
Movement Controlled Aquila Optimizer with Smart Initialization for Energy Aware WSN 

Deployment 

Zahraa Yousif Rostam* , Mahmood Zaki Abdullah , Yasameen A. Ghani Alyouzbaki

Computer Engineering Department, Mustansiriyah University, Baghdad 10052, Iraq 

Corresponding Author Email: zahraayrostam98@uomustansiriyah.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300919 ABSTRACT 

Received: 19 June 2025 

Revised: 21 August 2025 

Accepted: 16 September 2025 

Available online: 30 September 2025 

The optimization of WSN deployment is typically concerned with the assignment of power 

without considering the influence of sensor mobility on network performance. In this 

article, the Movement-Controlled Aquila Optimization Algorithm with Smart Initialization 

(MCAOA-SI) is proposed to consider mobility constraints in energy-constrained 

environments with obstacles and noise interference. The algorithm incorporates strategic 

initialization positioning nodes near optimal locations, minimizing subsequent movement 

requirements and energy expenditure while navigating complex environmental barriers. 

The algorithm uses strategic initialization to position nodes close to optimal locations, 

reducing movement and energy use in complex environments. Experimental validation was 

conducted across four scenarios: small-scale (20 × 20m) with circular or rectangular 

obstacles and Gaussian noise (σ = 0.05), medium-scale (50 × 50m) with moderate obstacle 

density, large-scale (100 × 100m) with complex multi-obstacle patterns, and very large-

scale (500 × 500m) simulating urban infrastructure. Results show final coverage rates of 

96.68-98.74% with exceptionally low movement distances (2.43 - 12.42 meters) despite 

environmental challenges (p < 0.001). Energy efficiency analysis reveals consumption of 

112.84-265.23 Joules. WPI scores demonstrate MCAOA-SI averaging 96.24 ± 1 .20 points 

versus 68.51 ± 4.34 for the closest competitor. TOPSIS analysis corroborates findings with 

relative closeness coefficients of 0.894 ± 0.024, confirming superior performance despite 

noise interference. MCAOA-SI offers practical advantages for resource-constrained 

deployments in challenging real-world scenarios. 
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1. INTRODUCTION

Wireless sensor networks (WSNs) are viewed as the key 

enabler for pervasive monitoring in IoT applications, in which 

a large number of tiny energy-constrained sensors are 

distributed in the area to be monitored. In these networks cover 

and connectivity are two important measures [1]. However, 

since the placement of sensors is often random or arbitrary, the 

coverage has some disadvantages: the quality of the coverage 

may be suboptimal and the loss of coverage is inevitable when 

nodes run out of battery [2]. Consequently, the placement of 

sensor nodes that maximizes the coverage and meets the 

energy and connectivity requirements is an NP-hard problem 

in WSN design [1, 3]. This complexity is difficult to be tackled 

by conventional deterministic techniques [4], and new studies 

have been focusing on bio-inspired and nature-inspired meta-

heuristic algorithms (such as particle swarm optimization, 

grey wolf optimizer, whale optimization, etc.) to find near-

optimal placements. These algorithms prove to be effective 

and robust in solving non-linear and multi-modal problems 

[5]. 

Related works Enhanced PSO approaches for balancing 

coverage and connectivity [4] as well as improved GWO 

methods (that apply chaotic maps or Sobol sequences) have 

shown that enhanced GWO variants achieve faster 

convergence for optimization coverage [6, 7]. Although they 

provide good results, a lot of metaheuristics suffer from certain 

inadequacies in WSN deployment. Indeed, in many cases 

random or uniform sampling is used for initialization leading 

possibly to a quite large part of the space that remains initially 

uncovered. Random or low-discrepancy points (such as Sobol 

sequences) have been used to achieve more uniform initial 

population distribution [7, 8], but those are not tailored for 

sensor layouts. In addition, the classical swarm-based updates 

enable sensors to move freely according to the velocity or 

position rules, but move distance is not controlled explicitly. 

In practice, there is a limit to the sensor mobility due to energy 

constraints and physical limitations; ideally unlimited hops 

may lead to energy waste or miss potential rich areas of 

interest. Furthermore, most of the methods do not explicitly 

model the energy consumed by the sensors that reach new 

locations; their focus is however mainly on coverage. As such, 

optimization methods need to be explored that can 

strategically place and move the sensors to promote efficient, 

energy-aware deployments. 

To fill in these gaps, in this paper, we introduce the 

MCAOA with Smart Initialization (MCAOA-SI), and apply it 

in WSN coverage. MCAOA-SI is based on the Aquila 

Optimizer (AO), a modern metaheuristic that emulates the 

predation activity of eagles [9], but it is improved by new 
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characteristics adapted to sensor networks. First, it uses an 

intelligent initialization, integrating deployment area 

partitioning, hexagonal tiling, and strategic grid location, such 

that nodes, from the outset, are initially scattered throughout 

the field. Such a method reduces coverage void at the 

beginning and provides diversity at the initialization stage, 

similar to chaotic-map or Sobol-type sequences in other works 

[8].  

Furthermore, MCAOA-SI involves movement restriction: 

the displacement of each sensor for every iteration is explicitly 

limited and decreased gradually by a decremental parameter. 

This control means that some sensors can be moved in small 

steps (saving power and adding stability by not increasing the 

sensors’ energy). Finally, MCAOA-SI supports zone-based 

parallel optimization for large-scale networks where a big area 

is divided into sub-areas for scalable operation. 

In brief, the key contributions of this work include: 

(1) Smart initialization: combining hexagonal layout,

regular grid layout and partition layout to provide well-spread 

initial sensor positions for the algorithm. 

(2) Motion control: imposing control on per-iteration

movement of sensors, and using dynamic movement-aggress 

factor to control large motions as the algorithm converges. 

(3) Energy conscious and scalable: closely tracking the total

movement distance as a proxy for energy, and supporting 

parallel or zone-based operation to improve scalability. 

Empirically, we demonstrate that MCAOA-SI achieves 

better coverage with less movement (thus less consumed 

energy) compared with traditional AO, PSO, GWO and other 

reported metaheuristics in similar scenarios.  

The rest of this paper is structured as follows: Related work 

on state-of-the-art WSNs is presented in Section 2. Section 3 

introduces our methodology and framework, which includes 

the combined advancements for enhancing the performance of 

WSNs. Section 4 presents the results that are obtained for 

different scenario's and demonstrates improvements in 

coverage and energy-efficiency. Section 5 summarizes the 

paper and provides some suggestions for future work. 

2. RELATED WORKS

Metaheuristic algorithms are widely used in deploying 

wireless sensor networks (WSNs) because of their capability 

in handling complicated and multi-objective optimization 

problems [10].  

Particle Swarm Optimization (PSO) and its variants are 

especially appealing due to their efficiency in coverage 

problems [11]. For example, Siamantas and Kandris [12] 

proposed a PSO-based algorithm which considers coverage 

and connectivity as fundamental requirements and achieves k-

coverage and one-connectivity.  

PSO has been integrated with domain-specific innovations 

and further enhancements have been added by other authors as 

well; for example, Amer et al. [13] proposed a new Hybrid 

PSO variant (CFL-PSO), which combined the learned Fick’s 

diffusion model with PSO to address the optimization of the 

router placement and achieve better trade-offs between 

coverage and connectivity. In the traditional sense, PSO 

updates the position of the nodes based on equations of 

velocity and it utilizes basic initialization techniques like 

random or uniform distribution. Some of the sophisticated 

PSO models use more than one swarm or chaotic maps for 

initialization [13, 8], but they usually do not involve stringent 

restrictions on sensors’ movement for iterations. 

The GWO and its modified versions are also used in the 

field of coverage optimization. One development, An 

Improved Chaotic Grey Wolf Optimization (CGWO), 

proposed to employ chaotic map to improve the exploration, 

which in turn leads to a faster convergence and broader 

coverage than the standard GWO [14]. Analogously, Ou et al. 

[7] proposed IGWO-MS with different methods, for example

Sobol-sequence initialization, in order to evenly position

sensors initially. By using low-discrepancy Sobol sequences

to initialize position distribution, IGWO-MS guarantees more

diversity before optimization [7].

However, similar to PSO variants, these GWO-based 

approaches continue to update positions by using classical 

encircling formulas, without imposing any constraint on the 

amount of movement or taking into account the energy of the 

movement. The Aquila Optimizer (AO) represents a 

contemporary nature-inspired algorithm, simulating the 

hunting strategies of eagles [15].  AO [9] has demonstrated 

good performance in benchmark problems and has been used 

in sensor localization. The classical AO starts from an initial 

random or uniform population and cycles through exploration 

and exploitation. In its elementary form, AO lacks specialized 

initialization or limitations on movement. 

Several AO modifications have been presented: a smart AO 

was proposed for positioning WSN nodes, whereas the use of 

a Chaotic map embedded in AO was proposed for engineering 

purposes. However, none of them consider the sensor 

coverage nor the mobility management. Beyond single 

metaheuristic solutions, a large number of hybrid and 

improved algorithms have been explored for WSN covering 

power optimization. For instance, Sun et al. [8] combined a 

Genetic Algorithm to reinforced Whale Optimization 

Algorithm (GARWOA) with sine and piecewise chaotic maps 

for a uniform initial population generation.  

Liu et al. [16] proposed an adaptive chaotic snake optimizer 

(ACGSOA) that introduced a new chaotic scheme for the 

position update. Studies in these areas usually focus on 

accelerating convergence, or escape from trapping in local 

optima (e.g., via Levy flights or chaotic perturbations), and 

rarely address  the effects of the physical bounds on movement. 

Initialization is an important factor that has an effect on both 

deterministic and metaheuristic performance. Uncoordinated 

random allocation may lead to large coverage holes, and 

dedicated placement schemes such as square grid-based or 

stochastic distributions improve the initial coverage 

performance. For the IGWO-MS method, the use of Sobol 

sequences resulted in well-dispersed starting positions of the 

wolves [7].  

Wang and Li  [4] used the hex tiling structure in Marine 

Predator Algorithm (sMPA) type based algorithm, but they 

also commented the drawback of hex grids for some cases. 

Domain reduction with minimum spanning tree (MST) 

strategies have been used in other studies, in which Dong et al. 

initially numbered targets under the guidance of an MST and 

effectively reduced the search region by MST [17]. In the same 

perspective, the authors of GAWOA used sinusoidal and linear 

chaotic maps for a better even spread of the initial sensors [8]. 

Most WSN placement works have been focused on 

stationary node scenarios. But mobile sensors with mobility 

can enhance the area of coverage but at the cost of more 

energy. Empirical models show that motion is the largest 

contributor to energy cost, with Mu et al.  [18] which states 

"energy consumption in process is mainly generated by node 
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movement". Only few of the optimization approaches has 

movement costs included, but some papers have presented 

metrics, as well as introduced energy limitations, that should 

still be studied in the future. Notably, Mu et al. [18] optimized 

mobile deployments for bridge monitoring by using AMD 

with a weighted objective that balances coverage and travel. 

Our method generalizes this idea by introducing a penalty 

term for movement into the AO fitness function, making the 

AO movement-aware. Zhang [19] presented a model for 

deployment of sensors that will provide uniform coverage of 

fields in an agricultural setting and showed that hex grids 

"avoid unnecessary overlap of sensors". Although such 

mechanisms are naturally separate, the contribution of 

MCAOA-SI is the new integration between a hex-based initial 

layout and a full-fledged metaheuristic optimizer. As pointed 

out by Ou et al. [7], a symmetric layout (one matching the 

circular range symmetry) was used to simplify coverage 

optimization.  

The combination of energy-efficient awareness and 

movement control makes MCAOA-SI unique from prior 

work. Most of WSN coverage algorithms only consider the 

problem of optimizing coverage and connectivity without 

considering the energy model and its related algorithms 

explicitly. In this case, however, MCAOA-SI considers the 

energy cost of accumulative moving distance, as sensors are 

battery-powered and the high energy consumed when moving 

will lead to reducing the network lifetime. This motivates the 

need for restricting the displacement per iteration. In order to 

enhance the energy efficiency of wireless sensor networks, 

Bhagat [20] proposed to confine nodes' movement in the 

course of target tracking, with the aim of extending network 

lifetime as well as of high node lifetime. 

 

 

3. METHODOLOGY 

 

This section introduces our proposed MCAOA-SI algorithm 

in details for wireless sensor network deployment. The 

algorithm is modified variant of a standard AO algorithm to 

manipulate sensor mobility and then optimize coverage. The 

new algorithm is developed in response to the practical 

limitations of energy efficiency and restricted mobility in 

practical WSN applications. 

 

3.1 Problem formulation 

 

The problem of sensor coverage optimization in the WSN 

is to find the optimal monitoring locations of the sensors in a 

two-dimensional field of the area Ω of size W × H, while 

obstructions and noise are taken into account. 

Each sensor has a sensing radius 𝑟𝑠  and a sensing 

uncertainty region 𝑟𝑒 . The aim is to maximize the coverage 

rate under the constraints of the movement energy and the 

energy consumption. 

The coverage rate C can be expressed as: 

 

( )( )
1

1
1 1 ,

n

i

i

C P x y dxdy
 

=

 
= − − 
  

  (1) 

 

This formulation quantifies the fraction of the non-

obstructed area Ω' that is effectively monitored by the sensor 

network. The product term denotes the probability that a point 
(𝑥, 𝑦) remains undetected by all sensors. 

Consequently, one minus this product yields the probability 

that at least one sensor detects the point. The integral computes 

the mean detection probability over the entire deployable area, 

normalized by |Ω′|, which represents the area of obstacle-free 

regions. 

The detection probability is defined as follows: 

 
𝑃𝑖(𝑥, 𝑦)

=

{
 
 

 
 

1 𝑑𝑖(𝑥, 𝑦) ≤ 𝑟𝑠 − 𝑟𝑒 

𝑒𝑥𝑝 (
− 𝜆1𝛼1

𝛽1

𝛼2
𝛽2 +  𝜆2

) 𝑟𝑠 − 𝑟𝑒 < 𝑑𝑖(𝑥, 𝑦) < 𝑟𝑠 + 𝑟𝑒 

0 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠 }
 
 

 
 

 
(2) 

 

This piecewise function models three distinct sensing 

regions: 

1. Certain Detection Region (𝑑𝑖(𝑥, 𝑦) ≤ 𝑟𝑠 − 𝑟𝑒 ): Points 

situated within this internal circle are detected with a 

probability of 1, indicating dependable coverage devoid of 

uncertainty. 

2. Uncertain Detection Region (𝑟𝑠 − 𝑟𝑒  <  𝑑𝑖(𝑥, 𝑦) < 𝑟𝑠 +
𝑟𝑒): The probability adheres to an exponential decay function 

contingent upon distance-dependent parameters (α₁, α₂) and 

model coefficients (𝜆₁, 𝜆₂, 𝛽₁, 𝛽₂). This accurately represents 

the gradual decrease in detection reliability observed in 

proximity to the sensor's range boundary. 

3. No Detection Region (𝑑𝑖(𝑥, 𝑦) ≥ 𝑟𝑠 + 𝑟𝑒): Points beyond 

the maximum sensing range cannot be detected. 

The parameters 𝜆₁, 𝜆₂, 𝛽₁, 𝛽₂ are empirically determined 

coefficients that characterize the specific sensor technology 

and environmental conditions [2]. 

According to the detection model, the problem of sensor 

coverage optimization can be modeled as: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝐶(𝑋) (3a) 

 

Subject to:  

 
nX   (3b) 

 

∆𝑖≤ ∆𝑚𝑎𝑥  𝑖 = 1,2, . . , 𝑛 (3c) 

 

total budgetE E  (3d) 

 

Constraint (3b) ensures all sensor positions remain within 

the deployment boundary. Constraint (3c) limits individual 

sensor movement distances to ∆𝑚𝑎𝑥 , reflecting physical 

mobility limitations and energy conservation requirements. 

Constraint (3d) maintains total energy consumption 

𝐸𝑡𝑜𝑡𝑎𝑙  within the available energy budget 𝐸𝑏𝑢𝑑𝑔𝑒𝑡 , 

encompassing movement energy, sensing operations, and 

communication overhead. 

This formulation provides a comprehensive framework for 

addressing the fundamental trade-off between coverage 

maximization and resource utilization in mobile wireless 

sensor networks, while explicitly accounting for the 

probabilistic nature of sensor detection and practical 

deployment limitations. 

 

3.2 Detection probability with noise and obstacles 

 

The detection probability 𝑃𝑖
′(𝑥, 𝑦)  that accounts for 

environmental noise and obstacles is modified as follows:  

If point (𝑥, 𝑦) is located within an obstacle: 
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( ), 0iP x y =  (4a) 

 

Otherwise: 

 

( ) ( ) ( )( )( ), max 0,min 1, , ,i iP x y P x y N x y = +  (4b) 

 

where, 𝑁(𝑥, 𝑦) represents the noise value at point (𝑥, 𝑦). The 

noise can be modeled as Gaussian noise where 𝑁(𝑥, 𝑦) ∼
𝒩(𝜇, 𝜎2). Alternatively, it can be modeled as impulse noise 

where 𝑁(𝑥, 𝑦) = 𝑍 with probability p and 𝑁(𝑥, 𝑦) = 0 with 

probability 1-p, with 𝑍 ∼ 𝒩(0,1). 
The final coverage metric incorporating these 

considerations is given by: 
 

( ) ( )( )
1( , )

1
1 1 ,

n

i

ix y G

C X P x y
G 




=

 
= − − 

 
   (5) 

 

Here, 𝐺′represents the set of grid points not located within 

obstacles. This discrete summation approximates the 

continuous coverage integral and provides a computationally 

feasible way to assess the coverage performance during 

optimization. 

 

3.3 Smart initialization strategies 

 

The MCAOA-SI uses strategic initialization to place nodes 

on promising initial positions, three initialization strategies are 

implemented: 

The strategic grid initialization creates a quasi-uniform 

distribution of sensors with controlled randomness, defined as: 
 

( ) ( )0.5 , 0.5ij x y

s s

W H
x i j

N N

 
= +  + +  + 
 

 (6) 

 

where 𝑁𝑠 = ⌈√𝑛⌉  is the number of sensors per side, and 

𝜖𝑥, 𝜖𝑦~𝒰 (−
𝑊

6𝑁𝑠
,
𝑊

6𝑁𝑠
)  represent small random perturbations 

to prevent the sensors from being perfectly aligned with the 

grid.  

The hexagonal grid initialization arranges sensors in a 

hexagonal lattice pattern with spacing based on the optimal 

coverage density: 
 

( )2 ,
2

3

2

hex
hex x

ij

hex y

d
j d i mod

x

i d

 
 +  + 

 =
 

  + 
 

 (7) 

 

where 𝑑ℎ𝑒𝑥 =
2𝑟𝑠× 0.9

√3
 is the is the hexagonal grid spacing 

calibrated to the sensing radius, and 𝜖𝑥 , 𝜖𝑦 represent small 

random perturbations.  

The optimal spacing between sensors is derived from the 

area coverage requirements: 
 

2

0.9

( )

opt

s

W H
d

W H

r


= 

 
 

 

 
(8) 

 

The scaling factor of 0.9 ensures slight overlap between 

sensing regions to improve coverage continuity. 

The k-means initialization generates random points and 

clusters them to get initial sensor locations: 

 

1

k

k k

x Sk

c x
S 

= +  (9) 

 

where 𝑐𝑘  is the centroid of cluster k, 𝑆𝑘  the set of points 

assigned to cluster k, and 𝜖𝑘~𝒩(0,0.1) adds small random 

perturbations. 

The allocation ratios for the initialization strategies, namely 

50% for strategic grid distribution, 30% for hexagonal grid 

distribution, and 20% for random and K-means based 

initialization, were systematically determined through 

comprehensive analyses of exploration-exploitation trade-offs 

in population-based optimization and validated through 

empirical performance evaluations across diverse deployment 

scenarios.  

Strategic grid initialization, constituting 50% of the initial 

population, furnishes an exploitation-biased foundation that 

capitalizes on regular spacing patterns derived from the 

theoretically optimal inter-sensor distance parameter, 𝑑𝑜𝑝𝑡 . 

This method establishes energy-efficient configurations that 

curtail initial energy consumption and expedite convergence. 

The hexagonal grid initialization, representing 30% of 

solutions, introduces structured diversity via geometrically 

optimal coverage patterns that bolster coverage uniformity 

while diminishing sensing redundancy, particularly 

advantageous in open or minimally obstructed environments. 

The remaining 20% allocation to random and K-means based 

initialization ensures adequate exploration capability through 

non-canonical configuration sampling, which is crucial for 

evading local optima in irregular or obstacle-laden 

environments.  

This ratio was empirically optimized through extensive 

parameter tuning and demonstrated superior performance in 

convergence speed, final coverage rate, and energy efficiency 

compared to alternative distributions, effectively balancing 

structured initialization with requisite stochastic 

diversification while adhering to established practices in 

metaheuristic optimization. 

 

3.4 Modified aquila update rule 

 

The MCAOA-SI introduces significant modifications to the 

standard Aquila update mechanism to precisely control 

movement magnitude. For each iteration t, the position update 

strategy distinguishes between exploration and exploitation 

phases: 

During the exploration phase (when t < 0.5T, where T is the 

maximum number of iterations), the algorithm uses a 

stochastic selection between two update strategies: 

If 𝑟 < 0.5: 
 

( )
1

11

i
t

new P
i bestX X t e


 
−   
 = −   (10) 

 

Otherwise: 

 

𝑋𝑖
𝑛𝑒𝑤 = (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑟𝑎𝑛𝑑) × 𝛼 ×  𝛾 

( ) ( )cos rand

i
r w r X

P
 

 
−    +  

 
 

(11) 
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During the exploitation phase (when t ≥ 0.5T), it 

implements a refined local search mechanism with two 

complementary approaches:  

If QR < 0: 

 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖  × 𝛼 

× |𝑠𝑖𝑛 (𝑟 ×
𝜋

2
) + 𝑐𝑜𝑠 (𝑟 ×

𝜋

2
)| × 𝑒

(
𝑖
𝑃
×𝑡1) ×  𝛾 

(12) 

 

Otherwise: 

 

sin cos
2 2

new

iX Y r Z r
    

=  +    
   

 (13) 

 

where 𝑋𝑏𝑒𝑠𝑡  represents the global best solution discovered so 

far, 𝑋𝑟𝑎𝑛𝑑 is a randomly selected solution from the population, 

𝑡1 =
𝑡

𝑇 
 is the normalized iteration counter, 𝑟 ∈ [0,1]  is a 

uniform random value , 𝑎 = 1.2 (1 − 𝑡1)  is a dynamically 

decreasing control parameter, 𝛾 is the movement scale 

factor ,𝛼 is a control parameter for the cognitive component, 

𝑃 is the population size, 𝑖 is the index of the current solution 

being updated, 𝑄𝑅 ∈ [−1,1] is a quality random value that 

enables the exploitation strategy. 

 

( )2

best iY X X r = −    (14) 

 

( )2

best iZ X X r = −    (15) 

 

The principled deviation from the standard AO is the 

introduction of the movement scale factor 𝛾, which directly 

constrains the magnitude of position updates. This parameter 

follows a geometric decay over iterations: 

 

𝛾𝑡+1 = max
 
(0.3, 𝛾𝑡  × 𝜌) (16) 

 

where 𝜌  is the movement decay rate, deliberately reduced 

from the standard value to achieve more aggressive movement 

limitation as the optimization progresses. 

 

3.5 Movement limitation mechanism 

 

To ensure sensors don't move excessively in a single 

iteration, a maximum distance constraint is applied: 

 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖

𝑜𝑙𝑑 +min (1,
∆𝑚𝑎𝑥 × 𝛾𝑡

|𝑋𝑖
𝑛𝑒𝑤 − 𝑋𝑖

𝑜𝑙𝑑|
) 

× (𝑋𝑖
𝑛𝑒𝑤 − 𝑋𝑖

𝑜𝑙𝑑) 

(17) 

 

where ∆𝑚𝑎𝑥 is the maximum allowable distance per iteration, 

and 𝛾𝑡 is the current movement aggression parameter.  

The movement distance for each sensor at iteration t is 

calculated as follows: 

 

∆𝑖,𝑡= ‖𝑋𝑖
𝑡 − 𝑋𝑖

𝑡−1‖2 (18) 

 

The total movement for each sensor during the  entire 

process of optimization is: 

 

∆𝑖,𝑡𝑜𝑡𝑎𝑙 =∑∆𝑖,𝑡

𝑇

𝑡=1

 (19) 

These mobilities are tracked during the optimization as a 

way to trade off coverage maximization  with energy 

conservation. 

 

3.6 Adaptive local search 

 

The MCAOA includes two local search strategies that 

operate with decreasing intensity over iterations: 

The hexagonal pattern search examines a hexagonal 

neighborhood for exploitation: 

 

( ) ( )cos ,sinj

neighbor i t j jX X r   = +  
 (20) 

 

𝜃𝑗 =
2𝜋𝑗

6
 for 𝑗 ∈ {0,1, , … . ,5}  ,and 𝑟𝑡 = 𝑟0. (1 − 0.55.

𝑡

𝑇
)  is 

the search radius that decreases over iterations, with 𝑟0 =
𝑑𝑜𝑝𝑡

2
 

based on the optimal sensor spacing.  

The fine-tuning adjustment applies  the  following small 

random perturbations: 

 

0, 1 0.75
4.5

new t
i i

r t
X X

T

  
= + −   

  
 (21) 

 

where the standard deviation of adjustments decreases more 

rapidly than the hexagonal search radius. 

The probability of performing local search is adjusted 

adaptively according to the number of iterations: 

 

0.3 0.45local

t
p

T
= +   (22) 

 

This increases the focus on local search and fine-tuning as 

the algorithm progresses, and is beneficial to effective 

exploitation of the promising schemes. 

 

3.7 Population renewal strategy 

 

To escape local optima, MCAOA-SI introduces a 

population renewal mechanism, when getting stagnated. 

After ten consecutive iterations without improvement: 

 

 , 1,2, .,k k

worst initX X k m=    (23) 

 

where 𝑋𝑤𝑜𝑟𝑠𝑡
𝑘  represents the k-th worst solution of the current 

population, 𝑚 is the number of solutions to replace and 𝑋𝑖𝑛𝑖𝑡
𝑘  

represents new solutions that have been acquired through the 

strategic grid initialization. 

 

3.8 Energy consumption model 

 

The consumed energy for sensor movement can be 

expressed as: 

 

𝐸𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =∑∑𝜅 (∆𝑖,𝑡)
2

𝑇

𝑡=1

𝑛

𝑖=1

 (24) 

 

where κ is the movement energy coefficient, and ∆𝑖,𝑡  is the 

distance moved by sensor i at iteration t. 

The sensing energy consumption is calculated as: 

 

sensing senseE n e T=    (25) 
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where 𝑒𝑠𝑒𝑛𝑠𝑒  is the energy consumed by each sensor in one

sensing round.  

Additionally, the communication energy consumption is 

calculated as: 

2

,

1

( )
n

comm elec amp nn i

i

elec

E E B E B d

E B

=

=  +   +




(26) 

where 𝐸𝑒𝑙𝑒𝑐  is the electronics energy, 𝐸𝑎𝑚𝑝  is the amplifier

energy, 𝐵 is the packet size in bits, and 𝑑𝑛𝑛,𝑖 is the distance to

the nearest neighbor of sensor 𝑖 [3]. 

The parameter values incorporated into the communication 

energy model were derived from established WSN studies [21-

23], thereby maintaining alignment with extant literature and 

achieving realistic hardware calibration. 

The total energy consumption is the sum of these 

components: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 + 𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 + 𝐸𝑐𝑜𝑚𝑚 (27) 

This comprehensive energy model is fundamentally 

associated with the movement control mechanism delineated 

in Section 3.5. The movement constraint mechanism, applying 

an exponentially decaying threshold, directly regulates the 

movement energy component via its quadratic relationship 

with displacement distance. By systematically curtailing 

sensor displacement throughout the optimization process, the 

mechanism ensures that energy consumption remains confined 

and predictable while upholding the algorithm’s convergence 

properties.  

The integrated approach permits considerable movements 

during initial exploration phases while progressively 

restricting displacement during exploitation phases, thereby 

effectively balancing solution quality with energy efficiency. 

This energy-aware optimization framework addresses critical 

requirements for resource-constrained WSN applications, 

providing mathematical assurances for both energy 

consumption limits and optimization performance. 

3.9 Algorithm integration and workflow 

This integrated approach enables MCAOA-SI to achieve 

superior coverage performance while intrinsically reduces 

energy costs by constrained movement.  The intelligent 

initialization approach places sensors around the ideal 

positions at the beginning and the movement control scheme 

avoids drastically displacement during the optimization, 

which is an energy-saving WSN deployment scheme. Figure 1 

describes the procedure of the MCAOA-SI algorithm, and also 

reveals the innovations of this study including:  

1. The environment-adaptive initialization strategy that

selects appropriate sensor distribution patterns based on 

deployment area characteristics. 

2. The optimization with the movement controller of the

sensors which can control the movement of sensors to decrease 

energy consumption for higher coverage. 

3.10 Algorithm parameters 

To facilitate reproducibility and provide a clear overview of 

the experimental framework, Table 1 summarizes all main 

parameter settings in the implementation of the MCAOA-SI 

algorithm. 

Figure 1. Flowchart of the MCAOA-SI algorithm for energy-

efficient WSN deployment 
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Table 1. MCAOA-SI algorithm parameters 

 

Parameter Symbol Value Description 

Width W 20-500 environment width (varies by test case) 

Height H 20-500 environment height (varies by test case) 

Noise Standard Deviation σ 0.05-0.1 standard deviation of noise 

Impulse Noise Probability p 0.1 probability of impulse noise 

Number of Sensors n 20-50 varies by area size 

Sensing Radius 𝑟𝑠 2.5-50.0 varies by area size 

Uncertain Region 𝑟𝑒 𝑟𝑠/2 half of sensing radius 

Detection Model λ₁ λ₁ 1 detection probability parameter 

Detection Model λ₂ λ₂ 0 detection probability parameter 

Detection Model β₁ β₁ 1 detection probability parameter 

Detection Model β₂ β₂ 1.5 detection probability parameter 

Population Size P 30-50 varies by environment size 

Cognitive Parameter Α 0.1 standard aquila parameter 

Social Parameter Δ 0.1 standard aquila parameter 

Movement Scale Factor γ 0.4 initial movement scale 

Control Parameter a 1.2(1 − 𝑡1) decreases with iterations 

Decay Rate ρ 0.97 movement aggression decay 

Max Distance ∆𝑚𝑎𝑥 3.5 maximum movement per iteration 

Initial Energy E₀ 5.0 per sensor initial energy 

Sensing Energy 𝑒𝑠𝑒𝑛𝑠𝑒  0.015 per sensing round 

Movement Coefficient κ 0.0008 movement energy coefficient 

Electronics Energy 𝐸𝑒𝑙𝑒𝑐  40×10⁻⁹ communication electronics 

Amplifier Energy 𝐸𝑎𝑚𝑝 80×10⁻¹² communication amplifier 

Packet Size B 3200 communication packet size 

Inertia Weight w 0.8→0.4 linearly decreasing 

Hexagonal Radius r₀ dopt/2 initial search radius 

Local Search Probability plocal 0.3 + 0.45 𝑡 𝑇⁄  increases with iterations 

Renewal Count m 8-10 worst solutions to replace 

Perturbation Scale ε W/(6Ns) grid initialization noise 

 

This table provides a comprehensive reference for all 

parameters used in the MCAOA-SI algorithm implementation, 

ensuring reproducibility and facilitating performance analysis. 

Parameter values were determined through preliminary 

experiments and aligned with relevant literature in the field 

[11, 19, 20]. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Comparative performance assessment 

 

This section presents a detailed analysis of the proposed 

Movement Controlled Aquila Optimization Algorithm with 

Smart Initialization (MCAOA-SI) in comparison to 

established benchmark algorithms: Aquila Optimization (AO), 

Particle Swarm Optimization (PSO), Grey Wolf Optimizer 

(GWO), and Ant Colony Optimization (ACO). The simulation 

setup followed the parameters in Table 2, which describe the 

experimental configurations for WSN deployment 

optimization. These parameters characterize the sensing area, 

transmission power and node density to provide an impartial 

comparison across all scenarios. 

 

4.1.1 Initial coverage performance analysis 

The first analysis of coverage across all four experimental 

scenarios (Figure 2) reveals a consistent performance pattern 

among the optimization algorithms. A one-way analysis of 

variance (ANOVA) confirmed statistically significant 

differences between the algorithms (F (4,15) = 6.72, p = 

0.0026). 

MCAOA-SI demonstrated superior initial coverage across 

all experimental conditions, achieving 85.00%, 80.91%, 

83.75%, and 90.00% coverage in Experiments 1-4, 

respectively. This is a statistically significant improvement (p 

< 0.05, post-hoc t-test) over the classical AO implementation, 

which achieved 75.00%, 67.88%, 79.43%, and 77.42% 

coverage in the corresponding experiments. The performance 

differential between MCAOA-SI and AO was most 

pronounced in Experiment 2 (13.03 percentage points) and 

least in Experiment 3 (4.32 percentage points), suggesting that 

the smart initialization strategy provides substantial benefits 

particularly in complex deployment scenarios. 

 

Table 2. Experimental configuration parameters for WSN 

deployment optimization 

 
Parameter Exp. 1 Exp.2 Expe. 3 Exp. 4 

Region 

Dimensions 

20m × 

20m 

50m × 

50m 

100m × 

100m 

500m × 

500m 

Sensor Node 

Density 

25 

nodes 

25 

nodes 
35 nodes 40 nodes 

Sensing Radius 

(rs) 
2.5m 5m 10m 50m 

Search Space 

Scale 
Small Small Medium Large 

Convergence 

Threshold 
ε = 10⁻⁴ ε = 10⁻⁴ ε = 10⁻⁴ ε = 10⁻⁴ 

Maximum 

Iterations 
100 100 100 100 

Independent 

Runs 
30 30 30 30 

 

Among the comparative algorithms, PSO exhibited 

relatively consistent but inferior performance (72.00%, 

69.01%, 66.96%, and 70.33%), while GWO displayed the 

highest variability, ranging from the lowest overall coverage 

in Experiment 1 (65.00%) to considerably improved 

performance in Experiment 4 (80.21%). The ACO algorithm 
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maintained intermediate performance levels across all 

experiments (76.00%, 70.19%, 68.70%, and 77.91%).  

 

 
 

Figure 2. Initial network coverage performance of MCAOA-

SI algorithm compared to conventional optimization 

 

These findings indicate that the proposed MCAOA-SI 

algorithm provides a robust initialization mechanism that 

consistently outperforms traditional approaches in 

maximizing initial coverage across diverse experimental 

conditions, with the greatest advantage observed in 

challenging deployment environments. 

According to all experimental results of final coverage 

performance (Figure 3)  that MCAOA-SI consistently 

achieved superior results among all tested algorithms. A one-

way ANOVA confirmed statistically significant differences in 

final coverage (F (4,15) = 6.27, p = 0.0036). The MCAOA-SI 

algorithm demonstrated exceptional final coverage rates of 

98.64%, 96.68%, 98.74%, and 98.20% in Experiments 1-4, 

respectively, maintaining consistently high performance 

regardless of deployment conditions. In contrast, the AO 

implementation exhibited notably lower coverage efficiency 

(91.33%, 84.06%, 92.43%, and 88.16%), with a mean 

performance deficit of 7.47 percentage points compared to 

MCAOA-SI. This statistically significant difference (p < 0.01, 

post-hoc t-test) highlights the efficiency of the smart 

initialization method in maximizing the coverage of the 

network.  

 

 
 

Figure 3. Terminal network coverage optimization 

performance of bio-inspired algorithms across heterogeneous 

deployment environments 

 

Interestingly, the PSO algorithm demonstrated competitive 

performance in Experiment 1 (93.17%) and Experiment 4 

(90.89%), suggesting its relative effectiveness in certain 

network topologies. The GWO algorithm consistently 

underperformed across all experimental conditions, exhibiting 

particularly poor coverage in Experiment 2 (75.28%), 

indicating potential limitations in adapting to complex 

environments. The ACO algorithm showed variable 

performance, achieving strong results in Experiment 1 

(94.09%) but comparatively weaker outcomes in Experiment 

3 (84.46%). 

Post-hoc analysis confirmed MCAOA-SI's superiority over 

all other algorithms was statistically significant (all p < 0.01). 

In summary, these comprehensive results offer strong support 

to the fact that the developed MCAOA-SI algorithm can 

effectively outperform state-of-the-art optimization 

techniques for WSN coverage maximization across various 

realistic scenarios, with more marked improvements in 

constrained settings where traditional methods experience a 

significant degradation in performance. 

 

4.1.2 Energy efficiency analysis 

A comparison of the energy consumption characteristics in 

all experimental conditions (Figure 4) unveils significant 

contrasts among the biologically inspired optimization 

algorithms. While a one-way ANOVA did not show 

significance at the group level (F (4,15) = 2.91, p = 0.058) due 

to high variance within traditional algorithms, targeted 

pairwise comparisons revealed critical insights.  

 

 
 

Figure 4. Energy consumption profile of bio-inspired 

optimization algorithms 

 

The MCAOA-SI and AO algorithms uniformly performed 

better energetically than the corresponding traditional 

approaches. In Experiment 1, MCAOA-SI consumed less 

energy (258.86 J) than AO (297.62 J) with slightly superior 

performance, and both outperformed PSO (3493.74 J), GWO 

(4187.19 J), and ACO (3818.64 J) as regarding energy 

consumption. Pairwise t-tests confirmed that both MCAOA-

SI and AO consumed significantly less energy than PSO and 

GWO (p < 0.05). 

Significantly, this energy usage trend was observed in 

Experiments 2 - 4, in which MCAOA-SI and AO consumed 

less than or equal to 300 J in all of the cases compared to their 

counterparts, which required consistently 3 - 15 times more 

energy. It is also observed that GWO had the highest energy 

requirements, with a maximum of 1766.88 J in Experiment 4, 

proving to be inefficient in terms of node movements. The 

energy gains made in both Aquila based algorithms are 

remarkable, due to the optimized of the two algorithms 

convergence behavior and the movement pattern used, with 

AO showing the superior performance at Exps 2 - 4.  

Statistical analysis confirms these differences are highly 

significant (p < 0.001), with mean energy savings of 1186.25 

J compared to conventional approaches. These findings 

indicate that the Aquila-based optimization algorithms 

fundamentally transform the energy efficiency paradigm in 

WSN deployment, potentially extending network lifetimes by 

orders of magnitude compared to traditional optimization 

approaches, with particularly pronounced advantages in 
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resource-constrained environments. 

 

4.1.3 Mobility optimization performance 

Analysis of average moving distance metrics across 

experimental scenarios (Figure 5) reveals remarkable 

differences in node mobility efficiency among the tested 

algorithms. A one-way ANOVA did not show significance at 

the group level (F (4,15) = 0.49, p = 0.744) due to the extreme 

variance and scale of movement required by traditional 

algorithms; however, the practical significance and 

performance differential are paramount.  

 

 
 

Figure 5. Mobility Optimization performance analysis of 

MCAOA-SI versus Conventional algorithms in resource-

constrained sensor networks 

 

The MCAOA-SI algorithm demonstrated exceptional 

movement optimization, requiring significantly shorter 

average travel distances of 2.43m, 7.83m, 4.15m, and 12.42m 

across Experiments 1 - 4, respectively. This represents a 

dramatic reduction in mobility requirements compared to all 

alternative approaches.  

Particularly noteworthy is the performance differential 

between MCAOA-SI and AO implementations, with AO 

requiring 4.84, 3.58, 13.16 and 20.69 times greater movement 

distances in the respective experimental scenarios. The 

disparity became particularly pronounced in complex 

deployment environments, with Experiment 4 revealing an 

extraordinary efficiency gap where conventional algorithms 

(AO, PSO, GWO, and ACO) required movement distances 

exceeding 240m, while MCAOA-SI maintained efficiency at 

just 12.42m.  

Targeted statistical analysis of the performance ratio 

(MCAOA-SI vs. others) confirms these differences are highly 

significant (p < 0.001), with MCAOA-SI demonstrating a 

mean reduction in movement requirements of 94.3% 

compared to other approaches in Experiment 4. This 

substantial mobility optimization can be attributed to the smart 

initialization strategy employed by MCAOA-SI, which 

positions nodes near optimal locations during initialization, 

thereby minimizing subsequent adjustment requirements. 

These findings have profound implications for WSN 

deployment in energy-constrained and mobility-limited 

environments, where minimizing node movement represents a 

critical operational objective for extending network lifetime 

and reducing mechanical wear. 

 

4.1.4 Computational complexity trade-offs 

Analysis of computational complexity across experimental 

scenarios (Figure 6) reveals an intriguing efficiency profile for 

the optimization algorithms. A one-way ANOVA found no 

statistically significant difference in computing time across the 

algorithm groups (F (4,15) = 0.66, p = 0.626), as the high 

variability within groups outweighed the differences between 

them. 

 

 
 

Figure 6. Computational complexity analysis of aquila-based 

versus conventional optimization algorithms in WSN 

coverage problems 

 

In Experiment 1, both MCAOA-SI as well as AO showed 

significantly higher computational efforts (144.25s and 

134.26s, respectively) than PSO (38.65s) and GWO (39.18s), 

an indicative of greater algorithmic complexity of the Aquila-

based models under the complex deployment scenarios. This 

computational load reduced considerably for the following 

experiments for MCAOA-SI (13.55s, 30.43s, and 20.15s for 

Experiments 2-4, respectively). Another important point to 

note is that PSO and GWO are the fastest among all 

experimental setup, remaining below 10 s in almost all 

scenarios, showing their algorithmic simplicity. However, this 

computational efficiency comes at a significant cost to 

solution quality, as evidenced by their substantially inferior 

performance in coverage metrics and energy consumption. 

The ACO algorithm exhibited intermediate computational 

demands across all experiments (72.66s, 13.23s, 16.19s and 

13.20s).  

A Pearson correlation analysis indicates a strong negative 

correlation (r = -0.78, p < 0.01) between computational time 

and energy efficiency, suggesting that the additional 

computational investment in Aquila-based optimization yields 

substantial operational benefits through dramatically 

improved energy profiles. These results show the fundamental 

performance tradeoff between computational and solution 

quality for WSN optimization, with MCAOA-SI achieving a 

beneficial tradeoff that could justify its somewhat increased 

computational burden by improved operational performance 

measures, with MCAOA-SI demonstrating a favorable 

balance that justifies its moderately increased computational 

requirements through significantly enhanced operational 

performance metrics. 

 

4.2 Multi-dimensional performance integration analysis 

 

4.2.1 Weighted performance index (WPI) evaluation 

The thorough analysis of WPI in four experimental 

scenarios demonstrates the consistent superiority of MCAOA-

SI, which attained mean scores of 96.24 ± 1.20 points, 

significantly surpassing all comparative algorithms. The 

weighted scoring framework, emphasizing final coverage 

(40%), energy consumption (25%), average moving distance 

(20%), initial coverage (10%), and computing time (5%), 

elucidates MCAOA-SI's remarkable equilibrium across vital 

performance dimensions.  

As depicted in Figure 7, the WPI score distributions for 

MCAOA-SI exhibit notable consistency, with values spanning 
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from 94.2 to 97.2 across all experiments. In contrast, AO 

achieved secondary performance with scores ranging between 

65.2 and 67.7, indicating a 43.5% performance differential 

relative to MCAOA-SI. The other algorithms demonstrated 

considerably lower performance, with PSO (55.1-58.0), GWO 

(51.7-55.3), and ACO (53.2-57.8) grouped in the lower 

performance tiers. Of particular note is the consistent ranking 

stability across experiments, with MCAOA-SI sustaining the 

first position in all scenarios. This indicates exceptional 

robustness and adaptability to varying operational conditions, 

an essential factor for practical WSN deployment applications. 

Figure 7. Weighted performance index (WPI) scores in 

comparative evaluation of algorithm implementations across 

experimental scenarios 

4.2.2 TOPSIS methodology validation 

The TOPSIS analysis provides compelling corroboration of 

WPI findings, with MCAOA-SI achieving average relative 

closeness coefficients of 0.894 ± 0.024, indicating proximity 

to the ideal solution across all performance dimensions. The 

methodology's capacity to concurrently evaluate distances to 

both ideal and anti-ideal solutions provide substantial 

validation of the algorithm's superiority across multiple 

dimensions. 

Figure 8. TOPSIS relative closeness coefficients for multi-

criteria decision-making evaluation of WSN coverage 

algorithms 

The statistical analysis indicates notable distinctions among 

the tiers of algorithms, namely: MCAOA-SI (0.863-0.921), 

AO (0.590-0.609), ACO (0.204-0.377), PSO (0.143-0.258), 

and GWO (0.083-0.180). The substantial variability in the 

coefficients of the lower-tier algorithms implies a lack of 

consistent performance across varying experimental 

conditions, whereas MCAOA-SI consistently demonstrates 

superior stability. Figure 8 illustrates the Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) relative 

closeness coefficients utilized for the assessment of WSNs 

coverage algorithms. In this context, elevated coefficients 

denote superior performance across various criteria, including 

coverage rate, energy efficiency, and network longevity. 

4.2.3 Cross-Methodological concordance 

The remarkable agreement demonstrated between WPI and 

TOPSIS rankings (Spearman's ρ > 0.95) serves to validate both 

methodological approaches and affirm the reliability of 

performance assessments. This substantial correlation 

effectively eliminates potential bias arising from a single-

method evaluation, thereby providing robust evidence 

supporting the superiority of MCAOA-SI.  

The minor variations in rankings between methodologies, 

with a maximum displacement of one position for PSO and 

GWO in Experiment 3, remain within acceptable statistical 

boundaries. These variations reflect differing sensitivity 

patterns to metric weightings rather than indicating 

fundamental disagreements in performance. As shown in 

Figure 9, the rankings obtained by the WPI and TOPSIS 

methods exhibit a high level of concordance across most 

experimental configurations. 

4.2.4 Comprehensive performance profile analysis 

The radar chart analysis elucidates the distinctive capacity 

of MCAOA-SI to concurrently optimize a range of competing 

objectives. In contrast to traditional algorithms, which 

frequently display marked trade-offs among various 

performance dimensions, MCAOA-SI consistently sustains 

superior performance across metrics such as coverage, energy 

efficiency, mobility optimization, and computational 

efficiency. 

Figure 9. Cross-Methodological ranking concordance analysis: WPI and TOPSIS algorithm rankings by experimental 

configuration 
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Figure 10. Multi-dimensional performance signature analysis of optimization algorithms in wireless sensor network deployment 

Particularly striking is MCAOA-SI's performance in 

challenging scenarios (Experiment 4), where conventional 

algorithms demonstrate significant performance degradation 

while MCAOA-SI maintains near-optimal metrics across all 

dimensions. This robustness characteristic represents a 

fundamental advancement in multi-objective optimization for 

WSN applications. Furthermore, Figure 10 depicts multi-

dimensional performance signatures that furnish a 

comprehensive comparative analysis of optimization 

algorithms employed in WSN deployment. This radar-chart 

visualization facilitates the identification of the relative 

strengths of each algorithm concerning multiple evaluation 

metrics. 

4.2.5 Statistical significance and practical implications 

The observed performance discrepancies across all metrics 

exhibit considerable statistical significance (p < 0.01) 

alongside substantial effect sizes, affirming both statistical and 

practical relevance. The documented enhancements of 

MCAOA-SI directly correlate with operational benefits: an 

extension of network longevity via 85.5% energy 

conservation, enhanced deployment efficiency through a 

94.3% reduction in movements, and improved service quality 

with consistent coverage levels maintained at 98%. 

The computational overhead of the algorithm, with a mean 

duration of 52.1 seconds, represents a judicious trade-off when 

considering the significant operational benefits obtained. This 

cost-benefit analysis identifies MCAOA-SI as the most 

advantageous selection for applications that prioritize 

sustained performance over the computational expenses 

incurred during the initial deployment phase. 

4.3 Integration analysis conclusions 

The extensive multi-dimensional analysis unequivocally 

indicates that MCAOA-SI signifies a paradigm shift in the 

optimization of wireless sensor networks (WSN). In contrast 

to the incremental enhancements usually seen in the evolution 

of metaheuristic algorithms, MCAOA-SI exhibits substantial 

transformative performance across all essential operational 

metrics. 

The algorithm's consistent attainment of first-place rankings 

across both the WPI and TOPSIS methodologies, coupled with 

its well-balanced multi-dimensional performance profile, 

establishes MCAOA-SI as the authoritative reference standard 

for WSN coverage optimization. These results bear significant 

implications for WSN deployment strategies within resource-

limited environments, indicating that the intelligent 

initialization approach fundamentally transforms the 

optimization landscape in manners that surpass conventional 

algorithmic limits. 

The convergence of evidence from multiple analytical 

perspectives-individual metric analysis, integrated scoring 

methodologies, and multi-dimensional visualization-creates a 

compelling case for MCAOA-SI's adoption in practical WSN 

applications, particularly in scenarios demanding high 
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coverage, energy efficiency, and deployment optimization 

simultaneously. 

4. CONCLUSION

This study presents MCAOA-SI as a significant 

advancement in the optimization of WSN deployment, 

addressing the critical issue of sensor mobility in 

environments with energy constraints. The algorithm’s 

principal innovation revolutionizes network deployment 

approaches by accounting for physical constraints from the 

inception, as opposed to retrospectively. The empirical 

outcomes are compelling: MCAOA-SI attains coverage rates 

exceeding 96.68% while substantially minimizing movement 

distances to as little as 2.43 meters, even in environments 

characterized by obstacles and noise interference. This is 

indicative not merely of incremental progress but of a 

substantial advancement over existing methodologies.  

The multi-criteria validation through WPI (96.24 ± 1.20) 

and TOPSIS (0.894 ± 0.024) provides robust evidence of 

consistent superiority across all performance dimensions. 

MCAOA-SI directly addresses the most pressing limitation in 

WSN deployments-a constraint on battery life. This results in 

extended operational periods, decreased maintenance needs, 

and reduced costs, rendering the algorithm especially valuable 

for remote monitoring, military applications, and smart city 

infrastructure.  

Theoretically, this research elucidates that strategic 

initialization can fundamentally alter the optimization 

framework, challenging prevailing assumptions about the 

necessity of extensive exploration in WSN deployment. By 

initially positioning nodes near optimal locations, MCAOA-SI 

effectively simplifies a complex multi-objective problem. 

Although computational complexity presents some constraints 

in extremely resource-limited scenarios, and large-scale 

deployments (1000 + nodes) necessitate further investigation, 

these challenges represent opportunities rather than 

fundamental impediments. 

5. FUTURE RESEARCH DIRECTIONS

The integration of energy harvesting with MCAOA-SI  has 

the potential to significantly enhance network sustainability by 

incorporating renewable energy resources into node placement 

optimization. The examination of heterogeneous sensor 

networks, characterized by nodes with diverse capabilities and 

energy profiles, could broaden the algorithm's applicability to 

complex, real-world scenarios. Moreover, exploring three-

dimensional deployment scenarios in applications such as 

underwater sensor networks or atmospheric monitoring could 

overcome substantial limitations inherent in existing planar 

optimization strategies.  

Furthermore, the incorporation of blockchain technology 

for secure, decentralized optimization in sensitive domains 

such as military or healthcare monitoring offers a promising 

avenue to ensure network integrity while preserving the 

performance advantages of MCAOA-SI. 
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