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This paper presents an investigation using Support Vector Machine (SVM) on the
power generation prediction of Photovoltaic (PV) panels for both the fixed and sun-
tracking solar models. It compares the energy production for both systems using the
historical irradiance data, providing superior effectiveness for the tracking panels. Both
fixed and tracking systems were monitored on different days during summertime for
three months from 7:00 am to 7:00 pm in Kirkuk, Irag. The comparative and
comprehensive performance of both methods, using a maximum of 40-watt solar PV
panels, was evaluated. The study also emphasizes the effectiveness of SVM algorithms
in predicting the performance of both systems. The findings of this study are most
relevant to high-potential solar regions, where efficient use of photovoltaic technology
can maximize independence and sustainability in terms of energy use. Future studies
could include extending the analysis through integration with additional factors such as
temperature variation, cloud cover, and wind speed, in an effort to maximize predictive

accuracy and optimize use of solar energy.

1. INTRODUCTION

The performance of both the static and sun-tracking systems
is studied in this regard. This is the mechanism that brought
about enormous growth in effective energy from
environmentally friendly sources. The combination of sun
tracking systems with solar Photovoltaic (PV) panels is a most
hopeful way to increase the efficiency of solar energy
collection. The world has changed too much in terms of the
considerable contribution of PV systems to meet global energy
needs and environmental sustainability. As such, PV systems
have already been established as a major supplier of
environmentally friendly energy, and therefore, a feasible
solution for sustainable development in the world that
challenges climate change and sustainability [1].

Solar PV panels are devices that can change sunlight into
electricity. However, scientists are trying to make them work
better with sun-tracking systems following the movement of
the sun in the sky. In this way, it shall help them to get more
solar energy and hence create more power. Solar PV panels
have changed the world for the good through clean and green
energy that is being used and meets our ever-increasing needs.
It also helps us to fight climate change and for the promotion
of sustainable development because it reduces our reliance on
fossil fuels and harmful emissions. Besides being good for the
environment, solar PV panels are also good for the economy.
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They may be coupled with other renewable sources of power
including wind, concentrated solar power, hydro, and batteries
among others. All these applications help in the reduction of
costs and risks of power generation, and the improvement of
operation and planning of the energy systems [2]. PV systems
play a vital role in reducing the environmental impact of
carbon dioxide and other greenhouse gases. In the
performance of the PV cells, there is a consideration of the
values with various parameters that include the geographical
location, the amount of solar radiation received, the wind
speed, and consideration of the electrical characteristics of the
PV cells. Furthermore, the PV systems are being integrated
with the power systems as a clean and renewable source of
energy to help in reducing the environmental impacts and
improving stability in a power system [3]. The PV system is
the base of renewable energy systems that allow for more
power to move into sustainable energy sources [4].

On the other hand, the increase of energy that does not affect
the environment adversely is one of the most complicated
tasks existing before the research community. Nowadays, PV
solar is most widely applied as a distributed energy resource
due to economic factors and many advantages. Table 1
summarizing prior Support Vector Machine (SVM)-based
solar prediction studies.
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Table 1. SVM-based solar prediction studies

References Region Inputs Predl.ctlon Accuracy / Metric
Horizon

. Temperature, humidity, rainfall, wind Mean Absolute Error (MAE) = 5%;
[5] Taiwan speed, irradiance I-hour ahead SVM outperformed Random Forest
[6] Benchmark dataset 12 weather features (incl. heat index, ~ 24-hour rolling SVM > Linear Regression, competitive with

wind speed) forecast Artificial Neural Network (ANN)
7] Algeria (6 cities) Extraterrestrial irradiance, declination, Daily solar ANN+Firefly Algorithm (FFA) best;
temperature, humidity, RH radiation SVM & ANN showed promising R ~ 0.93

Global solar radiation

(8]

Meteorological + particulate matter

0/ .
Daily radiation Root Mean Square Error (RMSE) | 14.6%;

modeling (PM2.5, PM10) R? 1 2.6% with PM inputs
. Diffuse & direct radiation, Tmax/Tmin,  Daily global SVM outperformed tree-based models;
[9] India/Turkey context s .2, e
humidity radiation best generalization

Iraq is going to have a good growth in solar power capacity
for the near future. Iraq also envisions a capacity of 2.75 GW
in solar by 2025 as part of its overall objective of 12 GW of
renewable energy by 2030. The increment in solar capacity is
indicative of a step in achieving energy independence,
decreasing costs of generation, and imports chargeable for
electricity. The renewable energy projects of Iraq encompass
the construction of large solar energy power plants all over the
country. These follow from the intention of Iraq to up its share
of renewable energy sources to 33% by 2030. It is therefore
evident that Iraq will consider the utilization of renewable
energy sources in the run of its business [10]. Nemah and
Albarhami [11] researched the efficiency of PV systems in
their operations under Iraq's environmental conditions in Al
Najaf. The study used MATLAB/Simulink to develop a model
and simulate it. The variables to be considered are radiation,
sunlight, ambient temperature, and panel efficiency.
According to the research, it has been found that with an
increase in temperature, the effectiveness of this system has
been the highest and hence draws the need to consider
environmental temperatures during the design of a turbine
especially within the environment of Iraq. Researchers at the
Bukhara State University of Uzbekistan, Raxmatov et al. [12]
analyzed a 300 KW grid-connected solar PV system and
evaluated its economics. Economic analysis of the same,
presented above, demonstrates that the time required to
recover the initial investment in case the cost of energy equals
0.099 $/kilowatt-hour, is 9.7 years. Their work suggests that it
is financially feasible to build the PV systems on the same
regions of interest or valuable information on what the
financial outcome could be to systems at Kirkuk.

Previous studies in Iraq region have employed many
conventional predictive models and machine learning
techniques which including ANNs and k-Nearest Neighbors.
But these methodologies often need extensive datasets or may
encounter difficulties in addressing the swift and intricate
variations in solar irradiance characteristic like Kirkuk's
geographical context. While SVMs is recognized for its
proficiency in managing smaller datasets and intricate
nonlinear variations and directly confront these constraints.
Consequently, employing SVM to forecast PV performance in
Kirkuk signifies a methodological enhancement also likely
augmenting prediction precision and offering practical
benefits for solar energy system planning in the area.

2. BACKGROUND

A significant achievement is the incorporation of the
Maximum Power Point Tracking (MPPT) control algorithm
into various converter architectures to improve the efficiency
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of PV systems. Katche et al. [13] introduced a photovoltaic
grid-tied system that utilizes an MPPT control algorithm and
a Single-Ended Primary-Inductor Converter (SEPIC) and Luo
converter. This system achieved an impressive efficiency of
96% while also reducing total harmonic distortion. In Ganguly
et al.’s study [14], the work primarily focuses on the
development of MPPT algorithm design. The proposed system
involves the utilization of a SEPIC converter to facilitate the
charging of the battery using solar energy. To achieve
maximum power under any environmental conditions, it needs
to optimize the resistance (load) applied to the cells and
accurately measure their output. MPPT devices are typically
integrated into an electric power converter system that
performs voltage or current conversion, regulation, and
filtering. This system is used to drive various loads, such as
power grids, batteries, or motors. This work focuses on the
implementation of two methodologies.

Rehman and El-Amin [15] analyzed a 5.28 KW off-grid
photovoltaic power plant in Dhahran, Saudi Arabia, for its
efficiency. The research investigated how dust buildup and PV
surface temperature can affect the panels' ability to generate
electricity. Energy production decreased with increasing
surface temperature and time, suggesting that dust buildup
potentially be responsible, according to the study. This is
particularly important for areas like Kirkuk, where similar
environmental factors like dust and temperature play a
significant role.

A study by Visser [16] evaluated solar power forecasting
models for both intraday predictions and day-ahead collected
data. It started by utilizing various methods such as physical,
regression and Al (Artificial intelligence) based models, with
focusing on deep learning. It demonstrates the importance of
using high-quality data to create precise forecasting models. A
notable feature of this research is the utilization of
probabilistic forecasting models, which have shown superior
performance compared to point forecasting models.
Additionally for solar forecasting performance, many methods
such as tree-based models, which are part of the field of
artificial intelligence, are specifically recognized for their
strong technical predicting. The study is crucial for
comprehending the role of Al in improving the ability to
forecast and ensure the consistency of solar power generation.

Another study has introduced an approach that assesses the
technical and economic feasibility of a solar PV system.
Where this approach combines machine learning and
optimization techniques. The study utilizes site-specific data
obtained from Moi University in Kenya, encompassing
temperature, solar radiation, and power demand data. The
simulation findings from this study emphasize the importance
of accurately determining the appropriate dimensions for solar
PV installations. Neglecting this crucial aspect often results in



system malfunctions. Applying Al and machine learning in
system design and optimization guarantees dependability,
effectiveness, and cost-efficiency, rendering it a valuable point
of reference for comparable research in diverse geographical
areas like Kirkuk, Iraq [17]. Additionally, another work is
concerned with designing an Adaptive Neuro-Fuzzy Inference
System (ANFIS) based SEPIC Converter for MPPT of PV
Modules. The method used for the system’s MPPT is Perturb
and Observe. The system is controlled by an Adaptive Neuro
Fuzzy Inference System. The work has a hardware prototype
and the performance of the controller for MPPT is tested in
simulation. A comparison between the fuzzy logic controller
single-ended primary inductance converter for MPPT and the
adaptive neuro-fuzzy inference system single-ended primary
inductance converter for MPPT was discussed, and the results
showed that the ANFIS has more efficiency [18].

Rahif [19] described MPPT system design for photovoltaic
energy conversion by proposing the fuzzy logic controller and
it details how to create fuzzy inference rules and fine-tune
membership functions to regulate the duty cycle of a DC-DC
converter so that photovoltaic array attained maximum power
point despite fluctuating irradiance and temperature as well as
it may offers an important control oriented alternative to data-
driven ones such as SVM prediction that have been employed
in recent studies and provides an alternate artificial
intelligence method for maximizing photovoltaic output in
consideration of variable environmental conditions.

The aim of apply machine learning techniques, and more
specifically the SVM models, to predict the power output
performance of PV systems accurately. This specific objective
is set to compare static and sun-tracking solar panel
efficiencies, so that the most efficient set-up concerning solar
energy control and generation of electricity may be pinpointed.
The contribution of this work lies in the development and
validation of a prediction model to be applicable by both
power producers and grid operators to give more exact
forecasts on the generation of solar power. It introduces
research on Support Vector Regression (SVR) in solar energy
systems as follows:
®  Helps to further understand the effect of panel orientation

and different tracking mechanisms on the gain of energy.

Is part of the complete knowledge framework in

alternative energies which supports the transition

towards more sustainable sources of energy generally
and especially in Kirkuk Iraq.

Offers insights that could lead to cost reductions and

increased efficiency in the energy sector.

Solar PV systems are leading the way in renewable energy
since they turn sunlight into electricity. Using the energy from
the sun, a device called a solar cell, which is basically a p-n
junction, can produce direct current (DC) electricity.
Nevertheless, because each cell produces a relatively small
voltage, solar panels consist of multiple cells working together
to generate higher voltages. To comprehend and optimize solar
panel systems, it is essential to know the properties of the
current-voltage (I-V) and power-current (P-I) relationships.
When it comes to improving the efficiency of PV energy
conversion systems, the notion of the MPPT algorithm is
crucial. Taking Ozgelik and Yilmaz as an example, they
investigated the use of wireless energy transmission in
conventional and MPPT PV systems, and they searched how
MPPT improves conversion efficiency [20].
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Figure 1. Photovoltaic cell model

(a) (b)
Figure 2. (a) I-V characteristics; (b) I-P characteristics
current-voltage and current-power characteristics of a typical
solar panel

The solar cell is a p-n junction that generates DC electricity
power from the sun's radiation. Considering the resulting
voltage for each single cell is small, the solar panel contains a
number of these cells, that are linked together. The model has
a diode, a current source, and a resistor in series, as shown in
Figure 1. The effect of the resistor symbolizes the leakage
resistance of the cell. The current source symbolizes the
current produced by photons, the output of PV is stable under
fixed temperature and fixed radiation of light. Figure 2
demonstrates the characteristics of the current voltage (I-V)
and the current power (I-P) for a solar panel, respectively.
MPP is the peak point of the power for a solar panel.

Earlier research has verified that the incorporation of single
or double-axis tracking systems considerably enhances the
energy output of photovoltaic systems; like Bazyari et al. [21]
demonstrated that single-axis tracking and double-axis both
has the capacity to enlarge the mean energy gathered in
comparison to static panel installations on Qeshm Island in
Iran. Carrying on in the same method this work assesses
similar tracking systems under climatic conditions in Kirkuk
in the Republic of Iraq using an SVM prediction model.

The next stage is the DC-AC inverter, which converts the
DC electricity from the solar array into AC, suitable for
distribution on the power grid. This conversion is necessary
because the grid operates on AC, and most home and business
appliances are designed to use AC power. Finally, the AC
electricity is transmitted to the grid, where it is distributed to
end-users.

In some systems, there may be additional steps or
components, such as battery storage systems that store excess
power for use when the sun is not shining, or transformers that
adjust the voltage to the appropriate level for the grid.

3. SEPIC CONVERTER

A PV application requires a proper converter for
coordinating between the PV output voltage and the required
voltage for the load. The SEPIC converter stands for Single-
Ended Primary-Inductance Converter, which is a DC-DC



converter. It can be a buck and boost converter or just a buck
or just a boost converter. In this work, the SEPIC is used
because it is appropriate for the PV output and the input
voltage for an MPPT. Depending on the switch duty ratio D,
the converter buck and boost provide the voltage of the output
to be greater or lower than the input voltage.

PV Array ‘ “l

| Voltage
Current
MPPT
I
PWM
SEPIC Converter ‘-J
Voltlage Curll'enl

+

Load

Figure 3. SEPIC converter

In recent years, a SEPIC converter in battery-powered
systems has become more popular and needs to step up or
down according to the charge level of the battery. Requiring
the relatively ripple-free, that is drawn from the current of the
input. That is why the SEPIC converter is used in many
applications [22, 23]. In some converter types, the output
results do not reach the maximum power. However, using
SEPIC converter topology with MPPT is the most convenient
technique that assures extraction of the power and the steady

output with ripple-free for the current-voltage curve and
without fluctuations. Thereby, the peak current control used
by the SEPIC converter with a PV voltage and the signal
generated by the battery current controller that is a
comparative and integral (PI) controller will be zero. That
means, the voltage is generated by combining the battery
charging loop and MPPT control loop. The mixture of MPPT
and charging control immediately balances the power of the
system to charge the battery. The voltage of the PV is
determined completely by the MPPT controller. Therefore, the
PV module is functioned with the MPPT point, as shown in
Figure 3.

4. MPPT ALGORITHM

After getting the current and voltage from the photovoltaic
arrays, the MMPT system algorithm controls it by a method
called hill climbing. The flow chart given in Figure 4 and the
block diagram in Figure 5 shows the mentioned method. In the
last cycle of the algorithm, the direction of the output voltage
will continue in the same direction even if there are increments
in the output power from the last measurement. If the output
power has decreased since the last measurement, the voltage
is inverted in the opposite direction. In each MPPT cycle, the
voltage of PV will be set according to the algorithm. In
addition, it will fluctuate around the voltage of MPP voltage
when the MPP has reached, which will lead to the loss of
power that depends on the step width calculated power of one
adjustment. In case the width is large, any change in operating
conditions that could slow or stabilize the algorithm of MPPT
will quickly respond to that sudden change. In the other case
when the width is very small; any change occurs slowly or
stabling the system, it will respond very slowly to solve
changes in insulation or temperature. For this, it is clear that
all system works depending on the value of the width [24].

1

Measure Vik) and I{k)
1

Pkl= Vik) * I{k)

‘ Increase PWM ‘ ‘ Decrease PWM

Decrease PWM ‘ Increase PWM ‘

L L

b

Vik-1)= Vik)
Plk-1)=P(k)

Figure 4. MPPT algorithm
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Figure 5. A PV-based MPPT control and sun tracker equipment system

5. SUN TRACKING SYSTEM

It is the device that controls the solar panel to keep it
directed towards the sun. Especially in solar cells require a
high degree of accuracy to ensure that the sun's waves are
focused specifically on the energy system and directed.

Both systems the dual-axis tracker and the static panel are
evaluated and data is gathered hourly between 7:00 a.m. and
7:00 p.m. for every day. To ensure consistent irradiance
conditions for example no significant cloud cover or
precipitation during the measurements and data were collected
on sunny clear summer days in Kirkuk.

The performance assessment procedure of the tracking
systems follows the general analysis procedure that was done
by Bazyari et al. [21] in an adaptation to suit climatic data in
Kirkuk city and using SVM-based prediction models.

6. SVM-BASED ENERGY MODELING

The data obtained from the designed system serve as inputs
to the SVM model in our approach. The voltage and current
measurements from the static and tracking panels are acquired
through the SEPIC converter and MPPT configuration and
were utilized to calculate power output. Those data points
together with their related timestamps were subsequently input
into the SVM for training and prediction. And an integrating
hardware-collected data into the SVM ensures that the
machine learning model is immediately informed by the actual
performance of the system.

SVM is a supervised machine learning technique, and it
identifies the decision boundaries to categorize data points
based on prior classification. It thrives on complex data,
transforming it into higher dimensions for clearer distinction.
Focusing on key data points close to the boundary, it excels in
prediction accuracy, making it valuable in domains like face
recognition, bioinformatics, and image processing [25]. SVM
stands out as a sophisticated algorithm designed for both
classification and regression tasks, Figure 6 illustrates in detail
how the SVM works in the realm of machine learning. The
essence of SVM's functionality can be distilled into a
sequential process that transforms raw input data into a
predictive output, offering valuable insights across various
domains. This paper delineates the operational framework of
SVM, encapsulating its workflow into a cohesive narrative
[26].

This study used a radial basis function as kernel in a SVR
model. The given size of dataset and SVM hyperparameters
were set to standard values like regularization parameters C =
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1 and € = 0.1 while the RBF kernel parameter y using the
default heuristic. And the hour of the day serves as the SVR
model's input feature also the recorded PV power at that time
is the model's intended output. Since the sun's position
primarily affects solar irradiance and in turn power output the
hour of the day was chosen as the predictor. Also, the data did
not include any other climatic variables such as temperature or
irradiance sensors. This work has made sure that scale
differences wouldn't affect the SVM training by normalizing
the input and output data and it was determined that this design
and feature selection would adequately capture the daily
power generation trend.

The initial data ingestion journey begins with the ingestion
of input data into the SVM model. This foundational step
involves collecting and feeding the dataset into the algorithm,
setting the stage for the subsequent analytical processes. The
data, comprising features and labels, serves as the raw material
from which the model will extract patterns and relationships
[27]. Feature space transformation is the heart of SVM's
efficacy as its ability to project input data into a higher-
dimensional feature space through a process known as feature
mapping. This transformation is pivotal, as it enables the
algorithm to discern complex patterns that are not readily
apparent in the original input space. By elevating the data into
a higher-dimensional realm, SVM facilitates the identification
of a separable hyperplane, even in cases where the data is not
linearly separable in its initial form. Optimization is the core
algorithmic challenge that SVM addresses is the identification
and optimization of a hyperplane that optimally separates the
data into distinct classes for classification tasks or closely fits
the data points for regression tasks. The optimal hyperplane is
the one that maximizes the margin between the nearest points
of the classes it divides, known as support vectors. This step is
crucial, as the chosen hyperplane directly influences the
model's generalization ability and its performance on unseen
data [28].

Task-specific modeling depends on the nature of the
problem at hand, classification, or regression. SVM adapts its
strategy, in classification tasks, the model endeavors to
categorize data into predefined groups, whereas, in regression
tasks, it aims to predict continuous values. This versatility
allows SVM to be applied across a wide spectrum of research
areas and practical applications, from image recognition to
financial forecasting [29].

Model Performance Evaluation where a critical phase in the
SVM workflow is the evaluation of the model's performance.
Through the application of various metrics such as accuracy,
precision, recall, and mean squared error, researchers can
assess the efficacy of the SVM model. This evaluation not only



validates the model's predictive capabilities but also guides the
fine-tuning of parameters and the selection of kernel functions
to enhance model performance. Predictive outcome
generation, a culmination of the SVM process, is the
generation of predictions based on the input data. At this
juncture, the model applies the learned patterns and the
optimized hyperplane to make predictions on new, unseen
data, providing actionable insights or decision support [30].

Input Data I

Y

Feature Mapping |

| Optimize Hyperplane |

4

| Classification/Regression |

Y

Model Evaluation |

A 4

| Output Prediction |

Figure 6. SVM algorithm workflow

7. PV DESIGN AND SVM MODELING

In this work, the dual-axis system is used to track the
sunlight from north to south and east to west using motors, a
controller, and four Light Dependent Resistors (LDRs). The
LDRs are placed in four different directions, two sensors with
motors are used to tilt the panel in the east-west of the sun’s
direction. While the other two sensors with a motor tilt the
panel in the north-south of the sun’s direction. The controller
detects the light from the LDRs. The tracking system has been
implemented using the hardware parts: diodes of 1N5407,
transistors of TIP41C and TIP42C, operational amplifiers of
LM324N, resistors, capacitors, and LDRs according to the
values of the LDR the mode of operation changes. The LDR
consists of semiconductor material with 2 electrodes on its
surface. In the dark or soft light, the disc of the semiconductor
has a comparatively small number of free electrons in it. A few
free electrons carry an electric charge. Which is a poor
conductor of electric current, meaning that the resistance is
high. In the case of light, an escape from more electrons
happens from the atoms of the semiconductor. That means
more electrons are free to carry electric charge and become a
good conductor. According to the light, the system distributes
a voltage to one of its outputs, which performs a movement of
the motor.

The design Figure 7 of a solar-PV energy generation system
with a sun tracking system, MPPT controller, and SEPIC DC-
DC converter has been implemented. The performance of the
system has been analyzed and presented with variations in
solar radiation with the device currents and voltages. The
system performance is accepted under any change in loads for
a sudden change in solar radiation. The MPPT controller is
performing satisfactorily for tracking the operating point.

Data preparation formulation of the required data for
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analysis: by defining the hours of data collection, which start
at 7:00 a.m. Therefore, it gives power output data within the
hours and presents the ability of the panel types to produce
energy under different conditions. This raw data is organized
into tabular data for ease of manipulation and presentation.
The tables are designed to contain hours and their
corresponding power outputs as columns hence explicit in
viewing the data. Thereafter, the data is divided into the testing
set and the training set, which is pivotal for testing the
accuracy and efficacy of the predictive model. This partition
will be useful to ensure that the model will be trained on part
of the data while other data will be in reserve for testing if that
predictive model is good. It helps to avoid overfitting, and in
addition to this, the developed predictive model would
generalize very well in making predictions on the new unseen
data.

The output power for each hour was calculated by
multiplying the voltage and current readings in order to
prepare the dataset for SVM training. A pair time_of day and
power make up each data sample for example the static panel
has 23.78 W at 12:00 p.m. and the tracking panel has 31.816
W at the same time. So as the input feature the system used the
hour of the day in decimal format and the intended output was
the corresponding computed power. Also, to allow the SVM
to be trained on dimensionless and normalized data by the
temporal feature was normalized to a 0—1 range before training
assigning a value of 0 at 7:00 am and a value of 1 at 7:00 pm.
Power values were then scaled by dividing by 40 W, the
panel's rated peak. These steps ensured that appropriately
processed data from the voltage/current measurements was
used to train the SVM model.

Model for the static panel: The features (hours during the
day) and targets (power outputs) are both selected from the
training set for training the static solar panel, guiding the
model to understand how the solar panel reacts to the time of
day for energy production. The final step is developing and
training the SVM model for this dataset. The SVM model is
moderated to standardize the data because it is well known for
its power in regression tasks, hence, to avoid the training
process getting dominated by the scale of the data. After
training, the model is used to make predictions of power output
for the test set, and the values of the predictions are compared
with the actual values, which results in the MSE. This will be
useful in proving the model performance to demonstrate the
matching of the predicted values to the actual power outputs,
as can be shown in Table 2.

The straightforward linear regression model and utilizing
hour as the exclusive input which was built for each panel's
dataset. The SVM performed significantly better than the
linear model and the linear fit on the static panel data for
instance the produced a significantly high error as the MSE of
about 1.5 in normalized units and an R?value close to 0 which
indicating that it explained almost none of the variance. In
some cases, the tracking data produced a negative R% On the
other hand, the designed SVM model achieved a slightly
positive R? about ~0.0035 for static and a lower MSE. In
contrast to a traditional linear model which ignores the midday
peak and the nonlinear features of the PV output and this
comparison shows that the nonlinear SVM approach better
captures the daily power-production pattern.

Table 2 shows that mean-squared error is 0.9571 was
computed on power values normalised P_norm = P/40 W.
Which matching root-mean-square error is RMSE = V0.9571
~ 0.978. In physical terms this corresponds to 0.978 x 40 W is



equal to almost 39.1 W or 97.8% of the whole 0—40 W range
or about 3.5 times the mean static-panel output 11.09 W.

That’s why the prediction error is rather high and has to be
seen as unsatisfactory.
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Figure 7. SVM flow of the designed system

Table 2. Evaluation metrics

Mean Squared Error (MSE)

Mean Absolute Error (MAE)

R-Squared (R?)

0.9571

0.0632

0.0035

Similarly, the R?=0.0035 is practically zero which meaning
the model essentially lacks predictive ability to explain 1% of
the variation in the measurements and stated differently the
SVM as it is now set performs just somewhat better than a
naive constant-mean predictor.

Model for solar tracking panel: The process in the solar
tracking panel is similar to that of the static one. On the other
hand, with the changeable nature of the tracking panels where
they vary their position following the sun, the power output
data thus reflects dynamic behavior. The model is then further
trained on a subset of the data, to learn the relationship
between the hour of the day and power generation with
efficiency improvements that tracking technology allows. The
procedure remains identical, feature and target selection,
training of an SVM model, and testing its performance with
MSE in predictions against the test set.

Prediction and plotting of both models trained and
evaluated: predictions can be extracted for every hour within
the period of the dataset. This prediction generalizes the ability
to do model comparisons for performance across the whole
day. Then these predictions against the actual data are plotted
for visual comparison of the predicted against the actual power
outputs for the static and tracking panels. These plots help
visualize not only the alignment of models with data but also
the performance differences and quantities of energy produced
in the case of static and tracking solar panels throughout the
day.

8. RESULTS

The test is performed for both static panel and dual-axis
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tracker, the results are recorded from 7:00 a.m. to 7:00 p.m.
The results are calculated and show the difference between the
static panel and tracker system, as shown in Table 3. The
second approach has shown more efficiency with an increase
in the average power produced from both systems; the first
static system produced 11.086 Watts on average per day while
the system with sun tracking produced 17.037 Watts on
average.

To predict the daily power output of both static and tracking
solar panels, the offered graphs show the results of an
evaluation of an SVM regression model. The tracking panel's
graph reveals that the SVM model tracks the real power output
trend very closely, capturing the midday production peaks. A
sharp peak in the tracking system's power output lines up with
the sun's path, allowing the panels to get the most sunlight
possible. A reasonable correlation between the predicted and
actual values indicates that the SVM model has learned the
pattern of the tracking panel's energy production effectively.
However, there are clear differences at specific times of day,
especially in the morning and afternoon. Several factors, like
changes in solar irradiance, weather, or shadows that the
model doesn't fully account for, could be responsible for these
deviations.

Using a paired t-test is statistically significant difference t-
statistic = -4.381 and p-value = 0.0009 was obtained from the
observed increase in average power output 17.037 W for
tracking against 11.086 W for static panels. And the standard
deviations were computed to show the variation of observed
outputs as the tracking system produced 8.73 W while the
stationary system obtained 8.33 W. These results are
validating statistically significant advantages given by the
dual-axis tracking system.



Table 3. Solar tracking for static panel and dual-axis

Hours Static Panel Solar Tracking (Dual Axis)
\4 A \4 \4 A W
07.00 a.m. 23 0.1 0.23 11.2 1.1 12.32
08.00am. 52 03  1.56 121 119 14399
09.00 am. 10.12 0.9  9.108 14.3 0.9 12.87
1000am. 119 1.2 1428 159 148  23.532
11.00am. 134 129 17.286 17.4 1.69 29.406
1200 p.m. 164 145 23.78 16.4 1.94 31.816
01.00 pm. 16.9 1.5 25.35 14.9 1.5 22.35
02.00 p.m. 13 1.22 1586 11.86 1.72 20.408
03.00 pm. 122 1.1 13.42 13.2 1.5 19.8
04.00 pm. 109 1.03 11.227 1298 1.3 16.874
05.00p.m. 9.12 0.9 8.208 10.12 0.9 9.108
06:00 p.m. 53 0.5 2.65 9.3 0.8 7.44
07:00 p.m. 3.9 0.3 1.17 3.9 0.3 1.17
Average Power 11.086 17.037
Tracking Panel: Actual vs Predicted Power Output STC: 1000 W/m? irradiation and 25°C cell temperature and
g or & —o—acual | | thus this variance is expected. While the panel's temperature
= —#— Predicted much exceeds 25°C and both factors reducing its instantaneous
=2 20f i power output the actual irradiation may be somewhat below
o 1000 W/m? at any given point even in direct sunlight during
g 10f | the field experiments. That why during midday hot conditions
g 0 in Kirkuk is reaching roughly 31.8 W about 79% of the
6 8 10 12 14 16 18 20 specified power indicates normal performance of the panel and
Hour of the Day hardware configuration and under real conditions the panel
was running close to its operational constraints.
Figure 8. Predicted data of tracking panels This work has found that dual-axis tracking increases
energy production by approximately 54%, which is
20 Static Panel: Actual vs Predicted Power Output comparable to but higher than the values reported in the
g e acua literature but in mid-latitude areas the dual-axis trackers are
5 50l ——#— Predicted | | generally said to produce between 33 and 41 percent more
=2 energy than stationary panels. Ideal -circumstances
o ol | improvements could be higher, for instance, Khan et al. [29]
S found improvements of 39% to 54% using a dual-axis tracker
g 0 depending on daily and meteorological fluctuations. And this
6 8 10 12 14 16 18 20 range includes a roughly 54% increase observed in Kirkuk.

Hour of the Day
Figure 9. Predicted data of both static

For the static panel, the SVM model was able to
approximate the panel's behavior by producing predictions
that were analogous to the actual data. Because these panels
do not change their orientation in response to the sun's
movement, the graph displays a smoother curve than the
tracking panel. At the same time as the tracking panel
anticipates that the sun will reach its highest point, the static
panel also predicts that its power output will peak. However,
the static panel's performance isn't as peaky as the tracking
panels, so it produces less power in the end. The tracking
system is better at capturing solar energy because its peak
power output is lower than that of the static panels.

Assessing the efficiency of the model, one way to
quantitatively evaluate the performance of the SVM model is
to calculate metrics like MSE, which measures the prediction
error. The more accurate the model, the lower the MSE value.
The accuracy of a model can be assessed by comparing the
predicted curve with the actual data points in plotted graphs,
which offers a qualitative evaluation. Figures 8 and 9
demonstrate the predicted power output.

The tracking panel's highest recorded output is about 31.8
W at noon time which fell short of its stated 40 W rating. The
40 W rating is determined under normal test conditions like
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Which shows significant gain that can be attributed to the clear
sky conditions that are had during the summer measurements
and the fixed panel's constant orientation throughout the day
also gave the tracker a significant edge in the early and late
afternoon. Therefore, taking into account local factors and
experimental configurations the results are in agreement with
previous studies. So those results which found in current work
is consistent with the performance improvements reported by
Bazyari et al. [21] where single-axis tracking increased
average energy by 35% and the double-axis has increased by
41%.

9. CONCLUSION

Nowadays, PV solar is widely utilized to distribute energy
resources as a significant sustainable and renewable source of
power across various sectors, including residential,
commercial, and industrial applications. However, one of the
drawbacks of PV solar is the low energy conversion
efficiency. Therefore, the integration of sun trackers,
commonly referred to as MPPT controllers, becomes essential
as they efficiently monitor and adjust solar panels to maintain
alignment with the optimal angle for capturing maximum solar
energy, thereby enhancing overall energy yield.

This paper offers several major contributions: The first
application of SVM regression for forecasting solar



photovoltaic performance in Kirkuk, Iraq and evaluating a
stationary panel and a dual-axis tracking panel as well as it
offers empirical proof of the significant performance gains
under Kirkuk's conditions made possible by a dual-axis
tracking system.

In this paper, the evaluation of the performance of the
maximum power point tracker for solar PV panels using a
SEPIC converter has been demonstrated to be more efficient
than using fixed static panels. A PV system has been
implemented in Kirkuk city and a very corresponding
predicted and actual power generated data proves that the
SVM model is the highly effective method for both tracking
and static solar panels. The work is based on day-to-day
comparisons of the two systems' power output characteristics,
the study concluded that tracking solar panel systems
generates energy more efficiently than static ones in Kirkuk
city.

The model can be more precise if could benefit from
including additional time-related variables like weather and
ambient temperature. This is planned as future work for better
and more dynamic modeling with the addition of real-time
data streams and the pursuit of cutting-edge machine learning
techniques. The study's outcomes also support using tracking
technology in solar energy systems, since they show that
tracking systems produce significantly more power than static
systems. This is especially the case on very sunny days, such
as the one where the study took place.

To understand the limitations of the current SVM model is
crucial and incredibly low R? value indicates that this model
as implemented was fear to adequately capture the complexity
of the system's behavior. This is likely due using only time-of-
day as input limited the model's ability to understand all
important variables. In the future work this would be address
by adding additional input features like recorded temperature,
irradiance or dust concentration to strengthen the
informational foundation of the model and also expanding the
size and variety of the training data to covering a wider range
of days and weather and applying hyperparameter
optimization and exploring other machine learning algorithms
like neural networks or ensemble methods to improve
prediction accuracy. This expects a significantly better
performance in PV production forecasting by implementing
these improvements.
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