
Enhancing Organizational and Technological Structures in Construction via a Mixed 

Framework Validated Through Delphi and NSGA-II 

Tareq Neamah Mohse Al-Fatla1* , Jumaa Awad Al-Somaydaii2 , Inna Yurivna Zilberova3

1 Ministry of Higher Education and Scientific Research, Baghdad 10070, Iraq 
2 College of Engineering/ Dams and Water Resources Engineering, University of Anbar, Ramadi 31001, Iraq 
3 College of Engineering/ Urban Construction and Economics, Don State Technical University, Rostov-on-Don 344003, Russia 

Corresponding Author Email: eng.tareq82i@gmail.com 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.121028 ABSTRACT 

Received: 11 September 2025 

Revised: 16 October 2025 

Accepted: 24 October 2025 

Available online: 31 October 2025 

The construction industry faces persistent challenges in coordination, scheduling, and 

cost control, particularly in environments with low digital maturity. This study proposes 

an integrated digital-organizational framework linking organizational, technological, 

and financial subsystems through digital transformation and data-driven optimization. 

A mixed analytical approach—combining survey diagnostics, Delphi-based expert 

validation, and NSGA-II multi-objective optimization—was applied to enhance project 

structures. Four key performance indicators were analyzed: Digital Readiness Score 

(DRS), Return on Investment (ROI), Cost Growth (CG), and Coordination Delay Index 

(CDI). Validation across twelve simulated projects and one real case study at 

TEPLOSTROY (Russia) demonstrated measurable gains: 17% cost reduction, 24% 

shorter duration, and 40% productivity improvement. Deviations between simulated 

and field results ranged from 3.9% to 7.4%, confirming predictive reliability. The 

framework provides a replicable, data-driven basis for improving efficiency, 

coordination, and decision-making in digitally enabled construction environments. 
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1. INTRODUCTION

The construction industry continues to face persistent 

inefficiencies, including fragmented coordination, schedule 

delays, and cost overruns, particularly in contexts with limited 

digital maturity. Although Building Information Modeling 

(BIM) and related digital tools have improved visualization 

and data management, their adoption across the Architecture, 

Engineering, and Construction (AEC) field remains 

inconsistent and often disconnected from managerial and 

financial processes. Recent empirical findings indicate that the 

use of BIM can significantly enhance cost and schedule 

accuracy in construction projects [1]. 

Existing frameworks primarily focus on the technological 

aspects of digitalization but rarely integrate expert consensus 

and quantitative performance optimization into a unified 

structure. As a result, many approaches lack the analytical 

capacity to translate digital transformation strategies into 

measurable outcomes related to cost, time, coordination, and 

readiness. Moreover, advanced performance analytics 

approaches, such as support vector machine models, have 

begun to deliver measurable improvements in time and cost 

metrics [2]. 

To address this gap, the present study develops and 

validates an integrated digital–organizational framework that 

combines survey diagnostics, Delphi-based expert validation, 

and NSGA-II multi-objective optimization. This mixed 

framework links organizational, technological, and financial 

subsystems to enhance coordination, efficiency, and 

investment performance in construction projects. Ultimately, 

it offers a data-driven and replicable pathway toward 

sustainable digital transformation in the construction sector. 

2. LITERATURE REVIEW

2.1 BIM maturity and digital readiness gaps 

Recent studies in the AEC sector emphasize performance-

based digital transformation, linking BIM Level 3 maturity 

(aligned with ISO 19650) to up to 50% faster delivery and 

measurable productivity gains [3]. Similar benefits are also 

evident in healthcare, where BIM enhances coordination and 

compliance [4], reflecting a global shift toward lifecycle-

driven collaboration [5]. 

Yet, despite advances such as AI-assisted clash detection 

[6] and cloud BIM [7], most frameworks still inadequately

assess organizational readiness. Many remain conceptual or

overly technical, lacking attention to agility, workforce

capability, and financial planning [8], and rarely provide

empirical validation [9].

Recent studies, therefore, call for holistic, quantifiable 

readiness indices incorporating leadership commitment, 

investment capacity, and measurable ROI [10] to support 

context-sensitive digital transformation strategies across 

varied organizations. 
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2.2 Expert-based approaches and the role of the Delphi 

method 

 

To address the limitations of traditional diagnostic models, 

recent studies have increasingly applied expert-based 

methods—particularly the Delphi technique—to examine the 

multifaceted challenges of construction digitalization [11]. 

Through iterative expert consensus, the method refines 

priorities and produces actionable strategies. 

Notable applications include identifying generative-AI use 

cases linked to real project performance [12] and shaping 

national BIM strategies, investment assessments, and regional 

maturity benchmarks [13]. 

This shift reflects a move from static checklists toward 

adaptive frameworks integrating expert judgment with 

quantitative performance data, enabling robust and context-

specific digital transformation models. 

 

2.3 Contribution of this study 

 

This study contributes to the growing body of digital 

transformation research by introducing a multidimensional 

digital-organizational framework that unites technological, 

organizational, and methodological dimensions, highlighting 

novel practices and solutions supported by BIM and Revit 

applications in recent AEC studies [14]: 

(1) BIM Maturity Assessment, to evaluate organizational 

capability levels in line with international standards and 

industry best practices. 

(2) Algorithmic Performance Modeling, which applies 

multi-objective optimization to interlink digital 

readiness, cost efficiency, coordination improvement, 

and ROI. 

(3) Delphi-Based Expert Validation, ensuring 

methodological rigor and practical applicability 

through iterative expert consensus. 

By embedding predictive simulation and real-world 

implementation within the same research cycle, the framework 

closes the gap between digital ambition and operational 

execution. In doing so, it provides a structured, scalable, and 

evidence-based pathway for digital transformation in 

construction, reinforcing earlier models of BIM maturity [15] 

and BIM-integrated optimization frameworks [16]. 

 

 

3. OBJECTIVES OF THE STUDY 
 

The overarching objective of this research is to develop and 

validate a comprehensive digital–organizational 

transformation framework for construction projects, 

emphasizing improvements in coordination, performance, and 

cost efficiency through BIM-enabled processes and multi-

objective optimization. 

The study pursues the following specific objectives: 

(1) Assess digital readiness in construction organizations 

using novel quantitative equations that capture human 

resource capability, technological infrastructure, and 

process integration. 

(2) Identify and validate critical Key Performance 

Indicators (KPIs)-namely Digital Readiness Score 

(DRS), Return on Investment (ROI), Cost Growth 

(CG), and Coordination Delay Index (CDI)-through 

Delphi-based expert consensus. 

(3) Design and implement a computational optimization 

model (NSGA-II) to achieve balanced improvements 

across multiple performance metrics in a Pareto-

optimal manner. 

(4) Evaluate predictive accuracy and practical robustness 

by comparing simulation outcomes with real-world 

project applications. 

 

 

4. METHODOLOGY 

 

4.1 Research design 

 

This study employs a longitudinal mixed-methods design, 

integrating quantitative modeling with qualitative expert 

validation. The research framework was structured across 

three interconnected phases: (i) an exploratory survey to 

identify readiness and coordination gaps, (ii) a Delphi-based 

expert consensus to refine and validate transformation factors, 

and (iii) application and validation [10]. 

 

4.2 Exploratory survey 

 

An exploratory survey was conducted with 94 participants 

representing contractors, consultants, site engineers, and 

public officials. It assessed readiness across organizational, 

technological, and financial domains for BIM and digital 

transformation. 

The analysis employed a combination of quantitative and 

qualitative techniques: Likert-scale items measured readiness, 

while open-ended responses identified obstacles and enablers. 

Root Cause, Pareto, and Fishbone analyses, along with RI%, 

ensured methodological depth and triangulation. 

Of 47 challenges identified, 36 were analyzed and 

consolidated into 25 key obstacles—organizational (9), 

technological (10), and financial (6)—representing 80% of 

cumulative impact and validating the Pareto Principle. 

Findings emphasized stronger governance, digital 

interoperability, and capacity-building as essential for 

improved coordination and performance. These variables 

formed the input for the Delphi consensus process. 

 

4.3 Delphi study 

 

4.3.1 Expert panel composition 

The Delphi process engaged 18 experts from Iraq and 

Russia, representing diverse roles across the construction 

sector (Table 1). This composition ensured inclusion of 

strategic, managerial, and operational perspectives, enhancing 

methodological balance and contextual validity. 

 

Table 1. Delphi experts by country and stakeholder category 

 
Country No. of Experts Stakeholder Group 

Russia 3 General Contractors 

Iraq, Russia 3 Engineering Consultants 

Iraq, Russia 4 Resident Engineers 

Iraq 2 Public Executives 

Russia 2 Specialized Subcontractors 

Iraq, Russia 2 Private Beneficiaries 

Iraq  2 Public Beneficiaries 

 

The panel’s diversity strengthened the process by 

integrating qualitative insights with quantitative analysis, 

improving the reliability of factor validation and refinement of 

transformation indicators. 
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Evaluation occurred over two iterative rounds using the 

Relative Importance Index (RII), Kendall’s W, and the 

Kruskal–Wallis test, combined with expert feedback to ensure 

robust empirical validation of key transformation factors. 

 

4.3.2 Delphi process flow - Round I 

In the first Delphi round, experts evaluated the preliminary 

factors derived from the exploratory survey through 

quantitative ratings and qualitative feedback. The aim was to 

refine and consolidate findings across organizational, 

technological, and financial domains. 

The analysis produced revised factors reflecting both 

consensus and domain relevance, which served as the 

foundation for Round II. However, the achieved consensus 

was insufficient for practical implementation, prompting a 

second round to strengthen alignment and ensure 

methodological validity. 

 

4.3.3 Delphi process flow - Round II 

The second round of the Delphi process was structured to 

validate and refine the consolidated factors emerging from the 

first round. Experts re-assessed the proposed variables using 

the same hybrid approach, combining quantitative agreement 

metrics with qualitative commentary to enhance precision. 

This iterative evaluation yielded a final set of 16 validated 

sub-variables. These were systematically categorized under 

four principal KPIs, which formed the analytical core of the 

subsequent simulation and optimization phases: 

● Digital Readiness Score (DRS); 

● Return on Investment (ROI); 

● Cost Growth (CG); 

● Coordination Delay Index (CDI). 

The convergence of expert opinion in this round signaled a 

sufficient level of consensus for empirical modeling and multi-

dimensional optimization. 

 

4.4 Application and validation 

 

The framework was validated through three stages to assess 

its reliability and practical value: 

(1) Historical Simulations: Twelve previously completed 

projects (2003–2019) were digitally simulated to 

establish empirical benchmarks for cost, schedule, and 

coordination. 

(2) Comparative Modeling: A 29-story residential project 

was modeled under two configurations: one using a 

traditional structure and the other applying the 

proposed digital-organizational model. This 

comparison helped evaluate the expected performance 

improvements. 

(3) Field Implementation: The same residential project was 

subsequently executed (2022–2025) using the proposed 

framework, allowing direct comparison between 

simulation forecasts and real-world outcomes. 

Detailed numerical outcomes from these stages are 

presented in Section 5. 

 

4.5 Digital readiness and performance assessment model  

 

Prior to framework implementation, the company’s digital 

readiness was evaluated using a matrix model developed by 

the researcher, focusing on four factors: employee training, 

digital infrastructure, BIM adoption, and staff digital skills. 

Based on the assessment, two strategic actions were 

implemented: 

(1) targeted training to strengthen BIM and digital 

competencies. 

(2) recruitment of BIM and digital transformation experts 

to address skill gaps. 

These actions enhanced readiness and ensured smoother 

framework adoption. 

 

4.6 Mathematical modeling formulations 

 

To evaluate digital transformation impacts and support 

decision-making, a set of mathematical models was 

formulated to quantify performance and assess cost–benefit 

relationships: 

 

4.6.1 Total transformation value (TVₜ) 

Estimates the maximum benefit achievable from human 

resources under ideal digital integration: 

 

𝑇𝑉𝑡 = 𝐿𝑐 × (𝑆 × 3) +𝑀𝑐 × (𝑆 × 4.5)
+ 𝐻𝑐 × (𝑆 × 6) 

(1) 

 

where, 

• Lc, Mc, Hc: Number of employees with low, medium, 

and high digital competence; 

• S: Unit investment per competence level; 

• Multipliers (3, 4.5, 6): Estimated productivity and 

onboarding costs. 

 

4.6.2 Partial transformation value (TVₚ) 

Represents the realistically achievable portion of TV during 

the early implementation stage: 

 

𝑇𝑉𝑝 = 𝑇𝑉𝑡 × 50% (2) 

 

This accounts for learning curves, resistance to change, and 

training absorption rates. 

 

4.6.3 ROI 

Estimates of net economic gain relative to total investment: 

 

𝑅𝑂𝐼 =
𝐵𝑒𝑛𝑒𝑓𝑖𝑡 − 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
 (3) 

 

where, 

• Benefit: Represented by (TVp); 

• Investment: Total expenditure of software, training, and 

implementation; 

• Positive ROI indicates value creation, while negative 

ROI reflects inefficiency. 

 

4.6.4 CG over time  

Models cost escalation due to delays or inefficiencies: 

 

𝐶𝑖 + 1 = 𝐶𝑖 × (1 + 𝑟) (4) 

 

where, 

• Cᵢ: Project cost at time step (i); 

• r: Escalation rate (empirical or assumed); 

This model predicts how delays or inefficiencies compound 

costs over time. 

 

4.6.5 DRS 

Measures the organization’s overall capacity for digital 
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adoption: 

 

𝐷𝑅𝑆 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) (5) 

 

where, 

• x1: Proportion of digitally skilled staff; 

• x2: Average training program duration; 

• x3: Investment in digital infrastructure;  

• x4: Degree of BIM integration. 

The four DRS variables (x₁–x₄) represent aggregated 

dimensions synthesized from 28 validated factors identified 

through survey and Delphi analyses. Each variable group 

interrelates human, technological, organizational, and 

financial indicators, enabling the model to convert complex 

readiness data into a measurable composite index that 

accurately reflects an organization’s overall capacity for 

digital transformation. 
 

4.7 NSGA-II multi-objective optimization 

 

To balance multiple project objectives, the Non-Dominated 

Sorting Genetic Algorithm II (NSGA-II) was employed due to 

its efficiency in handling nonlinear and conflicting goals in 

construction management. Unlike traditional optimization 

methods such as GA or MOPSO, NSGA-II employs non-

dominated sorting and crowding-distance mechanisms that 

resolve trade-offs while maintaining diversity on the Pareto 

front, making it ideal for complex, multi-dimensional decision 

environments [17]. 

The model integrates four KPIs—DRS, ROI, CG, and 

CDI—into a unified matrix of sixteen sub-variables (d₁–d₄, r₁–

r₄, c₁–c₄, i₁–i₄), as expressed in Eq. (6): 

 

[

𝐷𝑅𝑆
𝑅𝑂𝐼
𝐶𝐺
𝐶𝐷𝐼

] = [

𝑑1 𝑟1 𝑐1 𝑖1
𝑑2 𝑟2 𝑐2 𝑖2
𝑑3 𝑟3 𝑐3 𝑖3
𝑑4 𝑟4 𝑐4 𝑖4

] (6) 

 

Figure 1 illustrates how these sub-variables feed into the 

four KPIs. 

 

 

 
 

Figure 1. Matrix architecture and KPI subsystem mapping 

 

The model's inputs consist of measurable project data 

validated through the Delphi process, including the proportion 

of digitally skilled staff, total digital investment, procurement 

delays, and the time required to resolve coordination conflicts. 

The outputs are Pareto-optimal configurations of {DRS, 

ROI, CG, CDI} that expose trade-offs for decision-makers, 

enabling them to select solutions that align with project 

priorities. 

The NSGA-II procedure begins by initializing a population 

based on empirical project data, then applies non-dominated 

sorting to classify solutions into Pareto layers. Crowding-

distance computation preserves diversity within the 

population, while crossover and mutation operators generate 

improved offspring. This iterative process continues until 

convergence on a stable Pareto front is achieved, providing a 

set of optimal solutions that enhance project performance 

without compromising cost or coordination efficiency. 

This approach empowers decision-makers to visualize 

multiple optimal configurations simultaneously and select the 

most appropriate trade-off in accordance with strategic 

objectives. By integrating expert-derived factors with 

algorithmic modeling, the framework ensures evidence-based 

decisions that balance efficiency, reliability, and adaptability 

in digitally enabled construction environments. 

 

 

5. RESULTS 

 

This section presents the outcomes of the multi-phase 

validation process, including survey diagnostics, Delphi 

consensus, simulation modeling, real-world implementation, 

sensitivity analysis, and multi-objective optimization. 

Together, these phases provide empirical evidence supporting 

the reliability, contextual adaptability, and predictive accuracy 

of the proposed digital-organizational transformation 

framework. 

 

5.1 Survey findings 

 

The baseline survey engaged 94 professionals from the Iraqi 

and Russian construction sectors. It aimed to evaluate the 

readiness and challenges of digital transformation within the 

AEC industry. A total of 45 unique input factors were 

identified across three domains—organizational, 
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technological, and financial/interactional—using a 

combination of closed-ended Likert-scale items and open-

ended narrative responses. 

These raw inputs were refined through structured content 

analysis, resulting in 28 consolidated output factors, as shown 

in Table 2. 

Subsequent analysis grouped the challenges into three 

dominant thematic clusters, highlighting critical constraints 

that influence project success. 

 

Table 2. Baseline survey inputs and outputs 

 

Domain 
Inputs (Survey 

Findings) 

Outputs (Baseline 

Survey) 

Organizational 

18 Inputs 

(13 closed-ended + 

5 open-ended) 

9 Outputs  

(8 core + 1 additional) 

Technological 

16 Inputs 

(13 closed-ended) + 

three open-ended) 

11 Outputs 

(10 core + 1 additional) 

Financial & 

Interactional 

11 Inputs 

(10 closed-ended + 

1 open-ended) 

8 Outputs  

(7 core + 1 additional) 

 

5.1.1 Human capacity and digital skills 

Figure 2 summarizes the outcomes of the technological 

domain, specifically the digital skills subgroup. The results 

were derived from the Weighted Mean (WM) values presented 

in the corresponding analytical table and calculated in 

accordance with Eq. (5), which defines the DRS model 

introduced in Section 4.6.5. 

The three critical factors—training program enhancement 

(2.91), digital communication tools (2.17), and responsiveness 

to new technologies (1.94)—represent the main technological 

components influencing the organization’s digital readiness. 

Among these, structured training programs achieved the 

highest WM, reflecting their dominant role in improving staff 

competence and accelerating digital adoption. 

Although digital communication tools and responsiveness 

to new technologies showed lower mean values, their 

contribution remains complementary, supporting knowledge 

sharing and adaptive capacity. These findings confirm that 

human–technological alignment is central to enhancing the 

overall DRS and facilitating sustainable BIM-based 

transformation in construction projects. 

 

5.1.2 Digital infrastructure and systems modernization 

Figure 3 presents the results of the technological domain, 

focusing on digital infrastructure and systems modernization, 

and is interpreted in relation to both technological readiness 

and financial efficiency. The results were obtained from the 

WM analysis in accordance with Eq. (5) for the DRS and 

cross-referenced with the financial implications derived from 

the ROI formulation presented in Eq. (3) of Section 4.6.3. 

The three critical factors—upgrading and improving 

structures (2.73), technology sufficiency (1.89), and systems 

integration (1.87)—reflect not only the organization’s digital 

maturity but also its capacity to generate economic value from 

technology investments. The relatively high means for 

upgrading structures indicate prioritized expenditure on 

modernization initiatives, which correlate with positive ROI 

trends identified in later simulation results. 

Conversely, low scores in technology sufficiency and 

systems integration suggest that underutilization of digital 

tools and weak interoperability diminish potential financial 

returns, thereby reducing the efficiency of digital investment. 

Strengthening these areas is essential to enhance both 

technological and financial performance, ensuring that 

infrastructure modernization translates into measurable 

improvements in ROI and long-term value creation. 

 

5.1.3 Coordination deficiencies 

Figure 4 illustrates the results of the organizational 

dimension, emphasizing coordination-related inefficiencies 

derived from the WM analysis consistent with Eq. (5) of the 

DRS model presented in Section 4.6.5. 

 

 
 

Figure 2. WM of digital skills factors 

 

 
 

Figure 3. WM of digital infrastructure factors 
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Figure 4. WM of coordination deficiency factors 

 

 
 

Figure 5. Pareto chart of cumulative challenge impact 
Note: Each RI% value originates from a distinct sub-scale; cross-theme comparisons represent relative thematic weight rather than arithmetic summation. 

 

The three critical coordination-related factors—weak 

coordination (2.67), time-based coordination gaps (2.50), and 

quality-related coordination gaps (2.29)—reveal persistent 

deficiencies within organizational and project communication 

structures. Among these, weak coordination recorded the 

highest mean value, signifying that communication 

fragmentation and lack of synchronized planning remain 

significant constraints affecting project performance. 

Meanwhile, the relatively lower values for time-based and 

quality-related coordination gaps indicate that scheduling 

misalignments and quality feedback loops, although less 

severe, continue to disrupt consistency and workflow 

integration. These results underscore the need to enhance 

coordination mechanisms through BIM-supported 

communication systems and standardized protocols, thereby 

reducing discrepancies, improving real-time decision-making, 

and strengthening the organization’s overall digital readiness. 

 

5.1.4 Pareto analysis of critical challenges 

As illustrated in Figure 5, the Pareto analysis shows that the 

highest-ranked challenges across technological, 

organizational, and financial dimensions account for 

approximately 80% of the overall impact on project 

performance. These nine factors represent the critical 

challenges previously analyzed in Sections 5.1.1–5.1.3 and 

were selected as the most influential variables for further 

modeling. This distribution validates their prioritization in 

subsequent optimization processes. 

RI% represents RII expressed as a percentage, derived from 

survey-based weighting. The chart confirms that the most 

influential factors—particularly those related to training 

enhancement (T3), organizational upgrading (O3), and 

financial adaptability (F3)—represent the critical leverage 

points for digital transformation. 

These results were further emphasized by Delphi experts, 

who confirmed the strategic significance of focusing on 

human capacity development, technological infrastructure 

investment, and real-time coordination mechanisms. Together, 

these findings guided the construction of the Delphi consensus 

matrix in the next phase. 

 

5.2 Delphi consensus matrix 

 

To refine and validate the baseline findings, a two-round 

Delphi process was conducted, involving 18 experts from Iraq 

and Russia. These experts represented diverse roles across the 

construction sector, ensuring a balanced integration of 

academic, operational, and executive perspectives. 

Building on the 28 output factors generated by the baseline 

survey, Round I of the Delphi study reassessed these variables 

through a combination of structured quantitative ratings and 

open-ended expert feedback. As summarized in Table 3, the 

Delphi panel consolidated the input into 24 refined factors 

across three key domains: 

 

Table 3. Delphi round I inputs and outputs 

 

Domain 

Inputs Round I 

(from Baseline 

Survey Outputs) 

Outputs  

Round I 

Organizational 

9 Inputs 

(8 closed-ended +  

1 open-ended) 

9 Outputs 

(7 core +2 

additional) 

Technological 

11 Inputs 

(10 closed-ended + 1 

open-ended) 

9 Outputs 

(6 core + 3 

additional) 

Financial & 

Interactional 

8 Inputs 

(7 closed-ended +  

1 open-ended) 

6 Outputs 

(6 core + 0 

additional) 
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These results reflect the panel’s collective judgment in both 

consolidating and expanding upon previously identified 

challenges. The increased granularity in the technological and 

organizational domains underscores a strong consensus on 

emerging priorities. At the same time, the stability of these 

stabilizing financial factors, along with a clear consensus and 

interactive factors, reveals a type of economic factor that 

clearly demonstrates a consensus. Interactional factors also 

indicate their foundational role. 

The refined outputs from Round I served as the inputs for 

Delphi Round II, during which statistical agreement was 

further strengthened using Kendall’s W and the Kruskal-

Wallis test. This process ultimately yielded a validated list of 

16 sub-variables, which were mapped to four overarching 

performance indicators, previously defined in the 

methodology, guiding the simulation and optimization phases 

that followed. 

 

5.3 Simulation-based performance forecasts 

 

Simulation experiments conducted across twelve historical 

projects (2003–2019) demonstrated the predictive reliability 

of the proposed framework. 

The simulation model utilized aggregated KPI results, 

including the DRS, ROI, CG, and CDI, which were derived 

from validated sub-variables established in earlier analytical 

stages. Empirical project data extracted from company records 

served as the model inputs, while the simulated outputs were 

generated using the NSGA-II algorithm to estimate optimal 

performance configurations. 

As illustrated in Figure 6, the comparison between the 

baseline (traditional management) and simulated digital 

scenarios revealed measurable improvement across all four 

KPIs. The simulation predicted higher digital readiness 

(+31%), more substantial ROI (+17.4%), better cost control 

(+23.8%), and shorter coordination delays (−27%) compared 

with baseline averages. These improvements stem from 

integrating structured digital workflows, interoperable data 

systems, and coordinated communication platforms. 

From a practical standpoint, these findings demonstrate that 

the simulation phase effectively captured the potential impact 

of digital transformation prior to its actual implementation. 

The results provided quantitative justification for applying the 

proposed digital–organizational model in practice, which is 

discussed in the following section.

 

 
 

Figure 6. Simulation–real KPI comparison 
Note: The reported values are expressed as percentages rather than absolute monetary figures, ensuring interpretability for international readers regardless of 

currency or local cost structure. 

 

 
 

Figure 7. Simulation–field KPI comparison 
 

5.4 Field implementation results 

 

Following the simulation phase, the proposed digital–

organizational framework was implemented and validated 

through a real-world case study: a 29-story residential high-

rise project executed between 2022 and 2025. This 

implementation phase represented the final verification step, 

designed to assess how closely real-world performance 

aligned with the NSGA-II–based simulation forecasts derived 

in Section 5.3. 

At this stage, the project was executed in practice using the 

proposed digital transformation tools: BIM, iTWO 5D, 

Revizto, and MS Project. The researcher directly monitored 

and recorded cost, time, and coordination data throughout the 

construction process, ensuring the accuracy and independence 

of the empirical dataset. 

Figure 7 presents a comparative analysis between the 

simulated optimized scenario (representing the predicted 

digital transformation case) and the actual field results 

achieved during implementation. The observed performance 

trends closely matched the NSGA-II simulation outputs, 

showing a DRS increase of +29.5%, a cost efficiency 

improvement of +17%, a schedule enhancement of +23%, and 

a reduction in CDI of –25%. Furthermore, field operations 
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recorded an additional +39.5% gain in productivity, reflecting 

gains in real-time collaboration and enhanced communication 

workflows beyond the simulated scope. 

These findings verify that the optimization-based 

simulation model accurately forecasted the dynamic 

interactions among cost, time, and coordination variables once 

the proposed framework was implemented. The close 

alignment between predicted and actual performance validates 

the operational feasibility and reliability of the NSGA-II 

approach within real construction environments. 

Ultimately, this outcome highlights the broader benefits of 

integrating multi-objective optimization into construction 

management. Similar performance-based methodologies—

such as Earned Value Management (EVM) systems 

implemented in Anbar Governorate projects—have 

demonstrated parallel advantages by synchronizing schedule 

and cost control functions, reinforcing the applicability of 

data-driven management approaches in regional construction 

contexts [18]. 

 

5.5 Sensitivity and optimization insights 

 

The final phase of the study aimed to pinpoint the key 

factors influencing performance across the four KPIs: DRS, 

ROI, CG, and CDI. Sensitivity analysis through simulations 

identified two sub-variables with consistently high impact:  

• r4 (cost savings from improved processes) within ROI;  

• c3 (design modifications) within CG.  

These results align with earlier Delphi findings and Pareto 

diagnostics, emphasizing the importance of process efficiency 

and design control in boosting project outcomes.  

To evaluate the best trade-offs among the KPIs, the NSGA-

II method was applied. The optimization model, structured as: 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑓(𝐷𝑅𝑆, 𝑅𝑂𝐼, −𝐶𝐺,−𝐶𝐷𝐼) (7) 

 

Created balanced scenarios that enhance digital 

performance while minimizing additional costs and delays. 

The model remained stable under a ±10% parameter variation, 

proving its robustness and flexibility.  

This optimization validates the integrated framework as a 

reliable tool for strategic decision-making in digital 

transformation under practical constraints. 

 

 

6. DISCUSSION 

 

6.1 Interpretation and implications 

 

The study’s findings confirm the robustness of the proposed 

digital–organizational framework, with performance 

deviations between simulated forecasts and real-world 

implementation ranging from 3.9% to 7.4%, validating its 

predictive reliability and operational feasibility across distinct 

project environments. The close correspondence between 

simulated and field data demonstrates that the NSGA-II-based 

optimization model effectively captured the nonlinear 

relationships among cost, time, coordination, and digital 

maturity indicators. 

Three major strengths emerged from this analysis: 

(1) Reproducibility: The framework produced consistent 

outcomes across both simulation and field applications, 

including measurable reductions in cost growth (≈ 17%), time 

savings (≈ 24%), enhanced DRS, and decreased CDI. This 

reproducibility underscores the model’s internal reliability and 

its ability to generalize predictive performance across projects 

of varying scale and complexity.   

(2) Scalability: Application of the framework to twelve 

historical projects and a large-scale residential high-rise 

(2022–2025) confirmed its enterprise-level adaptability. The 

integration of BIM-based coordination, iTWO 5D cost 

forecasting, and Revizto communication platforms enabled the 

model to translate optimization outcomes into actionable 

management practices—bridging the gap between theoretical 

modeling and practical execution. Such outcomes align with 

recent digital transformation strategies reported in the AEC 

industry [14]. 

(3) Contextual Adaptability: Performance outcomes 

varied between Iraq and Russia, reflecting differences in 

infrastructure maturity, policy frameworks, and institutional 

readiness. In Iraq, limited digital infrastructure investment  

(d₃  ≈ 22%) and fragmented organizational coordination 

necessitated a phased implementation and targeted workforce 

training, consistent with the adoption challenges identified in 

emerging economies. Conversely, in Russia, higher BIM 

maturity levels (d₄ ≈ 78%) and more substantial regulatory 

alignment enabled the full integration of the proposed 

workflow with existing digitization initiatives [19]. 

While these contrasts reaffirm the contextual adaptability of 

the model, they also reveal that policy support, governance 

quality, and organizational culture have a substantial influence 

on the effectiveness of digital transformation. The findings 

suggest that in environments where regulatory frameworks 

and IT infrastructure are less mature, the same optimization 

algorithm may require recalibration of sub-variables such as d₃ 

(Digital Infrastructure Investment) and i₂ (Time to Resolve 

Conflicts) to maintain comparable performance outcomes. 

From a critical perspective, the minor discrepancies 

between simulation and implementation (≤ 7%) can be 

attributed primarily to human-centric and contextual factors, 

including learning curves, communication delays, and 

unmodeled behavioral variability—rather than structural flaws 

in the optimization logic. This aligns with observations in 

comparable NSGA-II-based applications in infrastructure and 

energy sectors, where practical outcomes tend to diverge 

slightly from idealized simulations due to implementation 

complexity [20]. 

Furthermore, the sensitivity analysis confirmed r₄ and c₃ as 

the most influential sub-variables, reinforcing the Delphi 

consensus and Pareto findings that emphasized process 

efficiency and design coordination as key leverage points for 

enhancing digital performance. these insights underline that 

the framework’s effectiveness depends on its strategic 

customization—balancing computational precision with 

managerial adaptability—to suit the technological maturity 

and governance conditions of each project context. 

Ultimately, digital transformation in construction is not only 

a technical shift but an organizational evolution requiring 

alignment between technology, human expertise, and policy. 

The proposed model demonstrates how multi-objective 

optimization can operationalize this alignment, enabling 

decision-makers to implement context-sensitive strategies that 

sustain performance improvement across diverse project 

environments. 

 

6.2 Limitations and future work 

 

Although the framework was validated through simulation 
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and field implementation, several methodological constraints 

limit its generalizability. 

(1) Geographic Scope: The study focused on Iraq and 

Russia—contexts differing in digital maturity and regulatory 

advancement. While this contrast offered cross-comparative 

insights, broader validation across additional regions is needed 

to ensure global adaptability. 

(2) Organizational Representation: The sample included 

contractors and consultants but lacked legal and administrative 

experts, whose roles are critical in digital governance. Future 

research should involve policymakers and legal specialists to 

capture the institutional factors that influence adoption and 

compliance. 

(3) Financial Evaluation: The analysis relied mainly on 

ROI, which overlooks non-monetary benefits such as risk 

reduction and sustainability. Incorporating NPV, CPI, and 

SROI would provide a more holistic assessment of economic 

and social impacts. 

(4) Computational Strategy: Exclusive use of NSGA-II 

ensured stability and reproducibility but limited comparison 

with other heuristics. Future studies should benchmark 

NSGA-II against methods such as MOPSO and ACO to 

enhance the robustness of the Pareto front. 

Figure 8 summarizes these limitations and related research 

opportunities across five domains: geographic scope, 

organizational applicability, financial evaluation, optimization 

strategy, and scalability [21].

 

 
 

Figure 8. Methodological limitations and recommendations 
Note: While the diagram presents recommendations tailored to each identified limitation, a more comprehensive set of strategic and stakeholder-specific 

recommendations is provided in Section 8 to support broader implementation and cross-sector applicability. 
 

6.3 Practical implications for stakeholders 

 

The study highlights the various ways in which different 

stakeholders interact with digital transformation dynamics in 

the construction industry. For firms, variations in DRS 

components—such as digital skills (d₁)—indicate that 

workforce capability has a strong influence on readiness, 

raising questions about the balance between training and 

recruitment. At the policy level, differences in infrastructure 

investment (d₃) between contexts suggest that governance and 

financial support have a significant impact on adoption speed, 

reflecting patterns observed in international strategies [19]. 

For research, the findings suggest opportunities to integrate 

AI-based predictive models and conduct cross-regional 

comparisons to understand adaptation strategies under varying 

technological and governance conditions [22]. Overall, these 

insights emphasize that digital transformation involves 

interconnected technical, organizational, and policy factors 

rather than isolated technological upgrades. 

 

 

7. CONCLUSIONS 

 

This study validated an integrated digital–organizational 

framework for enhancing construction project performance 

through simulation, mathematical modeling, and expert 

consensus. The framework demonstrated a strong predictive 

capability for KPIs—cost, time, coordination, and digital 

readiness—across varying levels of digital maturity. 

Quantitative evaluation revealed a clear improvement: the 

ROI increased by 17.8%, CDI decreased by 23%, CG was 

reduced by 14%, and Digital Readiness (DRS) improved by 

over 25% after BIM integration. These results confirm the 

model’s reliability and its ability to transform digital strategies 

into measurable organizational outcomes. 

The close consistency between simulated and real project 

data further proves its robustness and scalability. Rather than 

offering a one-size-fits-all solution, the framework serves as a 

context-sensitive decision-support tool, guiding digital 

transformation in line with international BIM standards and 

best practices. 

 

 

8. RECOMMENDATIONS 

 

To enhance implementation and guide future development, 

the following recommendations are proposed across three 

stakeholder groups: 

 

8.1 For policymakers 

 

(1) Institutionalize Digital Readiness Assessments: 
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Given the 25% DRS improvement observed, policymakers 

should embed the DRS as a mandatory performance criterion 

in national project approval systems. DRS benchmarking 

should also be linked to tiered funding levels and digital 

transformation milestones, ensuring that higher-readiness 

organizations receive prioritized access to government 

contracts. 

(2) Reinforce Policy and Incentive Mechanisms: 

Since the ROI increased by 17.8%, fiscal incentives should 

be restructured to favor projects demonstrating measurable 

digital efficiency, such as tax credits, fast-track approvals, or 

co-funding schemes for BIM-based initiatives. Policies should 

specifically target digital infrastructure (d₃) and 

interoperability platforms that enable cross-stakeholder data 

exchange. 

 

8.2 For project managers and construction firms 

 

(1) Integrate Simulation-Driven Planning: 

Implement NSGA-II–based simulation models during early 

planning to test trade-offs among cost growth, coordination 

delay, and ROI before execution. Firms should use these 

simulations to define risk-adjusted baselines and allocate 

contingencies proactively. 

(2) Design Skill-Oriented Capacity-Building Programs: 

Training should focus on the digital competencies (d₁–d₄) 

that showed the highest influence on DRS improvement, such 

as BIM coordination, data analytics, and digital procurement. 

Certification metrics should be aligned with these 

competencies to sustain long-term digital maturity. 

(3) Standardize Post-Project Auditing Practices: 

Post-project audits should quantify ROI variations, DRS 

progression, and CDI impact using the study’s validated 

equations. Auditing results should feed into a national 

performance database for continuous benchmarking. 

(4) Formalize Coordination Tools: 

The 23% CDI reduction demonstrates the need for 

mandatory adoption of digital coordination platforms (e.g., 

Revizto, iTWO) across large-scale projects. Standard 

operating procedures should include digital issue-tracking and 

real-time model synchronization protocols. 

 

8.3 For researchers and technology developers 

 

(1) Expand Empirical Scope and Application Domains: 

Future research should apply the model to different project 

typologies (infrastructure, healthcare, industrial) while 

comparing variations in KPI sensitivity—particularly how 

ROI and CDI respond to different contractual frameworks or 

cultural settings. 

(2) Advanced Model Intelligence and Complexity 

Handling: 

Integrate AI-driven sensitivity analysis to refine parameter 

weighting and apply hybrid optimization (e.g., NSGA-II + 

Monte Carlo) for better uncertainty quantification. This 

direction strengthens predictive precision and enhances 

decision-making robustness in high-risk environments. 
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NOMENCLATURE 

 

DRS Digital Readiness Score 

ROI Return on Investment 

CG Cost Growth 

CDI Coordination Delay Index 

BIM Building Information Modeling 

NSGA-II Non-dominated Sorting Genetic Algorithm II 

RII Relative Importance Index 

WM Weighted Mean 

KPIs Key Performance Indicators 

AEC Architecture, Engineering, and Construction 

ICU Intensive Care Unit 

AI Artificial Intelligence 

GA Genetic Algorithms 

MOPSO Multi-Objective Particle Swarm Optimization 

 

Greek symbols 

 

TVₜ Total Transformation Value (theoretical 

maximum) 

TVₚ Partial Transformation Value (realistic early-

stage) 

Cᵢ Project cost at time step i 

Cᵢ₊₁ Project cost at next time step 

r Cost escalation rate 

x₁ Proportion of digitally skilled personnel 

x₂ Average duration of training programs 

x₃ Investment in digital infrastructure 

x₄ Degree of BIM integration 

d₁ – d₄ Sub-variables of DRS 

d1 Proportion of digitally skilled personnel 

d2 Average duration of training programs 

d3 Investment in digital infrastructure 

d4 Degree of BIM integration 

r₁ – r₄ Sub-variables of ROI 

r1 Net profit 

r2 Total investment 

r3 Market flexibility 

r4 Process-related cost savings 

c₁ – c₄ Sub-variables of CG (Cost Growth) 

c1 Baseline cost 

c2  Procurement delays 

c3 Design modifications 

c4 Material price volatility 

i₁ – i₄ Sub-variables of CDI (Coordination Delay 

Index) 

i1 Number of RFIs (Requests for Information) 

i2 Conflict resolution time 

i3 Clarity of responsibilities 

i4 Communication quality 

f (...) Composite objective function 

PD Pareto front 

RCA Root Cause Analysis 

FD Fishbone Diagrams 

RI%  Relative Importance Index, % 

O1 Quality-related coordination gaps 

O2 Time-based coordination gaps 

O3 Weak coordination 

F1 Systems integration 

F2 Technology sufficiency 

F3 Upgrading/improving structures 

T1 Responsiveness to new technologies 

T2 Digital communication tools 

T3 Training program enhancement 

 

3653

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001748
https://doi.org/10.3390/buildings15122124
https://doi.org/10.1007/s12205-022-0708-y
https://doi.org/10.1007/s00500-023-09099-4
https://doi.org/10.1063/5.0190450
https://doi.org/10.1016/j.autcon.2017.04.005
https://doi.org/10.1186/s42162-024-00394-4
https://www.sciencedirect.com/author/57193617746/m-reza-hosseini
https://doi.org/10.1016/j.autcon.2021.103942
https://doi.org/10.3390/digital5030026



