity, traffic load, latency, and dependability in order to 

discover the optimal path. In doing so, they ensure data is 

delivered effectively through the use of lower latency and 

higher throughput. Modern routing algorithms are not only 

efficient but also intended to improve transmission reliability 

by circumventing congested or faulty paths. They also 

facilitate a network to become more scalable by not only 

tolerating the growth of complex and rapid networks like data 

centers and wide-area of networks but also adapting to the 

modification of network structure and largeness, including, 

but not limited to, advanced routing techniques that cater to 

varying traffic demands, including load aware algorithms 

(e.g., Widest Path) and shortest path algorithm (e.g., Dijkstra). 

Besides maximizing resource utilization, these approaches 

also address the needs of different types of traffic – bandwidth-

intensive and latency-sensitive flows. Even as networks 

advance, reliable and effective communication still relies on 

routing as a fundamental component across ever more 

elaborate networking circumstances. After finishing both the 

learning phase and traffic classification, based on the 

classification results, the proper routing algorithms are 

executed. For the MF traffic, these are short-lived and latency-

sensitive; thus, the Dijkstra algorithm will be utilized. The 

algorithm helps in finding the shortest path from the source to 

the destination and it provides low latencies and quickly 

delivers packets of data. In contrast, for Elephant flow traffic 

with large bandwidth requirements and long lifetimes, the 

Widest Dijkstra algorithm is used. These variant places more 

weight on paths with larger bandwidth capacity, which lessens 

the probability of congestion and accommodates the 

processing of heavy traffic loads. The Dijkstra algorithm is a 

core component of SDN efficiency and performance. The 

shortest path computation in a network increases the routing 

efficiency and thereby the overall QoS. The platform 

facilitates core network elements like low latency and high 

reliability by reducing delays and optimizing path selection. 

Finally, the algorithm helps distribute the server load by 

balancing the traffic on the network, preventing bottlenecks in 

the connection, and ensuring a smoother data flow. Further 

refinement of this approach is achieved by the incorporation 

of the Widest Dijkstra algorithm for EF—taking into account 

the specific difficulties that bandwidth-intensive flows 

introduce. The system enhances the responsiveness of MFs 

while optimizing the resource usage of EFs by dynamically 

allocating resources according to flow characteristics. These 

routing strategies work together to ensure that the SDN runs at 

optimal performance, managing heterogeneous traffic and 

increasing the scalability and reliability of modern network 

environments. The SDN routing approach is decomposed into 

two general components: obtaining a global network view and 

realizing this view in practice. 

 

3.6 Obtaining a global perspective of the network 

 

The first phase consists of collecting network data to 

determine the topology, building a base for intelligent and 

efficient routing decisions. SDN separates the control and 

administration planes and the data-forwarding components, 

unlike traditional routing protocols such as Open Shortest Path 

First (OSPF). In this method, a centralized SDN controller 

makes routing decisions, eliminating the built-in knowledge of 

the network within forwarding devices (e.g., switches). For 

this, the controller requires real-time and accurate information 

about the networks, such as the statuses of dynamic links and 

the topological structure. Topology discovery works through 

Link Layer Discovery Protocol (LLDP) using the SDN 

controllers. LLDP is good for collecting static link status data 

such as switch connection, since this data does not change a 

lot over time. Through continuous quote LLDP exchanges, the 

controller builds an intake view of the entire physical network 

topology, including all nodes and links. But in dynamic 

scenarios, routing needs more than static measurements. The 

capabilities of dynamic link-state metrics, such as capacity, 

latency, and available bandwidth are susceptible to real-time 

traffic situations. An SDN controller must constantly monitor 

these dynamic characteristics in order to ensure correct 

Network State Information (NSI). This involves retrieving 

updated link-state metrics from frequent queries of the 

underlying switches, for each connection. If the SDN 

controller is cognizant of not only static topology but also 

dynamic link states, then exploit this information to make 

judicious routing choices. In order to utilize resources more 

efficiently, reduce congestion, and meet QoS requirements, 

the controller dynamically changes paths by combining real-

time link-state information with the static topology map 

provided by LLDP. SDN proves its flexibility and dominance 

in the ability to manage modern, complex networking 

environments by maintaining a central, real-time view of the 

network. 

 

3.7 Routing algorithms in SDN 

 

In SDN, routing algorithms are responsible for making the 

right decision about which path - or paths - traffic will flow, 

for example. After this path is established, the controller then 

modifies the forwarding devices to make sure that the packets 

are sent the right way. Unlike conventional networks, where 

routing decisions are spread throughout switches in an SDN 

network, they only need to be made at the controller. SDN-

based shortest path finding involves finding a shortest path 

from source to destination using Dijkstra's algorithm, choosing 

the optimal path based on various attributes of the network like 

Latency, Bandwidth, and Hop count. An important component 

of this is the SDN controller which absorbs all the analytics 

from each and every switch, bandwidth readily available, 

which connections are up, and more performance metrics. The 

Dijkstra algorithm generates a weighted graph to model the 

network. This graph depicts switches along with other network 

devices shown as nodes. Edges represent the relationships or 

connections existing between these nodes. Each edge is given 

a weight according to the cost of traversing the link, 

determined through metrics such as latency and bandwidth. 

Then, Dijkstra’s Algorithm is used to find the shortest or least 

cost path between the source and the destination nodes on the 

graph. The method finds the minimum cumulative cost 

because it iteratively selects the next node with the lowest 
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weight until it arrives at the destination. Here, the cost of 

traversing the connection is mathematically expressed as in 

Eq. (13): 

 

Cij = Lij + Bij + Hij (13) 

 

where, 

Cij: The link's cost between nodes 

Lij: The link's latency 

Bij: The link's available bandwidth 

Hij: Hop count for the link 

After the best path is calculated, the SDN controller 

processes the data into forwarding rules and sends them to the 

correlated switches. As each packet moves along its chosen 

path, it has to follow certain rules that guide the switches to 

forward it correctly, providing optimal data transfer and 

quality of service compliance. Reinforcing this dynamic 

approach, SDN could keep high performance in several 

dynamic traffic conditions, optimize using the resources, and 

adapt to the real-time networking environment. The cost of a 

link is computed based on multiple matrices, including 

(available bandwidth, capability, latency, hop count, etc.). 

Then select the path that has the smallest latency and 

capability and consider it as the best shortest path. For the 

widest Dijkstra follows the same procedure and instead of 

choosing one shortest path, it selects multiple shortest paths to 

forward the elephant flow that needs many routes due to its 

large volume leading to enhancing its throughput as shown in 

the algorithm below. To illustrate that assume that a host 

(Host) wishes to transmit several packets to a server (Server) 

and that there are several routes between the Host and the 

Server, as illustrated in Figure 5. The following procedures 

will be used to compute the link cost of routes. 

 

 
 

Figure 5. The map between the host and server 

 

Find all Possible Routes: 

First route R1 passes through switches S1-S3-S6-S9-Server 

Second route R2 passes through switches S1-S3-S6-S10-

S12-Server 

Third route R3 passes through switches S2-S4-S6-S9-

Server 

Fourth route R4 passes through switches S2-S4-S6-S10-

S12-Server 

Fifth route R5 passes through switches S2-S4-S7-S12-

Server 

Sixth route R6 passes through switches S2-S4-S7-S11-

Server 

Seventh route R7 passes through switches S2-S8-S11-

Server 

Eighth route R8 passes through switches S2-S5-S8-S11-

Server 

Ninth route R9 passes through switches S2-S5-S7-S12-

Server 

Tenth route R10 passes through switches S2-S5-S7-S11-

Server 

Then calculate the available bandwidth, latency and 

capability for each route as: 

Available Bandwidth for RI 

AB1 = AB (HC1) + AB (C13) + AB (C36) + AB (C69) + 

AB (C9S) 

Available Bandwidth for R2   

AB2 = AB (HC1) + AB (C13) + AB (C36) + AB (C610) 

+AB (C1012) +AB (C12S) 

Available Bandwidth for R3   

AB3 = AB (HC2) + AB (C24) + AB (C46) + AB (C69) + 

AB (C9S) 

Available Bandwidth for R4 

AB4 = AB (HC2) + AB (C24) + AB (C46) + AB (C610) + 

AB (C1012) + AB (C12S) 

Available Bandwidth for R5 

AB5 = AB (HC2) + AB (C24) + AB (C47) + AB (C712) + 

AB (C12S) 

Available Bandwidth for R6 

AB6 = AB (HC2) + AB (C24) + AB (C47) + AB (C711) + 

AB (C11S) 

Available Bandwidth for R7 

AB7 = AB (HC2) + AB (C28) + AB (C811) + AB (C11S) 

Available Bandwidth for R8 

AB8 = AB (HC2) + AB (C25) + AB (C58) + AB (C811) + 

AB (C11S) 

Available Bandwidth for R9 

AB9 = AB (HC2) + AB (C25) + AB (C57) + AB (C721) + 

AB (C12S) 

Available Bandwidth for R10 

AB10 = AB (HC2) + AB (C25) + AB (C57) + AB (C711) 

+AB (C11S) 

After that compute the latency for each route as follows: 

Latency of R1 = 1/ AB1 

Latency of R2 = 1/ AB2 

Latency of R3 = 1/ AB3 

Latency of R4 = 1/ AB4 

Latency of R5 = 1/ AB5 

Latency of R6 = 1/ AB6 

Latency of R7 = 1/ AB7 

Latency of R8 = 1/ AB8 

Latency of R9 = 1/ AB9 

Latency of R10 = 1/ AB10 

Finally, compute the capability for each switch using the 

Eq. (14).  

 

w[v] =
∑  𝑓∈𝐹𝑙𝑜𝑤(𝑣) Bits(𝑓)

capacity(𝑣)
 (14) 

 

Then based on the results select the path that has the 

smallest latency and capability and consider it as the best 

shortest path. 
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Algorithm 1: Traffic Classification and Traffic Routing 

Suggested Models in Generic Form 

1: Begin 

2: G(*): Classification using SNN 

3: T(*): Traffic analysis 

4: F(*): extraction of features from traffic analysis 

5: E(*): Encoding the actual value of the extracted feature 

into the spike 

6: EVO: represents Event Occurs    

7: 0 represents the Mice class 

8: 1: represents the elephant class 

9: Y: represents Yes 

10: N: represents No 

11: FRE: represents Flow Rule Exists 

12: Initialize The Traffic (End Host Makes Their 

Requests) 

13: if EVO = N then 

14: wait until EVO =Y  

15: Else 

16: SDN OFSs Receive the Packets and Check the Flow 

Table 

17: if FRE = Y then  

18: Forwarding Packets Based on Flow Rules  

19: end 

20: Else 

21: Alarm the Controller that there is a flow need to be 

forward by sending a packet in msg 

22: Continue flow processing in The Controller  

23: Z ← T(flow)  

24: \* Z represents the analyzed traffic*\ 

25: Activate the SNN Classifier 

26: M← F(Z)  

27: \* M is the extracted feature in a real number *\ 

28: S ← E(M)  

29: \* S is the extracted feature in spike time *\ 

30: W ← G(s)  

19: \* W is the outcome of the classes of the SNN 

classifier, with probable values of 0 or 1 *\ 

31:O←W  

32: if O=0 

33: \* Consider the flow as Mice flow*\  

34: Implement the Dijkstra Algorithm 

35: Find the Shortest Path from Source to Destination 

based on Specific QoS  

36: else  

37: \*The flow is classified as Elephant flow*\  

38: Implement the Wideset Dijkstra Algorithm 

39: Find the Multiple Shortest Paths from Source to 

Destination based on Specific QoS 

40: The Controller Makes the Flow Rules 

41: Install the Flow Rule on OFSs 

42: Forwarding Packets Based on Flow Rules 

43: End 

 

 

4. PERFORMANCE METRICS OF THE PROPOSED 

MODEL  

 

In this paper, the Mininet emulation framework is employed 

to develop and build a realistic SDN environment on a virtual 

machine [33-36]. Due to its construction of lightweight 

virtualization, Mininet offers great flexibility and facilitates 

the development of a dynamic and scalable network topology 

tailored to the proposed models. In this paper, two scenarios 

were designed to test the performance of the proposed traffic 

models on different traffic conditions. The first scenario 

topology, as shown in Figure 6(a), has two servers that work 

as traffic sources and sinks, one SDN controller, ten OpenFlow 

switches composing the network core and edge layers, and six 

hosts that are spread through the topology. The small scenario 

topology is also implemented as shown in Figure 6(b). These 

setups replicated an actual DCN environment and thus 

simulated realistic traffic flows and network functionalities. 

The flexible Mininet environment facilitated the generation 

and control of varied traffic types, enabling extensive 

investigations into the performance of the overall SNN 

classification and the routing conducted via both the Dijkstra 

and Widest Dijkstra algorithms within the same emulation 

testbed. These regulated yet realistic environments provided 

by this emulation setup allowed for the validation of the 

suggested approaches' scalability, effectiveness, and effect on 

network performance. 

 

 
(a) 

 

 
(b) 

 

Figure 6. (a) Custom first topology of the network; (b) 

Custom second topology of the network 

 

The Ryu controller is used due to its programmability and 

wide support for SDN portability. Evaluating the success of a 

classification model and its learning process requires a 

comprehensive examination of the important metrics that 

represent its efficiency. Evaluating the success of a routing 

model necessitates a thorough examination of important 

parameters that represent its efficiency, reliability, and 

adaptability. The suggested routing model is evaluated based 

on the following essential performance characteristics: 
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Throughput, bandwidth utilization, packet loss, and latency. 

The evaluation compares the performance of the SDN-Ryu 

controller and the approach described in the cited study [22], 

which employs K-means clustering for traffic categorization, 

to the proposed system based on the Data Center Network 

architecture. As shown in Figure 7, the comparison focuses on 

two sorts of fluxes: EFs (big, long-lived flows) and MFs 

(small, short-lived flows). Throughput, an important statistic 

in SDN traffic routing, is used as the major parameter in this 

assessment since it directly shows the number of packets 

successfully received throughout the simulation time. The 

evaluation findings show that the suggested model 

outperforms both the Ryu controller and the paper approach in 

terms of throughput for two flow types by 60% and 20% 

respectively. These benefits demonstrate the model's capacity 

to manage a variety of traffic types more successfully than 

standard SDN control approaches. As the number of parallel 

flows grows, throughput often falls owing to increased 

network congestion. However, the suggested technology 

outperforms both the Ryu controller and the paper method in 

terms of throughput on average. This shows that the suggested 

model not only adapts better to larger traffic loads but also 

improves network efficiency under challenging conditions.  

 

 
 

Figure 7. The comparison of the proposed method to the Ryu 

controller and cited paper in terms of throughput for two 

types of flows 

 

 
 

Figure 8. The comparison of the proposed method to the Ryu 

controller and the cited paper for elephant flow 

 

Figure 8 compares the throughput performance for EFs 

using the recommended strategy to the Ryu controller and the 

method given in the cited paper. The findings clearly show 

that, on average, the suggested strategy outperforms both the 

Ryu controller and the paper's solution. This higher 

performance is due to the optimized flow classification and 

routing strategy contained in the proposed technology. 

Throughput amounts change owing to the dynamic nature of 

the routing operation, which is impacted by the unique 

properties of each flow. Specifically, the routing algorithm in 

the proposed approach chooses the best path for each 

representative flow, taking into consideration characteristics 

such as flow size and duration. On average, the proposed 

model provides an estimated 60% improvement in throughput 

over the Ryu controller and a 10% gain over the paper 

technique for EFs. This significant gain demonstrates the 

proposed technique's capacity to more efficiently prioritize 

big, long-lived flows (EFs), hence increasing data 

transmission speeds and overall network efficiency. 

 

 
 

Figure 9. The comparison of the proposed method to the Ryu 

controller and cited paper in terms of mice flow throughput 

 

 
 

Figure 10. The comparison of the bandwidth utilized by the 

proposed model to the Ryu controller and cited paper for 

both types 
 

The throughput performance for MFs (small, transient 

flows) utilizing the suggested model in comparison to the Ryu 

controller and the technique described in the cited paper is 

shown in Figure 9. The findings show that the suggested model 

outperforms the Ryu controller and the SDN-based solution in 

the cited study [22], consistently delivering greater throughput 
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across all MFs. In particular, the proposed model outperforms 

the paper's approach and the conventional SDN configuration 

in terms of throughput by about 50% and 12% respectively. 

The main reason for this improvement is the model's improved 

flow classification and routing system, which is designed to 

manage the particularities of mice fluxes. MFs, as opposed to 

EFs, require quick processing and effective routing in order to 

avoid bottlenecks and guarantee the timely delivery of tiny 

data packets. Alongside throughput, another important metric 

for assessing network efficiency is bandwidth consumption. 

Figure 10 shows that the proposed model not only performs 

well in throughput but also in terms of bandwidth usage when 

compared to the Ryu controller and the method described in 

the cited paper. In particular, the proposed model consistently 

uses less bandwidth for the majority of flows while 

maintaining high throughput levels, which is due to the 

model's sophisticated traffic classification. The proposed 

model's categorization techniques allow it to manage these 

flows more effectively than conventional SDN techniques, 

which frequently over-allocate resources, resulting in 

increased bandwidth usage. Furthermore, it is remarkable that 

throughput and network performance are not sacrificed in 

order to achieve this increase, even if the decreased bandwidth 

utilization may appear expected given the model's emphasis 

on classification and adaptive routing. Rather, the model 

optimizes in a balanced way, optimizing throughput while 

consuming the fewest resources possible. This effective use of 

bandwidth is especially helpful in situations where network 

resources are expensive or scarce, including in cloud 

environments, data center networks, and Internet of Things 

deployments. The suggested model reduces bandwidth 

consumption over the paper's approach and the conventional 

SDN configuration by about 7% and 5% respectively, which 

frees up resources for more flows while also lowering 

operating costs. 

Moving to the second topology, the proposed model 

conducted two exhaustive tests in relation to the manner 

discussed in previous study [22] in order to evaluate the 

mechanism above against the Ryu controller and the proposed 

mechanism. The assessment was done on the same parameters 

and conditions as the first topology to maintain consistency 

and fairness when comparing. Figures 11 and 12 show 

throughput and bandwidth utilization metrics acquired during 

tests for the proposed technique, the Ryu controller, and the 

paper's method. These figures depict how the strategies were 

performed under various scenarios. 

 

 
 

Figure 11. A comparison between the suggested approach to the Ryu controller and the cited paper for both types of flows in the 

two experiments in terms of throughput 

 

 
 

Figure 12. A comparison between the suggested approach to the Ryu controller and cited paper for both types of flows in the 

two experiments in terms of bandwidth 
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Figure 13. A comparison of two types of flows in two experiments using the proposed method, the cited paper, and the Ryu 

controller of data transfer rates 

 

In Experiment 2, the suggested mechanism consistently 

outperformed both the Ryu controller and the aforementioned 

approach in throughput and bandwidth utilization. The charts 

in Figure 13 provide a clear illustration of this by showing the 

comparison of results across different flows. The proposed 

mechanism provided a higher throughput and a more efficient 

bandwidth utilization, which indirectly reflected the ability to 

handle the network traffic more appropriately. The 

performance enhancement was consistent across flows, which 

in turn demonstrates the strength of this proposed method and 

its adaptation to many situations. Thus, the proposed 

mechanism achieved better performance than Ryu controller 

while improving the entire network performance significantly. 

These improvements show the potential of the described 

technique to be a scalable and conditional yet reliable method 

for controlling the network resource in dynamic and 

overloaded scenarios. 

The data transmission rate represented the third 

fundamental measure used to evaluate the performance of the 

proposed process with respect to both the Ryu controller and 

the technique explained in the reference paper. It was supplied 

explicitly to give us an idea about how well the proposed 

method regulates network data transfer. The proposed strategy 

is significantly more efficient than the Ryu controller and the 

method provided in the referenced paper in terms of data 

transfer for most of the flows, as illustrated in Figure 13. It 

proves that in terms of transmission, the proposed method can 

make the best use of the relevant resources of the network, and 

also the transmission delay and packet loss can be controlled 

within a limited range. The remaining shows the performance 

pattern across data transmission rate measurements from the 

second experiment, which is similar to those given for 

throughput and bandwidth utilization. The proposed method 

dominates the Ryu controller and the method in previous study 

[21] for most of the flows by 15% and 30% respectively, 

which proves the better performance of the proposed method 

under dynamic network topology and dynamic traffic 

requirement. 

Packet loss plays a significant role in determining network 

performance under a request environment that requires both 

integrity and speed of data being transferred. Low PL indicates 

a more dependable network with less packet drop, as in the 

case of latency-sensitive applications, it is necessary to 

maintain quality of service. As shown in Figure 14, the packet 

loss is greatly reduced compared to a normal SDN controller 

system, with the proposed method performed by 50%. The 

improvement comes from a feedback control system that is 

complex and embedded in the proposed model, where SNNs 

are used to control traffic. The SNN-based controller smartly 

prioritizes every traffic stream, determines the optimal route, 

and safeguards against packet drops. In contrast to the classic 

SDN controller, which might still use static or less adaptive 

techniques, the SNN technique continues to learn and adapt to 

the changing traffic flows. Ensures that even in the presence 

of high network load, packets are transmitted with minimal 

latency, and packet drops are significantly minimized. Suitable 

only for the most critical, much-needed services requiring true 

reliability and packet delivery in real-time, the proposed model 

appears to be capable of dynamically adapting to changes in 

network topology while minimizing packet loss. Such a 

benefit is important for ensuring that service-level agreements 

(SLAs) are met, thus increasing service satisfaction and 

maintaining trust that the network will continue to function.  

 

 
 

Figure 14. A comparison of the proposed method to the Ryu 

controller in terms of packet loss 

 

As shown in Figure 15, the delay results prove that the 

proposed model for the traffic classification and routing is 

much better than the traditional Ryu controller regarding a 

reduction in the network delay. It is a key performance 

indicator of the time taken by data packets to travel from 

source to destination. The optimized flow classification and 
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adaptive routing mechanisms adopted in the proposed model 

give rise to a lower delay in the model than in the Ryu 

controller by 60%. The dynamic approach helps to ensure that 

all types of traffic are handled in the best possible way at every 

point, optimally avoiding congestion and thus supporting 

lower overall delay. On the other hand, Ryu is a more generic 

controller that does not have traffic type-aware routing 

capabilities, causing a significant waste of resource utilization 

of the network, as more and more long-lived, large size EFs 

obtain a good quality of service of network while starving the 

others and causing a bottleneck that increases congestion and 

delay of all types of traffic. Hence, the proposed approach is 

more optimal than the Ryu controller and indicates that it can 

identify the required path with respect to flow type, as shown 

in Table 2. 

 

 
 

Figure 15. A comparison of the proposed method to the Ryu 

controller in terms of delay 

 

Table 2. The overall performance of the proposed model 

compared to Ryu-Controller and Al-Saadi et al. [22] 

 

Performance 

Metrics 

The Proposed 

Method 

Enhancement vs. 

the Ryu-Controller  

The Proposed 

Method 

Enhancement vs. 

Al-Saadi et al. [22] 
Throughput for 

two types 
60% 20% 

Throughput for 

elephant flow 
60% 10% 

Throughput for 

mice flow 
50% 12% 

Bandwidth 

usage 
5% 7% 

Data transfer 

rate 
15% 30% 

Packet loss  50%  
Latency 60%  

 

 

5. CONCLUSIONS 

 

The SDN enhancements in this paper are divided into two 

parts: the traffic classification part and the traffic routing part, 

which aim to enhance the efficiency and performance of this 

technology. The initial part of the paper presents an SDN-

based classification model utilizing a single SNN under the 

supervised learning paradigm based on flow characterization 

and classification. The proposed method illustrates the 

potential of SNNs for analyzing and classifying network 

traffic into EF and MF categories with respect to their 

performance traits (e.g., duration, packet size, and byte rate). 

Part two of the paper includes how to route traffic by 

classification type. MFs have short durations and are latency-

sensitive, so the shortest path is necessary for MFs, and the 

Dijkstra algorithm is considered because it ensures faster 

performance with less latency time. The Widest Dijkstra 

algorithm can be applied to EFs, which are often bandwidth-

intensive and long-lived, to assign paths with the widest links 

first to reduce congestion and use the bandwidth more 

effectively. This double-routing approach extends the SDN's 

traffic diversity by allowing the selection of different routing 

actions based on each flow specification. These approaches 

significantly increase the global performance and efficiency of 

the SDN system, guaranteeing a proper usage of its resources 

while still respecting the QoS requirements through 

heterogeneous traffic. The models used have proven their 

efficiency by outperforming the traditional Software Defined 

Network and the K-means algorithm in terms of increasing 

throughput by 60% and 20%, enhancing bandwidth utilization 

by 5% and 7%, reducing packet loss by 50%, and decreasing 

latency by 60%, respectively. Finally, this research presents a 

promising work for using SNN-based traffic classification and 

adaptive traffic routing, where SDN can be useful. To gain 

even more from this work, it can be integrated with the concept 

of many controllers to optimize the benefits of both concepts 

and provide enormous scalability for SDN, which we are 

working on in the near future. 
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