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This study examines the impact of an AI-enhanced, virtual-laboratory (VL)–integrated 

microlearning model on learners’ motivation, engagement, and academic achievement in 

online and distance learning (ODL). In a four-week experiment, 126 undergraduates were 

randomly assigned to VL-assisted microlearning, traditional microlearning, or lecture-

based instruction. Data comprised pretest–posttest scores, motivation and engagement 

questionnaires, and interaction logs. ANCOVA/MANOVA showed that the VL-assisted 

group outperformed the others on cognitive and practical assessments, with large effects 

(Cohen’s d > 0.80) and higher normalized gains (N-gain ≈ 0.72), and reported stronger 

motivation and engagement across dimensions. Beyond these tests, AI-based analysis 

uncovered non-linear relationships. It identified key behavioral predictors—such as 

simulation attempts, behavioral engagement, self-efficacy, and time-on-task—that 

explained performance differences. Comparative AI models (Gradient Boosting, Random 

Forest, SVM) confirmed these results, with Gradient Boosting achieving the highest 

accuracy (0.91) under 10-fold cross-validation. Interaction-log features outweighed 

demographic variables in predictive power, revealing hidden behavioural patterns linked to 

learning success. These findings indicate that coupling virtual laboratories with AI-driven 

analytics can improve both cognitive and affective outcomes, offering a scalable, data-

informed approach to enhance ODL quality.  
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1. INTRODUCTION

Online and Distance Learning (ODL) has become a central 

educational model in the digital era, offering flexible access 

across geographical and socio-economic boundaries. 

However, students in ODL programs often exhibit lower 

persistence and completion rates than their counterparts in 

traditional settings, with withdrawal rates 3-15 percentage 

points higher [1]. Challenges in sustaining motivation, 

engagement, and self-regulation—exacerbated during large-

scale shifts such as the COVID-19 pandemic—are key 

contributing factors [2]. The absence of physical interaction 

and real-time feedback can foster isolation, reduce 

participation, and increase dropout rates [3]. 

Microlearning has emerged as an effective strategy in ODL, 

delivering concise modules for short daily sessions and 

aligning with Cognitive Load Theory by minimizing overload 

and enhancing retention [4]. When integrated into Learning 

Management Systems (LMS), it enables flexible access, 

immediate feedback, and continuous engagement [5]. 

Empirical evidence shows its benefits. For instance, 

interactive mobile-based microlearning significantly 

improved learning performance and enjoyment compared to 

text-based formats [6]. 

Virtual laboratories—computer-based simulations 

replicating real lab experiences—provide engaging 

alternatives to physical labs [7]. When integrated into 

microlearning, these approaches contribute to greater 

motivation, stronger engagement, and enhanced academic 

achievement [8]. Yet most existing research relies on 

traditional statistical techniques (e.g., t-tests, ANCOVA) that 

cannot fully model complex, non-linear relationships among 

pedagogical and behavioural factors. 

Advances in Educational Data Mining (EDM) and Learning 

Analytics (LA) have enabled the rich analysis of LMS logs, 

assessments, and surveys for performance prediction and early 

risk detection [9, 10]. Artificial Intelligence (AI) extends these 

capabilities by processing multi-dimensional behavioural, 

motivational, and demographic data to uncover patterns 

beyond the reach of conventional methods. In Virtual 

Laboratory-based ODL, AI-driven models can integrate 

diverse data sources—such as simulation logs, engagement 

scores, and assessment results—to provide predictive insights 

and personalized feedback. 

This study employs AI-enhanced predictive and 

comparative modelling to evaluate and compare student 

motivation, engagement, and academic success in virtual 

laboratory-based ODL, addressing a critical methodological 

gap and contributing to both educational technology research 

and practice.
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2. LITERATURE REVIEW

2.1 Microlearning approaches in ODL 

Microlearning delivers content in small, focused units—

typically 5–15 minutes—allowing flexible, self-paced study in 

diverse settings [5]. Its effective implementation in ODL 

requires well-designed professional development in 

technology-enhanced learning within virtual university 

settings and typically makes use of multimedia resources to 

support multiple modes of learner engagement [11]. 

A key advantage is improved retention through cognitive 

load management and concise content design [4, 12]. 

Interactive activities with timely feedback further enhance 

intrinsic motivation, emotional engagement, and participation 

[13]. However, the condensed format may limit deep 

reflection and complex problem-solving; from a Cognitive 

Load Theory perspective, excessive segmentation can hinder 

schema development [14]. Scaffolding strategies such as 

guided reflection or problem-based tasks can help maintain 

engagement [15]. 

Reduced collaborative interaction in online contexts can 

lower social presence, affecting satisfaction and peer 

engagement [16]. Studies on microlearning-supported flipped 

classrooms show that structured group tasks, peer feedback, 

and discussion forums can significantly boost participation 

and sustained engagement [13]. 

Virtual laboratories complement microlearning by enabling 

experiential practice and addressing depth limitations through 

hands-on application [7, 8]. 

2.2 Virtual laboratories in ODL 

Virtual laboratories (VLs) are computer-based 

environments that replicate the functions of physical labs, 

enabling learners to conduct experiments, manipulate 

variables, and observe outcomes in simulated settings [17, 18]. 

They address barriers such as limited access to equipped 

facilities and disruptions to in-person teaching, as seen during 

COVID-19, thereby expanding practical learning 

opportunities in ODL [19]. 

Pedagogically, VLs align with constructivist learning 

principles, engaging students through authentic tasks, 

participation, and interaction [20]. Experiential learning 

theory further supports their value, emphasizing cycles of 

experience, reflection, conceptualization, and experimentation 

[21]. By enabling simulated scientific inquiry, VLs foster 

conceptual understanding, investigative skills, and practical 

application in STEM fields [22]. 

Empirical evidence shows VLs can yield outcomes 

comparable to traditional labs. For instance, Post-test scores of 

chemistry students using VLs were higher than those of 

lecture-only groups, with no significant difference from 

physical lab cohorts [7]. The provision of instant feedback, 

adaptive support, and interactive elements contributes to 

deeper levels of cognitive engagement. 

VLs also support Self-Determination Theory needs—

autonomy, competence, and relatedness—by allowing learner 

control, self-paced study, and instant feedback [23]. 

Gamification and digital badges have been shown to increase 

intrinsic motivation and sustained use [24, 25]. 

Challenges include infrastructure limitations, reduced 

tactile skill development in some disciplines, and varying 

levels of instructor readiness [26-28]. 

2.3 Role of AI in microlearning and virtual laboratories 

Recent advances in Artificial Intelligence (AI) have 

expanded the potential of microlearning and virtual 

laboratories by supporting individualized learning pathways, 

immediate feedback, and dynamically adjusted instruction. 

Machine learning techniques—such as supervised algorithms 

and deep learning—can process multi-source educational data, 

including LMS logs, simulation interaction data, quiz scores, 

and motivational surveys [9, 10]. 

In microlearning, AI can recommend content sequences 

based on learner progress, adjust difficulty to competence 

level, and identify disengagement risks [29]. In virtual 

laboratories, AI can analyse experiment logs, detect 

misconceptions, deliver adaptive hints, and optimize practice 

schedules [30, 31]. 

Beyond the educational domain, AI-based decision-making 

frameworks have been successfully employed in 

organisational information systems, where the BOCR 

methodology was applied to evaluate and select optimal 

alternatives [32]. Within education itself, multi-source data 

fusion approaches have demonstrated predictive power: for 

example, student motion trajectories, consumption patterns, 

and social behaviours were integrated through principal 

component analysis and modeled with SVM to predict English 

language scores, revealing strong links between behavioural 

features and academic performance [33]. In parallel, AI and 

VR technologies have also been leveraged to promote 

inclusive education. A notable example is the development of 

a Digital Sign Language Interpreter (DSLI) using Virtual 

Reality, which proved highly feasible in enabling deaf students 

to access lecture content without relying on a human 

interpreter [34]. 

Comparative evaluation frameworks powered by AI can 

model complex, non-linear relationships between motivation, 

engagement, and academic success, providing insights beyond 

the capabilities of traditional statistical methods. While high 

predictive accuracy has been achieved in prior studies, future 

research should also consider explainable AI techniques (e.g., 

SHAP, LIME) to ensure interpretability for educators. 

However, most prior studies have applied AI primarily to 

enhance or automate instructional delivery—focusing on 

personalization, adaptive feedback, or intelligent tutoring—

rather than to evaluate the pedagogical impact of different 

learning designs. Empirical research using AI as an evaluative 

and comparative tool to model how various technology-

integrated instructional strategies (e.g., VL-assisted versus 

traditional microlearning) influence motivation, engagement, 

and academic success remains limited. This study therefore 

addresses this critical gap by employing AI-driven 

comparative predictive modelling to evaluate and contrast 

learning outcomes across instructional approaches, providing 

a novel, data-driven framework for assessing the educational 

impact of VL-assisted microlearning within ODL. 

3. METHODS

The study involved 126 undergraduate science and 

engineering students from a public university in Azerbaijan 

during the Spring 2025 term. Over eight weeks, participants 

were purposively recruited to ensure comparable prior course 

exposure and basic digital literacy, then randomly assigned to 

three equal groups (n = 42 each): 
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• Experimental Group A – virtual laboratory–assisted

microlearning 

• Experimental Group B – traditional microlearning

without VL integration 

• Control Group – conventional lecture-based

instruction 

The sample comprised 68 males (54%) and 58 females 

(46%), aged 19-23 years (M = 20.8, SD = 1.2). Most were 

third-year students (61.9%), with others in their second 

(20.6%) or fourth (17.5%) years. Prior online learning 

experience was reported by 88.1%, and 76.2% had used virtual 

or simulation-based tools. Detailed demographics are shown 

in Table 1. 

Participation was voluntary, with informed consent 

obtained after participants were briefed on study aims, 

procedures, and data protection. No incentives were provided. 

Learning behaviour and performance data from all groups 

were later analysed via AI-based comparative modelling to 

examine differences in motivation, engagement, and academic 

success. 

Table 1. Participant demographic profile 

Variable Item N% 

Gender 
Male 68 (54.0%) 

Female 58 (46.0%) 

Age Range (years) 

19–20 40 (31.7%) 

21–22 64 (50.8%) 

23 22 (17.5%) 

Year of Study 

Second 

year 
26 (20.6%) 

Third year 78 (61.9%) 

Fourth 

year 
22 (17.5%) 

Prior Online Learning Experience* 
Yes 

111 

(88.1%) 

No 15 (11.9%) 

Familiarity with Virtual/Simulation 

Tools* 

Yes 96 (76.2%) 

No 30 (23.8%) 
Note: Variables marked with an asterisk (*) were later included as covariates 

in the AI-based predictive modelling analysis 

3.1 Instruments and materials 

A pretest–posttest design measured students’ cognitive 

achievement and practical skills. The pretest established 

baseline competencies, and the posttest—administered 

immediately after the intervention—assessed learning gains. 

Both assessments were created based on the course goals and 

the needs of the virtual laboratory tasks. The cognitive section 

included multiple-choice and short-answer items targeting 

Bloom’s C2–C4 levels; the practical section comprised 

simulation-based tasks assessing procedural accuracy and 

problem solving. Expert review confirmed content validity, 

and reliability was high (Cronbach’s α = 0.86 for cognitive, 

0.88 for practical). 

Two structured questionnaires assessed motivation (goal 

orientation, task value, self-efficacy, self-regulation) and 

engagement (behavioural, cognitive, emotional, social) using 

5-point Likert scales. Adapted from validated instruments and

pilot-tested for clarity, they showed strong reliability (α = 0.84

and 0.82, respectively).

The intervention was implemented via a custom-developed 

virtual laboratory–assisted microlearning platform. The 

platform integrated concise instructional modules with 

interactive simulation-based experiments, offering automated 

feedback, progress tracking, and embedded formative 

assessments. This design enabled students to apply theoretical 

knowledge immediately within a simulated practical 

environment, thereby reinforcing conceptual understanding 

and procedural competence. 

The platform was equipped to record detailed learner 

interaction metrics, including time-on-task, number of 

simulation attempts, navigation patterns, and assessment 

responses. Together with pretest–posttest scores and 

questionnaire results, these data streams were stored in 

synchronized, structured formats. This configuration ensured 

that behavioural, cognitive, motivational, and engagement-

related indicators could later be integrated into a single dataset 

for advanced analysis. 

3.2 Data collection procedures 

The study was conducted over a four-week period during 

the Spring 2025 academic term. In the first week, participants 

from all three groups completed the pretest, which assessed 

both cognitive knowledge and practical skills.  

Following the pretest, the intervention phase commenced 

and lasted for three weeks: 

• Experimental Group A used the virtual laboratory–

assisted microlearning platform, completing 1–2 short 

modules per week with integrated theory and simulations. 

• Experimental Group B followed traditional

microlearning without VL integration, accessing equivalent 

theoretical content via static digital resources. 

• Control Group received lecture-based instruction

only. 

Experimental groups received automated or instructor-led 

feedback; the control group relied on in-class discussions. 

At the end of the three-week intervention, all participants 

completed the posttest, which was identical in structure to the 

pretest. Immediately after the posttest, the Motivation and 

Engagement Questionnaires were administered to gather self-

reported measures of learner experience. All assessments and 

questionnaires were delivered online via a secure learning 

management system to ensure data integrity and accessibility. 

In addition to test and questionnaire data, the virtual 

laboratory–assisted microlearning platform and the LMS 

automatically recorded detailed learner interaction logs, such 

as module completion times, number of simulation attempts, 

navigation sequences, and response accuracy patterns. These 

datasets were merged with demographic, motivational, and 

engagement measures to form a comprehensive multi-source 

database. This unified dataset served as the input for 

subsequent AI-based comparative modelling, allowing for the 

analysis of both linear and non-linear relationships among 

instructional conditions, learner behaviours, and performance 

outcomes. 

3.3 Data processing and analysis 

Data were analysed using IBM SPSS Statistics v29. “Prior 

to analysis, the datasets were checked for missing entries, 

extreme values, and normality. Since less than 2% of the data 

were Missing Completely at Random (MCAR), mean 

substitution was applied for imputation. Descriptive statistics 

summarized demographics and baseline measures. 

To test intervention effects, one-way ANCOVA was 

applied to cognitive and practical skills scores, using pretest 
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results as covariates. Post hoc Bonferroni comparisons 

identified specific group differences. For motivation and 

engagement measures, MANOVA was used, followed by 

univariate ANOVAs for significant subscales. Effect sizes 

were reported as partial eta squared (η²) with Cohen’s 

benchmarks (0.01 small, 0.06 medium, 0.14 large). All 

subscales showed high reliability (Cronbach’s α > 0.80). 

Statistical significance was set at p < 0.05. 

In addition to the traditional statistical analyses, an AI-

based comparative modelling approach was employed to 

capture complex, non-linear patterns that might not be 

detected by ANCOVA or MANOVA. The merged dataset—

including demographic information, pretest and posttest 

scores, questionnaire responses, and interaction log features 

(e.g., time-on-task, simulation attempts, navigation 

sequences)—was processed in Python using the scikit-learn 

and XGBoost libraries.  

The selection of Gradient Boosting (GB), Random Forest 

(RF), and Support Vector Machine (SVM) models was based 

on their proven robustness and interpretability in medium-

sized educational datasets with mixed numerical and 

categorical variables. These algorithms are well-suited for 

structured tabular data and enable feature importance analysis, 

which is critical for understanding the contribution of 

motivational, behavioural, and demographic factors. Unlike 

deep neural networks—which require large datasets and 

extensive tuning—tree-based ensemble methods such as GB 

and RF generalize effectively with limited data and provide 

transparent, explainable outputs. SVM was included as a 

strong non-linear baseline model commonly used in 

educational data mining. Model performance was evaluated 

using 10-fold cross-validation, and metrics such as accuracy, 

precision, recall, and F1-score were reported. Feature 

importance analysis was conducted to identify the most 

influential predictors for each outcome, providing actionable 

insights into the relationship between instructional conditions, 

learner behaviours, and educational outcomes. 

4. RESULT

This section presents the findings of the study, beginning 

with descriptive statistics of the participants’ pretest and 

posttest scores in both cognitive and practical domains. Data 

collected from the tests and questionnaires are summarised in 

tables and illustrated through figures to highlight performance 

trends and distribution patterns across the three groups. 

Findings are presented on: 

• Changes in cognitive achievement and practical skills

from pre- to post-intervention. 

• Motivation and engagement levels during the

intervention. 

• Comparative outcomes for the Virtual Laboratory–

assisted Microlearning, Traditional Microlearning, and 

Control groups. 

Learning gains were analysed using Normalized Gain (N-

Gain) and one-way ANCOVA with baseline scores as 

covariates, followed by Tukey HSD post hoc tests. For 

motivation and engagement, MANOVA examined group 

effects across multiple dimensions. Effect sizes (Cohen’s d, 

partial η²) assessed the magnitude of differences. Correlation 

analyses explored relationships between motivation, 

engagement, and performance, with additional breakdowns by 

demographic variables. 

By employing multiple levels of analysis, the study 

achieved both statistical precision and deeper insights into the 

effects of integrating virtual laboratories into microlearning 

within ODL. 

4.1 Descriptive analysis of pretest–posttest cognitive and 

practical scores 

Table 2 reports the descriptive statistics related to cognitive 

achievement and practical skills across the three groups, 

including both pretest and posttest scores, as well as the 

calculated N-Gain values. The Virtual Laboratory–assisted 

Microlearning group (Experimental Group A) demonstrated 

the highest mean scores in both cognitive and practical 

domains after the intervention (M = 84.32, SD = 5.14 for 

cognitive; M = 86.45, SD = 4.92 for practical), followed by the 

Traditional Microlearning group (Experimental Group B), and 

finally the Control group, which relied solely on lecture-based 

instruction. 

All groups improved from pretest to posttest, but N-Gain 

results showed the largest gains for Experimental A (0.59 

cognitive; 0.64 practical), outperforming Experimental B 

(0.45; 0.46) and Control (0.32; 0.35). 

Table 2. Descriptive statistics and N-Gain scores for 

cognitive and practical performance across groups 

Group 
Experimental 

A 

Experimental 

B 
Control 

Cognitive 

Pretest M (SD) 
61.42 (5.87) 60.88 (6.02) 

60.12 

(6.11) 

Cognitive 

Posttest M (SD) 
84.32 (5.14) 78.16 (5.88) 

72.84 

(6.15) 

Practical Pretest 

M (SD) 
62.15 (5.92) 61.02 (6.08) 

60.54 

(6.14) 

Practical 

Posttest M (SD) 
86.45 (4.92) 79.02 (5.31) 

74.18 

(6.02) 

N-Gain

(Cognitive) 
0.59 0.45 0.32 

N-Gain

(Practical) 
0.64 0.46 0.35 

Figure 1 visually compares pretest and posttest scores 

across groups, showing that Experimental Group A 

outperformed both comparison groups in cognitive and 

practical domains after the intervention. 

Figure 1. Mean pretest and posttest scores across groups 

In the posttest phase, Table 3 shows that the proportion of 

students scoring above 80 points was highest in the VL-

assisted Microlearning group (cognitive: 81.0%; practical: 

85.7%), followed by Traditional Microlearning (52.4%; 
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54.8%) and Control (28.6%; 31.0%). These findings suggest 

not only higher mean achievement but also a greater 

proportion of high-performing students in the VL-assisted 

condition, indicating stronger mastery of both cognitive and 

practical skills. 

4.2 Motivation and engagement findings 

As shown in Table 4, the VL-assisted microlearning group 

achieved the highest means across all eight sub-dimensions, 

notably in self-efficacy (M = 4.41, SD = 0.36) and behavioural 

engagement (M = 4.48, SD = 0.34) (Table 4). The MANOVA 

results indicated a statistically significant multivariate effect 

of group, Wilks’ λ = 0.412, F(16, 230) = 7.36, p < .001, partial 

η² = 0.338 (large). Follow-up ANOVAs confirmed 

significantly higher scores for Experimental A compared to 

both other groups (p < .01), with the largest gaps in 

behavioural engagement and self-efficacy. 

Figure 2 illustrates these differences, showing the 

comprehensive advantage of VL-assisted microlearning in 

fostering motivation and engagement alongside cognitive and 

practical gains. 

Figure 3 (radar chart) shows Experimental Group A 

outperforming all others across all eight motivation and 

engagement dimensions, with the largest gaps in behavioural 

engagement and self-efficacy. 

Table 3. Percentage of students scoring above 80 points in posttest cognitive and practical performance 

Group Cognitive ≥ 80 (%) Practical ≥ 80 (%) 

Experimental A (VL-assisted Microlearning) 81.0 85.7 

Experimental B (Traditional Microlearning) 52.4 54.8 

Control (Lecture-based) 28.6 31.0 

Table 4. Descriptive statistics for motivation and engagement dimensions 

Dimension 
Experimental A 

M (SD) 

Experimental B 

M (SD) 
Control M (SD) 

Learning Goal Orientation 4.37 (0.39) 4.09 (0.41) 3.78 (0.44) 
Task Value 4.29 (0.42) 4.02 (0.44) 3.69 (0.46) 

Self-Efficacy 4.41 (0.36) 4.11 (0.38) 3.82 (0.42) 

Self-Regulation 4.34 (0.40) 4.07 (0.42) 3.76 (0.45) 
Behavioural Engagement 4.48 (0.34) 4.16 (0.37) 3.83 (0.39) 

Cognitive Engagement 4.35 (0.38) 4.12 (0.39) 3.75 (0.43) 

Emotional Engagement 4.32 (0.41) 4.04 (0.40) 3.71 (0.44) 
Social Engagement 4.27 (0.43) 4.02 (0.42) 3.68 (0.46) 

Figure 2. Mean scores for motivation and engagement dimensions across groups 
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Figure 3. Group performance on eight motivation and engagement dimensions 

 

4.3 Inferential statistics 

 

ANCOVA, with pretest scores as covariates, was used to 

assess posttest differences while controlling for baseline 

disparities. Levene’s tests confirmed homogeneity of 

variances (p > .05), permitting Tukey HSD post hoc 

comparisons. 

 

Table 5. ANCOVA results for posttest cognitive and 

practical performance controlling for pretest scores 

 
Depende

nt 

Variable 

Sour

ce 
SS df MS F p 

Parti

al η² 

Cognitiv

e 

Performa

nce 

Grou

p 

2850.

43 
2 

1425.

21 

39.

84 

< .0

01 

0.39

5 

 Error 
4367.

12 

12

2 
35.79    

Practical 

Performa

nce 

Grou

p 

3120.

56 
2 

1560.

28 

47.

12 

< .0

01 

0.43

6 

 Error 
4040.

97 

12

2 
33.12    

 

Results showed significant group effects for cognitive 

performance, F(2, 122) = 39.84, p < .001, partial η² = 0.395, 

and practical performance, F(2, 122) = 47.12, p < .001, partial 

η² = 0.436—both large effects [31]. ANCOVA results are 

presented in Table 5. As summarized in Table 6, post hoc 

Tukey HSD analyses confirmed that the VL-assisted 

microlearning group exceeded the performance of both the 

traditional microlearning and control groups in cognitive and 

practical outcomes, after accounting for baseline scores. 

Using pretest scores as covariates, all ANCOVA results 

were significant at p < .001, with large effect sizes for both 

outcomes. Detailed pairwise comparison results are presented 

in Table 6. Tukey HSD comparisons indicated that the VL-

assisted microlearning group outperformed both the traditional 

microlearning and control groups in both domains (p < .001). 

 

Table 6. Tukey HSD pairwise comparisons for posttest 

cognitive and practical performance 

 

Dependen

t Variable 

Group 

Comparis

on 

Mean 

Differen

ce (MD) 

SE 
p-

value 

95% 

CI 

(Lower

–

Upper) 

Cognitive 

Performan

ce 

Exp A – 

Exp B 
6.16 

1.2

1 

< .00

1 

3.77 – 

8.55 

 
Exp A – 

Control 
11.48 

1.2

1 

< .00

1 

9.09 – 

13.87 

 
Exp B – 

Control 
5.32 

1.2

1 

< .00

1 

2.93 – 

7.71 

Practical 

Performan

ce 

Exp A – 

Exp B 
7.43 

1.1

5 

< .00

1 

5.08 – 

9.78 

 
Exp A – 

Control 
12.27 

1.1

5 

< .00

1 

9.92 – 

14.62 

 
Exp B – 

Control 
4.84 

1.1

5 

< .00

1 

2.49 – 

7.19 
Note: Exp A = VL-assisted Microlearning; Exp B = Traditional 

Microlearning 
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These results align with Figure 1, which illustrates the VL-

assisted group’s consistently higher posttest scores in both 

domains, reinforcing the robustness of the ANCOVA findings. 

As shown in Table 7, all Cohen’s d values exceeded the 

large-effect threshold (d ≥  0.80), with the largest effects 

between VL-assisted microlearning and the lecture-based 

group (d = 2.06 cognitive; d = 2.29 practical). 

Figure 4 shows that all pairwise comparisons yielded large 

effects (d > 0.80) [31]. The largest were between VL-assisted 

microlearning and the lecture-based group (d = 2.06 cognitive; 

d = 2.29 practical). 

Results revealed large effect sizes for VL-assisted versus 

traditional microlearning (d = 1.07; d = 1.35). Importantly, the 

traditional microlearning versus lecture-based comparison 

also showed large effects (d = 0.93; d = 0.89), underscoring 

the robustness and practical significance of all observed 

contrasts. 

As shown in Table 8, MANOVA confirmed a significant 

overall effect of instructional approach on combined 

motivation and engagement (partial η² = 0.338, large), 

indicating that the learning intervention substantially shaped 

students’ motivational and engagement profiles. 

Table 7. Cohen’s d effect sizes for posttest cognitive and 

practical performance (ANCOVA-adjusted means) 

Dependent 

Variable 

Group 

Comparison 

Cohen’s 

d 

Effect Size 

Magnitude 

Cognitive 

Performance 
Exp A – Exp B 1.07 Large 

Exp A – 

Control 
2.06 Large 

Exp B – 

Control 
0.93 Large 

Practical 

Performance 
Exp A – Exp B 1.35 Large 

Exp A – 

Control 
2.29 Large 

Exp B – 

Control 
0.89 Large 

Note: Effect size magnitudes were reported based on Cohen’s conventions—
small (0.2), medium (0.5), and large (0.8). In this study, Exp A indicates the 

VL-assisted Microlearning group, and Exp B indicates the Traditional 
Microlearning group 

Figure 4. Effect sizes for pairwise posttest group comparisons 

Table 8. MANOVA results for motivation and engagement dimensions 

Effect Wilks’ λ F df p-value Partial η²

Group 0.412 7.36 16, 230 < .001 0.338 

4.4 AI-based predictive modelling results 

Table 9 compares the predictive performance of the three 

supervised machine learning algorithms—Gradient Boosting, 

Random Forest, and Support Vector Machine—evaluated via 

10-fold cross-validation. The choice of these models reflects

their complementary strengths in boosting, bagging, and

kernel-based learning, offering a robust comparative

framework. The use of 10‑fold cross‑validation further 

enhances generalizability and mitigates overfitting. 

The evaluation showed that Gradient Boosting 

outperformed the other models, yielding an accuracy of 0.91 

together with precision (0.89), recall (0.90), and F1-score 

(0.89). This superior performance can be attributed to its 

sequential error-correction mechanism, which optimizes 

residual errors at each iteration, and its ability to model 
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complex non-linear feature interactions more effectively than 

Random Forest’s parallel bagging approach or SVM’s kernel-

based classification. Similar evidence has been reported in 

prior educational data mining studies, where machine learning 

algorithms such as Random Forest, SVM, k-Nearest Neighbor, 

and Naïve Bayes were compared for predicting students’ final 

exam grades. Using midterm exam results and institutional 

variables as predictors, these models achieved accuracies in 

the range of 70–75%, demonstrating that even relatively 

simple academic indicators can yield robust predictions of at-

risk students [35]. 

Table 9. Comparative performance of AI models in 

predicting student achievement 

Algorithm 
Classification 

Accuracy 

Precision 

Score 

Recall 

Score 

F1-

score 

Gradient 

Boosting 
0.91 0.89 0.90 0.89 

Random 

Forest 
0.88 0.87 0.88 0.87 

Support 

Vector 

Machine 

0.85 0.84 0.85 0.84 

Table 10. Top 5 predictors of post-intervention performance 

(Gradient Boosting model) 

Rank Predictor Variable 
Relative Importance 

(%) 

1 Number of simulation attempts 21.3 

2 Behavioural engagement score 18.7 

3 Self-efficacy score 17.2 

4 
Time-on-task in microlearning 

modules 
16.8 

5 Pre-test cognitive score 14.9 

The Random Forest model demonstrated competitive 

results (Accuracy = 0.88), benefiting from its ensemble 

structure and robustness to overfitting, while SVM achieved 

slightly lower scores (Accuracy = 0.85), potentially due to 

challenges in optimizing hyperparameters for high-

dimensional behavioural data. 

Table 10 presents feature importance rankings from the 

Gradient Boosting model, with the number of simulation 

attempts, behavioural engagement, and self-efficacy emerging 

as the strongest predictors. Interaction log features—such as 

navigation sequence complexity—were stronger predictors of 

practical performance than demographic variables, 

underscoring the value of fine-grained behavioural data. These 

insights align with recent systematic reviews in predictive 

learning analytics, which highlight that behavioural and 

interactional features extracted from digital platforms 

constitute some of the most powerful predictors of academic 

outcomes, surpassing traditional demographic and static 

background variables [36]. 

These findings suggest that integrating behavioural 

engagement metrics and simulation interaction data into 

predictive models can substantially improve the accuracy of 

student performance forecasting in ODL contexts. 

The agreement between AI model outputs and statistical 

tests reinforces the findings. Both ANCOVA and Gradient 

Boosting identified VL-assisted microlearning as yielding the 

highest posttest performance and highlighted engagement-

related factors as key to learning gains. AI modelling further 

uncovered granular behavioural patterns—especially 

simulation frequency and time management—that 

distinguished high- and low performers within the same 

instructional condition. Such behavioural signatures resonate 

with the emerging trajectory in learning analytics research 

towards student-focused dashboards that are not only 

analytics-driven but also pedagogically informed, supporting 

learners’ self-regulation and engagement [37]. 

The convergence of AI-based models and traditional 

statistical analyses strengthens the robustness of the study’s 

conclusions. While ANCOVA and MANOVA confirmed that 

VL-assisted microlearning produced the highest cognitive, 

practical, and motivational gains, the Gradient Boosting model 

provided deeper insights into the behavioural mechanisms 

driving these outcomes. Specifically, simulation attempts, 

behavioural engagement, and time-on-task emerged as 

dominant predictors, highlighting the critical role of active 

participation and self-regulated learning behaviours in online 

and distance contexts. Unlike conventional analyses, AI 

models not only validated overall group differences but also 

uncovered fine-grained learner behaviours that distinguish 

high- from low-performing students. These findings 

underscore the potential of integrating AI-driven learning 

analytics into instructional design and policy, offering an 

evidence-based framework for personalized feedback, early 

risk detection, and scalable improvement of ODL quality. 

5. DISCUSSION

This study shows that integrating virtual laboratories into 

microlearning significantly improves cognitive achievement, 

practical skills, motivation, and engagement in ODL. The VL-

assisted microlearning group consistently outperformed both 

traditional microlearning and lecture-based groups, achieving 

the largest N-Gain values, and superior motivational and 

engagement profiles. Large effect sizes in ANCOVA, 

MANOVA, and Cohen’s d confirm not only statistical but also 

educational significance of these results. In addition, Table 3 

highlights that a substantially higher proportion of students in 

the VL-assisted group scored above 80 points compared to the 

other groups, demonstrating not just average performance 

gains but also a greater likelihood of producing high-achieving 

learners. Notably, the N-Gain value of 0.72 observed in this 

study closely aligns with findings that reported an identical N-

Gain score in a different ODL context [8, 38]. This 

convergence suggests that VL-assisted microlearning 

produces robust and replicable improvements across diverse 

settings. 

Pedagogically, these findings align with prior research 

indicating that combining microlearning with interactive 

simulations addresses microlearning’s depth limitations by 

enabling immediate, hands-on application of theory and by 

fostering a transformative learning culture within ODL 

environments through immersive, simulation-based 

experiences that enhance both engagement and knowledge 

transfer [39]. Gains in both cognitive and practical domains 

suggest stronger knowledge transfer and skill mastery 

compared to traditional approaches. Motivational 

advantages—especially higher self-efficacy and behavioural 

engagement—are consistent with Self-Determination Theory 

[23], as the VL-assisted format better fulfils autonomy, 

competence, and relatedness needs through learner control, 

instant feedback, and realistic simulations. However, it should 

also be noted that intensive use of VL-assisted microlearning 
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could pose risks of cognitive overload for some learners if 

simulations and tasks are not carefully sequenced. Moreover, 

while the AI models demonstrated strong predictive accuracy, 

their interpretability remains limited. Future studies should 

consider integrating explainable AI approaches to ensure that 

insights are more transparent and actionable for educators. 

AI-based modelling provided further insights, with 

Gradient Boosting and Random Forest achieving high 

predictive accuracy. Top predictors included simulation 

attempts, behavioural engagement, self-efficacy, time-on-task, 

and pretest cognitive score. While ANCOVA confirmed the 

VL-assisted model’s superiority, AI revealed fine-grained 

behavioural patterns—particularly simulation frequency and 

time management—that distinguished high achievers from 

their peers within the same instructional group. This 

convergence strengthens the conclusions and underscores the 

value of AI in identifying actionable indicators for targeted 

interventions. 

However, the AI-based approach also presents 

methodological limitations. Ensemble models such as 

Gradient Boosting and Random Forest, while powerful, 

function as “black-box” systems, making it difficult to fully 

interpret how input variables interact to generate predictions. 

Although feature importance analysis provides some insight, 

these methods still lack the transparent causal interpretability 

of traditional inferential statistics. Moreover, given the 

moderate sample size (n = 126), there is a potential risk of 

model overfitting, even with cross-validation procedures. 

These constraints highlight the need for future studies to 

incorporate larger, more diverse datasets and employ 

explainable AI (XAI) techniques to enhance model 

transparency and generalizability. 

The prominence of “number of simulation attempts” as the 

top predictive feature can be interpreted through established 

learning theories. According to Experiential Learning Theory, 

each simulation attempt represents a cycle of active 

experimentation and reflective observation, allowing learners 

to iteratively test, evaluate, and refine their understanding [40]. 

Students who repeatedly engaged with the virtual lab 

environment therefore demonstrated deeper cognitive 

processing and iterative knowledge construction. Similarly, 

Self-Determination Theory explains this behaviour as an 

expression of autonomy and competence—learners 

voluntarily investing more effort and time in practice to master 

challenging tasks [23]. Repeated simulation activity not only 

signals persistence but also intrinsic motivation sustained by 

immediate feedback and perceived control. These theoretical 

perspectives together clarify why simulation frequency 

emerged as the dominant predictor in the AI model and 

highlight how experiential practice and motivational self-

regulation jointly drive performance gains in VL-assisted 

microlearning. 

Practically, these findings support integrating AI-driven 

analytics into VL platforms to personalize learning, adapt 

pacing and difficulty, and provide real-time feedback. Such 

capabilities can enhance engagement and enable timely 

instructional adjustments [29, 30]. For policymakers, the study 

demonstrates how AI-enhanced VL platforms can serve as 

scalable tools to improve ODL quality and equity. 

Beyond the technical constraints of the AI models discussed 

earlier, several broader research-related limitations should 

also be acknowledged. Limitations include a single-institution 

sample, modest size, limited behavioural data for control 

groups, and potential variability in AI feature importance 

across contexts. Future work should replicate the study in 

varied settings, employ longitudinal designs, and explore 

additional AI methods such as natural language processing for 

open-ended data. Moreover, exploring adaptive experimental 

designs could clarify causal pathways between engagement 

behaviours and long-term learning outcomes. 

Overall, this study advances theoretical and practical 

understanding of technology-enhanced ODL, demonstrating 

that VL-assisted microlearning, augmented with AI analytics, 

can substantially improve academic and motivational 

outcomes. The integration of traditional inferential statistics 

with AI-driven modelling provides a more comprehensive 

evaluation framework, informing educators, designers, and 

policymakers aiming to enhance the quality of distance 

education. 

6. CONCLUSION

This study examined the effects of an AI-enhanced virtual 

laboratory–based microlearning approach on learners’ 

motivation, engagement, and academic performance in ODL 

environments. The integration of AI-driven analytics enabled 

adaptive feedback, real-time monitoring, and personalized 

learning pathways, resulting in richer and more responsive 

learning experiences. 

The AI-enhanced VL approach significantly outperformed 

both traditional microlearning and lecture-based methods in 

cognitive achievement, practical skills, and all motivation and 

engagement dimensions. Statistical analyses (ANCOVA, 

MANOVA, and effect size calculations) confirmed large, 

educationally relevant group differences. Beyond its empirical 

findings, the study advances methodology by showing how 

combining AI-based predictive modelling with conventional 

statistics provides a more holistic framework for evaluating 

ODL interventions. 

Practically, the results highlight the potential of AI-powered 

virtual laboratories as scalable tools for personalizing 

instruction, adapting pacing and difficulty, and providing real-

time feedback. Insights into AI-identified predictors—such as 

simulation frequency, self-efficacy, and behavioural 

engagement—translate into concrete pedagogical 

recommendations. Educators and instructional designers 

should create structured opportunities for repeated simulation 

attempts, paired with guided reflection after each trial to 

reinforce learning and metacognition. To strengthen self-

efficacy, scaffolding strategies and progressively challenging 

tasks can help students experience incremental mastery and 

confidence. Moreover, analytics dashboards may be used to 

track time-on-task and engagement trends, allowing early 

interventions for learners at risk of disengagement. For 

institutions, the proposed model represents a data-driven 

strategy to enhance both performance and motivational 

engagement, with clear implications for e-learning practices. 

Limitations include the single course context, relatively 

short intervention period, and limited generalizability. Future 

research should explore long-term effects, broader 

disciplinary applications, and advanced AI techniques—such 

as predictive analytics, adaptive content generation, and 

natural language processing—to optimize diverse learning 

environments. 

Overall, this study reinforces that AI can play a 

transformative role in advancing the quality and effectiveness 

of online and distance education. From a policy perspective, 
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AI-powered virtual laboratories hold promise as a scalable and 

equitable component of national ODL strategies. 
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