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 The present paper investigates numerical simulation of fluid flow and heat transfer through a 

rotating curved square channel of curvature ratios ranging from 0.001 to 0.5. Crank-Nicolson 

and Adams-Bashforth methods together with the function expansion and the collocation 

methods are applied to obtain the numerical solution. The bottom wall of the channel is heated 

while cooling from the ceiling. The channel is rotated in the positive direction for the Taylor 

number 0 2000Tr  and combined effects of the centrifugal, Coriolis and buoyancy forces 

are investigated. As a result, two branches of asymmetric steady solutions comprising with 

two- to multi-vortex solutions are obtained. Linear stability analysis shows that the flow is 

stable only for a small region 164.82 601.62Tr   while unstable otherwise. In the 

unstable region, time-dependent solutions are obtained and flow transitions are well 

determined by obtaining power spectrum density of the solutions and it is found that the time-

dependent flow undergoes through various flow instabilities, if Tr  is increased in the positive 

direction. The results clearly show the existence of multiple Dean vortices along the duct while 

axial velocity profile is related to the outer Dean vortices, the wall pressure is more influenced 

by the Dean vortices attached to the outer concave wall. The present study elucidates the role 

of secondary vortices on convective heat transfer which shows that convective heat transfer is 

significantly enhanced by the secondary flow; and the chaotic flow, which takes place at large 

Tr’s, enhances heat transfer more efficiently than the steady-state or periodic solutions. This 

study also reveals that there is a sharp influence between the ardor-induced buoyancy force 

and centrifugal-Coriolis instability in the rotating curved channel that inspires fluids mixing 

and consequently enhances heat transfer in the fluid. Finally, our numerical results are 

compared with the experimental investigations, and it is found that there is a good agreement 

between the numerical and experimental data. 
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1. INTRODUCTION 

 

Fluid flow through curved ducts and channels has been 

extensively studied over a wide range of applications with a 

key base of heat transfer and mixing enhancement. Such 

motivation has provided a fairly comprehensive knowledge of 

physics and numerical modeling addressing intrinsic vortex-

structure promoting mixing and momentum transfer. Today, 

the flows in curved non-circular ducts are of increasing 

importance in micro-fluidics, where lithographic methods 

typically produce channels of square or rectangular cross-

section. These channels are extensively used in many 

engineering applications, such as in turbo-machinery, 

refrigeration, air conditioning systems, heat exchangers, 

rocket engine, internal combustion engines and in modern gas 

turbines. In a curved channel, it is strongly anticipated that 

centrifugal forces are originated in the flow due to curvature 

causing an opposite directional rotating vortex motion acted 

on the axial flow through the duct that generates the properties 

of spiraling fluid flow in the curved passage known as 

secondary flow. At a convinced precise flow condition and 

beyond, an additional pair of counter-rotating vortices 

develops at the outer concave wall of the curved channel 

which is widely known as Dean vortices [1]. After that, many 

theoretical and experimental studies have been conducted by 

considering this flow in mind, here the articles by Berger et al. 

[2], Nandakumar and Masliyah [3], Zhang et al. [4], Yanase et 

al. [5] and Mondal et al. [6] may be referenced.  

Considering the non-linear nature of the Navier-Stokes 

equation, the existence of multiple solutions does not come as 

a surprise. The solution structure of fully developed flow is 

commonly present in a bifurcation diagram which consists of 

a number of lines or branches connecting different possible 

solutions. These branches can bifurcate and show multiple 

solutions in limit points. Cheng et al. [7] and Shantini and 

Nandakumar [8] studied flow characteristics in a curved 

square channel while Finlay and Nandakumar [9], Thangam 

and Hur [10] and Yanase et al. [5] for a rectangular curved 

channel. Selmi et al. [11] and Dennis and Ng [12] both 

analyzed the effects of rotation and flexure on the bifurcation 

feature of two-dimensional (2D) fluid flow through a rotating 

curved square-shaped duct. However, a complete bifurcation 
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study of 2D flow through a curved square duct was conducted 

by Winters [13]. He determined that the isolated symmetric 4-

cell sub-branch is unstable while the isolated 2-cell sub-branch 

is stable. The location of limit point and bifurcation points 

does not change much for curvature ratios less than 0.02, but 

at higher curvature ratios, they move to large Dn numbers. 

Yanase et al. [5] carried out a comprehensive bifurcation study 

of laminar flow through a curved rectangular duct over a wide 

range of aspect ratio. They obtained many steady solutions and 

established a principle that may select realizable one among 

them. Mondal et al. [6] performed spectral numerical study on 

fully developed bifurcation structure and stability of 2D flow 

through a curved square duct and found a close relationship 

between the unsteady solutions and the bifurcation diagram of 

steady solutions. Four types of steady solution structures for 

non-isothermal flows have been also traced out by Hasan et al. 

[14]. 

Chandratilleke [15] formulated an improved simulation 

model based on three-dimensional (3D) vortex structures for 

describing secondary flow and its thermal characteristics. Wu 

et al. [16] performed numerical study of the secondary flow 

characteristics in a curved square duct by using the spectral 

method, where three walls of the duct, except the outer wall, 

rotate around the centre of curvature and an azimuthal pressure 

gradient was imposed. In that study, multiple solutions with 

two-, four-, eight-vortex and even non-symmetric vortices 

were obtained at the same flow condition. Very recently, Li et 

al. [17] studied Dean instability and secondary flow in 120° 

curved rectangular ducts with continuously varying curvature. 

In that study, a new criterion based on vortex-core velocities 

was proposed to more accurately detect the onset of multiple 

Dean vortices.  

Unsteady solution of fully developed curved channel flows 

was first studied by Yanase and Nishiyama [18]. In that study, 

they investigated unsteady solutions for the case where dual 

solutions exist. Unsteady behavior of the flow in a curved 

rectangular channel of large aspect ratio was investigated, in 

detail, by Yanase et al. [5] numerically. They performed time-

evolution calculations of the flow with and without symmetry 

condition and showed that periodic oscillations appear with 

symmetry condition while aperiodic time variation without 

symmetry condition. Wang and Yang [19] conducted 

numerical as well as empirical exploration of periodic 

oscillations for the fully developed flow in a curved square 

duct. Flow visualization in the range of Dean numbers from 50 

to 500 was conducted in their experiment. They showed, both 

experimentally and numerically, that a temporal oscillation 

takes place between symmetric/asymmetric 2-cell and 4-cell 

flows when there are no stable steady solutions. Mondal et al. 

[20] also have tried to show the flow variation in the unsteady 

solutions through curved square duct for both positive and 

negative rotation. They have also narrated the heat transfer 

effects due to the positive rotation. The nature of secondary 

flow in a curved square duct was performed by using flow 

visualization method by Yamamoto et al. [21] experimentally. 

Liu and Wang [22] performed bifurcation and stability of 

fully-developed forced convection in a tightly curved 

rectangular duct. They showed that as the Dean number 

increases, finite random disturbances lead the flows from a 

stable steady state to another stable steady state, a periodic 

oscillation, an intermittent oscillation, another periodic 

oscillation and a chaotic oscillation. Mondal et al. [23] applied 

spectral method to study non-isothermal flow through a curved 

rectangular duct of aspect ratios 1 to 3, and showed that the 

steady-state flow turns into chaotic flow through various flow 

instabilities if the aspect ratio is increased. Recently, a 

combined experimental and numerical study was conducted by 

Li et al. [24] to better understand the 3-D flow development in 

120° curved rectangular ducts with continuously varying 

curvature. Three different types of curvatures and three 

different aspect ratios were studied to analyze the development 

of axial velocity in the horizontal mid-plane and secondary 

flow patterns at various cross-sections along the ducts. 

However, bifurcation structure of the steady solutions as well 

as transient behavior of the unsteady solution with the effects 

curvature on time-dependent solutions is not yet resolved for 

the non-isothermal flow through a curved square channel with 

bottom wall heating and cooling from the ceiling, which 

motivated the present study to fill up this gap.    

The noteworthy inflictions of curved channel flow are to 

increase the thermal exchange between two walls because it is 

evident that the Dean vortices contribute to transport energy 

and then increases heat flux in the fluid. Chandratilleke and 

Nursubyakto [25] applied computer simulations to illustrate 

the flow properties through the curved ducts of aspect ratios 

ranging from 1 to 8 that were heated on the outer wall, where 

they analyzed for small pressure gradient and made a 

comparison between the numerical and experimental 

investigations. Norouzi et al. [26] carried out the inertial and 

creeping flow of a second-grade fluid with convective heat 

transfer in a square-shaped curved channel by applying finite 

difference scheme. The effect of centrifugal force on account 

of the curvature of the outlet and the protesting effects of the 

first two normal stress variety on the flow region were 

examined in that paper. Chandratilleke et al. [15] showed a 

code-based study to identify the secondary vortex movement 

of fluid flow and heat conduction procedure in the curved 

rectangular channels of different aspect ratios. The 

investigation made an advanced numerical plan based on 3-D 

vortex formations for illustrating secondary flow and its 

thermal properties. Recently, Razavi et al. [27] used control 

volume method to analyze the flow characteristics. Very 

recently, using second order finite difference method, Zhang 

et al. [28] performed unsteady mixed convective heat transfer 

between a square enclosure and an inner concentric circular 

cylinder maintained at different temperatures. To the best of 

the authors' knowledge, however, there have not yet been done 

any robust research studying the time-dependent flow 

behavior with combined effects on buoyancy-induced 

centrifugal-Coriolis instability through a rotating curved 

channel in action with strong rotational speed. But from the 

scientific as well as engineering point of view it is quite 

important to analyze such type of flow as it is often 

encountered in engineering applications such as in rotating 

machinery, gas turbines, heat exchangers and metallic 

industry.  

Examining the unique features of secondary flow and heat 

transfer, the main objective of the present study is to confer the 

solution structure of the steady solutions and to explore time-

dependent activities with vortex-structure of secondary flows 

through a rotating curved square channel whose bottom wall 

is heated while cooling from the ceiling. Studying the effects 

of rotation on the steady and unsteady flow uniqueness, caused 

by combined action of the centrifugal, Coriolis and buoyancy 

forces, is an important objective of the present study. 
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2. GOVERNING EQUATIONS 

 

Consider a hydro-dynamically and thermally fully 

developed two-dimensional (2D) flow of viscous 

incompressible fluid through a curved square channel, whose 

height or width is 2d . The coordinate system with relevant 

notation is shown in Figure 1, where 'x  and 'y  axes are taken 

to be in the horizontal and vertical directions respectively, and 

'z  is the axial direction. It is assumed that the bottom wall of 

the channel is heated while cooling from the ceiling. The 

temperature of the bottom wall is 
0T T+  and that of the top 

wall 
0T T− , where 0T  . It is also assumed that the flow 

is uniform in the 'z  direction and it is driven by a constant 

pressure gradient G  along the centre-line of the channel. Then, 

the continuity, Navier-Stokes and energy equations, in terms 

of dimensional variables, are expressed as: 

 

Continuity equation: 

 

' ' '
0

' ' '

u v u

r y r

 
+ + =

 
                     (1) 

 

Momentum equations: 
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Energy equation: 

 

2 21
,

2 2
T T T T T T

u v
t r y r rr y


 
 
 
 
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 (5) 

 

where, ' 'r L x= + , and 'u , 'v and 'w  are the dimensional 

velocity components in the 'x , 'y  and 'z  directions 

respectively and these velocities are zero at the wall. Here, 'P  

is the dimensional pressure, 'T  is the dimensional 

temperature and 't  is the dimensional time. In the above 

formulations, ,  , ,       and g  are the density, the viscosity, 

the coefficient of thermal expansion, the coefficient of thermal 

diffusivity and the gravitational acceleration, respectively. 

Thus in Eqns. (1) to (5) the variables with prime denotes the 

dimensional quantities. The dimensional variables are made 

non-dimensional by using the representative length d , the 

representative velocity 
0U

d


= , where   is the kinematic 

viscosity of the fluid. The non-dimensional variables are 

defined as 

 

2 '
, , , , ,

Uo0 0

yu v x z
u v w w x y z

U U d d d

   
= = = = = =
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2 2

0 0

, , , ,
UT d P P d

T t t P G
T d L zU U


 

  
= = = = = −
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where,   is the non-dimensional curvature defined as 
d

L
 =  

Since the flow field is uniform in the z -direction, the sectional 

stream function   is introduced as 

 

1

1
u

x y





=

+ 
 

and 
1

1
v

x x





= −

+ 
      (6) 

 

 
 

Figure 1. Coordinate system of the curved channel 

 

Then, the fundamental equations for ,w    and T are 

articulated in terms of non-dimensional variables as 
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The non-dimensional parameters Dn , the Dean number; 

Gr , the Grashof number; Tr , the Taylor number and Pr , the 
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Prandtl number, which emerge in eqns. (7) to (9) are defined 

as: 

 
3 3 3

2

2 2 2
, ,Pr ,

Gd d g Td d
Dn Gr Tr

L

  

  

 
= = = = (10) 

 

The stiff boundary conditions for w  and   are used as 

 

( 1, ) ( , 1) ( 1, ) ( , 1)

( 1, ) ( , 1) 0

w y w x y x

y x
x y

 

 

 =  =  = 

 
=  =  =
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 (11) 

 

and the temperature T  is assumed to be constant on the walls 

as  

 

( ) ( ) ( ),1 1,  , 1 1,  , 1T x T x T x y= − = −  =        (12) 

 

There is a group of solutions which satisfy the following 

symmetry condition with respect to the horizontal plan 0.y =  

 

( , , ) ( , , ),

( , , ) ( , , ),

( , , ) ( , , )

w x y t w x y t

x y t x y t

T x y t T x y t

 







 −

− −

= − −
  

               (13) 

 

The solution which satisfies condition (13) is called a 

symmetric solution, and that does not an asymmetric solution. 

In the present study, Tr (0 2000)Tr   and 

(0.001 0.5)  vary while Dn , Gr and Pr  are fixed as 

1000Dn = , 100Gr =  and Pr 7=  (water). 

 

 

3. NUMERICAL CALCULATIONS 

 

3.1 Method of numerical calculation 
 

The present study is based on numerical simulation and in 

order to attain numerical solution spectral method is used. By 

this method the variables are expanded in the series of 

functions consisting of Chebychev polynomials. The 

expansion functions ( )n x  and ( )n x  are articulated as 

 
2

2 2

( ) (1 ) ( ),

( ) (1 ) ( )

n n

n n

x x C x

x x C x





= − 
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where, ( )1( ) cos cos ( )nC x n x−=  is the 
thn  order Chebyshev 

polynomial. ( , , ), ( , , )w x y t x y t  and ( , , )T x y t  are 

expanded in terms of the expansion functions ( )n x  and 

( )n x  as:
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where, M  and N  are the truncation numbers in the x  and y

-directions respectively, and ,  mn mnw   and 
mnT  are the 

coefficients of expansion. To attain a steady solution 

( , ),  ( , )w x y x y  and ( , )T x y , the expansion series (15) is put 

forward into the basic Eqns. (7)-(9) and the collocation method 

(Gottlieb and Orszag, [29]) is applied. As a result, a set of 

nonlinear algebraic equations for ,  mn mnw   and 
mnT  are 

obtained. The collocation points ( , )i jx y  are taken to be 

 

cos 1 ,  cos 1
2 2

i j

i j
x y

M N
 

      
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where, 1, , 1i M= + and 1, , 1j N= + . Steady solutions 

are obtained by the Newton-Raphson iteration method and to 

avoid difficulty near the point of inflection for the steady 

solutions, the arc-length method is used. The arc-length 

equation is 

 
2 2 2

0 0
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M N

mn mn mn

m n
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ds ds ds
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 (17)  

 

which is solved simultaneously with equation (18) by using 

the Newton-Raphson iteration method. An initial guess at a 

point s s+  is considered starting from point s  as follows 
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( ) ( )

( )
( ) ( )

( )
( ) ( )

mn

mn mn

mn

mn mn

mn
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w s s w s s

ds
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The convergence is assured by taking suitably small p

( )1010p
−  defined as 

 
( ) ( )
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1 12 2

1 2
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.
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p pp pM N
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p p p
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w w
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+
= =

 − + −
=  

+ −  


         

(19)  

 

To solve the steady solution, time-derivative terms are set 

to zero and the expansion series (15) with coefficients 

,mn mnw   and ,mnT
 
being time independent, is substituted into 

the basic Equations (7), (8) and (9). Finally, in order to 

calculate the trembling solutions, the Crank-Nicolson and 

Adams-Bashforth methods together with the function 

expansion (15) and the collocation methods are applied to 

equations (7) - (9). 

 

3.2 Numerical accuracy 

 

The accuracy of the numerical calculations is investigated 

for the truncation numbers M  and N  used in this study. For 

good accuracy of the solutions, N  is chosen equal to M . 

Table 1 shows that 20M =  and 20N =  give sufficient 

accuracy of the present numerical solutions.  
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Table 1. The values of Q  and ( )0,0w  for various M  and 

N  at 1000Dn = , 100Gr = , 1000Tr = and 0.001 =  
 
M N Q  (0,0)w  

16 16 269.1777139229 385.99227522622 

18 18 270.0915731736 385.49012540331 

20 20 270.1417120204 385.05629891693 

22 22 270.1948353760 384.88687539512 

 

3.3 Flux through the channel 

 

In the present study, the dimensional total flux 'Q  through 

the channel in the rotating coordinate system is expressed by 

 

' ' ' '
d d

d d
Q w dx dy VdQ

− −
= =              (20) 

 

where, dimensionless total flux Q  is defined as, 

 
1 1

1 1
Q wdxdy

− −
=                               (21) 

 

The mean axial velocity 'w  is calculated by 

 

'
4

Q
w

d


=                                         (22) 

 

In this paper, Q  is used to designate the steady solution 

branches and to pursue the time evolution of the tremulous 

solutions. 

 

 

4. RESULTS AND DISCUSSION  

 

4.1 Steady solution 

 

In this study, we first investigate solution structure of the 

steady solutions for curvature 0.001 = and discuss the 

pattern distinction of secondary flows on various branches of 

steady solutions and then summarize the solutions for other 

curvatures. After an extensive appraisal over the parametric 

ranges, two branches of steady solutions are achieved for 

1000Dn =  and 1000Gr =  over 0 Tr 2000  . A 

bifurcation diagram of steady solutions is shown in Figure 2 

for 0.001 =  using Q , the representative quantity of the 

flow state. The two steady solution branches are named the 

first steady solution branch (1st branch, red solid line) and the 

second steady solution branch (2nd branch, blue solid line), 

respectively. The solution branches are obtained by the path 

continuation technique with various initial guesses and are 

distinguished by the nature and number of secondary vortices 

appearing in the cross-section of the channel. It is found that 

the branches are independent and there exists no bifurcating 

connection between the two branches. 

Figure 3 shows streamlines and isotherms for various values 

of Tr . In the following, the two branches of steady solutions 

and flow patterns on respective branches are discussed in brief. 

 

 
 

Figure 2. Solution structure of steady solutions for 

0.001 = , 1000Dn = , 100Gr =  and 0 2000Tr   

 

 

 
 

Figure 3. Streamlines of axial flow (top), secondary flow 

(middle) and isotherm (bottom) on the steady solution 

branches for various values of Tr  
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4.1.1 The first steady solution branch 

The first steady solution branch for 0.001 =  is shown 

explicitly in Figure 4 by red solid line for ( )0 2000Tr  . 

The branch starts at point ‘a’ ( 0)Tr =  and goes to the 

direction of increasing Tr  up to point ‘b’ ( )2000Tr =  

without any turning. Figure 5 shows streamlines of axial flow, 

secondary flow and isotherm (temperature contour) on the first 

steady solution branch at various values of Tr . To draw the 

contours of ,  w  and T , we use the increment 8.0w = , 

0.9 =  and 0.15T =  respectively. The solid lines 

( )0, 0T  
 
show that the secondary flow is in the 

clockwise direction whiles the dotted ones ( )0, 0T    in 

the counter clockwise direction.  

As seen in Figure 5, the 1st branch consists of asymmetric 

two-vortex solution. It is found that the streamlines of the 

secondary flow consist of two opposite vortices; one is an 

outward flow (anticlockwise direction) shown by solid line 

and the other inward flow (clockwise direction) shown by 

dotted lines. The flow is accelerated due to combined action of 

the centrifugal, Coriolis and buoyancy forces; centrifugal 

force is created due to the motion through a curved channel, 

Coriolis force due to the rotation of the channel around the 

vertical axis while buoyancy forces because of the thermal 

gradient. 

 

 
 

Figure 4. First steady solution branch for 

0.001,  Dn=1000, Gr=100 = and 0 Tr 2000   

 

 

 
 

Figure 5. Streamlines of axial flow (top), secondary flow 

(middle) and isotherm (bottom) on the 1st branch for various 

values of Tr  at for 0.001 =  

 

4.1.2 The second steady solution branch 

The second steady solution branch, designated by the blue 

solid line, is exclusively shown in Figure 6(a). It is found that 

the branch is a little bit entangled experiencing many turnings 

on its way. The branch starts at point ‘a’ ( )2000Tr =  and 

finally arrives at point ‘g’ with turnings at points b, c, d, e and 

f. It is found that the branch turns very smoothly at points b 

( )35.90Tr = , c ( )1318.29Tr = , d ( )421.96Tr = , e 

( )672.41Tr =  and at point f ( )658.45Tr =  before arriving 

finally at point g ( )2000Tr = . It is fascinating that the branch 

starts with two-vortex solution at the starting point a 

( )2000Tr =  and lastly turns into eight-vortex solution at 

points e, f and g. Enlargements at points b, c, d, e and f are 

shown in Figures 6(b), 6(c), 6(d) and 6(e) respectively. Figure 

7 shows streamlines of axial flow, secondary flow and 

isotherms on the 2nd branch for 

0.001,  Dn = 1000, Gr = 100 = . As seen in Figure 7, the 

branch is composed of two- to eight-vortex solution. It is found 

that as soon as the branch turns at a point, the number of 

secondary vortices increases, for example, two-vortex solution 

turns into four-vortex; four-vortex into six-vortex and finally 

six-vortex into eight-vortex solution. In this study, 

temperature profiles show that the streamlines of the 

temperature distribution are uniformly distributed to all parts 

of the contour transferring heat from outer wall to the fluid, 

and the contribution of the rotation and pressure on secondary 

flows significantly change and increase the number of 

secondary vortices. It is clearly evident that heating the bottom 

wall causes the temperature contours to become asymmetrical 

in comparison to isothermal cases. This essentially arises from 

the interaction between the heating-induced buoyancy force 

and the centrifugal force that drives secondary vortices. In this 

regard, it should be noted that the centrifugal force due to the 

channel curvature creates two effects; one is a positive radial 

fluid pressure field in the duct cross-section and induces a 

lateral fluid motion driven from inner wall towards the outer 

wall. This lateral fluid motion occurs against the radial 

pressure field generated by the centrifugal effect and is 

superimposed on the axial flow to create the secondary vortex 
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flow structure. As the flow through the channel is increased, 

the lateral fluid motion becomes stronger and the radial 

pressure field is intensified. In the vicinity of the outer wall, 

the combined action of adverse radial pressure field and 

viscous effects slows down the lateral fluid motion and forms 

an inactive flow region. Beyond a certain critical value of Dn, 

the radial pressure gradient becomes sufficiently strong to 

reverse the flow direction of the lateral fluid flow. A weak 

local flow re-circulation is then established creating an 

additional pair of vortices in the stagnant region near the outer 

wall. This flow condition is known as Dean’s hydrodynamic 

instability while the vortices are termed as Dean vortices. 

 

 
 

 
 

 

 
 

 
 

Figure 6. (a) Second steady solution branch, (b) Enlargement 

at point b, (c) Enlargement at point c, (d) Enlargement at 

point d, and, (e) Enlargements at points e and f 
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Figure 7. Streamlines of axial flow (top), secondary flow 

(middle) and isotherm (bottom) on the first steady solution 

branch for various values of Tr  

 

4.2 Linear stability analysis  

 

In this study, linear stability of the steady solutions is 

investigated against only 2D perturbations (z-independent). 

For this purpose, the eigenvalue problem is solved by 

application of the function expansion method together with 

collocation method to the linearized equations for the 

perturbation of ( ),w x y , ( ),x y  and ( ),T x y  It is assumed 

that the time dependence of the perturbation is te , where 

r ii  = + . If all the real parts 
r of the eigenvalue   are 

negative, the steady solution is linearly stable, but if there exist 

at least one positive real part, it is linearly unstable. In the 

unstable region, the perturbation grows monotonically for 

0i = and oscillatory for 0i  . In this study, it is found that 

between the two branches of steady solutions, only the 2nd 

branch is linearly stable for a small region of Tr

( )164.82 601.62Tr   while unstable otherwise. The 

stability result is shown in Table 2, where linearly stable 

solutions are shown with bold. Linear stability region is shown 

with solid thick line in Figure 8.  

 

Table 2. Linear stability of the 2nd branch for 

0.001,  Dn = 1000 = and Gr = 100 for various values of Tr  

 

Tr  Q  
r  i  

2000 231.0515886 225.86 0 

1500 241.7277581 191.77 0 

1000 270.0175071 13.032 21.0693 10−   

601.63 287.9733094 42.4732 10−  
27.6900 10−   

601.62 287.9738766 54.0767 10−−   7.6899 10−   

164.82 325.4912274 48.9249 10−−   2.2273 10−   

164.81 325.4926111 46.5622 10−  2.2270 10  

35.90 344.8927460 5.0054 0 

 

 
 

Figure 8. Linear stability region (solid black line) on the 2nd 

branch for 0.001 =  

 

4.3 Time-dependent solutions 

 

4.3.1 Time-evolution calculation of the unsteady solution for 
0.001 =  

We investigate time-dependent solutions for the curvatures 

ranging from 0.001 to 0.5 but here we show the detailed 

unsteady results for 0.001 =  only and then summarize the 

complete solutions at the end of this section. 

 

 

 
 

Figure 9. (a) Time history of Q  for 0,Tr = (b) Power 

spectrum density 

 

In order to examine non-linear behavior of the unsteady 

solutions, we performed time history of Q  for 0Tr =  at 

0.001 = as shown in Figure 9(a) in the t Q−  plane. It is 

found that the time-dependent flow at 0Tr =  is a multi-

periodic oscillation. To well justify the multi-periodic flow 

more evidently, we obtained power spectrum density of the 
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time-evolution result as shown in Figure 9(b) in the Frequency 

vs. Power Spectrum Density plane. Figure 9(b) shows that not 

only the line spectrum of the fundamental frequency and its 

harmonics but other line spectrum and their harmonics are 

seen with small amplitudes, which shows that the oscillation 

presented in Figure 9(a) is multi-periodic. To monitor vortex-

structure and temperature distribution, we obtain streamlines 

of axial flow and secondary flow and isotherm as shown in 

Figure 10 for 0Tr = . It is found that secondary flow is an 

asymmetric two- to four-vortex solution. It is also found that 

the maximum axial velocity is gathered near the outer wall of 

the channel. 

 

 

 
 

Figure 10. Streamlines of axial flow (top) and secondary 

flow (middle) and isotherm (bottom) for 0Tr = at 

19.00 19.65t   

 

Then we inspect time history for 250Tr =  and 500  as 

shown in Figure 11 (a). It is found that the time-dependent 

flow for 250Tr =  and 500  is a steady-state solution which is 

consistent with the linear stability results presented in Section 

4.2, where we obtained that the flow is steady-stable for 

164.82 601.62Tr  . Since the flow is steady-state, a single 

contour of each of the axial flow, secondary flow and 

temperature profile is shown in Figure 11 (b) for 250Tr =  

and 500 . It is found that steady-state flow is an asymmetric 

two-vortex solution. 

 
 

 
 

Figure 11. (a) Time history of Q
 
and 0.001 =  (b) 

Streamlines of axial flow (top) and secondary flow (middle) 

and isotherm (bottom) for 250Tr =  and 500  

 

 

 
 

Figure 12. (a) Time history of Q  for 750,Tr = (b) Power 

spectrum density 
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We then performed time-history of Q  for 750Tr =  as 

shown in Figure 12(a) and it is found that the time-dependent 

flow for 750Tr =  is a time-periodic flow. In order to see the 

flow evolution more precisely we also obtain power spectrum 

density of the time change of Q
 
as shown in Figure 12(b), 

which shows that only the line spectrum of the fundamental 

frequency and its harmonics are seen which pointed out that 

the flow is time periodic for Tr = 750. Streamlines and 

isotherms 750Tr =  are shown in Figure 13 for one period of 

oscillation at 33.05 33.55t  , and it is found that the 

periodic flow oscillates between asymmetric two-vortex 

solution. The transition from steady-state to periodic 

oscillation takes place between 500Tr =  and 750Tr = . In 

fact, the periodic oscillation, which is observed in the present 

study, is a traveling wave solution advancing in the 

downstream direction which was well-justified by Mees et al. 

[30] and Wang and Yang [19] and in the recent investigation 

by Yanase et al. [31] for three-dimensional travelling wave 

solutions as an appearance of 2D periodic oscillation.  

    

 

 
 

Figure 13. Streamlines of axial flow (top) and secondary 

flow (middle) and isotherm (bottom) for 750Tr = at 

33.05 33.55t   

 

 

 
 

Figure 14. (a) Time history of Q  for 1000,Tr = (b) Power 

spectrum density 

 

If the rotational speed is increased, it is observed that the 

flow characteristics change. Figures 14(a) and 16(a) 

respectively show time history of Q  for 1000Tr =  and 

1250Tr =  and it is seen that the flow oscillates irregularly that 

means the flow is chaotic. With a view to observing the chaotic 

behavior more explicitly, power spectrum density of the time 

change of Q  are shown in Figures 14(b) and 16(b) for 

1000Tr =  and 1250Tr =  respectively, and it is found that 

continuous line spectrum with different frequencies are 

available for these cases, which shows that the flow is chaotic 

for 1000Tr =  and 1250Tr = . This type of flow evolution is 

termed as weak chaos [6]. To detect the change of the irregular 

oscillations, typical contours of streamlines and isotherms for 

1000Tr =  and 1250Tr =  are shown in Figures 15 and 17 

respectively and it is found that the chaotic flow at 1000Tr =  

and 1250Tr =  oscillates between asymmetric two-vortex 

solutions. 
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Figure 15. Streamlines of axial flow (top) and secondary 

flow (middle) and isotherm (bottom) for 1000Tr = at 

17.50 18.00t   

 

 

 
 

Figure 16. (a) Time history of Q  for 1250,Tr = (b) Power 

spectrum density 

 

If Tr  is increased further, for example 1500Tr = , we see 

that the flow development changes and it becomes multi-

periodic. By the time history analysis we obtained multi-

periodic solution for 1500Tr =  as shown in Figure 18 (a). To 

observe the multi-periodic oscillation more clearly, we 

calculated power spectrum density of the time change of Q  as 

shown in Figure 18 (b), which shows that not only the line 

spectrum of the fundamental frequency and its harmonics but 

other line spectrum of smaller frequencies and their harmonics 

are seen, which indicates that the flow presented in Figure 

18(a) is multi-periodic. Then with a view to observing the 

configuration of axial and secondary vortices along with 

temperature distributions for the multi-periodic oscillation at 

1500Tr = , typical contour of the streamlines and isotherms 

are shown in Figure 19 for 1500Tr =  and it is found that the 

time-dependent solution at 1500Tr = oscillates between two- 

to three-vortex solutions. From Figures 13 and 14, it is clear 

that the transition from chaotic state to multi-periodic 

oscillation occurs between 1200Tr =  and 1500Tr = .  

Then, time history of Q  for 1750Tr = and 2000Tr = are 

obtained as shown in Figures 20 (a) & 22 (a) respectively. It is 

found that the flow oscillates irregularly with large windows 

of quasi-periodic oscillations that mean the flow is chaotic. 

This chaotic oscillation is well justified by drawing the power 

spectrum density of the solutions as show in Figures 20 (b) and 

22 (b) respectively. Figures 20 (b) & 22 (b) show that 

continuous line spectrum with dissimilar frequencies cover the 

Frequency vs. Power spectrum Density plane so that the flow 

presented in Figures 20 (a) & 22 (a) are strongly chaotic for 

1750Tr =  and 2000Tr =  respectively. This type of flow 

oscillation is termed as strong chaos [6]. Thus illustration the 

power spectrum of the solutions is found to be very fruitful to 

well justify the flow distinctiveness as well as identifying the 

transition of the time-dependent solutions from one state to 

another. 

 

 
 

Figure 17. Streamlines of axial flow (top) and secondary 

flow (middle) and isotherm (bottom) for 1250Tr = at 

19.45 19.95t   
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Figure 18. (a) Time history of Q  for 1500,Tr = (b) Power 

spectrum density 

 

 

 
 

Figure 19. Streamlines of axial flow (top) and secondary 

flow (middle) and isotherm (bottom) for 1500Tr = at 

25.26 25.50t   

 

 
 

Figure 20. (a) Time history of Q  for 1750,Tr = (b) Power 

spectrum density 

 

 

 
 

Figure 21. Streamlines of axial flow (top) and secondary 

flow (middle) and isotherm (bottom) for 1750Tr = at 

27.00 27.50t   
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Figure 22. (a) Time history of Q  for 2000,Tr = (b) Power 

spectrum density 

 

To scrutinize the pattern variation of axial and secondary 

vortices and isotherms of the temperature distributions for the 

chaotic oscillation, typical contours of axial flow distribution, 

secondary flow patterns and temperature profiles are shown in 

Figures 21 & 23 for 1750Tr =  and 2000Tr =  respectively, 

and it is found that the time-dependent solutions oscillate 

erratically in the two- to six-vortex solutions. These vortices 

are produced due to combined action of the centrifugal, 

Coriolis and buoyancy forces. In this study, it is found that the 

number of secondary vortices increases for the chaotic 

solution, which occurs at large Tr’s compared to that of the 

steady-state or periodic solutions at small Tr , and 

consequently it is suggested that chaotic solutions enhance 

heat transfer more effectively than the steady-state or periodic 

solutions. In this regard, it should be noted that, the occurrence 

of the chaotic state, as presented in the present study, is related 

to the destabilization of the periodic or quasi-periodic 

solutions which reminds us the case of Lorenz attractor [32]. 

It may be promising that the transition in the present study is 

caused by a similar mechanism as that of Ruelle-Takens 

scenario [33] in the laminar flow. In this study, it is very 

interesting to notice that the flow is symmetrically distributed 

and the vortices are formed very close to the wall and rests of 

the streamlines are not affected by the Dean vortices. It is 

observed that the number of secondary vortices increase (six- 

to eight-vortex solution) for chaotic flow which occurs at large 

Tr , and reached at the highest number compared with those 

obtained at small Tr . As Tr  increases, the fluid particles 

move in the vicinity of the wall and make friction to each other; 

at a certain time, Dean vortices are constructed yonder the wall 

of the channel which plays an outstanding responsibility in 

transferring heat from the heated bottom wall to the fluid. 

 

 

 
 

Figure 23. Streamlines of axial flow (top) and secondary 

flow (middle) and isotherm (bottom) for 2000Tr = at 

19.00 20.00t   

 

4.3.2 Time-dependent solutions in ( )Tr − plane 

In this sub-section, the distribution of the steady, periodic 

(or multi-periodic) and chaotic solutions, obtained by the time-

evolution calculations, is presented in Figure 24 in the Taylor 

number vs. curvature ( )Tr −  plane for 0 2000Tr   and 

0.001 0.5  . In this picture, the circle indicates steady-

state solutions, the cross periodic (or multi-periodic) solutions 

and the triangle chaotic solutions. It is found that at 0.001 = , 

chaotic behavior is established in the middle of two periodic 

oscillation for 950 1300Tr   whereas the chaotic behavior 

is  converted into periodic oscillation between the required 

range of Tr ( )950 1300Tr   at 0.01 = . A drastic change 

is observed in the unsteady flow characteristics from curvature 

0.01 = to 0.1 = . It is found that the chaotic behavior is 

totally diminished at 0.1 = and periodic oscillation is found 

for a small range of Tr ( )0 239Tr  where the steady-state 

behavior is found for a wide range of Tr , and for 0.5 = only 

steady-state solution is observed. It is, therefore, evident that 

as curvature is increased, the oscillating behavior in the 

rotating curved channel is decreased and the flow ceases to be 

steady-state. 
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Figure 24. Time-dependent solutions for 0.001 0.5   at 

1000Dn =  and 100Gr =  

 

4.3.3 Vortex diagram in Taylor number vs. curvature ( )Tr −

plane 

In this section, to observe vortex-structure of secondary 

flows, we show pattern variation of secondary flows for 

different values of Tr . Figure 25 shows vortex structure of 

secondary flows for 1000Dn =  and 0 2000Tr   for 

curvature 0.001 0.5  , where it is found that the secondary 

flow is a two- to eight-vortex solution at various values of Tr . 

It is found that maximum 8-vortex solution is attained at the 

small curvature 0.001 = , while four- and two-vortex for 

moderate and strong curvatures at 0.1 =  and 0.5 =

respectively. It is found that the number of secondary vortices 

decreases as Tr  increases. In this study, it has been found that 

for the unsteady case dual solutions (two-vortex solution) exist 

for the steady-state solution, two- to four-vortex for the 

periodic solution while two- to six-vortex for the chaotic 

solution. Therefore, it is recommended that chaotic solutions 

intensify heat transfer more effectively than the periodic or 

steady-state solution; this is because many secondary vortices 

are produced at the outer concave wall for the chaotic solution. 

In this regard, it should be noted that very recently, Razavi et 

al. [27] employed control volume method to investigate flow 

characteristics, heat transfer and entropy generation in a 

rotating curved duct. The effects of Dean number, wall heat 

flux and force ratio on the entropy generation were presented 

in that paper. However, solution structure of steady solutions 

as well as complete behavior of the unsteady solutions with 

flow transition is still absent in literature for rotating curved 

duct flows; which has been described in the present paper very 

clearly. Furthermore, hydrodynamic instability and vortex 

generation, which is presented in the present paper, gives a 

clear view about the convective heat transfer in a curved duct 

via periodic, multi-periodic and chaotic flows. As of now, a 

reliable technique for Dean instability is not known in 

literature for such flows. The present study also shows that 

there is a strong interaction between the heating-induced 

buoyancy force and the centrifugal-Coriolis instability in the 

curved channel that stimulates fluid mixing and thus results in 

thermal enhancement in the flow, because heated fluid is 

transported into the bulk fluid by the secondary vortices; this 

process is preciously demonstrated by the temperature 

contours as shown in the present study.  

 
 

Figure 25. Vortex diagram of secondary flows for 

0.001 0.5  at 1000Dn =  and 100Gr =  

 

4.4 Convective heat transfer 

In order to investigate convective heat transfer from the 

heated wall to the fluid, we calculate temperature gradients at 

the cooling (bottom) and heated (top) walls. As seen in Figure 

26 (a), the temperature gradient on the bottom (heated) wall, 

T

x




increases at the central region through the small vibration 

of the heating wall by increasing and decreasing. This is 

because the secondary flow enhances 
T

x




not only in the 

central region but in other regions as well. In Figure 26 (b), on 

the other hand, it is found that 
T

x




on the top (cooled) wall 

decreases in the central region around y = 0. This is caused by 

the advection of the secondary flow in the outward direction 

around y = 0 due to the centrifugal force. In the same figure, it 

is also shown that 
T

x




 tends to increase in the regions other 

than the central region. This is caused by the advection of the 

secondary flow in the inward direction there, which is a 

reverse flow of the outward secondary flow in the central 

region. This result shows that heat transfer occurs substantially 

from the heated wall to the fluid as Tr increases. 
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Figure 26. Temperature gradients, (a) At the heated (bottom) 

wall, (b) At the cooling (top) wall at various values of Tr 

 

4.5 Validation of the numerical result 

 

 
 

 
 

Figure 27. Experimental vs. numerical results for rotating 

curved square channel flow at Tr = 150. (a), (b) & (c) 

Experimental result by Yamamoto et al. [21] (left) and 

numerical result by the authors (right) 

 

Here, we will discuss the validity of our numerical results 

with the experimental studies conducted by some authors. By 

using visualization method, Yamamoto et al. [21] performed 

experimental investigations of the flow through a rotating 

curved square duct of curvature  = 0.03, where three of the 

duct walls, except the outer wall, rotate around the center of 

curvature at a constant rotational speed for positive rotation 

(Tr =150) of the duct walls. In the present study, however, we 

investigate flow characteristics for rotating the whole system 

(not the three walls only), and to show the validity of the 

present study we use the same curvature and Tr as Yamamoto 

et al. [21] used. Figures 27 (a), (b), (c) and (d) show 

comparative study of the experimental vs. numerical results 

for the rotating curved square channel flow at different values 

of Dn for the rotational parameter, Tr = 150. As seen in Figure 

27, our numerical results have a good agreement with the 

experimental investigations obtained by Yamamoto et al. [21].   

 

 

5. CONCLUSION 

 

In this paper, a spectral-based numerical study is presented 

for fluid flow and heat transfer through a rotating curved 

square channel of curvature 0.001 0.5  over a wide range 

of positive rotation of the channel for 0 2000Tr  for 

constant Dean number 100Dn = . The bottom wall of the 

channel is heated while cooling from the ceiling. After an 

extensive survey over the range of the parameters, two 

branches of asymmetric steady solutions are obtained for with 

no bifurcating relationship between the branches. Linear 

stability analysis shows that only the second branch is linearly 

stable for 601.62 164.82Tr   and unstable otherwise. In the 

unstable region, time-history analysis as well as power 

spectrum density show that the flow undergoes through 

various flow instabilities in the scenario “multi-periodic →

steady-state → periodic → chaotic → multi-periodic →

chaotic”, if Tr is increased in the positive direction. Typical 

contours of streamlines and isotherms are obtained at a number 

of values of Tr, and it is found that there exist two- to eight-

vortex for the steady-state solution, two- to four-vortex for the 

periodic or multi-periodic solution while two- to eight-vortex 

for the chaotic solution. It is observed that the number of 

secondary vortices increases as the flow becomes chaotic 

propagating multi-vortex solutions at the outer concave wall 

and consequently it is disclosed that chaotic solutions enhance 

heat transfer more effectively than the steady-state or periodic 

solutions. It is also concluded that the temperature contour is 

coherent with the secondary vortices, and secondary flows 

play an effective role in transferring heat from the heated 

bottom wall to the fluid. The results clearly show the existence 

of multiple Dean vortices along the duct and both axial 

velocity and wall pressure is greatly influenced by the Dean 

vortices. The present investigation also shows that there is a 

strong interaction between the heating-induced buoyancy 

force and the centrifugal-Coriolis instability in the rotating 

curved channel that stimulates fluid mixing and therefore 

increases heat transfer in the fluid. Finally, our numerical 

results are compared with the experimental investigations, and 

it is found that there is a good agreement between the 

numerical and experimental investigations. 
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NOMENCLATURE 

Dn Dean number 

Gr Grashof number 

Pr Prandtl number 

a Aspect ratio 

L Radius of the curvature 

x Horizontal axis 

y Vertical axis 

z Axis in the direction of the main flow 

u Velocity components in the x − direction

v Velocity components in the y − direction

w Velocity components in the z − direction

T Temperature

t Time

Greek symbols 

 Curvature of the duct   

 Density 

 Resistance coefficient

 Viscosity 

 Thermal diffusivity    

 Kinematic viscosity

 Sectional stream function 
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