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 Travelling wave solution of one-dimensional unsteady flow of a perfect gas with the effect of 

viscosity under Riemann condition is investigated. The system of gas dynamic equations are 

reduced into a single ordinary differential equation for non-dimensional velocity and 

Riemann condition is transformed into boundary conditions. The exact solution is obtained 

for the gas velocity, pressure, temperature and change-in-entropy under the constant 

boundary conditions taking the origin at inflection point of the gas velocity profile. It is 

found that the travelling wave is a shock transition zone of the thickness of order 10^(-6) 

meter. The viscosity of the gas, Mach number, ratio of specific heats, and Riemann condition 

has significant effects on the shock structure. 
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1. INTRODUCTION 

 

Travelling wave solution was first considered in 1930s by 

Fisher [1] and Kolmogorov, Petrovsky, and Piscounoff [2] 

for what has been now known as the Fisher-KPP equation. 

After that, travelling wave solutions have been extensively 

used in the solution of the many physical problems. 

Travelling wave solutions of reaction-diffusion equations 

have been extensively covered in [3]. Travelling wave 

solutions of a nonlinear reaction-diffusion equations in 

chemotaxis model for bacterial pattern formation was studied 

by Mamsour [4]. Apreutesei [5] has studied the existence of 

travelling waves solutions of two Atherosclerosis models 

presented in terms of reaction-diffusion equations in an 

infinite strip with nonlinear boundary conditions. Marchant, 

Norbury and Perumpanani [6] have studied travelling shock 

waves arising in a model of malignant invasion.  Marchant, 

Norbury, and Sherrantt [7] have obtained the travelling wave 

solutions to a haptotaxis-dominated model of malignant 

invasion. Travelling wave phenomena for viscoelastic 

generalization of Burger's equation was presented by 

Camacho, Guy and Jacobsen [8]. In 2015, Eabay and Sengul 

[9] have studied travelling waves in one-dimensional 

nonlinear models of strain-limiting viscoelasticity. In 2019, 

Roshid and Bashar [10] have used simple equation method 

based on traveling wave to find the breather wave and kinky 

periodic wave solutions of one-dimensional Oskolkov 

equation. 

The Riemann problem consists of hyperbolic partial 

differential equation together with the discontinuous initial 

data. The Riemann problem for a system of conversation 

laws in gas dynamics, shallow water theory and magneto-

hydrodynamic has attracted considerable attention of the 

researchers for its theoretical and numerical solution. The 

first existence theorem for the solutions to the initial value 

problem for non-linear hyperbolic systems of equations was 

given by Glimm [11] in this fundamental paper. Courant and 

Friedrichs [12] have given the Riemann problem 

corresponding to the shock-tube problem for Euler's 

equations, which is a basic physical problem in gas 

dynamics. Lax [13] solved the Riemann problem with 

sufficiently close left and right initial data separated at the 

origin. 

The Riemann problem for Euler's equations does not admit 

a closed form solution even for an ideal gas. Several 

researchers have been motivated to develop iterative schemes 

to determine the solution of such problems. Godunov [14] 

had proposed two methods based on a fixed point scheme. 

Smoller [15] had given a different approach in which solution 

was derived in the implicit form for an ideal gas. Roe [16] 

developed a Riemann solver for an ideal polytropic gas. The 

Riemann problem was also attempted by Colella [17], for 

real gases using Riemann solvers. Recently in 2016, Ambika 

and Radha [18] have studied the Riemann problem for gas 

dynamic equations governing a one-dimensional flow of a 

van der Waals gases. The solution of Riemann problem has 

given rise the shock, contact discontinuity or rarefaction 

waves depending on the different initial data.  

The study of the structure of shock waves have been a 

challenging field of investigation for theoreticians and 

experimental scientists for a long time. In order to understand 

the internal structure of a shock wave, it is required to 

investigate the rapid change of flow variables such as 

velocity, pressure, temperature, change-in-entropy, viscous 

stress, heat flux, shock asymmetry, and ratio of mean free 

path to the thickness of the shock wave, through a narrow 

region between the two equilibrium states. There is a rich 

history of theoretical and experimental study of the shock 

wave structure. 

The structure of a shock wave has been studied extensively 

for propagation of a perfect gas in a viscous steady flow in 

presence or absence of heat conduction. Rankine [19], 

Rayleigh [20], and Taylor [21] have started the investigation 

of dissipative process due to the viscosity and heat 
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conduction. Later, Lamb [22], Becker [23], Thomas [24], 

Meyerhoff and Reissner [25], Puckett [26], Thompson and 

Lambrakis [27], Cramer and Crickenberger [28], Johnson 

[29], Anand and Yadav [30, 31] have studied the shock 

structure problem in ideal or non-ideal gas under the presence 

or absence of viscosity and heat conductivity by different 

approach. In 2014, Myong [32] has investigated analytical 

solutions of the shock structure equations and asymmetry in 

the frame work of Navier-Stokes and Fourier equations in a 

perfect gas for Prandtl number Pr=3/4. Recently, Patel and 

Singh [33] have studied shock wave structure in a non-ideal 

gas under constant and vaiable coefficients of viscosity and 

heat conductivity in a steady flow. Most of the above studies 

were confined under the assumption of steady flow condition. 

In 2016, Singh, Patel and Bajargaan [34] have studied the 

unsteady one-dimensional gas dynamic problem by Adomian 

decomposition method. They have been successful to capture 

the shock wave in their solution for planer, cylindrical and 

spherical symmetries but were unable to investigate the 

internal structure of shock waves. In 2017, Bajargaan, Patel, 

and Singh [35] solved the system of gas dynamic equation 

for unsteady flow of an ideal gas by homotopy analysis 

method and obtained the shock phenomena but were not able 

to obtain structure of shock waves. The most general and 

practical approach will be that in which the complete internal 

shock structure can be investigated for an unsteady flow of a 

gas. 

In the present work, the method of travelling wave solution 

is employed to study the unsteady viscous and perfect gas 

flow under the Riemann condition. The Riemann problem is 

considered for arbitrary initial data and a condition is derived 

on Riemann data for existence of solution in terms of shocks. 

It is assumed, that the heat conduction and radiation heat flux 

in the fluid flow are negligible. The system of unsteady gas 

dynamic equations are reduced into a single first order 

ordinary differential equation in term of non-dimensional 

velocity and the Riemann condition is transformed into the 

boundary conditions at ±∞ for finite time, Thus obtained 

boundary value problem is solved for exact solution of the 

velocity, the pressure, the temperature and the change in 

entropy by setting the origin of co-ordinate system at the 

inflection point of the velocity profile. The Rankine-

Hugoniot jump conditions are derived in due process of exact 

solution and Lax entropy condition is used for the study of 

shock wave. The structure of a shock wave for unsteady flow 

of a perfect gas is investigated in terms of shock thickness, 

Mach number, viscosity, ratio of specific heat of the gas, and 

inverse shock thickness. The strength of shock wave is also 

discussed. All the numerical estimation of flow variables is 

carried out using Mathematica 9. 

 

 

2. BASIC EQUATIONS AND BOUNDARY 

CONDITION 

 

The gas dynamic equations governing the one-dimensional 

unsteady flow of perfect gas under the effect of viscosity can 

be expressed conveniently in Eularian coordinates in absence 

of body force for planar geometry as follows [18, 30, 31] 

 
𝜕𝜌

𝜕𝑡
+𝜕(𝜌𝑢)

𝜕𝑥
= 0,                                     (1) 

 
𝜕(𝜌𝑢)

𝜕𝑡
+

𝜕(𝑝+𝜌𝑢2−𝑞)

𝜕𝑥
= 0,                          (2) 

 
𝜕(𝜌𝑒+

𝜌𝑢2

2
)

𝜕𝑡
+

𝜕(𝜌𝑢(𝑒+
𝑢2

2
)+𝑝𝑢−𝑞𝑢)

𝜕𝑥
  = 0,                (3) 

 

where, ρ(x, t), u(x, t), p(x, t), q(x, t) and e(x, t) are the 

density, gas velocity, pressure, viscous stress and internal 

energy per unit mass respectively and, x and t are space the 

time co-ordinate. The viscous stress (q) is given by 

 

𝑞 =
4

3
µ

𝜕𝑢

𝜕𝑥
,                                      (4) 

 

where, µ is the coefficient of dynamic viscosity (in limit of 

negligible bulk viscosity), which is assumed to be 

independent of the temperature and density for the 

simplicity. The solution of equations (1)-(3) has to be 

investigated by the method of travelling wave solution 

under the Riemann condition 

 

 (𝜌, 𝑢, 𝑝)(𝑥, 0) = {
(𝜌1, 𝑢1, 𝑝1),    𝑥 < 0,

(𝜌2, 𝑢2, 𝑝2),     𝑥 > 0,
               (5) 

 

which show a discontinuity in initial data at 𝑥 =  0. The 

initial data (𝜌1, 𝑢1, 𝑝1) and (𝜌2, 𝑢2, 𝑝2)  are arbitrary 

constants that includes the values at 𝑥 → ±∞. 
Equation of state of perfect gas is taken in the form 

 

𝑝 = 𝜌𝑅𝑇,                                          (6) 

 

where, R is the gas constant and T is the absolute 

temperature of the gas. The internal energy per unit mass of 

the perfect gas is given by 

 

𝑒 = 𝐶𝑣𝑇 =
𝑝

𝜌(𝛾−1)
,                                (7) 

 

where, 𝐶𝑣 = 𝑅/(𝛾 − 1)  is the specific heat at constant 

volume and 𝛾  is the ratio of specific heats 𝐶𝑝  at constant 

pressure and 𝐶𝑣 at constant volume. 
 
 
3. TRAVELING WAVE ANALYSIS 
 

In this section, we have given the travelling wave analysis 

of the system of one-dimensional unsteady gas dynamic 

equations (1)-(4) under Riemann condition (5). For, we have 

assumed that the solution of the Eqns. (1)-(4) is given by 

 

𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜌(𝑥, 𝑡) = 𝜌(𝜉), 𝑝(𝑥, 𝑡) = 𝑝(𝜉), 
             𝜉 = 𝑥 − 𝑐𝑡,                               (8) 

 

where, c is a constant speed of right travelling wave to be 

determined later and is a wave variable. Under the 

transformation (8), the Eqns. (1)-(4) reduces into 

 

        𝑐
𝑑𝜌

𝑑𝜉
−

𝑑(𝜌𝑢)

𝑑𝜉
= 0,                                 (9) 

 

         𝑐
𝑑(𝜌𝑢)

𝑑𝜉
−

𝑑(𝑝+𝜌𝑢2−𝑞)

𝑑𝜉
= 0,                      (10) 

 

𝑐
𝑑(𝜌𝑒+𝜌𝑢2/2)

𝑑𝜉
−

𝑑(𝜌𝑢(𝑒+𝑢2/2)+𝑝𝑢−𝑞𝑢)

𝑑𝜉
= 0,             (11) 

 

   𝑞 =
4

3
µ

𝑑𝑢

𝑑𝜉
.                                    (12) 
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Thus, the method of travelling wave solution reduces the 

system of gas dynamic Eqns. (1)-(4) from partial differential 

equations to exact ordinary differential equations. Now Eqns. 

(9)-(11) can be integrated with respect to ξ to give 

 

𝜌(𝑐 − 𝑢) = 𝜌1(𝑐 − 𝑢1) = 𝐴,                        (13) 

 

𝑝 − 𝜌(𝑐2 − 𝑢2) − 𝑞 = 𝑝1 − 𝜌1(𝑐2 − 𝑢1
2) = 𝐵,        (14) 

 

(𝑐 − 𝑢) {
𝑝

𝛾−1
+

𝜌𝑢2

2
} − 𝑝𝑢 + 𝑞𝑢 = (𝑐 − 𝑢1) {

𝑝1

𝛾−1
+

𝜌1𝑢1
2

2
} −

𝑝1𝑢1 = 𝐶,                                         (15) 

 

where, A, B and C are constants. The viscous stress tenser q 

in the left hand side of the equations (14)-(15) is given by Eq. 

(12) and is equal to zero at ξ→±∞. Therefore, from the Eqns. 

(13)-(15), we get a jump relation among the flow variables 

under the Riemann conditions (5) as 

 

𝜌2(𝑐 − 𝑢2) = 𝜌1(𝑐 − 𝑢1),                           (16) 

 

𝑝2 − 𝜌2(𝑐2 − 𝑢2
2) = 𝑝1 − 𝜌1(𝑐2 − 𝑢1

2),        (17) 

 

(𝑐 − 𝑢2) {
𝑝2

𝛾−1
+

𝜌2𝑢2
2

2
} − 𝑝2𝑢2 = (𝑐 − 𝑢1) {

𝑝1

𝛾−1
+

𝜌1𝑢1
2

2
} −

𝑝1𝑢1,                                      (18) 

 

which are the Rankine-Hugoniot jump conditions across the 

discontinuity propagating with speed c. These relations show 

that the discontinuity in the initial data at 𝑥 = 0, propagates 

with speed c into the flow-field. This jump discontinuity can 

be identified as a shock moving with constant speed c. 

Therefore, the right travelling wave in the Eq. (8) with the 

constant speed c is actually a shock wave. The profile for the 

gas velocity, temperature, pressure and change in entropy can 

be obtained from the Eqns. (12)-(15). This problem may be 

seen as a shock structure problem. Using Eqns. (12), (13) and 

(14) into the Eq. (15), the shock structure problem reduces 

into a single first order ordinary differential equation as 

 

(
𝑐−𝑢

𝛾−1
)

4

3
µ

𝑑𝑢

𝑑𝜉
+ (

𝑐−𝛾𝑢

𝛾−1
) (𝐴𝑢 + 𝐴𝑐 + 𝐵) +

𝐴𝑢2

2
= 𝐶,       (19) 

 

where, the constant A, B and C are given by Eqns. (13)-(15) 

and are the known function of the constant state (𝜌1, 𝑢1, 𝑝1) 

at 𝜉 → −∞.The trans-formation of initial condition (5) in 

term of wave variable 𝜉 has been given in section 4. 

 

 

4. EXACT SOLUTIONS 

 

For the exact solution of Eq. (19), we introduce the non-

dimensional velocity   and Mach number 𝑀1 as 

 

𝜂 =
𝑐−𝑢

𝑐−𝑢1
=

𝜌1

𝜌
,        𝑀1 =

𝑢1−𝑐

𝑎1
,                       (20) 

 

where, the shock speed c is so chosen that the Lax-entropy 

condition 𝑢1 > 𝑐 > 𝑢2  for initial condition 𝑢1 > 𝑢2 , is 

satisfied and 𝑎1
2 = 𝛾𝑝1/𝜌1 is the speed of the sound at the 

uniform state at ξ=-∞. Further, we can discuss the solution of 

Eq. (19) under the entropy condition 𝑢1 < 𝑐 < 𝑢2  for 𝑢1 <
𝑢2 as a separate case. In this case the initial Mach number 

will be taken as 𝑀1 = (𝑐 − 𝑢1)/𝑎1 . For the existence of 

shock, the flow speed u must be decreases with an  increase 

in the position ξ, therefore, we have chosen the initial data 

𝑢1 = 3𝑐/2 and 𝑢2 = 𝑐/2 so that the Lax entropy condition 

𝑢1 > 𝑐 > 𝑢2 must hold (see [37]). We may be chosen other 

possible values for 𝑢1, and 𝑢2 in term of shock speed c under 

the Lax-entropy condition. We may determine the value of c 

from the second Eq. of (20) for initial value 𝑢1  and Mach 

number 𝑀1. The governing Eq. (19) under the transformation 

(20) reduces into 

 
𝑑𝜂

𝑑𝜉
=

𝐷𝜂2+𝐸𝜂+𝐹

𝐺𝜂
                                    (21) 

where,  

 

𝐷 = −
𝐴(𝛾 + 1)(𝑐 − 𝑢1)2

2
,  

  𝐸 = 𝛾(𝑐 − 𝑢1)(𝐵 + 2𝐴𝑐), 

𝐹 = (1 − 𝛾) (
3𝐴𝑐2

2
+ 𝐵𝑐 + 𝐶) , 𝐺 =

4

3
µ(𝑐 − 𝑢1)2. 

 

Now, we transform the initial data for velocity given in Eq. 

(5) in term of non-dimensional velocity 𝜂  as a function of 

wave variables 𝜉 = 𝑥 − 𝑐𝑡. It is observed that, for finite time 

t (including initial time t=0), 𝜉 = 𝑥 − 𝑐𝑡 → ±∞ as 𝑥 → ±∞. 

Therefore, using the wave variable ξ, the initial conditions at 

the boundary will be transform into boundary conditions. 

This is justifiable on the basis that discontinuity in initial data 

at 𝑥 = 0 shall affect the value of initial condition at ±∞ after 

some finite interval of time. Using this argument, the initial 

condition 

 

𝑢(𝑥, 0) = {
𝑢1,          𝑥 < 0,
𝑢2,          𝑥 > 0,

 

 

under the Eq. (20) is transformed into boundary condition 

 

𝜂(𝜉) = {
1,    𝜉 → −∞,
−1,     𝜉 → ∞.

                       (22) 

 

Now, we shall obtain the solution of Eq. (21) under the 

boundary condition (22). Since, η is constant as 𝜉 tends to 

±∞, therefore, for large values of ξ, dη/dξ must be equal to 

zero. Using 𝑑𝜂/𝑑𝜉 = 0 into the Eq. (21), we get a quadratic 

equation in 𝜂 . The two roots 𝜂1  and 𝜂2  of the quadratic 

equation gives the actual boundary states between which the 

solution of the Eq. (21) exist. The two boundary states 𝜂1 and 

𝜂2 are given by  

 

𝜂1,2 =
−𝐸±√(𝐸2−4𝐷𝐹)

2𝐷
.                      (23) 

 

It is found that the value of one of the roots of 𝜂1 and 𝜂2 is 

1 which is exactly same as the value of 𝜂 at 𝜉 → −∞ into the 

Eq. (22). This root remains same for all possible values of 

initial condition 𝑢1 from Eqns. (20) and (23). The value of 𝜂 

at 𝜉 → +∞  into Eq. (22) and the other root in Eq. (23) 

depends on the choice of initial condition 𝑢1 and  𝑢2. 

On integration of Eq. (21) by the method of partial 

fraction, using 𝜂1  and 𝜂2  from Eq. (23), we get 𝜉  in closed 

form as 

 

𝜉 = 𝐴1 log(𝜂 − 𝜂1) + 𝐵1 log(𝜂 − 𝜂2) + 𝐶 ′,           (24) 

 

where, 
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𝐴1 =
𝐺𝜂1

𝐷(𝜂1−𝜂2)
, 𝐵1 =

𝐺𝜂2

𝐷(𝜂2−𝜂1)
,  and 𝐶 ′  is the constant of 

integration. The value of constant 𝐶 ′ , can be obtained by 

choosing the origin (𝜉 =0) of the coordinate system at the 

inflection point of the velocity profile η, which is given by 

𝑑2𝜂/𝑑𝜉2 = 0. The equation (21) yields a quadratic equation 

under the condition 𝑑2𝜂/𝑑𝜉2 = 0 at ξ=0 given as   

 

               𝐷𝜂𝑖𝑛
2 − 𝐹 = 0,                                  (25) 

 

where, 𝜂𝑖𝑛  is value of velocity η at inflection point. The 

solution of equation (25) gives 

 

          𝜂𝑖𝑛 = ±√
𝐹

𝐷
.                                      (26) 

 

Among the two possible roots, let us assume that 𝜂𝑖𝑛=𝜂∗ is 

the maximum value of the real root 𝜂𝑖𝑛 at the inflection point 

𝜉 = 0. 
The 𝜉 = 𝑥 − 𝑐𝑡 = 0  corresponds to the two following 

cases: 

  

(i) 𝑥 = 0, 𝑡 = 0 gives the position of discontinuity 

into the initial data given by Riemann 

condition. 

(ii) 𝑥 = 𝑐𝑡  gives the position of moving 

discontinuity with speed 𝑐 at time 𝑡. 
 

Using 𝜂 = 𝜂∗ at 𝜉 = 0 into the equation (24), we have 

 

𝐶 ′ = −[𝐴1 log(𝜂∗ − 𝜂1) + 𝐵1 log(𝜂∗ − 𝜂2)]. 
 

Therefore, the exact solution for the gas velocity with 

respect to the position is obtained in implicit form as 

 

𝜉 = 𝐴1 log [
𝜂−𝜂1

𝜂∗−𝜂1
] + 𝐵1 log [

𝜂−𝜂2

𝜂∗−𝜂2
].                    (27) 

 

This relation gives the transition of velocity from one 

uniform state 𝜂 = 𝜂1 = 1 at 𝜉 = −∞ to other 𝜂 = 𝜂2  at 𝜉 =
+∞  through the inflection point 𝜂𝑖𝑛 =  𝜂∗ . This proves the 

existence of transition zone in unsteady flow of perfect gas 

together with the effect of viscosity under Riemann 

condition. 

Using Eqns. (12), (13), (20), and (21) into Eq. (14), we can 

obtain the exact solution for the distribution of pressure 

across the shock transition region as 

 
𝑝

𝑝1
= 1 +

𝐴2(1−𝜂)

𝑝1𝜌1
−

𝜌1(𝐷𝜂2+𝐸𝜂+𝐹)

𝐴𝑝1𝜂
                (28) 

 

The Eq. (28) gives a relation between the pressure and the 

gas velocity. Thus, Eqns. (27) and (28) together give the 

variation of the pressure across the shock front with respect 

to the position ξ. 

Similarly, using Eq. (6), first Eq. of (20), and (28), we 

determine the exact solution for the distribution of 

temperature across the shock transition region as 

 
𝑇

𝑇1
= {1 +

𝐴2

𝑝1𝜌1
−

𝜌1𝐸

𝐴𝑝1
} 𝜂 − {

𝐴3+𝜌1
2𝐷

𝐴𝑝1𝜌1
} 𝜂2 −

𝜌1𝐹

𝐴𝑝1
.         (29) 

 

From Eq. (27) together with Eq. (29), we can calculate 

temperature across the shock transition region with respect to 

the position 𝜉. Furthermore, it will be interest to determine 

the change-in-entropy (𝛥𝑆/𝑅)𝜂  as a function of 𝜂 and 

therefore  𝜉 . In general, for the perfect gas, the change-in-

entropy (ΔS/R) is given as 

 
𝛥𝑆

𝑅
=

𝛾

𝛾−1
log (

𝑇

𝑇1
) − log (

𝑝

𝑝1
),                    (30) 

 

using Eqns. (27), (28) and (29) into Eq. (30), we can obtain 

the change-in-entropy as a function of ξ. 

 

 

5. THICKNESS AND STRENGTH OF TRAVELLING 

SHOCK WAVE 

 

From Eq. (27), we can determine the thickness Δξ of the 

travelling shock wave between two boundary state 𝜂1 and 𝜂2, 

since 𝜂1 and 𝜂2 are singularity of the function ξ=ξ(η) in the 

Eq. (27), therefore, we compute the values of 𝜉 = 𝜉1 at 𝜂 =
0.99𝜂1 + 0.01𝜂2  and 𝜉 = 𝜉2  at 𝜂 = 0.01𝜂1 + 0.99𝜂2 . The 

thickness of the shock wave is given in the Table 1 for the 

different value of µ and 𝑀1. The thickness of the shock wave 

can be compared with the mean free path of the gas 

molecules for the validity of the continuum hypothesis. From 

the kinetic theory of gases one can write the viscosity as 

function of mean free path [38, 39] 

 

µ = 𝜆𝑐̅𝛿𝜌,                                       (31) 

 

where, 𝜆  is mean free path of the molecules. 𝑐̅ = mean 

molecular velocity=√8𝜌1𝑝1/𝜋 at boundary state 𝜉 = −∞ and 

the theoretical values of 𝛿  vary from 1/3  to 0.499, 
depending on the nature of the analysis. The value used here 

is that of Tait. The effect of using a different value for 𝛿 (and 

therefore the shock-wave thickness in terms of mean free 

paths) in direct proportion. In this analysis we have taken the 

value of 𝛿 =constant=0.35. The mean free path of gas is 

computed in Table 2 for different values of viscosity under 

𝜌1 = 1.225 𝑘𝑔/𝑚3  and 𝑝1 = 101325  Pascal, for the air at 

200C. The strength of travelling shock wave is given by 

 

𝑍 =
𝑝2−𝑝1

𝑝1
= 𝛾𝑀1

2(1 − 𝜂2),                      (32) 

 

and is dependent on the initial Mach number 𝑀1 , uniform 

state 𝜂2  and adiabatic index 𝛾 . The strength of shock 

increases with increase in initial Mach number and adiabatic 

index but decreases with 𝜂2 at 𝜉 → +∞. 
 

 

6. RESULTS AND DISCUSSION 

 

The exact solution for gas velocity has been obtained in 

Eq. (27) for unsteady flow of an ideal gas with viscosity 

under the Riemann condition by the method of travelling 

wave solution. The Eq. (27) gives the position ξ as a one-one 

onto function of gas velocity η in the range (η2, η1), therefore, 

ξ is monotonic function of η, so by the implicit function 

theorem, we can obtain gas velocity η as a function of 

position ξ. The pressure 𝑝/𝑝1,  temperature 𝑇/𝑇1  and the 

change-in-entropy ΔS/R across shock transition zone are 

obtained implicitely using Eq. (27) into Eqns. (28), (29), and 

(30), respectively, with respect to the position 𝜉 . The 

distribution of gas velocity, the pressure, the temperature, and 

the change in entropy between the boundary states depends 
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on initial Mach number 𝑀1 , coefficient of viscosity µ, and 

ratio of specific heats 𝛾 (see Figures 1, 2 and 3). 

For numerical computations, we have taken 𝜌1 =
1.225 𝑘𝑔/𝑚3 , 𝑝1 = 101325  Pascal, 𝛾 = 1.33 , 1.40  and 

1.66 , and µ = 5 × 10−6 , µ = 17.2 × 10−6  and  µ =
20 × 10−6 Pascal second, for the air at sea level and 𝑀1 =
1.1, 1.5 and 2. The 𝛾 = 1.33, 1.40 and 1.66 corresponds to 

the air at more than 1000 ℃, air at 20 ℃ and ideal mono-

atomic gases like helium, neon and xenon at 20 ℃. From Eq. 

(23), it is found that 𝜂1 = 1 for all value of the parameters 

but 𝜂2 is dependent on them. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 1. Variation of (a) the gas velocity η; (b) the pressure 

p/p1; (c) the temperature T/T1; (d) the change-in-entropy 

ΔS/R, with Mach number M1. 1. M1= 1.1, 2. M1 = 1.5, 3. 

M1 = 2.0 

 

The thickness Δξ of shock wave and shock strength have 

been discussed in section 5. The variation of shock wave 

thickness Δξ is given in Table 1 for various values of µ, 𝑀1 

and 𝛾 = 1.40  (air), 𝜌1 =1.225 𝑘𝑔/𝑚3 , and 𝑝1 = 101325 

Pascal. It is found that the thickness of shock wave is of the 

order of 10−6 meter. The mean free path 𝜆 as a function of 

viscosity of the gas is obtained in the Table 2. The inverse 

shock thickness (𝜆/Δξ) can be used as a measurement for the 

local Knudsen number to decide the validity of the 

continuum model in the study of the shock wave structure. 

When the local Knudsen number exceeds 0.20 [40], the 

continuum model must be replaced by kinetic theory. The 

comparison of shock wave thickness in Table 1 with mean 

free path in Table 2 show that continuum approach for the 

study of shock wave structure is valid up to a certain extent 

which depends on Mach number and viscosity of the gas 

flow (see Table 1). It is also found that the thickness become 

comparable to the mean free path for Mach number 𝑀1 ≥
1.5 . Therefore, taking limit of 0.20 for inverse shock 

thickness (𝜆/Δξ) in Table 2, we can conclude that this study 

may be valid up to Mach number  𝑀1 = 1.5 due to the need 

of the validity of the continuum hypothesis. 
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(b) 

 
(c) 

 
(d) 

 

Figure 2. Variation of (a) the gas velocity η; (b) the pressure 

p/p1; (c) the temperature T/T1; (d) the change-in-entropy 

ΔS/R, with 𝛾; 𝟏. 𝛾 =  1.33, 𝟐. 𝛾 = 1.40, 𝟑. 𝛾 =  1.66 

 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3. Variation of (a) the gas velocity η; (b) the pressure 

p/p1; (c) the temperature T/T1; (d) the change-in-entropy 

ΔS/R, with µ ; 1. µ = 5 × 10−6, 2. µ = 17.2 × 10−6, 3. µ =
20 × 10−6 

 

Figures 1, 2 and 3 show that the variation of reduced flow 

variables 𝜂, 𝑝/𝑝1, 𝑇/𝑇1 and the change-in-entropy 𝛥𝑆/𝑅 with 

respect to the wave variables 𝜉  for various values of 

parameters 𝛾, 𝑀1 and µ between the boundary 𝜉 = −∞ to 𝜉 =
+∞. It is evident from the Figures 1, 2 and 3 that as we move 

from the boundary state at 𝜉 = −∞ towards 𝜉 = +∞, the gas 

velocity 𝜂 decreases while pressure 𝑝/𝑝1 , temperature 𝑇/𝑇1 

and the change-in-entropy 𝛥𝑆/𝑅 increase. The distribution of 

flow variables is similar to those obtained by [30, 33] and 

[41]. 

The effects of an increase in the value of Mach number 𝑀1 

of the gas can be summarized as: 
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(i) decrease in the thickness of the shock front (see 

Table 1), 

(ii)  increase in the strength of the travelling shock 

wave (see Equation (32)), 

(iii) decrease in the gas velocity η (see Figure 1a). It 

is seen that the decrease is quite significant for 

large value of 𝑀1. 

(iv) Increase in the value of reduced pressure 

distribution 𝑝/𝑝1 (see Figure 1b), 

(v) Increase in the value of reduced temperature 

𝑇/𝑇1  (see Figure 1c) and change-in-entropy 

ΔS/R (see Figure 1d). 

 

Table 1. Effect of coefficient of viscosity µ and Mach 

number M1 on the shock wave thickness for 𝛾 = 1.4, 𝜌1 =
1.225kg/m3, 𝑝1 =  101325 Pascal 

 

µ M1 𝜉1 [m] 𝜉2  [m] 𝛥𝜉 = 𝜉1 − 𝜉2 

[Pas s]    [m] 

 1.1 0.99444 e-06 -1.14816 e-06 2.14260 e-06 

15e-06 1.5 0.14685 e-06 -0.25978 e-06 0.40663 e-06 

 2 0.05858 e-06 -0.14351 e-06 0.20209 e-06 

 1.1 1.14029 e-06 -1.31656 e-06 2.45685 e-06 

17.2e-06 1.5 0.16839 e-06 -0.29788 e-06 0.46627 e-06 

 2 0.06718 e-06 -0.16456 e-06 0.23173 e-06 

 1.1 1.32591 e-06 -1.53088 e-06 2.85680 e-06 

20e-06 1.5 0.19580 e-06 -0.34638 e-06 0.54218 e-06 

 2 0.07811 e-06 -0.19135 e-06 0.26946 e-06 

 

Table 2. Effect of coefficient of viscosity µ on the mean free 

path λ for 𝛾 =  1.4,  𝜌1 = 1.225  kg/m3, 𝑝1 = 101325 

Pascal, M1 =1.5 

 

µ[Pas s] 15 e-06 17.2 e-06 20 e-06 

𝜆[m] 0.07621 e-06 0.08739 e-06 0.11016 e-06 

𝜆/Δξ 0.1874 0.1874 0.2032 

 

It is found that the variation of the flow variables is 

significant for large values of Mach number 𝑀1 . Thus the 

transition zone reduces into the sharp discontinuity surface 

for values of 𝑀1 ≥ 2. It is noted that the effect of 𝑀1 is more 

significant in -5𝑥10−7 < 𝜉 < ∞. 
The effects of an increase in value of adiabatic exponent γ 

are: 

(i) to increase the strength of the travelling shock 

wave (see Equation (32)), 

(ii) to increase the gas velocity η (see Figure 2a), 

pressure 𝑝/𝑝1  (see Figure 2b) and temperature 

𝑇/𝑇1 (see Figure 2c), 

(iii) to decrease the change-in-entropy 𝛥𝑆/𝑅  (see 

Figure 2d). 

Like the 𝑀1 , the effect of 𝛾  is significant in the range 

−1𝑥10−7 <  𝜉 < ∞. 
The effects of an increase in the coefficient of viscosity 

µ of the gas can be seen as: 

(i) increase in the shock front thickness (see Table 

1), 

(ii) increase in the mean free path of the perfect gas 

(see Table 2), 

(iii) decrease in the velocity before the inflection 

point and increase after inflection point (see 

Figure 3a), 

(iv) Increase in the pressure 𝑝/𝑝1, temperature 𝑇/𝑇1 

and the change-in-entropy ΔS/R before the 

inflection point and decrease thereafter. 

Therefore, the viscosity changes the variation of flow 

variables across the inflection point. For a gas with higher 

viscosity, the change in flow variables between the two 

boundary states is small and hence the thickness of the shock 

wave is large. 

 

 

7. CONCLUSIONS 

 

This paper investigates the structure of a moving shock 

wave in an unsteady flow of a perfect gas under the effect of 

viscosity by the method of travelling wave solution. The 

exact solution is obtained for the gas velocity, the pressure, 

the temperature and the change in entropy across a moving 

shock wave under the Riemann condition. The study shows 

that one-dimensional unsteady flow of perfect gas under the 

effect of viscosity and the structure of shock wave can be 

studied by means of travelling wave. The Riemann condition 

is transformed into the boundary conditions. It also shows 

that the motion between two boundary state depends on the 

viscosity, shock Mach number, ratio of specific heats of the 

gas and initial given data. On the basis of this work, one may 

draw the following conclusions: 

• The thickness of the shock wave decreases with Mach 

number and increases with viscosity of the gas. 

• The strength of shock increases with increase in initial 

Mach number and adiabatic index but decreases with 𝜂2 

at 𝜉 → +∞. 
• The continuum hypothesis can be used for the study of 

shock wave structure for unsteady flow of the perfect 

gas under viscosity. 

• The velocity decreases but pressure, temperature and 

change in entropy increase from boundary state at -∞ to 

+∞. 

• The velocity decreases but the pressure, the temperature 

and the change in entropy incresae with Mach number 

in the region 0 < 𝜉 < ∞.  
• The viscosity of the gas reverses the variation of flow 

variables across their inflection point. 

• The change in flow variables across the inflection point 

is higher in ideally monotonic gases like helium, neon 

and xenon in comparison to diatomic gas like the air. 

This problem may be extended by considering real gases at 

the place of ideal gas under non-uniform boundary states. 
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