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Speaker identification is a biometric technology that leverages distinct characteristics
obtained from vocal utterances to verify users' identities. Later advancements in multiple
fields have raised the importance of speaker identification systems, particularly in security
applications. The challenging task in speaker identification systems is how accurately to
extract discriminative features from the speech signal. This paper presents a novel approach
method that integrates the two-dimensional discrete multi-wavelet analysis-based critical
sampling scheme (2D-DMWT-CS) with the principal component analysis (PCA) to employ
a reliable and efficient speaker identification system. The proposed method incorporates
four phases: preprocessing, feature extraction, dimensionality reduction, and training and
classification. During the preprocessing phase, successive refinement techniques such as
duration division, silence removal, resampling, and dimension reshaping are applied to the
databases. All databases speech samples are then analyzed using the 2D-DMWT-CS. The
resultant discriminative features of the wavelet analysis are further processed by the PCA
during the supplementary dimensionality reduction phase. The latter provides high-level,
hierarchically ordered features that come with a substantial benefit for enhancing the
classification accuracy of the convolutional neural network (CNN). The suggested approach
was validated by testing and evaluating the framework over many individuals using their
speech identities in four online datasets: RAVDESS, TIMIT, ELSDSR and SALU-AC. The
achievement results, in terms of the recognition rate, were 97.19% for the TIMIT database,
97.96% for the RAVDESS database, and 98.91% for the ELSDR database, which are higher
results than those in the state-of-the-art literature. The reliable and efficient identification
rates with high accuracy and fast learning with reducing dimensionality, are the main
contributions of this work.

1. INTRODUCTION

the varying shapes and sizes of human organs such as the
larynx and vocal tract, the voice produced is unique for

Biometrics has seen an increase in popularity in line with
the growing curiosity in security. Voice is an accurate and
secure biometric that reveals behavioral information about
personality characteristics, including nationality, age, sex, and
emotional state [1]. In addition to using voice as a biometric,
additional distinctive traits, such as the iris, retina, and face,
help to distinguish people from each other. The iris, retina,
fingerprint, and face are classified as psychological
biometrics, while the voice, signature, and keystroke are
classified as behavioral biometrics [2]. The performance of
each biometric technology is classified in Table 1 in terms of
cost, ease of implementation, simplicity of use, and accuracy
[3]. According to the information contained in Table 1, it is
clear that the voice shows superiority over other biometrics in
terms of the aforementioned parameters. Due to the fact that
the voice is the most intuitive means of human
communication, it expresses the identity of the speaker,
including feelings, gender, age, and race. In addition, due to
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everyone [4]. As such, voice identity is used in speaker
identification systems as a robust biometric modality. Over the
past sixty years, ongoing research on speaker (voice)
recognition has grown substantially, thanks to developments
in hardware, architecture, algorithms, and signal processing
techniques [5]. Distinguishing between speaker recognition
and speech recognition is essential to understanding the key
difference between their respective roles. The former is used
to identify the persons (speakers), while the latter is the words
(speech) rather than speaker identification [3]. Speaker
identification (SI) and speaker verification (SV) form the two
main categories of speaker recognition. The term "Speaker
verification" refers to the process of confirming a speaker's
identity by analyzing the details within their speech signal.
This process aims to ensure that the client is indeed who they
claim to be, resulting in a one-to-one confirmation. In contrast,
speaker identification involves determining the identities of
individuals who speak anonymously, representing a 1: N
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classification scenario [5].

Table 1. Comparison among several characteristics of various physical biometrics

Physical Biometric Cost Simplicity in Implemen-tation Simplicity in Use Accuracy
Face Low Medium Low Low

Iris High Medium Medium Medium
Retina Medium Low Low High
Fingerprint Medium High Medium High

Voice Low High High Medium

The speaker identification system plays a crucial role in
ensuring security and authentication, offering a multitude of
advantages that extend across various domains and
applications, such as enhancing individuals’ accessibility and
inclusivity, personalizing user experiences, and contributing
significantly to operational efficiency by automating
processes. According to this rationale, the speaker recognition
system has garnered the attention of several researchers,
prompting numerous publications with an extensive
investigation, as follows:

The authors in reference [6] proposed an approach that is
based on optimization to enhance speaker recognition. The
study integrates optimization techniques to enhance the
achievement of the identification system, which poses a
priority importance in various applications such as security
and authentication. During the feature extraction phase, the
study used the “Multiple Kernel Weighted Mel Frequency
Cepstral Coefficient (MKMFCC)”, while during the
classification phase, the “Support Vector Neural Networks
(SVNN)” was employed to classify the extracted features and
identify the speaker. In the optimization phase, the weights and
biases of the SVNN are optimally tuned using an “Adaptive
Fractional Bat (AFB)” algorithm. This algorithm enhances the
convergence rate of the standard algorithm. The “English
Language Speech Database for Speaker Recognition
(ELSDSR)” is used to validate the work. The ELSDSR
database comprises voice messages from 22 speakers (12
male, 10 female) with a range of ages between 24 and 63 years,
recorded as 'wav' files at a 16 kHz sampling rate. The
outcomes of this method in terms of accuracy were 0.95% for
90% of the training data. The authors in reference [7]
introduced a new construction called “SECNN (Squeeze-and-
Excitation Convolutional Neural Network)”, which combines
squeeze-and-excitation (SE) elements with the basic “residual
convolutional neural network (ResNet)”. During the
preprocessing and feature extraction phases, the model
processes the time-frequency spectrograms as its input. It then
measures the similarity between the utterances of each speaker
with the models’ speaker using cosine similarity. Speaker
models are produced by averaging the utterance-level features
of each input speaker. The system was evaluated using the
TIMIT database (an acoustic-phonetic continuous speech
corpus with 630 speakers) and the Librispeech database (a
large-scale ASR corpus based on public domain audiobooks,
comprising 1000 hours of speech sampled at 16 kHz). The
achievable accuracy was 95.83% for TIMIT and 93.92% for
Librispeech, respectively. The authors in reference [8]
presented an emotional speaker identification system using
machine and deep learning models. In the feature extraction
phase, the study used the “Mel-frequency cepstral coefficients
(MFCCs)”, which capture the spectral properties of speech
like pitch and loudness. In the training and classification
phase, the study compared five machine learning models
(“Support Vector Machine (SVM)”, “Logistic Regression,
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Random Forest, XGBoost, and k-Nearest Neighbor (k-NN)”),
and three deep learning models (“Multilayer Perceptron
(MLP), Long Short-Term Memory (LSTM) network, and
Convolutional Neural Network (CNN)”). The performance of
these models was evaluated utilizing the database in
"RAVDESS", that consists of eight expressed emotions
uttered by 24 speakers. The results showed the superiority in
performance of the deep learning models with an accuracy of
92% over machine learning models, which attained an
accuracy of 88%. The authors in reference [9] proposed a
method for performance enhancement of the speaker
identification system, particularly under extremely high-
pitched conditions. The study used the modified SVM
classifier with various speech datasets such as: “Arabic
Emirati-accented database” (a corpus includes 50 speakers (30
males, 20 females) with eight utterances each), “Speech Under
Simulated and Actual Stress (SUSAS)” (an English database
comprises 32 speakers (19 males, 13 females) with 70
utterances each), and “Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS)” (an English
database includes 24 professional speakers (12 males, 12
females). For feature extraction, the study applied the MFCCs,
including MFCCs-delta and MFCCs delta-delta, to extract
distinctive features from each audio input and then treated
them as input for the modified SVM classifier. The
performance of the system achieved an accuracy of 93.95%
based on the Arabic Emirati database, 93.31% based on the
SUSAS database, and 93.01% based on the RAVDESS
database. The authors in reference [10] suggested a
comprehensive approach to speaker identification. The
method proposed a system that relies on comparing two
distinct feature extraction techniques (“the Reconstructed
Phase Space (RPS)” and the MFCC) and applying the Random
Forest as a classification algorithm. Based on 38 speakers from
the TIMIT datasets, the study found that the MFCC, when
combined with a Random Forest classifier, yields highly
considerable outcomes for speaker identification as compared
with the RPS method in terms of accuracy. The authors in
reference [11] presented an advanced speaker identification
system by combining the “Automatic Spokesperson
Recognition (ASR)” with a hybrid machine learning approach.
The work combines spectral features, resulting from applying
(MFCCs, spectral kurtosis, skewness, NPF, formants), with a
“Random Forest-Support Vector Machine (RF-SVM)”
classifier. The system had achieved a highly desirable
accuracy of 98% for speaker identification based on the
database of ELSDSR. In reference [12], the core of the speaker
system identification is a convolutional neural network
(CNN), where the spectrogram method was used during the
feature extraction phase. During the classification phase, the
convolutional neural network was employed. To judge the
system, the authors used 5 speakers, and each speaker uttered
4 voice samples. The system had achieved an identification
rate of about 96.54%. In reference [13], the authors develop an



identification system framework that compares the
effectiveness of the MFCC and MSE during the feature
extraction phase. In the classification phase, the authors used
the Gaussian mixture model (GMM) and support vector
machine (SVM) techniques. The ELSDSR database was used
to evaluate their system. Based on their findings, it can be
concluded that the accuracy of MFCC features is superior to
that of MSE features in both classifiers. Additionally, the
GMM classifier has better performance than the SVM
classifier. The authors in reference [14] proposed the use of
the multiresolution analysis (MRA) based on the 2D-DMWT
for the feature extraction phase, and the CNN for the training
and classification phase. Their outcomes, based on the
database used, were 96.30% for SALU-AC, 97.31% for
ELSDSR, 96.05% for RAVDESS, and 93.59% for the TIMIT
database. The authors in reference [15] explored a multi-level
procedure  that includes feature-level techniques,
dimensionality reduction, and feature optimization strategies.
The feature-level fusion (FLV) approach was employed during
the feature extraction phase to combine different features to
create a more robust representation for the speaker
identification task. This is followed by the dimensionality
reduction strategies, the principal component analysis (PCA)
and the independent component analysis (ICA) techniques, to
simplify the extracted data and improve the efficiency. Genetic
algorithm (GA) and marine predator algorithm (MPA) were
used for further feature enhancement. The proposed method
was evaluated across various speech datasets under different
noise levels and speaker counts. It achieved 92.7% accuracy
on the TIMIT babble noise dataset (120 speakers) and 95.2%
accuracy on the VoxCelebl dataset based on the PCA-MPA
optimization. The authors in reference [16] proposed the use
of CNN for feature extraction and the LSTM for classification
in speaker identification, achieving an accuracy of 96.52%.
This combination effectively captures both spatial and
temporal information from audio data. The study
demonstrated superior performance in speaker identification
by effectively integrating spatial and temporal feature
learning, validated against Gaussian Mixture Model (GMM),
CNN, and SVM models on the RAVDESS database.

Input speech signals
(Training Dataset)

In this paper, a robust approach that integrates the 2D-
DMWT-CS (Two-Dimensional Discrete Multi-Wavelet
Transform-based Critical Sampling scheme) with the PCA
(Principal Component Analysis) and CNN (Convolutional
Neural Network) is developed to produce an efficient and
reliable speaker identification system. On one hand, the
DMWT technique was utilized to extract discriminative
features, while PCA was employed to reduce the
dimensionality of the extracted features and to produce high-
level, descending ordered features. On the other hand, the
CNN was used for the classification task, ensuring a high
recognition rate. The system was evaluated and tested through
four online speech databases, nominated “Salford university
anechoic chamber (SALU-AC)”, “English language speech
database for speaker recognition (ELSDSR)”, “Ryerson
audio-visual database of emotional speech and song
(RAVDESS)”, and “TIMIT”. The proposed algorithm showed
superiority in performance in terms of accuracy as compared
with the state-of-the-art literature.

The paper is structured as follows: in Section 2, the main
structure of the speaker recognition system is introduced. The
essential concepts of the 2D-DMWT and the PCA analysis are
discussed in Section 3. The proposed system of speaker
recognition is presented in Section 4. The results and their
analysis are discussed in Section 5. Finally, Section 6
concludes the paper.

2. MAIN STRUCTURE OF SPEAKER RECOGNITION

The speaker recognition refers to the method of identifying
an unknown speaker by matching their voice to others in a
recorded database, resulting in a one-to-many comparison [3].
The core framework structure of the speaker recognition
system is shown in Figure 1, which consists of two phases: the
training phase, also known as the enrolment phase, and the
classification phase, also known as the recognition or testing
phase. The individual blocks of the main framework of the
speaker recognition system are described in the following
subsections.

o 4-40
Pre- » Feature ‘ .
"W : q Training
*' processing Extraction
Training (Enrolment) Phase ‘
W » Pre- » Feature ‘ Classifi- . .
. . . Decision
processing Extraction cation
Input speech signals

(Testing Dataset)
Classification (Recognition) Phase

Figure 1. Speaker recognition system- main block diagram

2.1 Preprocessing

Pre-processing is the initial step in speech signal processing,
which entails transforming an analogue input into a digital
signal. It is a very crucial step when there is noise happening
in the speech signal during recording, as incorrect pre-
processing of such signals will reduce classification
performance [3]. Some of the widely used preprocessing
techniques, including signal cropping, resampling, framing,
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normalization, and reshaping, are used to transform the input
speech signal into a suitable form for analysis. The main goal
of the preprocessing step is to make the speech signal
acceptable for the next step of the feature extraction.

2.2 Feature extraction

The key idea of this process is to extract a sequence of
attributes (features) from every speech segment, which is, for



proper modelling, assumed to be short-term and stationary [3].
In this sense, this process preserves relevant and useful
information about the speech signal and eliminates
unnecessary and duplicate information. Multiple strategies
exist in the literature to obtain characteristics from the speech
signal as coefficients, including Linear Prediction Cepstral
Coefficients (LPCC), Linear Prediction Coding (LPC), and
Mel-Frequency Cepstral Coefficients (MFCC) [3].

2.3 Training and classification models

These models are broadly classified into two categories,
which are discriminative and generative models [17].
Generative models depict the distribution of distinct classes,
whereas discriminative models ascertain the borders that
separate those groups. Training and classification models are
not just dependent on the training and classification tasks, but
also on the available features. Numerous aspects, including
speech type, training simplicity, as well as storage and
computational demands, must be evaluated prior to selecting
the training and classification models [17].

3. ESSENTIAL CONCEPTS
3.1 Discrete multi-wavelet transform (DMWT)

The discrete multiwavelet transform (DMWT) is a
mathematical technique for decomposing signals into distinct
frequency components. It has developed as the cornerstone in
most modern image and signal processing. The conventional
discrete wavelet transform (DWT) uses a single scaling
function (usually called, father wavelet, denoted as ¢) and a
single wavelet function (usually called, mother wavelet,
denoted as ), to visualize the frequency components of the
signals at different scales. However, the conventional scalar
wavelet system faces inherent limitations and is unable to
simultaneously investigate highly desirable properties like
orthogonality, symmetry, compact support, and high-order
approximation [18]. To address these limitations, the idea of
multi-wavelets was presented [19]. The discrete multi-wavelet
transform (DMWT) with multiple scaling and wavelet
functions is a direct generalization of the conventional DWT
and is based on the principle of multiresolution analysis
(MRA). The main advantage of the MRA is to represent the
signal at various levels of resolution. This is achieved using a
sequence of nested subspaces. The central idea behind DMWT
is to increase the number of basis functions at each level of
multiresolution analysis. Instead of using one scaling and one
wavelet functions, the DMWT system uses r scaling functions
{o1(®), @2 (t),...,0.(t)} and r wavelet functions
W, ()., P, (0).,..., . (t).}, where r is known as the
“multiplicity” of the system [19]. For multiwavelets system,
r > 1, while the standard DWT corresponds to the case of
r = 1 .For notational convenience, the multiple scaling and
wavelet functions can be written using the vector notation in
Egs. (1) and (2), as follows:

D(t) = [@1(t), 92 (8), ..., 0, (O)]"

P(©) = 1 (0)., 2 (O, ., Y (O

(1
)

where, @ (t) and ¥ (t), denote the vectors of the multi-scaling
function and the multi-wavelet function, respectively. In
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theory, the variable "r" has the potential to possess any size.
The commonly used value of r in the literature of the multi-
wavelets are often taken with a value of 2. The multi wavelet
and multi scaling functions with multiplicity r = 2 can be
mathematically written in Egs. (3) and (4), as in reference [14]:

o(t) =2 ij_oon.w(Zt —k) (3)

W) =2 Z;_ka W2t — k) )

where, G, and H), are practical filters used to decompose the
signal at multiple scales. Each filter represents a matrix with
r X r dimensions instead of scalar filters in conventional
DWT. The matrix components of these filters provide a
number of degrees of freedom more than the traditional scalar
wavelet. These extra degrees of freedom can be used to
incorporate into the multiwavelet filters with great
advantageous properties, such as orthogonality, symmetry,
and high order of approximation [20]. The popular and
commonly practical used filter in multiresolution analysis is
the GHM filter [18]. The former is developed by Geronimo,
Hardian, and Massopust, and it comes with unique advantages
that incorporate orthogonality, symmetry, and compact
support. The GHM system has a multiplicity of r =2,
meaning it employs two scaling functions {¢, (t), ¢, (t)} and
two wavelet functions {, (t), ¥, (t)}, which can be written in
Egs. (5) and (6), as in reference [14].

P10 _ 1(2t — )
[902(0 =V2 Zka 0,2t — k) )
P (0] _ Py (2t — k)
[ll)z(t)] =2 ZRG" Y, (2t — k) (6)

The Hj and Gj, coefficient matrices in the GHM system
consist of four scaling matrices and four wavelet matrices,
denoted as H, , Hy, , Hy , Hy and G, G;,G,,and G5 ,
respectively, and can be written in Eqs. (7), (7°) and (8), (8°)
as:

3 4 3 0
5v/2 5 52
Ho = \/1— 3 = 23/— 1 )
720 " 1ovzl |20 ¥
0 0 0 0
Hy=|9 _ 3 | Hy=|_1 O] (7)
20 10V2 20
1 3 9 1
20 10+/2 20 2
Gy = 1 3\/_ G = 9 \/_ ) (®)
Tovz 10 | “Tovz |
10v2 10 10V2
9 3 1
20 10v2 20 ,
2= AR I (8)
- = -——— 0
lTovz 10 | 10vz |



The wuse of multiple functions implies important
considerations. The corresponding digital filter bank, H, and
Gy, that are responsible for decomposition and reconstruction,
now incorporates vector processing. They are designated by
sequences of r X r matrices, instead of using scalar filter
coefficients in the conventional DWT. This yields that the
input signals must generally be transformed (during a
preprocessing phase) from scalar sequences into vector
sequences of length r.

In the literature, two popular preprocessing methodologies
have been developed for preprocessing the input before
applying the wavelet transformation: The oversampling and
critical sampling schemes. These schemes differ in their
methods of transforming scalar input into vector form,
resulting in different consequences for computational
efficiency, redundancy, and approximation characteristics.
They can be defined in the following subsections.

3.1.1 Oversampling preprocessing scheme

Oversampling is a preprocessing technique that plans a
scalar input sequence of length N to a vector sequence of the
same length N, but each vector element has r components
[14]. This method will efficiently increase the number of
DMWT’s coefficients by a factor of . For multiple wavelets
with multiplicity r = 2 and input length N, this oversampling
scheme will result in a preprocessing input vector with 2N
length. The most popular method to implement the
oversampling scheme for a given signal is to repeat the signal.
This procedure, denoted as “repeated row preprocessing,”
results in the repetition of the input data by a factor of two.

3.1.2 Critical sampling preprocessing scheme

Critical sampling is a preprocessing method that plans a
scalar input sequence of length N to a vector sequence of
length N/r, where each vector element has r components
[14]. The most popular method to implement the critical
sampling scheme for a given signal is called “the first-order
approximation preprocessing”. This approach preserves the
same total number of DMWT’s coefficients before and after
preprocessing.

3.2 Discrete Multi-Wavelet Transform for 2D signals

By using the critical sampling scheme, the DMWT
coefficients’ matrix will be in the same dimensions as the input
matrix, which should be a square matrix of N X N dimensions
and N must be a power of two, as 2%, where a represents an
integer value. Before examining how the DMWT is
constructed under a critical sampling framework, the first-
order approximation technique will be used for preprocessing
the rows of the input matrix. The operation of the first-order
approximation-based row preprocessing is summarized as
follows [14]: Let the input matrix be denoted by X, the
following preprocessing will be applied at the odd and even
numbers of rows:

new = (0.373615) Rsam® + (0.11086198) RCx:
previous (9)
+(0.11086198) Rbycn
Ris = (V2 - 1) Rege (10

When calculating for odd rows using Eq. (9), it’s important
to regard the number preceding the first row as an even-

2477

numbered row with a zero value. In the same way, when
calculating for the ultimate odd row, the subsequent even row
will take a zero value. The computation of the 2D-DMWT
using the critical sampling scheme is completely discussed in
[14] and can be concluded here by the following steps as
follows:

1. Input checking-dimensions: Make sure that dimensions
for each applied matrix be equal to N X N, where N must
equal to 2%, and a is an integer number. A padding procedure
can be applied to individual rows or columns of the non-square
input matrix.

2.  Transformation matrix preparation: The
transformation matrix is constructed according to the size of
the input matrix, but with (N/r X N/r) dimensions and take
the form as in Eq. (11).

H, H,L H, H, 0 0
Gy G G, G, 0 0
0 0 H, H H, Hy
=% 0 6 G G G, an
H, H, 0 0 Hy H ..
l¢, ¢, 0 o 6 ¢ .l

where H; and G;, are the coefficient matrices defined in Eqgs.
(7) and (8), respectively. After substituting the GHM
coefficients, the size of the transformation matrix, W, will
becomes N X N (the same size as the input matrix), since each
coefficient matrix has r X r dimension at r = 2.

3. Rows preprocessing: For preprocessing rows, the first-
order approximation technique defined in Eqgs. (9) and (10) are
applied to the N X N input matrix rows that remarked as even
and odd orders, respectively. The size of the matrix after
preprocessing remains constant with N X N dimension.

4. Rows transformation: Can be done as follows:

a-Apply matrix multiplication between the row-
preprocessed matrix of size N X N and the transformation
matrix W of size N X N.

b-Permute rows of N X N obtained matrix by arranging
rows according to sequence “l1, 2, and 5,6...,N —3,N — 2”
consecutively, regarding the upper portion of the rows in the
resultant matrix, after that, place the pairs of rows such that the
sequence “3,4and 7,8, ..., N — 1, N” becomes as the bottom
rows in the resultant matrix.

5. Columns preprocessing: To repeat the same procedure
used in preprocessing rows.

a-Transpose the resultant N X N matrix from step 4.

b-Repeat step 3 on the last transposed matrix to obtain an
N X N columns preprocessed matrix.

6. Columns transformation: The column preprocessed
N X N matrix undergoes the following transformation:

a-Multiply the columns preprocessed matrix by the
transformation matrix W.

b-Permute the latest resultant N X N matrix through
sequentially arranging rows combinations like “ 1,2, and
56...N —3,N—2” to be in the upper half, followed by
inserting the row combinations 3,4, and 7,8...N — 1, N in
the lower portion.

7. The DMWT matrix: To obtain the final wavelet
transformed matrix, it is necessary to do the following
processes:

a-Transpose the resulting matrix in step 6 (the column
transformation).

b-Apply the coefficients permutation to the resulting
transposed matrix in step 7-(a).



The block diagram of the two-dimensional Discrete Multi
Wavelet Transform using critical sampling scheme (2D-
DMWT-CS) with first-order approximation-based row
preprocessing technique is shown in Figure 2. As seen from
the figure, the output matrix of the wavelet transform remains
the same as the original input matrix with N X N dimensions.
The resultant matrix behind applying the 2D-DMWT-CS for
the two-dimensional preprocessed speech signal with
dimensions of 256 X 256 will be subdivided into four

primary sub-bands. Each sub-band possesses dimensions of
128 x 128. Additionally, each primary sub-band undergoes
subdivision into another four secondary sub-sub-bands, where
each has dimensions of 64 X 64. Consequently, the utilization
of the 2D-DMWT-CS discovers the ability to use the high-
level features existing in the speech signal when considering
the LL sub-band from the output matrix.

Filtering across 2D-DMWT
= i 256%25
Rows (256x256)
Filtering across
ﬁ?’ Columns LIL1 | L2L1 [ HIL1 |H2L1
3 —_—
H2,
Pre- H3 S HO.H1H2H3 LiL2 1212 | HiL2 |H2L2
Input data processing || p;‘:;ssmg
256x256 | | odd/even even
TOWS g? columns G0.G1.G2.G3 L1H1 | L2H1 |HIH1 | H2H1
G2,
G3 L1H2 | L2H2 | HIH2 | H2H2

Figure 2. First-level DMWT decomposition for (256\times256\ matrix) using critical sampling scheme with the first-order row
preprocessing-based method

3.3 Principal component analysis (PCA)

PCA is a statistical tool that uses an orthogonal
transformation to display the dataset in another form. It
converts a group of correlated variables into a group of
uncorrelated variables by identifying the most prominent paths
of data variations [21]. In other words, the PCA transforms the
original dataset into a new coordinate system in which axes are
arranged in a certain order based on the variations seen in the
data. PCA is widely used as a data analysis technique that
removes noise, redundancy, and correlation from the dataset
[22]. Hence, it can be used as a dimensionality reduction
technique as follows:

Let’s consider a dataset matrix X € R™™ where n refers to
the number of samples (rows) and m denotes the number of
features (columns) in each sample. The dataset X can be
viewed as a linear combination of n data rows (samples) given
as x1,x2, ..., x™. To reduce the number of features per sample
from m into k, where k < m, the following PCA procedure
can be described [23]:

Step 1: Standardize the data rows (samples) by centering
and normalizing the data columns in X as follows:

i=12,.. (12)

and

j=12,..,m, ,n

where, X;, oj are the mean and the variance of each column
(Xjep, feature) in the dataset, respectively. This yields a
centered-normalized matrix, which can be denoted as X,,.

Step 2: Calculate the covariance matrix of X.,: using the
sample covariance matrix

—iXTX =iZmX-XT € R™Xn
m enfien m ;

C y i

(13)

Step 3: Calculate the eigenstructure of the covariance
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matrix C using the Eq. (14):

CV,: = Aivi (14)
where, v;, and 4; , denote the eigenvectors and eigenvalues in
C, respectively.

Step 4: Rearrange the eigenvalues and their corresponding
eigenvectors of C in descending order and finding the
proportions of each eigenvalue (variance) that correspond to
the total variance. The eigenvectors denote the directions of
maximal variance (the principal components (PC)), whilst the
eigenvalues indicate the extent of variation described by each
direction. The proportion of each principal component
(variance) tells us how the data are spread along those
principal components and is given by:

i
f
j=1

proportion of PC = %x 100%

(15)

4
Step 5: Project the centered-normalized dataset X, onto
the first top k eigendirections to get a matrix with a -
dimensional subspace. The top k eigenvectors will form the
new basis for the data and can be written in a matrix denoted
by Vi. Hence, the projected matrix will represent the resultant
matrix of the PCA, and is given by:
P = XL,V (16)

3.4 The convolutional neural network (CNN)

Convolutional neural networks (CNNs) are among the most
advanced deep learning architectures in machine learning.
Their ability to handle data using a grid-like structure has
pushed progress in computer vision, speech identification, and
further fields. It uses a set of kernels or filters in the
convolution process, which is mathematically performed by
the element-wise multiplications and additions of the kernel
parameters with a segment of the input data. The proposed



system in this paper uses a discriminative CNN for training
and classification. The biggest advantage of employing CNNs
is their ability to mitigate the overfitting issue seen in
traditional neural networks. The reason for this is that the CNN
possesses a fixed number of parameters within each kernel that
are uniformly shared across all input data. In addition to that,
the parameters are independent of the number of features in
each sample of the dataset [24]. In contrast to the fully-
connected layers used in the conventional neural network, the
CNN comprises sparse-connected layers, which means that
each output value in each layer only depends on a small
number of inputs rather than requiring all inputs. The typical
architecture for CNN often consists of three major layers,
which come in order as convolution, pooling, and fully
connected layers. The convolutional layer has a number of
discrete trainable kernels (filters), which are employed to
extract number of varieties for feature mapping. The
individual features are linked to the previous layer's receptive
field. The new feature map is generated initially by convolving
the input with the kernels. Following that, a function with a
nonlinear activation is applied to the convolving procedure's
output. The pooling layer takes a small portion of the
convolutional layer's output as input and down samples it to
obtain a single result. The purpose of the pooling layer is to
reduce the computational complexity and dimensionality [24].
The topmost layer of a CNN contains one or more fully
connected layers, which are typical of feedforward neural
networks, that accept the input from the previous pooling or
convolutional layer.

3.5 Online speech databases

The four online speech datasets, namely, RAVDESS,
TIMIT, ELSDSR, and SALU-AC, were used in this work to
train and test the CNN. These datasets come with attributes
which can be briefly described as follows:

3.5.1 RAVDESS dataset

RAVDESS is a group of 24 emotional speeches of public
practice speakers (12 males and 12 females). Each speaker has
60 spoken utterances (features) with durations 3 to 4 seconds.
The dataset contains eight diverse emotions: joy, sadness,
astonishment, calmness, disgust, indifference, fear, and anger.
See the link to the web
“https://www.kaggle.com/datasets/uwrfkaggler/ravdess-
emotional-speech-audio” to reach the RAVDESS speech
dataset.

3.5.2 TIMIT dataset

TIMIT is a collection of 630 speakers of eight American
with English acoustic-phonetic accent. There are ten
utterances per speaker, each lasting 2 to 3 seconds. The TIMIT
dataset's speech sampling frequency was 16 kHz, utilizing 16
bits per sample for quantization. To access the “TIMIT”
speech dataset, see the web link
“https://www kaggle.com/datasets/tommyngx/timit-corpus”.

3.5.3 ELSDSR dataset

ELSDSR is a group of 22 English speakers (twenty as
Danes, one as an Icelander, and one as a Canadian). Twelve
males and ten females. Each speaker has 9 spoken utterances.
The speech in the ELSDSR dataset was sampled at 16 kHz. To
download the ELSDSR dataset, use the web link
“http://www?2.imm.dtu.dk/~Ifen/elsdsr/”.
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3.5.4 SALU-AC dataset

SALU-AC is a collection of 110 English speakers. Each
speaker shares three samples in the speech dataset. The first
sample has a duration of 60 seconds, while the other two
samples have a duration of 40 seconds. The samples come
from reading passages from different resources such as books,
newspapers, and others. The SALU-AC dataset is available
online on “https://salford.figshare.com/”. This work uses 104
speakers from the SALU-AC dataset, with 48 males and 56
females.

4. PROPOSED SYSTEM AND METHODOLOGY

This section presents and discusses the proposed speaker
identification system followed in this paper. As depicted in
Figure 3, our proposed system consists of four stages:
preprocessing, feature extraction, dimensionality reduction,
and the training-classification stage. Although the traditional
identification systems come with three stages, our proposed
system uses an additional inner step after the feature
extraction, which is based on the PCA analysis for obtaining
high-level features. Four online databases, namely TIMIT,
ELSDSR, SALU-AC, and RAVDESS, are employed to assess
the suggested identification model. These aforementioned
databases handle multiple speech changes involving gender,
ambient noise, and age. The first preprocessing stage includes
various processing techniques such as duration segmentation,
resampling, removing silence, and 1D-to-2D reshaping. The
second stage of the proposed system applies the 2D-DMWT-
CS for the 2D preprocessed speech signal to obtain the
important features from the desired signal. The third stage is
concerned with applying the PCA to the extracted features
localized in the main LL sub-band of the output matrix of the
wavelet transform. Although the main advantage of the PCA
lies in dimensionality reduction, it provides another advantage
of getting high-level features in descending order of
importance and relative information. The latest advantage will
contribute to improving the learning process (the training and
classification phases) that is done by the CNN at the fourth
stage. Our proposed speaker identification system was used to
extract the features (utterances) from each speech sample
within the databases and confidently recognize the identity of
each speaker with reliable accuracy. The four proposed stages
are elaborated in the following subsections.

4.1 Preprocessing stage

The preprocessing stage is the initial stage of any speaker
identification system that provides convenient speech signals
for further processing. Since our databases contain speech
signals with different utterances belonging to different
persons, it is essential to format the samples within the speech
databases correctly. In other words, the preprocessing stage is
needed to put the speech samples of each database in an
acceptable form for the next step of the speaker identification
system, which is, in our case, to put the samples in 2D form
for applying the wavelet transform. First, each database is
segmented into other databases with different time durations
of (0.5, 1, 2, 3, and 5) seconds. Then, each speech sample
within the segmented database experiences silence removal,
16KHz resampling, and 1D-to-2D reshaping. Since every
speech signal contains repetitive vocal pauses, which are
redundant and irrelevant information in the speech signal,



hence, removing such silence pauses will contribute
significant improvements in the performance of the proposed
system. On the other hand, the resampling at a 16 KHz
sampling rate will contribute to making each sample within the
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Figure 3. The speaker identifier proposed system

4.2 Feature extraction and dimensionality reduction stages

The common issue in any speaker identification system is
that of feature extraction. Feature extraction refers to a
technique that transforms a dataset space into a feature set
space. This transformation is structured to represent the dataset
with a reduced number of effective features while preserving
most of the critical information content of the data. This means
that the data experience dimensionality reduction. The
dimensionality reduction property offers numerous benefits,
including data compression and a decrease in computational
time, which ultimately enhance the model's performance. Our
proposed system employs the two-dimensional discrete
wavelet transform-based critical sampling scheme (2D-
DMWT-CS) technique for feature extraction and
dimensionality reduction purposes. It is one of the most
powerful tools that can extract discriminative features from
large datasets, and it coherently performs dimensionality
reduction.

On the other hand, the principal component analysis (PCA)
is used to get high-level features from the speech dataset. It
provides a deep feature extraction process at the same time as
doing further dimensionality reduction. The majority of
discriminative features in the desired signal are concentrated
in the main low-low (L — L) sub-band, as shown in Figure 2;
therefore, it is advisable to retain the main (L — L) sub-band
while excluding the remaining sub-bands. However, according
to wavelet analysis, the L;L; sub-sub band represents the
matrix obtained from the average of four sub-sub-bands
concentrated in the main (L — L) sub-band. In other words, it
represents the matrix of the high-level discriminative features,
which in our case comes with dimensions 64 X 64. Hence, for
obtaining high-level features from the speech signal with more
dimensionality reduction, the main (L — L) sub-band in Figure
2 is further processed by the PCA. The latest will find the main
directions of the relevant information by keeping only the
L,L,, and rearranging them in descending order for training
and classification convenience. This in-role will improve the
accuracy of the recognition rate while preserving the execution
time of the training CNN as low as possible.

4.3 Training-Classification stage

The learning stage in this work contains two main phases:

phase #1: the training and classification without using the
PCA, and phase #2: the training and classification with the
PCA, as shown in Figure 3. Table 2 shows the configuration
parameters of the CNN layers employed in this work. The
CNN comprises sixteen layers. During phase #1, without using
the PCA, the input of the CNN will be the main LL sub-band
matrix with a dimension of 128 X 128. On the other hand,
during phase #2: using the PCA for dimensionality reduction,
the input of the CNN will be the L, L; sub-sub-band matrix
with a dimension of 64 X 64. To begin the training and
classification processes, the CNN receives the input image,
which is a 4-dimensional matrix (N X N X 1 X number of
samples) where N = 128 for phase #1, and N = 64 for
phase#2, when using the PCA. During the training phase of the
CNN, a value of 0.01 learning rate was employed with epochs
staff equal to 500. For CNN optimization, the sgdm function
was used and tested as a best optimizer for executing the
optimization operation.

Table 2. CNN configuration layers

Layer, Number: Name Layer Description
128x128x1xnumber of samples, for
phase #1.
64x64x1xnumber of samples, for
phase #2.

3x3,24 filters, padding’ same’

Layerl: input

Layer2: convolution
Layer3: batch
normalization

Layer4: relu

LayerS: max pooling

Layer6: convolution
Layer7: batch
normalization

Layer8: relu

Layer9: max pooling

Layer10: convolution
Layer11: batch
normalization
Layer12: relu

Layer13: max pooling
Layer14: fully Connected
Layer
Layer15: softmax
Layer16: classification
output

Pool size =2x2

3x3,36 filters, padding’ same’

Pool size = 2x2

3x3,48 filters,padding’same’

Pool size = 2x2
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4.4 Algorithm of the proposed system

The overall algorithm steps of our proposed speaker
identification system, including database preprocessing and
applying 2D-DMWT-CS for feature extraction and the PCA
for dimensionality reduction, and the CNN for classification,
can be concluded in Algorithm 1, as follows:

Algorithm 1. Preprocessing phase

1. Input: Database directory containing (folders of speakers,
and files of samples(.wave) per speaker in each speaker folder)

2. Initialization: No. of speakers, No. of samples, and a cell
array named ‘audioDS’ for storing audio data of samples

3. Reading audio data: Call the database from a path to the
(-wav) files

4. For loop:(1: No. of speakers)

5. For loop:(1: No. of samples)

6. Create an ‘audioDataStore’ object for the current (.wav)
file with a ‘labelSource’ set to the folder name

7. Store each audioDataStore object in the audioDS cell
array

8. End for loop of No. of samples

9. End for loop of No. of speakers

10. Preprocessing audio data: Resampling at 16 KHz

11. Initialize an empty cell array audioDS_resampled to store

resampled (.wav) files
12. Initialize an empty cell array audioDS new _label to store
labels of resampled (.wav) files

13. Set sampling rate to fs new=16000 Hz
14. For loop:(1: length of audioDS)
15. Read the audio .wav file and its sampling frequency
fs_original
16. Remove silence from the .wav file
17. Resample the audio .wav file by new fs_new at 16KHz
18. Overwrite the resampled .wav file on the original .wav
file
19. Store the .wav file to the cell array audioDS_resampled
20. Store the label to the cell array AudioDS new_label
21. End for loop of audioDS

Feature Extraction Phase
22. Initialize a 3D matrix with dimensions (N x N x length of

audioDS) for storing the extracted features (set N=256)
23. Initialize a 3D matrix with dimensions (N/4 x N/4 x
length of audioDS) for storing the extracted features

24. For loop: (1: length of audioDS)

25. Read the resampled .wav file and its fs_new

26. Set a constant named windowsize with size N x N
(256x256)

27. Create a speaker vector

28. If the length of the resampled .wav file < windowsize
29. Pad resampled .wav file with zeros to N=256

(windowsize length)

30. else

31. Truncate resampled .wav file to N=256 (windowsize
length)

32. Reshape the speaker vector into a speaker matrix with

NxN (256x256)

33. Apply the 2D- DMWT based critical sampling (2D-
DMWT-CS) for the speaker matrix 256x256

34. Store the resultant 2D-DMWT-CS in the 3D matrix (NxN
x length of audioDS)

Dimensionality Reduction Phase

35. Input: the 3D matrix of the LL sub band coefficients
matrix (N/2xN/2x length of audioDS)

36. Extract the LL sub-band coefficients matrix (N/2xN/2x
length of audioDS)

37. Apply the PCA for the extracted features for the LL
coefficients matrix (N/2xN/2x length of audioDS), keeping only the
first components of size (N/4xN/4 x length of audioDS)
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38. Store the resultant 2D-DMWT-CS-PCA in the 3D matrix
(N/4xN/4 x length of audioDS) for training
39. End For loop: (1: length of audioDS)

Training and Classification: with and without Using PCA

40. Split the resultant matrix (preprocessed database from
phase#1 and phase#2 into training and testing

41. Apply CNN for the 3D matrix in phase #1 (the training
and classification without PCA)

42. Apply CNN for the 3D matrix in phase #2 (the training
and classification with PCA)

5. FINDING AND DISCUSSION

During this section, the simulation outcomes of the
proposed system are discussed, analyzed, and compared with
the state-of-the-art works in the literature [6-11, 14-16]. The
obtained results from training the CNN with the four
databases, nominated SALU-AC, ELSDSR, RAVDESS, and
TIMIT, are recorded in Table 3, under different durations of
time, and with the number of speakers, 104 for SALU-AC, 22
for ELSDSR, 24 for RAVDESS, and 630 for TIMIT. As seen
in Table 3, the SALU-AC and ELSDSR databases are divided
into five databases with shorter durations of time “0.5 sec., 1
sec., 2 sec., 3 sec, and 5 sec”. The database of RAVDESS
comes with 3 seconds in length and is divided into databases
with durations “0.5 sec., 1 sec., 2 sec., and 3 sec”. The database
of TIMIT comes with a duration of 2 seconds and is divided
into databases with durations “0.5 sec., 1 sec., and 2 sec”. The
deep learning model of the proposed system was trained with
these databases separately. The accuracy metric describes how
accurately the deep learning model identifies the speakers
during the classification phase; hence, it is used to evaluate the
performance of the proposed system. The recognition rate of
the proposed system in terms of the accuracy metric for each
database with different time durations is shown in Table 3.

Table 3. Results in terms of accuracy

Accuracy in (%)

Databdse  pcar 05 1 2 3 5

SeC.  SeC.  Sec.  Sec.  Sec.
SALUAC el aoer saes o7ad STes 9574
ELSDSR  yel  opo1 sl %612 9599 9510
RAVDESS vl o706 soed 9571 9375
mar lo 52 BT B3 77

To compare the proposed system with the state-of-the-art
literature, some of the related training and classification
figures are chosen as those shown in Figures 4-10 with 0.5 and
1 second sample durations. As seen in Table 3, when the
sample’s duration increased, the accuracy of the classification
decreased. In other words, the length of the database is another
factor in the classification results of the recognition system.
This is due to the fact that when there are many features
available in each sample, the learning model will suffer from
the high bias problem, which leads to a decrease in the
accuracy of the system. To assess the work’s performance, the
results of the suggested model are evaluated in comparison
with [6-11, 14-16] in Table 4 in terms of database used, feature
extraction method, classification method, and resultant
recognition rate, as shown in Table 4. The recognition rates in



Table 4 are expressed by the training and classification
accuracies shown in Figures 4-10. When the accuracy is high,
this indicates a high recognition rate and vice versa. As shown
in Table 4, the recognition rates of the proposed model present
superiority in performance over other state-of-the-art works.
The reason behind that comes with the use of the 2D-DMWT-
CS-PCA combination that provides high-level feature
extraction and dimensionality reduction.

As seen in Table 4, in the case of the RAVDESS database,
the authors in reference [8] have employed hybrid techniques

combining the time-frequency and cepstral domains to obtain
the crucial features from the desired signal and the multi-layer
perceptron (MLP) method for classification. It is seen that in
Table 4, the proposed model investigates a recognition rate of
97.96%, which is higher than the work in reference [8], see
Figure 5. Also, as noticed from Figures 4 and 5, the
recognition rate with the PCA is higher than the system
without using the PCA. The reason behind that is the use of
the 2D-DMWT-CS in conjunction with the PCA to enable
more distinctive feature extraction.

Table 4. Comparison results

Feature Extraction

Data-base Work in Literature Method Classification Method Recognition Rate in (%)
n (Proposed) 2D-DMWT-CS + PCA CNN 97.96
A [8] Hybrid techniques MLP 92
@ [9] Modified-MFCC SVM 93.01
é [14] 2D-DMWT CNN 96.05

[16] CNN LSTM 96.52
(Proposed) 2D-DMWT-CS + PCA CNN 97.91
& [10] MFCC random forest 97
E [7] MFCC SECNN 95.83
= [14] 2D-DMWT CNN 93.59
[15] FLV+PCA+ICA MPA 92.7
~ (Proposed) 2D-DMWT-CS + PCA CNN 98.51
A (6] AFB SVNN 95
9 [11] Hybrid techniques RF-SVM 98.16
M [14] 2D-DMWT CNN 97.31
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Figure 10. The training process using a 1-second length ELSDR database using PCA (proposed)

Our proposed method supports high-resolution properties
that make feature extraction feasible with high-level features
from the input speech signal. The authors in reference [9] have
employed the modified method of Mel Frequency Cepstral
Coefficients (MFCC) for feature extraction, while the
Support-Vector-Machine (SVM) algorithm was used for
classification purposes. To ensure impartial comparison, the
study in reference [9] used only 12 samples for every speaker
in the database, while in our work, different samples per
speaker were used depending on the length of the RAVDESS
database. For example, in the case of 0.5 sec. RAVDESS
length, the number of samples used is 380, and in the case of
1 second. RAVDESS length, the number of samples used is
190. In other words, the number of samples per speaker is
inversely proportional to the length of duration of the database
and plays as another factor that affect the results of the model’s
accuracy, see Figures 6 and 7. As seen in Table 4, the proposed
system outperforms the method applied in references [14, 16].

In the case of using the TIMIT database, the authors in
reference [10] have employed the method of Mel frequency
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cepstral coefficients (MFCC) for feature extraction, supported
by the random forest method for classification. The approach
in reference [10] followed a fair comparison among speakers,
where only 38 speakers from the TIMIT database were used.
In our proposed system, 630 speakers with different segments
of duration are used. As seen in Table 4, the proposed system
outperforms the method applied in references [7, 14, 15],
while it shows a comparable recognition rate (up to 97.91) as
compared with the work in reference [10], see Figure 8.

In the case of using the ELSDSR database, the authors in
reference [6] employed a combination of techniques, including
multiple kernel weighted MFCC (MKMFCC), spectral
skewness, spectral kurtosis, and autocorrelation, for the
feature extraction stage of the speaker identification system.
Although a hybrid method was followed in the literature [6],
our proposed system, which uses the 2D-DMWT in
conjunction with the PCA and CNN, has achieved a higher
recognition rate (up to 98.51 in case of 1-second duration) as
seen in Table 4 and Figure 10. On the other hand, Figures 9
and 10 shows that the recognition rate with using PCA is



higher than those without using the PCA The proposed method
also attains a higher recognition rate as compared with the
work in references [11, 14].

Regarding the results in Table 4, it is clearly seen that the
conjunction between the 2D-DMWT and PCA techniques
with the CNN leads to higher results in recognition rates as
compared with the works in literature [6-11, 14-16]. This
corresponds to the powerful properties of the DMWT
described by the orthogonality, symmetry, and compact
support. In addition to that, the DMWT offers many
advantages: perfect reconstruction while preserving
orthogonality, linear phase symmetry, and higher order
approximation. Due to the highly desirable features offered by
the DMWT, this technique will make the opportunity of
improving the performance of the system very high. On the
other hand, the resilience techniques in the preprocessing stage
of the speech signal, such as speech database length splitting,
silence removal, and speech resampling were had a significant
and direct impact on the learning process and the performance
of the proposed system. Also, using the PCA as a technique
for dimensionality reduction and for getting high-level and
descending ordered features will improve the performance of
the system in terms of accuracy and consequently recognition
rate.

5.1 Complexity and dimensionality reduction

The complexity of computations is crucially related to the
number of additions and multiplications during the training
and classification phase. Hence, the dimensions of the
database will play a major role in this venue. As the
dimensions of the database increase, the complexity will
increase. On the other hand, the training time will also
increase. The overall dimensionality reduction of the proposed
system can be measured by the following Eq. (17):

Mresultant

=1- X 100% (17)

DReduction M
input

where, Myesuirane 18 of 64 X 64 matrix that represents the
resultant matrix after applying the PCA, and My, denotes
the input matrix, in our case, it represents the reshaped speech
sample of any speaker from the processed database, and it has
a size of 256 X 256. After substitutions, the dimensionality
reduction in Eq. (6) will be Dgeguction = 93.75% . These
results will add another advantage to our work, which is
preserving the storage space of the extracted features, as
compared with the state-of-the-art literature in [14-19, 22-24],
where the dimensions are the same before and after feature
extraction methods. Due to these significant reductions in
dimensions of each speech sample, the complexity of
computations and the training time will decrease significantly.
As shown in the Figures 4-10, it is shown that the training time
is approximately reduced to half, see Figures 6 and 7 in the
case of RAVDESS with and without using the PCA.

6. CONCLUSION

This paper demonstrates a robust methodology for
employing an efficient identification system constructed on
using the 2D-DMWT-CS for feature extraction, the PCA for
dimensionality reduction, and the CNN for training and
classification. Refinement preprocessing techniques, such as
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duration division, silence removal, resampling, and dimension
reshaping, were applied to the database before the feature
extraction phase. The proposed model harnesses the highly
desirable properties of the DMWT, such as orthogonality,
symmetry, compact support, and dimensionality reduction, to
extract high-level discriminative features from the speech
signal. On the other hand, uses the PCA to provide another
dimensionality reduction percentage. This has resulted in an
enhancement in the CNN training and classification process,
yielding high recognition rates. The reason behind that is the
descending order of discriminative features generated by the
PCA, which contributes to improving the CNN learning.

The proposed system has been assessed with the well-
known online speech databases nominated SALU-AC,
ELSDSR, RAVDESS, and TIMIT, and exhibited significant
recognition rates as compared with the other literature in Table
4. The proposed model has investigated up to 93.75%
dimensionality reduction, which in turn contributed to
reducing the time of training and the classification process.
The potential limitations such as the sensitivity to speech
length and noise environments may be overcome in this work,
since a decimation preprocessing step for database speech
samples have used to divide the sample’s duration into small
durations, which have proven in the results sections in
providing high accuracy and fast learning, in addition to that,
using of the 2D-DMWT have verified its immunity to noise.
For future work, the researchers can propose a hybrid model
that incorporates the DMWT with other methods, such as
MFCC to extract the features, and then use the PCA for
dimensionality reduction, and the temporal prediction model
using CNN-LSTM for the learning process.
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