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An equivalent damping matrix for circular perforated plates with square and rectangular 

penetration patterns was developed in this study. Galerkin approaches via 

eigenfunctions of the solid plate as trial functions were used to derive the plate's mass 

matrix and stiffness matrix. A solid plate replaced the perforated plate using the 

equivalent material properties concept. The proportional damping principle was used to 

construct the equivalent damping matrix. The first four damping ratios associated with 

the first four natural frequencies were measured experimentally and used to determine 

the proportionality constants. Two ligament efficiencies were assessed for each 

penetration pattern by varying hole diameters while keeping the width of the partition 

between holes constant. A comparison of the first four natural frequencies between 

experimental and analytical results shows that a good result can be achieved when the 

eigenfunctions of a solid circular plate are used as trial functions in the Galerkin 

approach. Using an equivalent damping matrix decreases the percentage difference 

between them by 0.1% for the first mode, 4.9% for the second mode, 4.1% for the third 

mode, and 3.4% for the fourth mode. 
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1. INTRODUCTION

The dynamic characteristics of perforated plates have been 

studied by many authors since they have many engineering 

applications. Among these applications are nuclear reactors 

and tube sheet heat exchangers, and combustion chambers [1]. 

They provide both a flow passage for fluid and structural 

support. A circular perforated plate is one type of these plates. 

The holes could be circular or square. There are two types of 

perforation patterns: square patterns (Figure 1) and triangular 

patterns (Figure 2). 

Figure 1. Square penetration pattern 

Figure 2. Triangular penetration pattern 

The main dimensionless parameter for perforated plates is 

the ligament efficiency η, which can be defined as: 

𝜂 =
𝑏

𝑝

where, p is the pitch and b is the minimum ligament width. It 

is worth mentioning that the different values of η can be 

achieved in two ways: 1)- keeping the pitch constant and 

changing the radius of holes, and 2)- vice versa. The first one 

is approved in this study. 

A fundamental frequency of a rectangular perforated plate 

is determined by Mali and Singru [2], by considering the holes 

as concentrated negative mass, while the perforated plate was 

considered a plate with uniformly distributed mass.  

Validation with FEM shows that the analytical model is 

proper for obtaining the fundamental frequency for small 

perforations.  

Besides, FEM was used to study the effect of adding micro 

holes to rectangular plates with macro holes on their natural 

frequency and mode shape [3]. Cunningham et al. [4] provided 

the dynamic finite element model to predict the effect of 

perforations on the natural frequency of clamped circular flat 

plates. The impact of the circular hole’s diameter and position 

on the natural frequencies of the rectangular plate was 

examined by Jamali et al. [5] through both experimental and 

analytical methods using finite element modeling. In contrast, 

the Simula Abaqus software was used to investigate the 

dynamic characteristics of perforated plates with holes of 

complex geometry [6]. A numerical model introduced by 
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Zhang et al. [7] to study the vibrational properties of the 

braided fiber reinforced composite rotating plates with holes. 

Recently, many researchers have focused on vibration 

analysis of solid plates made from functionally graded 

materials (FGM) due to their exceptional thermal properties. 

After that, the perforation was introduced by Prasshanth et al. 

[8] to study the effect of plate thickness, number of 

perforations, and penetration diameters on the dynamic 

characteristics of partially perforated circular functionally 

graded plates, where ANSYS Workbench was used in this 

investigation.  

The drawbacks of the finite element method in this field are 

very costly and time-consuming. For this reason, many authors 

focus on using equivalent solid material concepts. In this 

concept, the perforated plate is replaced by a solid plate with 

equivalent elastic constants, which behaves similarly to a 

perforated plate when subjected to the same load conditions. 

By equating the average strains in the perforated plate material 

to those in an equivalent solid material, the effective elastic 

constant for thick perforated plates was determined by Slot and 

O’Donnell [9]. The concept was developed by O’Donnell [10] 

to include those of thin perforated plates. However, this 

concept is valid for the first mode from a modal characteristic 

point of view [11]. 

The more efficient equivalent material properties of a 

square and triangular perforated plate can be used for a 

vibration analysis as a function of ligament efficiency, as 

suggested by Jhung and Jo [12], and this can be done 

regardless of the plate’s thickness. An alternative approach to 

obtaining an expression for equivalent elastic properties for 

rectangular perforated plates is provided by Jhung and Jeong 

[13]. The formulation was based on Rayleigh’s quotient, and 

the fundamental natural frequency was obtained 

experimentally. On the other hand, the geometric nonlinearity 

of the circular perforated plate was considered by Ehrhardt et 

al. [14]. In this study, the nonlinear normal modes were 

measured experimentally and compared with those obtained 

numerically. Due to the wide use of partially perforated 

circular plates (perforation was at the central region of the 

plate) in reactor internals, it was also developed from a 

vibration point of view by Jeong and Jhung [15] using finite 

element analysis. The results were compared with the 

analytical method based on the Rayleigh-Ritz. The study 

divided the partially circular perforated plates into a perforated 

central region and a solid annular region to determine the total 

kinetic and maximum potential energy. Finally, the modal 

analysis of the perforated circular plates with a triangular hole 

pattern was used to extract the effective modulus of elasticity 

and effective Poisson’s ratio by Jeong et al. [16].  

All these studies lack consideration for the internal damping 

effect on the dynamic characteristics of circular perforated 

plates. Due to a mismatch between the theoretical and 

experimental values of natural frequencies, the authors of this 

study developed the equivalent damping matrix using the 

proportional damping principle. The Mass and stiffness matrix 

of the perforated plate were determined using exact 

eigenfunctions of the solid plate as a trial function in the 

Galerkin method. The effects of internal plate material 

damping on the first four natural frequencies of the fixed-edge 

circular solid and perforated plate were studied. Triangular and 

square penetration patterns with two ligament efficiency η 

(0.5, 0.75) per pattern were considered. The analytical results 

were compared with an experimental modal test designed for 

this purpose. 

2. MATHEMATICAL MODELLING  

 

2.1 Free vibration analysis of a solid circular plate 

 

Figure 3 shows a fixed edge circular plate of radius a and 

thickness h that vibrates transversely perpendicular to the x–y 

plane. Under the following assumptions: 1)- the plate material 

is isotropic, 2)- homogeneous, 3)- the plate is so thin that the 

rotary inertia can be neglected, the partial differential equation 

of the undamped bending vibration of the circular plate in 

polar coordinates can be written as 

 

𝐷∇4𝑤(𝑟, 𝜃, 𝑡) + 𝜌𝑃ℎ𝑤̈(𝑟, 𝜃, 𝑡) = 0 (1) 

 

where, ∇4 is bi-harmonic operator and 

 

∇2=
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
 

 

Is two dimensional Laplacian, in polar coordinates, 

𝑤(𝑟, 𝜃, 𝑡) is the deflection of a point whose coordinates are 

(𝑟, 𝜃)  at the middle plane of the plate at any time t, 𝐷 =
𝐸 ℎ3 12(1 − 𝑣2)⁄  is the flexural rigidity of the plate, E is the 

modulus of elasticity, v is passion’s ratio and 𝜌𝑝  is mass 

density per unit area. 

 

 
 

Figure 3. Fixed edge circular plate 

 

2.2 Galerkin approach 

 

The eigenvalue problem in the Galerkin approach is derived 

by setting the integrated weighted error equal to zero. The 

Galerkin approach was used in this study because it deals with 

non-conservative systems, such as systems with internal plate 

material damping (problem in hand). 

In the Galerkin approach, the solution of the plate is 

assumed in the form: 

 

𝑤(𝑟, 𝜃) = ∑ 𝛼𝑖

𝑛

𝑖=1

W𝑖(𝑟, 𝜃) (2) 

 

where, 𝛼𝑖  are undetermined coefficients, W𝑖(𝑟, 𝜃)  are trial 

comparison (satisfies all boundary conditions) functions and 𝑛 

is the number of trial functions. 

Substituting for the approximate series solution (2) into Eq. 

(1) yields  
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𝐷 ∑𝛼𝑖

𝑛

𝑖=1

 ∇2∇2W𝑖(𝑟, 𝜃) + 𝜌𝑃ℎ𝜔2 ∑ 𝛼𝑖

𝑛

𝑖=1

W𝑖(𝑟, 𝜃) (3) 

 

Multiplying Eq. (3) by the weighting function 𝜙𝑖(𝑟, 𝜃), then 

equating the integrated result to zero, the Galerkin equation for 

circular plate vibration can be written as: 

 

∬ (𝐷 ∑ 𝛼𝑖

𝑛

𝑖=1

∇2∇2W𝑖(𝑟, 𝜃)

.

𝐴

+ 𝜌𝑃ℎ𝜔2 ∑𝛼𝑖

𝑛

𝑖=1

W𝑖(𝑟, 𝜃) ) 𝜙𝑗(𝑟, 𝜃)𝑟 𝑑𝑟 𝑑𝜃 = 0,

𝑗 = 1, 2,⋯ 

(4) 

 

where, 

 

∇4𝑊(𝑟, 𝜃, 𝑡) 

= (
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
) (

𝜕2𝑊

𝜕𝑟2
+

1

𝑟

𝜕𝑊

𝜕𝑟
+

1

𝑟2

𝜕2𝑊

𝜕𝜃2
) 

 

or in the expanded form 

 

∇4𝑊(𝑟, 𝜃, 𝑡) =
𝜕4𝑊

𝜕𝑟4
+

2

𝑟

𝜕3𝑊

𝜕𝑟3
−

1

𝑟2

𝜕2𝑊

𝜕𝑟2
+

1

𝑟3

𝜕𝑊

𝜕𝑟
 

+
2

𝑟2

𝜕4𝑊

𝜕𝑟2𝜕𝜃2
−

2

𝑟3

𝜕3𝑊

𝜕𝜃2𝜕𝑟
+

4

𝑟4

𝜕2𝑊

𝜕𝜃2
+

1

𝑟4

𝜕4𝑊

𝜕𝜃4
 

 

It should be noted that the weighting function 𝜙𝑖(𝑟, 𝜃) and 

trail function 𝑊𝑖(𝑟, 𝜃) are the same in the Galerkin approach 

[17]. 
 

2.3 Derivation of trial function 𝑾𝒊(𝒓, 𝜽) 
 

The eigenfunctions of the solid circular plate were used as 

a trial function 𝑊𝑖(𝑟, 𝜃) . Since the eigenfunctions (mode 

shape) are an exact solution of the given boundary value 

problem, then from Eq. (4), the derived functions will be 

orthogonal with the function in bracket in Eq. (4). 

The eigenvalues of a plate can be deduced as follows: the 

deflection 𝑤 can be considered to be separable in space and 

time as 
 

𝑤(𝑟, 𝜃, 𝑡) = 𝑊(𝑟, 𝜃)𝑒−𝑗𝜔𝑡 (5) 

 

Substituting Eq. (5) into Eq. (1), the equivalent factorised 

form is 

 

(∇2 + 𝛽2)(∇2 − 𝛽2) 𝑊(𝑟, 𝜃) = 0 (6) 

 

where, 

 

𝛽4 = 𝜔2𝜌𝑃ℎ 𝐷⁄  (7) 

 

and 𝜔 is radial frequency. 

By separating the function 𝑊(𝑟, 𝜃) into 𝐹(𝑟)𝐺(𝜃), i.e., 

 

𝑊(𝑟, 𝜃) = 𝐹(𝑟)𝐺(𝜃) (8) 

 

After some mathematical operations, as carried out in 

Appendix A, the function 𝑊(𝑟, 𝜃) can be deduced as  

 

𝑊(𝑟, 𝜃) = [𝐶1𝐽𝑘(𝛽𝑟) + 𝐶3𝐼𝑘(𝛽𝑟)] 𝐴 cos 𝑘(𝜃) (9) 

where, k is constant and equal to (1, 2, …), since G(θ) must be 

periodic with period 2𝜋 [18]. 

The two boundary conditions of the clamped-edge circular 

plate were: 

 

𝑤(𝑟)|𝑟=𝑎 =
𝑑𝑤(𝑟)

𝑑𝑟
|
𝑟=𝑎

= 0 

 

Using Eq. (9), leads to 

 

𝐶1𝐽𝑘(𝛽𝑎) + 𝐶3𝐼𝑘(𝛽𝑎) = 0 (10) 

 

𝐶1𝐽𝑘
′ (𝛽𝑎) + 𝐶3𝐼𝑘

′ (𝛽𝑎) = 0 (11) 

 

The frequency equation can be deduced as (see Appendix B 

for Bessel function identities):  

 

𝐽𝑘(𝛽𝑎)𝐼𝑘+1(𝛽𝑎) + 𝐽𝑘+1(𝛽𝑎)𝐼𝑘(𝛽𝑎) = 0 (12) 

 

For each value of 𝑘, there is an infinite number of roots. The 

frequency parameter 

 

𝜆𝑘𝑚 = 𝛽𝑘𝑚𝑎 

 

Then, from Eq. (7), the natural frequency of the solid plate 

can be obtained as 

 

𝜔𝑘𝑚 = (
𝜆𝑘𝑚

𝑎
)

2

√
𝐷

𝜌𝑃ℎ
 (13) 

 

Maple computer software was used to determine the roots 

of Eq. (12). Figure 4 shows the first two roots at k = 2. 

 

 
 

Figure 4. First two roots of Eq. (12) at k = 2 

 

Then, eliminating the constant 𝐶3  from Eq. (10) and 

substituting it into Eq. (9), the normal modes (trial functions) 

of the circular plate are reduced to  

 

𝑊𝑘𝑚(𝑟, 𝜃) = 

𝐴𝑘𝑚 [𝐽𝑘(𝛽𝑘𝑚𝑟) −
𝐽𝑘(𝛽𝑘𝑚𝑎)

𝐼𝑘(𝛽𝑘𝑚𝑎)
𝐼𝑘(𝛽𝑘𝑚𝑟)] (

sin 𝑘𝜃
cos 𝑘𝜃

) 
(14) 
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where, 𝐴𝑘𝑚 is constant for normalization. 

Figures 5-8 depict the first four normal modes associated 

with k,m = 01,11,21,02, respectively (k refers to the order of 

Bessel’s function and 𝑚 refers to the root number). Two notes 

can be pointed out from these modes: 1) The mode shapes (Eq. 

(14)) do not depend on the material of the plate. 2)- The 

axisymmetric modes correspond to zero order of Bessel’s 

function, while otherwise correspond to asymmetric modes. 

Eq. (14) represents the trial or weight functions used in Eq. (4) 

to derive the mass and stiffness matrices. Up to four 

derivatives of Bessel’s functions are given in Appendix B [19]. 

 

2.4 Equivalent solid plate 

 

The perforated plate was replaced with an equivalent solid 

plate that considers the weakening effect of perforation. This 

can be done by using an equivalent elastic 𝐸∗ as a function of 

ligament efficiency η. Because equivalent elastic constant 

proposed by O’Donnell [10] is not suitable for a modal 

analysis, Jhung and Jo [12] performed several finite element 

analyses to suggest an equivalent elastic constant of perforated 

plates that can be used for a dynamic analysis propose as 

follows 

 
𝐸∗

𝐸
= 0.6106 + 1.1253𝜂 − 2.7118𝜂2 

+4.0812𝜂3 − 2.1128𝜂4(triangular) 

(15) 

 
𝐸∗

𝐸
= 0.5280 + 2.0035𝜂 − 5.4758𝜂2 

+7.7474𝜂3 − 3.8968𝜂4(square) 

(16) 

 

Eqs. (15) and (16) can be used for the modal analysis of the 

entire thickness range of the plate. 

 

 
 

Figure 5. First mode of clamped circular plate corresponding 

to k = 0, m = 1 

 

2.5 Deriving the damping matrix 

 

By applying the orthogonality conditions for the free 

vibration mode shape, the proportional damping matrix can be 

deduced 

 

𝑐 = 𝑚 ∑ 𝑎𝑗

𝑗

[m−1 k]𝑗 (17) 

 

where, 𝑎𝑗  are arbitrary coefficients. By considering many 

terms of series (17), the proportional damping matrix that 

gives any desired damping ratios 𝜁𝑛 at specified frequency 𝜔𝑛, 

can be constructed. 

 
 

Figure 6. Second mode of clamped circular plate 

corresponding to k = 1, m = 1 

 

 
 

Figure 7. Third mode of clamped circular plate 

corresponding to k = 2, m = 1 

 

 
 

Figure 8. Fourth mode of clamped circular plate 

corresponding to k = 0, m = 2 

 

To evaluate the constants 𝑎𝑗 the following relation can be 

used 

 

𝜁𝑛 =
1

2𝜔𝑛

∑𝑎𝑗𝜔𝑛
2𝑗

𝑗

 (18) 

 

where, the values of 𝑗 can fall anywhere range −∞ < 𝑗 < ∞. 

It is desirable to select the values of 𝑗  as close to zero as 

possible. The details of this derivation can be found in 

reference [20]. If four specific damping ratios in any four 

modes have the frequencies 𝜔𝑚, 𝜔𝑛 , 𝜔𝑜, 𝜔𝑝  (as in the case), 

the resulting equations from Eq. (18) are as follows:  
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{

𝑎−1

𝑎0
𝑎1

𝑎2

} = 2

[
 
 
 
 
1 𝜔𝑚

2⁄ 1 𝜔𝑚⁄

1 𝜔𝑛
2⁄ 1 𝜔𝑛⁄

𝜔𝑚 𝜔𝑚
3

𝜔𝑛 𝜔𝑛
3

1 𝜔𝑜
2⁄ 1 𝜔𝑜⁄

1 𝜔𝑝
2⁄ 1 𝜔𝑝⁄

𝜔𝑜 𝜔𝑜
3

𝜔𝑝 𝜔𝑝
3 ]
 
 
 
 
−1

{

𝜁𝑚

𝜁𝑛

𝜁𝑜

𝜁𝑝

} (19) 

 

where, j = -1, 0, +1, and +2 (close to zero) were used. 

 

 

3. EXPERIMENTAL WORK 

 

Figure 9 shows the experimental setup used to conduct the 

modal test on solid and perforated circular plates. The modal 

experimental rig generally consists of two upper and lower 

rigid steel rings, and the test specimen (circular thin plate) is 

bolted between them using 12 steel bolts. Four accelerometers, 

type 4507-B-002, were evenly distributed on the plate to 

measure the frequency response function FRF. The impact 

hammer, type 8206, with a steel tip, was used for excitation. 

All equipment was from Bruel and Kjaer Vibration 

Instruments Company. Each accelerometer weighs 4.7 g and 

is assumed to have a negligible mass. When the 

accelerometers were placed on a plate, the nodal diametric 

lines and nodal circles were avoided.  

The aims of the experiment were (1) To measure the 

damping ratio 𝜁𝑖  at the first four natural frequencies, which 

they used to construct the proportional damping matrix via 

Eqs. (17)-(19). (2) To verify the feasibility of the theoretical 

model used to consider the internal plate damping. 

 

 
 

Figure 9. The experimental setup 

 

The FRF was obtained by exciting the position 𝑖(𝑖 =
1,2,3,4)  of the accelerometer and measuring the responses 

from position (𝑗 = 1,2,3,4). The FRF is well known as the 

ratio of the output response of the structure due to an applied 

force in the frequency domain, and is a complex-valued 

number. A peak of the magnitude values of FRF indicates the 

frequency at the resonance (natural frequency) of the plate.  

Figure 10 illustrates the magnitude of the FRF for a plate 

with a square pattern (𝜂 equals 0.75). While the mode shapes 

of the plate can be extracted experimentally from the 

imaginary part of the FRF. Figure 11 shows the real and 

imaginary parts of the FRF for a plate with a square pattern (η 

equals 0.75). These indicate that the imaginary part 

corresponding to the first peak (200 Hz) obtained by all 

accelerometers has the same sign (first mode). On the other 

hand, the imaginary parts corresponding to the second peak 

(400 Hz) obtained from the first three accelerometers have a 

sign opposite to the sign for the fourth one (second mode). 

 
 

Figure 10. Magnitude of FRF from first accelerometer (For η 

= 0.75 square pattern) 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 11. Real and imaginary parts of FRF from four 

accelerometers (For η = 0.75 square pattern) 

 

Figure 12 shows the typical FRF magnitude plot versus 𝜔. 

The peak values of this relation correspond to resonance 

conditions (𝜔 = 𝜔𝑖) where 𝑖 is the mode number. Two peaks 

appear in the frequency range in Figure 12. 

To determine the modal damping ratio (𝜁) experimentally, 

for 𝑖-th mode, the quadrature peak picking method was used 

[21]. 

 

𝜁𝑖 =
𝜔𝑏𝑖 − 𝜔𝑎𝑖

𝜔𝑖

 (20) 
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where, 𝜔𝑖 is the natural frequency at the resonance 𝑖 and 𝜔𝑎𝑖  

and 𝜔𝑏𝑖 satisfy the condition. 

 

|FRF(𝜔𝑎𝑖)| = |FRF(𝜔𝑏𝑖)| =
|FRF(𝜔𝑖)|

√2
 

 

 
 

Figure 12. Calculation of the model damping ratio using the 

quadrature peak picking method 

 

The damping ratios corresponding to the first four natural 

frequencies of the solid (unperforated) plate are listed in Table 

1. 

 

Table 1. Damping ratio corresponding to first four natural 

frequencies of the solid plate 

 

Mode No. 𝝎𝟎,𝟏 𝝎𝟏,𝟏 𝝎𝟐,𝟏 𝝎𝟎,𝟐 

Damping ratio (ζ) 0.05 0.3 0.27 0.247 

 

In this study, five circular plates (one solid and four 

perforated) were used in a modal test. The plate’s geometric 

specifications are shown in Table 2. 

 

Table 2. Geometric specifications of five specimens 

 

Ligament 

Efficiency 

(𝛈) 

Pitch 

(mm) 

Pattern  

Triangle Square 

No. of 

Holes 

Hole 

Diameter 

(mm) 

No. of 

Holes 

Hole 

Diameter 

(mm) 

(solid) - - - - - 

0.75 40 43 10 40 10 

0.5 40 37 20 32 20 

 

All the specimens have a thickness of ℎ equals 2 mm and a 

diameter of 300 mm. The material of plates was mild steel 

having E = 200 GPa, ν = 0.3, and 𝜌𝑝 = 7900 kg∙m-3. 

 

 

4. RESULTS AND DISCUSSION 

 

Matlab software was used to perform double integration 

numerically (Eq. (4)) to evaluate mass and stiffness matrices. 

The 12 (n = 12) trial comparison function (𝑊𝑖(𝑟, 𝜃)) is used to 

evaluate both mass and stiffness matrices, and then the 

damping matrix. The first four natural frequencies 

corresponding to mode indices (k,m) = 01, 11, 21, 02 for five 

cases (one solid two square patterns corresponding to η = 0.75 

and 0.5, and two triangular patterns corresponding to η = 0.75 

and 0.5) were investigated in this study. Figure 13 shows 

experimental and theoretical values of a circular solid plate's 

first four natural frequencies. It can be seen from the figure, 

the differences between experimental and theoretical natural 

frequencies are almost negligible. Therefore, it is clear that the 

eigenfunctions of the solid plate (Eq. (14)) are used as 

comparison functions in the Galerkin approach is acceptable 

to describe the dynamic characteristics of a circular plate. 

Figures 14-17 show experimental and theoretical values of 

the first four natural frequencies of square and triangular 

patterns perforated circular plates. In these figures, the mode 

numbers 1, 2, 3, and 4 refer to mode indices (k,m) = 01, 11, 21, 

02, respectively. All these figures indicate the reduction in the 

first four natural frequencies as ligament efficiency (η) 

becomes smaller due to the stiffness dropping more rapidly 

than mass.  

 

 
 

Figure 13. Experimental and theoretical (with and without 

damping) and experimental results of the first four natural 

frequencies for a solid plate 

 

 
 

Figure 14. Experimental and theoretical (with and without 

damping) results of the first four natural frequencies for a 

square perforated plate (η = 0.75) 

 

 
 

Figure 15. Experimental and theoretical (with and without 

damping) results of the first four natural frequencies for a 

square perforated plate (η = 0.5) 
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Figure 16. Experimental and theoretical (with and without 

damping) results of the first four natural frequencies for a 

triangular perforated plate (η = 0.75) 

 

 
 

Figure 17. Experimental and theoretical (with and without 

damping) results of the first four natural frequencies for a 

triangular perforated plate (η = 0.5) 

 

 
 

Figure 18. Percentage difference between theoretical and 

experimental results for triangular penetration 

 

 
 

Figure 19. Percentage difference between theoretical and 

experimental results for square penetration 

The effect of internal damping of plate material is also 

depicted in Figures 14-17. The percentage differences between 

theoretical and experimental results due to internal damping 

with mode number are illustrated in Figures 18 and 19 for 

triangular and square penetration, respectively. As shown in 

the Figures, the internal damping of plate material 

significantly reduces the difference between experimental and 

theoretical results for different penetration patterns and 

ligament efficiencies. 

Numerical values of the drop in percentage difference due 

to internal damping are listed in Table 3. These values remain 

almost stable for a certain mode number regardless of the 

pattern of penetration and ligament efficiency, which are 0.1% 

for the first mode, 4.9% for the second mode, 4.1% for the 

third mode and 3.4% for the fourth mode. This indicates that 

in this study, the perforated circular plate is replaced by a solid 

circular plate with equivalent stiffness and damping matrices.  

The presented approach can be used to study the dynamic 

characteristics of perforated plates when submerged in fluid, 

instead of finite element analysis, due to the fine mesh 

requirement, which is time-consuming. 

 

Table 3. Numerical drops in percentage difference due to 

equivalent damping matrix 

 

Mode No. 
Triangle Square 

η = 0.75 η = 0.5 η = 0.75 η = 0.5 

𝜔0,1 0.13 0.1 0.1 0.0 

𝜔1,1 5 4.9 5 4.8 

𝜔2,1 4.1 4.1 4.2 4.1 

𝜔0,2 3.4 3.4 3.4 3.3 

 

 

5. CONCLUSIONS 

 

The internal material damping of a perforated circular plate 

was taken into account by deriving an equivalent damping 

matrix. In this study, the perforated circular plate was replaced 

by a solid one with equivalent stiffness and mass matrices. The 

proportional damping principle was used to evaluate the 

damping matrix. The main conclusions of this study can be 

summarised as follows: 

⚫ A good result can be obtained when the eigenfunctions of 

a solid circular plate (Eq. (14)) are used as a trial function 

in the Galerkin approach. 

⚫ A 12-trial function was adequate in the Galerkin approach 

to evaluate the mass, stiffness, then damping matrix for 

circular plates. 

⚫ Significant reductions in the percentage difference 

between theoretical and experimental results were found 

when internal material damping is taken into account. 

⚫ Numerical values of percentage difference reduction 

between theoretical and experimental results were 0.1% 

for the first mode, 4.9% for the second mode, 4.1% for the 

third mode and 3.4% for the fourth mode, regardless of 

ligament efficiency and type of penetration. 

The presented approach needs to be extended to include 

mixed boundary conditions and to partially perforate circular 

plates. 
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NOMENCLATURE 

 

𝑎 plate radius, mm 

𝐷 flexural rigidity of the plate, Nm 

𝐷∗ equivalent flexural rigidity of the plate, Nm 

𝐸 modulus of elasticity, GPa 

𝐸∗ equivalent modulus of elasticity, GPa 

ℎ plate thickness, mm 

𝐽𝑘 Bessel’s function of the first kind of order k 

𝐼𝑘 modified Bessel’s function of the first kind of 

order k 

𝑌𝑘 Bessel’s function of the second kind of order k 

𝐾𝑘 modified Bessel’s function of the second kind of 

order k 

W𝑖(𝑟, 𝜃) i-th trail function 

𝑅 radius of holes, mm 

 

Greek symbols 

 

𝑣 Poisson’s ratio 

𝜙𝑖(𝑟, 𝜃) i-th weighting function 

𝜔 radial frequency, rad∙s-1 

𝜌𝑃 plate density, kg∙m-3 

𝜂 ligament efficiency 
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APPENDICES 

 

Appendix A 

 

This appendix describes the details of the derivation of Eq. 

(9). 

The partial differential equation of the undamped bending 

vibration of the circular thin plate in polar coordinates can be 

written as 

 

𝐷∇4𝑤(𝑟, 𝜃, 𝑡) + 𝜌𝑃ℎ𝑤̈(𝑟, 𝜃, 𝑡) = 0 (A1) 

 

The eigenvalues of a plate can be deduced as follows: the 

deflection 𝑤 can be considered to be separable in space and 

time as: 

 

𝑤(𝑟, 𝜃, 𝑡) = 𝑊(𝑟, 𝜃)𝑒−𝑗𝜔𝑡 (A2) 

 

Substituting Eq. (A2) into Eq. (A1), the equivalent 

factorised form is: 

 

(∇2 + 𝛽2)(∇2 − 𝛽2) 𝑊(𝑟, 𝜃) = 0 (A3) 

 

where, 

 

𝛽4 = 𝜔2𝜌𝑃ℎ 𝐷⁄  (A4) 

 

and 𝜔 is radial frequency. 

By separating the function 𝑊(𝑟, 𝜃) into 𝐹(𝑟)𝐺(𝜃), i.e.: 

 

𝑊(𝑟, 𝜃) = 𝐹(𝑟)𝐺(𝜃) 

 

Eq. (A3) can be written as: 

 

𝑟2

𝐹

𝑑2𝐹

𝑑𝑟2
+

𝑟

𝐹

𝑑𝐹

𝑑𝑟
∓ 𝛽2𝑟2 = −

1

𝐺(𝜃)

𝑑2𝐺

𝑑𝜃2
= 𝑘2 (A5) 

 

This is two ordinary differential equation: 

 

𝑑2𝐺(𝜃)

𝑑𝜃2
+ 𝑘2𝐺(𝜃) = 0 (A6) 

 

𝑟2
𝑑2𝐹

𝑑𝑟2
+ 𝑟

𝑑𝐹

𝑑𝑟
+ (∓𝜆2𝑟2 − 𝑘2)𝐹 = 0 (A7) 

 

The solution of Eq. (A6) is: 

 

𝐺(𝜃) = 𝐴 cos 𝑘(𝜃 − 𝛼) 

 

where, 𝑘 is a constant and equal to (1, 2,⋯ ), and 𝛼 can be 

choosen zero. Since 𝐺(𝜃)  must be periodic with period 2𝜋 

[14]. So Eq. (A7) can be written as: 

 

𝑟2
𝑑2𝐹

𝑑𝑟2
+ 𝑟

𝑑𝐹

𝑑𝑟
+ (∓𝛽2𝑟2 − 𝑘2)𝐹 = 0 (A8) 

 

The general solution of Eq. (A8) is: 

 

𝐹(𝑟) = 𝐶1𝐽𝑘(𝛽𝑟) + 𝐶2𝑌𝑘(𝛽𝑟) + 𝐶3𝐼𝑘(𝛽𝑟)
+ 𝐶4𝐾𝑘(𝛽𝑟) 

(A9) 

where, 𝐽𝑘(𝑥) is the Bessel function of the first kind, 𝐼𝑘(𝑥) is 

the modified Bessel function of the first kind, 𝑌𝑘(𝑥)  is the 

Bessel function of the second kind and 𝐾𝑘(𝑥) is the modified 

Bessel function of the second kind, all the Bessel functions are 

of order 𝑘, while, 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are constants. 

Since 𝑌𝑘 and 𝐾𝑘 have singularities at the origin, which are 

contradictory to the reality of the vibration of the centre of the 

plate, 𝐶2 = 𝐶4 = 0 have chosen. Thus, Eq. (A9) is reduced to: 

 

𝑊(𝑟, 𝜃) = [𝐶1𝐽𝑘(𝛽𝑟) + 𝐶3𝐼𝑘(𝛽𝑟)] 𝐴 cos 𝑘(𝜃) (A10) 

 

Appendix B 

 

Identities for the Bessel and modified Bessel functions, 

where 𝜈 is the order of Bessel’s function and is 𝜆 a parameter: 

 

𝐽𝜈
′ (𝜆𝑥) = [𝐽𝜈−1(𝜆𝑥) −

𝜈

𝜆𝑥
𝐽𝜈(𝜆𝑥)] 𝜆 (B1) 

 

𝐼𝜈
′ (𝜆𝑥) = [𝐼𝜈−1(𝜆𝑥) −

𝜈

𝜆𝑥
𝐼𝜈(𝜆𝑥)] 𝜆 (B2) 

 

𝐽−𝑛(𝑥) = (−1)𝑛𝐽−𝑛(𝑥) (B3) 

 

𝐼−𝑛(𝑥) = 𝐼𝑛(𝑥) (B4) 

 

where, 𝑛 is an integer. 

 

Appendix C 

 

Derivatives of Bessel’s 𝐽𝜈(𝜆𝑥)  and modified Bessel’s 

function 𝐼𝜈(𝜆𝑥) up to order four: 

 
𝑑J𝜈(𝜆𝑥)

𝑑𝑥
=

𝜆

2
(J𝜈−1(𝜆𝑥) − J𝜈+1(𝜆𝑥))  (C1) 

 
𝑑2J𝜈(𝜆𝑥)

𝑑𝑥2 = (
𝜆

2
)

2

(J𝜈−2(𝜆𝑥) − 2J𝜈(𝜆𝑥) + J𝜈+2(𝜆𝑥))  (C2) 

 
𝑑3J𝜈(𝜆𝑥)

𝑑𝑥3 = (
𝜆

2
)

3

(J𝜈−3(𝜆𝑥) − 3J𝜈−1(𝜆𝑥) +

3J𝜈+1(𝜆𝑥) − J𝜈+3(𝜆𝑥))  
(C3) 

 
𝑑4J𝜈(𝜆𝑥)

𝑑𝑥3 = (
𝜆

2
)

4

(J𝜈−4(𝜆𝑥) − 4J𝜈−2(𝜆𝑥) + 6J𝜈(𝜆𝑥) −

4J𝜈+2(𝜆𝑥) + J𝜈+4(𝜆𝑥))  
(C4) 

 
𝑑I𝜈(𝜆𝑥)

𝑑𝑥
=

𝜆

2
(I𝜈+1(𝜆𝑥) + I𝜈−1(𝜆𝑥))  (C5) 

 
𝑑2I𝜈(𝜆𝑥)

𝑑𝑥2 = (
𝜆

2
)

2

(I𝜈+2(𝜆𝑥) + 2I𝜈(𝜆𝑥) + I𝜈−2(𝜆𝑥))  (C6) 

 
𝑑3I𝜈(𝜆𝑥)

𝑑𝑥3 = (
𝜆

2
)

3

(I𝜈+3(𝜆𝑥) + 3I𝜈+1(𝜆𝑥) +

3I𝜈−1(𝜆𝑥) + I𝜈−3(𝜆𝑥))  
(C7) 

 
𝑑4I𝜈(𝜆𝑥)

𝑑𝑥3 = (
𝜆

2
)

4

(I𝜈+4(𝜆𝑥) + 4I𝜈+2(𝜆𝑥) + 6I𝜈(𝜆𝑥) +

4I𝜈−2(𝜆𝑥) + I𝜈−4(𝜆𝑥))  
(C8) 
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