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Speaker identification is a biometric technology that leverages distinct characteristics 

obtained from vocal utterances to verify users' identities. Later advancements in multiple 

fields have raised the importance of speaker identification systems, particularly in security 

applications. The challenging task in speaker identification systems is how accurately to 

extract discriminative features from the speech signal. This paper presents a novel approach 

method that integrates the two-dimensional discrete multi-wavelet analysis-based critical 

sampling scheme (2D-DMWT-CS) with the principal component analysis (PCA) to employ 

a reliable and efficient speaker identification system. The proposed method incorporates 

four phases: preprocessing, feature extraction, dimensionality reduction, and training and 

classification. During the preprocessing phase, successive refinement techniques such as 

duration division, silence removal, resampling, and dimension reshaping are applied to the 

databases. All databases speech samples are then analyzed using the 2D-DMWT-CS. The 

resultant discriminative features of the wavelet analysis are further processed by the PCA 

during the supplementary dimensionality reduction phase. The latter provides high-level, 

hierarchically ordered features that come with a substantial benefit for enhancing the 

classification accuracy of the convolutional neural network (CNN). The suggested approach 

was validated by testing and evaluating the framework over many individuals using their 

speech identities in four online datasets: RAVDESS, TIMIT, ELSDSR and SALU-AC. The 

achievement results, in terms of the recognition rate, were 97.19% for the TIMIT database, 

97.96% for the RAVDESS database, and 98.91% for the ELSDR database, which are higher 

results than those in the state-of-the-art literature. The reliable and efficient identification 

rates with high accuracy and fast learning with reducing dimensionality, are the main 

contributions of this work.  
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1. INTRODUCTION

Biometrics has seen an increase in popularity in line with 

the growing curiosity in security. Voice is an accurate and 

secure biometric that reveals behavioral information about 

personality characteristics, including nationality, age, sex, and 

emotional state [1]. In addition to using voice as a biometric, 

additional distinctive traits, such as the iris, retina, and face, 

help to distinguish people from each other. The iris, retina, 

fingerprint, and face are classified as psychological 

biometrics, while the voice, signature, and keystroke are 

classified as behavioral biometrics [2]. The performance of 

each biometric technology is classified in Table 1 in terms of 

cost, ease of implementation, simplicity of use, and accuracy 

[3]. According to the information contained in Table 1, it is 

clear that the voice shows superiority over other biometrics in 

terms of the aforementioned parameters. Due to the fact that 

the voice is the most intuitive means of human 

communication, it expresses the identity of the speaker, 

including feelings, gender, age, and race. In addition, due to 

the varying shapes and sizes of human organs such as the 

larynx and vocal tract, the voice produced is unique for 

everyone [4]. As such, voice identity is used in speaker 

identification systems as a robust biometric modality. Over the 

past sixty years, ongoing research on speaker (voice) 

recognition has grown substantially, thanks to developments 

in hardware, architecture, algorithms, and signal processing 

techniques [5]. Distinguishing between speaker recognition 

and speech recognition is essential to understanding the key 

difference between their respective roles. The former is used 

to identify the persons (speakers), while the latter is the words 

(speech) rather than speaker identification [3]. Speaker 

identification (SI) and speaker verification (SV) form the two 

main categories of speaker recognition. The term "Speaker 

verification" refers to the process of confirming a speaker's 

identity by analyzing the details within their speech signal. 

This process aims to ensure that the client is indeed who they 

claim to be, resulting in a one-to-one confirmation. In contrast, 

speaker identification involves determining the identities of 

individuals who speak anonymously, representing a 1: N 
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classification scenario [5].

Table 1. Comparison among several characteristics of various physical biometrics 

Physical Biometric Cost Simplicity in Implemen-tation Simplicity in Use Accuracy 

Face Low Medium Low Low 

Iris High Medium Medium Medium 

Retina Medium Low Low High 

Fingerprint Medium High Medium High 

Voice Low High High Medium 

The speaker identification system plays a crucial role in 

ensuring security and authentication, offering a multitude of 

advantages that extend across various domains and 

applications, such as enhancing individuals’ accessibility and 

inclusivity, personalizing user experiences, and contributing 

significantly to operational efficiency by automating 

processes. According to this rationale, the speaker recognition 

system has garnered the attention of several researchers, 

prompting numerous publications with an extensive 

investigation, as follows:  

The authors in reference [6] proposed an approach that is 

based on optimization to enhance speaker recognition. The 

study integrates optimization techniques to enhance the 

achievement of the identification system, which poses a 

priority importance in various applications such as security 

and authentication. During the feature extraction phase, the 

study used the “Multiple Kernel Weighted Mel Frequency 

Cepstral Coefficient (MKMFCC)”, while during the 

classification phase, the “Support Vector Neural Networks 

(SVNN)” was employed to classify the extracted features and 

identify the speaker. In the optimization phase, the weights and 

biases of the SVNN are optimally tuned using an “Adaptive 

Fractional Bat (AFB)” algorithm. This algorithm enhances the 

convergence rate of the standard algorithm. The “English 

Language Speech Database for Speaker Recognition 

(ELSDSR)” is used to validate the work. The ELSDSR 

database comprises voice messages from 22 speakers (12 

male, 10 female) with a range of ages between 24 and 63 years, 

recorded as '.wav' files at a 16 kHz sampling rate. The 

outcomes of this method in terms of accuracy were 0.95% for 

90% of the training data. The authors in reference [7] 

introduced a new construction called “SECNN (Squeeze-and-

Excitation Convolutional Neural Network)”, which combines 

squeeze-and-excitation (SE) elements with the basic “residual 

convolutional neural network (ResNet)”. During the 

preprocessing and feature extraction phases, the model 

processes the time-frequency spectrograms as its input. It then 

measures the similarity between the utterances of each speaker 

with the models’ speaker using cosine similarity. Speaker 

models are produced by averaging the utterance-level features 

of each input speaker. The system was evaluated using the 

TIMIT database (an acoustic-phonetic continuous speech 

corpus with 630 speakers) and the Librispeech database (a 

large-scale ASR corpus based on public domain audiobooks, 

comprising 1000 hours of speech sampled at 16 kHz). The 

achievable accuracy was 95.83% for TIMIT and 93.92% for 

Librispeech, respectively. The authors in reference [8] 

presented an emotional speaker identification system using 

machine and deep learning models. In the feature extraction 

phase, the study used the “Mel-frequency cepstral coefficients 

(MFCCs)”, which capture the spectral properties of speech 

like pitch and loudness. In the training and classification 

phase, the study compared five machine learning models 

(“Support Vector Machine (SVM)”, “Logistic Regression, 

Random Forest, XGBoost, and k-Nearest Neighbor (k-NN)”), 

and three deep learning models (“Multilayer Perceptron 

(MLP), Long Short-Term Memory (LSTM) network, and 

Convolutional Neural Network (CNN)”). The performance of 

these models was evaluated utilizing the database in 

"RAVDESS", that consists of eight expressed emotions 

uttered by 24 speakers. The results showed the superiority in 

performance of the deep learning models with an accuracy of 

92% over machine learning models, which attained an 

accuracy of 88%. The authors in reference [9] proposed a 

method for performance enhancement of the speaker 

identification system, particularly under extremely high-

pitched conditions. The study used the modified SVM 

classifier with various speech datasets such as: “Arabic 

Emirati-accented database” (a corpus includes 50 speakers (30 

males, 20 females) with eight utterances each), “Speech Under 

Simulated and Actual Stress (SUSAS)” (an English database 

comprises 32 speakers (19 males, 13 females) with 70 

utterances each), and “Ryerson Audio-Visual Database of 

Emotional Speech and Song (RAVDESS)” (an English 

database includes 24 professional speakers (12 males, 12 

females). For feature extraction, the study applied the MFCCs, 

including MFCCs-delta and MFCCs delta-delta, to extract 

distinctive features from each audio input and then treated 

them as input for the modified SVM classifier. The 

performance of the system achieved an accuracy of 93.95% 

based on the Arabic Emirati database, 93.31% based on the 

SUSAS database, and 93.01% based on the RAVDESS 

database. The authors in reference [10] suggested a 

comprehensive approach to speaker identification. The 

method proposed a system that relies on comparing two 

distinct feature extraction techniques (“the Reconstructed 

Phase Space (RPS)” and the MFCC) and applying the Random 

Forest as a classification algorithm. Based on 38 speakers from 

the TIMIT datasets, the study found that the MFCC, when 

combined with a Random Forest classifier, yields highly 

considerable outcomes for speaker identification as compared 

with the RPS method in terms of accuracy. The authors in 

reference [11] presented an advanced speaker identification 

system by combining the “Automatic Spokesperson 

Recognition (ASR)” with a hybrid machine learning approach. 

The work combines spectral features, resulting from applying 

(MFCCs, spectral kurtosis, skewness, NPF, formants), with a 

“Random Forest-Support Vector Machine (RF-SVM)” 

classifier. The system had achieved a highly desirable 

accuracy of 98% for speaker identification based on the 

database of ELSDSR. In reference [12], the core of the speaker 

system identification is a convolutional neural network 

(CNN), where the spectrogram method was used during the 

feature extraction phase. During the classification phase, the 

convolutional neural network was employed. To judge the 

system, the authors used 5 speakers, and each speaker uttered 

4 voice samples. The system had achieved an identification 

rate of about 96.54%. In reference [13], the authors develop an 
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identification system framework that compares the 

effectiveness of the MFCC and MSE during the feature 

extraction phase. In the classification phase, the authors used 

the Gaussian mixture model (GMM) and support vector 

machine (SVM) techniques. The ELSDSR database was used 

to evaluate their system. Based on their findings, it can be 

concluded that the accuracy of MFCC features is superior to 

that of MSE features in both classifiers. Additionally, the 

GMM classifier has better performance than the SVM 

classifier. The authors in reference [14] proposed the use of 

the multiresolution analysis (MRA) based on the 2D-DMWT 

for the feature extraction phase, and the CNN for the training 

and classification phase. Their outcomes, based on the 

database used, were 96.30% for SALU-AC, 97.31% for 

ELSDSR, 96.05% for RAVDESS, and 93.59% for the TIMIT 

database. The authors in reference [15] explored a multi-level 

procedure that includes feature-level techniques, 

dimensionality reduction, and feature optimization strategies. 

The feature-level fusion (FLV) approach was employed during 

the feature extraction phase to combine different features to 

create a more robust representation for the speaker 

identification task. This is followed by the dimensionality 

reduction strategies, the principal component analysis (PCA) 

and the independent component analysis (ICA) techniques, to 

simplify the extracted data and improve the efficiency. Genetic 

algorithm (GA) and marine predator algorithm (MPA) were 

used for further feature enhancement. The proposed method 

was evaluated across various speech datasets under different 

noise levels and speaker counts. It achieved 92.7% accuracy 

on the TIMIT babble noise dataset (120 speakers) and 95.2% 

accuracy on the VoxCeleb1 dataset based on the PCA-MPA 

optimization. The authors in reference [16] proposed the use 

of CNN for feature extraction and the LSTM for classification 

in speaker identification, achieving an accuracy of 96.52%. 

This combination effectively captures both spatial and 

temporal information from audio data. The study 

demonstrated superior performance in speaker identification 

by effectively integrating spatial and temporal feature 

learning, validated against Gaussian Mixture Model (GMM), 

CNN, and SVM models on the RAVDESS database.  

In this paper, a robust approach that integrates the 2D-

DMWT-CS (Two-Dimensional Discrete Multi-Wavelet 

Transform-based Critical Sampling scheme) with the PCA 

(Principal Component Analysis) and CNN (Convolutional 

Neural Network) is developed to produce an efficient and 

reliable speaker identification system. On one hand, the 

DMWT technique was utilized to extract discriminative 

features, while PCA was employed to reduce the 

dimensionality of the extracted features and to produce high-

level, descending ordered features. On the other hand, the 

CNN was used for the classification task, ensuring a high 

recognition rate. The system was evaluated and tested through 

four online speech databases, nominated “Salford university 

anechoic chamber (SALU-AC)”, “English language speech 

database for speaker recognition (ELSDSR)”, “Ryerson 

audio-visual database of emotional speech and song 

(RAVDESS)”, and “TIMIT”. The proposed algorithm showed 

superiority in performance in terms of accuracy as compared 

with the state-of-the-art literature.  

The paper is structured as follows: in Section 2, the main 

structure of the speaker recognition system is introduced. The 

essential concepts of the 2D-DMWT and the PCA analysis are 

discussed in Section 3. The proposed system of speaker 

recognition is presented in Section 4. The results and their 

analysis are discussed in Section 5. Finally, Section 6 

concludes the paper. 

2. MAIN STRUCTURE OF SPEAKER RECOGNITION

The speaker recognition refers to the method of identifying 

an unknown speaker by matching their voice to others in a 

recorded database, resulting in a one-to-many comparison [3]. 

The core framework structure of the speaker recognition 

system is shown in Figure 1, which consists of two phases: the 

training phase, also known as the enrolment phase, and the 

classification phase, also known as the recognition or testing 

phase. The individual blocks of the main framework of the 

speaker recognition system are described in the following 

subsections.  

Figure 1. Speaker recognition system- main block diagram 

2.1 Preprocessing 

Pre-processing is the initial step in speech signal processing, 

which entails transforming an analogue input into a digital 

signal. It is a very crucial step when there is noise happening 

in the speech signal during recording, as incorrect pre-

processing of such signals will reduce classification 

performance [3]. Some of the widely used preprocessing 

techniques, including signal cropping, resampling, framing, 

normalization, and reshaping, are used to transform the input 

speech signal into a suitable form for analysis. The main goal 

of the preprocessing step is to make the speech signal 

acceptable for the next step of the feature extraction. 

2.2 Feature extraction 

The key idea of this process is to extract a sequence of 

attributes (features) from every speech segment, which is, for 
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proper modelling, assumed to be short-term and stationary [3]. 

In this sense, this process preserves relevant and useful 

information about the speech signal and eliminates 

unnecessary and duplicate information. Multiple strategies 

exist in the literature to obtain characteristics from the speech 

signal as coefficients, including Linear Prediction Cepstral 

Coefficients (LPCC), Linear Prediction Coding (LPC), and 

Mel-Frequency Cepstral Coefficients (MFCC) [3]. 

2.3 Training and classification models 

These models are broadly classified into two categories, 

which are discriminative and generative models [17]. 

Generative models depict the distribution of distinct classes, 

whereas discriminative models ascertain the borders that 

separate those groups. Training and classification models are 

not just dependent on the training and classification tasks, but 

also on the available features. Numerous aspects, including 

speech type, training simplicity, as well as storage and 

computational demands, must be evaluated prior to selecting 

the training and classification models [17]. 

3. ESSENTIAL CONCEPTS

3.1 Discrete multi-wavelet transform (DMWT) 

The discrete multiwavelet transform (DMWT) is a 

mathematical technique for decomposing signals into distinct 

frequency components. It has developed as the cornerstone in 

most modern image and signal processing. The conventional 

discrete wavelet transform (DWT) uses a single scaling 

function (usually called, father wavelet, denoted as 𝜑) and a 

single wavelet function (usually called, mother wavelet, 

denoted as 𝜓), to visualize the frequency components of the 

signals at different scales. However, the conventional scalar 

wavelet system faces inherent limitations and is unable to 

simultaneously investigate highly desirable properties like 

orthogonality, symmetry, compact support, and high-order 

approximation [18]. To address these limitations, the idea of 

multi-wavelets was presented [19]. The discrete multi-wavelet 

transform (DMWT) with multiple scaling and wavelet 

functions is a direct generalization of the conventional DWT 

and is based on the principle of multiresolution analysis 

(MRA). The main advantage of the MRA is to represent the 

signal at various levels of resolution. This is achieved using a 

sequence of nested subspaces. The central idea behind DMWT 

is to increase the number of basis functions at each level of 

multiresolution analysis. Instead of using one scaling and one 

wavelet functions, the DMWT system uses 𝑟 scaling functions 

{𝜑1(𝑡), 𝜑2(𝑡), . . . , 𝜑𝑟(𝑡)}  and 𝑟  wavelet functions

{𝜓1(𝑡). , 𝜓2(𝑡). , . . . , 𝜓𝑟(𝑡). } , where 𝑟  is known as the

“multiplicity” of the system [19]. For multiwavelets system, 

𝑟 >  1 , while the standard DWT corresponds to the case of 

𝑟 = 1 .For notational convenience, the multiple scaling and 

wavelet functions can be written using the vector notation in 

Eqs. (1) and (2), as follows: 

𝛷(𝑡) = [𝜑1(𝑡), 𝜑2(𝑡), … , 𝜑𝑟(𝑡)]
T (1) 

𝛹(𝑡) = [𝜓1(𝑡). , 𝜓2(𝑡). , … , 𝜓𝑟(𝑡)]
𝑇 (2) 

where, 𝛷(𝑡) and 𝛹(𝑡), denote the vectors of the multi-scaling 

function and the multi-wavelet function, respectively. In 

theory, the variable "𝑟" has the potential to possess any size. 

The commonly used value of r in the literature of the multi-

wavelets are often taken with a value of 2. The multi wavelet 

and multi scaling functions with multiplicity 𝑟 = 2  can be 

mathematically written in Eqs. (3) and (4), as in reference [14]: 

𝛷(𝑡) = √2 ∑ 𝐻𝑘

∞

𝑘=−∞
. 𝜑(2𝑡 − 𝑘) (3) 

𝛹(𝑡) = √2 ∑ 𝐺𝑘

∞

𝑘=−∞
. 𝜓(2𝑡 − 𝑘) (4) 

where, 𝐺𝑘 and 𝐻𝑘 are practical filters used to decompose the

signal at multiple scales. Each filter represents a matrix with 

𝑟 × 𝑟  dimensions instead of scalar filters in conventional 

DWT. The matrix components of these filters provide a 

number of degrees of freedom more than the traditional scalar 

wavelet. These extra degrees of freedom can be used to 

incorporate into the multiwavelet filters with great 

advantageous properties, such as orthogonality, symmetry, 

and high order of approximation [20]. The popular and 

commonly practical used filter in multiresolution analysis is 

the GHM filter [18]. The former is developed by Geronimo, 

Hardian, and Massopust, and it comes with unique advantages 

that incorporate orthogonality, symmetry, and compact 

support. The GHM system has a multiplicity of 𝑟 = 2 , 

meaning it employs two scaling functions {𝜑1(𝑡), 𝜑2(𝑡)} and

two wavelet functions {𝜓1(𝑡), 𝜓2(𝑡)}, which can be written in

Eqs. (5) and (6), as in reference [14]. 

[
𝜑1(𝑡)
𝜑2(𝑡)

] = √2 ∑ 𝐻𝑘
𝑘

[
𝜑1(2𝑡 − 𝑘)

𝜑2(2𝑡 − 𝑘)
] (5) 

[
𝜓1(𝑡)

𝜓2(𝑡)
] = √2 ∑ 𝐺𝑘

𝑘
[
𝜓1(2𝑡 − 𝑘)

𝜓2(2𝑡 − 𝑘)
] (6) 

The 𝐻𝑘  and 𝐺𝑘  coefficient matrices in the GHM system

consist of four scaling matrices and four wavelet matrices, 

denoted as  𝐻0 ,  𝐻0 ,  𝐻0 ,  𝐻0  and 𝐺0, 𝐺1, 𝐺2, and 𝐺3 ,

respectively, and can be written in Eqs. (7), (7’) and (8), (8’) 

as: 

𝐻0 =

[

3

5√2

4

5

−
1

20
−

3

10√2]

,  𝐻1 =

[

3

5√2
0

9

20

1

√2]

, (7) 

𝐻2 = [

0  0
9

20
−

3

10√2

] ,   𝐻3 = [
0 0

−
1

20
0
] (7’) 

𝐺0 =

[
 
 
 −

1

20
−

3

10√2
1

10√2

3

10 ]

, 𝐺1 =

[

9

20
−

1

√2

−
9

10√2
 0

]

, (8) 

 𝐺2 =

[

9

20
−

3

10√2
9

10√2
−

3

10 ]

, 𝐺3 =

[
 
 
 −

1

20
0

−
1

10√2
0
]

(8’) 
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The use of multiple functions implies important 

considerations. The corresponding digital filter bank, 𝐻𝑘 and

𝐺𝑘, that are responsible for decomposition and reconstruction,

now incorporates vector processing. They are designated by 

sequences of 𝑟 ×  𝑟  matrices, instead of using scalar filter 

coefficients in the conventional DWT. This yields that the 

input signals must generally be transformed (during a 

preprocessing phase) from scalar sequences into vector 

sequences of length 𝑟. 

In the literature, two popular preprocessing methodologies 

have been developed for preprocessing the input before 

applying the wavelet transformation: The oversampling and 

critical sampling schemes. These schemes differ in their 

methods of transforming scalar input into vector form, 

resulting in different consequences for computational 

efficiency, redundancy, and approximation characteristics. 

They can be defined in the following subsections. 

3.1.1 Oversampling preprocessing scheme 

Oversampling is a preprocessing technique that plans a 

scalar input sequence of length N to a vector sequence of the 

same length N, but each vector element has 𝑟  components 

[14]. This method will efficiently increase the number of 

DMWT’s coefficients by a factor of 𝑟. For multiple wavelets 

with multiplicity 𝑟 = 2 and input length 𝑁, this oversampling 

scheme will result in a preprocessing input vector with 2𝑁 

length. The most popular method to implement the 

oversampling scheme for a given signal is to repeat the signal. 

This procedure, denoted as “repeated row preprocessing,” 

results in the repetition of the input data by a factor of two. 

3.1.2 Critical sampling preprocessing scheme 

Critical sampling is a preprocessing method that plans a 

scalar input sequence of length 𝑁  to a vector sequence of 

length 𝑁/𝑟 , where each vector element has 𝑟  components 

[14]. The most popular method to implement the critical 

sampling scheme for a given signal is called “the first-order 

approximation preprocessing”. This approach preserves the 

same total number of DMWT’s coefficients before and after 

preprocessing.  

3.2 Discrete Multi-Wavelet Transform for 2D signals 

By using the critical sampling scheme, the DMWT 

coefficients’ matrix will be in the same dimensions as the input 

matrix, which should be a square matrix of 𝑁 × 𝑁 dimensions 

and 𝑁 must be a power of two, as 2𝑎, where 𝑎 represents an

integer value. Before examining how the DMWT is 

constructed under a critical sampling framework, the first-

order approximation technique will be used for preprocessing 

the rows of the input matrix. The operation of the first-order 

approximation-based row preprocessing is summarized as 

follows [14]: Let the input matrix be denoted by X, the 

following preprocessing will be applied at the odd and even 

numbers of rows: 

𝑅𝑜𝑑𝑑
𝑛𝑒𝑤 = (0.373615) 𝑅𝑜𝑑𝑑

𝑠𝑎𝑚𝑒 + (0.11086198) 𝑅𝑒𝑣𝑒𝑛
𝑛𝑒𝑥𝑡

+ (0.11086198) 𝑅𝑒𝑣𝑒𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (9) 

𝑅𝑒𝑣𝑒𝑛
𝑛𝑒𝑤 = (√2 − 1) 𝑅𝑒𝑣𝑒𝑛

𝑠𝑎𝑚𝑒 (10) 

When calculating for odd rows using Eq. (9), it’s important 

to regard the number preceding the first row as an even-

numbered row with a zero value. In the same way, when 

calculating for the ultimate odd row, the subsequent even row 

will take a zero value. The computation of the 2D-DMWT 

using the critical sampling scheme is completely discussed in 

[14] and can be concluded here by the following steps as

follows:

1. Input checking-dimensions: Make sure that dimensions

for each applied matrix be equal to 𝑁 × 𝑁 , where 𝑁  must 

equal to 2𝑎, and 𝑎 is an integer number. A padding procedure

can be applied to individual rows or columns of the non-square 

input matrix. 

2. Transformation matrix preparation: The 

transformation matrix is constructed according to the size of 

the input matrix, but with (𝑁/𝑟 × 𝑁/𝑟) dimensions and take 

the form as in Eq. (11). 

𝑊 =

[

𝐻0 𝐻1 𝐻2 𝐻3 0 0 …
𝐺0 𝐺1 𝐺2 𝐺3 0 0 …
0 0 𝐻0 𝐻1 𝐻2 𝐻3 …
0 0 𝐺0 𝐺1 𝐺2 𝐺3 …
𝐻2 𝐻3 0 0 𝐻0 𝐻1 …

 𝐺2     𝐺3 0  0       𝐺0 𝐺1 …]

(11) 

where 𝐻𝑖  and 𝐺𝑖, are the coefficient matrices defined in Eqs.

(7) and (8), respectively. After substituting the GHM

coefficients, the size of the transformation matrix, 𝑊 , will

becomes 𝑁 × 𝑁 (the same size as the input matrix), since each

coefficient matrix has 𝑟 × 𝑟 dimension at 𝑟 = 2.

3. Rows preprocessing: For preprocessing rows, the first-

order approximation technique defined in Eqs. (9) and (10) are 

applied to the 𝑁 × 𝑁 input matrix rows that remarked as even 

and odd orders, respectively. The size of the matrix after 

preprocessing remains constant with 𝑁 × 𝑁 dimension. 

4. Rows transformation: Can be done as follows:

a-Apply matrix multiplication between the row-

preprocessed matrix of size 𝑁 × 𝑁  and the transformation 

matrix 𝑊 of size 𝑁 × 𝑁. 

b-Permute rows of 𝑁 × 𝑁  obtained matrix by arranging

rows according to sequence “1, 2, and 5,6. . . , 𝑁 − 3,𝑁 − 2” 

consecutively, regarding the upper portion of the rows in the 

resultant matrix, after that, place the pairs of rows such that the 

sequence “3,4 and 7, 8, … , 𝑁 − 1,𝑁” becomes as the bottom 

rows in the resultant matrix. 

5. Columns preprocessing: To repeat the same procedure

used in preprocessing rows. 

a-Transpose the resultant 𝑁 × 𝑁 matrix from step 4.

b-Repeat step 3 on the last transposed matrix to obtain an

𝑁 × 𝑁 columns preprocessed matrix. 

6. Columns transformation: The column preprocessed

𝑁 × 𝑁 matrix undergoes the following transformation: 

a-Multiply the columns preprocessed matrix by the

transformation matrix 𝑊. 

b-Permute the latest resultant 𝑁 × 𝑁  matrix through

sequentially arranging rows combinations like “ 1, 2,  and 

5, 6. . . 𝑁 − 3,𝑁 − 2” to be in the upper half, followed by 

inserting the row combinations 3, 4,  and 7, 8. . . 𝑁 − 1,𝑁  in 

the lower portion. 

7. The DMWT matrix: To obtain the final wavelet

transformed matrix, it is necessary to do the following 

processes: 

a-Transpose the resulting matrix in step 6 (the column

transformation). 

b-Apply the coefficients permutation to the resulting

transposed matrix in step 7-(a). 
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The block diagram of the two-dimensional Discrete Multi 

Wavelet Transform using critical sampling scheme (2D-

DMWT-CS) with first-order approximation-based row 

preprocessing technique is shown in Figure 2. As seen from 

the figure, the output matrix of the wavelet transform remains 

the same as the original input matrix with 𝑁 × 𝑁 dimensions. 

The resultant matrix behind applying the 2D-DMWT-CS for 

the two-dimensional preprocessed speech signal with 

dimensions of 256 × 256  will be subdivided into four 

primary sub-bands. Each sub-band possesses dimensions of 

128 × 128. Additionally, each primary sub-band undergoes 

subdivision into another four secondary sub-sub-bands, where 

each has dimensions of 64 × 64. Consequently, the utilization 

of the 2D-DMWT-CS discovers the ability to use the high-

level features existing in the speech signal when considering 

the LL sub-band from the output matrix. 

Figure 2. First-level DMWT decomposition for (256\times256\ matrix) using critical sampling scheme with the first-order row 

preprocessing-based method 

3.3 Principal component analysis (PCA) 

PCA is a statistical tool that uses an orthogonal 

transformation to display the dataset in another form. It 

converts a group of correlated variables into a group of 

uncorrelated variables by identifying the most prominent paths 

of data variations [21]. In other words, the PCA transforms the 

original dataset into a new coordinate system in which axes are 

arranged in a certain order based on the variations seen in the 

data. PCA is widely used as a data analysis technique that 

removes noise, redundancy, and correlation from the dataset 

[22]. Hence, it can be used as a dimensionality reduction 

technique as follows: 

Let’s consider a dataset matrix 𝐗 ∈ ℝ𝑛×𝑚 where 𝑛 refers to

the number of samples (rows) and 𝑚 denotes the number of 

features (columns) in each sample. The dataset 𝐗  can be 

viewed as a linear combination of 𝑛 data rows (samples) given 

as 𝐱𝟏, 𝐱𝟐, … , 𝐱𝒏. To reduce the number of features per sample

from 𝑚 into 𝑘, where 𝑘 ≪ 𝑚, the following PCA procedure 

can be described [23]: 

Step 1: Standardize the data rows (samples) by centering 

and normalizing the data columns in X as follows: 

𝐱𝑗
𝑖 =

𝐱𝑗
𝑖 − 𝑥𝑗

𝜎𝑗

 𝑗 = 1,2, … ,𝑚,    and    𝑖 = 1,2,… , 𝑛 (12) 

where, 𝑥𝑗 , 𝜎𝑗  are the mean and the variance of each column

( 𝐱𝑗𝑡ℎ  feature) in the dataset, respectively. This yields a

centered-normalized matrix, which can be denoted as Xcn .

Step 2: Calculate the covariance matrix of Xcn: using the

sample covariance matrix 

𝐂 =
1

𝑚
𝐗cn

T 𝐗cn =
1

𝑚
∑ 𝐱𝑗𝐱𝑗

𝑇
𝑚

𝑖
 , ∈ ℝ𝑛×𝑛 (13) 

Step 3: Calculate the eigenstructure of the covariance 

matrix 𝐂 using the Eq. (14): 

𝐂𝐯𝑖 = λi𝐯𝑖 (14) 

where, 𝐯𝑖, and 𝜆𝒊 , denote the eigenvectors and eigenvalues in

𝐂 , respectively . 

Step 4: Rearrange the eigenvalues and their corresponding 

eigenvectors of 𝐂  in descending order and finding the 

proportions of each eigenvalue (variance) that correspond to 

the total variance. The eigenvectors denote the directions of 

maximal variance (the principal components (PC)), whilst the 

eigenvalues indicate the extent of variation described by each 

direction. The proportion of each principal component 

(variance) tells us how the data are spread along those 

principal components and is given by: 

proportion of 𝑃𝐶 =
𝜆𝑖

∑ 𝜆𝑗
𝑓
𝑗=1

× 100% (15) 

Step 5: Project the centered-normalized dataset 𝐗cn  onto

the first top 𝑘  eigendirections to get a matrix with a k-

dimensional subspace. The top k eigenvectors will form the 

new basis for the data and can be written in a matrix denoted 

by 𝐕k. Hence, the projected matrix will represent the resultant

matrix of the PCA, and is given by: 

P = Xcn
T Vk (16) 

3.4 The convolutional neural network (CNN) 

Convolutional neural networks (CNNs) are among the most 

advanced deep learning architectures in machine learning. 

Their ability to handle data using a grid-like structure has 

pushed progress in computer vision, speech identification, and 

further fields. It uses a set of kernels or filters in the 

convolution process, which is mathematically performed by 

the element-wise multiplications and additions of the kernel 

parameters with a segment of the input data. The proposed 
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system in this paper uses a discriminative CNN for training 

and classification. The biggest advantage of employing CNNs 

is their ability to mitigate the overfitting issue seen in 

traditional neural networks. The reason for this is that the CNN 

possesses a fixed number of parameters within each kernel that 

are uniformly shared across all input data. In addition to that, 

the parameters are independent of the number of features in 

each sample of the dataset [24]. In contrast to the fully-

connected layers used in the conventional neural network, the 

CNN comprises sparse-connected layers, which means that 

each output value in each layer only depends on a small 

number of inputs rather than requiring all inputs. The typical 

architecture for CNN often consists of three major layers, 

which come in order as convolution, pooling, and fully 

connected layers. The convolutional layer has a number of 

discrete trainable kernels (filters), which are employed to 

extract number of varieties for feature mapping. The 

individual features are linked to the previous layer's receptive 

field. The new feature map is generated initially by convolving 

the input with the kernels. Following that, a function with a 

nonlinear activation is applied to the convolving procedure's 

output. The pooling layer takes a small portion of the 

convolutional layer's output as input and down samples it to 

obtain a single result. The purpose of the pooling layer is to 

reduce the computational complexity and dimensionality [24]. 

The topmost layer of a CNN contains one or more fully 

connected layers, which are typical of feedforward neural 

networks, that accept the input from the previous pooling or 

convolutional layer. 

3.5 Online speech databases 

The four online speech datasets, namely, RAVDESS, 

TIMIT, ELSDSR, and SALU-AC, were used in this work to 

train and test the CNN. These datasets come with attributes 

which can be briefly described as follows: 

3.5.1 RAVDESS dataset 

RAVDESS is a group of 24 emotional speeches of public 

practice speakers (12 males and 12 females). Each speaker has 

60 spoken utterances (features) with durations 3 to 4 seconds. 

The dataset contains eight diverse emotions: joy, sadness, 

astonishment, calmness, disgust, indifference, fear, and anger. 

See the link to the web 

“https://www.kaggle.com/datasets/uwrfkaggler/ravdess-

emotional-speech-audio” to reach the RAVDESS speech 

dataset. 

3.5.2 TIMIT dataset 

TIMIT is a collection of 630 speakers of eight American 

with English acoustic-phonetic accent. There are ten 

utterances per speaker, each lasting 2 to 3 seconds. The TIMIT 

dataset's speech sampling frequency was 16 kHz, utilizing 16 

bits per sample for quantization. To access the “TIMIT” 

speech dataset, see the web link 

“https://www.kaggle.com/datasets/tommyngx/timit-corpus”. 

3.5.3 ELSDSR dataset 

ELSDSR is a group of 22 English speakers (twenty as 

Danes, one as an Icelander, and one as a Canadian). Twelve 

males and ten females. Each speaker has 9 spoken utterances. 

The speech in the ELSDSR dataset was sampled at 16 kHz. To 

download the ELSDSR dataset, use the web link 

“http://www2.imm.dtu.dk/~lfen/elsdsr/”.  

3.5.4 SALU-AC dataset 

SALU-AC is a collection of 110 English speakers. Each 

speaker shares three samples in the speech dataset. The first 

sample has a duration of 60 seconds, while the other two 

samples have a duration of 40 seconds. The samples come 

from reading passages from different resources such as books, 

newspapers, and others. The SALU-AC dataset is available 

online on “https://salford.figshare.com/”. This work uses 104 

speakers from the SALU-AC dataset, with 48 males and 56 

females. 

4. PROPOSED SYSTEM AND METHODOLOGY

This section presents and discusses the proposed speaker 

identification system followed in this paper. As depicted in 

Figure 3, our proposed system consists of four stages: 

preprocessing, feature extraction, dimensionality reduction, 

and the training-classification stage. Although the traditional 

identification systems come with three stages, our proposed 

system uses an additional inner step after the feature 

extraction, which is based on the PCA analysis for obtaining 

high-level features. Four online databases, namely TIMIT, 

ELSDSR, SALU-AC, and RAVDESS, are employed to assess 

the suggested identification model. These aforementioned 

databases handle multiple speech changes involving gender, 

ambient noise, and age. The first preprocessing stage includes 

various processing techniques such as duration segmentation, 

resampling, removing silence, and 1D-to-2D reshaping. The 

second stage of the proposed system applies the 2D-DMWT-

CS for the 2D preprocessed speech signal to obtain the 

important features from the desired signal. The third stage is 

concerned with applying the PCA to the extracted features 

localized in the main LL sub-band of the output matrix of the 

wavelet transform. Although the main advantage of the PCA 

lies in dimensionality reduction, it provides another advantage 

of getting high-level features in descending order of 

importance and relative information. The latest advantage will 

contribute to improving the learning process (the training and 

classification phases) that is done by the CNN at the fourth 

stage. Our proposed speaker identification system was used to 

extract the features (utterances) from each speech sample 

within the databases and confidently recognize the identity of 

each speaker with reliable accuracy. The four proposed stages 

are elaborated in the following subsections. 

4.1 Preprocessing stage 

The preprocessing stage is the initial stage of any speaker 

identification system that provides convenient speech signals 

for further processing. Since our databases contain speech 

signals with different utterances belonging to different 

persons, it is essential to format the samples within the speech 

databases correctly. In other words, the preprocessing stage is 

needed to put the speech samples of each database in an 

acceptable form for the next step of the speaker identification 

system, which is, in our case, to put the samples in 2D form 

for applying the wavelet transform. First, each database is 

segmented into other databases with different time durations 

of (0.5, 1, 2, 3, and 5) seconds. Then, each speech sample 

within the segmented database experiences silence removal, 

16KHz resampling, and 1D-to-2D reshaping. Since every 

speech signal contains repetitive vocal pauses, which are 

redundant and irrelevant information in the speech signal, 
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hence, removing such silence pauses will contribute 

significant improvements in the performance of the proposed 

system. On the other hand, the resampling at a 16 KHz 

sampling rate will contribute to making each sample within the 

database possible to be converted from 1D into a 2D signal 

with a dimension of 256 × 256  (power of 2), for the 

capability of applying the 2D-DMWT-CS. 

Figure 3. The speaker identifier proposed system 

4.2 Feature extraction and dimensionality reduction stages 

The common issue in any speaker identification system is 

that of feature extraction. Feature extraction refers to a 

technique that transforms a dataset space into a feature set 

space. This transformation is structured to represent the dataset 

with a reduced number of effective features while preserving 

most of the critical information content of the data. This means 

that the data experience dimensionality reduction. The 

dimensionality reduction property offers numerous benefits, 

including data compression and a decrease in computational 

time, which ultimately enhance the model's performance. Our 

proposed system employs the two-dimensional discrete 

wavelet transform-based critical sampling scheme (2D-

DMWT-CS) technique for feature extraction and 

dimensionality reduction purposes. It is one of the most 

powerful tools that can extract discriminative features from 

large datasets, and it coherently performs dimensionality 

reduction.  

On the other hand, the principal component analysis (PCA) 

is used to get high-level features from the speech dataset. It 

provides a deep feature extraction process at the same time as 

doing further dimensionality reduction. The majority of 

discriminative features in the desired signal are concentrated 

in the main low-low (𝐿 − 𝐿) sub-band, as shown in Figure 2; 

therefore, it is advisable to retain the main (𝐿 − 𝐿) sub-band 

while excluding the remaining sub-bands. However, according 

to wavelet analysis, the  𝐿1𝐿1  sub-sub band represents the

matrix obtained from the average of four sub-sub-bands 

concentrated in the main (𝐿 − 𝐿) sub-band. In other words, it 

represents the matrix of the high-level discriminative features, 

which in our case comes with dimensions 64 × 64. Hence, for 

obtaining high-level features from the speech signal with more 

dimensionality reduction, the main (𝐿 − 𝐿) sub-band in Figure 

2 is further processed by the PCA. The latest will find the main 

directions of the relevant information by keeping only the 

𝐿1𝐿1, and rearranging them in descending order for training

and classification convenience. This in-role will improve the 

accuracy of the recognition rate while preserving the execution 

time of the training CNN as low as possible.  

4.3 Training-Classification stage 

The learning stage in this work contains two main phases: 

phase #1: the training and classification without using the 

PCA, and phase #2: the training and classification with the 

PCA, as shown in Figure 3. Table 2 shows the configuration 

parameters of the CNN layers employed in this work. The 

CNN comprises sixteen layers. During phase #1, without using 

the PCA, the input of the CNN will be the main 𝐿𝐿 sub-band 

matrix with a dimension of 128 × 128. On the other hand, 

during phase #2: using the PCA for dimensionality reduction, 

the input of the CNN will be the 𝐿1𝐿1 sub-sub-band matrix

with a dimension of 64 × 64 . To begin the training and 

classification processes, the CNN receives the input image, 

which is a 4-dimensional matrix ( 𝑁 × 𝑁 × 1 ×number of 

samples) where 𝑁 = 128  for phase #1, and 𝑁 = 64  for 

phase#2, when using the PCA. During the training phase of the 

CNN, a value of 0.01 learning rate was employed with epochs 

staff equal to 500. For CNN optimization, the 𝑠𝑔𝑑𝑚 function 

was used and tested as a best optimizer for executing the 

optimization operation. 

Table 2. CNN configuration layers 

Layer, Number: Name Layer Description 

Layer1: input 

128×128×1×number of samples, for 

phase #1. 

64×64×1×number of samples, for 

phase #2. 

Layer2: convolution 3×3,24 filters, padding’ same’ 

Layer3: batch 

normalization 

Layer4: relu 

Layer5: max pooling 

Layer6: convolution Pool size = 2×2 

Layer7: batch 

normalization 
3×3,36 filters, padding’ same’ 

Layer8: relu 

Layer9: max pooling 

Layer10: convolution 

Layer11: batch 

normalization 
Pool size = 2×2 

Layer12: relu 3×3,48 filters,padding’same’ 

Layer13: max pooling 

Layer14: fully Connected 

Layer 

Layer15: softmax 

Layer16: classification 

output 
Pool size = 2×2 
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4.4 Algorithm of the proposed system 

The overall algorithm steps of our proposed speaker 

identification system, including database preprocessing and 

applying 2D-DMWT-CS for feature extraction and the PCA 

for dimensionality reduction, and the CNN for classification, 

can be concluded in Algorithm 1, as follows: 

Algorithm 1. Preprocessing phase 

1. Input: Database directory containing (folders of speakers,

and files of samples(.wave) per speaker in each speaker folder)

2. Initialization: No. of speakers, No. of samples, and a cell

array named ‘audioDS’ for storing audio data of samples

3. Reading audio data: Call the database from a path to the

(.wav) files

4. For loop:(1: No. of speakers)

5. For loop:(1: No. of samples)

6. Create an ‘audioDataStore’ object for the current (.wav)

file with a ‘labelSource’ set to the folder name

7. Store each audioDataStore object in the audioDS cell

array

8. End for loop of No. of samples

9. End for loop of No. of speakers

10. Preprocessing audio data: Resampling at 16 KHz

11. Initialize an empty cell array audioDS_resampled to store

resampled (.wav) files

12. Initialize an empty cell array audioDS_new_label to store

labels of resampled (.wav) files

13. Set sampling rate to fs_new=16000 Hz

14. For loop:(1: length of audioDS)

15. Read the audio .wav file and its sampling frequency

fs_original

16. Remove silence from the .wav file

17. Resample the audio .wav file by new fs_new at 16KHz

18. Overwrite the resampled .wav file on the original .wav

file

19. Store the .wav file to the cell array audioDS_resampled

20. Store the label to the cell array AudioDS_new_label

21. End for loop of audioDS

Feature Extraction Phase 

22. Initialize a 3D matrix with dimensions (N x N x length of

audioDS) for storing the extracted features (set N=256)

23. Initialize a 3D matrix with dimensions (N/4 x N/4 x

length of audioDS) for storing the extracted features

24. For loop: (1: length of audioDS)

25. Read the resampled .wav file and its fs_new

26. Set a constant named windowsize with size N x N

(256x256)

27. Create a speaker vector

28. If the length of the resampled .wav file ≤ windowsize

29. Pad resampled .wav file with zeros to N=256

(windowsize length)

30. else

31. Truncate resampled .wav file to N=256 (windowsize

length)

32. Reshape the speaker vector into a speaker matrix with

NxN (256x256)

33. Apply the 2D- DMWT based critical sampling (2D-

DMWT-CS) for the speaker matrix 256x256

34. Store the resultant 2D-DMWT-CS in the 3D matrix (NxN

x length of audioDS)

Dimensionality Reduction Phase 

35. Input: the 3D matrix of the LL sub band coefficients

matrix (N/2xN/2x length of audioDS)

36. Extract the LL sub-band coefficients matrix (N/2xN/2x

length of audioDS)

37. Apply the PCA for the extracted features for the LL

coefficients matrix (N/2xN/2x length of audioDS), keeping only the

first components of size (N/4xN/4 x length of audioDS)

38. Store the resultant 2D-DMWT-CS-PCA in the 3D matrix

(N/4xN/4 x length of audioDS) for training

39. End For loop: (1: length of audioDS)

Training and Classification: with and without Using PCA 

40. Split the resultant matrix (preprocessed database from

phase#1 and phase#2 into training and testing

41. Apply CNN for the 3D matrix in phase #1 (the training

and classification without PCA)

42. Apply CNN for the 3D matrix in phase #2 (the training

and classification with PCA)

5. FINDING AND DISCUSSION

During this section, the simulation outcomes of the 

proposed system are discussed, analyzed, and compared with 

the state-of-the-art works in the literature [6-11, 14-16]. The 

obtained results from training the CNN with the four 

databases, nominated SALU-AC, ELSDSR, RAVDESS, and 

TIMIT, are recorded in Table 3, under different durations of 

time, and with the number of speakers, 104 for SALU-AC, 22 

for ELSDSR, 24 for RAVDESS, and 630 for TIMIT. As seen 

in Table 3, the SALU-AC and ELSDSR databases are divided 

into five databases with shorter durations of time “0.5 sec., 1 

sec., 2 sec., 3 sec, and 5 sec”. The database of RAVDESS 

comes with 3 seconds in length and is divided into databases 

with durations “0.5 sec., 1 sec., 2 sec., and 3 sec”. The database 

of TIMIT comes with a duration of 2 seconds and is divided 

into databases with durations “0.5 sec., 1 sec., and 2 sec”. The 

deep learning model of the proposed system was trained with 

these databases separately. The accuracy metric describes how 

accurately the deep learning model identifies the speakers 

during the classification phase; hence, it is used to evaluate the 

performance of the proposed system. The recognition rate of 

the proposed system in terms of the accuracy metric for each 

database with different time durations is shown in Table 3. 

Table 3. Results in terms of accuracy 

Database 

Name 
PCA? 

Accuracy in (%) 

0.5 

sec. 

1 

sec. 

2 

sec. 

3 

sec. 

5 

sec. 

SALU-AC 
No 99.55 98.45 97.48 97.15 95.37 

Yes 99.67 98.63 97.84 97.96 95.74 

ELSDSR 
No 98.60 98.01 95.97 95.01 94.30 

Yes 98.91 98.51 96.12 95.99 95.10 

RAVDESS 
No 95.76 95.26 92.60 90.58 ------ 

Yes 97.96 96.64 95.71 93.75 ------ 

TIMIT 
No 95.90 89.67 89.29 ------ ------ 

Yes 97.91 89.99 89.59 ------ ------ 

To compare the proposed system with the state-of-the-art 

literature, some of the related training and classification 

figures are chosen as those shown in Figures 4-10 with 0.5 and 

1 second sample durations. As seen in Table 3, when the 

sample’s duration increased, the accuracy of the classification 

decreased. In other words, the length of the database is another 

factor in the classification results of the recognition system. 

This is due to the fact that when there are many features 

available in each sample, the learning model will suffer from 

the high bias problem, which leads to a decrease in the 

accuracy of the system. To assess the work’s performance, the 

results of the suggested model are evaluated in comparison 

with [6-11, 14-16] in Table 4 in terms of database used, feature 

extraction method, classification method, and resultant 

recognition rate, as shown in Table 4. The recognition rates in 

2481



Table 4 are expressed by the training and classification 

accuracies shown in Figures 4-10. When the accuracy is high, 

this indicates a high recognition rate and vice versa. As shown 

in Table 4, the recognition rates of the proposed model present 

superiority in performance over other state-of-the-art works. 

The reason behind that comes with the use of the 2D-DMWT-

CS-PCA combination that provides high-level feature 

extraction and dimensionality reduction.  

As seen in Table 4, in the case of the RAVDESS database, 

the authors in reference [8] have employed hybrid techniques 

combining the time-frequency and cepstral domains to obtain 

the crucial features from the desired signal and the multi-layer 

perceptron (MLP) method for classification. It is seen that in 

Table 4, the proposed model investigates a recognition rate of 

97.96%, which is higher than the work in reference [8], see 

Figure 5. Also, as noticed from Figures 4 and 5, the 

recognition rate with the PCA is higher than the system 

without using the PCA. The reason behind that is the use of 

the 2D-DMWT-CS in conjunction with the PCA to enable 

more distinctive feature extraction. 

Table 4. Comparison results 

Data-base Work in Literature 
Feature Extraction 

Method 
Classification Method Recognition Rate in (%) 

R
A

V
D

E
S

S
 (Proposed) 2D-DMWT-CS + PCA CNN 97.96 

[8] Hybrid techniques MLP 92 

[9] Modified-MFCC SVM 93.01 

[14] 2D-DMWT CNN 96.05 

[16] CNN LSTM 96.52 

T
IM

IT
 

(Proposed) 2D-DMWT-CS + PCA CNN 97.91 

[10] MFCC random forest 97 

[7] MFCC SECNN 95.83 

[14] 2D-DMWT CNN 93.59 

[15] FLV+PCA+ICA MPA 92.7 

E
L

S
D

S
R

 

(Proposed) 2D-DMWT-CS + PCA CNN 98.51 

[6] AFB SVNN 95 

[11] Hybrid techniques RF-SVM 98.16 

[14] 2D-DMWT CNN 97.31 

Figure 4. The training process using a 0.5-second length RAVDESS database without PCA 

Figure 5. The training process using a 0.5-second length RAVDESS database using PCA (proposed) 
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Figure 6. The training process using a 1-second length RAVDESS database without PCA 

Figure 7. The training process using a 1-second length RAVDESS database with PCA (proposed) 

Figure 8. The training process using a 0.5-second length TIMIT database with PCA (proposed) 
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Figure 9. The training process using a 1-second length ELSDR database without PCA 

Figure 10. The training process using a 1-second length ELSDR database using PCA (proposed) 

Our proposed method supports high-resolution properties 

that make feature extraction feasible with high-level features 

from the input speech signal. The authors in reference [9] have 

employed the modified method of Mel Frequency Cepstral 

Coefficients (MFCC) for feature extraction, while the 

Support-Vector-Machine (SVM) algorithm was used for 

classification purposes. To ensure impartial comparison, the 

study in reference [9] used only 12 samples for every speaker 

in the database, while in our work, different samples per 

speaker were used depending on the length of the RAVDESS 

database. For example, in the case of 0.5 sec. RAVDESS 

length, the number of samples used is 380, and in the case of 

1 second. RAVDESS length, the number of samples used is 

190. In other words, the number of samples per speaker is

inversely proportional to the length of duration of the database

and plays as another factor that affect the results of the model’s

accuracy, see Figures 6 and 7. As seen in Table 4, the proposed

system outperforms the method applied in references [14, 16].

In the case of using the TIMIT database, the authors in 

reference [10] have employed the method of Mel frequency 

cepstral coefficients (MFCC) for feature extraction, supported 

by the random forest method for classification. The approach 

in reference [10] followed a fair comparison among speakers, 

where only 38 speakers from the TIMIT database were used. 

In our proposed system, 630 speakers with different segments 

of duration are used. As seen in Table 4, the proposed system 

outperforms the method applied in references [7, 14, 15], 

while it shows a comparable recognition rate (up to 97.91) as 

compared with the work in reference [10], see Figure 8. 

In the case of using the ELSDSR database, the authors in 

reference [6] employed a combination of techniques, including 

multiple kernel weighted MFCC (MKMFCC), spectral 

skewness, spectral kurtosis, and autocorrelation, for the 

feature extraction stage of the speaker identification system. 

Although a hybrid method was followed in the literature [6], 

our proposed system, which uses the 2D-DMWT in 

conjunction with the PCA and CNN, has achieved a higher 

recognition rate (up to 98.51 in case of 1-second duration) as 

seen in Table 4 and Figure 10. On the other hand, Figures 9 

and 10 shows that the recognition rate with using PCA is 
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higher than those without using the PCA The proposed method 

also attains a higher recognition rate as compared with the 

work in references [11, 14]. 

Regarding the results in Table 4, it is clearly seen that the 

conjunction between the 2D-DMWT and PCA techniques 

with the CNN leads to higher results in recognition rates as 

compared with the works in literature [6-11, 14-16]. This 

corresponds to the powerful properties of the DMWT 

described by the orthogonality, symmetry, and compact 

support. In addition to that, the DMWT offers many 

advantages: perfect reconstruction while preserving 

orthogonality, linear phase symmetry, and higher order 

approximation. Due to the highly desirable features offered by 

the DMWT, this technique will make the opportunity of 

improving the performance of the system very high. On the 

other hand, the resilience techniques in the preprocessing stage 

of the speech signal, such as speech database length splitting, 

silence removal, and speech resampling were had a significant 

and direct impact on the learning process and the performance 

of the proposed system. Also, using the PCA as a technique 

for dimensionality reduction and for getting high-level and 

descending ordered features will improve the performance of 

the system in terms of accuracy and consequently recognition 

rate.  

5.1 Complexity and dimensionality reduction 

The complexity of computations is crucially related to the 

number of additions and multiplications during the training 

and classification phase. Hence, the dimensions of the 

database will play a major role in this venue. As the 

dimensions of the database increase, the complexity will 

increase. On the other hand, the training time will also 

increase. The overall dimensionality reduction of the proposed 

system can be measured by the following Eq. (17): 

𝐷𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 1 −
𝑀𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡

𝑀𝑖𝑛𝑝𝑢𝑡

× 100% (17) 

where, 𝑀𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡  is of 64 × 64  matrix that represents the

resultant matrix after applying the PCA, and 𝑀𝑖𝑛𝑝𝑢𝑡 denotes

the input matrix, in our case, it represents the reshaped speech 

sample of any speaker from the processed database, and it has 

a size of 256 × 256. After substitutions, the dimensionality 

reduction in Eq. (6) will be 𝐷𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 93.75% . These

results will add another advantage to our work, which is 

preserving the storage space of the extracted features, as 

compared with the state-of-the-art literature in [14-19, 22-24], 

where the dimensions are the same before and after feature 

extraction methods. Due to these significant reductions in 

dimensions of each speech sample, the complexity of 

computations and the training time will decrease significantly. 

As shown in the Figures 4-10, it is shown that the training time 

is approximately reduced to half, see Figures 6 and 7 in the 

case of RAVDESS with and without using the PCA. 

6. CONCLUSION

This paper demonstrates a robust methodology for 

employing an efficient identification system constructed on 

using the 2D-DMWT-CS for feature extraction, the PCA for 

dimensionality reduction, and the CNN for training and 

classification. Refinement preprocessing techniques, such as 

duration division, silence removal, resampling, and dimension 

reshaping, were applied to the database before the feature 

extraction phase. The proposed model harnesses the highly 

desirable properties of the DMWT, such as orthogonality, 

symmetry, compact support, and dimensionality reduction, to 

extract high-level discriminative features from the speech 

signal. On the other hand, uses the PCA to provide another 

dimensionality reduction percentage. This has resulted in an 

enhancement in the CNN training and classification process, 

yielding high recognition rates. The reason behind that is the 

descending order of discriminative features generated by the 

PCA, which contributes to improving the CNN learning. 

The proposed system has been assessed with the well-

known online speech databases nominated SALU-AC, 

ELSDSR, RAVDESS, and TIMIT, and exhibited significant 

recognition rates as compared with the other literature in Table 

4. The proposed model has investigated up to 93.75%

dimensionality reduction, which in turn contributed to

reducing the time of training and the classification process.

The potential limitations such as the sensitivity to speech

length and noise environments may be overcome in this work,

since a decimation preprocessing step for database speech

samples have used to divide the sample’s duration into small

durations, which have proven in the results sections in

providing high accuracy and fast learning, in addition to that,

using of the 2D-DMWT have verified its immunity to noise.

For future work, the researchers can propose a hybrid model

that incorporates the DMWT with other methods, such as

MFCC to extract the features, and then use the PCA for

dimensionality reduction, and the temporal prediction model

using CNN-LSTM for the learning process.
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