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Energy system transitions are inherently complex, requiring long-term planning to 

navigate uncertainties and achieve sustainability and resilience goals. Traditional 

energy modeling approaches often rely on assumptions of perfect foresight or utilize 

rolling horizon methods, which inadequately capture the dynamics of decision-making 

under imperfect foresight. This study introduces a multi-stage modeling framework 

designed to better represent real-world decision-making under uncertainty by revising 

forecasts and updating decisions throughout the planning horizon. A pilot model is 

developed and applied to a case study using historical data on power sector 

development, serving as an initial test of the framework's applicability. Results suggest 

that this approach provides a more realistic representation of decision-making processes 

in energy planning and warrants further exploration for improving long-term energy 

system planning and investment strategies under uncertainty. 
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1. INTRODUCTION

Energy system transitions at the National level are 

inherently complex and gradual processes. Whether aiming to 

enhance sustainability or improve system resilience, 

transforming an energy, such change cannon be achieved 

overnight, it requires coordinated long-term planning [1, 2] 

Ambitious policy targets, such as Italy’s National Energy and 

Climate Plan (PNIEC) [3], which aims to decarbonize the 

power sector by 2050, require strategic, long-term planning 

and a stepwise transformation of infrastructure and 

technologies [1, 4]. Given the long lead times for building 

generation capacity, expanding grid infrastructure, and 

developing new energy markets, decisions made today will 

shape the system for decades to come [1].  

To support such planning, long-term energy models are 

essential [2]. However, modelling over multi-decade horizons 

presents a significant challenge: there is no reliable way to 

accurately predict future data [4-6]. Critical inputs such as 

energy demand, technology costs, and fuel prices are highly 

uncertain, and their evolution depends on a multitude of 

interdependent factors, including socio-economic trends, 

technological breakthroughs, policy shifts, and global events, 

many of which are unpredictable or unknowable in advance [1, 

4, 7]. 

One important aspect that appears underrepresented in 

many energy modelling frameworks for long-term planning is 

the role of decision-making under imperfect foresight. In 

reality, decisions, such as infrastructure investments or policy 

interventions, are made based on expectations about the future, 

typically derived from current forecasts [8]. However, as such 

decisions involve long lead times and irreversible 

commitments, they are often implemented before the actual 

future unfolds. This can result in systems being built on 

assumptions that do not align with how conditions evolve in 

practice, leading to suboptimal outcomes. Compounding this 

issue is the fact that many models are inherently static [4], 

offering limited ability to revise or adapt decisions once a 

pathway has been selected. Bridging this gap requires 

modelling approaches that can represent multi-stage decision-

making under imperfect foresight, where decisions are based 

on forecasted expectations but can be revised over time as new 

information becomes available, better capturing the dynamic 

and uncertain nature of real-world energy transitions. 

This research aims to explore a novel approach for modeling 

decision-making horizons to better represent decision-making 

under imperfect foresight. To this end, a multi-stage modeling 

framework is proposed and implemented in a pilot model, 

aiming to assess whether it is a promising approach for more 

realistically representing real-world planning processes. 

The structure of the paper is as follows: Section 2.1 outlines 

existing modelling approaches, Section 2.2 presents the 

proposed framework, Section 3 discusses preliminary results, 

and Section 4 concludes with key findings and limitations. 

2. METHODOLOGY

2.1 Existing modelling approaches 

In energy models, future knowledge in decision-making is 

typically assumed to be either fully known in perfect foresight 

models or limited, with a certain degree of myopia, in rolling 

horizon models. 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 10, October, 2025, pp. 3636-3642 

Journal homepage: http://iieta.org/journals/mmep 

3636

https://orcid.org/0009-0001-6731-240X
https://orcid.org/0000-0002-9747-5699
https://orcid.org/0000-0003-3129-3654
https://crossmark.crossref.org/dialog/?doi=mmep.121027&domain=pdf


 

Perfect foresight models assume complete certainty over 

future parameters, enabling single-stage optimization that 

yields an optimal pathway under fully deterministic conditions 

[8, 9]. The assumption of perfect foresight does not reflect 

real-world decision making where knowledge of the future is 

imperfect and uncertain. 

Rolling horizon modeling divides the time horizon subset 

horizons said planning horizons. Decisions are made for the 

entire planning horizons, but only a portion, corresponding to 

the fixed horizon (FH), is implemented and becomes 

irreversible. The planning horizon is then shifted forward by 

the length of the fixed horizon, at which point additional 

information along the timeline becomes available, and the 

optimization problem is re-evaluated accordingly. This 

iterative process is repeated until the end of the overall 

planning horizon is reached [10]. While perfect foresight 

assumes full knowledge of future developments, rolling 

horizon models introduce myopia based on the fixed and 

planning horizon lengths. Shorter horizons focus more on 

short-term decisions, however these models don't explicitly 

account for decision-making under imperfect foresight, 

limiting their ability to capture forecast uncertainty and its 

structural impact. 

Additionally, the only widely used approach for multistage 

modeling in energy systems is linked to stochastic 

optimization, which addresses optimization under uncertainty. 

While it can partially handle imperfect foresight, it is primarily 

reliant on probabilistic functions [7]. However, in cases of 

deep uncertainty, these probabilistic functions may not be 

well-defined, limiting the method's applicability. 

 

2.2 Proposed framework 

 

The model is based on Input–Output (IO) theory, employing 

a bottom-up Rectangular Choice of Technologies (RCOT) 

Supply-and-Use Table (SUT) framework that captures the 

detailed flow of energy and resources across sectors. While 

this framework is typically implemented with annual 

resolution, it has been adapted to operate at an hourly 

resolution to more accurately capture the temporal variability 

of renewable energy sources. 

The full set of equations can be found in previous study [11]. 

 

2.2.1 RCOT-SUT framework 

The SUT-based framework was selected over traditional 

equation-based energy modeling approaches due to its 

structural flexibility. While it maintains the same linear 

relationships as conventional models, ensuring supply equals 

demand within capacity and operational constraints, its 

formulation differs. Rather than using explicit energy balance 

equations, the SUT framework employs a matrix 

representation of production and consumption flows across 

sectors. Although the current focus is on the power sector, the 

model aims to eventually encompass all productive sectors 

connected to the electricity system, providing a more 

comprehensive view of the power system's transition. The 

SUT framework also allows for the integration of additional 

sectors and the application of differentiated temporal 

resolutions, such as using hourly granularity where necessary, 

to reduce computational complexity while ensuring system-

wide consistency. Furthermore, it offers robust tracking of 

emissions, labor, taxes, and other factors, accounting for them 

by sector activity or product demand [12]. 

The matrix representation of the SUT framework is 

structured around two primary components: sectors, which 

represent the production and consumption technologies; and 

products, which correspond to the commodities exchanged 

within the system. The model adopts an industry-based 

assumption, where each commodity is produced by a fixed 

combination of technologies. Additionally, the RCOT 

approach allows for selected commodities to be supplied by 

competing technologies, thereby introducing substitution 

dynamics into the supply structure. 

 

2.2.2 Adaptation of RCOT-SUT to energy modelling 

To the basic SUT structure, additional equations are 

incorporated to form the RCOT-SUT structure. The principle 

of RCOT is that it allows technologies producing different 

products to compete with each other. This is used to model 

competing generation technologies in the power sector. To 

adapt the SUT framework for energy models, further equations 

are typically added to account for the unique characteristics of 

energy systems. 

Curtailment: For production technologies, the possibility of 

energy curtailment is considered to account for overproduction 

by renewable energy sources. To model this, an additional 

variable representing curtailment is introduced into the energy 

supply-use balances, ensuring that excess energy generation 

from renewables is appropriately accounted for in the system. 

Energy balances: Production is constrained by available 

capacity, with additional limits defined through technology-

specific load factors at both hourly and annual levels. Hourly 

constraints are applied to variable renewable generation 

technologies to reflect their temporal variability and 

intermittency. Annual constraints account for broader 

operational limitations, such as scheduled maintenance or 

downtime. 

Capacity constraints: The model incorporates endogenous 

capacity expansion for power technologies, treating total 

installed capacity as a decision variable. Several capacity-

related variables, defined on a yearly basis, are introduced to 

represent different aspects of the system: 

•Operative Capacity ( 𝐶𝑎𝑝𝑜𝑝 ): Capacity available for 

production in a given year. 

•Disposed Capacity (𝐶𝑎𝑝𝑑𝑖𝑠𝑝 ): Capacity decommissioned 

in a given year, modeled using a Weibull disposal function.  

•Built Capacity ( 𝐶𝑎𝑝𝑏𝑢𝑖𝑙𝑡 ): Capacity that completes 

construction and becomes operational in a given year. 

The yearly update of operative capacity, given a year 𝑦 is 

governed by the following equation: 

 
𝐶𝑎𝑝𝑜𝑝(𝑦) = 𝐶𝑎𝑝𝑜𝑝(𝑦 − 1) + 𝐶𝑎𝑝𝑏𝑢𝑖𝑙𝑡(𝑦) − 𝐶𝑎𝑝𝑑𝑖𝑠𝑝(𝑦) (1) 

 

The planning model incorporates the temporal dynamics of 

capacity development. This involves two key time factors:  

•Decision to Construction Time (𝑑𝑐): This represents the 

time between the decision to expand capacity and the actual 

financing required to begin construction. 

•Construction to Operation Time (𝑐𝑜): This captures the 

time between when capacity is financed and when it becomes 

operational. 

Once an investment decision is made, the corresponding 

capacity is denoted as 𝐶𝑎𝑝𝑝𝑙𝑎𝑛𝑛𝑒𝑑 . After the 𝑑𝑐 elapses, the 

capacity enters the financing phase and is recorded as 

𝐶𝑎𝑝𝑓𝑖𝑛𝑎𝑛𝑐𝑒𝑑 . Following the co, the capacity becomes 

operational and is referred to as 𝐶𝑎𝑝𝑏𝑢𝑖𝑙𝑡 . 

3637



 

Costs: The model accounts for several cost components 

associated with electricity generation and capacity expansion. 

These include variable operation and maintenance costs (𝑐𝑣𝑎𝑟), 

fixed operation and maintenance costs (𝑐𝑓𝑖𝑥 ) and capacity 

investment costs (𝑐𝑖𝑛𝑣 ). All costs are discounted over the 

planning horizon using a predefined discount rate to reflect the 

time value of money, ensuring consistency in cost comparison 

across years. 

Objective: The objective of the model is to minimize the 

total system cost over the planning horizon. 

 

𝑀𝑖𝑛(𝑍) = 𝑐𝑖𝑛𝑣𝐶𝑎𝑝𝑓𝑖𝑛𝑎𝑛𝑐𝑒𝑑 + 𝑐𝑣𝑎𝑟𝑋 + 𝑐𝑓𝑖𝑥𝐶𝑜𝑝 (2) 

 

where, 𝑋 is the total technology activity. 

Multistage time horizons: The model’s time horizon is 

managed using a multi-stage framework that builds upon and 

extends the rolling horizon approach. Given a modeling time 

horizon from a starting year 𝑌1 to a final year 𝑌𝑛, set of 𝑧 =
0, 1 … , 𝑥  stages are defined, according to a certain fixed 

horizon length 𝛿, such that 

 

𝑥 =
𝑌𝑛 − 𝑌1

𝛿 
 (3) 

 

Each 𝑧 stage is characterized by a planning horizon (𝑃𝐻𝑧) 

with a length 𝑙 of: 

 

𝑙 = 𝑌1 − 𝑌𝑛 − 𝛿𝑧 with  𝑧 = 0, … , 𝑥 (4) 

 

This formulation allows each stage to optimize decisions 

over a progressively shorter planning horizon as the model 

advances through time. A comparison with conventional 

perfect foresight and rolling horizon approaches is illustrated 

in Figure 1. 

 

 
 

Figure 1. Comparison of planning horizon concepts 

 

 
 

Figure 2. Electricity demand at different stages 
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In each planning horizon ( 𝑃𝐻𝑧 ), two sub-horizons are 

defined: 

•Fixed Horizon (𝐹𝐻𝑧(𝛿)): Covers the first δ years of the P-

H. Within this period, electricity demand is assumed to be 

known with certainty, and system operation and capacity 

construction decisions are treated as fully informed and 

therefore finalized and irreversible. 

•Investment Horizon (𝐼𝐻𝑧(𝜀)): Extends ε years beyond 𝐹𝐻𝑧 . 

During this interval, capacity expansion decisions are made 

based on forecasted demand profiles, which are subject to 

uncertainty and may diverge from realized future values. 

Nonetheless, due to the long development lead times 

associated with energy infrastructure investment decisions 

must be made proactively. To capture the commitment effect 

of early-stage financing, any capacity that is committed within 

this ε-period (𝐶𝑎𝑝𝑓𝑖𝑛𝑎𝑛𝑐𝑒𝑑) is considered irreversible and is 

assumed to result in actual capacity deployment (𝐶𝑎𝑝𝑏𝑢𝑖𝑙𝑡) in 

future stages. Operational dispatch for the investment horizon 

is not yet optimized; these decisions are deferred and will be 

determined in the corresponding fixed horizon of a later stage, 

once demand becomes fully observed.  

Electricity demand: In this initial implementation of the 

model, electricity demand is the only parameter subject to 

uncertainty, and thus the sole source of imperfect foresight. 

Each stage operates with a stage-specific electricity demand 

trajectory, which is revised at the beginning of the stage. 

Within the fixed horizon (𝐹𝐻), representing the short-term 

window, demand is assumed to be perfectly known and fixed. 

Beyond 𝐹𝐻, demand is treated as a forecast, subject to revision 

in subsequent stages. After each stage is optimized, the model 

advances to the next stage, and the demand forecast is updated 

based on newly available information. In this version, forecast 

revisions are applied exogenously, using predefined 

adjustments to reflect changes in expectations. Future model 

developments will aim to endogenize this process, updating 

demand projections dynamically based on outcomes from 

previous stages. Figure 2 illustrates the stage-by-stage 

evolution of electricity demand as applied in the case study. 

Rolling mechanism: The multi-stage modeling framework 

allows for the implementation of a rolling mechanism that 

distinguishes between short-term operational commitments 

and long-term planning flexibility, reflecting the reality of 

imperfect foresight in energy system planning. At each 

planning stage, decisions are categorized based on their 

temporal proximity and reversibility. 

Operational decisions: Capacity construction ( 𝐶𝑎𝑝𝑏𝑢𝑖𝑙𝑡 ) 

and system operation locked in during the fixed horizon 

𝐹𝐻(𝛿), where data is assumed to be accurate. These decisions 

are treated as fully implemented and thus irreversible. 

Financing commitments: Capacity financing (𝐶𝑎𝑝𝑓𝑖𝑛𝑎𝑛𝑐𝑒𝑑) 

that occurs within the investment horizon ( 𝐼𝐻(𝜀 )). This 

reflects the assumption that once capacity is financially 

committed, it is effectively under construction, and thus 

cannot be revised in subsequent stages, even if updated 

demand forecasts diverge from initial projections. 

Long-term plans: Capacity planning (𝐶𝑎𝑝𝑝𝑙𝑎𝑛𝑛𝑒𝑑 ) whose 

financing is scheduled beyond the I-H. As the investment is 

not yet committed, the remain reversible and are subject to re-

evaluation in the following stages. 

After a stage 𝑧 is optimized, the model advances to the next 

stage 𝑧 + 1. At this point: 

•The electricity demand profile is updated based on newly 

available information. 

•Operational capacity and dispatch decisions from the fixed 

horizon ( 𝐹𝐻𝑧(𝛿) ) are fixed and carried forward as 

implemented. 

•Investment decisions that fell within the investment 

horizon 𝐼𝐻𝑧(𝛿 + 𝜖)  are treated as financially committed. 

Those financed within 𝐼𝐻𝑧(𝛿)  are treated as under 

construction, while those scheduled within the extended 

window 𝐼𝐻𝑧(𝛿 + 𝜖)  are assumed to soon enter the 

construction phase, and are thus also treated as irreversible in 

subsequent stages.  

A schematic representation of the multistage flow of 

information and decisions is provided in Figure 3. 

 

 
 

Figure 3. Schematic representation of proposed framework 
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3. CASE STUDY 

 

To evaluate the practical relevance of the proposed 

multistage framework, the model was applied to a 

retrospective case study of the Italian electricity system from 

2000 to 2025. This period is characterized by evolving demand 

projections, shifting policy priorities, and significant 

expansion in renewable generation, making it a suitable 

testbed to explore how long-term planning decisions are 

affected by imperfect foresight. 

The objective of the case study is twofold: 

•First, to demonstrate the limitations of perfect foresight 

assumptions in replicating real-world decisions. 

•Second, to evaluate whether the proposed multistage model, 

even in a simplified form, offers a structurally more realistic 

representation of decision-making under uncertainty. 

Two distinct model configurations were executed: a single-

stage optimization assuming perfect foresight, and the 

proposed multistage imperfect foresight framework. Model 

outputs—specifically installed capacity, decommissioned 

capacity, and total electricity supply—were compared against 

historical data to evaluate the proposed framework’s capability 

to accurately replicate the temporal evolution of the energy 

system under varying information assumptions. 

 

3.1 Model inputs 

 

The complete dataset of input parameters and assumptions 

used in the model, including demand profiles, technology 

characteristics, and cost assumptions, can be found in previous 

study [11]. 

Model resolution: For this initial pilot, an annual resolution 

was adopted, defining a yearly energy balance and average 

technology capacity factors based on historical data [13]. A 

Modelling horizon ranging from 2000 to 2020 was selected. 

Multistage horizon: A multistage decision framework was 

applied, with a fixed horizon of length δ = 5 years. This choice 

reflects the assumption that energy planners typically have a 

relatively high level of confidence in demand projections over 

the short-to-medium term. This choice is supported by 

empirical comparisons between forecasted and realized 

demand data, which show that projections over the first three 

to five years typically exhibit a high degree of accuracy and 

alignment. An investment horizon extension of ε = 4 years was 

added, calibrated through preliminary model testing. This 

brings the total planning horizon per stage to 𝛿 + 𝜀 = 9 years, 

which aligns with literature findings suggesting that major 

infrastructure decisions are generally reassessed every 5 to 10 

years [8]. 

Electricity demand: In the single-stage perfect foresight 

model, electricity demand is represented by the actual 

historical demand trajectory. Conversely, in the multistage 

imperfect foresight framework, demand forecasts at the 

beginning of each decision stage (e.g., 2000, 2005, 2010, etc.) 

are based on the official projections available at the time, as 

reported in previous study [13].  

 

3.2 Results 

 

Results indicate that the proposed multistage imperfect 

foresight framework more accurately replicates historical 

trends compared to the baseline single-stage perfect foresight 

model. In terms of installed capacity, as shown in Figure 4, the 

perfect foresight model systematically underestimates 

investments. This outcome is expected, as perfect knowledge 

of future demand allows the model to optimize investments 

precisely to match needs, avoiding overcapacity. Conversely, 

the multistage imperfect foresight model yields higher 

installed capacity levels, closer to observed historical data. 

This outcome underscores the influence of forecast uncertainty 

on investment dynamics. In particular, historical trends in the 

early 2000s show that projected electricity demand was 

significantly overestimated compared to what ultimately 

materialized. Consequently, substantial investments in natural 

gas capacity were undertaken based on these inflated 

expectations. By the time it became apparent that actual 

demand growth would be more modest, many of these projects 

had already been initiated or financially committed, resulting 

in a persistent oversupply of capacity. 

 

 
 

Figure 4. Total built capacity 

 

The overcapacity situation leads to higher total system costs 

in the imperfect foresight model compared to the perfect 

foresight case, as show in Figure 5. While the overall cost 

difference is relatively small, it highlights the increased 

financial risk for investors in power plants that operate below 

expected capacity. Lower utilization rates cause longer 

payback times and greater uncertainty in returns, making it 

particularly challenging for single-asset power producers who 

lack diversified portfolios.  

A comparison of annual electricity supply between the two 

model configurations indicates that both exhibit similar 

dispatch behavior, as shown in Figure 6. In the multistage 
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imperfect foresight model, excess capacity does not 

significantly alter dispatch quantities but results in higher 

reserve margins. Compared to historical data, both models 

tend to slightly overestimate renewable generation and 

underrepresent the substitution dynamics between natural gas 

and oil-fired generation. These discrepancies primarily arise 

from the model’s limited temporal resolution, which currently 

relies on a single representative day per year. This 

simplification limits the ability to capture intra-annual 

variability, operational constraints such as ramping 

capabilities, and the full flexibility requirements of different 

technologies. Increasing temporal granularity, such as 

incorporating multiple representative days through clustering, 

and incorporating operational constraints would enhance 

dispatch accuracy and more realistically capture the 

operational behavior of the power system. 

 

 
 

Figure 5. Total system costs 

 

 
 

Figure 6. Yearly system supply 

 

 

4. CONCLUSIONS AND FUTURE WORK 

 

This study introduced a multistage investment-planning 

model that explicitly accounts for electricity demand forecast 

uncertainty and benchmarked its outputs against both a 

conventional perfect foresight formulation and observed 

historical developments. The results demonstrate that 

imperfect foresight, while yielding suboptimal outcomes from 

a cost-efficiency perspective, provides a more realistic 

representation of decision-making under uncertainty. In the 

context of the analyzed case study, this outcome is strongly 

influenced by demand overestimations in the early 2000s, 

which led to forward-looking investments that became 

financially locked in before actual demand trajectories were 

fully revealed. As a result, the imperfect foresight model more 

accurately replicates historical capacity development but at the 

cost of higher system expenditures and lower asset utilization. 

These findings highlight the systemic impact of forecast 

uncertainty and emphasize the associated financial risks borne 

by investors, especially in the context of capital-intensive 

technologies with long payback periods. 

Future research will build on this foundation to explore how 

different modeling assumptions and structural factors 

influence investment outcomes under uncertainty. Key 

developments will include enhancing the model’s temporal 

resolution by incorporating multiple representative periods per 

year to better capture variability in load, renewables, and 

operational flexibility constraints. Spatial detail will also be 

added by introducing a simplified transmission network to 

explore regional disparities in resource availability and grid 

congestion. Building on this refined framework, future 

analysis will focus on developing indicators to identify which 

technologies are most vulnerable to forecast uncertainty, and 

how techno-economic characteristic, such as capital intensity, 

ramping capability, and dispatchability, affect their resilience. 

The ultimate objective is to inform strategies that mitigate the 

adverse impacts of forecast errors, enhancing the robustness of 

investment decisions and system planning. 
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NOMENCLATURE 

 

𝑃𝐻 Planning horizon 

𝐹𝐻 Fixed horizon 
𝐼𝐻 Investment horizon 
𝐶𝑎𝑝 Technology capacity 

dc Decision to construction time 

co Construction to operation time 

c Specific costs 

Z Objective 

X Total technology activity 

x Number of stages 

Y Year 

 

Greek symbols 

 

δ Fixed horizon length 

ε Investment horizon extension 

 

Subscripts 

 

z Stage number 

n Last year of modelling horizon 

planned Planned capacity 

built Built capacity 

financed Financed capacity 

op Operative capacity 

disp Disposed capacity 

var Variable costs 

fix Fixed costs 
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