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This paper presents an investigation using Support Vector Machine (SVM) on the 

power generation prediction of Photovoltaic (PV) panels for both the fixed and sun-

tracking solar models. It compares the energy production for both systems using the 

historical irradiance data, providing superior effectiveness for the tracking panels. Both 

fixed and tracking systems were monitored on different days during summertime for 

three months from 7:00 am to 7:00 pm in Kirkuk, Iraq. The comparative and 

comprehensive performance of both methods, using a maximum of 40-watt solar PV 

panels, was evaluated. The study also emphasizes the effectiveness of SVM algorithms 

in predicting the performance of both systems. The findings of this study are most 

relevant to high-potential solar regions, where efficient use of photovoltaic technology 

can maximize independence and sustainability in terms of energy use. Future studies 

could include extending the analysis through integration with additional factors such as 

temperature variation, cloud cover, and wind speed, in an effort to maximize predictive 

accuracy and optimize use of solar energy. 
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1. INTRODUCTION

The performance of both the static and sun-tracking systems 

is studied in this regard. This is the mechanism that brought 

about enormous growth in effective energy from 

environmentally friendly sources. The combination of sun 

tracking systems with solar Photovoltaic (PV)  panels is a most 

hopeful way to increase the efficiency of solar energy 

collection. The world has changed too much in terms of the 

considerable contribution of PV systems to meet global energy 

needs and environmental sustainability. As such, PV systems 

have already been established as a major supplier of 

environmentally friendly energy, and therefore, a feasible 

solution for sustainable development in the world that 

challenges climate change and sustainability [1]. 

Solar PV panels are devices that can change sunlight into 

electricity. However, scientists are trying to make them work 

better with sun-tracking systems following the movement of 

the sun in the sky. In this way, it shall help them to get more 

solar energy and hence create more power. Solar PV panels 

have changed the world for the good through clean and green 

energy that is being used and meets our ever-increasing needs. 

It also helps us to fight climate change and for the promotion 

of sustainable development because it reduces our reliance on 

fossil fuels and harmful emissions. Besides being good for the 

environment, solar PV panels are also good for the economy. 

They may be coupled with other renewable sources of power 

including wind, concentrated solar power, hydro, and batteries 

among others. All these applications help in the reduction of 

costs and risks of power generation, and the improvement of 

operation and planning of the energy systems [2]. PV systems 

play a vital role in reducing the environmental impact of 

carbon dioxide and other greenhouse gases. In the 

performance of the PV cells, there is a consideration of the 

values with various parameters that include the geographical 

location, the amount of solar radiation received, the wind 

speed, and consideration of the electrical characteristics of the 

PV cells. Furthermore, the PV systems are being integrated 

with the power systems as a clean and renewable source of 

energy to help in reducing the environmental impacts and 

improving stability in a power system [3]. The PV system is 

the base of renewable energy systems that allow for more 

power to move into sustainable energy sources [4]. 

On the other hand, the increase of energy that does not affect 

the environment adversely is one of the most complicated 

tasks existing before the research community. Nowadays, PV 

solar is most widely applied as a distributed energy resource 

due to economic factors and many advantages. Table 1 

summarizing prior Support Vector Machine (SVM)-based 

solar prediction studies. 
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Table 1. SVM-based solar prediction studies 

References Region Inputs 
Prediction 

Horizon 
Accuracy / Metric 

[5] Taiwan
Temperature, humidity, rainfall, wind 

speed, irradiance 
1-hour ahead

Mean Absolute Error (MAE) ≈ 5%;  

SVM outperformed Random Forest 

[6] Benchmark dataset
12 weather features (incl. heat index, 

wind speed) 

24-hour rolling 

forecast 

SVM > Linear Regression, competitive with 

Artificial Neural Network (ANN) 

[7] Algeria (6 cities)
Extraterrestrial irradiance, declination, 

temperature, humidity, RH 

Daily solar 

radiation 

ANN+Firefly Algorithm (FFA) best;  

SVM & ANN showed promising R ~ 0.93 

[8] 
Global solar radiation

modeling 

Meteorological + particulate matter 

(PM2.5, PM10) 
Daily radiation 

Root Mean Square Error (RMSE) ↓ 14.6%;  

R² ↑ 2.6% with PM inputs 

[9] India/Turkey context
Diffuse & direct radiation, Tmax/Tmin, 

humidity 

Daily global 

radiation 

SVM outperformed tree-based models;  

best generalization 

Iraq is going to have a good growth in solar power capacity 

for the near future. Iraq also envisions a capacity of 2.75 GW 

in solar by 2025 as part of its overall objective of 12 GW of 

renewable energy by 2030. The increment in solar capacity is 

indicative of a step in achieving energy independence, 

decreasing costs of generation, and imports chargeable for 

electricity. The renewable energy projects of Iraq encompass 

the construction of large solar energy power plants all over the 

country. These follow from the intention of Iraq to up its share 

of renewable energy sources to 33% by 2030. It is therefore 

evident that Iraq will consider the utilization of renewable 

energy sources in the run of its business [10]. Nemah and 

Albarhami [11] researched the efficiency of PV systems in 

their operations under Iraq's environmental conditions in Al 

Najaf. The study used MATLAB/Simulink to develop a model 

and simulate it. The variables to be considered are radiation, 

sunlight, ambient temperature, and panel efficiency. 

According to the research, it has been found that with an 

increase in temperature, the effectiveness of this system has 

been the highest and hence draws the need to consider 

environmental temperatures during the design of a turbine 

especially within the environment of Iraq. Researchers at the 

Bukhara State University of Uzbekistan, Raxmatov et al. [12] 

analyzed a 300 KW grid-connected solar PV system and 

evaluated its economics. Economic analysis of the same, 

presented above, demonstrates that the time required to 

recover the initial investment in case the cost of energy equals 

0.099 $/kilowatt-hour, is 9.7 years. Their work suggests that it 

is financially feasible to build the PV systems on the same 

regions of interest or valuable information on what the 

financial outcome could be to systems at Kirkuk. 

Previous studies in Iraq region have employed many 

conventional predictive models and machine learning 

techniques which including ANNs and k-Nearest Neighbors. 

But these methodologies often need extensive datasets or may 

encounter difficulties in addressing the swift and intricate 

variations in solar irradiance characteristic like Kirkuk's 

geographical context. While SVMs is recognized for its 

proficiency in managing smaller datasets and intricate 

nonlinear variations and directly confront these constraints. 

Consequently, employing SVM to forecast PV performance in 

Kirkuk signifies a methodological enhancement also likely 

augmenting prediction precision and offering practical 

benefits for solar energy system planning in the area. 

2. BACKGROUND

A significant achievement is the incorporation of the 

Maximum Power Point Tracking (MPPT) control algorithm 

into various converter architectures to improve the efficiency 

of PV systems. Katche et al. [13] introduced a photovoltaic 

grid-tied system that utilizes an MPPT control algorithm and 

a Single-Ended Primary-Inductor Converter (SEPIC) and Luo 

converter. This system achieved an impressive efficiency of 

96% while also reducing total harmonic distortion. In Ganguly 

et al.’s study [14], the work primarily focuses on the 

development of MPPT algorithm design. The proposed system 

involves the utilization of a SEPIC converter to facilitate the 

charging of the battery using solar energy. To achieve 

maximum power under any environmental conditions, it needs 

to optimize the resistance (load) applied to the cells and 

accurately measure their output. MPPT devices are typically 

integrated into an electric power converter system that 

performs voltage or current conversion, regulation, and 

filtering. This system is used to drive various loads, such as 

power grids, batteries, or motors. This work focuses on the 

implementation of two methodologies . 

Rehman and El-Amin [15] analyzed a 5.28 KW off-grid 

photovoltaic power plant in Dhahran, Saudi Arabia, for its 

efficiency. The research investigated how dust buildup and PV 

surface temperature can affect the panels' ability to generate 

electricity. Energy production decreased with increasing 

surface temperature and time, suggesting that dust buildup 

potentially be responsible, according to the study. This is 

particularly important for areas like Kirkuk, where similar 

environmental factors like dust and temperature play a 

significant role . 

A study by Visser [16] evaluated solar power forecasting 

models for both intraday predictions and day-ahead collected 

data. It started by utilizing various methods such as physical, 

regression and AI (Artificial intelligence) based models, with 

focusing on deep learning. It demonstrates the importance of 

using high-quality data to create precise forecasting models. A 

notable feature of this research is the utilization of 

probabilistic forecasting models, which have shown superior 

performance compared to point forecasting models. 

Additionally for solar forecasting performance, many methods 

such as tree-based models, which are part of the field of 

artificial intelligence, are specifically recognized for their 

strong technical predicting. The study is crucial for 

comprehending the role of AI in improving the ability to 

forecast and ensure the consistency of solar power generation. 

Another study has introduced an approach that assesses the 

technical and economic feasibility of a solar PV system. 

Where this approach combines machine learning and 

optimization techniques. The study utilizes site-specific data 

obtained from Moi University in Kenya, encompassing 

temperature, solar radiation, and power demand data. The 

simulation findings from this study emphasize the importance 

of accurately determining the appropriate dimensions for solar 

PV installations. Neglecting this crucial aspect often results in 
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system malfunctions. Applying AI and machine learning in 

system design and optimization guarantees dependability, 

effectiveness, and cost-efficiency, rendering it a valuable point 

of reference for comparable research in diverse geographical 

areas like Kirkuk, Iraq [17]. Additionally, another work is 

concerned with designing an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) based SEPIC Converter for MPPT of PV 

Modules. The method used for the system’s MPPT is Perturb 

and Observe. The system is controlled by an Adaptive Neuro 

Fuzzy Inference System. The work has a hardware prototype 

and the performance of the controller for MPPT is tested in 

simulation. A comparison between the fuzzy logic controller 

single-ended primary inductance converter for MPPT and the 

adaptive neuro-fuzzy inference system single-ended primary 

inductance converter for MPPT was discussed, and the results 

showed that the ANFIS has more efficiency [18]. 

Rahif [19] described MPPT system design for photovoltaic 

energy conversion by proposing the fuzzy logic controller and 

it details how to create fuzzy inference rules and fine-tune 

membership functions to regulate the duty cycle of a DC–DC 

converter so that photovoltaic array attained maximum power 

point despite fluctuating irradiance and temperature as well as 

it may offers an important control oriented alternative to data-

driven ones such as SVM prediction that have been employed 

in recent studies and provides an alternate artificial 

intelligence method for maximizing photovoltaic output in 

consideration of variable environmental conditions. 

The aim of apply machine learning techniques, and more 

specifically the SVM models, to predict the power output 

performance of PV systems accurately. This specific objective 

is set to compare static and sun-tracking solar panel 

efficiencies, so that the most efficient set-up concerning solar 

energy control and generation of electricity may be pinpointed. 

The contribution of this work lies in the development and 

validation of a prediction model to be applicable by both 

power producers and grid operators to give more exact 

forecasts on the generation of solar power. It introduces 

research on Support Vector Regression (SVR) in solar energy 

systems as follows : 

⚫ Helps to further understand the effect of panel orientation 

and different tracking mechanisms on the gain of energy . 

⚫ Is part of the complete knowledge framework in 

alternative energies which supports the transition 

towards more sustainable sources of energy generally 

and especially in Kirkuk Iraq . 

⚫ Offers insights that could lead to cost reductions and 

increased efficiency in the energy sector. 

Solar PV systems are leading the way in renewable energy 

since they turn sunlight into electricity. Using the energy from 

the sun, a device called a solar cell, which is basically a p-n 

junction, can produce direct current (DC) electricity. 

Nevertheless, because each cell produces a relatively small 

voltage, solar panels consist of multiple cells working together 

to generate higher voltages. To comprehend and optimize solar 

panel systems, it is essential to know the properties of the 

current-voltage (I-V) and power-current (P-I) relationships. 

When it comes to improving the efficiency of PV energy 

conversion systems, the notion of the MPPT algorithm is 

crucial. Taking Özçelik and Yilmaz as an example, they 

investigated the use of wireless energy transmission in 

conventional and MPPT PV systems, and they searched how 

MPPT improves conversion efficiency [20]. 

 
 

Figure 1. Photovoltaic cell model 

 
(a)                                       (b) 

 

Figure 2. (a) I-V characteristics; (b) I-P characteristics 

current-voltage and current-power characteristics of a typical 

solar panel 

 

The solar cell is a p-n junction that generates DC electricity 

power from the sun's radiation. Considering the resulting 

voltage for each single cell is small, the solar panel contains a 

number of these cells, that are linked together. The model has 

a diode, a current source, and a resistor in series, as shown in 

Figure 1. The effect of the resistor symbolizes the leakage 

resistance of the cell. The current source symbolizes the 

current produced by photons, the output of PV is stable under 

fixed temperature and fixed radiation of light. Figure 2 

demonstrates the characteristics of the current voltage (I-V) 

and the current power (I-P) for a solar panel, respectively. 

MPP is the peak point of the power for a solar panel. 

Earlier research has verified that the incorporation of single 

or double-axis tracking systems considerably enhances the 

energy output of photovoltaic systems; like Bazyari et al. [21] 

demonstrated that single-axis tracking and double-axis both 

has the capacity to enlarge the mean energy gathered in 

comparison to static panel installations on Qeshm Island in 

Iran. Carrying on in the same method this work assesses 

similar tracking systems under climatic conditions in Kirkuk 

in the Republic of Iraq using an SVM prediction model. 

The next stage is the DC-AC inverter, which converts the 

DC electricity from the solar array into AC, suitable for 

distribution on the power grid. This conversion is necessary 

because the grid operates on AC, and most home and business 

appliances are designed to use AC power. Finally, the AC 

electricity is transmitted to the grid, where it is distributed to 

end-users. 

In some systems, there may be additional steps or 

components, such as battery storage systems that store excess 

power for use when the sun is not shining, or transformers that 

adjust the voltage to the appropriate level for the grid. 

 

 

3. SEPIC CONVERTER 

 

A PV application requires a proper converter for 

coordinating between the PV output voltage and the required 

voltage for the load. The SEPIC converter stands for Single-

Ended Primary-Inductance Converter, which is a DC-DC 
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converter. It can be a buck and boost converter or just a buck 

or just a boost converter. In this work, the SEPIC is used 

because it is appropriate for the PV output and the input 

voltage for an MPPT. Depending on the switch duty ratio D, 

the converter buck and boost provide the voltage of the output 

to be greater or lower than the input voltage. 

Figure 3. SEPIC converter 

In recent years, a SEPIC converter in battery-powered 

systems has become more popular and needs to step up or 

down according to the charge level of the battery. Requiring 

the relatively ripple-free, that is drawn from the current of the 

input. That is why the SEPIC converter is used in many 

applications [22, 23]. In some converter types, the output 

results do not reach the maximum power. However, using 

SEPIC converter topology with MPPT is the most convenient 

technique that assures extraction of the power and the steady 

output with ripple-free for the current-voltage curve and 

without fluctuations. Thereby, the peak current control used 

by the SEPIC converter with a PV voltage and the signal 

generated by the battery current controller that is a 

comparative and integral (PI) controller will be zero. That 

means, the voltage is generated by combining the battery 

charging loop and MPPT control loop. The mixture of MPPT 

and charging control immediately balances the power of the 

system to charge the battery. The voltage of the PV is 

determined completely by the MPPT controller. Therefore, the 

PV module is functioned with the MPPT point, as shown in 

Figure 3. 

4. MPPT ALGORITHM

After getting the current and voltage from the photovoltaic 

arrays, the MMPT system algorithm controls it by a method 

called hill climbing. The flow chart given in Figure 4 and the 

block diagram in Figure 5 shows the mentioned method. In the 

last cycle of the algorithm, the direction of the output voltage 

will continue in the same direction even if there are increments 

in the output power from the last measurement. If the output 

power has decreased since the last measurement, the voltage 

is inverted in the opposite direction. In each MPPT cycle, the 

voltage of PV will be set according to the algorithm. In 

addition, it will fluctuate around the voltage of MPP voltage 

when the MPP has reached, which will lead to the loss of 

power that depends on the step width calculated power of one 

adjustment. In case the width is large, any change in operating 

conditions that could slow or stabilize the algorithm of MPPT 

will quickly respond to that sudden change. In the other case 

when the width is very small; any change occurs slowly or 

stabling the system, it will respond very slowly to solve 

changes in insulation or temperature. For this, it is clear that 

all system works depending on the value of the width [24]. 

Figure 4. MPPT algorithm 
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Figure 5. A PV-based MPPT control and sun tracker equipment system 

 

 

5. SUN TRACKING SYSTEM 

 

It is the device that controls the solar panel to keep it 

directed towards the sun. Especially in solar cells require a 

high degree of accuracy to ensure that the sun's waves are 

focused specifically on the energy system and directed. 

Both systems the dual-axis tracker and the static panel are 

evaluated and data is gathered hourly between 7:00 a.m. and 

7:00 p.m. for every day. To ensure consistent irradiance 

conditions for example no significant cloud cover or 

precipitation during the measurements and data were collected 

on sunny clear summer days in Kirkuk. 

The performance assessment procedure of the tracking 

systems follows the general analysis procedure that was done 

by Bazyari et al. [21] in an adaptation to suit climatic data in 

Kirkuk city and using SVM-based prediction models. 

 

 

6. SVM-BASED ENERGY MODELING 

 

The data obtained from the designed system serve as inputs 

to the SVM model in our approach. The voltage and current 

measurements from the static and tracking panels are acquired 

through the SEPIC converter and MPPT configuration and 

were utilized to calculate power output. Those data points 

together with their related timestamps were subsequently input 

into the SVM for training and prediction. And an integrating 

hardware-collected data into the SVM ensures that the 

machine learning model is immediately informed by the actual 

performance of the system. 

SVM is a supervised machine learning technique, and it 

identifies the decision boundaries to categorize data points 

based on prior classification. It thrives on complex data, 

transforming it into higher dimensions for clearer distinction. 

Focusing on key data points close to the boundary, it excels in 

prediction accuracy, making it valuable in domains like face 

recognition, bioinformatics, and image processing [25]. SVM 

stands out as a sophisticated algorithm designed for both 

classification and regression tasks, Figure 6 illustrates in detail 

how the SVM works in the realm of machine learning. The 

essence of SVM's functionality can be distilled into a 

sequential process that transforms raw input data into a 

predictive output, offering valuable insights across various 

domains. This paper delineates the operational framework of 

SVM, encapsulating its workflow into a cohesive narrative 

[26]. 

This study used a radial basis function as kernel in a SVR 

model. The given size of dataset and SVM hyperparameters 

were set to standard values like regularization parameters C = 

1 and ε = 0.1 while the RBF kernel parameter γ using the 

default heuristic. And the hour of the day serves as the SVR 

model's input feature also the recorded PV power at that time 

is the model's intended output. Since the sun's position 

primarily affects solar irradiance and in turn power output the 

hour of the day was chosen as the predictor. Also, the data did 

not include any other climatic variables such as temperature or 

irradiance sensors. This work has made sure that scale 

differences wouldn't affect the SVM training by normalizing 

the input and output data and it was determined that this design 

and feature selection would adequately capture the daily 

power generation trend. 

The initial data ingestion journey begins with the ingestion 

of input data into the SVM model. This foundational step 

involves collecting and feeding the dataset into the algorithm, 

setting the stage for the subsequent analytical processes. The 

data, comprising features and labels, serves as the raw material 

from which the model will extract patterns and relationships 

[27]. Feature space transformation is the heart of SVM's 

efficacy as its ability to project input data into a higher-

dimensional feature space through a process known as feature 

mapping. This transformation is pivotal, as it enables the 

algorithm to discern complex patterns that are not readily 

apparent in the original input space. By elevating the data into 

a higher-dimensional realm, SVM facilitates the identification 

of a separable hyperplane, even in cases where the data is not 

linearly separable in its initial form. Optimization is the core 

algorithmic challenge that SVM addresses is the identification 

and optimization of a hyperplane that optimally separates the 

data into distinct classes for classification tasks or closely fits 

the data points for regression tasks. The optimal hyperplane is 

the one that maximizes the margin between the nearest points 

of the classes it divides, known as support vectors. This step is 

crucial, as the chosen hyperplane directly influences the 

model's generalization ability and its performance on unseen 

data [28]. 

Task-specific modeling depends on the nature of the 

problem at hand, classification, or regression. SVM adapts its 

strategy, in classification tasks, the model endeavors to 

categorize data into predefined groups, whereas, in regression 

tasks, it aims to predict continuous values. This versatility 

allows SVM to be applied across a wide spectrum of research 

areas and practical applications, from image recognition to 

financial forecasting [29]. 

Model Performance Evaluation where a critical phase in the 

SVM workflow is the evaluation of the model's performance. 

Through the application of various metrics such as accuracy, 

precision, recall, and mean squared error, researchers can 

assess the efficacy of the SVM model. This evaluation not only 
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validates the model's predictive capabilities but also guides the 

fine-tuning of parameters and the selection of kernel functions 

to enhance model performance. Predictive outcome 

generation, a culmination of the SVM process, is the 

generation of predictions based on the input data. At this 

juncture, the model applies the learned patterns and the 

optimized hyperplane to make predictions on new, unseen 

data, providing actionable insights or decision support [30]. 

 

 
 

Figure 6. SVM algorithm workflow 

 

 

7. PV DESIGN AND SVM MODELING 

 

In this work, the dual-axis system is used to track the 

sunlight from north to south and east to west using motors, a 

controller, and four Light Dependent Resistors (LDRs). The 

LDRs are placed in four different directions, two sensors with 

motors are used to tilt the panel in the east-west of the sun’s 

direction. While the other two sensors with a motor tilt the 

panel in the north-south of the sun’s direction. The controller 

detects the light from the LDRs. The tracking system has been 

implemented using the hardware parts: diodes of 1N5407, 

transistors of TIP41C and TIP42C, operational amplifiers of 

LM324N, resistors, capacitors, and LDRs according to the 

values of the LDR the mode of operation changes. The LDR 

consists of semiconductor material with 2 electrodes on its 

surface. In the dark or soft light, the disc of the semiconductor 

has a comparatively small number of free electrons in it. A few 

free electrons carry an electric charge. Which is a poor 

conductor of electric current, meaning that the resistance is 

high. In the case of light, an escape from more electrons 

happens from the atoms of the semiconductor. That means 

more electrons are free to carry electric charge and become a 

good conductor. According to the light, the system distributes 

a voltage to one of its outputs, which performs a movement of 

the motor. 

The design Figure 7 of a solar-PV energy generation system 

with a sun tracking system, MPPT controller, and SEPIC DC-

DC converter has been implemented. The performance of the 

system has been analyzed and presented with variations in 

solar radiation with the device currents and voltages. The 

system performance is accepted under any change in loads for 

a sudden change in solar radiation. The MPPT controller is 

performing satisfactorily for tracking the operating point. 

Data preparation formulation of the required data for 

analysis: by defining the hours of data collection, which start 

at 7:00 a.m. Therefore, it gives power output data within the 

hours and presents the ability of the panel types to produce 

energy under different conditions. This raw data is organized 

into tabular data for ease of manipulation and presentation. 

The tables are designed to contain hours and their 

corresponding power outputs as columns hence explicit in 

viewing the data. Thereafter, the data is divided into the testing 

set and the training set, which is pivotal for testing the 

accuracy and efficacy of the predictive model. This partition 

will be useful to ensure that the model will be trained on part 

of the data while other data will be in reserve for testing if that 

predictive model is good. It helps to avoid overfitting, and in 

addition to this, the developed predictive model would 

generalize very well in making predictions on the new unseen 

data. 

The output power for each hour was calculated by 

multiplying the voltage and current readings in order to 

prepare the dataset for SVM training. A pair time_of_day and 

power make up each data sample for example the static panel 

has 23.78 W at 12:00 p.m. and the tracking panel has 31.816 

W at the same time. So as the input feature the system used the 

hour of the day in decimal format and the intended output was 

the corresponding computed power. Also, to allow the SVM 

to be trained on dimensionless and normalized data by the 

temporal feature was normalized to a 0–1 range before training 

assigning a value of 0 at 7:00 am and a value of 1 at 7:00 pm. 

Power values were then scaled by dividing by 40 W, the 

panel's rated peak. These steps ensured that appropriately 

processed data from the voltage/current measurements was 

used to train the SVM model. 

Model for the static panel: The features (hours during the 

day) and targets (power outputs) are both selected from the 

training set for training the static solar panel, guiding the 

model to understand how the solar panel reacts to the time of 

day for energy production. The final step is developing and 

training the SVM model for this dataset. The SVM model is 

moderated to standardize the data because it is well known for 

its power in regression tasks, hence, to avoid the training 

process getting dominated by the scale of the data. After 

training, the model is used to make predictions of power output 

for the test set, and the values of the predictions are compared 

with the actual values, which results in the MSE. This will be 

useful in proving the model performance to demonstrate the 

matching of the predicted values to the actual power outputs, 

as can be shown in Table 2. 

The straightforward linear regression model and utilizing 

hour as the exclusive input which was built for each panel's 

dataset. The SVM performed significantly better than the 

linear model and the linear fit on the static panel data for 

instance the produced a significantly high error as the MSE of 

about 1.5 in normalized units and an R2 value close to 0 which 

indicating that it explained almost none of the variance. In 

some cases, the tracking data produced a negative R2. On the 

other hand, the designed SVM model achieved a slightly 

positive R2 about ~0.0035 for static and a lower MSE. In 

contrast to a traditional linear model which ignores the midday 

peak and the nonlinear features of the PV output and this 

comparison shows that the nonlinear SVM approach better 

captures the daily power-production pattern. 

Table 2 shows that mean-squared error is 0.9571 was 

computed on power values normalised P_norm = P/40 W. 

Which matching root-mean-square error is RMSE = √0.9571 

≈ 0.978. In physical terms this corresponds to 0.978 × 40 W is 

3558



 

equal to almost 39.1 W or 97.8% of the whole 0–40 W range 

or about 3.5 times the mean static-panel output 11.09 W. 

That’s why the prediction error is rather high and has to be 

seen as unsatisfactory. 

 

 
 

Figure 7. SVM flow of the designed system 

 

Table 2. Evaluation metrics 

 
Mean Squared Error (MSE) Mean Absolute Error (MAE) R-Squared (R2) 

0.9571 0.0632 0.0035 

Similarly, the R² = 0.0035 is practically zero which meaning 

the model essentially lacks predictive ability to explain 1% of 

the variation in the measurements and stated differently the 

SVM as it is now set performs just somewhat better than a 

naive constant-mean predictor. 

Model for solar tracking panel: The process in the solar 

tracking panel is similar to that of the static one. On the other 

hand, with the changeable nature of the tracking panels where 

they vary their position following the sun, the power output 

data thus reflects dynamic behavior. The model is then further 

trained on a subset of the data, to learn the relationship 

between the hour of the day and power generation with 

efficiency improvements that tracking technology allows. The 

procedure remains identical, feature and target selection, 

training of an SVM model, and testing its performance with 

MSE in predictions against the test set. 

Prediction and plotting of both models trained and 

evaluated: predictions can be extracted for every hour within 

the period of the dataset. This prediction generalizes the ability 

to do model comparisons for performance across the whole 

day. Then these predictions against the actual data are plotted 

for visual comparison of the predicted against the actual power 

outputs for the static and tracking panels. These plots help 

visualize not only the alignment of models with data but also 

the performance differences and quantities of energy produced 

in the case of static and tracking solar panels throughout the 

day. 

 

 

8. RESULTS 

 

The test is performed for both static panel and dual-axis 

tracker, the results are recorded from 7:00 a.m. to 7:00 p.m. 

The results are calculated and show the difference between the 

static panel and tracker system, as shown in Table 3. The 

second approach has shown more efficiency with an increase 

in the average power produced from both systems; the first 

static system produced 11.086 Watts on average per day while 

the system with sun tracking produced 17.037 Watts on 

average. 

To predict the daily power output of both static and tracking 

solar panels, the offered graphs show the results of an 

evaluation of an SVM regression model. The tracking panel's 

graph reveals that the SVM model tracks the real power output 

trend very closely, capturing the midday production peaks. A 

sharp peak in the tracking system's power output lines up with 

the sun's path, allowing the panels to get the most sunlight 

possible. A reasonable correlation between the predicted and 

actual values indicates that the SVM model has learned the 

pattern of the tracking panel's energy production effectively. 

However, there are clear differences at specific times of day, 

especially in the morning and afternoon. Several factors, like 

changes in solar irradiance, weather, or shadows that the 

model doesn't fully account for, could be responsible for these 

deviations. 

Using a paired t-test is statistically significant difference t-

statistic = -4.381 and p-value = 0.0009 was obtained from the 

observed increase in average power output 17.037 W for 

tracking against 11.086 W for static panels. And the standard 

deviations were computed to show the variation of observed 

outputs as the tracking system produced 8.73 W while the 

stationary system obtained 8.33 W. These results are 

validating statistically significant advantages given by the 

dual-axis tracking system. 
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Table 3. Solar tracking for static panel and dual-axis 

 

Hours 
Static Panel Solar Tracking (Dual Axis) 

V A W V A W 

07.00 a.m. 2.3 0.1 0.23 11.2 1.1 12.32 

08.00 a.m. 5.2 0.3 1.56 12.1 1.19 14.399 

09.00 a.m. 10.12 0.9 9.108 14.3 0.9 12.87 

10.00 a.m. 11.9 1.2 14.28 15.9 1.48 23.532 

11.00 a.m. 13.4 1.29 17.286 17.4 1.69 29.406 

12.00 p.m. 16.4 1.45 23.78 16.4 1.94 31.816 

01.00 p.m. 16.9 1.5 25.35 14.9 1.5 22.35 

02.00 p.m. 13 1.22 15.86 11.86 1.72 20.408 

03.00 p.m. 12.2 1.1 13.42 13.2 1.5 19.8 

04.00 p.m. 10.9 1.03 11.227 12.98 1.3 16.874 

05.00 p.m. 9.12 0.9 8.208 10.12 0.9 9.108 

06:00 p.m. 5.3 0.5 2.65 9.3 0.8 7.44 

07:00 p.m. 3.9 0.3 1.17 3.9 0.3 1.17 

Average Power 11.086  17.037 

 
 

Figure 8. Predicted data of tracking panels 

 

 
 

Figure 9. Predicted data of both static 

 

For the static panel, the SVM model was able to 

approximate the panel's behavior by producing predictions 

that were analogous to the actual data. Because these panels 

do not change their orientation in response to the sun's 

movement, the graph displays a smoother curve than the 

tracking panel. At the same time as the tracking panel 

anticipates that the sun will reach its highest point, the static 

panel also predicts that its power output will peak. However, 

the static panel's performance isn't as peaky as the tracking 

panels, so it produces less power in the end. The tracking 

system is better at capturing solar energy because its peak 

power output is lower than that of the static panels. 

Assessing the efficiency of the model, one way to 

quantitatively evaluate the performance of the SVM model is 

to calculate metrics like MSE, which measures the prediction 

error. The more accurate the model, the lower the MSE value. 

The accuracy of a model can be assessed by comparing the 

predicted curve with the actual data points in plotted graphs, 

which offers a qualitative evaluation. Figures 8 and 9 

demonstrate the predicted power output. 

The tracking panel's highest recorded output is about 31.8 

W at noon time which fell short of its stated 40 W rating. The 

40 W rating is determined under normal test conditions like 

STC: 1000 W/m² irradiation and 25℃ cell temperature and 

thus this variance is expected. While the panel's temperature 

much exceeds 25℃ and both factors reducing its instantaneous 

power output the actual irradiation may be somewhat below 

1000 W/m² at any given point even in direct sunlight during 

the field experiments. That why during midday hot conditions 

in Kirkuk is reaching roughly 31.8 W about 79% of the 

specified power indicates normal performance of the panel and 

hardware configuration and under real conditions the panel 

was running close to its operational constraints. 

This work has found that dual-axis tracking increases 

energy production by approximately 54%, which is 

comparable to but higher than the values reported in the 

literature but in mid-latitude areas the dual-axis trackers are 

generally said to produce between 33 and 41 percent more 

energy than stationary panels. Ideal circumstances 

improvements could be higher, for instance, Khan et al. [29] 

found improvements of 39% to 54% using a dual-axis tracker 

depending on daily and meteorological fluctuations. And this 

range includes a roughly 54% increase observed in Kirkuk. 

Which shows significant gain that can be attributed to the clear 

sky conditions that are had during the summer measurements 

and the fixed panel's constant orientation throughout the day 

also gave the tracker a significant edge in the early and late 

afternoon. Therefore, taking into account local factors and 

experimental configurations the results are in agreement with 

previous studies. So those results which found in current work 

is consistent with the performance improvements reported by 

Bazyari et al. [21] where single-axis tracking increased 

average energy by 35% and the double-axis has increased by 

41%. 

 

 

9. CONCLUSION 

 

Nowadays, PV solar is widely utilized to distribute energy 

resources as a significant sustainable and renewable source of 

power across various sectors, including residential, 

commercial, and industrial applications. However, one of the 

drawbacks of PV solar is the low energy conversion 

efficiency. Therefore, the integration of sun trackers, 

commonly referred to as MPPT controllers, becomes essential 

as they efficiently monitor and adjust solar panels to maintain 

alignment with the optimal angle for capturing maximum solar 

energy, thereby enhancing overall energy yield. 

This paper offers several major contributions: The first 

application of SVM regression for forecasting solar 
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photovoltaic performance in Kirkuk, Iraq and evaluating a 

stationary panel and a dual-axis tracking panel as well as it 

offers empirical proof of the significant performance gains 

under Kirkuk's conditions made possible by a dual-axis 

tracking system. 

In this paper, the evaluation of the performance of the 

maximum power point tracker for solar PV panels using a 

SEPIC converter has been demonstrated to be more efficient 

than using fixed static panels. A PV system has been 

implemented in Kirkuk city and a very corresponding 

predicted and actual power generated data proves that the 

SVM model is the highly effective method for both tracking 

and static solar panels. The work is based on day-to-day 

comparisons of the two systems' power output characteristics, 

the study concluded that tracking solar panel systems 

generates energy more efficiently than static ones in Kirkuk 

city. 

The model can be more precise if could benefit from 

including additional time-related variables like weather and 

ambient temperature. This is planned as future work for better 

and more dynamic modeling with the addition of real-time 

data streams and the pursuit of cutting-edge machine learning 

techniques. The study's outcomes also support using tracking 

technology in solar energy systems, since they show that 

tracking systems produce significantly more power than static 

systems. This is especially the case on very sunny days, such 

as the one where the study took place. 

To understand the limitations of the current SVM model is 

crucial and incredibly low R2 value indicates that this model 

as implemented was fear to adequately capture the complexity 

of the system's behavior. This is likely due using only time-of-

day as input limited the model's ability to understand all 

important variables. In the future work this would be address 

by adding additional input features like recorded temperature, 

irradiance or dust concentration to strengthen the 

informational foundation of the model and also expanding the 

size and variety of the training data to covering a wider range 

of days and weather and applying hyperparameter 

optimization and exploring other machine learning algorithms 

like neural networks or ensemble methods to improve 

prediction accuracy. This expects a significantly better 

performance in PV production forecasting by implementing 

these improvements. 
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