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Energy system transitions are inherently complex, requiring long-term planning to
navigate uncertainties and achieve sustainability and resilience goals. Traditional
energy modeling approaches often rely on assumptions of perfect foresight or utilize
rolling horizon methods, which inadequately capture the dynamics of decision-making
under imperfect foresight. This study introduces a multi-stage modeling framework
designed to better represent real-world decision-making under uncertainty by revising
forecasts and updating decisions throughout the planning horizon. A pilot model is
developed and applied to a case study using historical data on power sector
development, serving as an initial test of the framework's applicability. Results suggest
that this approach provides a more realistic representation of decision-making processes
in energy planning and warrants further exploration for improving long-term energy

system planning and investment strategies under uncertainty.

1. INTRODUCTION

Energy system transitions at the National level are
inherently complex and gradual processes. Whether aiming to
enhance sustainability or improve system resilience,
transforming an energy, such change cannon be achieved
overnight, it requires coordinated long-term planning [1, 2]
Ambitious policy targets, such as Italy’s National Energy and
Climate Plan (PNIEC) [3], which aims to decarbonize the
power sector by 2050, require strategic, long-term planning
and a stepwise transformation of infrastructure and
technologies [1, 4]. Given the long lead times for building
generation capacity, expanding grid infrastructure, and
developing new energy markets, decisions made today will
shape the system for decades to come [1].

To support such planning, long-term energy models are
essential [2]. However, modelling over multi-decade horizons
presents a significant challenge: there is no reliable way to
accurately predict future data [4-6]. Critical inputs such as
energy demand, technology costs, and fuel prices are highly
uncertain, and their evolution depends on a multitude of
interdependent factors, including socio-economic trends,
technological breakthroughs, policy shifts, and global events,
many of which are unpredictable or unknowable in advance [1,
4,7].

One important aspect that appears underrepresented in
many energy modelling frameworks for long-term planning is
the role of decision-making under imperfect foresight. In
reality, decisions, such as infrastructure investments or policy
interventions, are made based on expectations about the future,
typically derived from current forecasts [8]. However, as such
decisions involve long lead times and irreversible

commitments, they are often implemented before the actual
future unfolds. This can result in systems being built on
assumptions that do not align with how conditions evolve in
practice, leading to suboptimal outcomes. Compounding this
issue is the fact that many models are inherently static [4],
offering limited ability to revise or adapt decisions once a
pathway has been selected. Bridging this gap requires
modelling approaches that can represent multi-stage decision-
making under imperfect foresight, where decisions are based
on forecasted expectations but can be revised over time as new
information becomes available, better capturing the dynamic
and uncertain nature of real-world energy transitions.

This research aims to explore a novel approach for modeling
decision-making horizons to better represent decision-making
under imperfect foresight. To this end, a multi-stage modeling
framework is proposed and implemented in a pilot model,
aiming to assess whether it is a promising approach for more
realistically representing real-world planning processes.

The structure of the paper is as follows: Section 2.1 outlines
existing modelling approaches, Section 2.2 presents the
proposed framework, Section 3 discusses preliminary results,
and Section 4 concludes with key findings and limitations.

2. METHODOLOGY
2.1 Existing modelling approaches

In energy models, future knowledge in decision-making is
typically assumed to be either fully known in perfect foresight

models or limited, with a certain degree of myopia, in rolling
horizon models.
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Perfect foresight models assume complete certainty over
future parameters, enabling single-stage optimization that
yields an optimal pathway under fully deterministic conditions
[8, 9]. The assumption of perfect foresight does not reflect
real-world decision making where knowledge of the future is
imperfect and uncertain.

Rolling horizon modeling divides the time horizon subset
horizons said planning horizons. Decisions are made for the
entire planning horizons, but only a portion, corresponding to
the fixed horizon (FH), is implemented and becomes
irreversible. The planning horizon is then shifted forward by
the length of the fixed horizon, at which point additional
information along the timeline becomes available, and the
optimization problem 1is re-evaluated accordingly. This
iterative process is repeated until the end of the overall
planning horizon is reached [10]. While perfect foresight
assumes full knowledge of future developments, rolling
horizon models introduce myopia based on the fixed and
planning horizon lengths. Shorter horizons focus more on
short-term decisions, however these models don't explicitly
account for decision-making under imperfect foresight,
limiting their ability to capture forecast uncertainty and its
structural impact.

Additionally, the only widely used approach for multistage
modeling in energy systems is linked to stochastic
optimization, which addresses optimization under uncertainty.
While it can partially handle imperfect foresight, it is primarily
reliant on probabilistic functions [7]. However, in cases of
deep uncertainty, these probabilistic functions may not be
well-defined, limiting the method's applicability.

2.2 Proposed framework

The model is based on Input—Output (10) theory, employing
a bottom-up Rectangular Choice of Technologies (RCOT)
Supply-and-Use Table (SUT) framework that captures the
detailed flow of energy and resources across sectors. While
this framework is typically implemented with annual
resolution, it has been adapted to operate at an hourly
resolution to more accurately capture the temporal variability
of renewable energy sources.

The full set of equations can be found in previous study [11].

2.2.1 RCOT-SUT framework

The SUT-based framework was selected over traditional
equation-based energy modeling approaches due to its
structural flexibility. While it maintains the same linear
relationships as conventional models, ensuring supply equals
demand within capacity and operational constraints, its
formulation differs. Rather than using explicit energy balance
equations, the SUT framework employs a matrix
representation of production and consumption flows across
sectors. Although the current focus is on the power sector, the
model aims to eventually encompass all productive sectors
connected to the electricity system, providing a more
comprehensive view of the power system's transition. The
SUT framework also allows for the integration of additional
sectors and the application of differentiated temporal
resolutions, such as using hourly granularity where necessary,
to reduce computational complexity while ensuring system-
wide consistency. Furthermore, it offers robust tracking of
emissions, labor, taxes, and other factors, accounting for them
by sector activity or product demand [12].
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The matrix representation of the SUT framework is
structured around two primary components: sectors, which
represent the production and consumption technologies; and
products, which correspond to the commodities exchanged
within the system. The model adopts an industry-based
assumption, where each commodity is produced by a fixed
combination of technologies. Additionally, the RCOT
approach allows for selected commodities to be supplied by
competing technologies, thereby introducing substitution
dynamics into the supply structure.

2.2.2 Adaptation of RCOT-SUT to energy modelling

To the basic SUT structure, additional equations are
incorporated to form the RCOT-SUT structure. The principle
of RCOT is that it allows technologies producing different
products to compete with each other. This is used to model
competing generation technologies in the power sector. To
adapt the SUT framework for energy models, further equations
are typically added to account for the unique characteristics of
energy systems.

Curtailment: For production technologies, the possibility of
energy curtailment is considered to account for overproduction
by renewable energy sources. To model this, an additional
variable representing curtailment is introduced into the energy
supply-use balances, ensuring that excess energy generation
from renewables is appropriately accounted for in the system.

Energy balances: Production is constrained by available
capacity, with additional limits defined through technology-
specific load factors at both hourly and annual levels. Hourly
constraints are applied to variable renewable generation
technologies to reflect their temporal variability and
intermittency. Annual constraints account for broader
operational limitations, such as scheduled maintenance or
downtime.

Capacity constraints: The model incorporates endogenous
capacity expansion for power technologies, treating total
installed capacity as a decision variable. Several capacity-
related variables, defined on a yearly basis, are introduced to
represent different aspects of the system:

*Operative Capacity ( Cap,, ): Capacity available for
production in a given year.

*Disposed Capacity (Capg;sp): Capacity decommissioned
in a given year, modeled using a Weibull disposal function.

*Built Capacity ( Cappyi: ): Capacity that completes
construction and becomes operational in a given year.

The yearly update of operative capacity, given a year y is
governed by the following equation:

Capop(y) = Capop(y = 1) + Cappuine (¥) = Capaisp(y) (1)

The planning model incorporates the temporal dynamics of
capacity development. This involves two key time factors:

*Decision to Construction Time (dc): This represents the
time between the decision to expand capacity and the actual
financing required to begin construction.

*Construction to Operation Time (co): This captures the
time between when capacity is financed and when it becomes
operational.

Once an investment decision is made, the corresponding
capacity is denoted as Cappignneq- After the dc elapses, the
capacity enters the financing phase and is recorded as
Capfinancea - Following the co, the capacity becomes
operational and is referred to as Cappyi; -



Costs: The model accounts for several cost components
associated with electricity generation and capacity expansion.
These include variable operation and maintenance costs (Cyqr),
fixed operation and maintenance costs (cf;, ) and capacity
investment costs (Cj, ). All costs are discounted over the
planning horizon using a predefined discount rate to reflect the
time value of money, ensuring consistency in cost comparison
across years.

Objective: The objective of the model is to minimize the
total system cost over the planning horizon.

Min(Z) = Cinvcapfinanced + CvarX + CfixCop (2)

where, X is the total technology activity.

Multistage time horizons: The model’s time horizon is
managed using a multi-stage framework that builds upon and
extends the rolling horizon approach. Given a modeling time

horizon from a starting year Y; to a final year Y;,, set of z =
0,1...,x stages are defined, according to a certain fixed
horizon length &, such that

V.- Y
= 3
x 5 3)

Each z stage is characterized by a planning horizon (PH,)
with a length [ of:

l=Y,-Y, —6zwith z=0, ..., x 4

This formulation allows each stage to optimize decisions
over a progressively shorter planning horizon as the model
advances through time. A comparison with conventional
perfect foresight and rolling horizon approaches is illustrated
in Figure 1.
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Figure 2. Electricity demand at different stages



In each planning horizon (PH,), two sub-horizons are
defined:

*Fixed Horizon (FH,(8)): Covers the first 8 years of the P-
H. Within this period, electricity demand is assumed to be
known with certainty, and system operation and capacity
construction decisions are treated as fully informed and
therefore finalized and irreversible.

*Investment Horizon (I H,(&)): Extends ¢ years beyond FH,.

During this interval, capacity expansion decisions are made
based on forecasted demand profiles, which are subject to
uncertainty and may diverge from realized future values.
Nonetheless, due to the long development lead times
associated with energy infrastructure investment decisions
must be made proactively. To capture the commitment effect
of early-stage financing, any capacity that is committed within
this e-period (Capfinanceq) 18 considered irreversible and is
assumed to result in actual capacity deployment (Capp,;¢) in
future stages. Operational dispatch for the investment horizon
is not yet optimized; these decisions are deferred and will be
determined in the corresponding fixed horizon of a later stage,
once demand becomes fully observed.

Electricity demand: In this initial implementation of the
model, electricity demand is the only parameter subject to
uncertainty, and thus the sole source of imperfect foresight.
Each stage operates with a stage-specific electricity demand
trajectory, which is revised at the beginning of the stage.
Within the fixed horizon (FH), representing the short-term
window, demand is assumed to be perfectly known and fixed.
Beyond FH, demand is treated as a forecast, subject to revision
in subsequent stages. After each stage is optimized, the model
advances to the next stage, and the demand forecast is updated
based on newly available information. In this version, forecast
revisions are applied exogenously, using predefined
adjustments to reflect changes in expectations. Future model
developments will aim to endogenize this process, updating
demand projections dynamically based on outcomes from
previous stages. Figure 2 illustrates the stage-by-stage
evolution of electricity demand as applied in the case study.

Y1 Y1+38

Rolling mechanism: The multi-stage modeling framework
allows for the implementation of a rolling mechanism that
distinguishes between short-term operational commitments
and long-term planning flexibility, reflecting the reality of
imperfect foresight in energy system planning. At each
planning stage, decisions are categorized based on their
temporal proximity and reversibility.

Operational decisions: Capacity construction (Cappyiic)
and system operation locked in during the fixed horizon
FH(6), where data is assumed to be accurate. These decisions
are treated as fully implemented and thus irreversible.

Financing commitments: Capacity financing (Capfinancea)
that occurs within the investment horizon (/H(e)). This
reflects the assumption that once capacity is financially
committed, it is effectively under construction, and thus
cannot be revised in subsequent stages, even if updated
demand forecasts diverge from initial projections.

Long-term plans: Capacity planning (Cappignneq) Whose
financing is scheduled beyond the I-H. As the investment is
not yet committed, the remain reversible and are subject to re-
evaluation in the following stages.

After a stage z is optimized, the model advances to the next
stage z + 1. At this point:

*The electricity demand profile is updated based on newly
available information.

*Operational capacity and dispatch decisions from the fixed
horizon ( FH,(5) ) are fixed and carried forward as
implemented.

sInvestment decisions that fell within the investment
horizon IH,(§ + €) are treated as financially committed.
Those financed within IH,(§) are treated as under
construction, while those scheduled within the extended
window IH,(6 +¢€) are assumed to soon enter the
construction phase, and are thus also treated as irreversible in
subsequent stages.

A schematic representation of the multistage flow of
information and decisions is provided in Figure 3.
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Figure 3. Schematic representation of proposed framework



3. CASE STUDY

To evaluate the practical relevance of the proposed
multistage framework, the model was applied to a
retrospective case study of the Italian electricity system from
2000 to 2025. This period is characterized by evolving demand
projections, shifting policy priorities, and significant
expansion in renewable generation, making it a suitable
testbed to explore how long-term planning decisions are
affected by imperfect foresight.

The objective of the case study is twofold:

First, to demonstrate the limitations of perfect foresight
assumptions in replicating real-world decisions.

*Second, to evaluate whether the proposed multistage model,
even in a simplified form, offers a structurally more realistic
representation of decision-making under uncertainty.

Two distinct model configurations were executed: a single-
stage optimization assuming perfect foresight, and the
proposed multistage imperfect foresight framework. Model
outputs—specifically installed capacity, decommissioned
capacity, and total electricity supply—were compared against
historical data to evaluate the proposed framework’s capability
to accurately replicate the temporal evolution of the energy
system under varying information assumptions.

3.1 Model inputs

The complete dataset of input parameters and assumptions
used in the model, including demand profiles, technology
characteristics, and cost assumptions, can be found in previous
study [11].

Model resolution: For this initial pilot, an annual resolution
was adopted, defining a yearly energy balance and average
technology capacity factors based on historical data [13]. A
Modelling horizon ranging from 2000 to 2020 was selected.

Multistage horizon: A multistage decision framework was
applied, with a fixed horizon of length 6 = 5 years. This choice
reflects the assumption that energy planners typically have a
relatively high level of confidence in demand projections over
the short-to-medium term. This choice is supported by

Historical

100 94,54 100

50 50

Built Capacity [GW]

Single Stage - Perfect Foresight

69.47

empirical comparisons between forecasted and realized
demand data, which show that projections over the first three
to five years typically exhibit a high degree of accuracy and
alignment. An investment horizon extension of € =4 years was
added, calibrated through preliminary model testing. This
brings the total planning horizon per stage to § + ¢ = 9 years,
which aligns with literature findings suggesting that major
infrastructure decisions are generally reassessed every 5 to 10
years [8].

Electricity demand: In the single-stage perfect foresight
model, electricity demand is represented by the actual
historical demand trajectory. Conversely, in the multistage
imperfect foresight framework, demand forecasts at the
beginning of each decision stage (e.g., 2000, 2005, 2010, etc.)
are based on the official projections available at the time, as
reported in previous study [13].

3.2 Results

Results indicate that the proposed multistage imperfect
foresight framework more accurately replicates historical
trends compared to the baseline single-stage perfect foresight
model. In terms of installed capacity, as shown in Figure 4, the
perfect foresight model systematically underestimates
investments. This outcome is expected, as perfect knowledge
of future demand allows the model to optimize investments
precisely to match needs, avoiding overcapacity. Conversely,
the multistage imperfect foresight model yields higher
installed capacity levels, closer to observed historical data.
This outcome underscores the influence of forecast uncertainty
on investment dynamics. In particular, historical trends in the
early 2000s show that projected electricity demand was
significantly overestimated compared to what ultimately
materialized. Consequently, substantial investments in natural
gas capacity were undertaken based on these inflated
expectations. By the time it became apparent that actual
demand growth would be more modest, many of these projects
had already been initiated or financially committed, resulting
in a persistent oversupply of capacity.

Multistage - Imperfect Foresight

100

86.96

@ Coal

@ Geothermal
@ Hydro

@ Natural Gas
@oil

50
@ Other fossil

@ Other renewable
ory

@ Wind

Figure 4. Total built capacity

The overcapacity situation leads to higher total system costs
in the imperfect foresight model compared to the perfect
foresight case, as show in Figure 5. While the overall cost
difference is relatively small, it highlights the increased
financial risk for investors in power plants that operate below
expected capacity. Lower utilization rates cause longer
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payback times and greater uncertainty in returns, making it
particularly challenging for single-asset power producers who
lack diversified portfolios.

A comparison of annual electricity supply between the two
model configurations indicates that both exhibit similar
dispatch behavior, as shown in Figure 6. In the multistage



imperfect foresight model, excess capacity does not
significantly alter dispatch quantities but results in higher
reserve margins. Compared to historical data, both models
tend to slightly overestimate renewable generation and
underrepresent the substitution dynamics between natural gas
and oil-fired generation. These discrepancies primarily arise
from the model’s limited temporal resolution, which currently
relies on a single representative day per year. This
simplification limits the ability to capture intra-annual
variability, operational constraints such as ramping
capabilities, and the full flexibility requirements of different
technologies. Increasing temporal granularity, such as
incorporating multiple representative days through clustering,
and incorporating operational constraints would enhance
dispatch accuracy and more realistically capture the
operational behavior of the power system.

Single Stage - Perfect Foresight Multistage - Imperfect Foresight

162.02bn

150bn 141.98bn

Figure 5. Total system costs
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Figure 6. Yearly system supply

4. CONCLUSIONS AND FUTURE WORK

This study introduced a multistage investment-planning
model that explicitly accounts for electricity demand forecast
uncertainty and benchmarked its outputs against both a
conventional perfect foresight formulation and observed
historical developments. The results demonstrate that
imperfect foresight, while yielding suboptimal outcomes from
a cost-efficiency perspective, provides a more realistic
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representation of decision-making under uncertainty. In the
context of the analyzed case study, this outcome is strongly
influenced by demand overestimations in the early 2000s,
which led to forward-looking investments that became
financially locked in before actual demand trajectories were
fully revealed. As a result, the imperfect foresight model more
accurately replicates historical capacity development but at the
cost of higher system expenditures and lower asset utilization.
These findings highlight the systemic impact of forecast
uncertainty and emphasize the associated financial risks borne
by investors, especially in the context of capital-intensive
technologies with long payback periods.

Future research will build on this foundation to explore how
different modeling assumptions and structural factors
influence investment outcomes under uncertainty. Key
developments will include enhancing the model’s temporal
resolution by incorporating multiple representative periods per
year to better capture variability in load, renewables, and
operational flexibility constraints. Spatial detail will also be
added by introducing a simplified transmission network to
explore regional disparities in resource availability and grid
congestion. Building on this refined framework, future
analysis will focus on developing indicators to identify which
technologies are most vulnerable to forecast uncertainty, and
how techno-economic characteristic, such as capital intensity,
ramping capability, and dispatchability, affect their resilience.
The ultimate objective is to inform strategies that mitigate the
adverse impacts of forecast errors, enhancing the robustness of
investment decisions and system planning.
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Statistiche.

NOMENCLATURE

PH Planning horizon

FH Fixed horizon

IH Investment horizon

Cap Technology capacity

dc Decision to construction time
co Construction to operation time
c Specific costs

Z Objective

X Total technology activity

X Number of stages

Y Year

Greek symbols

) Fixed horizon length

€ Investment horizon extension
Subscripts

z Stage number

n Last year of modelling horizon
planned Planned capacity

built Built capacity

financed Financed capacity

op Operative capacity

disp Disposed capacity

var Variable costs

fix Fixed costs
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