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Handwriting is a unique human expression that provides insights into personality traits and 

behavioral tendencies. Automatic detection of handwriting features remains challenging 

due to variations in size, shape, writing style, and inconsistencies caused by environmental, 

physical, and psychological factors. These challenges are even greater in multi-class 

datasets. This study employed 150 handwriting images annotated with feature classes, 

including inter-word spacing (narrow-SKS, medium-SKN) and baseline variations (up-BN, 

down-BT, wavy-BG), representing key traits of written expression. The research highlights 

the role of parameter optimization through hyperparameter tuning, covering epochs, batch 

size, learning rate, momentum, image resolution, and weight decay. Such optimization is 

crucial to enhance detection accuracy and improve the robustness of handwriting feature 

recognition models. Among the ten experimental configurations evaluated, the proposed 

model in the fifth run achieved a recall of 0.98, demonstrating strong sensitivity in detecting 

handwriting features. However, this high recall was accompanied by relatively low 

precision, as reflected in the F1-Score of 0.55, indicating the presence of false positives. 

This trade-off highlights both the effectiveness and limitations of the current approach and 

underlines the importance of hyperparameter optimization, bounding box configuration, 

and dataset structuring in improving handwriting feature detection outcomes.  
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1. INTRODUCTION

Deep learning-based object detection techniques have 

developed rapidly and are now widely applied in various 

computer vision fields, including facial recognition, medical 

diagnostics, and intelligent transportation systems. Among 

these methods, the You Only Look Once (YOLO) family of 

models has emerged as a leading approach, offering 

advantages in real-time performance, computational 

efficiency, and detection accuracy. However, while YOLO has 

been extensively applied for general object detection tasks, its 

application to handwriting analysis remains relatively 

underexplored, particularly in capturing structural 

characteristics such as inter-word spacing, baseline 

orientation, and consistency of handwritten forms [1, 2]. 

Handwriting pattern recognition to determine individual 

personality remains an important field, as handwriting often 

reflects distinctive cognitive and psychological traits. It 

provides valuable information that can be used in contexts 

such as employee selection, student admission, and 

performance evaluation. Structural handwriting features such 

as spacing between words, spacing between lines, baselines, 

and slant constitute important indicators of individuality. 

These characteristics can reveal underlying aspects of 

personality and behavior, making their accurate detection 

crucial for both academic research and practical applications 

[3]. 

Feature extraction plays a central role in handwriting 

recognition, with overall accuracy highly dependent on the 

quality of extracted features and classification methods. For 

instance, the Celled Projection (CP) method divides Bangla 

handwritten images into smaller cells and computes pixel 

projections as feature vectors, thereby simplifying 

preprocessing and improving speed. Experiments with k-

Nearest Neighbors, Probabilistic Neural Network, and Feed-

Forward Backpropagation Neural Network demonstrated that 

CP (4 horizontal & 4 vertical cells) achieved an accuracy of 

94.12%, outperforming or matching other conventional 

techniques such as crossing, moments, zoning, and projection 

histograms [4]. Despite these advances, such handcrafted 

methods struggle to handle diverse handwriting variations, 

highlighting the need for adaptive deep learning solutions.  

Deep learning-based approaches, particularly 

Convolutional Neural Networks (CNNs), have set a new 

standard in character recognition due to their ability to 

automatically extract features without manual design. CNNs 

excel at learning complex spatial patterns in handwriting 

through convolution and pooling layers, and they adapt well to 

variations in size, shape, and environmental conditions. 

Recent studies have shown that YOLO and its derivative 

architectures can deliver superior performance in detecting 

and classifying handwritten characters, words, and spatial 
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features compared to traditional methods [5]. Yet, previous 

work often focused on character-level recognition, leaving 

structural handwriting features insufficiently explored. In 

addition, hyperparameter tuning and dataset expansion remain 

important aspects that can significantly improve detection 

accuracy, but existing research often lacks a comprehensive 

treatment of these factors [6-8].  

Recent works have begun to highlight the potential of 

YOLO for handwriting-related tasks. For example, the 

YOLOv5-HDR model [9] improved detection speed and 

accuracy compared to earlier versions, while YOLOv8 has 

been fine-tuned for forensic hand image identification, 

outperforming DETR and other variants [10]. Similarly, 

YOLOv7-PDM was designed to capture stroke-level details in 

calligraphy, surpassing YOLOv6 and YOLOv8, while another 

study combined YOLOv8 with EfficientNet-b4 for Bangla 

OCR to achieve robust performance on complex scripts [11]. 

Nevertheless, the use of YOLO to capture fine-grained 

structural handwriting features-such as inter-word spacing, 

baseline variation, and slant-remains insufficiently addressed. 

To fill this gap, the present study adapts YOLOv8 to extract 

spatial handwriting features from a multi-class annotated 

dataset. This approach not only extends YOLO’s utility in 

handwriting analysis but also provides a flexible framework 

for comprehensive evaluation of writing patterns, with 

implications for forensic science, psychological assessment, 

and handwriting-based biometric applications.  

 

 

2. MATERIAL AND METHOD 

 

2.1 Research framework 

 

This study aims to develop a handwriting image detection 

model that accommodates two offline writing formats. The 

proposed approach focuses on generating bounding box 

annotations for key handwriting feature classes, including 

inter-word spacing, baseline variations, and inter-line spacing. 

To achieve this, a Convolutional Neural Network (CNN)-

based object detection method was employed, utilizing the 

YOLOv8 framework for efficient and accurate feature 

extraction (Figure 1). 

 

 
 

Figure 1. The three main components of the YOLOv8 

architecture 

 

The following is a research framework that can be used in 

the sustainability of the results of this study later (Figure 2). 

 
 

Figure 2. Workflow of handwriting image preprocessing, 

modeling, and evaluation 

 

Figure 2 presents the overall research workflow, beginning 

with handwriting generation and image acquisition through 

the collection of handwritten samples in two distinct formats. 

The acquired images are subsequently subjected to selection 

and resizing to maintain consistent dimensions across the 

dataset. Following this step, image cropping is conducted-

either at the paragraph or line level-to isolate relevant regions 

for further analysis. The cropped images are then spatially 

annotated and labeled according to predefined feature 

categories, forming the basis for the training phase. 

In the next stage, the annotated data are organized into 

training and testing sets to support the learning and evaluation 

processes. Hyperparameter configurations-including learning 

rate, momentum, image resolution, and weight decay-are then 

defined to guide the training process. The model is iteratively 

trained and tested until an optimal configuration is achieved, 

ensuring the development of a reliable detection model. 

Finally, model performance is evaluated using standard 

metrics such as mean Average Precision (mAP), Precision, 

Recall, and F1-Score. This evaluation is further complemented 

by visual tools, including convergence curves, confusion 

matrices, and error distribution analyses, to provide deeper 

insights into model performance. Collectively, this workflow 

represents a systematic and replicable approach that can be 

applied to handwriting detection and analysis research. 

 

2.2 Data collection 

 

This study employed primary handwritten image data 

collected under standardized conditions to ensure consistency 

and reliability. The writing sessions were conducted in a 

controlled indoor environment with stable room temperature 

(approximately 24 ± 1℃) and adequate illumination (around 

400 lux), following recommended conditions for handwriting 

analysis [6, 7, 12]. All participants used identical writing 

materials, including A4 paper (80 g), a ballpoint pen with a 0.7 

mm tip, and a flat writing surface. Such controls were applied 

to minimize external variability that could affect stroke clarity, 

line spacing, and baseline consistency. 

Handwriting samples consisted of sentences and paragraphs 

written in Indonesian to capture natural writing flow and 

contextual variations. The format was standardized so that 

each subject produced continuous text paragraphs rather than 

isolated lines, allowing for the extraction of structural features 

such as inter-word spacing, line spacing, and baseline 
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orientation. This procedure follows previous studies that 

highlight the influence of writing format (Figure 3) on stroke 

direction, inter-letter connections, and fluency of hand 

movement [8]. The dataset collected under these conditions 

thus provides a reliable foundation for subsequent spatial 

annotation and feature detection. 

 

 
 

Figure 3. Examples of image data formats used 

 

2.3 Cropping images after acquisition 

 

The image of the text was acquired using an Epson 3250 

printer scanner device with 300 dpi to obtain a PNG (Portable 

Network Graphics) unit image. Reducing the dimensions of an 

image can be done using a technique called cropping, which 

involves cutting the image at certain coordinates in a specific 

area of the image. In this process, a new object is obtained, 

which is the result of cutting the original image or part of the 

image to the desired size. Cropping is an effective method for 

resizing and focusing on certain parts of an image, allowing 

for adjusting the composition and taking only relevant or 

interesting parts [13, 14]. This process produces an object or 

part of an image with a predetermined size. 

 

2.4 Annotation and labeling 

 

Annotation is the process of marking or labeling certain 

parts of an image to indicate important objects or features. 

Labeling is the process of providing category labels to areas 

that have been annotated [15, 16]. The results of annotation 

and labeling are in the form of files in Json extension units 

(Figure 4). 

Annotation is the process of marking or labeling certain 

parts of an image to indicate important objects or features. 

Labeling is the process of assigning category labels to areas 

that have been annotated [16, 17]. This stage uses the LabelMe 

application offline, which is done per image (with a .png 

extension); the results of the annotation and labeling are in the 

form of files with a JSON extension (Figure 5). In the original 

image, annotation is carried out using bounding boxes of the 

rectangle and polygon type, as many as five shapes, namely 

narrow interword-spacing (SKS), medium interword-spacing 

(SKN), baseline-up (BN), baseline-down (BT), and wavy-

baseline (BG). 

 

 
 

Figure 4. Image output results for 5 labels in two text 

formats 

 

 
 

Figure 5. Image after annotation 

 

Interword-spacing distance, as defined in Eq. (1). 

 

𝑆𝑖 = 𝐿𝑖+1 − (𝑥𝑖 + 𝑤𝑖) (1) 

 

The variable 𝑥𝑖 denotes the x-coordinate of the left edge of 

the i-th (i = 1, 2, ..., N-1) bounding box, while 𝑤𝑖represents its 

width. Consequently, the right edge of the i-th bounding box 

is expressed as 𝑅𝑖 = 𝑥𝑖 + 𝑤𝑖 . The left edge of the subsequent 

bounding box, namely the (i+1)-th box, is denoted as 𝐿𝑖+1 =
𝑥𝑖+1 . Based on these definitions, the horizontal spacing 

between two consecutive bounding boxes is represented as 𝑆𝑖. 

Finally, N indicates the total number of bounding boxes 

contained within a single handwriting line. These notations 

collectively serve as the foundation for quantifying and 

analyzing inter-word spacing patterns in handwritten text. 
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The space bounding box is formulated as defined in Eq. (2) 

[14]. 

 

( )1[ , , , , ]i i i i i iSpaceBox R y S max h h +=  (2) 

 

where 𝑅𝑖 is the right edge coordinate, 𝑦𝑖  the vertical position, 

and 𝑆𝑖 the computed spacing width. The heights ℎ𝑖  𝑎𝑛𝑑 ℎ𝑖+1 

represent adjacent bounding boxes, with max(ℎ𝑖 , ℎ𝑖+1) 

ensuring alignment to the taller box. This compact formulation 

effectively represents inter-word gaps as bounding boxes. 

Spacing Classification Based on Thresholds as Eq. (3). 

 

𝑙𝑎𝑏𝑒𝑙( 𝑆𝑖) = {
𝑁𝑎𝑟𝑟𝑜𝑤, 𝑆𝑖 ≤ 24
𝑀𝑒𝑑𝑖𝑢𝑚, 𝑆𝑖 ≥ 32 

 (3) 

 

Mathematical Formulation for Baseline Extraction as 

defined in Eqs. (4) to (9). 

Horizontal Projection Profile: 

 

( )
1

( ) ,
W

x

P y BW x y
=

=  (4) 

 

The equation computes the horizontal projection profile by 

summing binary pixel values across each row y. The resulting 

projection profile P(y) is used to detect text regions along the 

horizontal axis. 

Thresholding for Line Segmentation: 

 

𝐿𝑖𝑛𝑒(𝑦) = {
1, 𝑖𝑓𝑃(𝑦) > 𝜃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

 

where 𝜃 = 0.1 × max(𝑃(𝑦)) . This criterion determines 

whether a row contains handwriting. A row is considered part 

of a text line if its projection value P(y) exceeds the threshold 

𝜃 which is set adaptively to 10% of the maximum projection 

value. 

Baseline Point Extraction: 

 

( ), | , 1x yP x P maxy BW x y= = =  (6) 

 

This formula extracts baseline points by identifying the 

lowest handwritten pixel in each column x. The set of points 

(𝑃𝑥 , 𝑃𝑦) collectively represents the baseline structure of the 

handwriting. 

Polynomial Regression: 

 

( ) 2

1 2 3. .y x p x p x p + +  (7) 

 

The baseline is approximated using second-degree 

polynomial regression. The coefficients 𝑝1 , 𝑝2, 𝑝3  are 

estimated using the least squares method, producing a smooth 

curve that models the baseline trajectory of the handwriting. 

Baseline Classification: 

 

( )( ) ( )( )max minA y x y x= −  (8) 

 

∆= y(𝑥𝑒𝑛𝑑) − y(𝑥𝑠𝑡𝑎𝑟𝑡) (9) 

 

A denotes the amplitude, which represents the maximum 

curvature of the baseline, while ∆  denotes the vertical 

displacement of the baseline from the beginning to the end of 

the text. 

Based on the values of A and Δ in Eqs. (8) and (9) 

respectively, the baseline is classified into three categories: 

1. Wavy if A > 15 

2. Rising if Δ < −3 

3. Falling if (Δ ≥ −3) and (A ≤ 15). 

 

2.5 YOLOv8n architecture for handwriting detection 

 

The detection process in this study for lines of text in 

handwritten paragraphs consists of two main stages: training 

and testing using the YOLOv8n framework [5, 18-20]. The 

training dataset undergoes preprocessing, augmentation, and 

normalization, while the testing stage evaluates the model's 

performance using unseen data. The model was trained using 

a system equipped with an NVIDIA Tesla T4 GPU (CUDA:0, 

15095MiB), running Python 3.11.13 with PyTorch 

2.6.0+cu124. The YOLOv8n model was trained with 

hyperparameters optimized to balance detection accuracy and 

inference speed. 

 

2.6 Metrics 

 

To evaluate the overall effectiveness of the proposed model, 

the Mean Average Precision (mAP) metric is employed. mAP 

is widely recognized as a standard measure for assessing the 

quality of object detection systems, as it reflects the model’s 

capability to accurately identify and localize objects across 

different classes [5, 9, 20, 21]. Specifically, mAP is obtained 

by averaging the precision scores computed for each class, 

thereby providing a comprehensive view of detection 

performance in a given task. The computation of mAP begins 

with the calculation of Average Precision (AP), which 

integrates both precision and recall values across multiple 

threshold levels [22]. The mathematical formulations for AP 

and mAP are presented in Eqs. (10) and (11). 

 

𝐴𝑃 = ∑(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑡 𝑟𝑒𝑐𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡 𝑘 ∗ ∆𝑟𝑒𝑐𝑎𝑙𝑙𝑘)

𝑘

 (10) 

 

where Precision at recall point k, which the precision value at 

a specific recall.  

mAP50 (Mean Average Precision) in Eq. (11) [22]: 

 

1

1
.

N

i

i

mAP AP
N =

=   (11) 

 

where mAP is the mean of the average precision values across 

all classes, and 𝐴𝑃𝑖 is the average precision for the i-th class. 

To calculate precision and recall, use Eqs. (12) and (13). 

The precision is calculated by the following Eq. (12): 

 

TP
P

TP FP
=

+
 (12) 

 

where P denotes precision, calculated as the ratio of true 

positives (TP) to the sum of true positives and false positives 

(TP+FP). 

As for the recall is solved by: 

 

TP
R

TP FN
=

+
 (13) 
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where, R denotes recall, calculated as the ratio of true positives 

to the sum of true positives and false negatives (TP+FN). 

True positives (TP) are the number of objects in an image 

that the model correctly identifies. False positives (FP) occur 

when the network detects an object in an image when it is not 

present. False negatives (FN) occur when the network fails to 

detect an object in an image. Precision measures the number 

of correctly identified positive cases out of all predicted 

positive cases, and its value decreases as the number of false 

positives increases. Recall measures the number of correctly 

identified positive cases out of all actual positive cases and 

indicates the extent to which false negatives impact model 

performance. 

3. RESULTS AND DISCUSSION

3.1 Experiment configuration before training dataset 

This research produces a handwriting line distance 

detection model using Convolutional Neural Network (CNN) 

[17, 23, 24], which is implemented in the YOLO framework 

version 8 [18, 25-27]. The data used are 150 images of student 

handwriting with various writing styles, with a train and test 

data division of 80:20 or 120 for the training dataset and 30 for 

the test/validation dataset. Meanwhile, the experiment was 

carried out repeatedly using reading instances of each class in 

the range of 435 to 934 with the number of epochs of 80, the 

optimizer using AdamW, a learning rate of 0.001, and the 

number of batches equal to 4. Experiments were conducted 

using GPUs as an important component in various 

computationally intensive applications such as machine 

learning, scientific computing, and AI-based model inference. 

This research is GPU-based to ensure optimal stability and 

performance, with GPU conditions before the experiment in 

this study, nvidia-smi showed the system using the following 

configuration: NVIDIA driver version 550.54.15, CUDA 

version 12.4, the detected GPU is Tesla T4, a server-class GPU 

with a Turing architecture designed for AI inference and 

parallel computing. 

Experiments were conducted on an NVIDIA Tesla T4 GPU 

(CUDA 12.4, driver version 550.54.15), a server-class GPU 

optimized for AI inference and parallel computing. The GPU 

was idle and ready before training, ensuring stable 

performance and no interference from other processes. This 

configuration provided sufficient computational power for 

model training and evaluation while maintaining consistency 

across all experimental runs [28]. 

3.2 Spacing between words and sentence baseline 

Figure 5 shows the annotation results using bounding box 

rectangles and polygons to label handwriting images. Lines 

with different colors indicate different labels for each color. 

This annotation serves two purposes: (1) line segmentation to 

facilitate horizontal text separation, thereby improving OCR 

performance [19-25] and (2) individual line extraction for 

detailed textual analysis. In addition, examination of interword 

spacing and sentence baselines provides fundamental 

knowledge for further studies, including personality 

classification. As seen in Figure 6, interword spacing in 

handwriting images is categorized into three classes: narrow, 

medium, based on the spatial characteristics between adjacent 

words. Meanwhile, sentence baselines are also categorized 

into 3 classes: rising, falling, and wavy. 

(a) Width of the spacing limit between words

(b) Degree of slope of sentence lines

Figure 6. Output of word spacing and baseline with 

MATLAB 

3.3 Model detection 

This study uses a backbone convolutional network based on 

the C2f module (one-stage detector) to detect bounding boxes 

and predict classes directly from handwriting component 

feature maps, by fine-tuning the model on a relevant 

handwriting dataset, with smaller entities being crucial to 

improve the accuracy of handwriting feature detection. 

Various configurations have been performed for experiments 

and running results in obtaining the previous detection model, 

and in this section, only the best configuration of the metric 

value search results from the various configurations that have 

been performed. 

Table 1. Hyperparameter setting 

No. Configurations Hyperparameter 

1 learning rate 0.001 

2 image size 640 

3 momentum [0.72, 0.73] 

4 weight decay 
[0.0006, 0.0007, 0.0008, 0.0009, 

0.0010] 

Table 1 presents the hyperparameter configurations used in 

the model training process. The parameters shown include the 

learning rate, image size, batch size, momentum value, and 

weight decay. The learning rate was set at 0.001 to control the 

speed of weight updates during the training process. The 

image size used was 640 pixels, a common resolution for 

object detection models, to maintain a balance between image 

detail and computational speed. The momentum value used 

ranged from 0.72 to 0.73, accelerating convergence by 

preserving the direction of the gradient. 

Furthermore, the weight decay used varied between 0.0006 

and 0.0010, aiming to reduce overfitting through 

regularization of the model weights. The selection of a range 

of weight decay values allows for the search for optimal values 

that improve model generalization on test data. This variation 

in hyperparameters indicates that the training process 

employed a hyperparameter tuning approach to find the most 
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effective combination for improving model performance. This 

approach is crucial in machine learning-based research 

because it can significantly impact the accuracy and stability 

of training results. 

3.4 Model optimization for handwriting detection 

Table 2 shows the experimental results for ten model 

training trials at epoch 80, using an image size of 640 pixels, a 

batch size of 4, the AdamW optimizer, and a learning rate of 

0.001. The parameters measured included processing speed 

(Preprocess Speed and Postprocess Speed), mAP50 values per 

class (BT, BN, BG, SKS, SKN), average mAP50 (All), and the 

momentum and weight decay hyperparameters used in each 

trial. 

Table 2. Experimental results for some good models epoch 80, imgsz 640px, batch=4, optimizer AdamW, and lr= 0.001 

run Speed Pre-Process Speed Post-Process 
mAP50 

Momentum WD 
BT BN BG SKS SKN 

1 0.2 4.0 0.42 0.42 0.5 0.54 0.64 0.51 0.72 

2 0.5 4.7 0.45 0.32 0.48 0.59 0.57 0.51 0.72 

3 0.2 4.1 0.39 0.40 0.47 0.56 0.68 0.50 0.72 

4 0.2 4.6 0.43 0.35 0.47 0.58 0.67 0.53 0.72 

5 0.9 4.6 0.41 0.50 0.48 0.62 0.71 0.54 0.72 

6 0.3 4.0 0.41 0.49 0.47 0.54 0.73 0.53 0.73 

7 0.2 4.7 0.42 0.43 0.52 0.54 0.67 0.52 0.73 

8 0.3 2.4 0.43 0.47 0.48 0.55 0.72 0.53 0.73 

9 0.7 3.4 0.41 0.50 0.55 0.56 0.69 0.54 0.73 

10 0.2 2.4 0.46 0.46 0.48 0.57 0.69 0.53 0.73 

Table 2 shows that the highest average mAP50 value (All) 

was obtained in the fifth trial, at 0.544, with a weight decay 

(WD) of 0.0010 and a momentum of 0.72. This trial also had 

relatively high mAP50 values per class, particularly for the 

SKS (0.62) and SKN (0.71) classes. Furthermore, the 

preprocessing speed in trial 5 was the highest (0.9 seconds), 

while the postprocessing remained in the general range of 2.4-

4.7 seconds. Scientifically, these results show that variations 

in weight decay and momentum can significantly affect 

detection performance, and that the model with the highest 

mAP50 value does not always have the fastest processing 

time. 

Table 3 lists down the performance evaluation results of ten 

models based on four metrics. Overall, recall values showed 

high consistency, ranging from 0.97 to 0.98, indicating that all 

models were able to detect most relevant objects. Precision 

values varied significantly, with the highest value in model 5 

(0.922) and the lowest in model 4 (0.715), which impacted the 

F1-Score and mAP50 values for each model. Model 5 stood 

out with the highest mAP50 (0.544), the highest Precision 

(0.922), and the highest F1-Score (0.55), making it the most 

balanced model among all models. Conversely, models 2 and 

4 showed relatively low Precision, although Recall remained 

high, indicating a tendency to produce more false positive 

predictions. This data can be used as a reference for selecting 

the best model and identifying areas for further optimization. 

Table 3. Table evaluation metrics 

Model mAP50 Precision F1-Score Recall 

1 0.512 0.895 0.51 0.97 

2 0.511 0.733 0.53 0.97 

3 0.524 0.895 0.51 0.97 

4 0.531 0.715 0.53 0.97 

5 0.544 0.922 0.55 0.98 

6 0.526 0.849 0.51 0.98 

7 0.515 0.812 0.51 0.97 

8 0.530 0.845 0.51 0.98 

9 0.542 0.906 0.52 0.97 

10 0.532 0.810 0.51 0.97 

As shown in Tables 2 and 3, the best performing 

configuration was obtained in run 5, which yielded the highest 

mAP50 (0.544), Precision (0.922), F1-Score (0.55), and 

Recall (0.98). To statistically validate these differences, we 

performed one-way ANOVA across all model runs followed 

by pairwise Welch’s t-tests with Bonferroni correction, using 

multiple repetitions of each configuration. The ANOVA 

results indicated significant differences among models for all 

evaluation metrics (mAP50: F = 81.49, p < 0.001; Precision: 

F = 69.64, p < 0.001; F1-Score: F = 11.14, p < 0.001; Recall: 

F = 7.34, p < 0.001). Post-hoc analysis confirmed that run 5 

was significantly superior (p < 0.05) compared to most other 

configurations in terms of mAP50, Precision, and F1-Score, 

while no significant difference was found when compared 

with run 9. These statistical results strengthen the reliability of 

our conclusion that run 5 provides the most stable and 

effective configuration for handwriting line-distance 

detection. 

Figure 7. Performance analysis of 10 models 

Figure 7 shows a bar graph comparing the values of four 

evaluation metrics: mAP50, Precision, F1-Score, and Recall, 

across the ten tested models. This visualization shows that 

Recall values range from 0.97 to 0.98 across all models, 

indicating a consistent ability to detect relevant objects. 

Precision values show greater variation, with a peak at 0.922 

in the fifth model and a low of 0.715 in the fourth model. 

Meanwhile, mAP50 and F1-Score tend to fall within a 
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relatively narrow range (around 0.51 - 0.55), indicating stable 

performance in terms of precision and detection coverage. 

In general, this graph pattern indicates that most models 

perform well in Recall, but there are significant differences in 

Precision, which impacts the F1-Score and mAP50 values. 

Model 5 stands out with its combination of high Precision, 

optimal Recall, and the highest F1-Score among all models, 

making it a candidate for the best model in this test. 

Meanwhile, the fourth and second models exhibit relatively 

low precision, which may result in an increased number of 

false positive predictions. This analysis suggests that 

optimizing hyperparameters, particularly those affecting 

precision, may be key to improving the model's overall 

performance. 

3.5 Best model selection based on multi-parameter 

evaluation 

(a) Confusion matrix normalized

(b) Confidence curve

Figure 8. Training result 

Figure 8(a) presents the confusion matrix used to evaluate 

the performance of the YOLOv8 model in detecting different 

handwriting categories. Darker colors on the main diagonal 

indicate a high number of true positives for each class. Red 

circles mark off-diagonal cells, which represent 

misclassifications between classes, indicating that the model 

still has difficulty distinguishing between categories with 

similar visual features. The relatively high values in the 

diagonal cells compared to the off-diagonal values indicate 

that the model has good generalization ability, although there 

is still room for improvement in certain classes. 

Figure 8(b) shows the Recall-Confidence curve, which 

shows the relationship between recall and confidence 

thresholds for each class. This curve illustrates that at low 

confidence levels, the model maintains high recall, but 

experiences a significant decline as the confidence threshold 

is increased. The thick blue line represents the combined 

performance across all classes, with an area under the curve 

(AUC) of 0.98 at a confidence threshold of 0.000, indicating 

excellent detection performance at maximum sensitivity. 

Figure 9. F1-Confidence curve for handwriting feature 

classification 

Figure 9 presents the F1-Confidence curve, which assesses 

the classification model’s performance across different 

confidence thresholds for both individual classes and the 

overall dataset. Each class demonstrates a distinct curve, 

highlighting variations in peak F1 scores and corresponding 

optimal confidence values. The aggregated curve for all 

classes reaches its maximum F1 score of approximately 0.55 

at a confidence threshold of 0.170. This evaluation provides 

valuable insights into selecting an appropriate confidence 

threshold to achieve an optimal trade-off between precision 

and recall in handwriting feature detection. 

Figure 10 illustrates the ground truth annotations generated 

for validation batch 0, showing the visual labeling of 

handwritten survey document images. Each textual element is 

enclosed by a color-coded bounding box that corresponds to a 

specific label class. The annotated objects include handwritten 

text in paragraph sections, input fields, and respondent 

signatures. These labels are categorized into distinct classes 

such as SKS, SKN, BN, BT, and BG, with bounding box 

colors indicating class differentiation. The annotated dataset 

serves as the reference ground truth for model evaluation, 

enabling performance comparison against predictions and 
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facilitating analysis of spatial distributions, dimensions, and 

structural characteristics of handwritten elements within the 

documents. 

Figure 10. Ground truth annotations of handwritten text 

Based on these two visualizations, it can be concluded that 

the YOLOv8 model used in this study shows promising 

handwriting detection performance, with high accuracy on 

most classes and the ability to maintain good recall over a wide 

range of confidence values. 

This annotation process is performed consistently across the 

entire dataset to ensure uniformity and accuracy in training and 

validating deep learning-based object detection models. 

Labels are placed directly within the bounding boxes to 

facilitate visual identification during model performance 

evaluation. This stage is a crucial part of data preprocessing 

and validation, particularly in handwriting analysis research, 

which involves extracting information from physical 

documents and classifying text elements. The existence of 

accurate ground truth allows for precise measurement of 

evaluation metrics such as precision, recall, and F1-Score, thus 

helping to ensure that the model is able to recognize and 

classify text elements according to predefined categories. 

Figure 11 specifically shows the prediction results of the 

YOLO model trained for handwritten object detection. The 

numbers in the figure indicate how confident the YOLO model 

is in identifying objects within the boxes, such as SKN, SKS, 

BT, and BG. The batch validation process is a stage in the 

machine learning model development cycle where the model 

is tested on a new data set (batch) that it has never seen during 

training to evaluate its predictive performance. 

Figure 11. Validation results for batch 0 predictions 

Furthermore, the model successfully detected object classes 

with varying degrees of confidence. The figures show how the 

model identified the location (bounding box) and type (class 

label) of each text element analyzed in a validation batch. 

3.6 Comparative review with previous studies 

Figure 12 presents a comparative analysis of evaluation 

metrics reported in recent YOLO-based handwriting detection 

studies. While previous works have shown that YOLO and its 

variants [11, 19, 20, 29] - particularly YOLOv8- are widely 

applied across diverse handwriting contexts, their 

performance varies substantially depending on dataset 

complexity, object scale, and annotation quality. For example, 

Zhang and Shi [19] applied YOLOv8 for handwritten exam 

sheet detection but obtained relatively low scores (P = 4.3%, 

R = 3%, mAP@0.5 = 4.6%). These results suggest that 

heterogeneous exam sheets with cluttered backgrounds and 

variable handwriting styles increased the detection difficulty, 

while limited hyperparameter tuning may have further 

constrained performance. In contrast, Maung et al. [11] 

achieved very high precision (P = 0.97) in Bangla handwriting 

detection. This can be attributed to consistent dataset 

preparation and the structured grapheme-rich script, which 

allowed the model to leverage stroke-level distinctions. 

However, the lack of reported mAP limits a full comparison. 

Similarly, Schreurs [29] demonstrated balanced performance 

on the MNIST dataset (Precision, Recall, and F1-Score ≈ 

0.96). The superior results are likely due to MNIST’s 

controlled environment-clean, centered, and low-noise digit 

samples-where object detection is inherently less challenging 
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compared to natural handwriting with irregular spacing and 

baselines. 

Meanwhile, Guo et al. [20] focused on small-scale 

signatures embedded in book pages and reported low 

performance (P = 2.2%, R = 8.6%, mAP@0.5 = 3.9%). The 

difficulty stemmed from detecting dense and tiny objects in 

complex page layouts, where overlapping strokes and 

background clutter reduced the effectiveness of anchor-based 

YOLO detection. Similarly, Singh and Khare [30] encountered 

performance degradation when applying CNN-based feature 

extraction on spiral drawings for Parkinson’s disease 

detection, emphasizing how fine-grained handwriting-like 

structures challenge conventional deep-learning models. 

Comparable challenges have also been noted in other image-

based detection domains, such as medical imaging, where 

deep learning architectures are used to identify subtle lesion 

patterns in complex visual backgrounds [31]. 

Figure 12. Comparative evaluation metrics of YOLO-based 

for previous handwriting detection research 

By comparison, this study (2025) achieved strong overall 

performance (Precision = 0.922, Recall = 0.98, F1-Score = 

0.55, mAP@0.5 = 0.544), despite addressing a more 

challenging task-interword spacing and baseline variation 

detection in unconstrained handwriting. The improvement can 

be linked to (i) careful annotation protocols, (ii) multi-class 

structuring of handwriting features, and (iii) systematic 

hyperparameter optimization. These factors reduced noise in 

feature boundaries and enhanced generalization. Importantly, 

the originality of this study lies in extending YOLOv8 beyond 

character recognition toward handwriting structural features 

for personality analysis, bridging technical object detection 

with behavioral interpretation. Such integration highlights the 

broader applicability of YOLO-based models in forensic 

document analysis and psychological handwriting studies. 

4. CONCLUSIONS

This study successfully applied the YOLOv8 model for 

handwritten text detection, enabling accurate identification 

and labeling of inter-word spacing and baseline classes. The 

optimized model demonstrated reliable performance, as 

reflected in the mean Average Precision (mAP) values across 

all categories. Specifically, the classes of narrow inter-word 

spacing, normal/wide inter-word spacing, rising baseline, 

falling baseline, and wavy baseline were detected with high 

confidence, underscoring the robustness of the trained model. 

The systematic approach involving dataset preparation, 

manual annotation, hyperparameter tuning, and model training 

contributed significantly to these outcomes. 

Among the ten experimental configurations, the fifth run 

achieved a recall of 0.98, an F1-Score of 0.55, and an 

mAP@0.50 of 0.544, indicating consistent and reliable 

detection of inter-word spacing and baseline variations in 

handwritten text. In addition, the precision-recall curves 

confirmed performance stability across different confidence 

thresholds, validating the model’s capacity to maintain 

detection quality under varying conditions. These findings 

advance handwriting analysis research, providing valuable 

implications for personality identification, writing habit 

assessment, and cognitive status evaluation. Future work 

should focus on expanding to more diverse and multiclass 

handwriting datasets, leveraging advanced model 

architectures, and incorporating real-time processing 

capabilities to further enhance evaluation metrics and practical 

applicability. 

However, several limitations should be acknowledged. 

First, the relatively low F1-Score indicates that the model, 

while highly sensitive (high recall), still produces false 

positives, reducing overall precision. Second, the model shows 

constraints in generalizing across complex handwriting 

conditions, such as cursive, overlapping strokes, and 

inconsistent line structures, which are common in natural 

writing scenarios. Third, cross-language applicability remains 

limited since this study focused only on Indonesian 

handwriting; applying the model to scripts with different 

grapheme structures (e.g., Arabic, Chinese, Bangla) may 

require substantial adaptation and retraining. 

Future work should address these limitations by exploring 

advanced architectures that better balance recall and precision, 

expanding datasets to include multilingual and more 

heterogeneous handwriting samples, and integrating post-

processing strategies to minimize false detections. These steps 

will help strengthen the model’s generalizability and practical 

relevance in real-world applications, such as forensic 

handwriting analysis, psychological assessment, and 

document authentication. 
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