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Groundwater is vital for public health, industry, and agriculture, and it is found under 

the surface in soil pores and rock fissures. Accurate modeling and prediction of 

groundwater parameters are required to ensure effective resource management and 

environmental sustainability. While the Gamma distribution is commonly used for 

forecasting groundwater features, it is limited to describing data with a right-skewed 

shape (where most values are low, but a few are very large). In this paper, we introduce 

the Odd Beta Prime Gamma (OBP-Gamma) distribution, a flexible statistical model that 

can describe both left- and right-skewed patterns as well as hazard rates (the probability 

that failure or contamination occurs at a given time). The OBP-Gamma distribution is 

applied to two groundwater parameters, pH and conductivity, and compared with 

classical Gamma and Weibull-Gamma models. Results show that OBP-Gamma 

provides a better fit for the observed data. In addition, we evaluated the use of machine 

learning models to classify groundwater potability using a small dataset of 30 water 

samples collected in Jaen, Kano State, Nigeria. Fourteen models were tested, and 

Gaussian Naive Bayes achieved the highest classification accuracy (90%), followed by 

Gradient Boosting (83.3%). Other models, such as Passive Aggressive and AdaBoost, 

performed poorly, with accuracy below 50%. These results highlight that the OBP-

Gamma model offers improved flexibility for groundwater data analysis and that 

machine learning methods, particularly Gaussian Naive Bayes, show potential for 

assessing groundwater potability. However, due to the small sample size, the findings 

should be viewed as a proof-of-concept, with future research needed on larger datasets 

to confirm generalizability. 
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1. INTRODUCTION

As a vital resource for domestic, industrial, and agricultural 

uses, groundwater is essential to maintaining human activity. 

Because this resource directly affects the health and well-

being of dependent populations, its quality must be 

guaranteed. Considerable studies have been done over the 

years to monitor and analyze the water quality parameters in 

various regions. These attempts have produced sufficient 

information related to water quality characteristics, offering a 

starting point for additional study and well-informed decision-

making [1].  

To ensure community safety and well-being, groundwater 

quality needs to be meticulously assessed and monitored 

continuously. The health and well-being of the population are 

directly related to the quality and safety of groundwater 

supplies. Contaminants that surpass set quality requirements 

offer considerable dangers, potentially leading to waterborne 

diseases and other adverse health consequences [2]. 

Anthropogenic activities such as urbanization and 

industrialization pose a rising threat to groundwater quality. 

These variables present considerable obstacles to maintaining 

groundwater purity, particularly for potable usage. As a result, 

several studies have been conducted to assess the acceptability 

of groundwater for human consumption, using a wide range of 

approaches and analytical techniques. For instance, 
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multivariate statistics by Thomas [3], the automatic 

exponential smoothing model by Nsabimana et al. [4], and so 

on. 

Statistical analysis in environmental research has advanced 

significantly in recent years, especially with the increasing 

application of probability distribution models Ishaq et al. [5]. 

When analyzing and interpreting environmental data, these 

statistical frameworks are essential. Even though using 

probability models to measure extreme weather and 

hydrological events is a relatively new idea in environmental 

studies, many researchers have carefully evaluated several 

probability distributions to find the one that best fits actual 

data. For example, an Australian study by Haddad [6] found 

that the normal and generalized extreme value models 

performed better than other distributions assessed in the study 

in terms of representing annual maximum temperatures. 

Furthermore, probability distribution models have found 

application in modeling monthly maximum temperatures in 

Bangladesh by Hossian et al. [7] and Hossain [8], as well as 

the average daily maximum temperature in regions such as 

South Africa by Nemukula and Sigauke [9] and Thailand by 

Busababodhin et al. [10]. Another study by Shakil et al. [11] 

assessed the suitability of five probability models to find the 

one that best fit temperature data: Weibull, Gumbel, Cauchy, 

Logistic, and normal distribution. Three cities' daily extreme 

temperatures were successfully modeled using a mixed 

Gaussian model by Al-Hemyari and Abbasi [12]. Five 

probability distributions were used to examine the temperature 

by Chen et al. [13]. Furthermore, Poonia and Azad [14] 

employed the Gamma, Gumbel, log-normal, normal, and 

Weibull distributions to predict the yearly maximum 

temperature in India's Northwest Himalayas. 

The Gamma distribution is useful in a variety of fields, 

including finance, environmental research, and engineering, 

especially when modeling continuous variables with positive 

skewness. It has strong similarities to the beta distribution and 

is naturally relevant in situations where the waiting time 

between Poisson-distributed events is connected. 

Furthermore, the Gamma distribution has similarities with 

other well-known distributions such as the normal, 

exponential, chi-squared, and Erlang distributions. This study 

aims to enhance the Gamma distribution by creating a more 

adaptable variation that can accommodate both positive and 

negative skewness. Such an extension would make a 

significant contribution to the current research on the Gamma 

distribution. The cumulative distribution function (CDF) and 

probability density function (PDF) of the Gamma distribution 

are described in Eqs. (1) and (2), respectively. 

𝐺(𝑥) =
𝛾 (𝑝,

𝑥
𝜆
)

𝛤(𝑝)
; 𝑥 > 0 (1) 

and 

𝑔(𝑥) =
𝑥𝑝−1 𝑒𝑥𝑝 (−

𝑥
𝜆
)

𝜆𝑝𝛤(𝑝)
; 𝑥 > 0 (2) 

where, λ, p > 0, λ is the scale parameter, p is the shape 

parameter, and 𝛤(𝑝) is the Gamma function, which has the 

following formula by Wadi et al. [15]: 

𝛤(𝑝) = ∫ 𝑡𝑝−1
∞

0

𝑒𝑥𝑝(−𝑡) 𝑑𝑡 (3) 

Classical Gamma distributions have limitations in their 

capacity for effectively analyzing datasets with left-skewness. 

This limitation necessitates the creation of an improved 

Gamma distribution that is more flexible and adaptable in 

capturing the distinct characteristics of left-skewed data, 

which are common in a variety of domains, including 

environmental science, reliability engineering, medicine, 

finance, insurance, and engineering [16, 17].  

In recent years, there has been an increased interest in 

creating flexible probability distributions by expanding 

current models with extra shape factors [18]. This method has 

proven extremely useful in capturing the many different 

aspects of real-world data, such as skewness and changing tail 

behavior. A wide range of generalized families of univariate 

probability distributions have emerged in the literature, 

including noteworthy examples such as the Beta-G family by 

Eugene et al. [19], the new odd reparameterized exponential 

transformed-X family by Orji et al. [20], the Transmuted-G 

family by Shaw and Buckley [21], and various extensions of 

the Kumaraswamy distribution, such as the Kumaraswamy-

Pareto by Bourguignon et al. [22], the exponentiated 

Kumaraswamy distribution by Lemonte et al. [23], the 

Kumaraswamy Marshal-Olkin family by Alizadeh et al. [24], 

the Kumaraswamy Marshall-Olkin Fréchet by Afify et al. [25], 

the Kumaraswamy power function by Abdul-Moniem [26], 

the exponentiated Kumaraswamy-power function by Bursa 

and Ozel [27], the updated Lindley by Onyekwere et al. [28], 

the exponentiated Kumaraswamy-G class by Gomes-Silva et 

al. [29], the Kumaraswamy inverted Topp–Leone by Hassan 

et al. [30], the modified exponentiated Kumaraswamy by 

Arshad et al. [31], entropy analysis of the Kumaraswamy 

distribution by Al-Babtain et al. [32], the extended generalized 

inverted Kumaraswamy-G by Ramzan et al. [33], and many 

others. These generalized families provide a rich framework 

for modeling complex data in diverse fields. 

Suleiman et al. [34] presented the Odd Beta Prime 

Generalized (OBP-G) class of distributions, which is an 

extension of the widely used beta prime distribution. The beta 

prime distribution has proven useful for modeling lifetime data 

in a variety of fields, including biomedical science and 

engineering. Despite its importance, the beta prime 

distribution has gotten little attention in the literature. The 

OBP-G class provides a fresh framework for analyzing data 

with properties that may not be fully reflected by the usual beta 

prime distribution. Eq. (4) defines the CDF for the OBP-G 

class. 

𝐹(𝑥) =

𝐵 𝐺(𝑥,𝜀)
1−𝐺(𝑥,𝜀)

(𝑐, 𝑑)

𝐵(𝑐, 𝑑)
; 𝑥 > 0, 𝑐, 𝑑 > 0 (4) 

where, c, d are shape parameters, 𝜀 is a vector parameter. The 

corresponding PDF is expressed in Eq. (5) as follows: 

𝑓(𝑥) =
𝑔(𝑥, 𝜀)

𝐵(𝑐, 𝑑){1 − 𝐺(𝑥, 𝜀)}2

{
𝐺(𝑥, 𝜀)

1 − 𝐺(𝑥, 𝜀)
}
𝑐−1

{1 + (
𝐺(𝑥, 𝜀)

1 − 𝐺(𝑥, 𝜀)
)}
𝑐+𝑑

𝑥 > 0, 𝑐, 𝑑 > 0 

𝑓(𝑥) =
𝑔(𝑥, 𝜀)𝐺(𝑥, 𝜀)

𝑐−1

𝐵(𝑐, 𝑑){1 − 𝐺(𝑥, 𝜀)}1−𝑑

(5) 

where, 𝑔(𝑥, 𝜀) is the baseline PDF. 

The OBP-G class has proved its adaptability by generalizing 
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different baseline models, resulting in the creation of 

innovative and versatile compound distributions with broad 

application across multiple domains. This expansion has 

resulted in a diverse set of distributions, including the OBP-

logistic model developed by Suleiman et al. [34], which 

effectively simulates environmental and engineering data. 

Building on this achievement, Suleiman et al. [35] proposed 

the OBP-inverted Kumaraswamy distribution and 

demonstrated its usefulness in medical data analysis. 

Continuing this line of research, Suleiman et al. [36] defined 

the OBP-Burr X distribution, which has applications in 

geological and COVID-19 data. Following these advances, 

this study presents a four-parameter Gamma distribution 

derived from the OBP-G class for analyzing groundwater 

datasets. However, previous extensions of the Gamma 

distribution have improved flexibility but still face limitations 

when applied to datasets with diverse skewness and hazard 

rate behaviors. A more adaptable distribution is therefore 

needed. 

In recent years, machine learning models have emerged as 

useful tools for classification problems in a variety of fields. 

These models have the potential to improve and supplement 

traditional methods, resulting in more precise and effective 

assessments. Several studies have investigated the application 

of various machine learning models in the context of water 

quality classification. Readers may refer to the references [37-

40] for more details. While some studies have applied single

classifiers such as Support Vector Machines or Decision

Trees, few have conducted systematic comparisons across

multiple machine learning approaches. This limits our

understanding of which algorithms perform best under small-

sample groundwater datasets, where generalization is difficult.

This study addresses these two gaps. First, we introduce the 

OBP-Gamma distribution, a new extension that provides 

greater flexibility in modeling both left- and right-skewed data 

and diverse hazard rate structures. Second, we compare the 

performance of multiple machine learning classifiers for 

groundwater potability prediction using a small dataset of 30 

samples. Unlike earlier studies, our approach combines 

probability distribution with comparative machine learning 

analysis. This approach offers a more comprehensive 

framework for groundwater modeling. 

The primary motivations for this investigation are outlined 

below: 

(a) Development of the OBP-Gamma distribution as a

flexible alternative to classical Gamma and related

models.

(b) Application of the OBP-Gamma distribution to real

groundwater data (pH and conductivity).

(c) Comparative evaluation of 14 machine learning models

for groundwater potability classification.

2. METHODOLOGY

The OBP-Gamma distribution is described in this section, 

along with its basic ideas, significant applications, and 

classification methods for groundwater potability using 

machine learning models. 

2.1 The OBP-Gamma distribution 

An expansion of the Gamma distribution, the OBP-Gamma 

distribution introduces two additional shape parameters, c and 

d, from the OBP-G family. Eq. (1) is substituted into Eq. (4) 

to obtain the CDF of the OBP-Gamma distribution in the 

manner described below: 

F(x) =

B
γ (p,

x
λ
)

Γ(p) (1 −
γ (p,

x
λ
)

Γ(p)
)

(c, d)

B(c, d)
x > 0, c > 0, d > 0, p > 0, λ > 0 

(6) 

where, 𝜆 is scale parameter and c, d, p are shape parameters. 

Inserting Eq. (2) into Eq. (5) yields the PDF as follows: 

f(x) =

xp−1 exp (−
x
λ
)(

γ (p,
x
λ
)

Γ(p)
)

c−1

B(c, d)λpΓ(p) {1 −
γ (p,

x
λ
)

Γ(p)
}

1−d
; x > 0 (7) 

Some of the potential forms of the OBP-Gamma 

distribution PDF for specific values of the parameters c, d, p 

and λ, respectively, are shown in Figure 1. 

For reproducibility, the general definition of the OBP–G 

family is provided in Eqs. (4) and (5), which specify the 

generator function and general probability density form. These 

expressions serve as the foundation for the OBP–Gamma 

model developed in this study. This ensures that the method 

can be replicated and extended by other researchers. 

The survival function for the OBP-Gamma distribution is as 

follows: 

S(x) = 1 − F(x) (8) 

Substituting Eq. (6) into Eq. (8) yields the following 

survival function for the OBP-Gamma model: 

S(x) = 1 −

B
γ (p,

x
λ
)

Γ(p) (1 −
γ (p,

x
λ
)

Γ(p)
)

(c, d)

B(c, d)
; x > 0 

(9) 

The OBP-Gamma distribution's hazard function is as 

follows: 

h(x) =
f(x)

S(x)
=

f(x)

1 − F(x)
(10) 

The hazard function of the suggested distribution can be 

obtained by replacing Eqs. (6) and (7) in Eq. (10): 

h(x) =

xp−1 exp(−
x

λ
)(

γ(p,
x
λ
)

Γ(p)
)

c−1

(

1−B
γ(p,

x
λ
)

Γ(p)(1−
γ(p,

x
λ
)

Γ(p)
)

(c,d)

)

B(c,d)λpΓ(p){1−
γ(p,

x
λ
)

Γ(p)
}

1−d

; x > 0.  
(11) 
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Figure 1. PDF of the OBP-Gamma model 

Figure 2. Hazard function of the OBP-Gamma distribution 
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For certain values of the parameters c, d, p and 𝜆 , 

respectively, Figure 2 shows several potential forms of the 

hazard functions of the OBP-Gamma distribution. 

The proposed OBP-Gamma distribution is a fundamental 

novelty in this research. As shown in Figure 1, this distribution 

is extremely flexible, capturing both positive and negative 

skewness, which the typical Gamma distribution lacks. Figure 

2 further demonstrates the dynamic nature of the OBP-Gamma 

distribution's hazard function, which can show either 

increasing or decreasing patterns. These curvature qualities 

improve the model's applicability in a variety of statistical 

circumstances. The OBP-Gamma distribution's practical 

significance is demonstrated by its successful application to 

real-world datasets from a variety of fields, as shown in the 

application section. This distribution has a potential 

application in various domains, including biomedical sciences, 

engineering, physics, reliability, economics, environmental 

sciences, biology, and survival analysis. 

2.1.1 Application of the OBP-Gamma distribution to 

groundwater datasets  

This section describes the practical implementation of the 

newly suggested OBP-Gamma distribution. We analyze its 

performance using two real-world groundwater datasets on pH 

and conductivity. To determine its acceptability, we make a 

comparison with different distributions. This comparison 

includes the traditional Gamma distribution and the Weibull-

Gamma distribution by Klakattawi [41]. 

To find the most suitable model, we used R statistical 

software to evaluate some important metrics. These metrics 

included the Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and the negative log-likelihood 
(−ℓ) . These metrics provide insights into the model's 

goodness of fit. These measures provide a rigorous statistical 

basis for model comparison and were consistently applied 

across the Gamma, Weibull–Gamma, and OBP–Gamma 

models. The model with the smallest values for these metrics 

is selected as the best model. 

Dataset I, sourced from Suleiman et al. [42], provides 

information on the pH concentration in groundwater. The 

dataset is given below: 

6.27 6.14 5.59 6.07 5.76 6.97

6.65 6.50 7.17 6.97 6.99 6.90

6.92 6.82 6.35 7.12 6.85 6.71

6.85 7.22 6.66 7.07 6.14 6.41

6.47 6.32 6.62 7.20 6.76 7.04 

Dataset II, obtained from Suleiman et al. [42], includes 

information on the conductivity concentration in groundwater. 

This dataset is given below: 

654 514 626 796 902 209

796 780 234 812 998 422

394 542 594 422 326 446

452 562 854 306 1003 356

922 1490 1210 1030 790 740 

Figure 3. Descriptive plots of dataset I 

Figure 4. Descriptive plots of dataset II 
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Table 1. Maximum likelihood estimates (MLEs) and 

goodness-of-fit measures for the first dataset 

 
Models Estimate −𝓵 AIC BIC 

OBP-

Gamma 

𝜆̂ = 0.1054  -13.5052 35.0104  40.6152 

𝑝̂ = 83.6986     

𝑐̂ = 0.8394     

𝑑̂ = 59.3355     

Weibull-

Gamma 

𝜆̂ = 0.5569  -224.2258  456.4516 462.0564 

𝑝̂ = 8.3549     

𝑏̂ = 22.8730     

𝑎̂ = 3.3212     

Gamma 
𝜆̂ = 1.6678  -37.4451  82.8903  88.4951  

𝑝̂ = 7.1523     

 

Table 2. MLEs and goodness-of-fit measures for the second 

dataset 

 
Models Estimate −𝓵 AIC BIC 

OBP-Gamma  

𝜆̂ = 0.1214  -19.6125  47.2251  52.8299  

𝑝̂ = 72. 0785     

𝑐̂ = 0.6521     

𝑑̂ = 46.4180     

Weibull- Gamma 

𝜆̂ = 0.82726  -19.6352 47.2705  52.8753  

𝑝̂ = 10.6411     

𝑏̂ = 3.4379     

𝑎̂ = 0.2426     

Gamma 
𝜆̂ = 1.6015  -40.0649  84.1299  86.9323  

𝑝̂ = 6.8813     

 

 
 

Figure 5. Empirical PDFs of dataset I 

 

 
 

Figure 6. Empirical PDFs of dataset II 

 

Figures 3 and 4 show visual representations of datasets I and 

II using kernel density and violin plots. The kernel density 

corresponds to the dataset I shows a left-skewed distribution, 

whereas the violin plot indicates the existence of outliers. 

Similarly, dataset II has a right-skewed distribution based on 

the kernel density plot, with the violin plot confirming the 

presence of extreme values. Figure 1 shows how the suggested 

OBP-Gamma distribution may adequately capture both right 

and left-skewed features in the datasets. 

Tables 1 and 2 show the comparison criteria for datasets I 

and II, respectively. The results show that the OBP-Gamma 

model outperforms the Gamma and Weibull-Gamma models. 

This superiority is clear across both datasets, as the OBP-

Gamma model consistently has lower information criterion 

values.  

Figures 5 and 6 demonstrate how well each model fits the 

data. The findings show that the OBP-Gamma model 

outperforms the Weibull-Gamma and Gamma models in 

capturing the patterns in both datasets compared to the 

Weibull-Gamma and Gamma models. 

 

2.2 Machine learning models 

 

The previous subsection evaluated the appropriateness of 

the OBP-Gamma model for groundwater parameter datasets; 

this subsection focuses on classification algorithms. A wide 

range of machine learning models, including Random Forest 

Classifier (RF), AdaBoost Classifier (ADA), Gradient 

Boosting Classifier (XGB), K-Nearest Neighbours (KNN), 

Decision Tree Classifier (DTC), Gaussian Naive Bayes 

(GNB), Stochastic Gradient Descent Classifier (SGDC), 

Perceptron (Perc), Nearest Centroid (NC), Ridge Classifier 

(Ridge), Bernoulli Naive Bayes (BNB), Gradient Boosting 

Classifier (XGB), and Passive Aggressive Classifier (PAC), 

are tested for their ability to classify groundwater potability. 

All nine groundwater features available in the dataset were 

included in the analysis. Before modeling, the data were 

cleaned and standardized; however, no advanced feature 

selection or outlier removal procedure was applied. While 

conductivity displayed some extreme values, these were 

retained to reflect the real distribution of the data and to avoid 

introducing bias in such a small dataset. All computational 

operations, including training and testing, are carried out using 

the Python programming environment. Figure 7 illustrates the 

methodology used in this subsection. 

 

2.2.1 Water sampling and preprocessing of data 

This study examined 30 groundwater samples obtained 

from open wells and boreholes in Jaen, Kano State, Nigeria, in 

August 2020. Each sample had fifteen physicochemical 

parameters tested, with a focus on nine essential properties 

such as conductivity, pH, and sulphate concentration. Each 

sample was labeled as "potable" (1) or "non-potable" (0) based 

on Nigerian drinking water quality standards outlined in 

NSDWQ [43]. 

The preprocessing procedures listed below were carried out 

in order to get the data ready for analysis: 

i. Data cleaning: Removed inaccurate and missing data 

points from the dataset. 

ii. Feature scaling: To ensure equal contribution to model 

training, continuous variables were scaled to a mean of 0 

and a standard deviation of 1. 

iii. Data split: An 80-20 split between training and testing 

sets ensures consistent results across models. 
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Figure 7. Methodology of the machine learning classification model 

Figure 8. Confusion matrix for binary classification for 

groundwater potability 

2.2.2 Model selection and training 

The comparison analysis included fourteen distinct machine 

learning models: LR, SVC, KNN, DTC, GNB, SGDC, Perc, 

NC, Ridge, BNB, RF, ADA, XGB, and PAC algorithms. The 

following studies [44-47] provide a comprehensive review of 

these algorithms. 

The following steps were taken for each model: 

1. Model training: The model was trained with the training

dataset and default hyperparameters. 

2. Model evaluation: Metrics such as accuracy, precision,

recall, and F-1 score were used to assess the model's 

performance on the test dataset. 

2.2.3 Evaluation metrics 

This study employs a binary confusion matrix to evaluate 

the efficacy of water quality classification systems. The 

groundwater is classified as "potable" or "not potable." A 

confusion matrix is a useful tool for evaluating model 

predictions by comparing them to actual class labels, which 

provides information about the model's accuracy in identifying 

various water quality classes. 

Figure 8 shows the concept of a confusion matrix. True 

Positive (TP) refers to the correct identification of samples 

classified as "potable". True Negative (TN) indicates that 

samples are correctly classified as "not potable". False 

Positives (FP) occur when a sample from the "not potable" 

class is incorrectly identified as "potable." Similarly, False 

Negative (FN) refers to the incorrect classification of samples 

from the "potable" class as "not potable." These metrics are 

essential in assessing a classification model's ability to 

distinguish between potable and non-potable water sources. 

To evaluate model performance, we use a set of common 

metrics derived from the confusion matrix: accuracy, 

precision, recall, and F1-score, which are calculated using the 

values for TP, TN, FP, and FN as outlined in Eqs. (12)-(15), 

respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(12) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(15) 

3. RESULTS

3.1 Descriptive statistics 

Table 3 presents the statistical features of the groundwater 

dataset. The results show significant variability in important 

parameters, as shown by large standard deviations. 

Groundwater conductivity varied greatly, with values ranging 

from 209 to 1490 units. The slightly acidic nature of the water 

is reflected in the pH range of 5.59 to 7.22. The skewness and 

kurtosis values indicate that the distribution of these properties 

is not perfectly symmetrical and may have longer tails than a 

normal distribution. These measures of variation play a crucial 

role in evaluating groundwater quality assessment and 

monitoring strategies. 

Figure 9 depicts the spatial distribution and trends in 

groundwater parameter concentrations at the sampling 

stations. The visualization effectively displays how these 

concentrations fluctuate spatially, including gradients that 

may indicate directional trends. This geographical 

representation improves our understanding of the groundwater 

system by assisting in the identification of regions with 

potentially higher parameter concentrations and guiding future 

research as needed. 
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Figure 9. Graph of sampling points showing trend values 

Table 3. Descriptive statistics for the groundwater dataset 

Parameters Min. Max. 
Std. 

Dev. 
Skewness Kurtosis 

Conductivity 209 1490 302.61 0.63 0.32 

Ph 5.59 7.22 0.41 -0.92 0.55 

TDS 104 731 151.26 0.52 0.04 

Sulphate 6.00 55.00 10.75 1.66 3.70 

Nitrate 0.01 0.93 0.22 1.68 2.84 

Calcium 0.07 1.75 0.50 1.21 0.14 

Magnesium 0.03 0.74 0.21 1.20 0.14 

Fluoride 0.00 0.03 0.01 0.87 0.98 

Chromium 0.00 0.01 0.01 1.33 -0.26

Figure 10. Groundwater parameter correlation matrix 

3.2 Measure of correlation 

Correlation analysis is a useful approach for determining the 

correlations between different water quality measures. By 

investigating these relationships, we can obtain insight into the 

complex mechanisms that influence groundwater quality [45]. 

Figure 10 depicts the correlation analysis results, which 

demonstrate strong positive and negative connections between 

the analysed parameters. In particular, a strong correlation of 

0.99 was found between Calcium and Magnesium, 

demonstrating a near-linear relationship and that variations in 

their amounts are closely related in groundwater samples. 

Similarly, a considerable positive correlation (0.99) was 

reported between conductivity and TDS, indicating a close 

relationship. These findings help us understand how 

groundwater quality metrics are interrelated.  

3.3 Evaluation of model performance 

To measure the performance of each machine learning 

algorithm, we used a set of key evaluation metrics, such as 

accuracy, precision, recall, and F1-score, all reported as 

percentages. This comprehensive method gave a holistic 

picture of each model’s performance in classifying the 

groundwater dataset. Table 4 compares these models, 

demonstrating that GNB achieved the highest accuracy of 

90%, while ADA had a lower accuracy of 33.33%. This 

investigation demonstrates GNB’s higher effectiveness in 

classifying groundwater potability when compared to other 

assessed approaches. 

Table 4. Comparative analysis of various model-algorithm 

accuracy 

S/No. Algorithm Accuracy Precision Recall 
F1-

score 

1 GNB 0.9000 0.9000 0.9000 0.8889 

2 XGB 0.8333 0.6750 0.6750 0.6667 

3 NC 0.7750 0.7750 0.7750 0.7750 

4 BNB 0.7750 0.7750 0.7750 0.7750 

5 SVC 0.7500 0.7500 0.6000 0.5000 

6 KNN 0.7500 0.7500 0.6000 0.5000 

7 DTC 0.7500 0.7500 0.6000 0.5000 

8 RF 0.7500 0.5833 0.5750 0.5555 

9 SGDC 0.6750 0.5833 0.5750 0.5500 

10 Perc 0.6750 0.6750 0.6750 0.6667 

11 LR 0.5833 0.5833 0.5750 0.5500 

12 Ridge 0.4643 0.4642 0.4750 0.4156 

13 PAC 0.4643 0.4642 0.4750 0.4756 

14 ADA 0.3333 0.3333 0.3500 0.3250 
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Figure 11. Comparison of machine learning models in terms of evaluation metrics 

Figure 12. Comparison of machine learning models in terms of evaluation metrics 

Figures 11 and 12 present a visual comparison of the 

accuracy of several model algorithms. These numbers enable 

a rapid and easy evaluation of model performance, showing 

the algorithms with the best accuracy scores. 

The results reported above indicate the effectiveness of the 

GNB classifier in predicting groundwater potability. The GNB 

performed well, especially when correlations across 

groundwater quality measurements were modest. These 

findings indicate that GNB is a realistic and competitive 

approach for real-world groundwater potability assessments.  

It is important to note that the groundwater dataset analyzed 

here is relatively small (n = 30), which limits the robustness 

and generalizability of the statistical and machine learning 

results. Moreover, A key limitation of the machine learning 

component of this study is the very small dataset size. With an 

80–20 train-test split, only six samples were used for testing, 

which limits the statistical reliability of performance estimates 

and may lead to overfitting. A more robust approach would 

have been to use k-fold cross-validation or leave-one-out 

cross-validation; however, this was not implemented here due 

to dataset size constraints. 

Another limitation of the present study is that confidence 

intervals, hypothesis testing, or resampling approaches such as 

bootstrapping were not applied to formally quantify the 

uncertainty of the model comparisons. Future work should 

incorporate these statistical tools to more rigorously validate 

differences between models. 

4. CONCLUSIONS

This study introduced the OBP–Gamma distribution as a 

flexible extension of the classical Gamma model for 

groundwater data analysis. The OBP–Gamma distribution was 

shown to capture a wider range of shapes and hazard behaviors 

compared with the Gamma and Weibull–Gamma 
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distributions, providing improved model fit to the observed 

groundwater parameters. In parallel, we conducted a 

comparative evaluation of machine learning models for 

groundwater potability classification. 

The findings suggest that the OBP–Gamma distribution 

offers enhanced flexibility and that Gaussian Naive Bayes 

performed best among the machine learning classifiers tested. 

However, given the small dataset size (n = 30) and the reliance 

on simple train-test splits.  

Future studies will focus on refining the OBP-Gamma 

distribution's mathematical features and examining its 

relevance in numerous medical fields, including COVID-19 

and cancer data analysis. In addition, further research should 

focus on improving classification accuracy through model 

refining and ensemble approaches in this vital subject. 

Furthermore, the OBP–Gamma distribution was compared 

with the classical Gamma and Weibull–Gamma models, as 

these are among the most widely used baselines in 

groundwater analysis and provide a direct benchmark for 

evaluating improvements. We acknowledge, however, that 

this represents a limited set of competing models. Future 

studies will extend the comparison to more recent and flexible 

distributions such as the generalized Gamma and Log-logistic, 

as well as apply the OBP–Gamma model to larger datasets to 

further validate its performance. 
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