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A successful image fusion framework should effectively integrate the most of 

information from both Synthetic Aperture Radar (SAR) images and Multispectral (MS) 

images into the fused image, while reducing the presence of artifacts. SAR and MS 

image fusion is a fundamental key technology for image quality improvement. Proposed 

algorithm performs multiscale decomposition on SAR image and intensity (I) 

component of multispectral image, using optimized Rolling Guidance Filter (RGF). 

This approach separates the important scale space features into three categories: 

approximation layer, contour layer and detail layer. Suitable fusion rules to preserve 

spatial information are designed to fuse approximation layers, contour layers and detail 

layers based on information contained in that layer. This obtained image is integrated 

with CNN-fused image to preserve textural information. In the CNN-based approach, 

the designed network is trained to determine weights from an augmented dataset that 

includes both types of images. Through comprehensive experimentation, the proposed 

approach demonstrated robust spectral information preservation, achieving a spectral 

information metric Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) 

less than 3 and Spectral Angle Mapper (SAM) less than 1 which represents an optimal 

balance between contrast and correlation. Moreover, the spatial detail measure Peak 

Signal to Noise Ratio (PSNR) more than 30 and Average Gradient (AG) maintained in 

the ideal range, validates the method’s capability to retain spatial features. Also, visual 

interpretation clearly highlights the perceptible difference among the images. 
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1. INTRODUCTION

In general, the high-resolution satellite images get captured 

with a long revisit time, while low-resolution satellites revisit 

frequently. Various applications need satellite images with 

high spatial as well as spectral resolution [1]. Satellite images 

can be used for fishing prediction, crop species classification, 

soil analysis, Land Use Land Cover (LULC) changes, biomass 

and mineralogy mapping, aerospace and shipbuilding, to name 

a few. This rich information dataset can be obtained by the 

combination of two or more dissimilar images of same scene, 

to form new image with an improved quality and reliability [2, 

3]. To obtain such usable dataset satellite image fusion of 

multitemporal and multiresolution images have been 

researched in recent decades. 

1.1 SAR image 

Synthetic Aperture Radar (SAR) is an active microwave 

sensor that utilizes long-wavelength electromagnetic 

radiations, enabling it to effectively penetrate atmospheric 

impairments such as cloud cover, haze, dust, fog, smoke and 

other adverse environmental factors with the exception of 

intense penetration. This characteristic allows SAR imagery to 

be captured continuously, regardless of the time of day or 

weather conditions. This mechanism makes SAR imagery 

richer in spatial information.  

1.2 Multispectral image 

Multispectral sensors are passive remote sensing 

instruments that capture solar radiation reflected from the 

Earth's surface across different parts of the electromagnetic 

spectrum, such as ultraviolet, visible, and infrared 

wavelengths. Depending on their spectral resolution, optical 

sensors are categorized into panchromatic, multispectral and 

hyperspectral types. Multispectral imaging provides extensive 

information regarding the spectral signatures of terrestrial 

objects, thereby facilitating the differentiation of various land 

cover types. However, it’s effectiveness is significantly 

influenced by solar illumination and prevailing weather 

conditions. As these sensors exhibit high spectral sensitivity, 

it is more readable than SAR images. Therefore, fusion of 

SAR and multispectral image can provide more informative 

image with respect to spatial and spectral information. 

Broadly, multispectral and SAR image fusion is categorised 

into three different levels: pixel level, decision level, and 

feature level as per the different levels of information fusion 

[4-6]. This article focuses on pixel level fusion, offering a 

more comprehensive discussion on this technique than other 
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methods. Pixel level fusion attains more precise and detailed 

information, facilitating enhanced interpretation and broader 

application possibilities. Pixel-level fusion methods can be 

sorted into four main groups:  

1) Component substitution (CS)  

2) Multi-scale transform (MST)  

3) Model optimization (MO)  

4) Hybrid methods [7] 

The working principle of CS methods is to transform the 

multispectral image into a different domain to separate their 

spatial and spectral information. Then the spatial components 

are replaced with SAR images and an inverse transformation 

is applied to restore the images to their original domain by 

completing the image fusion process [8]. The CS methods 

inject more spatial details into fused image however spectral 

distortion may occur [9]. CS methods are the most widely 

utilized techniques which encompasses, Generalized 

Intensity-Hue-Saturation Adaptive Algorithm (GIHSA) [4], 

Gram-Schmidt Context Adaptive Sharpening (GSA-CA) [10], 

Principal Component Analysis (PCA) [11], Brovey Transform 

(BT) [3, 6, 7]. In previous studies, these approaches have been 

vastly employed for the panchromatic and multispectral image 

fusion. Further advancements in satellite technology have 

facilitated the availability of SAR and MS imagery for 

research purpose, offering enhanced information content. SAR 

and multispectral images usually have huge illumination 

difference because of different capturing mechanism. 

Therefore, applying CS methods for SAR and multispectral 

image pairs is challenging as these methods are good at 

retaining global details than the local details [7]. 

The MST methods typically decompose SAR and 

multispectral images into low and high frequency components 

and designs fusion rules specifically tailored to align with their 

respective spectral characteristics [12]. Multiscale geometric 

analysis, wavelet transform (WT) [13] and dual-tree complex 

wavelet transform (DTCWT) [14] are the mostly used 

traditional methods in MST. Multiscale geometric analysis 

involves curvelet transform (CVT) [15], non-subsampled 

contourlet transform (NSCT) [16], Bandlet transform [16], 

contourlet transform (CT) [17], Shearlet transform (ST) [18], 

and Gaussian and Laplacian pyramid decomposition-based 

methods. Pyramidal transformation and wavelet 

transformation-based methods are prominent categories 

within this group of methodologies. Pyramidal techniques 

decompose source images into Gaussian and Laplacian 

pyramids. While MST methods exhibit superior performance 

relative to CS methods by offering enhanced edge information 

and preserving cures within images, they are nevertheless 

subject to certain limitations. These include restricted 

directional information, the presence of blocking artifacts, and 

a moderate signal-to-noise ratio [19]. 

The MO method has been adapted for multispectral and 

SAR image fusion, treating the process as image restoration. 

This approach involves constructing a relationship model 

between the input images, optimizing the energy function and 

generating the fused image by refining the model [19]. MO 

methods are mainly composed of variational optimization 

models and sparse representation models, both of which 

demand prior knowledge, intricate model development, and 

significant computational resources. In contrast, deep learning 

techniques have gained considerable attention in recent years.  

Deep learning-based fusion strategies can be classified 

according to their underlying architecture into autoencoder 

(AE), convolutional neural network (CNN), and generative 

adversarial network (GAN) approaches [20, 21]. AE methods 

typically involve pre-training an autoencoder for feature 

extraction and image reconstruction, with intermediate feature 

fusion following traditional rules. A notable example is 

DenseFuse [22], which trains its encoder and decoder on the 

MS COCO dataset and employs addition and L1-norm fusion 

strategies. CNN methods incorporate convolutional neural 

networks into image fusion in two distinct ways. Prabhakar et 

al. [23] utilize carefully designed loss functions and network 

structures to perform feature extraction, fusion, and image 

reconstruction in an end-to-end manner. Zhang et al. [24] 

proposed a proportional maintenance loss of gradient and 

intensity to guide direct fused image generation. The trained 

CNN-based approaches can formulate the fusion rules while 

relying on traditional methods for image reconstruction [20, 

21, 23-25]. Lian et al. [26] utilized CNN to generate fusion 

weights, with image decomposition and reconstruction 

handled by Laplacian pyramids. GAN methods leverage the 

adversarial interplay between the generator unit and 

discriminator unit to estimate target probability distributions, 

implicitly accomplishing feature extraction, fusion, and image 

reconstruction. FusionGAN pioneered GAN-based image 

fusion, establishing a relation between the fused and visible 

images to enhance texture details in the resultant fused image 

[27-29]. Owing to the considerable differences among image 

fusion tasks, these techniques are applied in distinct ways 

across various fusion contexts. In summary, the review 

highlights important challenges associated with state-of-the-

art methods: 

(a) Spectral distortion continues to be an issue due to the 

fusion of heterogeneous images.  

(b) Handcrafted fusion rules lack adaptability.  

(c) The interpretability of deep learning fusion remains 

limited. 

The lacunas in state-of-art fusion models can be minimised 

by the hybrid method implementation. This research work is 

synthesized with fusion and reconstruction of detail, 

approximate and contour layers of input images. The key 

contributions of the implementation are:  

(a) Computed contour layer using Rolling Guidance Filter 

(RGF) based image decomposition. 

(b) Effective fusion rule designed for individual layer 

fusion.  

(c) Dynamic weight computation using augmented 

dataset training of CNN for SAR and MS image 

fusion.  

(d) Integration of enhanced spatial and spectral 

information using multiscale decomposed and CNN 

based fusion.  

The research work is presented as follows: Section 2 

introduces the proposed methodology, offering a succinct 

comparison with state-of-the-art techniques. The following 

Section 3 elaborates on details of the experimental design, data 

and the evaluation indexes used. Section 4 discusses the results 

and provides an analysis. The final section concludes with a 

synthesis of the principal findings. 

 

 

2. PROPOSED METHODOLOGY 

 

The proposed methodology is integration of CS, MST 

methods and CNN based method to effectively fuse the SAR 

and MS image. The experiment mainly includes the six steps:  

(1). IHS transform of MS image.  
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(2). Multiscale decomposition of I component using RGF.  

(3). Multilayer fusion. 

(4). CNN based image fusion of original images. 

(5). Combining multilayer fused image and CNN fused 

image.  

(6). IHS inverse transform to find enhanced color image.  

The detailed flow of working is as shown in Figure 1. Stage 

1 is to transform the MS image to Ims by using IHS 

transformation to acquire intensity (I), Hue (H), and saturation 

(S) components. Then the multiscale decomposition of I 

component and grayscale SAR image is carried out. In stage 

2, rolling guidance filter based multiscale decomposition is 

accomplished. Stage 3 executes multilayer fusion. CNN based 

image fusion is carried out in stage 4. The new intensity I’ is 

obtained by combining stage 3 and 4 output. The final 

enhanced color image is achieved by computing inverse IHS 

of I’, H, and S components. 

 

Stage 1: IHS transform  

The Intensity-Hue-Saturation (HIS) method development 

was based on the premise that spectral details are primarily 

found in the hue and saturation elements, while the intensity 

component retains the spatial details [30]. This research work 

focuses to improve the quality of spatial information of 

multispectral image by the fusion of I component of 

multispectral image and SAR image and IHS inverse 

transform to reconstruct the color fused image. The IHS 

transformation is carried out using Eq. (1). 
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where, R, G, and B denotes red, green, and blue bands of 

original input image, respectively. The inverse transform of 

IHS is expressed in Eq. (2). 

 

[
𝑅′
𝐺′
𝐵′

] =

[
 
 
 
 1

−1
√2

⁄ 1
√2

⁄

1 −1
√2

⁄ −1
√2

⁄

1 √2 0 ]
 
 
 
 

[
𝐼′
𝐻
𝑆

] (2) 

 

where, R’, G’, and B’ represent values of R, G, and B band 

values obtained after inverse IHS transform. I’ represents 

modified value of I after fusion.  

The traditional approach like Laplace pyramid (LP) 

multiscale transform fusion [31-33], contrast pyramid 

transform method [34] were proposed, these methods are less 

prone to produce artifacts or any kind of distortions due to less 

consideration for the spatial consistency [6, 35]. Afterwards, 

transform domain methods incorporated, which have some 

limitations like loss of detail, when implemented using 

wavelet transforms (WT), dual-tree complex WT (DTCWT) 

[36, 37]. In the distant past, Sparse Representation (SR) was 

built from compressed image sensing [38, 39]. Zhang et al. 

[40] implemented image fusion using SR as transform domain 

method for the first time. Afterwards SR method attracted 

wide attention to fuse the remote sensing (RS) images, owing 

to their enhanced capability to accurately capture and 

represent key features and structural details. Nonetheless, the 

sparse coding SR-based image fusion often entails a 

substantial computational load, with processing times 

escalating significantly as source image dimensions increase. 

Furthermore, the application of sliding window technique in 

sparse representation can result in a smoothing effect and a 

loss of detail, particularly when the overlap between adjacent 

patches is considerable. To minimize the artifacts that may 

occur due to traditional methods, this research modifies the I 

component as explained in subsequent sections. 

 

Stage 2: Multiscale decomposition  

In this stage multiscale decomposition is carried out using 

Rolling Guidance Filter (RGF), which effectively overcomes 

information redundancy and distortions [6]. Yang and Li [39] 

demonstrated that RGF, is an edge-preserving smoothing 

filter. The Joint Bilateral Filter (JBF) is incorporated to 

achieve iterative operation in RGF. JBF is edge-preserving 

filter (EPF) [6, 7, 36, 41-46]. 

The pixel spatial domain kernel determines weights by 

evaluating both spatial proximity and color similarity, unlike 

the Gaussian blur which considers only spatial distance and 

fails to preserve edge details. The RGF encompasses two 

major procedures: 1) small structure removal and 2) edge 

recovery. The initial step involves using a Gaussian filter to 

smooth out minor image details and repeatedly restore the 

image edges, as depicted in Figure 2. Assume that 𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡 

is input and output image pixels respectively. i and j are 

coordinates of an image. 𝜎𝑟 implies the parameter controlling 

the scale of Gaussian structure. Following Eq. (3) expresses 

the Gaussian filtering of image 𝐹𝑖𝑛 at central pixel i. 

 

𝐹𝑜𝑢𝑡 =
∑ 𝑒𝑥𝑝 (− 

‖𝑖 − 𝑗‖2

2𝜎𝑟
2 ) ∙ 𝐹𝑖𝑛𝑗𝜖𝑁(𝑖)

∑ 𝑒𝑥𝑝 (− 
‖𝑖 − 𝑗‖2

2𝜎𝑟
2 )𝑗𝜖𝑁(𝑖)

 (3) 

 

The edge restoration of the Gaussian-filtered (GF) blurred 

image is achieved through the application of JBF. The image 

G, obtained via Gaussian filtering, serves as the initial guide 

graph J1 for the JBF process. An iterative procedure is 

employed, denoted as n iterations, to recover edge information 

across various scales. In each iteration, the guide graph is 

derived from the output image Jt of the preceding iteration. 

The expression for this procedure is where Jt+1 represents the 

outcome of the tth iteration. The parameter σs governs the 

Gaussian distribution. Eq. (4) gives the relation of Fin and Jn+1.  
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2−𝐽𝑗

2‖

2𝜎𝑟
2 ) 
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 (4) 

 

The edge recovered image is updated iteratively as shown 

in Figure 2. Im is considered as input image as shown in Eqs. 

(5)-(7). 

 

𝐽1 = 𝐼𝑚 (5) 

 

𝐽𝑛+1 = 𝐽𝐵𝐹(𝐼, 𝐽, 𝜎𝑠, 𝜎𝑟) (6) 

 

{

𝑆𝑑,𝑖 = 𝐼𝑚 − 𝐽𝑖−1

𝑆𝑐,𝑖 = 𝐽𝑚 − 𝐽(𝑚+1) for 𝑚 = (𝑁/2)

𝑆𝑎 = 𝐽𝑛

 (7) 
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where, N is number of iterations, Sd,i is detail layer 

information, Sc,i is contour layer information and Sa is 

approximation layer information at nth level of 

decomposition. These obtained layers are further fused by 

using different fusion rules as explained in next point. 

 

 
 

Figure 1. Proposed work flow diagram 

 

 
 

Figure 2. Joint bilateral filter 

Stage 3: Layer-wise fusion 

Wavelet based traditional methods usually decompose the 

image into low and high frequency components and design the 

fusion rule for different frequency components. Fusion rules 

are designed according to the information contained in that 

layer and the fused image is reconstructed by inversion 

process. With this process it is observed that there is loss of 

information. To avoid the loss, this research work, fuses the 

scale spaced image layers with different fusion rules, is 

explained in this section. 

 

a. Approximation layer fusion  

The approximation layer contains coarse scale structure 

information and overall appearance of the image. Duan et al. 

[42] employed a multiscale decomposition of images utilizing 

a weighted least squares framework. For the base image, the 

average value of N base images is considered as the fused 

image. Lewis et al. [36], Liu et al. [46], and Gong et al. [47] 

proposed a hybrid approach combining MST and SR, where 

low-pass bands are fused using a conventional averaging 

method [48, 49]. Jian et al. [6] utilized a weighted average and 

global variance. The averaging-based method has limitations, 

such as contrast loss when input images have different 

intensity distributions, and noisy images may significantly 

affect the image reconstruction process. 

The most frequently used fusion methods for approximation 

layer are like averaging rule which may lose residual details 

and structural information after fusion because they are 

created for ideal approximation layer which is difficult to 
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achieve in satellite images. Therefore, Weighted Local energy 

Sum (WLES) method and Weighted Sum of Entropy and 

Mean of Laplacian (WSEML) method are employed to extract 

details and edge information. The WLE is expressed as: 

 

𝑊𝐿𝐸𝑆𝑓(𝓅, 𝓆) = ∑ ∑ 𝓌

𝓇

𝓃= −𝓇

𝓇

𝓂= −𝓇

× ((𝓂 + 𝓇 + 1), (𝓃 + 𝓇 + 1))
× 𝑆𝑎((𝓂 + 𝓅), ( 𝓃 + 𝓆))2 

(8) 

 

where, 𝑓 ∈ {𝑆𝐴𝑅,𝑀𝑆} and 𝑆𝑎(𝓅, 𝓆) symbolise the sub-band 

of low frequency at position (𝓅, 𝓆). Weight matrix 𝓌 is of 

(2𝓇 +1)× (2𝓇 + 1),where each element value of 𝓌 is set to 

22𝓇−𝒹 , 𝓇 is the radius of 𝓌  matrix, and four-neighborhood 

distance from the corresponding element to the center of 

matrix is represented with d, when r is set to 1, the 

normalization matrix W can be expressed as:  

 

1

16
[
1 2 1
2 4 2
1 2 1

] (9) 

 

The Eight-Neighborhood Modified Laplacian (EML) 

considers the impact of diagonal coefficients and effectively 

leverages the information from neighborhood [47, 48]. 

WSEML is a weighted representation of EML. The 

mathematical expression is: 

 

𝑊𝑆𝐸𝑀𝐿𝑓(𝓅, 𝓆) = ∑ ∑  𝓌

𝓇

𝓃= −𝓇

𝓇

𝓂= −𝓇

× (𝓂 + 𝓇 + 1,𝓃 + 𝓇 + 1)
× 𝐸𝑀𝐿𝑓(𝓂 + 𝓅,𝓃 + 𝓆) 

(10) 

 

𝐸𝑀𝐿𝑓(𝓅, 𝓆) = |2𝑆𝑎(𝓅, 𝓆) − 𝑆𝑎(𝓅 − 1, 𝓆)

− 𝑆𝑎(𝓅 + 1, 𝓆)|
+ |2𝑆𝑎(𝓅, 𝓆)
− 𝑆𝑎(𝓅, 𝓆 − 1)−𝑆𝑎(𝓅, 𝓆 + 1)|

+
1

√2
|2𝑆𝑎(𝓅, 𝓆) − 𝑆𝑎(𝓅 − 1, 𝓆 − 1)

− 𝑆𝑎(𝓅 + 1, 𝓆 + 1)|

+
1

√2
|2𝑆𝑎(𝓅, 𝓆) − 𝑆𝑎(𝓅 − 1, 𝓆 + 1)

− 𝑆𝑎(𝓅 + 1, 𝓆 − 1)| 

(11) 

 

Then, according to WLE and WSEML, the fused low-

frequency sub-band coefficient 𝐴𝑓𝑢𝑠𝑒𝑑(𝓅, 𝓆) is obtained, and 

the mathematical expression is  

 

𝐴𝑓𝑢𝑠𝑒𝑑 (𝓅, 𝓆)

= {
    𝐴𝑆𝐴𝑅(𝓅, 𝓆)          𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (1) 𝑖𝑠 𝑡𝑟𝑢𝑒

𝐴𝑀𝑆(𝓅, 𝓆)                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(12) 

 

The condition (1) is 𝑊𝐿𝐸𝑆𝐴𝑅(𝓅, 𝓆)  ∙  𝑊𝐸𝑆𝑀𝐿𝑆𝐴𝑅(𝓅, 𝓆) ≥
𝑊𝐿𝐸𝑆𝐴𝑅(𝓅, 𝓆) 𝑊𝐸𝑆𝑀𝐿𝑆𝐴𝑅(𝓅, 𝓆). 

While the WLE method emphasizes sharpness by focusing 

on frequency domain features, the WESML approach 

primarily considers a weight matrix based on horizontal, 

vertical, and diagonal distances, making it effective for 

observing spatial details. Consequently, the combination of 

WLE and WESML can identify rich information block in the 

image. 

 

b. Contour layer 

Many of the researchers have decomposed the input images 

into low and high frequency components whereas those have 

decomposed it to contour layer have mostly used absolute 

maxima rule. Gong et al. [7] have utilized Coupled Neural P 

(CNP) for contour layer fusion, which is quite parameter 

sensitive, complex implementation with high computational 

complexity. Gong et al. [47] have fused the contour layer using 

absolute maximum principle, with the possibility of contrast 

loss. Hence in order to preserve textural and edge information 

with a good blend from both images, the strategy of Local 

Statistical Edge Model (LSEM) is employed, it focuses on 

preserving edge structures by analysing local statistical 

properties of the decomposed images. The local statistical 

properties taken into consideration are, gradient magnitude 

and local statistics like standard deviation. The edge strength 

is computed using following mathematical relation in Eq. (13). 
 

𝐸(𝑡) = 𝛼 ∙ 𝐺(𝑡) + 𝛽 ∙ 𝑆𝑡𝑑(𝑡) (13) 
 

Here, 𝐸(𝑡)  is edge strength, 𝐺(𝑡)  is gradient, 𝑆𝑡𝑑(𝑡)  is 

standard deviation, 𝛼 and 𝛽 are tuneable weights. 

The fusion of gradient and variance provides a more 

adaptive representation of edge and texture information. 

Utilizing the edge strength to calculate the adaptive weights 

for fusion, using Eqs. (14) and (15). 

 

𝜔1 = 
𝐸1

𝐸1 + 𝐸2 + ∀
 (14) 

 

and 
 

 𝜔1 = 1 − 𝜔2 (15) 

 

Here, 𝜔1  and 𝜔2  are the weight calculations using 𝐸1  and 

𝐸2 edge strengths of both input detail layers. ∀ is constant to 

make the denominator non zero value. The design of local 

statistical edge model is explained in Eq. (16). 
 

𝐷𝐹
𝑐,𝑖(𝑢, 𝑣) =  𝜔1(𝑢, 𝑣) ∙ 𝐷𝑆𝐴𝑅

𝑐,𝑖 (𝑢, 𝑣) + 𝜔2(𝑢, 𝑣)

∙ 𝐷𝑀𝑆
𝑐,𝑖 (𝑢, 𝑣) 

(16) 

 

where, 𝐷𝑆𝐴𝑅
𝑐,𝑖

, 𝐷𝑀𝑆
𝑐,𝑖

 are contour layers of SAR and MS image 

respectively.  

This approach combines image gradient and standard 

deviation as complementary focus metrics, allowing for the 

concurrent assessment of local edge strength and overall 

intensity variation. The gradient aspect captures intricate 

structural and directional details, while the standard deviation 

measures the overall contrast and texture richness throughout 

the area. By merging these metrics, the method successfully 

maintains both sharp local features and broad intensity 

variations, leading to better information retention compared to 

methods that overlook either local or global pixel variation. 

 

c. Detail layer fusion 

These are considered as high frequency components of 

image. These contains abundant textural and edge information. 

Jian et al. [6] have employed JBF based detail layer fusion to 

preserve edge information. As detail layer consists of high 

frequency information, absolute maximization is suitable 

method [47, 50, 51]. Therefore, to fuse this layer absolute 

maximization using Gaussian filter is employed. The 

mathematical representation is as follows: 
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𝐷𝐹
𝑑,𝑖 =  𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑊𝑑,𝜎0

) ∙ 𝐷𝑀𝑆
𝑑,𝑛

+ (1 − 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑊𝑑,𝜎0
)) ∙ 𝐷𝑆𝐴𝑅

𝑑,𝑛  
(17) 

 

Here, 𝑊𝑗 = {
1     𝑖𝑓 |𝐷𝑀𝑆

𝑑,𝑛| ∙  |𝐷𝑀𝑆
𝑑,𝑛| >  |𝐷𝑆𝐴𝑅

𝑑,𝑛 | ∙  |𝐷𝑆𝐴𝑅
𝑑,𝑛 |

0                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, n = 2, 

3, 4, …, N. 

The computation is carried out using kernel size = 5. The 

last fusion image is reconstructed by using Eq. (18). 

 

𝐼𝑛𝑒𝑤
′ = ∑(𝐷𝐹

𝑐,𝑖 + 𝐷𝐹
𝑑,𝑖) + 𝐴𝑓𝑢𝑠𝑒𝑑

𝑛

𝑖=1

 (18) 

 

Using Eq. (18), the new I component is calculated. For the 

further processing the recovered image is combined with CNN 

fused image, as explained in next point.  

 

Stage 4: CNN based image fusion 

As depicted in the workflow block diagram Figure 1, 

involves the preparation of an augmented dataset. The 

augmented dataset is constructed by generating 100 samples 

from each original input image. Each input image is processed 

through three convolutional layers, with a progressive increase 

in the number of feature maps to extract modality-specific 

features. The kernel size for the convolution operation is set at 

3 × 3. The ReLU activation is used to introduce non-linearity. 

Padding set to same to ensure preservation of spatial 

resolution. These feature maps are concatenated along the 

channel axis to enable joint feature encoding. The 

concatenated features are passed through additional 

convolutional layers, enhancing network’s ability to learn 

spatial correlations and rich hierarchical representations. 

Further the tensor is flattened and a fully connected layer is 

used to refine the feature representation. Subsequently, the 

sigmoid activation is used to convert it into weighting map. An 

epoch count of 100 is employed to achieve effective results, 

SSIM loss function used, and learning rate = 0.0001. The 

detailed layer specifications of proposed CNN based fusion 

network is explained in Table 1.  

 

Table 1. Detailed layer specifications 

 
Layers (Type) Output Shape Parameters 

input_layer (InputLayer) (None, 224, 224, 1) 0 

input_layer_1 

(InputLayer) 
(None, 224, 224, 1) 0 

conv2d (Conv2D) (None, 224, 224, 16) 160 

conv2d_1 (Conv2D) (None, 224, 224, 16) 160 

conv3 (Conv2D) (None, 224, 224, 32) 4,640 

conv3 (Conv2D) (None, 224, 224, 32) 4,640 

conv2d (Conv2D) (None, 224, 224, 64) 18,496 

conv2d (Conv2D) (None, 224, 224, 64) 18,496 

conv2d (Conv2D) (None, 1) 2,049 

Concatenate 

(Concatenate) 

(None, 224, 224, 

128) 
0 

conv2d_2 (Conv2D) (None, 224, 224, 32) 36,896 

conv2d_3 (Conv2D) (None, 224, 224, 64) 18,496 

flatten_1 (Flatten) (None, 3211264) 0 

dense (Dense) (None, 128) 411,041,920 

dense_1 (Dense) (None, 50176) 6,472,704 

reshape (Reshape) (None, 224, 224, 1) 0 

subtract (Subtract) (None, 224, 224, 1) 0 

multiply (Multiply) (None, 224, 224, 1) 0 

Add (Add) (None, 224, 224, 1) 0 

 

 

Stage 5: Fused image reconstruction  

The modified 𝐼𝑛𝑒𝑤
′  component from layer-wise fusion is 

combined with CNN fused output image 𝐼𝐶𝑁𝑁
′ . As CNN-based 

methods primarily emphasize spatial features, they are capable 

of producing images with enhanced spatial detail. The 

multiscale decomposition is responsible for preserving the 

spectral information. Thus, to acquire information that is both 

spectrally and spatially rich, the integration of the two fused 

outputs is carried out. Finally, a color image is reconstructed 

using the H & S components along with the updated I’ 

component, as described in Eq. (2). 

 

 

3. EXPERIMENTAL DESIGN 

 

A. Experimental data  

In the course of rigorous experimentation, the MS image 

dataset employed was procured from the National Remote 

Sensing Centre (NRSC) in Hyderabad, India. Conversely, the 

SAR image dataset was sourced from the Earth Resources 

Observation and Science (EROS) Centre of the U.S. 

Geological Survey via the freely accessible QGIS tool 3.18 

version. This dataset encompasses the regions within the state 

of Maharashtra, India. The SAR image possesses a resolution 

of 15 meter, whereas the LISS III Multi Spectral image 

exhibits a resolution of 8 meter. The dataset used consists of 

more than 100 MS and SAR image pairs, in this presentation 

results of pairs is discussed. Prior to initiating the fusion 

process, an initial pairwise registration is conducted to achieve 

optimal results. The experimental setup used is CPU Intel Core 

i7-12500 𝐻𝑧  12th gen 2.50 GHZ, 2GB GPU, 64 bit operating 

system Windows 11, Programming environment PyCharm 

2024.3. 

 

B. Evaluation indexes 

Qualitative evaluation entails a subjective analysis of 

outcomes by comparing texture details, color information, 

spatial structure, visual effects, and other features of the 

combined images. On the other hand, quantitative evaluation 

offers an objective analysis based on specific evaluation 

metrics. 

In this section, we report the experimental process for 

diverse satellite image dataset using proposed algorithm. The 

experiments on four SAR and MS image datasets to validate 

the proposed fusion algorithm. For the purpose of bench 

marking, we chosen the listed baseline methods in the 

experimentations as, NSCT, PCA, BT, DWT [50], 

FusionGAN [29], and Siamese Network [51]. The 

experiments compare fused image with the reference image to 

analyse the performance of proposed method. Here, we utilize 

Peak Signal to Noise Ratio (PSNR), Spectral Angle Mapper 

(SAM), Erreur Relative Globale Adimensionnelle de Synthese 

(ERGAS), Average Gradient (AG), and Information Entropy 

five measures for proposed method evaluation. PSNR is a 

measure of accuracy of an algorithm. SAM signifies the 

spectral distortion after fusion. ERGAS indicates radiometric 

and spatial quality of an image.  

 

(a) PSNR 

This is crucial metric for measuring the quality of an image 

after processing. It evaluates the ratio of the maximum 

achievable power of an input signal to power of the noise, 

defined using Eq. (19).  
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𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10

255

𝑀𝑆𝐸
 (19) 

 

Here, MSE denotes mean square error of fused image as 

explained in Eq. (20). Let’s consider If(xk’, yk’) denote the 

transformed coordinates of Ia(xk, yk) from original image.  

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝐼𝑎(𝑥𝑘 , 𝑦𝑘) − 𝐼𝑓(𝑥𝑘

′ , 𝑦𝑘
′ ))2

𝑁

𝑘=1

 (20) 

 

Here, N represents the number of difference pairs. 

𝐼𝑎 , 𝐼𝑓  indicates input and fused image respectively. 

 

(b) SAM 

The spectral quality is evaluated using SAM, it typically 

compares pixel-wise spectral similarity of fused image with 

reference image by computing angle between two vectors. Eq. 

(21) evaluates spectral similarity between K and T, fused and 

reference image spectral pixel vectors respectively. 

 

𝑆𝐴𝑀 (𝐾, 𝑇) = cos−1
(𝐾 × 𝑇)

||𝐾|| ||𝑇||
 (21) 

 

(c) ERGAS 

The ERGAS is used for global relative error computation, 

as shown in Eqs. (22) and (23) [7].  

 

𝐸𝑅𝐺𝐴𝑆 = 100 
𝑎

𝑏
 √

1

𝑃
 ∑ (

𝑅𝑀𝑆𝐸(𝐼𝑎 , 𝐼𝑓)

𝜇𝐼𝑎
)

𝑃

𝑃=1

 (22) 

 

1

𝑁𝑀
 √ ∑ ∑(𝐼𝑎(𝑥𝑘 , 𝑦𝑘) − 𝐼𝑓(𝑥

′
𝑘, 𝑦

′
𝑘
))

𝑀

𝑗=1

𝑁

𝑖=1

 (23) 

 

where, a/b is ratio of resolution of SAR and MS image, P 

denotes the number of bands and 𝜇 is mean value of the image. 

 

(d) AG 

This signifies the average magnitude of the image gradient, 

computed using discrete derivatives as follows  

 

𝐴𝐺 =  
1

(𝑀 − 1)(𝑁 − 1)
∑ ∑ √(

𝜕𝑓

𝜕𝑥
)

2

+ (
𝜕𝑓

𝜕𝑦
)

2𝑁−1

𝑗=1

𝑀−1

𝑖=1

 (24) 

 

Here, M, N is image dimensions, f(i,j) is pixel intensity. 

 
𝜕𝑓

𝜕𝑥
= 𝑓(𝑖 + 1, 𝑗) − 𝑓(𝑖, 𝑗) 

𝜕𝑓

𝜕𝑦
= 𝑓(𝑖, 𝑗 + 1) − 𝑓(𝑖, 𝑗) 

 

This measures the strength of edges and textures, averaged 

throughout the image [49]. 

 

(e) Entropy 

This parameter gives idea about the richness of information 

in the data under consideration, calculated using Eq. (25). The 

higher the entropy value, better the quality of fused image [4]. 

𝑒 =  − ∑ 𝑝(𝑛)𝑙𝑜𝑔2𝑝(𝑛)

𝑀−1

𝑛=1

 (25) 

 

where, p(n) is probability of occurrence of nth gray level, M is 

the dynamic range of the image under analysis. 

 

(f) Standard Deviation of difference image  

This calculation determines the Standard Deviation (SD) of 

residual information, indicating the extent to which the fusion 

process has altered the input image. The absolute difference 

between the source and fused image is initially calculated 

using Eq. (26), and this result is then used to determine the 

SDdiff using Eq. (27). 

 

𝐼𝑑𝑖𝑓𝑓 = |𝐼𝑠𝑜𝑢𝑟𝑐𝑒 − 𝐼𝑓𝑢𝑠𝑒𝑑| (26) 

 

𝑆𝐷𝑑𝑖𝑓𝑓 = √
1

𝑁 − 1
∑(𝐼𝑑𝑖𝑓𝑓(𝑖) − 𝜇𝑑𝑖𝑓𝑓)

2

𝑁

𝑖=1

 (27) 

 

where, 𝐼𝑑𝑖𝑓𝑓  is absolute difference image, 𝜇𝑑𝑖𝑓𝑓  is mean of 

difference pixel image and N is total number of pixels.  

 

 

4. RESULTS AND DISCUSSION  

 

To highlight the effectiveness of the proposed method, 

comparison with several traditional image fusion techniques is 

done. These comparative methods include the nonsubsampled 

contourlet transform (NSCT), PCA, BT, Discrete Wavelet 

Transform (DWT), as well as more advanced techniques like 

FusionGAN and Siamese Network. Tables 2-5 present the 

results of all comparative methods across four distinct SAR 

and MS image datasets. Figures 3-9 illustrate the MS input, 

SAR input, NSCT output, PCA output, BT output, DWT 

output, FusionGAN output, Siamese network output, our 

method's grayscale output image, and our method's color 

output image in subgraphs from Figures 3 to 6 respectively. 

Visual analysis: NSCT decomposes the input images and 

performs energy based weighted fusion, is implemented. 

NSCT is poor at capturing direction edges which produces 

visual effect and blurring at the edges and reduced spectral 

fidelity. Therefore, poorly retained spectral resolution can be 

seen through Figure 3 for dataset pair 1. PCA considers most 

important components based on variance, which causes 

potential information loss and brightness distortion, leads to 

reduced spatial resolution as well as spectral fidelity. BT does 

the uniform enhancement without considering local texture or 

edges which eventually suppress the high frequency 

information, causes blurriness. DWT based methods 

decomposes the image and handles the individual frequency 

band. As SAR and MS image have basic different 

characteristics which demands variation in basis function and 

level of decomposition. This causes improper feature 

extraction from both input images, loss of information during 

fusion. Figure 3 clearly shows the spectral fidelity and overly 

smoothed image using FusionGAN method as it fails to 

acquire important details from dissimilar images makes image 

not interpretable. Though Siamese network is able to obtain 

relatively good results, but it performs weakly in integrating 

dissimilar features from SAR and MS image. Siamese network 

method does not perform well in terms spectral fidelity. These 
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observations are graphically represented in Figures 10 to 12. 

The affected area is zoomed in Figure 13 for the NSCT, PCA, 

BT, DWT and Siamese network output respectively. Whereas, 

proposed method is able to recover both spectral and spatial 

features.  

Quantitative analysis: Many a times image may look good 

but may not have the enough important information for further 

processing therefore, quantitative evaluation is required. 

Quantitative analysis mainly relies on the retention of 

information, the restoration of spatial features, the fidelity of 

spectral data, and the degree of image interpretability. Tables 

2-5 portray performance parameters for all datasets, where 

most efficient results are highlighted. Figures 7-12 depict the 

range of performance parameters for all datasets. In terms of 

spatial information, quality of fused image, PSNR and AG are 

the indicators. Figures 7 and 8 show the range of PSNR and 

AG respectively. This implies PCA and Siamese network 

method performs poorly whereas NSCT and BT method 

relatively performs well but not up-to the mark for PSNR 

metric. Proposed method consistently excels in PSNR 

evaluation. Regarding AG indicator, PCA, BT, DWT and 

FusionGAN methods show less spatial information retention. 

On the contrary traditional NSCT with multidirectional 

decomposition is able to perform well. Siamese network result 

indicates slightly improved response because of improved 

training mechanism than the FusionGAN method. Whereas 

proposed method maintains the highest spatial retention with 

largest value of AG as 9.77. From the perspective of spectral 

information measure, ERGAS and SAM are crucial indicators, 

signifies the level of spectral distortion in the fused image. 

From respective result tables of different dataset and Figures 

9 and 10, it illustrates that PCA output image shows highest 

level of distortion which can be verified by visual inspection 

also. In contrast to the Siamese network method, which holds 

the second position, the proposed approach achieves superior 

outcomes, with improvements of 2.22 in ERGAS and 0.54 in 

SAM, respectively. Successively, entropy signifies the overall 

enhancement of input image. The proposed method performs 

best as presented in Figure 11. The standard deviation of the 

difference image for the proposed method, falls within the 

healthy range of 12 to 18, indicating minimal deviation in pixel 

values, depicted in Figure 12. This suggests that the designed 

method exhibits a clear advantage in preserving the original 

image information. 

 

Table 2. Quantitative evaluation results for dataset pair P1 

 
Method PSNR Entropy ERGAS SAM AG SDdiff 

NSCT 25.33 7 5.23 5.54 8.41 115.87 

PCA 15.33 6.67 16.56 17.27 8.06 86.32 

BT 22.69 7.21 7.09 6 5.71 81.64 

DWT 23.89 7.11 6.17 6.19 5.07 46.21 

FusionGAN 20.07 6.58 5.98 5.89 3.54 119.65 

Siamese 5.14 6.74 53.5 1.5 8.63 25.65 

Our 32.15 7.93 2.48 0.54 8.89 17.56 

 

Table 3. Quantitative evaluation results for dataset pair P2 

 
Method PSNR Entropy ERGAS SAM AG SDdiff 

NSCT 25.04 7 6.88 5.77 8.41 105.27 

PCA 25.08 7.04 6.845 5.82 5.06 113.56 

BT 20.76 7.08 11.26 4.74 6.18 51.37 

DWT 20.5 7.05 11.6 6.48 6.44 95.96 

FusionGAN 10.12 6.74 10.14 2.56 5.12 120.45 

Siamese 6.84 6.43 55.92 0.35 8.67 28.21 

Our 32.84 7.24 2.98 0.78 8.89 15.36 

 

Table 4. Quantitative evaluation results for dataset pair P3 

 
Method PSNR Entropy ERGAS SAM AG SDdiff 

NSCT 25.34 7.09 5.88 4.93 8.27 72.76 

PCA 16.08 6.39 17.11 17.28 7.23 100.08 

BT 25.65 7.02 5.68 4.61 6.34 88.71 

DWT 22.69 7.06 7.99 6.86 6.38 92.06 

FusionGAN 19.07 5.98 8.45 4.98 4.95 94.78 

Siamese 6.31 6.8 52.6 1.45 8.68 21.64 

Our 34.26 7.27 2.22 0.68 8.76 14.47 

 

Table 5. Quantitative evaluation results for dataset pair P4 

 
Method PSNR Entropy ERGAS SAM AG SDdiff 

NSCT 24.88 7.25 6.19 5.16 9.87 66.89 

PCA 8.53 7.3 40.69 35.54 5.63 77.09 

BT 23.85 7.14 6.97 4.43 7.1 53.13 

DWT 16.7 6.96 15.89 13.88 5.04 73.61 

FusionGAN 17.62 6.98 5.24 3.94 2.38 84.51 

Siamese 6.31 6.8 52.6 8.48 0.89 24.14 

Our 34 7.55 2.26 0.742 9.77 12.45 
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(3.1) (3.2) (3.3) (3.4) (3.5) 

     
(3.6) (3.7) (3.8) (3.9) (3.10) 

 

Figure 3. Dataset pair P1 results: (3.1) MS input, (3.2) SAR input, (3.3) NSCT, (3.4) PCA, (3.5) BT, (3.6) DWT, (3.7) 

FusionGAN, (3.8) Siamese network, (3.9) Our method output, (3.10) Our method color image 

 

     
(4.1) (4.2) (4.3) (4.4) (4.5) 

     
(4.6) (4.7) (4.8) (4.9) (4.10) 

 

Figure 4. Dataset pair P2 results: (4.1) MS input, (4.2) SAR input, (4.3) NSCT, (4.4) PCA, (4.5) BT, (4.6) DWT, (4.7) 

FusionGAN, (4.8) Siamese network, (4.9) Our method output, (4.10) Our method color image 

 

     
(5.1) (5.2) (5.3) (5.4) (5.5) 

     
(5.6) (5.7) (5.8) (5.9) (5.10) 

 

Figure 5. Dataset pair P3 results: (5.1) MS input, (5.2) SAR input, (5.3) NSCT, (5.4) PCA, (5.5) BT, (5.6) DWT, (5.7) 

FusionGAN, (5.8) Siamese network, (5.9) Our method output, (5.10) Our method color image 
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(6.1) (6.2) (6.3) (6.4) (6.5) 

     
(6.6) (6.7) (6.8) (6.9) (6.10) 

 

Figure 6. Dataset pair P4 results: (6.1) MS input, (6.2) SAR input, (6.3) NSCT, (6.4) PCA, (6.5) BT, (6.6) DWT, (6.7) 

FusionGAN, (6.8) Siamese network, (6.9) Our method output, (6.10) Our method color image 

 

  
  

Figure 7. Comparative analysis of PSNR Figure 9. Comparative analysis of ERGAS 

 

  
  

Figure 8. Comparative analysis of AG Figure 10. Comparative analysis of SAM 
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Figure 11. Comparative analysis of entropy 

 

 
 

Figure 12. Comparative analysis of standard deviation of 

difference image 

 

 
        (a)                                                                                     (b)  

 
        (c)                                                                                     (d)  

 
        (e)                                                                                     (f)  

 

Figure 13. Zoomed sections of (a) NSCT, (b) PCA, (c) BT, (d) DWT, (e) Siamese and (f) our method output images 

 

 

5. CONCLUSIONS 

 

Despite the higher computational demands of pixel-level 

fusion techniques compared to feature-level and decision-level 

fusion methods, they continue to be widely used in remote 

sensing image fusion due to their superior accuracy. In this 

article pixel level fusion of SAR and MS image is carried out 

using RGF multiscale decomposition in combination with 

CNN based fusion. In the initial phase of fusion, the Intensity 

(I) component of the multispectral (MS) image is 

predominantly considered, as it encapsulates the most 

essential perceptual information. Modifying the I component 

facilitates the effective integration of spatial details, 

particularly from the SAR image, thereby enhancing the 

spatial richness of the fused image. Processing of the I 

component allow for more controlled enhancement while 

preserving spectral integrity, and any distortions introduced 

are relatively easier to rectify during the inverse 

transformation process. RGF based multiscale decomposition 

can reserve edge information better than other decomposition 
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methods such as wavelet-based decomposition. After 

decomposition approximation layer, detail layer and contour 

layers are obtained and fused individually. Approximation 

layer is fused using WLE and WSEML methods to obtain most 

of the information from both input images. WLE method gives 

advantage of analysing frequency band-wise better to keep 

spectral information intact and WSEML method primarily 

focuses on improving the entropy and mean of Laplacian is 

responsible to ensure spectral consistency. The fusion of the 

contour layer is executed using a Local Statistical Edge Model, 

which is designed by taking into account both standard 

deviation and gradient. This approach aids in preserving 

crucial edge information, particularly in relation to directional 

data. Whereas, the detail layer fusion utilises absolute 

maximization to preserve high frequency information. 

Subsequently, the average of all layers is integrated with the 

fusion output from the CNN approach. In CNN-based fusion, 

the network is trained using the SSIM loss function and 

augmented dataset pairs of SAR and MS images, which 

enhances the network's robustness to illumination variations 

and maintains a balance in smoothness that promotes the 

preservation of fine details. Through this the weights are 

calculated and image fusion is accomplished which has ability 

to find and preserve complex features from dissimilar datasets. 

By integrating multiscale decomposition with CNN-based 

fusion methods, the resulting image is enriched with both 

spatial and spectral information. Following this, the modified 

I component is processed through an inverse IHS 

transformation. This innovative method demonstrates superior 

performance compared to both traditional and network-based 

techniques. It achieves a peak PSNR of 34 and a minimum 

SAM of 0.54, indicating significant improvements in the 

spatial and spectral resolution of the final image. Also ensures 

high fidelity preservation by maintaining the standard 

deviation of different images at a low value, ranging from 12 

to 19. 
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NOMENCLATURE 

F Image in JBF Filter related operation 

S Multiscale decomposed layer image 

A Approximation layer  

D Contour and detail layer 

I’ Processed I component  

Greek symbols 

σ Gaussian filter parameter 

𝛼, 𝛽 Tuneable weights   

𝜔1, 𝜔2 Calculated weights in LSEM model 

𝐸1, 𝐸2 Edge strengths of both input images 

μ Mean of image 

Subscripts 

in, out Input and output image 

r Gaussian structure scale Controlling parameter 

s Gaussian distribution 

d Detail layer 

c Contour layer 

a Approximation layer 

F Fused image 

SAR SAR image  

MS MS image 

new Layer-wise fused image 

CNN CNN method fused image 

diff Absolute difference image 

source Input image 

fused Fused image 
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