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The construction industry faces persistent challenges in coordination, scheduling, and
cost control, particularly in environments with low digital maturity. This study proposes
an integrated digital-organizational framework linking organizational, technological,
and financial subsystems through digital transformation and data-driven optimization.
A mixed analytical approach—combining survey diagnostics, Delphi-based expert
validation, and NSGA-II multi-objective optimization—was applied to enhance project
structures. Four key performance indicators were analyzed: Digital Readiness Score
(DRS), Return on Investment (ROI), Cost Growth (CG), and Coordination Delay Index
(CDI). Validation across twelve simulated projects and one real case study at
TEPLOSTROY (Russia) demonstrated measurable gains: 17% cost reduction, 24%
shorter duration, and 40% productivity improvement. Deviations between simulated
and field results ranged from 3.9% to 7.4%, confirming predictive reliability. The
framework provides a replicable, data-driven basis for improving efficiency,

coordination, and decision-making in digitally enabled construction environments.

1. INTRODUCTION

The construction industry continues to face persistent
inefficiencies, including fragmented coordination, schedule
delays, and cost overruns, particularly in contexts with limited
digital maturity. Although Building Information Modeling
(BIM) and related digital tools have improved visualization
and data management, their adoption across the Architecture,
Engineering, and Construction (AEC) field remains
inconsistent and often disconnected from managerial and
financial processes. Recent empirical findings indicate that the
use of BIM can significantly enhance cost and schedule
accuracy in construction projects [1].

Existing frameworks primarily focus on the technological
aspects of digitalization but rarely integrate expert consensus
and quantitative performance optimization into a unified
structure. As a result, many approaches lack the analytical
capacity to translate digital transformation strategies into
measurable outcomes related to cost, time, coordination, and
readiness. Moreover, advanced performance analytics
approaches, such as support vector machine models, have
begun to deliver measurable improvements in time and cost
metrics [2].

To address this gap, the present study develops and
validates an integrated digital-organizational framework that
combines survey diagnostics, Delphi-based expert validation,
and NSGA-II multi-objective optimization. This mixed
framework links organizational, technological, and financial
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subsystems to enhance coordination, efficiency, and
investment performance in construction projects. Ultimately,
it offers a data-driven and replicable pathway toward
sustainable digital transformation in the construction sector.

2. LITERATURE REVIEW
2.1 BIM maturity and digital readiness gaps

Recent studies in the AEC sector emphasize performance-
based digital transformation, linking BIM Level 3 maturity
(aligned with ISO 19650) to up to 50% faster delivery and
measurable productivity gains [3]. Similar benefits are also
evident in healthcare, where BIM enhances coordination and
compliance [4], reflecting a global shift toward lifecycle-
driven collaboration [5].

Yet, despite advances such as Al-assisted clash detection
[6] and cloud BIM [7], most frameworks still inadequately
assess organizational readiness. Many remain conceptual or
overly technical, lacking attention to agility, workforce
capability, and financial planning [8], and rarely provide
empirical validation [9].

Recent studies, therefore, call for holistic, quantifiable
readiness indices incorporating leadership commitment,
investment capacity, and measurable ROI [10] to support
context-sensitive digital transformation strategies across
varied organizations.


https://orcid.org/0000-0003-4902-8584
https://orcid.org/0000-0003-1881-0995
https://orcid.org/0000-0003-0545-0994
https://crossmark.crossref.org/dialog/?doi=mmep.121028&domain=pdf

2.2 Expert-based approaches and the role of the Delphi
method

To address the limitations of traditional diagnostic models,
recent studies have increasingly applied expert-based
methods—particularly the Delphi technique—to examine the
multifaceted challenges of construction digitalization [11].
Through iterative expert consensus, the method refines
priorities and produces actionable strategies.

Notable applications include identifying generative-Al use
cases linked to real project performance [12] and shaping
national BIM strategies, investment assessments, and regional
maturity benchmarks [13].

This shift reflects a move from static checklists toward
adaptive frameworks integrating expert judgment with
quantitative performance data, enabling robust and context-
specific digital transformation models.

2.3 Contribution of this study

This study contributes to the growing body of digital
transformation research by introducing a multidimensional
digital-organizational framework that unites technological,
organizational, and methodological dimensions, highlighting
novel practices and solutions supported by BIM and Revit
applications in recent AEC studies [14]:

(1) BIM Maturity Assessment, to evaluate organizational
capability levels in line with international standards and
industry best practices.

Algorithmic Performance Modeling, which applies
multi-objective  optimization to interlink digital
readiness, cost efficiency, coordination improvement,

2

and ROL
(3) Delphi-Based Expert Validation, ensuring
methodological rigor and practical applicability

through iterative expert consensus.

By embedding predictive simulation and real-world
implementation within the same research cycle, the framework
closes the gap between digital ambition and operational
execution. In doing so, it provides a structured, scalable, and
evidence-based pathway for digital transformation in
construction, reinforcing earlier models of BIM maturity [15]
and BIM-integrated optimization frameworks [16].

3. OBJECTIVES OF THE STUDY

The overarching objective of this research is to develop and
validate a comprehensive digital-organizational
transformation framework for construction projects,
emphasizing improvements in coordination, performance, and
cost efficiency through BIM-enabled processes and multi-
objective optimization.

The study pursues the following specific objectives:

(1) Assess digital readiness in construction organizations
using novel quantitative equations that capture human
resource capability, technological infrastructure, and
process integration.

Identify and wvalidate critical Key Performance
Indicators (KPIs)-namely Digital Readiness Score
(DRS), Return on Investment (ROI), Cost Growth
(CG), and Coordination Delay Index (CDI)-through
Delphi-based expert consensus.

(3) Design and implement a computational optimization

2
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model (NSGA-II) to achieve balanced improvements
across multiple performance metrics in a Pareto-
optimal manner.

Evaluate predictive accuracy and practical robustness
by comparing simulation outcomes with real-world
project applications.

“4)

4. METHODOLOGY
4.1 Research design

This study employs a longitudinal mixed-methods design,
integrating quantitative modeling with qualitative expert
validation. The research framework was structured across
three interconnected phases: (i) an exploratory survey to
identify readiness and coordination gaps, (ii) a Delphi-based
expert consensus to refine and validate transformation factors,
and (iii) application and validation [10].

4.2 Exploratory survey

An exploratory survey was conducted with 94 participants
representing contractors, consultants, site engineers, and
public officials. It assessed readiness across organizational,
technological, and financial domains for BIM and digital
transformation.

The analysis employed a combination of quantitative and
qualitative techniques: Likert-scale items measured readiness,
while open-ended responses identified obstacles and enablers.
Root Cause, Pareto, and Fishbone analyses, along with R1%,
ensured methodological depth and triangulation.

Of 47 challenges identified, 36 were analyzed and
consolidated into 25 key obstacles—organizational (9),
technological (10), and financial (6)—representing 80% of
cumulative impact and validating the Pareto Principle.

Findings emphasized stronger governance, digital
interoperability, and capacity-building as essential for
improved coordination and performance. These variables
formed the input for the Delphi consensus process.

4.3 Delphi study

4.3.1 Expert panel composition

The Delphi process engaged 18 experts from Iraq and
Russia, representing diverse roles across the construction
sector (Table 1). This composition ensured inclusion of
strategic, managerial, and operational perspectives, enhancing
methodological balance and contextual validity.

Table 1. Delphi experts by country and stakeholder category

Country No. of Experts Stakeholder Group
Russia 3 General Contractors
Iraq, Russia 3 Engineering Consultants

Iraq, Russia 4 Resident Engineers
Iraq 2 Public Executives
Russia 2 Specialized Subcontractors
Iraq, Russia 2 Private Beneficiaries
Iraq 2 Public Beneficiaries

The panel’s diversity strengthened the process by
integrating qualitative insights with quantitative analysis,
improving the reliability of factor validation and refinement of
transformation indicators.



Evaluation occurred over two iterative rounds using the
Relative Importance Index (RII), Kendall’s W, and the
Kruskal-Wallis test, combined with expert feedback to ensure
robust empirical validation of key transformation factors.

4.3.2 Delphi process flow - Round I

In the first Delphi round, experts evaluated the preliminary
factors derived from the exploratory survey through
quantitative ratings and qualitative feedback. The aim was to
refine and consolidate findings across organizational,
technological, and financial domains.

The analysis produced revised factors reflecting both
consensus and domain relevance, which served as the
foundation for Round II. However, the achieved consensus
was insufficient for practical implementation, prompting a
second round to strengthen alignment and ensure
methodological validity.

4.3.3 Delphi process flow - Round II

The second round of the Delphi process was structured to
validate and refine the consolidated factors emerging from the
first round. Experts re-assessed the proposed variables using
the same hybrid approach, combining quantitative agreement
metrics with qualitative commentary to enhance precision.

This iterative evaluation yielded a final set of 16 validated
sub-variables. These were systematically categorized under
four principal KPIs, which formed the analytical core of the
subsequent simulation and optimization phases:

e Digital Readiness Score (DRS);
e Return on Investment (ROI);

o Cost Growth (CG);

e Coordination Delay Index (CDI).

The convergence of expert opinion in this round signaled a
sufficient level of consensus for empirical modeling and multi-
dimensional optimization.

4.4 Application and validation

The framework was validated through three stages to assess
its reliability and practical value:

(1) Historical Simulations: Twelve previously completed
projects (2003-2019) were digitally simulated to
establish empirical benchmarks for cost, schedule, and
coordination.

Comparative Modeling: A 29-story residential project
was modeled under two configurations: one using a
traditional structure and the other applying the
proposed  digital-organizational =~ model. This
comparison helped evaluate the expected performance
improvements.

Field Implementation: The same residential project was
subsequently executed (2022-2025) using the proposed
framework, allowing direct comparison between
simulation forecasts and real-world outcomes.

Detailed numerical outcomes from these stages are
presented in Section 5.

2

3

4.5 Digital readiness and performance assessment model

Prior to framework implementation, the company’s digital
readiness was evaluated using a matrix model developed by
the researcher, focusing on four factors: employee training,
digital infrastructure, BIM adoption, and staff digital skills.

Based on the assessment, two strategic actions were
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implemented:
(1) targeted training to strengthen BIM and digital
competencies.
(2) recruitment of BIM and digital transformation experts
to address skill gaps.
These actions enhanced readiness and ensured smoother
framework adoption.

4.6 Mathematical modeling formulations

To evaluate digital transformation impacts and support
decision-making, a set of mathematical models was
formulated to quantify performance and assess cost—benefit
relationships:

4.6.1 Total transformation value (TVy)
Estimates the maximum benefit achievable from human
resources under ideal digital integration:

TV, =Lc X (§X3)+ Mc X (Sx4.5) )
+ Hc X (S X6)
where,
* Lc, Mc, He: Number of employees with low, medium,
and high digital competence;
e §: Unit investment per competence level;
*  Multipliers (3, 4.5, 6): Estimated productivity and
onboarding costs.

4.6.2 Partial transformation value (TV,)
Represents the realistically achievable portion of TV during
the early implementation stage:
TV, = TV, x 50% )

This accounts for learning curves, resistance to change, and
training absorption rates.

4.6.3 ROI
Estimates of net economic gain relative to total investment:

Benefit — Investment

ROI = 3)

Investment

where,
*  Benefit: Represented by (TVp);
*  Investment: Total expenditure of software, training, and
implementation;
* Positive ROI indicates value creation, while negative
ROI reflects inefficiency.

4.6.4 CG over time
Models cost escalation due to delays or inefficiencies:
Ci+1=Cx1+r) 4
where,
*  C;: Project cost at time step (i);
* r: Escalation rate (empirical or assumed);

This model predicts how delays or inefficiencies compound
costs over time.

4.6.5 DRS
Measures the organization’s overall capacity for digital



adoption:

DRS = f(xy, %2, X3,%4) (5)
where,

* x;: Proportion of digitally skilled staff;

* X2 Average training program duration;

* x3 Investment in digital infrastructure;

* x4 Degree of BIM integration.

The four DRS variables (xi—x4) represent aggregated
dimensions synthesized from 28 validated factors identified
through survey and Delphi analyses. Each variable group
interrelates human, technological, organizational, and
financial indicators, enabling the model to convert complex
readiness data into a measurable composite index that
accurately reflects an organization’s overall capacity for
digital transformation.

4.7 NSGA-II multi-objective optimization

To balance multiple project objectives, the Non-Dominated

f(DRS, ROI, CG, CDI)

CDI =1(i1, 2, i3, i4) DRS = f(d1, d2, d3, d4)

Sorting Genetic Algorithm I (NSGA-II) was employed due to
its efficiency in handling nonlinear and conflicting goals in
construction management. Unlike traditional optimization
methods such as GA or MOPSO, NSGA-II employs non-
dominated sorting and crowding-distance mechanisms that
resolve trade-offs while maintaining diversity on the Pareto
front, making it ideal for complex, multi-dimensional decision
environments [17].

The model integrates four KPIs—DRS, ROI, CG, and
CDI—into a unified matrix of sixteen sub-variables (di—da, 11—
Ia, C1—Ca, 11—14), as expressed in Eq. (6):

DRS dl r1 c1 il

ROI d2 r2 c2 i2 6)
cG d3 r3 ¢3 i3

CDI dd 14 c4 i4

Figure 1 illustrates how these sub-variables feed into the
four KPIs.

ROl =f(r1, r2, r3, r4) CG =f(c1, c2, c3, c4)

i1 i2 i3 di d2 d3

‘d4

cl c2 c3 c4

Code meanings (legend)

i1 Number of RFls

i2 Time to resolve conflicts personnel
i3 Clarity of responsibilities

i4 Interdisciplinary communication

quality

d1 Proportion of digitally skilled

d2 Duration of training programs
d3 Investment in digital infrastructure
d4 Level of internal BIM adoption

r1 Net profit
r2 Total digital investment
r3 Market adaptability
r4 Cost savings from improved
processes

c1 Baseline cost
c2 Delays in procurement
¢3 Design modifications
c4 Material cost fluctuations

Figure 1. Matrix architecture and KPI subsystem mapping

The model's inputs consist of measurable project data
validated through the Delphi process, including the proportion
of digitally skilled staff, total digital investment, procurement
delays, and the time required to resolve coordination conflicts.

The outputs are Pareto-optimal configurations of {DRS,
ROI, CG, CDI} that expose trade-offs for decision-makers,
enabling them to select solutions that align with project
priorities.

The NSGA-II procedure begins by initializing a population
based on empirical project data, then applies non-dominated
sorting to classify solutions into Pareto layers. Crowding-
distance computation preserves diversity within the
population, while crossover and mutation operators generate
improved offspring. This iterative process continues until
convergence on a stable Pareto front is achieved, providing a
set of optimal solutions that enhance project performance
without compromising cost or coordination efficiency.

This approach empowers decision-makers to visualize
multiple optimal configurations simultaneously and select the
most appropriate trade-off in accordance with strategic
objectives. By integrating expert-derived factors with
algorithmic modeling, the framework ensures evidence-based

3646

decisions that balance efficiency, reliability, and adaptability
in digitally enabled construction environments.

5. RESULTS

This section presents the outcomes of the multi-phase
validation process, including survey diagnostics, Delphi
consensus, simulation modeling, real-world implementation,
sensitivity analysis, and multi-objective optimization.
Together, these phases provide empirical evidence supporting
the reliability, contextual adaptability, and predictive accuracy
of the proposed digital-organizational transformation
framework.

5.1 Survey findings

The baseline survey engaged 94 professionals from the Iraqi
and Russian construction sectors. It aimed to evaluate the
readiness and challenges of digital transformation within the
AEC industry. A total of 45 unique input factors were
identified across three domains—organizational,



technological, and  financial/interactional—using a
combination of closed-ended Likert-scale items and open-
ended narrative responses.

These raw inputs were refined through structured content
analysis, resulting in 28 consolidated output factors, as shown
in Table 2.

Subsequent analysis grouped the challenges into three
dominant thematic clusters, highlighting critical constraints
that influence project success.

Table 2. Baseline survey inputs and outputs

Domain Inplfts (.Survey Outputs (Baseline

Findings) Survey)
18 Inputs

Organizational (13 closed-ended + 0 Outputg .

(8 core + 1 additional)
5 open-ended)

16 Inputs

Technological (13 closed-ended) + I Outputs

three open-ended) (10 core + 1 additional)

11 Inputs
(10 closed-ended +
1 open-ended)

Financial &
Interactional

8 Outputs
(7 core + 1 additional)

5.1.1 Human capacity and digital skills

Figure 2 summarizes the outcomes of the technological
domain, specifically the digital skills subgroup. The results
were derived from the Weighted Mean (WM) values presented
in the corresponding analytical table and calculated in
accordance with Eq. (5), which defines the DRS model
introduced in Section 4.6.5.

The three critical factors—training program enhancement
(2.91), digital communication tools (2.17), and responsiveness
to new technologies (1.94)—represent the main technological
components influencing the organization’s digital readiness.
Among these, structured training programs achieved the
highest WM, reflecting their dominant role in improving staff
competence and accelerating digital adoption.

Although digital communication tools and responsiveness

T1: Responsiveness to new technologies

T2: Digital communication tools

T3: Training program enhancement

to new technologies showed lower mean values, their
contribution remains complementary, supporting knowledge
sharing and adaptive capacity. These findings confirm that
human—technological alignment is central to enhancing the
overall DRS and facilitating sustainable BIM-based
transformation in construction projects.

5.1.2 Digital infrastructure and systems modernization

Figure 3 presents the results of the technological domain,
focusing on digital infrastructure and systems modernization,
and is interpreted in relation to both technological readiness
and financial efficiency. The results were obtained from the
WM analysis in accordance with Eq. (5) for the DRS and
cross-referenced with the financial implications derived from
the ROI formulation presented in Eq. (3) of Section 4.6.3.

The three critical factors—upgrading and improving
structures (2.73), technology sufficiency (1.89), and systems
integration (1.87)—reflect not only the organization’s digital
maturity but also its capacity to generate economic value from
technology investments. The relatively high means for
upgrading structures indicate prioritized expenditure on
modernization initiatives, which correlate with positive ROI
trends identified in later simulation results.

Conversely, low scores in technology sufficiency and
systems integration suggest that underutilization of digital
tools and weak interoperability diminish potential financial
returns, thereby reducing the efficiency of digital investment.
Strengthening these areas is essential to enhance both
technological and financial performance, ensuring that
infrastructure modernization translates into measurable
improvements in ROI and long-term value creation.

5.1.3 Coordination deficiencies

Figure 4 illustrates the results of the organizational
dimension, emphasizing coordination-related inefficiencies
derived from the WM analysis consistent with Eq. (5) of the
DRS model presented in Section 4.6.5.

WM 1.94

WM 2.17

WM 2.91

0.5 1 15 2 2.5 3

Figure 2. WM of digital skills factors

F1: Systems integration

F2: Technology sufficiency

F3: Upgrading/improving structures

WM 1.87

WM 1.89

WM 2.73

Figure 3. WM of digital infrastructure factors



O1: Quality-related coordination gaps

02: Time-based coordination gaps

03: Weak coordination

WM 2.29

WM 2.5

WM 2.67

2

21 22 23 24 25 26 27

Figure 4. WM of coordination deficiency factors
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Figure 5. Pareto chart of cumulative challenge impact
Note: Each R1% value originates from a distinct sub-scale; cross-theme comparisons represent relative thematic weight rather than arithmetic summation.

The three critical coordination-related factors—weak
coordination (2.67), time-based coordination gaps (2.50), and
quality-related coordination gaps (2.29)—reveal persistent
deficiencies within organizational and project communication
structures. Among these, weak coordination recorded the
highest mean value, signifying that communication
fragmentation and lack of synchronized planning remain
significant constraints affecting project performance.

Meanwhile, the relatively lower values for time-based and
quality-related coordination gaps indicate that scheduling
misalignments and quality feedback loops, although less
severe, continue to disrupt consistency and workflow
integration. These results underscore the need to enhance
coordination mechanisms through BIM-supported
communication systems and standardized protocols, thereby
reducing discrepancies, improving real-time decision-making,
and strengthening the organization’s overall digital readiness.

5.1.4 Pareto analysis of critical challenges

As illustrated in Figure 5, the Pareto analysis shows that the
highest-ranked challenges across technological,
organizational, and financial dimensions account for
approximately 80% of the overall impact on project
performance. These nine factors represent the critical
challenges previously analyzed in Sections 5.1.1-5.1.3 and
were selected as the most influential variables for further
modeling. This distribution validates their prioritization in
subsequent optimization processes.

RI1% represents RII expressed as a percentage, derived from
survey-based weighting. The chart confirms that the most
influential factors—particularly those related to training
enhancement (T3), organizational upgrading (O3), and
financial adaptability (F3)—represent the critical leverage
points for digital transformation.
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These results were further emphasized by Delphi experts,
who confirmed the strategic significance of focusing on
human capacity development, technological infrastructure
investment, and real-time coordination mechanisms. Together,
these findings guided the construction of the Delphi consensus
matrix in the next phase.

5.2 Delphi consensus matrix

To refine and validate the baseline findings, a two-round
Delphi process was conducted, involving 18 experts from Iraq
and Russia. These experts represented diverse roles across the
construction sector, ensuring a balanced integration of
academic, operational, and executive perspectives.

Building on the 28 output factors generated by the baseline
survey, Round I of the Delphi study reassessed these variables
through a combination of structured quantitative ratings and
open-ended expert feedback. As summarized in Table 3, the
Delphi panel consolidated the input into 24 refined factors
across three key domains:

Table 3. Delphi round I inputs and outputs

Inputs Round I

Domain (from Baseline g:ltl?::iti
Survey Outputs)

9 Inputs 9 Outputs

Organizational (8 closed-ended + (7 core +2
1 open-ended) additional)

11 Inputs 9 Outputs
Technological (10 closed-ended + 1 (6 core +3
open-ended) additional)

. . 8 Inputs 6 Outputs
Il:tr;?:gtlia(}nﬁl (7 closed-ended + (6 core+0
1 open-ended) additional)




These results reflect the panel’s collective judgment in both
consolidating and expanding upon previously identified
challenges. The increased granularity in the technological and
organizational domains underscores a strong consensus on
emerging priorities. At the same time, the stability of these
stabilizing financial factors, along with a clear consensus and
interactive factors, reveals a type of economic factor that
clearly demonstrates a consensus. Interactional factors also
indicate their foundational role.

The refined outputs from Round I served as the inputs for
Delphi Round II, during which statistical agreement was
further strengthened using Kendall’s W and the Kruskal-
Wallis test. This process ultimately yielded a validated list of
16 sub-variables, which were mapped to four overarching
performance indicators, previously defined in the
methodology, guiding the simulation and optimization phases
that followed.

5.3 Simulation-based performance forecasts
Simulation experiments conducted across twelve historical

projects (2003-2019) demonstrated the predictive reliability
of the proposed framework.

40
s 30
- 20
U]
£ 10 435 174
=
w
% -10
o -20
-30
(ROI)
Real Application (%) 13.5
Simulation (%) 17.4

The simulation model utilized aggregated KPI results,
including the DRS, ROI, CG, and CDI, which were derived
from validated sub-variables established in earlier analytical
stages. Empirical project data extracted from company records
served as the model inputs, while the simulated outputs were
generated using the NSGA-II algorithm to estimate optimal
performance configurations.

As illustrated in Figure 6, the comparison between the
baseline (traditional management) and simulated digital
scenarios revealed measurable improvement across all four
KPIs. The simulation predicted higher digital readiness
(+31%), more substantial ROI (+17.4%), better cost control
(+23.8%), and shorter coordination delays (—27%) compared
with baseline averages. These improvements stem from
integrating structured digital workflows, interoperable data
systems, and coordinated communication platforms.

From a practical standpoint, these findings demonstrate that
the simulation phase effectively captured the potential impact
of digital transformation prior to its actual implementation.
The results provided quantitative justification for applying the
proposed digital-organizational model in practice, which is
discussed in the following section.

31
186 238 202
148
27
(CG) (DRS) (col
186 20.2 14.8
23.8 31 27

Figure 6. Simulation—real KPI comparison
Note: The reported values are expressed as percentages rather than absolute monetary figures, ensuring interpretability for international readers regardless of
currency or local cost structure.
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17 23
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Real (%)
Simulation (%)

17
17.4

23
238

23.8

Time Efficiency

DRS Increase

39.5

295 31

A7

DI Reduction Productivity Gain

(Field only)
29.5 -25 395
31 -27 0

Figure 7. Simulation—field KPI comparison

5.4 Field implementation results

Following the simulation phase, the proposed digital—
organizational framework was implemented and validated
through a real-world case study: a 29-story residential high-
rise project executed between 2022 and 2025. This
implementation phase represented the final verification step,
designed to assess how closely real-world performance
aligned with the NSGA-II-based simulation forecasts derived
in Section 5.3.

At this stage, the project was executed in practice using the
proposed digital transformation tools: BIM, iTWO 5D,
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Revizto, and MS Project. The researcher directly monitored
and recorded cost, time, and coordination data throughout the
construction process, ensuring the accuracy and independence
of the empirical dataset.

Figure 7 presents a comparative analysis between the
simulated optimized scenario (representing the predicted
digital transformation case) and the actual field results
achieved during implementation. The observed performance
trends closely matched the NSGA-II simulation outputs,
showing a DRS increase of +29.5%, a cost efficiency
improvement of +17%, a schedule enhancement of +23%, and
a reduction in CDI of —25%. Furthermore, field operations



recorded an additional +39.5% gain in productivity, reflecting
gains in real-time collaboration and enhanced communication
workflows beyond the simulated scope.

These findings verify that the optimization-based
simulation model accurately forecasted the dynamic
interactions among cost, time, and coordination variables once
the proposed framework was implemented. The close
alignment between predicted and actual performance validates
the operational feasibility and reliability of the NSGA-II
approach within real construction environments.

Ultimately, this outcome highlights the broader benefits of
integrating multi-objective optimization into construction
management. Similar performance-based methodologies—
such as Earned Value Management (EVM) systems
implemented in Anbar Governorate projects—have
demonstrated parallel advantages by synchronizing schedule
and cost control functions, reinforcing the applicability of
data-driven management approaches in regional construction
contexts [18].

5.5 Sensitivity and optimization insights

The final phase of the study aimed to pinpoint the key
factors influencing performance across the four KPIs: DRS,
ROI, CG, and CDI. Sensitivity analysis through simulations
identified two sub-variables with consistently high impact:

* 14 (cost savings from improved processes) within ROI;

*  ¢3 (design modifications) within CG.

These results align with earlier Delphi findings and Pareto
diagnostics, emphasizing the importance of process efficiency
and design control in boosting project outcomes.

To evaluate the best trade-offs among the KPIs, the NSGA-
IT method was applied. The optimization model, structured as:

Performance = f(DRS,ROI,—CG,—CDI) @)

Created balanced scenarios that enhance digital
performance while minimizing additional costs and delays.
The model remained stable under a £10% parameter variation,
proving its robustness and flexibility.

This optimization validates the integrated framework as a
reliable tool for strategic decision-making in digital
transformation under practical constraints.

6. DISCUSSION
6.1 Interpretation and implications

The study’s findings confirm the robustness of the proposed
digital-organizational  framework, with  performance
deviations between simulated forecasts and real-world
implementation ranging from 3.9% to 7.4%, validating its
predictive reliability and operational feasibility across distinct
project environments. The close correspondence between
simulated and field data demonstrates that the NSGA-II-based
optimization model effectively captured the nonlinear
relationships among cost, time, coordination, and digital
maturity indicators.

Three major strengths emerged from this analysis:

(1)  Reproducibility: The framework produced consistent
outcomes across both simulation and field applications,
including measurable reductions in cost growth (= 17%), time
savings (= 24%), enhanced DRS, and decreased CDI. This
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reproducibility underscores the model’s internal reliability and
its ability to generalize predictive performance across projects
of varying scale and complexity.

(2)  Scalability: Application of the framework to twelve
historical projects and a large-scale residential high-rise
(2022-2025) confirmed its enterprise-level adaptability. The
integration of BIM-based coordination, iTWO 5D cost
forecasting, and Revizto communication platforms enabled the
model to translate optimization outcomes into actionable
management practices—bridging the gap between theoretical
modeling and practical execution. Such outcomes align with
recent digital transformation strategies reported in the AEC
industry [14].

(3) Contextual Adaptability: Performance outcomes
varied between Iraq and Russia, reflecting differences in
infrastructure maturity, policy frameworks, and institutional
readiness. In Iraq, limited digital infrastructure investment
(ds 22%) and fragmented organizational coordination
necessitated a phased implementation and targeted workforce
training, consistent with the adoption challenges identified in
emerging economies. Conversely, in Russia, higher BIM
maturity levels (ds = 78%) and more substantial regulatory
alignment enabled the full integration of the proposed
workflow with existing digitization initiatives [ 19].

While these contrasts reaffirm the contextual adaptability of
the model, they also reveal that policy support, governance
quality, and organizational culture have a substantial influence
on the effectiveness of digital transformation. The findings
suggest that in environments where regulatory frameworks
and IT infrastructure are less mature, the same optimization
algorithm may require recalibration of sub-variables such as d
(Digital Infrastructure Investment) and #> (Time to Resolve
Conlflicts) to maintain comparable performance outcomes.

From a critical perspective, the minor discrepancies
between simulation and implementation (< 7%) can be
attributed primarily to human-centric and contextual factors,
including learning curves, communication delays, and
unmodeled behavioral variability—rather than structural flaws
in the optimization logic. This aligns with observations in
comparable NSGA-II-based applications in infrastructure and
energy sectors, where practical outcomes tend to diverge
slightly from idealized simulations due to implementation
complexity [20].

Furthermore, the sensitivity analysis confirmed rs and cs as
the most influential sub-variables, reinforcing the Delphi
consensus and Pareto findings that emphasized process
efficiency and design coordination as key leverage points for
enhancing digital performance. these insights underline that
the framework’s effectiveness depends on its strategic
customization—balancing computational precision with
managerial adaptability—to suit the technological maturity
and governance conditions of each project context.

Ultimately, digital transformation in construction is not only
a technical shift but an organizational evolution requiring
alignment between technology, human expertise, and policy.
The proposed model demonstrates how multi-objective
optimization can operationalize this alignment, enabling
decision-makers to implement context-sensitive strategies that
sustain performance improvement across diverse project
environments.

6.2 Limitations and future work

Although the framework was validated through simulation



and field implementation, several methodological constraints
limit its generalizability.

(1)  Geographic Scope: The study focused on Iraq and
Russia—contexts differing in digital maturity and regulatory
advancement. While this contrast offered cross-comparative
insights, broader validation across additional regions is needed
to ensure global adaptability.

(2) Organizational Representation: The sample included
contractors and consultants but lacked legal and administrative
experts, whose roles are critical in digital governance. Future
research should involve policymakers and legal specialists to
capture the institutional factors that influence adoption and

ROI, which overlooks non-monetary benefits such as risk
reduction and sustainability. Incorporating NPV, CPI, and
SROI would provide a more holistic assessment of economic
and social impacts.

(4) Computational Strategy: Exclusive use of NSGA-II
ensured stability and reproducibility but limited comparison
with other heuristics. Future studies should benchmark
NSGA-II against methods such as MOPSO and ACO to
enhance the robustness of the Pareto front.

Figure 8 summarizes these limitations and related research
opportunities across five domains: geographic scope,
organizational applicability, financial evaluation, optimization

compliance. strategy, and scalability [21].
(3) Financial Evaluation: The analysis relied mainly on
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Recommendation:

e Expand testing to diverse regions and sectors
(e.g., infrastructure, healthcare, industry)

* Broaden testing across organizations and project types to
improve representativeness

¢ Use longitudinal audits and Al-driven forecasting to
improve ac and reduce simulation bias

e Explore multi-agent or hybrid optimization methods for
better decision-making

e Integrate concepts from smart cities, energy systems, and
sustainability analytics to expand scalability and
cross-domain relevance

Figure 8. Methodological limitations and recommendations
Note: While the diagram presents recommendations tailored to each identified limitation, a more comprehensive set of strategic and stakeholder-specific
recommendations is provided in Section 8 to support broader implementation and cross-sector applicability.

6.3 Practical implications for stakeholders

The study highlights the various ways in which different
stakeholders interact with digital transformation dynamics in
the construction industry. For firms, variations in DRS
components—such as digital skills (di)—indicate that
workforce capability has a strong influence on readiness,
raising questions about the balance between training and
recruitment. At the policy level, differences in infrastructure
investment (ds) between contexts suggest that governance and
financial support have a significant impact on adoption speed,
reflecting patterns observed in international strategies [19].
For research, the findings suggest opportunities to integrate
Al-based predictive models and conduct cross-regional
comparisons to understand adaptation strategies under varying
technological and governance conditions [22]. Overall, these
insights emphasize that digital transformation involves
interconnected technical, organizational, and policy factors
rather than isolated technological upgrades.

7. CONCLUSIONS

This study validated an integrated digital-organizational
framework for enhancing construction project performance
through simulation, mathematical modeling, and expert
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consensus. The framework demonstrated a strong predictive
capability for KPIs—cost, time, coordination, and digital
readiness—across varying levels of digital maturity.

Quantitative evaluation revealed a clear improvement: the
ROI increased by 17.8%, CDI decreased by 23%, CG was
reduced by 14%, and Digital Readiness (DRS) improved by
over 25% after BIM integration. These results confirm the
model’s reliability and its ability to transform digital strategies
into measurable organizational outcomes.

The close consistency between simulated and real project
data further proves its robustness and scalability. Rather than
offering a one-size-fits-all solution, the framework serves as a
context-sensitive decision-support tool, guiding digital
transformation in line with international BIM standards and
best practices.

8. RECOMMENDATIONS

To enhance implementation and guide future development,
the following recommendations are proposed across three
stakeholder groups:
8.1 For policymakers

(1)

Institutionalize Digital Readiness Assessments:



Given the 25% DRS improvement observed, policymakers
should embed the DRS as a mandatory performance criterion
in national project approval systems. DRS benchmarking
should also be linked to tiered funding levels and digital
transformation milestones, ensuring that higher-readiness
organizations receive prioritized access to government
contracts.

(2) Reinforce Policy and Incentive Mechanisms:

Since the ROI increased by 17.8%, fiscal incentives should
be restructured to favor projects demonstrating measurable
digital efficiency, such as tax credits, fast-track approvals, or
co-funding schemes for BIM-based initiatives. Policies should
specifically  target digital infrastructure (ds) and
interoperability platforms that enable cross-stakeholder data
exchange.

8.2 For project managers and construction firms

(1) Integrate Simulation-Driven Planning:

Implement NSGA-II-based simulation models during early
planning to test trade-offs among cost growth, coordination
delay, and ROI before execution. Firms should use these
simulations to define risk-adjusted baselines and allocate
contingencies proactively.

(2) Design Skill-Oriented Capacity-Building Programs:

Training should focus on the digital competencies (di—d4)
that showed the highest influence on DRS improvement, such
as BIM coordination, data analytics, and digital procurement.
Certification metrics should be aligned with these
competencies to sustain long-term digital maturity.

(3) Standardize Post-Project Auditing Practices:

Post-project audits should quantify ROI variations, DRS
progression, and CDI impact using the study’s validated
equations. Auditing results should feed into a national
performance database for continuous benchmarking.

(4) Formalize Coordination Tools:

The 23% CDI reduction demonstrates the need for
mandatory adoption of digital coordination platforms (e.g.,
Revizto, iTWO) across large-scale projects. Standard
operating procedures should include digital issue-tracking and
real-time model synchronization protocols.

8.3 For researchers and technology developers

(1) Expand Empirical Scope and Application Domains:

Future research should apply the model to different project
typologies (infrastructure, healthcare, industrial) while
comparing variations in KPI sensitivity—particularly how
ROI and CDI respond to different contractual frameworks or
cultural settings.

(2) Advanced Model

Handling:

Integrate Al-driven sensitivity analysis to refine parameter
weighting and apply hybrid optimization (e.g., NSGA-II +
Monte Carlo) for better uncertainty quantification. This
direction strengthens predictive precision and enhances
decision-making robustness in high-risk environments.

Intelligence and Complexity
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NOMENCLATURE

DRS

Digital Readiness Score

ROI Return on Investment

CG Cost Growth

CDI Coordination Delay Index

BIM Building Information Modeling

NSGA-II Non-dominated Sorting Genetic Algorithm II
RII Relative Importance Index
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WM Weighted Mean

KPIs Key Performance Indicators

AEC Architecture, Engineering, and Construction

ICU Intensive Care Unit

Al Artificial Intelligence

GA Genetic Algorithms

MOPSO Multi-Objective Particle Swarm Optimization

Greek symbols

TV Total Transformation Value (theoretical
maximum)

TV, Partial Transformation Value (realistic early-
stage)

G Project cost at time step i

Cit Project cost at next time step

T Cost escalation rate

X1 Proportion of digitally skilled personnel

X2 Average duration of training programs

X3 Investment in digital infrastructure

Xa Degree of BIM integration

di—da Sub-variables of DRS

dl Proportion of digitally skilled personnel

d2 Average duration of training programs

d3 Investment in digital infrastructure

d4 Degree of BIM integration

I1—T4 Sub-variables of ROI

rl Net profit

r2 Total investment

3 Market flexibility

r4 Process-related cost savings

Ci—C4 Sub-variables of CG (Cost Growth)

cl Baseline cost

c2 Procurement delays

c3 Design modifications

c4 Material price volatility

i1 — 4 Sub-variables of CDI (Coordination Delay
Index)

il Number of RFIs (Requests for Information)

i2 Conflict resolution time

i3 Clarity of responsibilities

i4 Communication quality

f(.) Composite objective function

PD Pareto front

RCA Root Cause Analysis

FD Fishbone Diagrams

RI% Relative Importance Index, %

(0] Quality-related coordination gaps

02 Time-based coordination gaps

03 Weak coordination

F1 Systems integration

F2 Technology sufficiency

F3 Upgrading/improving structures

T1 Responsiveness to new technologies

T2 Digital communication tools

T3 Training program enhancement
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