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This study examines the impact of an Al-enhanced, virtual-laboratory (VL)-integrated
microlearning model on learners’ motivation, engagement, and academic achievement in
online and distance learning (ODL). In a four-week experiment, 126 undergraduates were
randomly assigned to VL-assisted microlearning, traditional microlearning, or lecture-
based instruction. Data comprised pretest—posttest scores, motivation and engagement
questionnaires, and interaction logs. ANCOVA/MANOVA showed that the VL-assisted
group outperformed the others on cognitive and practical assessments, with large effects
(Cohen’s d > 0.80) and higher normalized gains (N-gain ~ 0.72), and reported stronger
motivation and engagement across dimensions. Beyond these tests, Al-based analysis
uncovered non-linear relationships. It identified key behavioral predictors—such as
simulation attempts, behavioral engagement, self-efficacy, and time-on-task—that
explained performance differences. Comparative Al models (Gradient Boosting, Random
Forest, SVM) confirmed these results, with Gradient Boosting achieving the highest
accuracy (0.91) under 10-fold cross-validation. Interaction-log features outweighed
demographic variables in predictive power, revealing hidden behavioural patterns linked to
learning success. These findings indicate that coupling virtual laboratories with Al-driven
analytics can improve both cognitive and affective outcomes, offering a scalable, data-
informed approach to enhance ODL quality.

1. INTRODUCTION

Online and Distance Learning (ODL) has become a central

replicating real lab experiences—provide
alternatives to physical labs [7]. When integrated into
microlearning, these approaches contribute to greater

engaging

educational model in the digital era, offering flexible access
across geographical and socio-economic boundaries.
However, students in ODL programs often exhibit lower
persistence and completion rates than their counterparts in
traditional settings, with withdrawal rates 3-15 percentage
points higher [1]. Challenges in sustaining motivation,
engagement, and self-regulation—exacerbated during large-
scale shifts such as the COVID-19 pandemic—are key
contributing factors [2]. The absence of physical interaction
and real-time feedback can foster isolation, reduce
participation, and increase dropout rates [3].

Microlearning has emerged as an effective strategy in ODL,
delivering concise modules for short daily sessions and
aligning with Cognitive Load Theory by minimizing overload
and enhancing retention [4]. When integrated into Learning
Management Systems (LMS), it enables flexible access,

immediate feedback, and continuous engagement [5].
Empirical evidence shows its benefits. For instance,
interactive  mobile-based = microlearning  significantly

improved learning performance and enjoyment compared to
text-based formats [6].

Virtual laboratories—computer-based simulations
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motivation, stronger engagement, and enhanced academic
achievement [8]. Yet most existing research relies on
traditional statistical techniques (e.g., t-tests, ANCOVA) that
cannot fully model complex, non-linear relationships among
pedagogical and behavioural factors.

Advances in Educational Data Mining (EDM) and Learning
Analytics (LA) have enabled the rich analysis of LMS logs,
assessments, and surveys for performance prediction and early
risk detection [9, 10]. Artificial Intelligence (Al) extends these
capabilities by processing multi-dimensional behavioural,
motivational, and demographic data to uncover patterns
beyond the reach of conventional methods. In Virtual
Laboratory-based ODL, Al-driven models can integrate
diverse data sources—such as simulation logs, engagement
scores, and assessment results—to provide predictive insights
and personalized feedback.

This study employs Al-enhanced predictive and
comparative modelling to evaluate and compare student
motivation, engagement, and academic success in virtual
laboratory-based ODL, addressing a critical methodological
gap and contributing to both educational technology research
and practice.


https://orcid.org/0009-0006-8338-8128
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300920&domain=pdf

2. LITERATURE REVIEW
2.1 Microlearning approaches in ODL

Microlearning delivers content in small, focused units—
typically 5—15 minutes—allowing flexible, self-paced study in
diverse settings [5]. Its effective implementation in ODL
requires  well-designed professional development in
technology-enhanced learning within virtual university
settings and typically makes use of multimedia resources to
support multiple modes of learner engagement [11].

A key advantage is improved retention through cognitive
load management and concise content design [4, 12].
Interactive activities with timely feedback further enhance
intrinsic motivation, emotional engagement, and participation
[13]. However, the condensed format may limit deep
reflection and complex problem-solving; from a Cognitive
Load Theory perspective, excessive segmentation can hinder
schema development [14]. Scaffolding strategies such as
guided reflection or problem-based tasks can help maintain
engagement [15].

Reduced collaborative interaction in online contexts can
lower social presence, affecting satisfaction and peer
engagement [16]. Studies on microlearning-supported flipped
classrooms show that structured group tasks, peer feedback,
and discussion forums can significantly boost participation
and sustained engagement [13].

Virtual laboratories complement microlearning by enabling
experiential practice and addressing depth limitations through
hands-on application [7, 8].

2.2 Virtual laboratories in ODL

Virtual  laboratories (VLs) are computer-based
environments that replicate the functions of physical labs,
enabling learners to conduct experiments, manipulate
variables, and observe outcomes in simulated settings [17, 18].
They address barriers such as limited access to equipped
facilities and disruptions to in-person teaching, as seen during
COVID-19, thereby expanding practical learning
opportunities in ODL [19].

Pedagogically, VLs align with constructivist learning
principles, engaging students through authentic tasks,
participation, and interaction [20]. Experiential learning
theory further supports their value, emphasizing cycles of
experience, reflection, conceptualization, and experimentation
[21]. By enabling simulated scientific inquiry, VLs foster
conceptual understanding, investigative skills, and practical
application in STEM fields [22].

Empirical evidence shows VLs can yield outcomes
comparable to traditional labs. For instance, Post-test scores of
chemistry students using VLs were higher than those of
lecture-only groups, with no significant difference from
physical lab cohorts [7]. The provision of instant feedback,
adaptive support, and interactive elements contributes to
deeper levels of cognitive engagement.

VLs also support Self-Determination Theory needs—
autonomy, competence, and relatedness—by allowing learner
control, self-paced study, and instant feedback [23].
Gamification and digital badges have been shown to increase
intrinsic motivation and sustained use [24, 25].

Challenges include infrastructure limitations, reduced
tactile skill development in some disciplines, and varying
levels of instructor readiness [26-28].
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2.3 Role of Al in microlearning and virtual laboratories

Recent advances in Artificial Intelligence (AI) have
expanded the potential of microlearning and virtual
laboratories by supporting individualized learning pathways,
immediate feedback, and dynamically adjusted instruction.
Machine learning techniques—such as supervised algorithms
and deep learning—can process multi-source educational data,
including LMS logs, simulation interaction data, quiz scores,
and motivational surveys [9, 10].

In microlearning, Al can recommend content sequences
based on learner progress, adjust difficulty to competence
level, and identify disengagement risks [29]. In virtual
laboratories, Al can analyse experiment logs, detect
misconceptions, deliver adaptive hints, and optimize practice
schedules [30, 31].

Beyond the educational domain, Al-based decision-making
frameworks have been successfully employed in
organisational information systems, where the BOCR
methodology was applied to evaluate and select optimal
alternatives [32]. Within education itself, multi-source data
fusion approaches have demonstrated predictive power: for
example, student motion trajectories, consumption patterns,
and social behaviours were integrated through principal
component analysis and modeled with SVM to predict English
language scores, revealing strong links between behavioural
features and academic performance [33]. In parallel, Al and
VR technologies have also been leveraged to promote
inclusive education. A notable example is the development of
a Digital Sign Language Interpreter (DSLI) using Virtual
Reality, which proved highly feasible in enabling deaf students
to access lecture content without relying on a human
interpreter [34].

Comparative evaluation frameworks powered by Al can
model complex, non-linear relationships between motivation,
engagement, and academic success, providing insights beyond
the capabilities of traditional statistical methods. While high
predictive accuracy has been achieved in prior studies, future
research should also consider explainable Al techniques (e.g.,
SHAP, LIME) to ensure interpretability for educators.

However, most prior studies have applied Al primarily to
enhance or automate instructional delivery—focusing on
personalization, adaptive feedback, or intelligent tutoring—
rather than to evaluate the pedagogical impact of different
learning designs. Empirical research using Al as an evaluative
and comparative tool to model how various technology-
integrated instructional strategies (e.g., VL-assisted versus
traditional microlearning) influence motivation, engagement,
and academic success remains limited. This study therefore
addresses this critical gap by employing Al-driven
comparative predictive modelling to evaluate and contrast
learning outcomes across instructional approaches, providing
a novel, data-driven framework for assessing the educational
impact of VL-assisted microlearning within ODL.

3. METHODS

The study involved 126 undergraduate science and
engineering students from a public university in Azerbaijan
during the Spring 2025 term. Over eight weeks, participants
were purposively recruited to ensure comparable prior course
exposure and basic digital literacy, then randomly assigned to
three equal groups (n = 42 each):



. Experimental Group A — virtual laboratory—assisted
microlearning

. Experimental Group B — traditional microlearning
without VL integration

. Control  Group
instruction

The sample comprised 68 males (54%) and 58 females
(46%), aged 19-23 years (M = 20.8, SD = 1.2). Most were
third-year students (61.9%), with others in their second
(20.6%) or fourth (17.5%) years. Prior online learning
experience was reported by 88.1%, and 76.2% had used virtual
or simulation-based tools. Detailed demographics are shown
in Table 1.

Participation was voluntary, with informed consent
obtained after participants were briefed on study aims,
procedures, and data protection. No incentives were provided.
Learning behaviour and performance data from all groups
were later analysed via Al-based comparative modelling to
examine differences in motivation, engagement, and academic
success.

conventional lecture-based

Table 1. Participant demographic profile

Variable Item N%
Male 68 (54.0%)
Gender Female 58 (46.0%)
19-20 40 (31.7%)
Age Range (years) 21-22 64 (50.8%)
23 22 (17.5%)
Second 56 (20.6%)
year
Year of Study Third year 78 (61.9%)
Fourth 95 (17.5%)
year
. . . . Yes 111
Prior Online Learning Experience* (88.1%)
No 15 (11.9%)
Familiarity with Virtual/Simulation Yes 96 (76.2%)
Tools* No 30 (23.8%)

Note: Variables marked with an asterisk (*) were later included as covariates
in the Al-based predictive modelling analysis

3.1 Instruments and materials

A pretest—posttest design measured students’ cognitive
achievement and practical skills. The pretest established
baseline competencies, and the posttest—administered
immediately after the intervention—assessed learning gains.
Both assessments were created based on the course goals and
the needs of the virtual laboratory tasks. The cognitive section
included multiple-choice and short-answer items targeting
Bloom’s C2-C4 levels; the practical section comprised
simulation-based tasks assessing procedural accuracy and
problem solving. Expert review confirmed content validity,
and reliability was high (Cronbach’s o = 0.86 for cognitive,
0.88 for practical).

Two structured questionnaires assessed motivation (goal
orientation, task value, self-efficacy, self-regulation) and
engagement (behavioural, cognitive, emotional, social) using
5-point Likert scales. Adapted from validated instruments and
pilot-tested for clarity, they showed strong reliability (o= 0.84
and 0.82, respectively).

The intervention was implemented via a custom-developed
virtual laboratory—assisted microlearning platform. The
platform integrated concise instructional modules with
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interactive simulation-based experiments, offering automated
feedback, progress tracking, and embedded formative
assessments. This design enabled students to apply theoretical
knowledge immediately within a simulated practical
environment, thereby reinforcing conceptual understanding
and procedural competence.

The platform was equipped to record detailed learner
interaction metrics, including time-on-task, number of
simulation attempts, navigation patterns, and assessment
responses. Together with pretest—posttest scores and
questionnaire results, these data streams were stored in
synchronized, structured formats. This configuration ensured
that behavioural, cognitive, motivational, and engagement-
related indicators could later be integrated into a single dataset
for advanced analysis.

3.2 Data collection procedures

The study was conducted over a four-week period during
the Spring 2025 academic term. In the first week, participants
from all three groups completed the pretest, which assessed
both cognitive knowledge and practical skills.

Following the pretest, the intervention phase commenced
and lasted for three weeks:

. Experimental Group A used the virtual laboratory—
assisted microlearning platform, completing 1-2 short
modules per week with integrated theory and simulations.

. Experimental Group B followed traditional
microlearning without VL integration, accessing equivalent
theoretical content via static digital resources.

. Control Group received lecture-based instruction
only.

Experimental groups received automated or instructor-led
feedback; the control group relied on in-class discussions.

At the end of the three-week intervention, all participants
completed the posttest, which was identical in structure to the
pretest. Immediately after the posttest, the Motivation and
Engagement Questionnaires were administered to gather self-
reported measures of learner experience. All assessments and
questionnaires were delivered online via a secure learning
management system to ensure data integrity and accessibility.

In addition to test and questionnaire data, the virtual
laboratory—assisted microlearning platform and the LMS
automatically recorded detailed learner interaction logs, such
as module completion times, number of simulation attempts,
navigation sequences, and response accuracy patterns. These
datasets were merged with demographic, motivational, and
engagement measures to form a comprehensive multi-source
database. This unified dataset served as the input for
subsequent Al-based comparative modelling, allowing for the
analysis of both linear and non-linear relationships among
instructional conditions, learner behaviours, and performance
outcomes.

3.3 Data processing and analysis

Data were analysed using IBM SPSS Statistics v29. “Prior
to analysis, the datasets were checked for missing entries,
extreme values, and normality. Since less than 2% of the data
were Missing Completely at Random (MCAR), mean
substitution was applied for imputation. Descriptive statistics
summarized demographics and baseline measures.

To test intervention effects, one-way ANCOVA was
applied to cognitive and practical skills scores, using pretest



results as covariates. Post hoc Bonferroni comparisons
identified specific group differences. For motivation and
engagement measures, MANOVA was used, followed by
univariate. ANOVAs for significant subscales. Effect sizes
were reported as partial eta squared (n?) with Cohen’s
benchmarks (0.01 small, 0.06 medium, 0.14 large). All
subscales showed high reliability (Cronbach’s o > 0.80).
Statistical significance was set at p < 0.05.

In addition to the traditional statistical analyses, an Al-
based comparative modelling approach was employed to
capture complex, non-linear patterns that might not be
detected by ANCOVA or MANOVA. The merged dataset—
including demographic information, pretest and posttest
scores, questionnaire responses, and interaction log features
(e.g., time-on-task, simulation attempts, navigation
sequences)—was processed in Python using the scikit-learn
and XGBoost libraries.

The selection of Gradient Boosting (GB), Random Forest
(RF), and Support Vector Machine (SVM) models was based
on their proven robustness and interpretability in medium-
sized educational datasets with mixed numerical and
categorical variables. These algorithms are well-suited for
structured tabular data and enable feature importance analysis,
which is critical for understanding the contribution of
motivational, behavioural, and demographic factors. Unlike
deep neural networks—which require large datasets and
extensive tuning—tree-based ensemble methods such as GB
and RF generalize effectively with limited data and provide
transparent, explainable outputs. SVM was included as a
strong non-linear baseline model commonly used in
educational data mining. Model performance was evaluated
using 10-fold cross-validation, and metrics such as accuracy,
precision, recall, and F1-score were reported. Feature
importance analysis was conducted to identify the most
influential predictors for each outcome, providing actionable
insights into the relationship between instructional conditions,
learner behaviours, and educational outcomes.

4. RESULT

This section presents the findings of the study, beginning
with descriptive statistics of the participants’ pretest and
posttest scores in both cognitive and practical domains. Data
collected from the tests and questionnaires are summarised in
tables and illustrated through figures to highlight performance
trends and distribution patterns across the three groups.

Findings are presented on:

. Changes in cognitive achievement and practical skills
from pre- to post-intervention.

. Motivation and engagement
intervention.

. Comparative outcomes for the Virtual Laboratory—
assisted Microlearning, Traditional Microlearning, and
Control groups.

Learning gains were analysed using Normalized Gain (N-
Gain) and one-way ANCOVA with baseline scores as
covariates, followed by Tukey HSD post hoc tests. For
motivation and engagement, MANOVA examined group
effects across multiple dimensions. Effect sizes (Cohen’s d,
partial n?) assessed the magnitude of differences. Correlation
analyses explored relationships between motivation,
engagement, and performance, with additional breakdowns by
demographic variables.

levels during the

2464

By employing multiple levels of analysis, the study
achieved both statistical precision and deeper insights into the
effects of integrating virtual laboratories into microlearning
within ODL.

4.1 Descriptive analysis of pretest—posttest cognitive and
practical scores

Table 2 reports the descriptive statistics related to cognitive
achievement and practical skills across the three groups,
including both pretest and posttest scores, as well as the
calculated N-Gain values. The Virtual Laboratory—assisted
Microlearning group (Experimental Group A) demonstrated
the highest mean scores in both cognitive and practical
domains after the intervention (M = 84.32, SD = 5.14 for
cognitive; M = 86.45, SD = 4.92 for practical), followed by the
Traditional Microlearning group (Experimental Group B), and
finally the Control group, which relied solely on lecture-based
instruction.

All groups improved from pretest to posttest, but N-Gain
results showed the largest gains for Experimental A (0.59
cognitive; 0.64 practical), outperforming Experimental B
(0.45; 0.46) and Control (0.32; 0.35).

Table 2. Descriptive statistics and N-Gain scores for
cognitive and practical performance across groups

Experimental  Experimental

Group A B Control
Pre(t::s%nl\i/lti\(lgD) 61.42(5.87)  60.88(6.02) (66.? 1112)
Pos(t:tc(;!sgtn Ii\t/:V(eSD) 84.32(5.14) 78.16 (5.88) (76218;;
Praclt\illczzllsgr)eteSt 62.15 (5.92) 61.02 (6.08) ?60 15‘;4)
Postpt:(t:tli\za(ISD) 86.45(492)  79.02(531) (7&)122;

(Cﬁéﬁﬁ;?/e) 0.59 0.45 0.32
(Pl\rlz:\g?clgl) 0.64 0.46 0.35

Figure 1 visually compares pretest and posttest scores
across groups, showing that Experimental Group A
outperformed both comparison groups in cognitive and
practical domains after the intervention.

m Cognitive Pretest
Cognitive Posttest

® Practical Pretest

= Practical Posttest

100

80

Mean Score

Experimental A Experimental B Control

Figure 1. Mean pretest and posttest scores across groups

In the posttest phase, Table 3 shows that the proportion of
students scoring above 80 points was highest in the VL-
assisted Microlearning group (cognitive: 81.0%; practical:
85.7%), followed by Traditional Microlearning (52.4%;



54.8%) and Control (28.6%; 31.0%). These findings suggest
not only higher mean achievement but also a greater
proportion of high-performing students in the VL-assisted
condition, indicating stronger mastery of both cognitive and
practical skills.

4.2 Motivation and engagement findings

As shown in Table 4, the VL-assisted microlearning group
achieved the highest means across all eight sub-dimensions,
notably in self-efficacy (M =4.41, SD = 0.36) and behavioural
engagement (M = 4.48, SD = 0.34) (Table 4). The MANOVA
results indicated a statistically significant multivariate effect

of group, Wilks’ A=0.412, F(16,230) =7.36, p <.001, partial
n*> = 0.338 (large). Follow-up ANOVAs confirmed
significantly higher scores for Experimental A compared to
both other groups (p < .01), with the largest gaps in
behavioural engagement and self-efficacy.

Figure 2 illustrates these differences, showing the
comprehensive advantage of VL-assisted microlearning in
fostering motivation and engagement alongside cognitive and
practical gains.

Figure 3 (radar chart) shows Experimental Group A
outperforming all others across all eight motivation and
engagement dimensions, with the largest gaps in behavioural
engagement and self-efficacy.

Table 3. Percentage of students scoring above 80 points in posttest cognitive and practical performance

Group

Cognitive > 80 (%) Practical > 80 (%)

Experimental A (VL-assisted Microlearning)
Experimental B (Traditional Microlearning)
Control (Lecture-based)

81.0 85.7
52.4 54.8
28.6 31.0

Table 4. Descriptive statistics for motivation and engagement dimensions

Dimension

Experimental A

Experimental B Control M (SD)

M (SD) M (SD)
Learning Goal Orientation 4.37 (0.39) 4,09 (0.41) 3.78 (0.44)
Task Value 4.29 (0.42) 4.02 (0.44) 3.69 (0.46)
Self-Efficacy 4.41 (0.36) 4.11 (0.38) 3.82(0.42)
Self-Regulation 4.34 (0.40) 4.07 (0.42) 3.76 (0.45)
Behavioural Engagement 4.48 (0.34) 4.16 (0.37) 3.83(0.39)
Cognitive Engagement 4.35 (0.38) 4.12 (0.39) 3.75(0.43)
Emotional Engagement 4.32 (0.41) 4,04 (0.40) 3.71(0.44)
Social Engagement 4.27 (0.43) 4.02 (0.42) 3.68 (0.46)
46 B Experimental A
" Experimental B
m Control
4.4
6
= 4,2
o
5]
5 4
=
3.8
3.6
L 3 S & S & >
Q'Q' ‘_‘E}Q' db'o ng @'g} &Q’ ,6\2} @@Q’
O < > & § < o~ &
> S N N
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‘\)

Figure 2. Mean scores for motivation and engagement dimensions across groups
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Experimental A (VL-assisted Microlearning)
Experimental B (Traditional Microleaming)

Control (Lecture-based)

45

Social
Engagement

Emotional
Engagement

Cognitive
Engagement

Behavioral
Engagement

Learning
Goal
Orientation

Task Value

Self-Efficacy

Self-
Regulation

Figure 3. Group performance on eight motivation and engagement dimensions

4.3 Inferential statistics

ANCOVA, with pretest scores as covariates, was used to
assess posttest differences while controlling for baseline
disparities. Levene’s tests confirmed homogeneity of
variances (p > .05), permitting Tukey HSD post hoc
comparisons.

Table 5. ANCOVA results for posttest cognitive and
practical performance controlling for pretest scores

Depende .
o S ss gt ms Fop o
Variable 1
Cognitiv
e Grou  2850. 5 1425. 39. <.0 0.39
Performa p 43 21 84 01 5
nce
4367. 12
Error 12 2 35.79
Ppgff;'rﬁﬁ‘; Grou 3120. , 1560. 47. <.0 043
p 56 28 12 01 6
nce
4040. 12
Error 97 2 33.12

Results showed significant group effects for cognitive
performance, F(2, 122) = 39.84, p < .001, partial n* = 0.395,
and practical performance, F(2, 122) =47.12, p <.001, partial
n* = 0.436—both large effects [31]. ANCOVA results are
presented in Table 5. As summarized in Table 6, post hoc
Tukey HSD analyses confirmed that the VL-assisted
microlearning group exceeded the performance of both the
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traditional microlearning and control groups in cognitive and
practical outcomes, after accounting for baseline scores.
Using pretest scores as covariates, all ANCOVA results
were significant at p < .001, with large effect sizes for both
outcomes. Detailed pairwise comparison results are presented
in Table 6. Tukey HSD comparisons indicated that the VL-
assisted microlearning group outperformed both the traditional
microlearning and control groups in both domains (p <.001).

Table 6. Tukey HSD pairwise comparisons for posttest
cognitive and practical performance

95%
Dependen Group Mean : Cl
per Comparis  Differen SE P (Lower
t Variable value
on ce (MD) -
Upper)
Cognitive
Exp A— 12 <.00 377-
Perfg;man Exp B 6.16 1 1 8.55
Exp A- 12 <.00 9.09-
Control 11.48 1 1 13.87
Exp B - 532 12 <.00 293-
Control ' 1 1 7.71
Practical
Exp A- 11 <.00 5.08-
Perf(c:);man Exp B 7.43 5 1 9.78
Exp A- 11 <.00 992-
Control 1221 5 1 14.62
Exp B - 11 <.00 249-
Control 4.84 5 1 7.19
Note: Exp A = VL-assisted Microlearning; Exp B = Traditional
Microlearning



These results align with Figure 1, which illustrates the VL-
assisted group’s consistently higher posttest scores in both
domains, reinforcing the robustness of the ANCOVA findings.

As shown in Table 7, all Cohen’s d values exceeded the
large-effect threshold (d = 0.80), with the largest effects
between VL-assisted microlearning and the lecture-based
group (d = 2.06 cognitive; d = 2.29 practical).

Figure 4 shows that all pairwise comparisons yielded large
effects (d > 0.80) [31]. The largest were between VL-assisted
microlearning and the lecture-based group (d =2.06 cognitive;
d =2.29 practical).

Results revealed large effect sizes for VL-assisted versus
traditional microlearning (d = 1.07; d = 1.35). Importantly, the
traditional microlearning versus lecture-based comparison
also showed large effects (d = 0.93; d = 0.89), underscoring
the robustness and practical significance of all observed
contrasts.

As shown in Table 8, MANOVA confirmed a significant
overall effect of instructional approach on combined
motivation and engagement (partial n?> = 0.338, large),
indicating that the learning intervention substantially shaped

students’ motivational and engagement profiles.

Table 7. Cohen’s d effect sizes for posttest cognitive and
practical performance (ANCOVA-adjusted means)

Dependent Group Cohen’s Effect Size
Varigl?le Comparison d Magnitude
Pg?gr”n'%ﬁe ExpA—ExpB  1.07 Large
I(E:):)F:]QOT 2.06 Large
I(E:);?]E oT 0.93 Large
Pe';[g‘r’g]‘;ﬂce ExpA-ExpB 135 Large
Eﬁ%tﬁo? 2.29 Large
R 0.89 Large

Note: Effect size magnitudes were reported based on Cohen’s conventions—
small (0.2), medium (0.5), and large (0.8). In this study, Exp A indicates the
VL-assisted Microlearning group, and Exp B indicates the Traditional
Microlearning group

2.5
2,0
L5
=1
=
5
G}
o
L0
0.5
0,0
m s ]
=] =]
£ £z ¢ g
h=] “I-l =Y :é &)
Ehﬂ: 2 < &'
@] % 9] & 8] P
[ia] 3] 5]

Practical

Exp A-Exp B

2,29

Large Effect Threshold

Practical
Exp A - Control

Practical
Exp B - Control

Figure 4. Effect sizes for pairwise posttest group comparisons

Table 8. MANOVA results for motivation and engagement dimensions

Effect Wilks’ A F

df p-value

Partial n*

Group 0.412

7.36 16,230

<.001 0.338

4.4 Al-based predictive modelling results

Table 9 compares the predictive performance of the three
supervised machine learning algorithms—Gradient Boosting,
Random Forest, and Support Vector Machine—evaluated via
10-fold cross-validation. The choice of these models reflects
their complementary strengths in boosting, bagging, and
kernel-based learning, offering a robust comparative
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framework. The use of 10-fold cross-validation further
enhances generalizability and mitigates overfitting.

The evaluation showed that Gradient Boosting
outperformed the other models, yielding an accuracy of 0.91
together with precision (0.89), recall (0.90), and F1-score
(0.89). This superior performance can be attributed to its
sequential error-correction mechanism, which optimizes
residual errors at each iteration, and its ability to model



complex non-linear feature interactions more effectively than
Random Forest’s parallel bagging approach or SVM’s kernel-
based classification. Similar evidence has been reported in
prior educational data mining studies, where machine learning
algorithms such as Random Forest, SVM, k-Nearest Neighbor,
and Naive Bayes were compared for predicting students’ final
exam grades. Using midterm exam results and institutional
variables as predictors, these models achieved accuracies in
the range of 70-75%, demonstrating that even relatively
simple academic indicators can yield robust predictions of at-
risk students [35].

Table 9. Comparative performance of Al models in
predicting student achievement

. Classification Precision Recall F1-
Algorithm

Accuracy Score Score  score

Gradient 0.91 0.89 090 089
Boosting

Random 0.88 0.87 088 087
Forest
Support

Vector 0.85 0.84 0.85 0.84
Machine

Table 10. Top 5 predictors of post-intervention performance
(Gradient Boosting model)

Relative Importance

Rank Predictor Variable

(%)

1 Number of simulation attempts 21.3

2 Behavioural engagement score 18.7

3 Self-efficacy score 17.2

4 Time-on-task in microlearning 16.8
modules

5 Pre-test cognitive score 14.9

The Random Forest model demonstrated competitive
results (Accuracy = 0.88), benefiting from its ensemble
structure and robustness to overfitting, while SVM achieved
slightly lower scores (Accuracy = 0.85), potentially due to
challenges in optimizing hyperparameters for high-
dimensional behavioural data.

Table 10 presents feature importance rankings from the
Gradient Boosting model, with the number of simulation
attempts, behavioural engagement, and self-efficacy emerging
as the strongest predictors. Interaction log features—such as
navigation sequence complexity—were stronger predictors of
practical  performance than demographic variables,
underscoring the value of fine-grained behavioural data. These
insights align with recent systematic reviews in predictive
learning analytics, which highlight that behavioural and
interactional features extracted from digital platforms
constitute some of the most powerful predictors of academic
outcomes, surpassing traditional demographic and static
background variables [36].

These findings suggest that integrating behavioural
engagement metrics and simulation interaction data into
predictive models can substantially improve the accuracy of
student performance forecasting in ODL contexts.

The agreement between AI model outputs and statistical
tests reinforces the findings. Both ANCOVA and Gradient
Boosting identified VL-assisted microlearning as yielding the
highest posttest performance and highlighted engagement-
related factors as key to learning gains. Al modelling further
uncovered  granular  behavioural patterns—especially
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simulation  frequency and time management—that
distinguished high- and low performers within the same
instructional condition. Such behavioural signatures resonate
with the emerging trajectory in learning analytics research
towards student-focused dashboards that are not only
analytics-driven but also pedagogically informed, supporting
learners’ self-regulation and engagement [37].

The convergence of Al-based models and traditional
statistical analyses strengthens the robustness of the study’s
conclusions. While ANCOVA and MANOVA confirmed that
VL-assisted microlearning produced the highest cognitive,
practical, and motivational gains, the Gradient Boosting model
provided deeper insights into the behavioural mechanisms
driving these outcomes. Specifically, simulation attempts,
behavioural engagement, and time-on-task emerged as
dominant predictors, highlighting the critical role of active
participation and self-regulated learning behaviours in online
and distance contexts. Unlike conventional analyses, Al
models not only validated overall group differences but also
uncovered fine-grained learner behaviours that distinguish
high- from low-performing students. These findings
underscore the potential of integrating Al-driven learning
analytics into instructional design and policy, offering an
evidence-based framework for personalized feedback, early
risk detection, and scalable improvement of ODL quality.

5. DISCUSSION

This study shows that integrating virtual laboratories into
microlearning significantly improves cognitive achievement,
practical skills, motivation, and engagement in ODL. The VL-
assisted microlearning group consistently outperformed both
traditional microlearning and lecture-based groups, achieving
the largest N-Gain values, and superior motivational and
engagement profiles. Large effect sizes in ANCOVA,
MANOVA, and Cohen’s d confirm not only statistical but also
educational significance of these results. In addition, Table 3
highlights that a substantially higher proportion of students in
the VL-assisted group scored above 80 points compared to the
other groups, demonstrating not just average performance
gains but also a greater likelihood of producing high-achieving
learners. Notably, the N-Gain value of 0.72 observed in this
study closely aligns with findings that reported an identical N-
Gain score in a different ODL context [8, 38]. This
convergence suggests that VL-assisted microlearning
produces robust and replicable improvements across diverse
settings.

Pedagogically, these findings align with prior research
indicating that combining microlearning with interactive
simulations addresses microlearning’s depth limitations by
enabling immediate, hands-on application of theory and by
fostering a transformative learning culture within ODL
environments  through  immersive,  simulation-based
experiences that enhance both engagement and knowledge
transfer [39]. Gains in both cognitive and practical domains
suggest stronger knowledge transfer and skill mastery
compared to traditional approaches.  Motivational
advantages—especially higher self-efficacy and behavioural
engagement—are consistent with Self-Determination Theory
[23], as the VL-assisted format better fulfils autonomy,
competence, and relatedness needs through learner control,
instant feedback, and realistic simulations. However, it should
also be noted that intensive use of VL-assisted microlearning



could pose risks of cognitive overload for some learners if
simulations and tasks are not carefully sequenced. Moreover,
while the Al models demonstrated strong predictive accuracy,
their interpretability remains limited. Future studies should
consider integrating explainable Al approaches to ensure that
insights are more transparent and actionable for educators.

Al-based modelling provided further insights, with
Gradient Boosting and Random Forest achieving high
predictive accuracy. Top predictors included simulation
attempts, behavioural engagement, self-efficacy, time-on-task,
and pretest cognitive score. While ANCOVA confirmed the
VL-assisted model’s superiority, Al revealed fine-grained
behavioural patterns—particularly simulation frequency and
time management—that distinguished high achievers from
their peers within the same instructional group. This
convergence strengthens the conclusions and underscores the
value of Al in identifying actionable indicators for targeted
interventions.

However, the Al-based approach also presents
methodological limitations. Ensemble models such as
Gradient Boosting and Random Forest, while powerful,
function as “black-box” systems, making it difficult to fully
interpret how input variables interact to generate predictions.
Although feature importance analysis provides some insight,
these methods still lack the transparent causal interpretability
of traditional inferential statistics. Moreover, given the
moderate sample size (n = 126), there is a potential risk of
model overfitting, even with cross-validation procedures.
These constraints highlight the need for future studies to
incorporate larger, more diverse datasets and employ
explainable Al (XAI) techniques to enhance model
transparency and generalizability.

The prominence of “number of simulation attempts” as the
top predictive feature can be interpreted through established
learning theories. According to Experiential Learning Theory,
each simulation attempt represents a cycle of active
experimentation and reflective observation, allowing learners
to iteratively test, evaluate, and refine their understanding [40].
Students who repeatedly engaged with the virtual lab
environment therefore demonstrated deeper cognitive
processing and iterative knowledge construction. Similarly,
Self-Determination Theory explains this behaviour as an
expression of autonomy and competence—learners
voluntarily investing more effort and time in practice to master
challenging tasks [23]. Repeated simulation activity not only
signals persistence but also intrinsic motivation sustained by
immediate feedback and perceived control. These theoretical
perspectives together clarify why simulation frequency
emerged as the dominant predictor in the Al model and
highlight how experiential practice and motivational self-
regulation jointly drive performance gains in VL-assisted
microlearning.

Practically, these findings support integrating Al-driven
analytics into VL platforms to personalize learning, adapt
pacing and difficulty, and provide real-time feedback. Such
capabilities can enhance engagement and enable timely
instructional adjustments [29, 30]. For policymakers, the study
demonstrates how Al-enhanced VL platforms can serve as
scalable tools to improve ODL quality and equity.

Beyond the technical constraints of the Al models discussed
earlier, several broader research-related limitations should
also be acknowledged. Limitations include a single-institution
sample, modest size, limited behavioural data for control
groups, and potential variability in Al feature importance
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across contexts. Future work should replicate the study in
varied settings, employ longitudinal designs, and explore
additional Al methods such as natural language processing for
open-ended data. Moreover, exploring adaptive experimental
designs could clarify causal pathways between engagement
behaviours and long-term learning outcomes.

Overall, this study advances theoretical and practical
understanding of technology-enhanced ODL, demonstrating
that VL-assisted microlearning, augmented with Al analytics,
can substantially improve academic and motivational
outcomes. The integration of traditional inferential statistics
with Al-driven modelling provides a more comprehensive
evaluation framework, informing educators, designers, and
policymakers aiming to enhance the quality of distance
education.

6. CONCLUSION

This study examined the effects of an Al-enhanced virtual
laboratory—based microlearning approach on learners’
motivation, engagement, and academic performance in ODL
environments. The integration of Al-driven analytics enabled
adaptive feedback, real-time monitoring, and personalized
learning pathways, resulting in richer and more responsive
learning experiences.

The Al-enhanced VL approach significantly outperformed
both traditional microlearning and lecture-based methods in
cognitive achievement, practical skills, and all motivation and
engagement dimensions. Statistical analyses (ANCOVA,
MANOVA, and effect size calculations) confirmed large,
educationally relevant group differences. Beyond its empirical
findings, the study advances methodology by showing how
combining Al-based predictive modelling with conventional
statistics provides a more holistic framework for evaluating
ODL interventions.

Practically, the results highlight the potential of Al-powered
virtual laboratories as scalable tools for personalizing
instruction, adapting pacing and difficulty, and providing real-
time feedback. Insights into Al-identified predictors—such as
simulation frequency, self-efficacy, and behavioural
engagement—translate into concrete pedagogical
recommendations. Educators and instructional designers
should create structured opportunities for repeated simulation
attempts, paired with guided reflection after each trial to
reinforce learning and metacognition. To strengthen self-
efficacy, scaffolding strategies and progressively challenging
tasks can help students experience incremental mastery and
confidence. Moreover, analytics dashboards may be used to
track time-on-task and engagement trends, allowing early
interventions for learners at risk of disengagement. For
institutions, the proposed model represents a data-driven
strategy to enhance both performance and motivational
engagement, with clear implications for e-learning practices.

Limitations include the single course context, relatively
short intervention period, and limited generalizability. Future
research should explore long-term effects, broader
disciplinary applications, and advanced Al techniques—such
as predictive analytics, adaptive content generation, and
natural language processing—to optimize diverse learning
environments.

Overall, this study reinforces that Al can play a
transformative role in advancing the quality and effectiveness
of online and distance education. From a policy perspective,



Al-powered virtual laboratories hold promise as a scalable and
equitable component of national ODL strategies.
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