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A successful image fusion framework should effectively integrate the most of
information from both Synthetic Aperture Radar (SAR) images and Multispectral (MS)
images into the fused image, while reducing the presence of artifacts. SAR and MS
image fusion is a fundamental key technology for image quality improvement. Proposed
algorithm performs multiscale decomposition on SAR image and intensity (I)
component of multispectral image, using optimized Rolling Guidance Filter (RGF).
This approach separates the important scale space features into three categories:
approximation layer, contour layer and detail layer. Suitable fusion rules to preserve
spatial information are designed to fuse approximation layers, contour layers and detail
layers based on information contained in that layer. This obtained image is integrated
with CNN-fused image to preserve textural information. In the CNN-based approach,
the designed network is trained to determine weights from an augmented dataset that
includes both types of images. Through comprehensive experimentation, the proposed
approach demonstrated robust spectral information preservation, achieving a spectral
information metric Erreur Relative Globale Adimensionnelle de Synthese (ERGAS)
less than 3 and Spectral Angle Mapper (SAM) less than 1 which represents an optimal
balance between contrast and correlation. Moreover, the spatial detail measure Peak
Signal to Noise Ratio (PSNR) more than 30 and Average Gradient (AG) maintained in
the ideal range, validates the method’s capability to retain spatial features. Also, visual
interpretation clearly highlights the perceptible difference among the images.

1. INTRODUCTION

weather conditions. This mechanism makes SAR imagery
richer in spatial information.

In general, the high-resolution satellite images get captured

with a long revisit time, while low-resolution satellites revisit
frequently. Various applications need satellite images with
high spatial as well as spectral resolution [1]. Satellite images
can be used for fishing prediction, crop species classification,
soil analysis, Land Use Land Cover (LULC) changes, biomass
and mineralogy mapping, aerospace and shipbuilding, to name
a few. This rich information dataset can be obtained by the
combination of two or more dissimilar images of same scene,
to form new image with an improved quality and reliability [2,
3]. To obtain such usable dataset satellite image fusion of
multitemporal and multiresolution images have been
researched in recent decades.

1.1 SAR image

Synthetic Aperture Radar (SAR) is an active microwave
sensor that utilizes long-wavelength electromagnetic
radiations, enabling it to effectively penetrate atmospheric
impairments such as cloud cover, haze, dust, fog, smoke and
other adverse environmental factors with the exception of
intense penetration. This characteristic allows SAR imagery to
be captured continuously, regardless of the time of day or
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1.2 Multispectral image

Multispectral sensors are passive remote sensing
instruments that capture solar radiation reflected from the
Earth's surface across different parts of the electromagnetic
spectrum, such as ultraviolet, visible, and infrared
wavelengths. Depending on their spectral resolution, optical
sensors are categorized into panchromatic, multispectral and
hyperspectral types. Multispectral imaging provides extensive
information regarding the spectral signatures of terrestrial
objects, thereby facilitating the differentiation of various land
cover types. However, it’s effectiveness is significantly
influenced by solar illumination and prevailing weather
conditions. As these sensors exhibit high spectral sensitivity,
it is more readable than SAR images. Therefore, fusion of
SAR and multispectral image can provide more informative
image with respect to spatial and spectral information.
Broadly, multispectral and SAR image fusion is categorised
into three different levels: pixel level, decision level, and
feature level as per the different levels of information fusion
[4-6]. This article focuses on pixel level fusion, offering a
more comprehensive discussion on this technique than other
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methods. Pixel level fusion attains more precise and detailed
information, facilitating enhanced interpretation and broader
application possibilities. Pixel-level fusion methods can be
sorted into four main groups:

1) Component substitution (CS)

2) Multi-scale transform (MST)

3) Model optimization (MO)

4) Hybrid methods [7]

The working principle of CS methods is to transform the
multispectral image into a different domain to separate their
spatial and spectral information. Then the spatial components
are replaced with SAR images and an inverse transformation
is applied to restore the images to their original domain by
completing the image fusion process [8]. The CS methods
inject more spatial details into fused image however spectral
distortion may occur [9]. CS methods are the most widely
utilized techniques which encompasses, Generalized
Intensity-Hue-Saturation Adaptive Algorithm (GIHSA) [4],
Gram-Schmidt Context Adaptive Sharpening (GSA-CA) [10],
Principal Component Analysis (PCA) [11], Brovey Transform
(BT) [3, 6, 7]. In previous studies, these approaches have been
vastly employed for the panchromatic and multispectral image
fusion. Further advancements in satellite technology have
facilitated the availability of SAR and MS imagery for
research purpose, offering enhanced information content. SAR
and multispectral images usually have huge illumination
difference because of different capturing mechanism.
Therefore, applying CS methods for SAR and multispectral
image pairs is challenging as these methods are good at
retaining global details than the local details [7].

The MST methods typically decompose SAR and
multispectral images into low and high frequency components
and designs fusion rules specifically tailored to align with their
respective spectral characteristics [12]. Multiscale geometric
analysis, wavelet transform (WT) [13] and dual-tree complex
wavelet transform (DTCWT) [14] are the mostly used
traditional methods in MST. Multiscale geometric analysis
involves curvelet transform (CVT) [15], non-subsampled
contourlet transform (NSCT) [16], Bandlet transform [16],
contourlet transform (CT) [17], Shearlet transform (ST) [18],
and Gaussian and Laplacian pyramid decomposition-based
methods.  Pyramidal  transformation and  wavelet
transformation-based methods are prominent -categories
within this group of methodologies. Pyramidal techniques
decompose source images into Gaussian and Laplacian
pyramids. While MST methods exhibit superior performance
relative to CS methods by offering enhanced edge information
and preserving cures within images, they are nevertheless
subject to certain limitations. These include restricted
directional information, the presence of blocking artifacts, and
a moderate signal-to-noise ratio [19].

The MO method has been adapted for multispectral and
SAR image fusion, treating the process as image restoration.
This approach involves constructing a relationship model
between the input images, optimizing the energy function and
generating the fused image by refining the model [19]. MO
methods are mainly composed of variational optimization
models and sparse representation models, both of which
demand prior knowledge, intricate model development, and
significant computational resources. In contrast, deep learning
techniques have gained considerable attention in recent years.

Deep learning-based fusion strategies can be classified
according to their underlying architecture into autoencoder
(AE), convolutional neural network (CNN), and generative
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adversarial network (GAN) approaches [20, 21]. AE methods
typically involve pre-training an autoencoder for feature
extraction and image reconstruction, with intermediate feature
fusion following traditional rules. A notable example is
DenseFuse [22], which trains its encoder and decoder on the
MS COCO dataset and employs addition and L1-norm fusion
strategies. CNN methods incorporate convolutional neural
networks into image fusion in two distinct ways. Prabhakar et
al. [23] utilize carefully designed loss functions and network
structures to perform feature extraction, fusion, and image
reconstruction in an end-to-end manner. Zhang et al. [24]
proposed a proportional maintenance loss of gradient and
intensity to guide direct fused image generation. The trained
CNN-based approaches can formulate the fusion rules while
relying on traditional methods for image reconstruction [20,
21, 23-25]. Lian et al. [26] utilized CNN to generate fusion
weights, with image decomposition and reconstruction
handled by Laplacian pyramids. GAN methods leverage the
adversarial interplay between the generator unit and
discriminator unit to estimate target probability distributions,
implicitly accomplishing feature extraction, fusion, and image
reconstruction. FusionGAN pioneered GAN-based image
fusion, establishing a relation between the fused and visible
images to enhance texture details in the resultant fused image
[27-29]. Owing to the considerable differences among image
fusion tasks, these techniques are applied in distinct ways
across various fusion contexts. In summary, the review
highlights important challenges associated with state-of-the-
art methods:

(a) Spectral distortion continues to be an issue due to the

fusion of heterogeneous images.

(b) Handcrafted fusion rules lack adaptability.

(c) The interpretability of deep learning fusion remains
limited.

The lacunas in state-of-art fusion models can be minimised
by the hybrid method implementation. This research work is
synthesized with fusion and reconstruction of detail,
approximate and contour layers of input images. The key
contributions of the implementation are:

(a) Computed contour layer using Rolling Guidance Filter
(RGF) based image decomposition.

Effective fusion rule designed for individual layer
fusion.

Dynamic weight computation using augmented
dataset training of CNN for SAR and MS image
fusion.

Integration of enhanced spatial and spectral
information using multiscale decomposed and CNN
based fusion.

The research work is presented as follows: Section 2
introduces the proposed methodology, offering a succinct
comparison with state-of-the-art techniques. The following
Section 3 elaborates on details of the experimental design, data
and the evaluation indexes used. Section 4 discusses the results
and provides an analysis. The final section concludes with a
synthesis of the principal findings.

(b)
(©)

(d)

2. PROPOSED METHODOLOGY

The proposed methodology is integration of CS, MST
methods and CNN based method to effectively fuse the SAR
and MS image. The experiment mainly includes the six steps:

(1). IHS transform of MS image.



(2). Multiscale decomposition of I component using RGF.

(3). Multilayer fusion.

(4). CNN based image fusion of original images.

(5). Combining multilayer fused image and CNN fused
image.

(6). IHS inverse transform to find enhanced color image.

The detailed flow of working is as shown in Figure 1. Stage
1 is to transform the MS image to Ims by using IHS
transformation to acquire intensity (I), Hue (H), and saturation
(S) components. Then the multiscale decomposition of I
component and grayscale SAR image is carried out. In stage
2, rolling guidance filter based multiscale decomposition is
accomplished. Stage 3 executes multilayer fusion. CNN based
image fusion is carried out in stage 4. The new intensity I’ is
obtained by combining stage 3 and 4 output. The final
enhanced color image is achieved by computing inverse IHS
of I’, H, and S components.

Stage 1: IHS transform

The Intensity-Hue-Saturation (HIS) method development
was based on the premise that spectral details are primarily
found in the hue and saturation elements, while the intensity
component retains the spatial details [30]. This research work
focuses to improve the quality of spatial information of
multispectral image by the fusion of I component of
multispectral image and SAR image and IHS inverse
transform to reconstruct the color fused image. The IHS
transformation is carried out using Eq. (1).
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where, R, G, and B denotes red, green, and blue bands of
original input image, respectively. The inverse transform of
IHS is expressed in Eq. (2).
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where, R’, G’, and B’ represent values of R, G, and B band
values obtained after inverse IHS transform. I’ represents
modified value of | after fusion.

The traditional approach like Laplace pyramid (LP)
multiscale transform fusion [31-33], contrast pyramid
transform method [34] were proposed, these methods are less
prone to produce artifacts or any kind of distortions due to less
consideration for the spatial consistency [6, 35]. Afterwards,
transform domain methods incorporated, which have some
limitations like loss of detail, when implemented using
wavelet transforms (WT), dual-tree complex WT (DTCWT)
[36, 37]. In the distant past, Sparse Representation (SR) was
built from compressed image sensing [38, 39]. Zhang et al.
[40] implemented image fusion using SR as transform domain
method for the first time. Afterwards SR method attracted
wide attention to fuse the remote sensing (RS) images, owing
to their enhanced capability to accurately capture and
represent key features and structural details. Nonetheless, the
sparse coding SR-based image fusion often entails a
substantial computational load, with processing times

escalating significantly as source image dimensions increase.
Furthermore, the application of sliding window technique in
sparse representation can result in a smoothing effect and a
loss of detail, particularly when the overlap between adjacent
patches is considerable. To minimize the artifacts that may
occur due to traditional methods, this research modifies the I
component as explained in subsequent sections.

Stage 2: Multiscale decomposition

In this stage multiscale decomposition is carried out using
Rolling Guidance Filter (RGF), which effectively overcomes
information redundancy and distortions [6]. Yang and Li [39]
demonstrated that RGF, is an edge-preserving smoothing
filter. The Joint Bilateral Filter (JBF) is incorporated to
achieve iterative operation in RGF. JBF is edge-preserving
filter (EPF) [6, 7, 36, 41-46].

The pixel spatial domain kernel determines weights by
evaluating both spatial proximity and color similarity, unlike
the Gaussian blur which considers only spatial distance and
fails to preserve edge details. The RGF encompasses two
major procedures: 1) small structure removal and 2) edge
recovery. The initial step involves using a Gaussian filter to
smooth out minor image details and repeatedly restore the
image edges, as depicted in Figure 2. Assume that F;,, and F,,,;
is input and output image pixels respectively. i and j are
coordinates of an image. g, implies the parameter controlling
the scale of Gaussian structure. Following Eq. (3) expresses
the Gaussian filtering of image F;, at central pixel i.
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The edge restoration of the Gaussian-filtered (GF) blurred
image is achieved through the application of JBF. The image
G, obtained via Gaussian filtering, serves as the initial guide
graph J' for the JBF process. An iterative procedure is
employed, denoted as n iterations, to recover edge information
across various scales. In each iteration, the guide graph is
derived from the output image J' of the preceding iteration.
The expression for this procedure is where J'*/ represents the
outcome of the #* iteration. The parameter o, governs the
Gaussian distribution. Eq. (4) gives the relation of F;, and J**/.
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The edge recovered image is updated iteratively as shown
in Figure 2. I, is considered as input image as shown in Egs.
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where, N is number of iterations, Sqi is detail layer decomposition. These obtained layers are further fused by
information, Sc; is contour layer information and S, is using different fusion rules as explained in next point.
approximation layer information at n® level of

Stage 1 —THS }
Transform Stage 2 - Multiscale Stage 3 - Stage 5 - Fused image
e mm————— decomposition Layer-wise fusion reconstruction
MS image

’
"’nm
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e Retine imization Inverse
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Statistical
Edge (LSEM)

Contour

Filter lay:rs

Enhanced | |
Multi-level _color
Image Fusion image
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Stage 4
CNN

image

fusion

Dynamic weight
calculation by
training CNN

Stage 3: Layer-wise fusion

Wavelet based traditional methods usually decompose the
image into low and high frequency components and design the
fusion rule for different frequency components. Fusion rules
are designed according to the information contained in that
layer and the fused image is reconstructed by inversion
process. With this process it is observed that there is loss of
information. To avoid the loss, this research work, fuses the
scale spaced image layers with different fusion rules, is
explained in this section.

a. Approximation layer fusion

The approximation layer contains coarse scale structure
information and overall appearance of the image. Duan et al.
[42] employed a multiscale decomposition of images utilizing
a weighted least squares framework. For the base image, the
average value of N base images is considered as the fused
image. Lewis et al. [36], Liu et al. [46], and Gong et al. [47]
proposed a hybrid approach combining MST and SR, where
low-pass bands are fused using a conventional averaging
method [48, 49]. Jian et al. [6] utilized a weighted average and
global variance. The averaging-based method has limitations,
such as contrast loss when input images have different
intensity distributions, and noisy images may significantly
affect the image reconstruction process.

The most frequently used fusion methods for approximation
layer are like averaging rule which may lose residual details
and structural information after fusion because they are
created for ideal approximation layer which is difficult to

Input image L ] Guidance

image

Figure 2. Joint bilateral filter
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achieve in satellite images. Therefore, Weighted Local energy
Sum (WLES) method and Weighted Sum of Entropy and
Mean of Laplacian (WSEML) method are employed to extract
details and edge information. The WLE is expressed as:

WLES;(p,q) = i iw

m=—r n=—r

X(m+r+1),(n+r+1))
X Sa((m +p), (n + g))*

®)

where, f € {SAR, MS} and S, (p, g) symbolise the sub-band
of low frequency at position (p, g). Weight matrix w is of
(27 +1)x (2 + 1),where each element value of w is set to
227=4 4~ is the radius of «wr matrix, and four-neighborhood
distance from the corresponding element to the center of
matrix is represented with d, when r is set to 1, the
normalization matrix W can be expressed as:

1 2 1
—12 4 2 Q)
1617 5 1

The Eight-Neighborhood Modified Laplacian (EML)
considers the impact of diagonal coefficients and effectively
leverages the information from neighborhood [47, 48].
WSEML is a weighted representation of EML. The
mathematical expression is:

WSEML:(p,q) = Z Z w

m=—r n=-—r
Xm+r+1l,n+r+1)
X EML;(m + p,n + q)

(10)

EMLf(;]! ‘l) = |25a(pr (’Z) - Sa(ﬁ -1 4)
- Sa(?? + 1!4)'
+128.(p. 4)
- Sa(pr(’l - 1)_Sa(f'4 + 1)'

1
+\/_E|25a(}7r4) -S,(p-1,4-1) (11)
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+ NG 125,(».a) - S,(p — 1,4+ 1)

NG
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Then, according to WLE and WSEML, the fused low-
frequency sub-band coefficient Agyseq (2, g) is obtained, and
the mathematical expression is

Afused (20' %)
_ { Asar(p,a)

Aus(p,a)

The condition (1) is WLEs g (p,q) + WESMLgur(p, g) =
WLEsur(p,9) WESMLsar (p, 4).

While the WLE method emphasizes sharpness by focusing
on frequency domain features, the WESML approach
primarily considers a weight matrix based on horizontal,
vertical, and diagonal distances, making it effective for
observing spatial details. Consequently, the combination of
WLE and WESML can identify rich information block in the
image.

if condition (1) is true
otherwise

(12)
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b. Contour layer

Many of the researchers have decomposed the input images
into low and high frequency components whereas those have
decomposed it to contour layer have mostly used absolute
maxima rule. Gong et al. [7] have utilized Coupled Neural P
(CNP) for contour layer fusion, which is quite parameter
sensitive, complex implementation with high computational
complexity. Gong et al. [47] have fused the contour layer using
absolute maximum principle, with the possibility of contrast
loss. Hence in order to preserve textural and edge information
with a good blend from both images, the strategy of Local
Statistical Edge Model (LSEM) is employed, it focuses on
preserving edge structures by analysing local statistical
properties of the decomposed images. The local statistical
properties taken into consideration are, gradient magnitude
and local statistics like standard deviation. The edge strength
is computed using following mathematical relation in Eq. (13).

(13)

Here, E(t) is edge strength, G(t) is gradient, Std(t) is
standard deviation, a and f are tuneable weights.

The fusion of gradient and variance provides a more
adaptive representation of edge and texture information.
Utilizing the edge strength to calculate the adaptive weights
for fusion, using Eqgs. (14) and (15).

E(t) = a-G(t) + B - Std(t)

E;

W=
YT E 4+ E 4V

(14)

and

Wy = 1- [OF) (15)

Here, w; and w, are the weight calculations using E; and
E, edge strengths of both input detail layers. V is constant to
make the denominator non zero value. The design of local
statistical edge model is explained in Eq. (16).

Di'(w,v) = wy(u,v) - Dgyr (W, v) + wy(u,v) (16)

“Dyis(u,v)
where, D¢, Dyjs are contour layers of SAR and MS image
respectively.

This approach combines image gradient and standard
deviation as complementary focus metrics, allowing for the
concurrent assessment of local edge strength and overall
intensity variation. The gradient aspect captures intricate
structural and directional details, while the standard deviation
measures the overall contrast and texture richness throughout
the area. By merging these metrics, the method successfully
maintains both sharp local features and broad intensity
variations, leading to better information retention compared to
methods that overlook either local or global pixel variation.

c. Detail layer fusion

These are considered as high frequency components of
image. These contains abundant textural and edge information.
Jian et al. [6] have employed JBF based detail layer fusion to
preserve edge information. As detail layer consists of high
frequency information, absolute maximization is suitable
method [47, 50, 51]. Therefore, to fuse this layer absolute
maximization using Gaussian filter is employed. The
mathematical representation is as follows:



di _ : . pdn
Dp” = Gaussian (Wd'%) Dys

+ (1 — Gaussian (Wd,ao)) ) Dgﬁ? 1
Here, W; = {1 if [Dys| - |Dis| > [Pkl - |Dgﬁ‘?,n:2,
0 otherwise

3,4,..,N.
The computation is carried out using kernel size = 5. The
last fusion image is reconstructed by using Eq. (18).

n

Ir,lew = Z(Dﬁ’i + DFd'i) + Afused

i=1

(18)

Using Eq. (18), the new / component is calculated. For the
further processing the recovered image is combined with CNN
fused image, as explained in next point.

Stage 4: CNN based image fusion

As depicted in the workflow block diagram Figure 1,
involves the preparation of an augmented dataset. The
augmented dataset is constructed by generating 100 samples
from each original input image. Each input image is processed
through three convolutional layers, with a progressive increase
in the number of feature maps to extract modality-specific
features. The kernel size for the convolution operation is set at
3 x 3. The ReLU activation is used to introduce non-linearity.
Padding set to same to ensure preservation of spatial
resolution. These feature maps are concatenated along the
channel axis to enable joint feature encoding. The
concatenated features are passed through additional
convolutional layers, enhancing network’s ability to learn
spatial correlations and rich hierarchical representations.
Further the tensor is flattened and a fully connected layer is
used to refine the feature representation. Subsequently, the
sigmoid activation is used to convert it into weighting map. An
epoch count of 100 is employed to achieve effective results,
SSIM loss function used, and learning rate = 0.0001. The
detailed layer specifications of proposed CNN based fusion
network is explained in Table 1.

Table 1. Detailed layer specifications

Layers (Type) Output Shape Parameters
input_layer (InputLayer) (None, 224, 224, 1) 0
'?If]‘gtu—t'f;’;;;)l (None, 224, 224, 1) 0
convad (Conv2D) (None, 224, 224, 16) 160
conv2d_1 (Conv2D) (None, 224, 224, 16) 160
conv3 (Conv2D) (None, 224, 224, 32) 4,640
conv3 (Conv2D) (None, 224, 224, 32) 4,640
conv2d (Conv2D) (None, 224, 224, 64) 18,496
conv2d (Conv2D) (None, 224, 224, 64) 18,496
conv2d (Conv2D) (None, 1) 2,049
Concatenate (None, 224, 224, 0
(Concatenate) 128)
conv2d_2 (Conv2D) (None, 224, 224, 32) 36,896
conv2d_3 (Conv2D) (None, 224, 224, 64) 18,496
flatten_1 (Flatten) (None, 3211264) 0
dense (Dense) (None, 128) 411,041,920
dense_1 (Dense) (None, 50176) 6,472,704
reshape (Reshape) (None, 224, 224, 1) 0
subtract (Subtract) (None, 224, 224, 1) 0
multiply (Multiply) (None, 224, 224, 1) 0
Add (Add) (None, 224, 224, 1) 0
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Stage 5: Fused image reconstruction

The modified I},,,, component from layer-wise fusion is
combined with CNN fused output image I/yy. As CNN-based
methods primarily emphasize spatial features, they are capable
of producing images with enhanced spatial detail. The
multiscale decomposition is responsible for preserving the
spectral information. Thus, to acquire information that is both
spectrally and spatially rich, the integration of the two fused
outputs is carried out. Finally, a color image is reconstructed
using the H & S components along with the updated I’
component, as described in Eq. (2).

3. EXPERIMENTAL DESIGN

A. Experimental data

In the course of rigorous experimentation, the MS image
dataset employed was procured from the National Remote
Sensing Centre (NRSC) in Hyderabad, India. Conversely, the
SAR image dataset was sourced from the Earth Resources
Observation and Science (EROS) Centre of the U.S.
Geological Survey via the freely accessible QGIS tool 3.18
version. This dataset encompasses the regions within the state
of Maharashtra, India. The SAR image possesses a resolution
of 15 meter, whereas the LISS III Multi Spectral image
exhibits a resolution of 8 meter. The dataset used consists of
more than 100 MS and SAR image pairs, in this presentation
results of pairs is discussed. Prior to initiating the fusion
process, an initial pairwise registration is conducted to achieve
optimal results. The experimental setup used is CPU Intel Core
17-12500 H, 12th gen 2.50 GHZ, 2GB GPU, 64 bit operating
system Windows 11, Programming environment PyCharm
2024.3.

B. Evaluation indexes

Qualitative evaluation entails a subjective analysis of
outcomes by comparing texture details, color information,
spatial structure, visual effects, and other features of the
combined images. On the other hand, quantitative evaluation
offers an objective analysis based on specific evaluation
metrics.

In this section, we report the experimental process for
diverse satellite image dataset using proposed algorithm. The
experiments on four SAR and MS image datasets to validate
the proposed fusion algorithm. For the purpose of bench
marking, we chosen the listed baseline methods in the
experimentations as, NSCT, PCA, BT, DWT [50],
FusionGAN [29], and Siamese Network [51]. The
experiments compare fused image with the reference image to
analyse the performance of proposed method. Here, we utilize
Peak Signal to Noise Ratio (PSNR), Spectral Angle Mapper
(SAM), Erreur Relative Globale Adimensionnelle de Synthese
(ERGAS), Average Gradient (AG), and Information Entropy
five measures for proposed method evaluation. PSNR is a
measure of accuracy of an algorithm. SAM signifies the
spectral distortion after fusion. ERGAS indicates radiometric
and spatial quality of an image.

(@ PSNR

This is crucial metric for measuring the quality of an image
after processing. It evaluates the ratio of the maximum
achievable power of an input signal to power of the noise,
defined using Eq. (19).



255

VISE (19)

PSNR =10 X log,,

Here, MSE denotes mean square error of fused image as
explained in Eq. (20). Let’s consider I{x:’, y+’) denote the
transformed coordinates of Z,(xs, yi) from original image.

N
1
MSE = NZ(Ia(xk'yk) — I (x4, ¥1))? (20)

k=1

Here, N represents the number of difference pairs.
Iy, Iy indicates input and fused image respectively.

(b) SAM

The spectral quality is evaluated using SAM, it typically
compares pixel-wise spectral similarity of fused image with
reference image by computing angle between two vectors. Eq.
(21) evaluates spectral similarity between K and 7, fused and
reference image spectral pixel vectors respectively.

(K xT)

SAM (K,T) = cos 1 ————
KT

2

(c) ERGAS
The ERGAS is used for global relative error computation,
as shown in Egs. (22) and (23) [7].

P
1 RMSE(l,, I
ERGAS =100 £ |= Z RMSE(la, Ir) (22)
b |P ul,
P=1
1 N M
= D) (LG - (xwy)) @)

i=1j=1

where, a/b is ratio of resolution of SAR and MS image, P
denotes the number of bands and u is mean value of the image.

(d) AG
This signifies the average magnitude of the image gradient,
computed using discrete derivatives as follows

@ e

Here, M, N is image dimensions, f{i,j) is pixel intensity.

A6 = (M—1XN—D

i=1 j=1

—.

o2 = FA+ 1) = f@)

of _ ... .
@—f(ld‘i'l)—f(w)

This measures the strength of edges and textures, averaged
throughout the image [49].

(e) Entropy

This parameter gives idea about the richness of information
in the data under consideration, calculated using Eq. (25). The
higher the entropy value, better the quality of fused image [4].
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where, p(n) is probability of occurrence of n'" gray level, M is
the dynamic range of the image under analysis.

(f) Standard Deviation of difference image

This calculation determines the Standard Deviation (SD) of
residual information, indicating the extent to which the fusion
process has altered the input image. The absolute difference
between the source and fused image is initially calculated
using Eq. (26), and this result is then used to determine the
SDuitt using Eq. (27).

Idiff = |Isource - Ifused| (26)
N

SDgirf = N-1 1Z(Idiff(i) — Uairr)? 27
i=1

where, I,;¢¢ is absolute difference image, ug;rr is mean of
difference pixel image and N is total number of pixels.

4. RESULTS AND DISCUSSION

To highlight the effectiveness of the proposed method,
comparison with several traditional image fusion techniques is
done. These comparative methods include the nonsubsampled
contourlet transform (NSCT), PCA, BT, Discrete Wavelet
Transform (DWT), as well as more advanced techniques like
FusionGAN and Siamese Network. Tables 2-5 present the
results of all comparative methods across four distinct SAR
and MS image datasets. Figures 3-9 illustrate the MS input,
SAR input, NSCT output, PCA output, BT output, DWT
output, FusionGAN output, Siamese network output, our
method's grayscale output image, and our method's color
output image in subgraphs from Figures 3 to 6 respectively.

Visual analysis: NSCT decomposes the input images and
performs energy based weighted fusion, is implemented.
NSCT is poor at capturing direction edges which produces
visual effect and blurring at the edges and reduced spectral
fidelity. Therefore, poorly retained spectral resolution can be
seen through Figure 3 for dataset pair 1. PCA considers most
important components based on variance, which causes
potential information loss and brightness distortion, leads to
reduced spatial resolution as well as spectral fidelity. BT does
the uniform enhancement without considering local texture or
edges which eventually suppress the high frequency
information, causes blurriness. DWT based methods
decomposes the image and handles the individual frequency
band. As SAR and MS image have basic different
characteristics which demands variation in basis function and
level of decomposition. This causes improper feature
extraction from both input images, loss of information during
fusion. Figure 3 clearly shows the spectral fidelity and overly
smoothed image using FusionGAN method as it fails to
acquire important details from dissimilar images makes image
not interpretable. Though Siamese network is able to obtain
relatively good results, but it performs weakly in integrating
dissimilar features from SAR and MS image. Siamese network
method does not perform well in terms spectral fidelity. These



observations are graphically represented in Figures 10 to 12.
The affected area is zoomed in Figure 13 for the NSCT, PCA,
BT, DWT and Siamese network output respectively. Whereas,
proposed method is able to recover both spectral and spatial
features.

Quantitative analysis: Many a times image may look good
but may not have the enough important information for further
processing therefore, quantitative evaluation is required.
Quantitative analysis mainly relies on the retention of
information, the restoration of spatial features, the fidelity of
spectral data, and the degree of image interpretability. Tables
2-5 portray performance parameters for all datasets, where
most efficient results are highlighted. Figures 7-12 depict the
range of performance parameters for all datasets. In terms of
spatial information, quality of fused image, PSNR and AG are
the indicators. Figures 7 and 8 show the range of PSNR and
AG respectively. This implies PCA and Siamese network
method performs poorly whereas NSCT and BT method
relatively performs well but not up-to the mark for PSNR
metric. Proposed method consistently excels in PSNR
evaluation. Regarding AG indicator, PCA, BT, DWT and
FusionGAN methods show less spatial information retention.

On the contrary traditional NSCT with multidirectional
decomposition is able to perform well. Siamese network result
indicates slightly improved response because of improved
training mechanism than the FusionGAN method. Whereas
proposed method maintains the highest spatial retention with
largest value of AG as 9.77. From the perspective of spectral
information measure, ERGAS and SAM are crucial indicators,
signifies the level of spectral distortion in the fused image.
From respective result tables of different dataset and Figures
9 and 10, it illustrates that PCA output image shows highest
level of distortion which can be verified by visual inspection
also. In contrast to the Siamese network method, which holds
the second position, the proposed approach achieves superior
outcomes, with improvements of 2.22 in ERGAS and 0.54 in
SAM, respectively. Successively, entropy signifies the overall
enhancement of input image. The proposed method performs
best as presented in Figure 11. The standard deviation of the
difference image for the proposed method, falls within the
healthy range of 12 to 18, indicating minimal deviation in pixel
values, depicted in Figure 12. This suggests that the designed
method exhibits a clear advantage in preserving the original
image information.

Table 2. Quantitative evaluation results for dataset pair P1

Method PSNR Entropy ERGAS SAM AG SDuif
NSCT 25.33 7 5.23 5.54 8.41 115.87
PCA 15.33 6.67 16.56 17.27 8.06 86.32
BT 22.69 7.21 7.09 6 5.71 81.64
DWT 23.89 7.11 6.17 6.19 5.07 46.21
FusionGAN 20.07 6.58 5.98 5.89 3.54 119.65
Siamese 5.14 6.74 535 15 8.63 25.65
Our 32.15 7.93 2.48 0.54 8.89 17.56
Table 3. Quantitative evaluation results for dataset pair P2
Method PSNR Entropy ERGAS SAM AG SDuitf
NSCT 25.04 7 6.88 5.77 8.41 105.27
PCA 25.08 7.04 6.845 5.82 5.06 113.56
BT 20.76 7.08 11.26 4.74 6.18 51.37
DWT 20.5 7.05 11.6 6.48 6.44 95.96
FusionGAN 10.12 6.74 10.14 2.56 5.12 120.45
Siamese 6.84 6.43 55.92 0.35 8.67 28.21
Our 32.84 7.24 2.98 0.78 8.89 15.36
Table 4. Quantitative evaluation results for dataset pair P3
Method PSNR Entropy ERGAS SAM AG SDuiff
NSCT 25.34 7.09 5.88 4.93 8.27 72.76
PCA 16.08 6.39 17.11 17.28 7.23 100.08
BT 25.65 7.02 5.68 4.61 6.34 88.71
DWT 22.69 7.06 7.99 6.86 6.38 92.06
FusionGAN 19.07 5.98 8.45 4.98 4.95 94.78
Siamese 6.31 6.8 52.6 1.45 8.68 21.64
Our 34.26 7.27 2.22 0.68 8.76 14.47
Table 5. Quantitative evaluation results for dataset pair P4
Method PSNR Entropy ERGAS SAM AG SDuitt
NSCT 24.88 7.25 6.19 5.16 9.87 66.89
PCA 8.53 7.3 40.69 35.54 5.63 77.09
BT 23.85 7.14 6.97 4.43 7.1 53.13
DWT 16.7 6.96 15.89 13.88 5.04 73.61
FusionGAN 17.62 6.98 5.24 3.94 2.38 84.51
Siamese 6.31 6.8 52.6 8.48 0.89 24.14
Our 34 7.55 2.26 0.742 9.77 12.45
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Figure 3. Dataset pair P1 results: (3.1) MS input, (3.2) SAR input, (3.3) NSCT, (3.4) PCA, (3.5) BT, (3.6) DWT, (3.7)
FusionGAN, (3.8) Siamese network, (3.9) Our method output, (3.10) Our method color image
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Figure 4. Dataset pair P2 results: (4.1) MS input, (4.2) SAR input, (4.3) NSCT, (4.4) PCA, (4.5) BT, (4.6) DWT, (4.7)
FusionGAN, (4.8) Siamese network, (4.9) Our method output, (4.10) Our method color image
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Figure 5. Dataset pair P3 results: (5.1) MS input, (5.2) SAR input, (5.3) NSCT, (5.4) PCA, (5.5) BT, (5.6) DWT, (5.7)
FusionGAN, (5.8) Siamese network, (5.9) Our method output, (5.10) Our method color image
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Figure 6. Dataset pair P4 results: (6.1) MS input, (6.2) SAR input, (6.3) NSCT, (6.4) PCA, (6.5) BT, (6.6) DWT, (6.7)
FusionGAN, (6.8) Siamese network, (6.9) Our method output, (6.10) Our method color image
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Figure 10. Comparative analysis of SAM
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Figure 13. Zoomed sections of (a) NSCT, (b) PCA, (c) BT, (d) DWT, (e) Siamese and (f) our method output images

5. CONCLUSIONS

Despite the higher computational demands of pixel-level
fusion techniques compared to feature-level and decision-level
fusion methods, they continue to be widely used in remote
sensing image fusion due to their superior accuracy. In this
article pixel level fusion of SAR and MS image is carried out
using RGF multiscale decomposition in combination with
CNN based fusion. In the initial phase of fusion, the Intensity
(1) component of the multispectral (MS) image is
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predominantly considered, as it encapsulates the most
essential perceptual information. Modifying the | component
facilitates the effective integration of spatial details,
particularly from the SAR image, thereby enhancing the
spatial richness of the fused image. Processing of the |
component allow for more controlled enhancement while
preserving spectral integrity, and any distortions introduced
are relatively easier to rectify during the inverse
transformation process. RGF based multiscale decomposition
can reserve edge information better than other decomposition



methods such as wavelet-based decomposition. After
decomposition approximation layer, detail layer and contour
layers are obtained and fused individually. Approximation
layer is fused using WLE and WSEML methods to obtain most
of the information from both input images. WLE method gives
advantage of analysing frequency band-wise better to keep
spectral information intact and WSEML method primarily
focuses on improving the entropy and mean of Laplacian is
responsible to ensure spectral consistency. The fusion of the
contour layer is executed using a Local Statistical Edge Model,
which is designed by taking into account both standard
deviation and gradient. This approach aids in preserving
crucial edge information, particularly in relation to directional
data. Whereas, the detail layer fusion utilises absolute
maximization to preserve high frequency information.
Subsequently, the average of all layers is integrated with the
fusion output from the CNN approach. In CNN-based fusion,
the network is trained using the SSIM loss function and
augmented dataset pairs of SAR and MS images, which
enhances the network's robustness to illumination variations
and maintains a balance in smoothness that promotes the
preservation of fine details. Through this the weights are
calculated and image fusion is accomplished which has ability
to find and preserve complex features from dissimilar datasets.
By integrating multiscale decomposition with CNN-based
fusion methods, the resulting image is enriched with both
spatial and spectral information. Following this, the modified
| component is processed through an inverse IHS
transformation. This innovative method demonstrates superior
performance compared to both traditional and network-based
techniques. It achieves a peak PSNR of 34 and a minimum
SAM of 0.54, indicating significant improvements in the
spatial and spectral resolution of the final image. Also ensures
high fidelity preservation by maintaining the standard
deviation of different images at a low value, ranging from 12
to 19.

REFERENCES
[1] Ying, J.C., Shen, H.L., Cao, S.Y. (2022). Unaligned
hyperspectral image fusion via registration and
interpolation modeling. IEEE Transactions on
Geoscience and Remote Sensing, 60: 1-14.
https://doi.org/10.1109/TGRS.2021.3081136

Wang, P., Huang, M.X., Shi, S.P., Huang, B., Zhou,
B.L., Xu, G. (2024). Landsat-8 and Sentinel-2 image
fusion based on multiscale smoothing-sharpening filter.
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 17: 17957-17970.
https://doi.org/10.1109/JSTARS.2024.3469974
Aburaed, N., Alkhatib, M.Q., Marshall, S., Zabalza, J.,
Al Ahmad, H. (2023). A review of spatial enhancement
of hyperspectral remote sensing imaging techniques.
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 16: 2275-2300.
https://doi.org/10.1109/JSTARS.2023.3242048
Kulkarni, S.C., Rege, P.P. (2020). Pixel level fusion
techniques for SAR and optical images: A review.
Information Fusion, 59: 13-29.
https://doi.org/10.1016/j.inffus.2020.01.003

Wang, X., Dong, S.W., Song, H.J., Sun, B.Q., Wu, W.J,,
Wang, W.X., Guo, D., Gao, Z. (2024). Time Transfer
Link fusion algorithm based on wavelet multi-resolution

[2]

[3]

[4]

[5]

3604

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

(18]

[16]

[17]

[18]

analysis. Measurement, 232: 114599.
https://doi.org/10.1016/j.measurement.2024.114599
Jian, L.H., Yang, X.M., Zhou, Z.L., Zhou, K., Liu, K.
(2018). Multi-scale image fusion through rolling
guidance filter. Future Generation Computer Systems,
83: 310-325.
https://doi.org/10.1016/j.future.2018.01.039

Gong, X.J., Hou, Z.Y., Wan, Y.T., Zhong, Y.F., Zhang,
M., Lv, K.Y. (2024). Multispectral and SAR image
fusion for multiscale decomposition based on least
squares optimization rolling guidance filtering. IEEE
Transactions on Geoscience and Remote Sensing, 62: 1-
20. https://doi.org/10.1109/TGRS.2024.3353868
Huang, D.S., Tang, Y.L., Wang, Q.S. (2022). An image
fusion method of SAR and multispectral images based
on non-subsampled Shearlet transform and activity
measure. Sensors, 22(18): 7055.
https://doi.org/10.3390/s22187055

Wang, H.X., Jiang, W.S., Lei, C.Q., Qin, S.L., Wang,
J.L. (2014). A robust image fusion method based on local
spectral and spatial correlation. IEEE Geoscience and
Remote Sensing Letters, 11(2): 454-458,
https://doi.org/10.1109/LGRS.2013.2265915

Gao, G., Wang, M.X,, Zhang, X, Li, G.S. (2025). DEN:
A new method for SAR and optical image fusion and
intelligent classification. IEEE Transactions on
Geoscience and Remote Sensing, 63: 1-18.
https://doi.org/10.1109/TGRS.2024.3500036
Shahdoosti, H.R., Ghassemian, H. (2016). Combining
the spectral PCA and spatial PCA fusion methods by an
optimal filter. Information Fusion, 27: 150-160.
https://doi.org/10.1016/j.inffus.2015.06.006

Hill, P., Al-Mualla, M.E., Bull, D. (2017). Perceptual
image fusion using wavelets. IEEE Transactions on
Image Processing, 26(3): 1076-1088.
https://doi.org/10.1109/T1P.2016.2633863

Arif, M., Wang, G.J. (2020). Fast curvelet transform
through genetic algorithm for multimodal medical image
fusion. Soft ~ Computing, 24: 1815-1836.
https://doi.org/10.1007/s00500-019-04011-5

Igbal, M.Z., Ghafoor, A., Siddiqui, A.M. (2013).
Satellite image resolution enhancement using dual-tree
complex wavelet transform and nonlocal means. IEEE
Geoscience and Remote Sensing Letters, 10(3): 451-455.
https://doi.org/10.1109/LGRS.2012.2208616

Amolins, K., Zhang, Y., Dare, P. (2007). Wavelet based
image fusion techniques — An introduction, review and
comparison. ISPRS Journal of Photogrammetry and
Remote Sensing, 62(4): 249-263.
https://doi.org/10.1016/j.isprsjprs.2007.05.009

Miao, Q.G., Lou, J.J., Xu, P.F. (2012). Image fusion
based on NSCT and bandelet transform. In 2012 Eighth
International Conference on Computational Intelligence
and Security, Guangzhou, China, pp. 314-317.
https://doi.org/10.1109/CIS.2012.77

Nencini, F., Garzelli, A., Baronti, S., Alparone, L.
(2007). Remote sensing image fusion using the curvelet
transform.  Information  Fusion, 8(2): 143-156.
https://doi.org/10.1016/j.inffus.2006.02.001

Khare, A., Khare, M., Srivastava, R. (2021). Shearlet
transform based technique for image fusion using
median fusion rule. Multimedia Tools and Applications,
80: 11491-11522. https://doi.org/10.1007/s11042-020-
10184-1



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Pandit, V.R., Bhiwani, R.J. (2015). Image fusion in
remote sensing applications: A review. International
Journal of Computer Applications, 120(10): 22-32.
https://doi.org/10.5120/21263-3846

Liu, Y., Chen, X., Wang, Z.F., Wang, ZJ., Ward, R.K,,
Wang, X.S. (2018). Deep learning for pixel-level image
fusion: Recent advances and future prospects.
Information Fusion, 42: 158-173.
https://doi.org/10.1016/j.inffus.2017.10.007

Zhang, W.F., Zhao, R.P., Yao, Y.X., Wan, Y., Wu, P.H.,
Li, J.Y., Li, Y.S,, Zhang, Y.J. (2025). Multi-resolution
SAR and optical remote sensing image registration
methods: A review, datasets, and future perspectives.
arXiv preprint arXiv:2502.01002.
https://doi.org/10.48550/arXiv.2502.01002

Li, H., Wu, X.J. (2019). DenseFuse: A fusion approach
to infrared and visible images. IEEE Transactions on
Image Processing, 28(5): 2614-2623.
https://doi.org/10.1109/T1P.2018.2887342

Prabhakar, K.R., Srikar, V.S., Babu, R.V. (2017).
DeepFuse: A deep unsupervised approach for exposure
fusion with extreme exposure image pairs. arXiv preprint
arXiv:1712.07384.
https://doi.org/10.48550/arXiv.1712.07384

Zhang, H., Xu, H., Tian, X., Jiang, J.J., Ma, J.Y. (2021).
Image fusion meets deep learning: A survey and
perspective.  Information Fusion, 76: 323-336.
https://doi.org/10.1016/j.inffus.2021.06.008

Li, H., Wu, X.J., Durrani, T. (2020). NestFuse: An
infrared and visible image fusion architecture based on
nest connection and spatial/channel attention models.
IEEE  Transactions on  Instrumentation  and
Measurement, 69(12): 9645-9656.
https://doi.org/10.1109/T1M.2020.3005230

Lian, Z.L., Zhan, Y.L., Zhang, W.H., Wang, Z.J., Liu,
W.B., Huang, X.H. (2025). Recent advances in deep
learning-based spatiotemporal fusion methods for
remote sensing images. Sensors, 25(4): 1093.
https://doi.org/10.3390/5s25041093

Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., et al.
(2014). Microsoft COCO: Common objects in context.
arXiv preprint arXiv:1405.0312.
https://doi.org/10.48550/arXiv.1405.0312

Wang, K.P., Zheng, M.Y., Wei, H.Y., Qi, G.Q., Li, Y.Y.
(2020). Multi-modality medical image fusion using
convolutional neural network and contrast pyramid.
Sensors, 20(8): 2169. https://doi.org/10.3390/s20082169
Zhang, H., Xu, H., Xiao, Y., Guo, X.J., Ma, J.Y. (2020).
Rethinking the image fusion: A fast unified image fusion
network based on proportional maintenance of gradient
and intensity. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(7): 12794-12804.
https://doi.org/10.1609/aaai.v34i07.6975

Ma, J.Y., Yu, W., Liang, P.W., Li, C., Jiang, J.J. (2019).
FusionGAN: A generative adversarial network for
infrared and visible image fusion. Information Fusion,
48: 11-26. https://doi.org/10.1016/j.inffus.2018.09.004
lervolino, P., Guida, R., Riccio, D., Rea, R. (2019). A
novel multispectral, panchromatic and SAR data fusion
for land classification. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing,
12(10): 3966-3979.
https://doi.org/10.1109/JSTARS.2019.2945188

Mao, R., Fu, X.S., Niu, P.J., Wang, H.Q., Pan, J., Li, S.S.

3605

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(2018). Multi-directional Laplacian pyramid image
fusion algorithm. In 2018 3rd International Conference
on Mechanical, Control and Computer Engineering
(ICMCCE), Huhhot, China, pp. 568-572.
https://doi.org/10.1109/ICMCCE.2018.00125

Li, J.J., Zhang, J.C., Yang, C., Liu, H.Y., Zhao, Y.G., Ye,
Y.X. (2023). Comparative analysis of pixel-level fusion
algorithms and a new high-resolution dataset for SAR
and optical image fusion. Remote Sensing, 15(23): 5514.
https://doi.org/10.3390/rs15235514

Zhang, H., Shen, H.F., Yuan, Q.Q., Guan, X.B. (2022).
Multispectral and SAR image fusion based on Laplacian
pyramid and sparse representation. Remote Sensing,
14(4): 870. https://doi.org/10.3390/rs14040870

Chen, J.Y., Zhang, L., Lu, L., Li, Q.L., Hu, M.F., Yang,
X.M. (2021). A novel medical image fusion method
based on Rolling Guidance Filtering. Internet of Things,
14:100172. https://doi.org/10.1016/j.i0t.2020.100172
Lewis, J.J., O’Callaghan, R.J., Nikolov, S.G., Bull, D.R.,
Canagarajah, N. (2007). Pixel- and region-based image
fusion with complex wavelets. Information Fusion, 8(2):
119-130. https://doi.org/10.1016/j.inffus.2005.09.006
Yin, H.P., Li, Y.X., Chai, Y., Liu, Z.D., Zhu, Z.Q.
(2016). A novel sparse-representation-based multi-focus
image fusion approach. Neurocomputing, 216: 216-229.
https://doi.org/10.1016/j.neucom.2016.07.039

Li, S.T., Yin, H.T., Fang, L.Y. (2013). Remote sensing
image fusion via sparse representations over learned
dictionaries. IEEE Transactions on Geoscience and
Remote Sensing, 51(9): 4779-4789.
https://doi.org/10.1109/TGRS.2012.2230332

Yang, B., Li, S.T. (2010). Multifocus image fusion and
restoration  with  sparse  representation. IEEE
Transactions on Instrumentation and Measurement,
59(4): 884-892.
https://doi.org/10.1109/T1M.2009.2026612

Zhang, Q., Shen, X.Y., Xu, L., Jia, J.Y. (2014). Rolling
guidance filter. In Computer Vision — ECCV 2014.
ECCV 2014. Lecture Notes in Computer Science, pp.
815-830. https://doi.org/10.1007/978-3-319-10578-9_53
Jiang, Y., Wang, M.H. (2014). Image fusion using
multiscale edge-preserving decomposition based on
weighted least squares filter. IET Image Processing,
8(3): 183-190. https://doi.org/10.1049/iet-ipr.2013.0429
Duan, C.W., Wang, Z.S., Xing, C.D., Lu, S.S. (2021).
Infrared and visible image fusion using multi-scale edge-
preserving decomposition and multiple saliency features.
Optik, 228: 165775.
https://doi.org/10.1016/j.ijle0.2020.165775

Wang, P.S., Fu, X.M,, Liu, Y., Tong, X, Liu, S.L., Guo,
B.N. (2015). Rolling guidance normal filter for
geometric processing. ACM Transactions on Graphics,
34(6): 1-9. https://doi.org/10.1145/2816795.2818068
Kaplan, N.H., Erer, 1. (2021). Scale aware remote
sensing image enhancement using rolling guidance.
Journal of Visual Communication and Image
Representation, 80: 103315.
https://doi.org/10.1016/j.jvcir.2021.103315

Lin, Y.C., Cao, D.X., Zhou, X.C. (2022). Adaptive
infrared and visible image fusion method by using
rolling guidance filter and saliency detection. Optik, 262:
169218. https://doi.org/10.1016/j.ijle0.2022.169218

Liu, Y., Liu, S.P.,, Wang, Z.F. (2015). A general
framework for image fusion based on multi-scale



[47]

[48]

[49]

[50]

[51]

transform and sparse representation. Information Fusion,
24; 147-164.
https://doi.org/10.1016/j.inffus.2014.09.004

Gong, X.Q., Hou, Z.Y., Ma, A.L., Zhong, Y.F., Zhang,
M., Lv, K.Y. (2023). An adaptive multiscale gaussian
co-occurrence filtering decomposition method for
multispectral and SAR image fusion. IEEE Journal of
Selected Topics in Applied Earth Observations and
Remote Sensing, 16: 8215-8229.
https://doi.org/10.1109/JSTARS.2023.3296505

Yin, M., Liu, X.N., Liu, Y., Chen, X. (2019). Medical
image fusion with parameter-adaptive pulse coupled
neural network in nonsubsampled Shearlet transform
domain. IEEE Transactions on Instrumentation and
Measurement, 68(1): 49-64.
https://doi.org/10.1109/TIM.2018.2838778

Demirel, H., Anbarjafari, G. (2011). Discrete wavelet
transform-based satellite image resolution enhancement.
IEEE Transactions on Geoscience and Remote Sensing,
49(6): 1997-2004.
https://doi.org/10.1109/TGRS.2010.2100401

Adeel, H., Tahir, J., Riaz, M.M., Ali, S.S. (2022).
Siamese networks based deep fusion framework for
multi-source satellite imagery. IEEE Access, 10: 8728-
8737. https://doi.org/10.1109/ACCESS.2022.3143847
Li, J., Shi, X.Q., Li, Y.N., Zhou, H.B. (2025). Exploring
fusion domain: Advancing infrared and visible image
fusion via IDFFN-GAN. Neurocomputing, 611: 128647.
https://doi.org/10.1016/j.neucom.2024.128647

3606

NOMENCLATURE

F Image in JBF Filter related operation
S Multiscale decomposed layer image
A Approximation layer

D Contour and detail layer

r Processed | component

Greek symbols

o Gaussian filter parameter

a, B Tuneable weights

w4, w, Calculated weights in LSEM model
E,E, Edge strengths of both input images
u Mean of image

Subscripts

in, out  Input and output image

r Gaussian structure scale Controlling parameter
S Gaussian distribution

d Detail layer

c Contour layer

a Approximation layer

F Fused image

SAR SAR image

MS MS image

new Layer-wise fused image

CNN CNN method fused image

diff Absolute difference image

source Input image

fused Fused image





