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Handwriting is a unique human expression that provides insights into personality traits and
behavioral tendencies. Automatic detection of handwriting features remains challenging
due to variations in size, shape, writing style, and inconsistencies caused by environmental,
physical, and psychological factors. These challenges are even greater in multi-class
datasets. This study employed 150 handwriting images annotated with feature classes,
including inter-word spacing (narrow-SKS, medium-SKN) and baseline variations (up-BN,
down-BT, wavy-BG), representing key traits of written expression. The research highlights
the role of parameter optimization through hyperparameter tuning, covering epochs, batch
size, learning rate, momentum, image resolution, and weight decay. Such optimization is
crucial to enhance detection accuracy and improve the robustness of handwriting feature
recognition models. Among the ten experimental configurations evaluated, the proposed
model in the fifth run achieved a recall of 0.98, demonstrating strong sensitivity in detecting
handwriting features. However, this high recall was accompanied by relatively low
precision, as reflected in the F1-Score of 0.55, indicating the presence of false positives.
This trade-off highlights both the effectiveness and limitations of the current approach and
underlines the importance of hyperparameter optimization, bounding box configuration,

and dataset structuring in improving handwriting feature detection outcomes.

1. INTRODUCTION

Deep learning-based object detection techniques have
developed rapidly and are now widely applied in various
computer vision fields, including facial recognition, medical
diagnostics, and intelligent transportation systems. Among
these methods, the You Only Look Once (YOLO) family of
models has emerged as a leading approach, offering
advantages in real-time performance, computational
efficiency, and detection accuracy. However, while YOLO has
been extensively applied for general object detection tasks, its
application to handwriting analysis remains relatively
underexplored, particularly in  capturing structural
characteristics such as inter-word spacing, baseline
orientation, and consistency of handwritten forms [1, 2].

Handwriting pattern recognition to determine individual
personality remains an important field, as handwriting often
reflects distinctive cognitive and psychological traits. It
provides valuable information that can be used in contexts
such as employee selection, student admission, and
performance evaluation. Structural handwriting features such
as spacing between words, spacing between lines, baselines,
and slant constitute important indicators of individuality.
These characteristics can reveal underlying aspects of
personality and behavior, making their accurate detection
crucial for both academic research and practical applications
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[3].

Feature extraction plays a central role in handwriting
recognition, with overall accuracy highly dependent on the
quality of extracted features and classification methods. For
instance, the Celled Projection (CP) method divides Bangla
handwritten images into smaller cells and computes pixel
projections as feature vectors, thereby simplifying
preprocessing and improving speed. Experiments with k-
Nearest Neighbors, Probabilistic Neural Network, and Feed-
Forward Backpropagation Neural Network demonstrated that
CP (4 horizontal & 4 vertical cells) achieved an accuracy of
94.12%, outperforming or matching other conventional
techniques such as crossing, moments, zoning, and projection
histograms [4]. Despite these advances, such handcrafted
methods struggle to handle diverse handwriting variations,
highlighting the need for adaptive deep learning solutions.

Deep learning-based approaches, particularly
Convolutional Neural Networks (CNNs), have set a new
standard in character recognition due to their ability to
automatically extract features without manual design. CNNs
excel at learning complex spatial patterns in handwriting
through convolution and pooling layers, and they adapt well to
variations in size, shape, and environmental conditions.
Recent studies have shown that YOLO and its derivative
architectures can deliver superior performance in detecting
and classifying handwritten characters, words, and spatial
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features compared to traditional methods [5]. Yet, previous
work often focused on character-level recognition, leaving
structural handwriting features insufficiently explored. In
addition, hyperparameter tuning and dataset expansion remain
important aspects that can significantly improve detection
accuracy, but existing research often lacks a comprehensive
treatment of these factors [6-8].

Recent works have begun to highlight the potential of
YOLO for handwriting-related tasks. For example, the
YOLOv5-HDR model [9] improved detection speed and
accuracy compared to earlier versions, while YOLOvV8 has
been fine-tuned for forensic hand image identification,
outperforming DETR and other variants [10]. Similarly,
YOLOvV7-PDM was designed to capture stroke-level details in
calligraphy, surpassing YOLOv6 and YOLOVS8, while another
study combined YOLOv8 with EfficientNet-b4 for Bangla
OCR to achieve robust performance on complex scripts [11].
Nevertheless, the use of YOLO to capture fine-grained
structural handwriting features-such as inter-word spacing,
baseline variation, and slant-remains insufficiently addressed.
To fill this gap, the present study adapts YOLOvVS to extract
spatial handwriting features from a multi-class annotated
dataset. This approach not only extends YOLOQO’s utility in
handwriting analysis but also provides a flexible framework
for comprehensive evaluation of writing patterns, with
implications for forensic science, psychological assessment,
and handwriting-based biometric applications.

2. MATERIAL AND METHOD
2.1 Research framework

This study aims to develop a handwriting image detection
model that accommodates two offline writing formats. The
proposed approach focuses on generating bounding box
annotations for key handwriting feature classes, including
inter-word spacing, baseline variations, and inter-line spacing.
To achieve this, a Convolutional Neural Network (CNN)-
based object detection method was employed, utilizing the
YOLOvVS framework for efficient and accurate feature
extraction (Figure 1).
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Figure 1. The three main components of the YOLOvVS8
architecture

The following is a research framework that can be used in
the sustainability of the results of this study later (Figure 2).
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Figure 2. Workflow of handwriting image preprocessing,
modeling, and evaluation

Figure 2 presents the overall research workflow, beginning
with handwriting generation and image acquisition through
the collection of handwritten samples in two distinct formats.
The acquired images are subsequently subjected to selection
and resizing to maintain consistent dimensions across the
dataset. Following this step, image cropping is conducted-
either at the paragraph or line level-to isolate relevant regions
for further analysis. The cropped images are then spatially
annotated and labeled according to predefined feature
categories, forming the basis for the training phase.

In the next stage, the annotated data are organized into
training and testing sets to support the learning and evaluation
processes. Hyperparameter configurations-including learning
rate, momentum, image resolution, and weight decay-are then
defined to guide the training process. The model is iteratively
trained and tested until an optimal configuration is achieved,
ensuring the development of a reliable detection model.

Finally, model performance is evaluated using standard
metrics such as mean Average Precision (mAP), Precision,
Recall, and F1-Score. This evaluation is further complemented
by visual tools, including convergence curves, confusion
matrices, and error distribution analyses, to provide deeper
insights into model performance. Collectively, this workflow
represents a systematic and replicable approach that can be
applied to handwriting detection and analysis research.

2.2 Data collection

This study employed primary handwritten image data
collected under standardized conditions to ensure consistency
and reliability. The writing sessions were conducted in a
controlled indoor environment with stable room temperature
(approximately 24 + 1°C) and adequate illumination (around
400 lux), following recommended conditions for handwriting
analysis [6, 7, 12]. All participants used identical writing
materials, including A4 paper (80 g), a ballpoint pen with a 0.7
mm tip, and a flat writing surface. Such controls were applied
to minimize external variability that could affect stroke clarity,
line spacing, and baseline consistency.

Handwriting samples consisted of sentences and paragraphs
written in Indonesian to capture natural writing flow and
contextual variations. The format was standardized so that
each subject produced continuous text paragraphs rather than
isolated lines, allowing for the extraction of structural features
such as inter-word spacing, line spacing, and baseline



orientation. This procedure follows previous studies that
highlight the influence of writing format (Figure 3) on stroke
direction, inter-letter connections, and fluency of hand
movement [8]. The dataset collected under these conditions
thus provides a reliable foundation for subsequent spatial
annotation and feature detection.
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Figure 3. Examples of image data formats used
2.3 Cropping images after acquisition

The image of the text was acquired using an Epson 3250
printer scanner device with 300 dpi to obtain a PNG (Portable
Network Graphics) unit image. Reducing the dimensions of an
image can be done using a technique called cropping, which
involves cutting the image at certain coordinates in a specific
area of the image. In this process, a new object is obtained,
which is the result of cutting the original image or part of the
image to the desired size. Cropping is an effective method for
resizing and focusing on certain parts of an image, allowing
for adjusting the composition and taking only relevant or
interesting parts [13, 14]. This process produces an object or
part of an image with a predetermined size.

2.4 Annotation and labeling

Annotation is the process of marking or labeling certain
parts of an image to indicate important objects or features.
Labeling is the process of providing category labels to areas
that have been annotated [15, 16]. The results of annotation
and labeling are in the form of files in Json extension units
(Figure 4).

Annotation is the process of marking or labeling certain
parts of an image to indicate important objects or features.
Labeling is the process of assigning category labels to areas
that have been annotated [ 16, 17]. This stage uses the LabelMe
application offline, which is done per image (with a .png
extension); the results of the annotation and labeling are in the
form of files with a JSON extension (Figure 5). In the original
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image, annotation is carried out using bounding boxes of the
rectangle and polygon type, as many as five shapes, namely
narrow interword-spacing (SKS), medium interword-spacing
(SKN), baseline-up (BN), baseline-down (BT), and wavy-
baseline (BG).
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Figure 4. Image output results for 5 labels in two text
formats
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Figure 5. Image after annotation

Interword-spacing distance, as defined in Eq. (1).

Si=Liy1 — (g +wy) (1)
The variable x; denotes the x-coordinate of the left edge of
the i-th (i =1, 2, ..., N-1) bounding box, while w;represents its
width. Consequently, the right edge of the i-th bounding box
is expressed as R; = x; + w;. The left edge of the subsequent
bounding box, namely the (i+1)-th box, is denoted as L;,; =
X;4+1 - Based on these definitions, the horizontal spacing
between two consecutive bounding boxes is represented as S;.
Finally, N indicates the total number of bounding boxes
contained within a single handwriting line. These notations
collectively serve as the foundation for quantifying and
analyzing inter-word spacing patterns in handwritten text.



The space bounding box is formulated as defined in Eq. (2)
[14].

SpaceBox, =[R,, y;, S;,max(h;,h ;)] )
where R; is the right edge coordinate, y; the vertical position,
and S; the computed spacing width. The heights h; and h;,;
represent adjacent bounding boxes, with max(h;, h;yq)
ensuring alignment to the taller box. This compact formulation
effectively represents inter-word gaps as bounding boxes.
Spacing Classification Based on Thresholds as Eq. (3).

Narrow, §; < 24

label(S) = {Medium, S; > 32 3)

Mathematical Formulation for Baseline Extraction as
defined in Egs. (4) to (9).
Horizontal Projection Profile:

P(y) = WZBW (x.y) “)

The equation computes the horizontal projection profile by
summing binary pixel values across each row y. The resulting
projection profile P(y) is used to detect text regions along the
horizontal axis.

Thresholding for Line Segmentation:

1,ifP(y) >0

Line(y) = {0’ otherwise

)

where 6 = 0.1 X max(P (y)) . This criterion determines
whether a row contains handwriting. A row is considered part
of a text line if its projection value P(y) exceeds the threshold
6 which is set adaptively to 10% of the maximum projection
value.

Baseline Point Extraction:

P, =X, B, =maxy | BW (x,y)=1 (6)
This formula extracts baseline points by identifying the
lowest handwritten pixel in each column x. The set of points
(Py, P)) collectively represents the baseline structure of the
handwriting.
Polynomial Regression:

y(X) = pyx® + Py X+ (7)
The baseline is approximated using second-degree

polynomial regression. The coefficients p;,p,,p; are

estimated using the least squares method, producing a smooth

curve that models the baseline trajectory of the handwriting.
Baseline Classification:

A=max(y(x))-min(y(x)) (8)

A= y(Xena) — Y(Xstart) ©)

A denotes the amplitude, which represents the maximum
curvature of the baseline, while A denotes the vertical
displacement of the baseline from the beginning to the end of
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the text.

Based on the values of A and A in Egs. (8) and (9)
respectively, the baseline is classified into three categories:

1. Wavy if A > 15

2. Rising if A <=3

3. Falling if (A >-3) and (A < 15).

2.5 YOLOVS8n architecture for handwriting detection

The detection process in this study for lines of text in
handwritten paragraphs consists of two main stages: training
and testing using the YOLOv8n framework [5, 18-20]. The
training dataset undergoes preprocessing, augmentation, and
normalization, while the testing stage evaluates the model's
performance using unseen data. The model was trained using
a system equipped with an NVIDIA Tesla T4 GPU (CUDA:O0,
15095MiB), running Python 3.11.13 with PyTorch
2.6.0+cul24. The YOLOvV8n model was trained with
hyperparameters optimized to balance detection accuracy and
inference speed.

2.6 Metrics

To evaluate the overall effectiveness of the proposed model,
the Mean Average Precision (mAP) metric is employed. mAP
is widely recognized as a standard measure for assessing the
quality of object detection systems, as it reflects the model’s
capability to accurately identify and localize objects across
different classes [5, 9, 20, 21]. Specifically, mAP is obtained
by averaging the precision scores computed for each class,
thereby providing a comprehensive view of detection
performance in a given task. The computation of mAP begins
with the calculation of Average Precision (AP), which
integrates both precision and recall values across multiple
threshold levels [22]. The mathematical formulations for AP
and mAP are presented in Eqs. (10) and (11).

AP = Z(precision at recall point k = Arecally,) (10)
3

where Precision at recall point &, which the precision value at
a specific recall.
mAP50 (Mean Average Precision) in Eq. (11) [22]:

(11

where mAP is the mean of the average precision values across
all classes, and AP; is the average precision for the i-th class.
To calculate precision and recall, use Egs. (12) and (13).

The precision is calculated by the following Eq. (12):

P

P=—— (12)
TP+ FP
where P denotes precision, calculated as the ratio of true
positives (7P) to the sum of true positives and false positives
(TP+FP).
As for the recall is solved by:

TP

R=—— 13
TP +FN (13)



where, R denotes recall, calculated as the ratio of true positives
to the sum of true positives and false negatives (TP+FN).

True positives (TP) are the number of objects in an image
that the model correctly identifies. False positives (FP) occur
when the network detects an object in an image when it is not
present. False negatives (FN) occur when the network fails to
detect an object in an image. Precision measures the number
of correctly identified positive cases out of all predicted
positive cases, and its value decreases as the number of false
positives increases. Recall measures the number of correctly
identified positive cases out of all actual positive cases and
indicates the extent to which false negatives impact model
performance.

3. RESULTS AND DISCUSSION
3.1 Experiment configuration before training dataset

This research produces a handwriting line distance
detection model using Convolutional Neural Network (CNN)
[17, 23, 24], which is implemented in the YOLO framework
version 8 [18,25-27]. The data used are 150 images of student
handwriting with various writing styles, with a train and test
data division of 80:20 or 120 for the training dataset and 30 for
the test/validation dataset. Meanwhile, the experiment was
carried out repeatedly using reading instances of each class in
the range of 435 to 934 with the number of epochs of 80, the
optimizer using AdamW, a learning rate of 0.001, and the
number of batches equal to 4. Experiments were conducted
using GPUs as an important component in various
computationally intensive applications such as machine
learning, scientific computing, and Al-based model inference.
This research is GPU-based to ensure optimal stability and
performance, with GPU conditions before the experiment in
this study, nvidia-smi showed the system using the following
configuration: NVIDIA driver version 550.54.15, CUDA
version 12.4, the detected GPU is Tesla T4, a server-class GPU
with a Turing architecture designed for Al inference and
parallel computing.

Experiments were conducted on an NVIDIA Tesla T4 GPU
(CUDA 12.4, driver version 550.54.15), a server-class GPU
optimized for Al inference and parallel computing. The GPU
was idle and ready before training, ensuring stable
performance and no interference from other processes. This
configuration provided sufficient computational power for
model training and evaluation while maintaining consistency
across all experimental runs [28].

3.2 Spacing between words and sentence baseline

Figure 5 shows the annotation results using bounding box
rectangles and polygons to label handwriting images. Lines
with different colors indicate different labels for each color.
This annotation serves two purposes: (1) line segmentation to
facilitate horizontal text separation, thereby improving OCR
performance [19-25] and (2) individual line extraction for
detailed textual analysis. In addition, examination of interword
spacing and sentence baselines provides fundamental
knowledge for further studies, including personality
classification. As seen in Figure 6, interword spacing in
handwriting images is categorized into three classes: narrow,
medium, based on the spatial characteristics between adjacent
words. Meanwhile, sentence baselines are also categorized
into 3 classes: rising, falling, and wavy.
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Figure 6. Output of word spacing and baseline with
MATLAB

3.3 Model detection

This study uses a backbone convolutional network based on
the C2f module (one-stage detector) to detect bounding boxes
and predict classes directly from handwriting component
feature maps, by fine-tuning the model on a relevant
handwriting dataset, with smaller entities being crucial to
improve the accuracy of handwriting feature detection.
Various configurations have been performed for experiments
and running results in obtaining the previous detection model,
and in this section, only the best configuration of the metric
value search results from the various configurations that have
been performed.

Table 1. Hyperparameter setting

No. Configurations Hyperparameter
1 learning rate 0.001
2 image size 640
3 momentum [0.72,0.73]
4 weight decay [0.0006, 0.0007, 0.0008, 0.0009,
0.0010]

Table 1 presents the hyperparameter configurations used in
the model training process. The parameters shown include the
learning rate, image size, batch size, momentum value, and
weight decay. The learning rate was set at 0.001 to control the
speed of weight updates during the training process. The
image size used was 640 pixels, a common resolution for
object detection models, to maintain a balance between image
detail and computational speed. The momentum value used
ranged from 0.72 to 0.73, accelerating convergence by
preserving the direction of the gradient.

Furthermore, the weight decay used varied between 0.0006
and 0.0010, aiming to reduce overfitting through
regularization of the model weights. The selection of a range
of weight decay values allows for the search for optimal values
that improve model generalization on test data. This variation
in hyperparameters indicates that the training process
employed a hyperparameter tuning approach to find the most



effective combination for improving model performance. This
approach is crucial in machine learning-based research
because it can significantly impact the accuracy and stability
of training results.

3.4 Model optimization for handwriting detection

Table 2 shows the experimental results for ten model

training trials at epoch 80, using an image size of 640 pixels, a
batch size of 4, the AdamW optimizer, and a learning rate of
0.001. The parameters measured included processing speed
(Preprocess Speed and Postprocess Speed), mAP50 values per
class (BT, BN, BG, SKS, SKN), average mAP50 (All), and the
momentum and weight decay hyperparameters used in each
trial.

Table 2. Experimental results for some good models epoch 80, imgsz 640px, batch=4, optimizer AdamW, and 1r=0.001

mAP50
run Speed Pre-Process Speed Post-Process BT BN BG SKS SKN Momentum WD
1 0.2 4.0 0.42 0.42 0.5 0.54 0.64 0.51 0.72
2 0.5 4.7 0.45 0.32 0.48 0.59 0.57 0.51 0.72
3 0.2 4.1 0.39 0.40 0.47 0.56 0.68 0.50 0.72
4 0.2 4.6 0.43 0.35 0.47 0.58 0.67 0.53 0.72
5 0.9 4.6 0.41 0.50 0.48 0.62 0.71 0.54 0.72
6 0.3 4.0 0.41 0.49 0.47 0.54 0.73 0.53 0.73
7 0.2 4.7 0.42 0.43 0.52 0.54 0.67 0.52 0.73
8 0.3 2.4 0.43 0.47 0.48 0.55 0.72 0.53 0.73
9 0.7 3.4 0.41 0.50 0.55 0.56 0.69 0.54 0.73
10 0.2 2.4 0.46 0.46 0.48 0.57 0.69 0.53 0.73

Table 2 shows that the highest average mAP50 value (All)
was obtained in the fifth trial, at 0.544, with a weight decay
(WD) of 0.0010 and a momentum of 0.72. This trial also had
relatively high mAP50 values per class, particularly for the
SKS (0.62) and SKN (0.71) classes. Furthermore, the
preprocessing speed in trial 5 was the highest (0.9 seconds),
while the postprocessing remained in the general range of 2.4-
4.7 seconds. Scientifically, these results show that variations
in weight decay and momentum can significantly affect
detection performance, and that the model with the highest
mAP50 value does not always have the fastest processing
time.

Table 3 lists down the performance evaluation results of ten
models based on four metrics. Overall, recall values showed
high consistency, ranging from 0.97 to 0.98, indicating that all
models were able to detect most relevant objects. Precision
values varied significantly, with the highest value in model 5
(0.922) and the lowest in model 4 (0.715), which impacted the
F1-Score and mAP50 values for each model. Model 5 stood
out with the highest mAP50 (0.544), the highest Precision
(0.922), and the highest F1-Score (0.55), making it the most
balanced model among all models. Conversely, models 2 and
4 showed relatively low Precision, although Recall remained
high, indicating a tendency to produce more false positive
predictions. This data can be used as a reference for selecting
the best model and identifying areas for further optimization.

Table 3. Table evaluation metrics

Model mAP50 Precision F1-Score Recall
1 0.512 0.895 0.51 0.97
2 0.511 0.733 0.53 0.97
3 0.524 0.895 0.51 0.97
4 0.531 0.715 0.53 0.97
5 0.544 0.922 0.55 0.98
6 0.526 0.849 0.51 0.98
7 0.515 0.812 0.51 0.97
8 0.530 0.845 0.51 0.98
9 0.542 0.906 0.52 0.97
10 0.532 0.810 0.51 0.97

As shown in Tables 2 and 3, the best performing

2504

configuration was obtained in run 5, which yielded the highest
mAP50 (0.544), Precision (0.922), F1-Score (0.55), and
Recall (0.98). To statistically validate these differences, we
performed one-way ANOVA across all model runs followed
by pairwise Welch’s t-tests with Bonferroni correction, using
multiple repetitions of each configuration. The ANOVA
results indicated significant differences among models for all
evaluation metrics (mAP50: F = 81.49, p < 0.001; Precision:
F=69.64, p<0.001; F1-Score: F = 11.14, p < 0.001; Recall:
F =7.34, p < 0.001). Post-hoc analysis confirmed that run 5
was significantly superior (p < 0.05) compared to most other
configurations in terms of mAP50, Precision, and F1-Score,
while no significant difference was found when compared
with run 9. These statistical results strengthen the reliability of
our conclusion that run 5 provides the most stable and
effective  configuration for handwriting line-distance
detection.
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Figure 7. Performance analysis of 10 models

Figure 7 shows a bar graph comparing the values of four
evaluation metrics: mAPS50, Precision, F1-Score, and Recall,
across the ten tested models. This visualization shows that
Recall values range from 0.97 to 0.98 across all models,
indicating a consistent ability to detect relevant objects.
Precision values show greater variation, with a peak at 0.922
in the fifth model and a low of 0.715 in the fourth model.
Meanwhile, mAP50 and F1-Score tend to fall within a



relatively narrow range (around 0.51 - 0.55), indicating stable
performance in terms of precision and detection coverage.

In general, this graph pattern indicates that most models
perform well in Recall, but there are significant differences in
Precision, which impacts the F1-Score and mAP50 values.
Model 5 stands out with its combination of high Precision,
optimal Recall, and the highest F1-Score among all models,
making it a candidate for the best model in this test.
Meanwhile, the fourth and second models exhibit relatively
low precision, which may result in an increased number of
false positive predictions. This analysis suggests that
optimizing hyperparameters, particularly those affecting
precision, may be key to improving the model's overall
performance.

3.5 Best model selection based on multi-parameter
evaluation
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Figure 8. Training result

Figure 8(a) presents the confusion matrix used to evaluate
the performance of the YOLOv8 model in detecting different
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handwriting categories. Darker colors on the main diagonal
indicate a high number of true positives for each class. Red
circles mark off-diagonal cells, which represent
misclassifications between classes, indicating that the model
still has difficulty distinguishing between categories with
similar visual features. The relatively high values in the
diagonal cells compared to the off-diagonal values indicate
that the model has good generalization ability, although there
is still room for improvement in certain classes.

Figure 8(b) shows the Recall-Confidence curve, which
shows the relationship between recall and confidence
thresholds for each class. This curve illustrates that at low
confidence levels, the model maintains high recall, but
experiences a significant decline as the confidence threshold
is increased. The thick blue line represents the combined
performance across all classes, with an area under the curve
(AUC) of 0.98 at a confidence threshold of 0.000, indicating
excellent detection performance at maximum sensitivity.

1o F1-Confidence Curve

— BT
SKS
—— BN
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SKN
= all classes 0.55 at 0.170

0.8 1

1.0

Confidence

Figure 9. F1-Confidence curve for handwriting feature
classification

Figure 9 presents the F1-Confidence curve, which assesses
the classification model’s performance across different
confidence thresholds for both individual classes and the
overall dataset. Each class demonstrates a distinct curve,
highlighting variations in peak F1 scores and corresponding
optimal confidence values. The aggregated curve for all
classes reaches its maximum F1 score of approximately 0.55
at a confidence threshold of 0.170. This evaluation provides
valuable insights into selecting an appropriate confidence
threshold to achieve an optimal trade-off between precision
and recall in handwriting feature detection.

Figure 10 illustrates the ground truth annotations generated
for validation batch 0, showing the visual labeling of
handwritten survey document images. Each textual element is
enclosed by a color-coded bounding box that corresponds to a
specific label class. The annotated objects include handwritten
text in paragraph sections, input fields, and respondent
signatures. These labels are categorized into distinct classes
such as SKS, SKN, BN, BT, and BG, with bounding box
colors indicating class differentiation. The annotated dataset
serves as the reference ground truth for model evaluation,
enabling performance comparison against predictions and



facilitating analysis of spatial distributions, dimensions, and
structural characteristics of handwritten elements within the
documents.
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Figure 10. Ground truth annotations of handwritten text

Based on these two visualizations, it can be concluded that
the YOLOvVS model used in this study shows promising
handwriting detection performance, with high accuracy on
most classes and the ability to maintain good recall over a wide
range of confidence values.

This annotation process is performed consistently across the
entire dataset to ensure uniformity and accuracy in training and
validating deep learning-based object detection models.
Labels are placed directly within the bounding boxes to
facilitate visual identification during model performance
evaluation. This stage is a crucial part of data preprocessing
and validation, particularly in handwriting analysis research,
which involves extracting information from physical
documents and classifying text elements. The existence of
accurate ground truth allows for precise measurement of
evaluation metrics such as precision, recall, and F1-Score, thus
helping to ensure that the model is able to recognize and
classify text elements according to predefined categories.

Figure 11 specifically shows the prediction results of the
YOLO model trained for handwritten object detection. The
numbers in the figure indicate how confident the YOLO model
is in identifying objects within the boxes, such as SKN, SKS,
BT, and BG. The batch validation process is a stage in the
machine learning model development cycle where the model
is tested on a new data set (batch) that it has never seen during
training to evaluate its predictive performance.
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Figure 11. Validation results for batch 0 predictions

Furthermore, the model successfully detected object classes
with varying degrees of confidence. The figures show how the
model identified the location (bounding box) and type (class
label) of each text element analyzed in a validation batch.

3.6 Comparative review with previous studies

Figure 12 presents a comparative analysis of evaluation
metrics reported in recent YOLO-based handwriting detection
studies. While previous works have shown that YOLO and its
variants [11, 19, 20, 29] - particularly YOLOvVS- are widely
applied across diverse handwriting contexts, their
performance varies substantially depending on dataset
complexity, object scale, and annotation quality. For example,
Zhang and Shi [19] applied YOLOVS for handwritten exam
sheet detection but obtained relatively low scores (P = 4.3%,

= 3%, mAP@0.5 = 4.6%). These results suggest that
heterogeneous exam sheets with cluttered backgrounds and
variable handwriting styles increased the detection difficulty,
while limited hyperparameter tuning may have further
constrained performance. In contrast, Maung et al. [11]
achieved very high precision (P = 0.97) in Bangla handwriting
detection. This can be attributed to consistent dataset
preparation and the structured grapheme-rich script, which
allowed the model to leverage stroke-level distinctions.
However, the lack of reported mAP limits a full comparison.
Similarly, Schreurs [29] demonstrated balanced performance
on the MNIST dataset (Precision, Recall, and F1-Score
0.96). The superior results are likely due to MNIST’s
controlled environment-clean, centered, and low-noise digit
samples-where object detection is inherently less challenging



compared to natural handwriting with irregular spacing and
baselines.

Meanwhile, Guo et al. [20] focused on small-scale
signatures embedded in book pages and reported low
performance (P = 2.2%, R = 8.6%, mAP@0.5 = 3.9%). The
difficulty stemmed from detecting dense and tiny objects in
complex page layouts, where overlapping strokes and
background clutter reduced the effectiveness of anchor-based
YOLO detection. Similarly, Singh and Khare [30] encountered
performance degradation when applying CNN-based feature
extraction on spiral drawings for Parkinson’s disease
detection, emphasizing how fine-grained handwriting-like
structures challenge conventional deep-learning models.
Comparable challenges have also been noted in other image-
based detection domains, such as medical imaging, where
deep learning architectures are used to identify subtle lesion
patterns in complex visual backgrounds [31].

Evaluation Metrics Comparison of YOLO-based Studies

Figure 12. Comparative evaluation metrics of YOLO-based
for previous handwriting detection research

By comparison, this study (2025) achieved strong overall
performance (Precision = 0.922, Recall = 0.98, F1-Score =
0.55, mAP@0.5 0.544), despite addressing a more
challenging task-interword spacing and baseline variation
detection in unconstrained handwriting. The improvement can
be linked to (i) careful annotation protocols, (ii) multi-class
structuring of handwriting features, and (iii) systematic
hyperparameter optimization. These factors reduced noise in
feature boundaries and enhanced generalization. Importantly,
the originality of this study lies in extending YOLOVS beyond
character recognition toward handwriting structural features
for personality analysis, bridging technical object detection
with behavioral interpretation. Such integration highlights the
broader applicability of YOLO-based models in forensic
document analysis and psychological handwriting studies.

4. CONCLUSIONS

This study successfully applied the YOLOvS model for
handwritten text detection, enabling accurate identification
and labeling of inter-word spacing and baseline classes. The
optimized model demonstrated reliable performance, as
reflected in the mean Average Precision (mAP) values across
all categories. Specifically, the classes of narrow inter-word
spacing, normal/wide inter-word spacing, rising baseline,
falling baseline, and wavy baseline were detected with high
confidence, underscoring the robustness of the trained model.
The systematic approach involving dataset preparation,
manual annotation, hyperparameter tuning, and model training
contributed significantly to these outcomes.
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Among the ten experimental configurations, the fifth run
achieved a recall of 0.98, an F1-Score of 0.55, and an
mAP@0.50 of 0.544, indicating consistent and reliable
detection of inter-word spacing and baseline variations in
handwritten text. In addition, the precision-recall curves
confirmed performance stability across different confidence
thresholds, validating the model’s capacity to maintain
detection quality under varying conditions. These findings
advance handwriting analysis research, providing valuable
implications for personality identification, writing habit
assessment, and cognitive status evaluation. Future work
should focus on expanding to more diverse and multiclass

handwriting  datasets, leveraging advanced model
architectures, and incorporating real-time processing
capabilities to further enhance evaluation metrics and practical
applicability.

However, several limitations should be acknowledged.
First, the relatively low F1-Score indicates that the model,
while highly sensitive (high recall), still produces false
positives, reducing overall precision. Second, the model shows
constraints in generalizing across complex handwriting
conditions, such as cursive, overlapping strokes, and
inconsistent line structures, which are common in natural
writing scenarios. Third, cross-language applicability remains
limited since this study focused only on Indonesian
handwriting; applying the model to scripts with different
grapheme structures (e.g., Arabic, Chinese, Bangla) may
require substantial adaptation and retraining.

Future work should address these limitations by exploring
advanced architectures that better balance recall and precision,
expanding datasets to include multilingual and more
heterogeneous handwriting samples, and integrating post-
processing strategies to minimize false detections. These steps
will help strengthen the model’s generalizability and practical

relevance in real-world applications, such as forensic
handwriting analysis, psychological assessment, and
document authentication.
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