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Groundwater is vital for public health, industry, and agriculture, and it is found under
the surface in soil pores and rock fissures. Accurate modeling and prediction of
groundwater parameters are required to ensure effective resource management and
environmental sustainability. While the Gamma distribution is commonly used for
forecasting groundwater features, it is limited to describing data with a right-skewed
shape (where most values are low, but a few are very large). In this paper, we introduce
the Odd Beta Prime Gamma (OBP-Gamma) distribution, a flexible statistical model that
can describe both left- and right-skewed patterns as well as hazard rates (the probability
that failure or contamination occurs at a given time). The OBP-Gamma distribution is
applied to two groundwater parameters, pH and conductivity, and compared with
classical Gamma and Weibull-Gamma models. Results show that OBP-Gamma
provides a better fit for the observed data. In addition, we evaluated the use of machine
learning models to classify groundwater potability using a small dataset of 30 water
samples collected in Jaen, Kano State, Nigeria. Fourteen models were tested, and
Gaussian Naive Bayes achieved the highest classification accuracy (90%), followed by
Gradient Boosting (83.3%). Other models, such as Passive Aggressive and AdaBoost,
performed poorly, with accuracy below 50%. These results highlight that the OBP-
Gamma model offers improved flexibility for groundwater data analysis and that
machine learning methods, particularly Gaussian Naive Bayes, show potential for
assessing groundwater potability. However, due to the small sample size, the findings
should be viewed as a proof-of-concept, with future research needed on larger datasets
to confirm generalizability.

1. INTRODUCTION

As a vital resource for domestic, industrial, and agricultural
uses, groundwater is essential to maintaining human activity.
Because this resource directly affects the health and well-
being of dependent populations, its quality must be
guaranteed. Considerable studies have been done over the
years to monitor and analyze the water quality parameters in
various regions. These attempts have produced sufficient
information related to water quality characteristics, offering a
starting point for additional study and well-informed decision-

making [1].

To ensure community safety and well-being, groundwater

quality needs to be meticulously assessed and monitored
continuously. The health and well-being of the population are
directly related to the quality and safety of groundwater
supplies. Contaminants that surpass set quality requirements
offer considerable dangers, potentially leading to waterborne
diseases and other adverse health consequences [2].
Anthropogenic  activities such as urbanization and
industrialization pose a rising threat to groundwater quality.
These variables present considerable obstacles to maintaining
groundwater purity, particularly for potable usage. As a result,
several studies have been conducted to assess the acceptability
of groundwater for human consumption, using a wide range of
approaches and analytical techniques. For instance,
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multivariate statistics by Thomas [3], the automatic
exponential smoothing model by Nsabimana et al. [4], and so
on.

Statistical analysis in environmental research has advanced
significantly in recent years, especially with the increasing
application of probability distribution models Ishaq et al. [5].
When analyzing and interpreting environmental data, these
statistical frameworks are essential. Even though using
probability models to measure extreme weather and
hydrological events is a relatively new idea in environmental
studies, many researchers have carefully evaluated several
probability distributions to find the one that best fits actual
data. For example, an Australian study by Haddad [6] found
that the normal and generalized extreme value models
performed better than other distributions assessed in the study
in terms of representing annual maximum temperatures.
Furthermore, probability distribution models have found
application in modeling monthly maximum temperatures in
Bangladesh by Hossian et al. [7] and Hossain [8], as well as
the average daily maximum temperature in regions such as
South Africa by Nemukula and Sigauke [9] and Thailand by
Busababodhin et al. [10]. Another study by Shakil et al. [11]
assessed the suitability of five probability models to find the
one that best fit temperature data: Weibull, Gumbel, Cauchy,
Logistic, and normal distribution. Three cities' daily extreme
temperatures were successfully modeled using a mixed
Gaussian model by Al-Hemyari and Abbasi [12]. Five
probability distributions were used to examine the temperature
by Chen et al. [13]. Furthermore, Poonia and Azad [14]
employed the Gamma, Gumbel, log-normal, normal, and
Weibull distributions to predict the yearly maximum
temperature in India's Northwest Himalayas.

The Gamma distribution is useful in a variety of fields,
including finance, environmental research, and engineering,
especially when modeling continuous variables with positive
skewness. It has strong similarities to the beta distribution and
is naturally relevant in situations where the waiting time
between  Poisson-distributed events is  connected.
Furthermore, the Gamma distribution has similarities with
other well-known distributions such as the normal,
exponential, chi-squared, and Erlang distributions. This study
aims to enhance the Gamma distribution by creating a more
adaptable variation that can accommodate both positive and
negative skewness. Such an extension would make a
significant contribution to the current research on the Gamma
distribution. The cumulative distribution function (CDF) and
probability density function (PDF) of the Gamma distribution
are described in Egs. (1) and (2), respectively.
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where, 4, p > 0, 1 is the scale parameter, p is the shape
parameter, and I'(p) is the Gamma function, which has the
following formula by Wadi et al. [15]:
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Classical Gamma distributions have limitations in their
capacity for effectively analyzing datasets with left-skewness.
This limitation necessitates the creation of an improved
Gamma distribution that is more flexible and adaptable in
capturing the distinct characteristics of left-skewed data,
which are common in a variety of domains, including
environmental science, reliability engineering, medicine,
finance, insurance, and engineering [16, 17].

In recent years, there has been an increased interest in
creating flexible probability distributions by expanding
current models with extra shape factors [18]. This method has
proven extremely useful in capturing the many different
aspects of real-world data, such as skewness and changing tail
behavior. A wide range of generalized families of univariate
probability distributions have emerged in the literature,
including noteworthy examples such as the Beta-G family by
Eugene et al. [19], the new odd reparameterized exponential
transformed-X family by Orji et al. [20], the Transmuted-G
family by Shaw and Buckley [21], and various extensions of
the Kumaraswamy distribution, such as the Kumaraswamy-
Pareto by Bourguignon et al. [22], the exponentiated
Kumaraswamy distribution by Lemonte et al. [23], the
Kumaraswamy Marshal-Olkin family by Alizadeh et al. [24],
the Kumaraswamy Marshall-Olkin Fréchet by Afify et al. [25],
the Kumaraswamy power function by Abdul-Moniem [26],
the exponentiated Kumaraswamy-power function by Bursa
and Ozel [27], the updated Lindley by Onyekwere et al. [28],
the exponentiated Kumaraswamy-G class by Gomes-Silva et
al. [29], the Kumaraswamy inverted Topp—Leone by Hassan
et al. [30], the modified exponentiated Kumaraswamy by
Arshad et al. [31], entropy analysis of the Kumaraswamy
distribution by Al-Babtain et al. [32], the extended generalized
inverted Kumaraswamy-G by Ramzan et al. [33], and many
others. These generalized families provide a rich framework
for modeling complex data in diverse fields.

Suleiman et al. [34] presented the Odd Beta Prime
Generalized (OBP-G) class of distributions, which is an
extension of the widely used beta prime distribution. The beta
prime distribution has proven useful for modeling lifetime data
in a variety of fields, including biomedical science and
engineering. Despite its importance, the beta prime
distribution has gotten little attention in the literature. The
OBP-G class provides a fresh framework for analyzing data
with properties that may not be fully reflected by the usual beta
prime distribution. Eq. (4) defines the CDF for the OBP-G
class.
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where, ¢, d are shape parameters, € is a vector parameter. The
corresponding PDF is expressed in Eq. (5) as follows:
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where, g(x, €) is the baseline PDF.
The OBP-G class has proved its adaptability by generalizing



different baseline models, resulting in the creation of
innovative and versatile compound distributions with broad
application across multiple domains. This expansion has
resulted in a diverse set of distributions, including the OBP-
logistic model developed by Suleiman et al. [34], which
effectively simulates environmental and engineering data.
Building on this achievement, Suleiman et al. [35] proposed
the  OBP-inverted Kumaraswamy  distribution and
demonstrated its usefulness in medical data analysis.
Continuing this line of research, Suleiman et al. [36] defined
the OBP-Burr X distribution, which has applications in
geological and COVID-19 data. Following these advances,
this study presents a four-parameter Gamma distribution
derived from the OBP-G class for analyzing groundwater
datasets. However, previous extensions of the Gamma
distribution have improved flexibility but still face limitations
when applied to datasets with diverse skewness and hazard
rate behaviors. A more adaptable distribution is therefore
needed.

In recent years, machine learning models have emerged as
useful tools for classification problems in a variety of fields.
These models have the potential to improve and supplement
traditional methods, resulting in more precise and effective
assessments. Several studies have investigated the application
of various machine learning models in the context of water
quality classification. Readers may refer to the references [37-
40] for more details. While some studies have applied single
classifiers such as Support Vector Machines or Decision
Trees, few have conducted systematic comparisons across
multiple machine learning approaches. This limits our
understanding of which algorithms perform best under small-
sample groundwater datasets, where generalization is difficult.

This study addresses these two gaps. First, we introduce the
OBP-Gamma distribution, a new extension that provides
greater flexibility in modeling both left- and right-skewed data
and diverse hazard rate structures. Second, we compare the
performance of multiple machine learning classifiers for
groundwater potability prediction using a small dataset of 30
samples. Unlike earlier studies, our approach combines
probability distribution with comparative machine learning
analysis. This approach offers a more comprehensive
framework for groundwater modeling.

The primary motivations for this investigation are outlined
below:

(a) Development of the OBP-Gamma distribution as a
flexible alternative to classical Gamma and related
models.

(b) Application of the OBP-Gamma distribution to real
groundwater data (pH and conductivity).

(¢) Comparative evaluation of 14 machine learning models
for groundwater potability classification.

2. METHODOLOGY

The OBP-Gamma distribution is described in this section,
along with its basic ideas, significant applications, and
classification methods for groundwater potability using
machine learning models.

2.1 The OBP-Gamma distribution

An expansion of the Gamma distribution, the OBP-Gamma
distribution introduces two additional shape parameters, ¢ and
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d, from the OBP-G family. Eq. (1) is substituted into Eq. (4)
to obtain the CDF of the OBP-Gamma distribution in the
manner described below:

X

2
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where, A is scale parameter and ¢, d, p are shape parameters.
Inserting Eq. (2) into Eq. (5) yields the PDF as follows:
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Some of the potential forms of the OBP-Gamma

distribution PDF for specific values of the parameters ¢, d, p
and A, respectively, are shown in Figure 1.

For reproducibility, the general definition of the OBP-G
family is provided in Egs. (4) and (5), which specify the
generator function and general probability density form. These
expressions serve as the foundation for the OBP—Gamma
model developed in this study. This ensures that the method
can be replicated and extended by other researchers.

The survival function for the OBP-Gamma distribution is as
follows:

Sx)=1-F®x) (8)

Substituting Eq. (6) into Eq. (8) yields the following
survival function for the OBP-Gamma model:
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The OBP-Gamma distribution's hazard function is as
follows:

ORC)
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The hazard function of the suggested distribution can be
obtained by replacing Egs. (6) and (7) in Eq. (10):
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Figure 2. Hazard function of the OBP-Gamma distribution
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For certain values of the parameters ¢, d, p and A4,
respectively, Figure 2 shows several potential forms of the
hazard functions of the OBP-Gamma distribution.

The proposed OBP-Gamma distribution is a fundamental
novelty in this research. As shown in Figure 1, this distribution
is extremely flexible, capturing both positive and negative
skewness, which the typical Gamma distribution lacks. Figure
2 further demonstrates the dynamic nature of the OBP-Gamma
distribution's hazard function, which can show either
increasing or decreasing patterns. These curvature qualities
improve the model's applicability in a variety of statistical
circumstances. The OBP-Gamma distribution's practical
significance is demonstrated by its successful application to
real-world datasets from a variety of fields, as shown in the
application section. This distribution has a potential
application in various domains, including biomedical sciences,
engineering, physics, reliability, economics, environmental
sciences, biology, and survival analysis.

2.1.1 Application of the OBP-Gamma distribution to
groundwater datasets

This section describes the practical implementation of the
newly suggested OBP-Gamma distribution. We analyze its
performance using two real-world groundwater datasets on pH
and conductivity. To determine its acceptability, we make a
comparison with different distributions. This comparison
includes the traditional Gamma distribution and the Weibull-
Gamma distribution by Klakattawi [41].

To find the most suitable model, we used R statistical

Kermel density
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g
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50 55

software to evaluate some important metrics. These metrics
included the Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and the negative log-likelihood
(=€) . These metrics provide insights into the model's
goodness of fit. These measures provide a rigorous statistical
basis for model comparison and were consistently applied
across the Gamma, Weibull-Gamma, and OBP-Gamma
models. The model with the smallest values for these metrics
is selected as the best model.

Dataset I, sourced from Suleiman et al. [42], provides
information on the pH concentration in groundwater. The
dataset is given below:

627 6.14 559 6.07 576 697
6.65 6.50 717 697 699 690
692 682 635 7.12  6.85 6.71
6.85 722  6.66 7.07 6.14 6.4l
647 632 662 720 676 7.04

Dataset II, obtained from Suleiman et al. [42], includes
information on the conductivity concentration in groundwater.
This dataset is given below:

654 514 626 796 902 209
796 780 234 812 998 422
394 542 594 422 326 446
452 562 854 306 1003 356
922 1490 1210 1030 790 740
Violin plot
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Figure 3. Descriptive plots of dataset I
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Figure 4. Descriptive plots of dataset II
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Table 1. Maximum likelihood estimates (MLEs) and
goodness-of-fit measures for the first dataset

Models Estimate —f AIC BIC
1=10.1054 -13.5052 35.0104 40.6152
OBP- p = 83.6986
Gamma ¢ =0.8394
d = 59.3355
1 =10.5569 -224.2258 456.4516  462.0564
Weibull-  p = 8.3549
Gamma b = 22.8730
a=3.3212
Gamma 1=1.6678 -37.4451 82.8903 88.4951
p =7.1523

Table 2. MLEs and goodness-of-fit measures for the second

dataset
Models Estimate —f AIC BIC
A1=0.1214 -19.6125 47.2251 52.8299
p =72.0785
OBP-Gamma ¢ =06521
d = 46.4180
1=0.82726 -19.6352 47.2705 52.8753
— p =10.6411
Weibull- Gamma b = 34379
a=0.2426
Gamma A1=1.6015 -40.0649 84.1299 86.9323
p = 6.8813

1.0
2
k7] = OBP-Gamma
5 Weibull-Gamma
] = Gamma

0.5

13
0.0
6.0 6.5 7.0
X
Figure 5. Empirical PDFs of dataset I
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Figure 6. Empirical PDFs of dataset II
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Figures 3 and 4 show visual representations of datasets I and
IT using kernel density and violin plots. The kernel density
corresponds to the dataset I shows a left-skewed distribution,
whereas the violin plot indicates the existence of outliers.
Similarly, dataset II has a right-skewed distribution based on
the kernel density plot, with the violin plot confirming the
presence of extreme values. Figure 1 shows how the suggested
OBP-Gamma distribution may adequately capture both right
and left-skewed features in the datasets.

Tables 1 and 2 show the comparison criteria for datasets I
and II, respectively. The results show that the OBP-Gamma
model outperforms the Gamma and Weibull-Gamma models.
This superiority is clear across both datasets, as the OBP-
Gamma model consistently has lower information criterion
values.

Figures 5 and 6 demonstrate how well each model fits the
data. The findings show that the OBP-Gamma model
outperforms the Weibull-Gamma and Gamma models in
capturing the patterns in both datasets compared to the
Weibull-Gamma and Gamma models.

2.2 Machine learning models

The previous subsection evaluated the appropriateness of
the OBP-Gamma model for groundwater parameter datasets;
this subsection focuses on classification algorithms. A wide
range of machine learning models, including Random Forest
Classifier (RF), AdaBoost Classifier (ADA), Gradient
Boosting Classifier (XGB), K-Nearest Neighbours (KNN),
Decision Tree Classifier (DTC), Gaussian Naive Bayes
(GNB), Stochastic Gradient Descent Classifier (SGDC),
Perceptron (Perc), Nearest Centroid (NC), Ridge Classifier
(Ridge), Bernoulli Naive Bayes (BNB), Gradient Boosting
Classifier (XGB), and Passive Aggressive Classifier (PAC),
are tested for their ability to classify groundwater potability.

All nine groundwater features available in the dataset were
included in the analysis. Before modeling, the data were
cleaned and standardized; however, no advanced feature
selection or outlier removal procedure was applied. While
conductivity displayed some extreme values, these were
retained to reflect the real distribution of the data and to avoid
introducing bias in such a small dataset. All computational
operations, including training and testing, are carried out using
the Python programming environment. Figure 7 illustrates the
methodology used in this subsection.

2.2.1 Water sampling and preprocessing of data

This study examined 30 groundwater samples obtained
from open wells and boreholes in Jaen, Kano State, Nigeria, in
August 2020. Each sample had fifteen physicochemical
parameters tested, with a focus on nine essential properties
such as conductivity, pH, and sulphate concentration. Each
sample was labeled as "potable" (1) or "non-potable" (0) based
on Nigerian drinking water quality standards outlined in
NSDWQ [43].

The preprocessing procedures listed below were carried out
in order to get the data ready for analysis:
i.  Data cleaning: Removed inaccurate and missing data
points from the dataset.
Feature scaling: To ensure equal contribution to model
training, continuous variables were scaled to a mean of 0
and a standard deviation of 1.
Data split: An 80-20 split between training and testing
sets ensures consistent results across models.

il.

iii.
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Figure 7. Methodology of the machine learning classification model
Actual Class distinguish between potable and non-potable water sources.
Potable Not Potable To evaluate model performance, we use a set of common
" metrics derived from the confusion matrix: accuracy,
o precision, recall, and F1-score, which are calculated using the
@ 8§ | True Positive False Positive od i
s 3 values for TP, TN, FP, and FN as outlined in Egs. (12)-(15),
= respectively.
2 3
T 32 _ TP+ TN b
a S | False Negative True Negative Accuracy Score = TP + FP + TN + FN (12)
=
o TP
. . . . . . Precision = ———— (13)
Figure 8. Confusion matrix for binary classification for TP +FP
groundwater potability P
. - Recall = ——— (14)
2.2.2 Model selection and training TP +FN
The comparison analysis included fourteen distinct machine o
learning models: LR, SVC, KNN, DTC, GNB, SGDC, Perc, F1 — Score = 22 Precision X Recall (15)
NC, Ridge, BNB, RF, ADA, XGB, and PAC algorithms. The Precision + Recall
following studies [44-47] provide a comprehensive review of
these algorithms.
The following steps were taken for each model: 3. RESULTS

1. Model training: The model was trained with the training
dataset and default hyperparameters.

2. Model evaluation: Metrics such as accuracy, precision,
recall, and F-1 score were used to assess the model's
performance on the test dataset.

2.2.3 Evaluation metrics

This study employs a binary confusion matrix to evaluate
the efficacy of water quality classification systems. The
groundwater is classified as "potable" or "not potable." A
confusion matrix is a useful tool for evaluating model
predictions by comparing them to actual class labels, which
provides information about the model's accuracy in identifying
various water quality classes.

Figure 8 shows the concept of a confusion matrix. True
Positive (TP) refers to the correct identification of samples
classified as "potable". True Negative (TN) indicates that
samples are correctly classified as "not potable". False
Positives (FP) occur when a sample from the "not potable"
class is incorrectly identified as "potable." Similarly, False
Negative (FN) refers to the incorrect classification of samples
from the "potable" class as "not potable." These metrics are
essential in assessing a classification model's ability to
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3.1 Descriptive statistics

Table 3 presents the statistical features of the groundwater
dataset. The results show significant variability in important
parameters, as shown by large standard deviations.
Groundwater conductivity varied greatly, with values ranging
from 209 to 1490 units. The slightly acidic nature of the water
is reflected in the pH range of 5.59 to 7.22. The skewness and
kurtosis values indicate that the distribution of these properties
is not perfectly symmetrical and may have longer tails than a
normal distribution. These measures of variation play a crucial
role in evaluating groundwater quality assessment and
monitoring strategies.

Figure 9 depicts the spatial distribution and trends in
groundwater parameter concentrations at the sampling
stations. The visualization effectively displays how these
concentrations fluctuate spatially, including gradients that
may indicate directional trends. This geographical
representation improves our understanding of the groundwater
system by assisting in the identification of regions with
potentially higher parameter concentrations and guiding future
research as needed.
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Table 3. Descriptive statistics for the groundwater dataset

Parameters Min. Max. ]S):g, Skewness Kurtosis
Conductivity 209 1490 302.61 0.63 0.32
Ph 5.59 7.22 0.41 -0.92 0.55
TDS 104 731 151.26 0.52 0.04
Sulphate 6.00 55.00 10.75 1.66 3.70
Nitrate 0.01 0.93 0.22 1.68 2.84
Calcium 0.07 1.75 0.50 1.21 0.14
Magnesium  0.03  0.74 0.21 1.20 0.14
Fluoride 0.00 0.03 0.01 0.87 0.98
Chromium 0.00 0.01 0.01 1.33 -0.26
1.0
Conductivity
pH 0.8
TDS 0.6
Sulphate
-0.4
Nitrate
Calcium 016 013 0.092 0.035 -0.2
Magnesium 0.16 0.13 0.086 0.042 0.0
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Figure 10. Groundwater parameter correlation matrix

3.2 Measure of correlation

Correlation analysis is a useful approach for determining the
correlations between different water quality measures. By
investigating these relationships, we can obtain insight into the
complex mechanisms that influence groundwater quality [45].
Figure 10 depicts the correlation analysis results, which
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demonstrate strong positive and negative connections between
the analysed parameters. In particular, a strong correlation of
0.99 was found between Calcium and Magnesium,
demonstrating a near-linear relationship and that variations in
their amounts are closely related in groundwater samples.
Similarly, a considerable positive correlation (0.99) was
reported between conductivity and TDS, indicating a close
relationship. These findings help us understand how
groundwater quality metrics are interrelated.

3.3 Evaluation of model performance

To measure the performance of each machine learning
algorithm, we used a set of key evaluation metrics, such as
accuracy, precision, recall, and Fl-score, all reported as
percentages. This comprehensive method gave a holistic
picture of each model’s performance in classifying the
groundwater dataset. Table 4 compares these models,
demonstrating that GNB achieved the highest accuracy of
90%, while ADA had a lower accuracy of 33.33%. This
investigation demonstrates GNB’s higher effectiveness in
classifying groundwater potability when compared to other
assessed approaches.

Table 4. Comparative analysis of various model-algorithm

accuracy
. - F1-
S/No. Algorithm Accuracy Precision Recall score
1 GNB 0.9000 0.9000  0.9000 0.8889
2 XGB 0.8333 0.6750  0.6750 0.6667
3 NC 0.7750 0.7750  0.7750 0.7750
4 BNB 0.7750 0.7750  0.7750 0.7750
5 SvC 0.7500 0.7500  0.6000 0.5000
6 KNN 0.7500 0.7500  0.6000 0.5000
7 DTC 0.7500 0.7500  0.6000 0.5000
8 RF 0.7500 0.5833 0.5750  0.5555
9 SGDC 0.6750 0.5833 0.5750  0.5500
10 Perc 0.6750 0.6750  0.6750 0.6667
11 LR 0.5833 0.5833 0.5750  0.5500
12 Ridge 0.4643 0.4642  0.4750 0.4156
13 PAC 0.4643 0.4642  0.4750 0.4756
14 ADA 0.3333 0.3333 0.3500  0.3250
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Figures 11 and 12 present a visual comparison of the
accuracy of several model algorithms. These numbers enable
a rapid and easy evaluation of model performance, showing
the algorithms with the best accuracy scores.

The results reported above indicate the effectiveness of the
GNB classifier in predicting groundwater potability. The GNB
performed well, especially when correlations across
groundwater quality measurements were modest. These
findings indicate that GNB is a realistic and competitive
approach for real-world groundwater potability assessments.

It is important to note that the groundwater dataset analyzed
here is relatively small (n = 30), which limits the robustness
and generalizability of the statistical and machine learning
results. Moreover, A key limitation of the machine learning
component of this study is the very small dataset size. With an
80-20 train-test split, only six samples were used for testing,
which limits the statistical reliability of performance estimates
and may lead to overfitting. A more robust approach would
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have been to use k-fold cross-validation or leave-one-out
cross-validation; however, this was not implemented here due
to dataset size constraints.

Another limitation of the present study is that confidence
intervals, hypothesis testing, or resampling approaches such as
bootstrapping were not applied to formally quantify the
uncertainty of the model comparisons. Future work should
incorporate these statistical tools to more rigorously validate
differences between models.

4. CONCLUSIONS

This study introduced the OBP—Gamma distribution as a
flexible extension of the classical Gamma model for
groundwater data analysis. The OBP—Gamma distribution was
shown to capture a wider range of shapes and hazard behaviors
compared with the Gamma and Weibull-Gamma



distributions, providing improved model fit to the observed
groundwater parameters. In parallel, we conducted a
comparative evaluation of machine learning models for
groundwater potability classification.

The findings suggest that the OBP—Gamma distribution
offers enhanced flexibility and that Gaussian Naive Bayes
performed best among the machine learning classifiers tested.
However, given the small dataset size (n = 30) and the reliance
on simple train-test splits.

Future studies will focus on refining the OBP-Gamma
distribution's mathematical features and examining its
relevance in numerous medical fields, including COVID-19
and cancer data analysis. In addition, further research should
focus on improving classification accuracy through model
refining and ensemble approaches in this vital subject.
Furthermore, the OBP—-Gamma distribution was compared
with the classical Gamma and Weibull-Gamma models, as
these are among the most widely used baselines in
groundwater analysis and provide a direct benchmark for
evaluating improvements. We acknowledge, however, that
this represents a limited set of competing models. Future
studies will extend the comparison to more recent and flexible
distributions such as the generalized Gamma and Log-logistic,
as well as apply the OBP-Gamma model to larger datasets to
further validate its performance.
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