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An equivalent damping matrix for circular perforated plates with square and rectangular
penetration patterns was developed in this study. Galerkin approaches via
eigenfunctions of the solid plate as trial functions were used to derive the plate's mass
matrix and stiffness matrix. A solid plate replaced the perforated plate using the
equivalent material properties concept. The proportional damping principle was used to
construct the equivalent damping matrix. The first four damping ratios associated with
the first four natural frequencies were measured experimentally and used to determine
the proportionality constants. Two ligament efficiencies were assessed for each
penetration pattern by varying hole diameters while keeping the width of the partition
between holes constant. A comparison of the first four natural frequencies between
experimental and analytical results shows that a good result can be achieved when the
eigenfunctions of a solid circular plate are used as trial functions in the Galerkin
approach. Using an equivalent damping matrix decreases the percentage difference
between them by 0.1% for the first mode, 4.9% for the second mode, 4.1% for the third
mode, and 3.4% for the fourth mode.
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1. INTRODUCTION The main dimensionless parameter for perforated plates is
the ligament efficiency n, which can be defined as:

The dynamic characteristics of perforated plates have been

studied by many authors since they have many engineering
applications. Among these applications are nuclear reactors
and tube sheet heat exchangers, and combustion chambers [1].
They provide both a flow passage for fluid and structural
support. A circular perforated plate is one type of these plates.
The holes could be circular or square. There are two types of
perforation patterns: square patterns (Figure 1) and triangular

patterns (Figure 2).
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Figure 1. Square penetration pattern
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Figure 2. Triangular penetration pattern
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where, p is the pitch and b is the minimum ligament width. It
is worth mentioning that the different values of # can be
achieved in two ways: 1)- keeping the pitch constant and
changing the radius of holes, and 2)- vice versa. The first one
is approved in this study.

A fundamental frequency of a rectangular perforated plate
is determined by Mali and Singru [2], by considering the holes
as concentrated negative mass, while the perforated plate was
considered a plate with uniformly distributed mass.

Validation with FEM shows that the analytical model is
proper for obtaining the fundamental frequency for small
perforations.

Besides, FEM was used to study the effect of adding micro
holes to rectangular plates with macro holes on their natural
frequency and mode shape [3]. Cunningham et al. [4] provided
the dynamic finite element model to predict the effect of
perforations on the natural frequency of clamped circular flat
plates. The impact of the circular hole’s diameter and position
on the natural frequencies of the rectangular plate was
examined by Jamali et al. [5] through both experimental and
analytical methods using finite element modeling. In contrast,
the Simula Abaqus software was used to investigate the
dynamic characteristics of perforated plates with holes of
complex geometry [6]. A numerical model introduced by
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Zhang et al. [7] to study the vibrational properties of the
braided fiber reinforced composite rotating plates with holes.

Recently, many researchers have focused on vibration
analysis of solid plates made from functionally graded
materials (FGM) due to their exceptional thermal properties.
After that, the perforation was introduced by Prasshanth et al.
[8] to study the effect of plate thickness, number of
perforations, and penetration diameters on the dynamic
characteristics of partially perforated circular functionally
graded plates, where ANSYS Workbench was used in this
investigation.

The drawbacks of the finite element method in this field are
very costly and time-consuming. For this reason, many authors
focus on using equivalent solid material concepts. In this
concept, the perforated plate is replaced by a solid plate with
equivalent elastic constants, which behaves similarly to a
perforated plate when subjected to the same load conditions.
By equating the average strains in the perforated plate material
to those in an equivalent solid material, the effective elastic
constant for thick perforated plates was determined by Slot and
O’Donnell [9]. The concept was developed by O’Donnell [10]
to include those of thin perforated plates. However, this
concept is valid for the first mode from a modal characteristic
point of view [11].

The more efficient equivalent material properties of a
square and triangular perforated plate can be used for a
vibration analysis as a function of ligament efficiency, as
suggested by Jhung and Jo [12], and this can be done
regardless of the plate’s thickness. An alternative approach to
obtaining an expression for equivalent elastic properties for
rectangular perforated plates is provided by Jhung and Jeong
[13]. The formulation was based on Rayleigh’s quotient, and
the fundamental natural frequency was obtained
experimentally. On the other hand, the geometric nonlinearity
of the circular perforated plate was considered by Ehrhardt et
al. [14]. In this study, the nonlinear normal modes were
measured experimentally and compared with those obtained
numerically. Due to the wide use of partially perforated
circular plates (perforation was at the central region of the
plate) in reactor internals, it was also developed from a
vibration point of view by Jeong and Jhung [15] using finite
element analysis. The results were compared with the
analytical method based on the Rayleigh-Ritz. The study
divided the partially circular perforated plates into a perforated
central region and a solid annular region to determine the total
kinetic and maximum potential energy. Finally, the modal
analysis of the perforated circular plates with a triangular hole
pattern was used to extract the effective modulus of elasticity
and effective Poisson’s ratio by Jeong et al. [16].

All these studies lack consideration for the internal damping
effect on the dynamic characteristics of circular perforated
plates. Due to a mismatch between the theoretical and
experimental values of natural frequencies, the authors of this
study developed the equivalent damping matrix using the
proportional damping principle. The Mass and stiffness matrix
of the perforated plate were determined using exact
eigenfunctions of the solid plate as a trial function in the
Galerkin method. The effects of internal plate material
damping on the first four natural frequencies of the fixed-edge
circular solid and perforated plate were studied. Triangular and
square penetration patterns with two ligament efficiency #
(0.5, 0.75) per pattern were considered. The analytical results
were compared with an experimental modal test designed for
this purpose.
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2. MATHEMATICAL MODELLING
2.1 Free vibration analysis of a solid circular plate

Figure 3 shows a fixed edge circular plate of radius a and
thickness 4 that vibrates transversely perpendicular to the x—y
plane. Under the following assumptions: 1)- the plate material
is isotropic, 2)- homogeneous, 3)- the plate is so thin that the
rotary inertia can be neglected, the partial differential equation
of the undamped bending vibration of the circular plate in
polar coordinates can be written as

DV*w(r,8,t) + pphw(r,0,t) =0 (1)

where, V* is bi-harmonic operator and
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Is two dimensional Laplacian, in polar coordinates,
w(r, 0,t) is the deflection of a point whose coordinates are
(r,0) at the middle plane of the plate at any time ¢, D =
E h3/12(1 — v?) is the flexural rigidity of the plate, E is the
modulus of elasticity, v is passion’s ratio and p, is mass
density per unit area.

Figure 3. Fixed edge circular plate
2.2 Galerkin approach

The eigenvalue problem in the Galerkin approach is derived
by setting the integrated weighted error equal to zero. The
Galerkin approach was used in this study because it deals with
non-conservative systems, such as systems with internal plate
material damping (problem in hand).

In the Galerkin approach, the solution of the plate is
assumed in the form:

n

w(r,08) = Z a; W;(r,0)

i=1

)

where, a; are undetermined coefficients, W;(r, 8) are trial
comparison (satisfies all boundary conditions) functions and n
is the number of trial functions.

Substituting for the approximate series solution (2) into Eq.
(1) yields



n n
D Z a; V2V2W;(r,0) + pphw? Z a; W;(r, 0) 3)
i=1 i=1

Multiplying Eq. (3) by the weighting function ¢;(r, ), then
equating the integrated result to zero, the Galerkin equation for
circular plate vibration can be written as:

-[f (D ; a; V2V2W (T, 8)

- 4)
+ pphwzz a; W;(r,0) |¢;(r,0)rdrdb =0,
i=1
j=12,
where,
VAW (r, 0,t)
_ 62+18+1 0% 82W+16W 1 0°W
“\orz " ror r2002)\ar2 " r or r? 062
or in the expanded form
VW0, 0) = 04w 4 203W  10°W 10w
D) = e T o3 T 2 ar2 13 or
+2 atw 2 83W+462W+164W
r20r200% 1r300%0r 7r* 002 r* 00*

It should be noted that the weighting function ¢;(r, 8) and
trail function W;(r, 8) are the same in the Galerkin approach
[17].

2.3 Derivation of trial function W;(r, 8)

The eigenfunctions of the solid circular plate were used as
a trial function W;(r,8). Since the eigenfunctions (mode
shape) are an exact solution of the given boundary value
problem, then from Eq. (4), the derived functions will be
orthogonal with the function in bracket in Eq. (4).

The eigenvalues of a plate can be deduced as follows: the
deflection w can be considered to be separable in space and
time as

w(r, 6,t) = W(r,0)e /ot (5)

Substituting Eq. (5) into Eq. (1), the equivalent factorised

form is

(V2 +BH(V2 = pHW(r,0) =0 (6)
where,
B* = w?pph/D (7
and w is radial frequency.
By separating the function W (r, 8) into F(r)G(6), i.e.,
W(r,6) = F(r)G(6) ®)

After some mathematical operations, as carried out in
Appendix A, the function W (r, 8) can be deduced as

W(r,8) = [CJx(Br) + C31(Br)] A cos k(6) ©)
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where, k is constant and equal to (1, 2, ...), since G(¢) must be
periodic with period 2m [18].

The two boundary conditions of the clamped-edge circular
plate were:

_ dw(r)
W(T)lr:a - 7
Using Eq. (9), leads to

Ck(Ba) + C31(Ba) = 0

Cr(Ba) + C31;,(Ba) = 0

(10)

(11)

The frequency equation can be deduced as (see Appendix B
for Bessel function identities):

Jk(Ba) 11 (Ba) + Jxr1(Ba)(Ba) = 0 (12)

For each value of k, there is an infinite number of roots. The
frequency parameter

Akm = Brm@

Then, from Eq. (7), the natural frequency of the solid plate
can be obtained as

()
wem =7

2

D

13
" (13)

Maple computer software was used to determine the roots
of Eq. (12). Figure 4 shows the first two roots at k= 2.

IR e 1312

Figure 4. First two roots of Eq. (12) at k=2

Then, eliminating the constant C; from Eq. (10) and
substituting it into Eq. (9), the normal modes (trial functions)
of the circular plate are reduced to

ka(T, 6) =
A |k BremT) _%I"('Bk’"ﬂ] (s(l)r;];cg) .



where, Ay, is constant for normalization.

Figures 5-8 depict the first four normal modes associated
with k,m = 01,11,21,02, respectively (k refers to the order of
Bessel’s function and m refers to the root number). Two notes
can be pointed out from these modes: 1) The mode shapes (Eq.
(14)) do not depend on the material of the plate. 2)- The
axisymmetric modes correspond to zero order of Bessel’s
function, while otherwise correspond to asymmetric modes.
Eq. (14) represents the trial or weight functions used in Eq. (4)
to derive the mass and stiffness matrices. Up to four
derivatives of Bessel’s functions are given in Appendix B [19].

2.4 Equivalent solid plate

The perforated plate was replaced with an equivalent solid
plate that considers the weakening effect of perforation. This
can be done by using an equivalent elastic E* as a function of
ligament efficiency 7. Because equivalent elastic constant
proposed by O’Donnell [10] is not suitable for a modal
analysis, Jhung and Jo [12] performed several finite element
analyses to suggest an equivalent elastic constant of perforated
plates that can be used for a dynamic analysis propose as
follows

*

E
T = 0.6106 + 1.1253n — 2.71187n?
+4.0812n3 — 2.1128n*(triangular)

(15)

*

— = 0.5280 + 2.0035y — 5.47581?
+7.7474n3 — 3.8968n*(square)

(16)

Eqgs. (15) and (16) can be used for the modal analysis of the
entire thickness range of the plate.

Figure 5. First mode of clamped circular plate corresponding
tok=0,m=1

2.5 Deriving the damping matrix

By applying the orthogonality conditions for the free
vibration mode shape, the proportional damping matrix can be
deduced

c= mz a;[m=t kI’ (17)
J

where, a; are arbitrary coefficients. By considering many
terms of series (17), the proportional damping matrix that
gives any desired damping ratios {, at specified frequency w,,
can be constructed.
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Figure 6. Second mode of clamped circular plate
corresponding to k=1, m =1

Figure 7. Third mode of clamped circular plate
corresponding to k=2, m =1

02 02

Figure 8. Fourth mode of clamped circular plate
corresponding to k=0, m =2

To evaluate the constants a; the following relation can be
used

G = ! Za-a)zj
"= 20, j Wy (18)

J

where, the values of j can fall anywhere range —oo < j < oo.
It is desirable to select the values of j as close to zero as
possible. The details of this derivation can be found in
reference [20]. If four specific damping ratios in any four
modes have the frequencies wy,, w,, w,, w, (as in the case),
the resulting equations from Eq. (18) are as follows:



a_q 1/(’)7271 1/wm Wy Wy (m
2 3

a, 1/w; 1/w, w, s $o

a2 1w 1w, w, w; &

where, j = -1, 0, +1, and +2 (close to zero) were used.

3. EXPERIMENTAL WORK

Figure 9 shows the experimental setup used to conduct the
modal test on solid and perforated circular plates. The modal
experimental rig generally consists of two upper and lower
rigid steel rings, and the test specimen (circular thin plate) is
bolted between them using 12 steel bolts. Four accelerometers,
type 4507-B-002, were evenly distributed on the plate to
measure the frequency response function FRF. The impact
hammer, type 8206, with a steel tip, was used for excitation.
All equipment was from Bruel and Kjaer Vibration
Instruments Company. Each accelerometer weighs 4.7 g and
is assumed to have a negligible mass. When the
accelerometers were placed on a plate, the nodal diametric
lines and nodal circles were avoided.

The aims of the experiment were (1) To measure the
damping ratio ¢; at the first four natural frequencies, which
they used to construct the proportional damping matrix via
Egs. (17)-(19). (2) To verity the feasibility of the theoretical
model used to consider the internal plate damping.

Impact hammer

\ g 12 steel bolts

4 accelerometers Test specimen

Uppersteel ring

2 || 2 I T I " "N "N AR i |

Lower steel ring
columns

&\\\\ Base

Figure 9. The experimental setup

The FRF was obtained by exciting the position i(i =
1,2,3,4) of the accelerometer and measuring the responses
from position (j = 1,2,3,4). The FRF is well known as the
ratio of the output response of the structure due to an applied
force in the frequency domain, and is a complex-valued
number. A peak of the magnitude values of FRF indicates the
frequency at the resonance (natural frequency) of the plate.

Figure 10 illustrates the magnitude of the FRF for a plate
with a square pattern (1 equals 0.75). While the mode shapes
of the plate can be extracted experimentally from the
imaginary part of the FRF. Figure 11 shows the real and
imaginary parts of the FRF for a plate with a square pattern (n
equals 0.75). These indicate that the imaginary part
corresponding to the first peak (200 Hz) obtained by all
accelerometers has the same sign (first mode). On the other
hand, the imaginary parts corresponding to the second peak
(400 Hz) obtained from the first three accelerometers have a
sign opposite to the sign for the fourth one (second mode).
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Figure 10. Magnitude of FRF from first accelerometer (Forn
= 0.75 square pattern)

~——— Frequency Response H1(Accl,Hammer) - Inputl (CoQuad Plot - Real/imaginary \ FFT
(m/s~2)/N]
140
J A
-204 s y = —
-100- \V
| 240
160
80 Jll
0 g
60 Y
=160
0 100 200 300 400 500 600 700 800
[Hz)
(a)
Frequency Response H1(acc2,Hammer) - Input (CoQuad Plot - Real/imaginary \ FFT
((m/s~2)N]
200 j
1204
0] | A
-40 P— e
=120 V ‘Vl
-2081
o0 V | [
160+
2401
=320+
0 100 200 300 400 500 600 700 800
(Hz)
Frequency Respanse H1(Acc3,Hammer) - Input (CoQuad Plot - Real/Imaginary \ FFT
((m/s~2)/N)
140
60 J‘ A
-204 G "'— e
=100+ |
240 |
1604 |
804 |
0 = e |
-801 " v i
~160 T + T T T T T 1
0 100 200 300 400 S00 600 700 800 ‘
[Hz]
(c)
Frequency Response Hi(Accd,Hammer) - Input (CoQuad Plot - Real/Imaginary \ FFT
((m/s~2)/N]
2004
1204
404 J] e _//]
40 v =
=120+ LK
200
360
200+
40 a
et T 7
0 100 200 300 400 500 600 700 800
[Hz)

Figure 11. Real and imaginary parts of FRF from four
accelerometers (For = 0.75 square pattern)

Figure 12 shows the typical FRF magnitude plot versus w.
The peak values of this relation correspond to resonance
conditions (w = w;) where i is the mode number. Two peaks
appear in the frequency range in Figure 12.

To determine the modal damping ratio ({) experimentally,
for i-th mode, the quadrature peak picking method was used
[21].

_ Wp; — Wg;

€

o (20)



where, w; is the natural frequency at the resonance i and w;
and wy,; satisfy the condition.

|FRF ()]

[FRF(wgi)| = |FRF(wp)| = 7z

[FRF (w;)]
vz

Figure 12. Calculation of the model damping ratio using the
quadrature peak picking method

The damping ratios corresponding to the first four natural
frequencies of the solid (unperforated) plate are listed in Table
1.

Table 1. Damping ratio corresponding to first four natural
frequencies of the solid plate

Mode No.
Damping ratio ({)

Wo,1
0.05

1,1
0.3

w21
0.27

Wo,2
0.247

In this study, five circular plates (one solid and four
perforated) were used in a modal test. The plate’s geometric
specifications are shown in Table 2.

Table 2. Geometric specifications of five specimens

Pattern
nga{nent Pitch Triangle Square
Efficiency
(mm) Hole Hole
U)) No.of . . .
Diameter Diameter
Holes Holes
(mm) (mm)
(solid) - - - - -
0.75 40 43 10 40 10
0.5 40 37 20 32 20

All the specimens have a thickness of h equals 2 mm and a
diameter of 300 mm. The material of plates was mild steel
having £ =200 GPa, v= 0.3, and p,, = 7900 kg'm~.

4. RESULTS AND DISCUSSION

Matlab software was used to perform double integration
numerically (Eq. (4)) to evaluate mass and stiffness matrices.
The 12 (n = 12) trial comparison function (W;(r, 8)) is used to
evaluate both mass and stiffness matrices, and then the
damping matrix. The first four natural frequencies
corresponding to mode indices (k,m) =01, 11, 21, 02 for five
cases (one solid two square patterns corresponding to = 0.75
and 0.5, and two triangular patterns corresponding to n = 0.75
and 0.5) were investigated in this study. Figure 13 shows
experimental and theoretical values of a circular solid plate's
first four natural frequencies. It can be seen from the figure,
the differences between experimental and theoretical natural
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frequencies are almost negligible. Therefore, it is clear that the
eigenfunctions of the solid plate (Eq. (14)) are used as
comparison functions in the Galerkin approach is acceptable
to describe the dynamic characteristics of a circular plate.

Figures 14-17 show experimental and theoretical values of
the first four natural frequencies of square and triangular
patterns perforated circular plates. In these figures, the mode
numbers 1, 2, 3, and 4 refer to mode indices (k,m) =01, 11, 21,
02, respectively. All these figures indicate the reduction in the
first four natural frequencies as ligament efficiency (1)
becomes smaller due to the stiffness dropping more rapidly
than mass.

—+— Exp.

T 900

—=—The.7=0 The. 720

\
]
o
o

700
600

P NWRAWL
[cNeoNoNoNe]
[sNsNeNoNa]

o

Natural Frequenc

Mode No.

Figure 13. Experimental and theoretical (with and without
damping) and experimental results of the first four natural
frequencies for a solid plate
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Figure 14. Experimental and theoretical (with and without
damping) results of the first four natural frequencies for a
square perforated plate (n = 0.75)
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Figure 15. Experimental and theoretical (with and without
damping) results of the first four natural frequencies for a
square perforated plate (= 0.5)
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Figure 16. Experimental and theoretical (with and without
damping) results of the first four natural frequencies for a

triangular perforated plate (n = 0.75)

—+—Exp. —®—The. (=0 The. {20
T 900

z 50 =

¥ 500 /;/

=

)/

T 500

o o

~ 400 7
% 300

® 200
% 100
Z O T T T T

0 1 2 3 4 5
Mode No.

Figure 17. Experimental and theoretical (with and without
damping) results of the first four natural frequencies for a

triangular perforated plate (n = 0.5)
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experimental results for triangular penetration
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Figure 19. Percentage difference between theoretical and
experimental results for square penetration
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The effect of internal damping of plate material is also
depicted in Figures 14-17. The percentage differences between
theoretical and experimental results due to internal damping
with mode number are illustrated in Figures 18 and 19 for
triangular and square penetration, respectively. As shown in
the Figures, the internal damping of plate material
significantly reduces the difference between experimental and
theoretical results for different penetration patterns and
ligament efficiencies.

Numerical values of the drop in percentage difference due
to internal damping are listed in Table 3. These values remain
almost stable for a certain mode number regardless of the
pattern of penetration and ligament efficiency, which are 0.1%
for the first mode, 4.9% for the second mode, 4.1% for the
third mode and 3.4% for the fourth mode. This indicates that
in this study, the perforated circular plate is replaced by a solid
circular plate with equivalent stiffness and damping matrices.

The presented approach can be used to study the dynamic
characteristics of perforated plates when submerged in fluid,
instead of finite element analysis, due to the fine mesh
requirement, which is time-consuming.

Table 3. Numerical drops in percentage difference due to
equivalent damping matrix

Triangle Square
ModeNo. = — 675 1=05 n=075 n=05
@on 0.13 0.1 0.1 0.0
W11 5 49 5 48
w21 41 41 42 41
Woz 34 34 34 33

5. CONCLUSIONS

The internal material damping of a perforated circular plate
was taken into account by deriving an equivalent damping
matrix. In this study, the perforated circular plate was replaced
by a solid one with equivalent stiffness and mass matrices. The
proportional damping principle was used to evaluate the
damping matrix. The main conclusions of this study can be
summarised as follows:
® A good result can be obtained when the eigenfunctions of
a solid circular plate (Eq. (14)) are used as a trial function
in the Galerkin approach.

® A 12-trial function was adequate in the Galerkin approach
to evaluate the mass, stiffness, then damping matrix for
circular plates.

® Significant reductions in the percentage difference
between theoretical and experimental results were found
when internal material damping is taken into account.

® Numerical values of percentage difference reduction
between theoretical and experimental results were 0.1%
for the first mode, 4.9% for the second mode, 4.1% for the
third mode and 3.4% for the fourth mode, regardless of
ligament efficiency and type of penetration.

The presented approach needs to be extended to include
mixed boundary conditions and to partially perforate circular
plates.
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NOMENCLATURE

a

plate radius, mm

D flexural rigidity of the plate, Nm

D* equivalent flexural rigidity of the plate, Nm

E modulus of elasticity, GPa

E” equivalent modulus of elasticity, GPa

h plate thickness, mm

Jx Bessel’s function of the first kind of order &

I, modified Bessel’s function of the first kind of
order k

Y, Bessel’s function of the second kind of order &

K modified Bessel’s function of the second kind of
order k

W;(r,0) i-th trail function

R radius of holes, mm

Greek symbols

v Poisson’s ratio

¢;(r,0)  i-th weighting function

1) radial frequency, rad-s™!

Pp plate density, kg'm™

n ligament efficiency



APPENDICES
Appendix A

This appendix describes the details of the derivation of Eq.
9).

The partial differential equation of the undamped bending
vibration of the circular thin plate in polar coordinates can be
written as

DV*w(r, 0,t) + pphv(r,6,t) = 0 (A1)

The eigenvalues of a plate can be deduced as follows: the
deflection w can be considered to be separable in space and
time as:

w(r,6,t) = W(r,0)e J«t (A2)

Substituting Eq. (A2) into Eq. (Al), the equivalent
factorised form is:

(V2 + (V= BHW(r,0) =0 (A3)
where,

B* = w?pph/D (A4)

and w is radial frequency.
By separating the function W (r, 8) into F(r)G(0), i.e.:

W(r,0) =F(r)G(9)
Eq. (A3) can be written as:

r2 d?F rdF 1 d?G
L 2,2 _ __ — 2 A5
F dT2 F dT T G(6) d92 k (AS5)

This is two ordinary differential equation:

d?G(o)
= A6
—g7 ——=+k*G(H) =0 (A6)
,d*F  dF
2 s +rd—+(+/12 r2—k?)F =0 (AT)

The solution of Eq. (A6) is:
G(B) =Acosk(8 —a)

where, k is a constant and equal to (1,2,::+), and & can be
choosen zero. Since G(8) must be periodic with period 21
[14]. So Eq. (A7) can be written as:

d*F  dF
r’—+r—+ (Fp%r?

2y = A8
i k?)F =0 (A8)

The general solution of Eq. (A8) is:

F(r) = CJ(Br) + Y (Br) + C3I (Br) (A9)
+ CoK (BT)

where, Ji (x) is the Bessel function of the first kind, [; (x) is
the modified Bessel function of the first kind, Y, (x) is the
Bessel function of the second kind and K}, (x) is the modified
Bessel function of the second kind, all the Bessel functions are
of order k, while, C;, C,, C3 and C, are constants.

Since Y;, and K}, have singularities at the origin, which are
contradictory to the reality of the vibration of the centre of the
plate, C, = C, = 0 have chosen. Thus, Eq. (A9) is reduced to:

W(r,8) =[CJ(Br) + C31,,(Br)] Acos k(6) (A10)

Appendix B

Identities for the Bessel and modified Bessel functions,
where v is the order of Bessel’s function and is A a parameter:

Jy @) = [fya () = 21, ()] 2 (B1)
v

10 = |-y (x) = 1,00 2 (B2)

Jon () = (D" () (B3)

(@) = () (B4)

where, n is an integer.
Appendix C

Derivatives of Bessel’s J,(Ax) and modified Bessel’s
function I, (Ax) up to order four:

D = 2 (hy=1 (A2) = Jya (A)) (@)
L0 _ (), (%) - 20,00 + )y () (€2)
LD () (s @0 = 31a G0+ ()
3Jy+1(Ax) — ]v+3(/1x))
L2 = (2)" (1400 = 4,20 + LD =
4], 42 (Ax) + ]v+4(/1x))
dly(Ax)

A = 2 (ly 2 (Ax) + 1,2, (A0)) (C5)

EWED (D (1,4, (00) + 21,0 +1,,(1)  (€CO)

dx? 2

d31,(Ax)
dx3

2\ 3
=(5) (a0 + 3L+ ()
3, (Ax) + 1,5 (lx))

d*1, (Ax)
dx3

= () (lyra ) + 41,520 + 61,(0) + s
41,_,(Ax) + Iv_4(/1x))





