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The optimization of WSN deployment is typically concerned with the assignment of power
without considering the influence of sensor mobility on network performance. In this
article, the Movement-Controlled Aquila Optimization Algorithm with Smart Initialization
(MCAOA-SI) is proposed to consider mobility constraints in energy-constrained
environments with obstacles and noise interference. The algorithm incorporates strategic
initialization positioning nodes near optimal locations, minimizing subsequent movement
requirements and energy expenditure while navigating complex environmental barriers.

The algorithm uses strategic initialization to position nodes close to optimal locations,
reducing movement and energy use in complex environments. Experimental validation was
conducted across four scenarios: small-scale (20 > 20m) with circular or rectangular
obstacles and Gaussian noise (o = 0.05), medium-scale (50 x50m) with moderate obstacle
density, large-scale (100 =< 100m) with complex multi-obstacle patterns, and very large-
scale (500 x500m) simulating urban infrastructure. Results show final coverage rates of
96.68-98.74% with exceptionally low movement distances (2.43 - 12.42 meters) despite
environmental challenges (p < 0.001). Energy efficiency analysis reveals consumption of
112.84-265.23 Joules. WPI scores demonstrate MCAOA-SI averaging 96.24 +1 .20 points
versus 68.51 +4.34 for the closest competitor. TOPSIS analysis corroborates findings with
relative closeness coefficients of 0.894 +0.024, confirming superior performance despite
noise interference. MCAOA-SI offers practical advantages for resource-constrained

deployments in challenging real-world scenarios.

1. INTRODUCTION

Wireless sensor networks (WSNs) are viewed as the key
enabler for pervasive monitoring in IoT applications, in which
a large number of tiny energy-constrained sensors are
distributed in the area to be monitored. In these networks cover
and connectivity are two important measures [1]. However,
since the placement of sensors is often random or arbitrary, the
coverage has some disadvantages: the quality of the coverage
may be suboptimal and the loss of coverage is inevitable when
nodes run out of battery [2]. Consequently, the placement of
sensor nodes that maximizes the coverage and meets the
energy and connectivity requirements is an NP-hard problem
in WSN design [1, 3]. This complexity is difficult to be tackled
by conventional deterministic techniques [4], and new studies
have been focusing on bio-inspired and nature-inspired meta-
heuristic algorithms (such as particle swarm optimization,
grey wolf optimizer, whale optimization, etc.) to find near-
optimal placements. These algorithms prove to be effective
and robust in solving non-linear and multi-modal problems
[51.

Related works Enhanced PSO approaches for balancing
coverage and connectivity [4] as well as improved GWO
methods (that apply chaotic maps or Sobol sequences) have
shown that enhanced GWO variants achieve faster
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convergence for optimization coverage [6, 7]. Although they
provide good results, a lot of metaheuristics suffer from certain
inadequacies in WSN deployment. Indeed, in many cases
random or uniform sampling is used for initialization leading
possibly to a quite large part of the space that remains initially
uncovered. Random or low-discrepancy points (such as Sobol
sequences) have been used to achieve more uniform initial
population distribution [7, 8], but those are not tailored for
sensor layouts. In addition, the classical swarm-based updates
enable sensors to move freely according to the velocity or
position rules, but move distance is not controlled explicitly.
In practice, there is a limit to the sensor mobility due to energy
constraints and physical limitations; ideally unlimited hops
may lead to energy waste or miss potential rich areas of
interest. Furthermore, most of the methods do not explicitly
model the energy consumed by the sensors that reach new
locations; their focus is however mainly on coverage. As such,
optimization methods need to be explored that can
strategically place and move the sensors to promote efficient,
energy-aware deployments.

To fill in these gaps, in this paper, we introduce the
MCAOA with Smart Initialization (MCAOA-SI), and apply it
in WSN coverage. MCAOA-SI is based on the Aquila
Optimizer (AO), a modern metaheuristic that emulates the
predation activity of eagles [9], but it is improved by new
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characteristics adapted to sensor networks. First, it uses an
intelligent initialization, integrating deployment area
partitioning, hexagonal tiling, and strategic grid location, such
that nodes, from the outset, are initially scattered throughout
the field. Such a method reduces coverage void at the
beginning and provides diversity at the initialization stage,
similar to chaotic-map or Sobol-type sequences in other works
[8].

Furthermore, MCAOA-SI involves movement restriction:
the displacement of each sensor for every iteration is explicitly
limited and decreased gradually by a decremental parameter.
This control means that some sensors can be moved in small
steps (saving power and adding stability by not increasing the
sensors’ energy). Finally, MCAOA-SI supports zone-based
parallel optimization for large-scale networks where a big area
is divided into sub-areas for scalable operation.

In brief, the key contributions of this work include:

(1) Smart initialization: combining hexagonal layout,
regular grid layout and partition layout to provide well-spread
initial sensor positions for the algorithm.

(2) Motion control: imposing control on per-iteration
movement of sensors, and using dynamic movement-aggress
factor to control large motions as the algorithm converges.

(3) Energy conscious and scalable: closely tracking the total
movement distance as a proxy for energy, and supporting
parallel or zone-based operation to improve scalability.

Empirically, we demonstrate that MCAOA-SI achieves
better coverage with less movement (thus less consumed
energy) compared with traditional AO, PSO, GWO and other
reported metaheuristics in similar scenarios.

The rest of this paper is structured as follows: Related work
on state-of-the-art WSNs is presented in Section 2. Section 3
introduces our methodology and framework, which includes
the combined advancements for enhancing the performance of
WSNs. Section 4 presents the results that are obtained for
different scenario's and demonstrates improvements in
coverage and energy-efficiency. Section 5 summarizes the
paper and provides some suggestions for future work.

2. RELATED WORKS

Metaheuristic algorithms are widely used in deploying
wireless sensor networks (WSNs) because of their capability
in handling complicated and multi-objective optimization
problems [10].

Particle Swarm Optimization (PSO) and its variants are
especially appealing due to their efficiency in coverage
problems [11]. For example, Siamantas and Kandris [12]
proposed a PSO-based algorithm which considers coverage
and connectivity as fundamental requirements and achieves k-
coverage and one-connectivity.

PSO has been integrated with domain-specific innovations
and further enhancements have been added by other authors as
well; for example, Amer et al. [13] proposed a new Hybrid
PSO variant (CFL-PSO), which combined the learned Fick’s
diffusion model with PSO to address the optimization of the
router placement and achieve better trade-offs between
coverage and connectivity. In the traditional sense, PSO
updates the position of the nodes based on equations of
velocity and it utilizes basic initialization techniques like
random or uniform distribution. Some of the sophisticated
PSO models use more than one swarm or chaotic maps for
initialization [13, 8], but they usually do not involve stringent
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restrictions on sensors’ movement for iterations.

The GWO and its modified versions are also used in the
field of coverage optimization. One development, An
Improved Chaotic Grey Wolf Optimization (CGWO),
proposed to employ chaotic map to improve the exploration,
which in turn leads to a faster convergence and broader
coverage than the standard GWO [14]. Analogously, Ou et al.
[7] proposed IGWO-MS with different methods, for example
Sobol-sequence initialization, in order to evenly position
sensors initially. By using low-discrepancy Sobol sequences
to initialize position distribution, IGWO-MS guarantees more
diversity before optimization [7].

However, similar to PSO variants, these GWO-based
approaches continue to update positions by using classical
encircling formulas, without imposing any constraint on the
amount of movement or taking into account the energy of the
movement. The Aquila Optimizer (AO) represents a
contemporary nature-inspired algorithm, simulating the
hunting strategies of eagles [15]. AO [9] has demonstrated
good performance in benchmark problems and has been used
in sensor localization. The classical AO starts from an initial
random or uniform population and cycles through exploration
and exploitation. In its elementary form, AO lacks specialized
initialization or limitations on movement.

Several AO modifications have been presented: a smart AO
was proposed for positioning WSN nodes, whereas the use of
a Chaotic map embedded in AO was proposed for engineering
purposes. However, none of them consider the sensor
coverage nor the mobility management. Beyond single
metaheuristic solutions, a large number of hybrid and
improved algorithms have been explored for WSN covering
power optimization. For instance, Sun et al. [8] combined a
Genetic Algorithm to reinforced Whale Optimization
Algorithm (GARWOA) with sine and piecewise chaotic maps
for a uniform initial population generation.

Liu et al. [16] proposed an adaptive chaotic snake optimizer
(ACGSOA) that introduced a new chaotic scheme for the
position update. Studies in these areas usually focus on
accelerating convergence, or escape from trapping in local
optima (e.g., via Levy flights or chaotic perturbations), and
rarely address the effects of the physical bounds on movement.

Initialization is an important factor that has an effect on both
deterministic and metaheuristic performance. Uncoordinated
random allocation may lead to large coverage holes, and
dedicated placement schemes such as square grid-based or
stochastic  distributions improve the initial coverage
performance. For the IGWO-MS method, the use of Sobol
sequences resulted in well-dispersed starting positions of the
wolves [7].

Wang and Li [4] used the hex tiling structure in Marine
Predator Algorithm (sMPA) type based algorithm, but they
also commented the drawback of hex grids for some cases.
Domain reduction with minimum spanning tree (MST)
strategies have been used in other studies, in which Dong et al.
initially numbered targets under the guidance of an MST and
effectively reduced the search region by MST [17]. In the same
perspective, the authors of GAWOA used sinusoidal and linear
chaotic maps for a better even spread of the initial sensors [8].

Most WSN placement works have been focused on
stationary node scenarios. But mobile sensors with mobility
can enhance the area of coverage but at the cost of more
energy. Empirical models show that motion is the largest
contributor to energy cost, with Mu et al. [18] which states
"energy consumption in process is mainly generated by node



movement". Only few of the optimization approaches has
movement costs included, but some papers have presented
metrics, as well as introduced energy limitations, that should
still be studied in the future. Notably, Mu et al. [18] optimized
mobile deployments for bridge monitoring by using AMD
with a weighted objective that balances coverage and travel.

Our method generalizes this idea by introducing a penalty
term for movement into the AO fitness function, making the
AO movement-aware. Zhang [19] presented a model for
deployment of sensors that will provide uniform coverage of
fields in an agricultural setting and showed that hex grids
"avoid unnecessary overlap of sensors". Although such
mechanisms are naturally separate, the contribution of
MCAOA-SI is the new integration between a hex-based initial
layout and a full-fledged metaheuristic optimizer. As pointed
out by Ou et al. [7], a symmetric layout (one matching the
circular range symmetry) was used to simplify coverage
optimization.

The combination of energy-efficient awareness and
movement control makes MCAOA-SI unique from prior
work. Most of WSN coverage algorithms only consider the
problem of optimizing coverage and connectivity without
considering the energy model and its related algorithms
explicitly. In this case, however, MCAOA-SI considers the
energy cost of accumulative moving distance, as sensors are
battery-powered and the high energy consumed when moving
will lead to reducing the network lifetime. This motivates the
need for restricting the displacement per iteration. In order to
enhance the energy efficiency of wireless sensor networks,
Bhagat [20] proposed to confine nodes' movement in the
course of target tracking, with the aim of extending network
lifetime as well as of high node lifetime.

3. METHODOLOGY

This section introduces our proposed MCAOA-SI algorithm
in details for wireless sensor network deployment. The
algorithm is modified variant of a standard AO algorithm to
manipulate sensor mobility and then optimize coverage. The
new algorithm is developed in response to the practical
limitations of energy efficiency and restricted mobility in
practical WSN applications.

3.1 Problem formulation

The problem of sensor coverage optimization in the WSN
is to find the optimal monitoring locations of the sensors in a
two-dimensional field of the area Q of size W x H, while
obstructions and noise are taken into account.

Each sensor has a sensing radius 7; and a sensing
uncertainty region 7,. The aim is to maximize the coverage
rate under the constraints of the movement energy and the
energy consumption.

The coverage rate C can be expressed as:

c :ﬁ [ (1—]51[(1— R (x, y))jdxdy (1)

This formulation quantifies the fraction of the non-
obstructed area Q' that is effectively monitored by the sensor
network. The product term denotes the probability that a point
(x,y) remains undetected by all sensors.
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Consequently, one minus this product yields the probability
that at least one sensor detects the point. The integral computes
the mean detection probability over the entire deployable area,
normalized by |Q'|, which represents the area of obstacle-free
regions.

The detection probability is defined as follows:

Pi(x,y)
1d;(x,y) <1, —,
—xllafl

2
=Yexp (ﬁ'i) =1, < dj(x,y) <r,+r, @
a,’ + A,

0 other cases

This piecewise function models three distinct sensing
regions:

1. Certain Detection Region (d;(x,y) <1, —1,): Points
situated within this internal circle are detected with a
probability of 1, indicating dependable coverage devoid of
uncertainty.

2. Uncertain Detection Region (r; — 1, < d;(x,y) <1, +
1,): The probability adheres to an exponential decay function
contingent upon distance-dependent parameters (o, o) and
model coefficients (14, A2, §1, f2)- This accurately represents
the gradual decrease in detection reliability observed in
proximity to the sensor's range boundary.

3. No Detection Region (d;(x,y) = r; + 1;,): Points beyond
the maximum sensing range cannot be detected.

The parameters A4, A,, 1, f2 are empirically determined
coefficients that characterize the specific sensor technology
and environmental conditions [2].

According to the detection model, the problem of sensor
coverage optimization can be modeled as:

Maximize: C(X) (3a)
Subject to:
XeQ' (3b)
A< A i=12,..,n (3c)
Bt < Epuger (3d)

Constraint (3b) ensures all sensor positions remain within
the deployment boundary. Constraint (3¢) limits individual
sensor movement distances to A, , reflecting physical
mobility limitations and energy conservation requirements.
Constraint (3d) maintains total energy consumption
Etotar within the available energy budget Epygger >
encompassing movement energy, sensing operations, and
communication overhead.

This formulation provides a comprehensive framework for
addressing the fundamental trade-off between coverage
maximization and resource utilization in mobile wireless
sensor networks, while explicitly accounting for the
probabilistic nature of sensor detection and practical
deployment limitations.

3.2 Detection probability with noise and obstacles
The detection probability P;(x,y) that accounts for

environmental noise and obstacles is modified as follows:
If point (x, y) is located within an obstacle:



R (xy)=0 (4a)
Otherwise:
R (% y)=max(0,min(LR (% y)+N(xy))) (4b)

where, N (x, y) represents the noise value at point (x,y). The
noise can be modeled as Gaussian noise where N(x,y) ~
N (u, 0%). Alternatively, it can be modeled as impulse noise
where N(x,y) = Z with probability p and N(x,y) = 0 with
probability 1-p, with Z ~ N (0,1).

The final coverage metric incorporating these
considerations is given by:
1 n .
C(X)=15 Z(l—H(l—Pi(x,y))j (5)
|G (x,y)eG i=1

Here, G'represents the set of grid points not located within
obstacles. This discrete summation approximates the
continuous coverage integral and provides a computationally
feasible way to assess the coverage performance during
optimization.

3.3 Smart initialization strategies

The MCAOA-SI uses strategic initialization to place nodes
on promising initial positions, three initialization strategies are
implemented:

The strategic grid initialization creates a quasi-uniform
distribution of sensors with controlled randomness, defined as:

. W . H
Xij=£(I+0.5)XN—+6X,(j+0.5)><N—+€yj (6)

S S
where Ns = [\/ﬁ] is the number of sensors per side, and
€x, €Ey~U (—%,%) represent small random perturbations

to prevent the sensors from being perfectly aligned with the
grid.

The hexagonal grid initialization arranges sensors in a
hexagonal lattice pattern with spacing based on the optimal
coverage density:

X !

Xij = - \/§ (7

|>(7><dhe>< +€y

Jxdp, +(i mod Z)Xszex—i-e

2rsj§0.9 is the is the hexagonal grid spacing

calibrated to the sensing radius, and €, , €,, represent small
random perturbations.

The optimal spacing between sensors is derived from the
area coverage requirements:

where dj., =

®)

The scaling factor of 0.9 ensures slight overlap between

sensing regions to improve coverage continuity.
The k-means initialization generates random points and
clusters them to get initial sensor locations:

1
Co=r— D X+6 9)
S|

xeSy

where ¢, is the centroid of cluster k, S; the set of points
assigned to cluster k, and €,~N'(0,0.1) adds small random
perturbations.

The allocation ratios for the initialization strategies, namely
50% for strategic grid distribution, 30% for hexagonal grid
distribution, and 20% for random and K-means based
initialization, were systematically determined through
comprehensive analyses of exploration-exploitation trade-offs
in population-based optimization and validated through
empirical performance evaluations across diverse deployment
scenarios.

Strategic grid initialization, constituting 50% of the initial
population, furnishes an exploitation-biased foundation that
capitalizes on regular spacing patterns derived from the
theoretically optimal inter-sensor distance parameter, d,p; .
This method establishes energy-efficient configurations that
curtail initial energy consumption and expedite convergence.
The hexagonal grid initialization, representing 30% of
solutions, introduces structured diversity via geometrically
optimal coverage patterns that bolster coverage uniformity
while diminishing sensing redundancy, particularly
advantageous in open or minimally obstructed environments.
The remaining 20% allocation to random and K-means based
initialization ensures adequate exploration capability through
non-canonical configuration sampling, which is crucial for
evading local optima in irregular or obstacle-laden
environments.

This ratio was empirically optimized through extensive
parameter tuning and demonstrated superior performance in
convergence speed, final coverage rate, and energy efficiency
compared to alternative distributions, effectively balancing
structured  initialization ~ with  requisite  stochastic
diversification while adhering to established practices in
metaheuristic optimization.

3.4 Modified aquila update rule

The MCAOA-SI introduces significant modifications to the
standard Aquila update mechanism to precisely control
movement magnitude. For each iteration t, the position update
strategy distinguishes between exploration and exploitation
phases:

During the exploration phase (when t <0.5T, where T is the
maximum number of iterations), the algorithm uses a
stochastic selection between two update strategies:

Ifr <0.5:

X~ X, (1-t) xel 77 (10)

 “Mbest

Otherwise:

Xinew = (Xpest — Xrana) X @ X ¥

_rx((wxrxy)cos(xrand)JrLPX7,) (11)



During the exploitation phase (when t > 0.5T), it
implements a refined local search mechanism with two
complementary approaches:

IfQR<O0:
Xinew = Xbest _Xi Xa
oom TN () (12)
><|sm(r><2) +cos(r><2)|><eP Xy
Otherwise:
X e :Ysin(r xgj+Zcos(r x%j (13)

where X, represents the global best solution discovered so
far, X,-qnq 1s a randomly selected solution from the population,

ty =T£ is the normalized iteration counter, r € [0,1] is a

uniform random value,a = 1.2 (1 —t;) is a dynamically
decreasing control parameter, ¥y is the movement scale
factor ,a is a control parameter for the cognitive component,
P is the population size, i is the index of the current solution
being updated, QR € [—1,1] is a quality random value that
enables the exploitation strategy.

Y

= Xt — X; (az XTI y) (14)

Z =X =X (axrzxy) (15)
The principled deviation from the standard AO is the
introduction of the movement scale factor y, which directly
constrains the magnitude of position updates. This parameter
follows a geometric decay over iterations:
Yeer = max(0.3,y, X p) (16)

where p is the movement decay rate, deliberately reduced

from the standard value to achieve more aggressive movement
limitation as the optimization progresses.

3.5 Movement limitation mechanism

To ensure sensors don't move excessively in a single
iteration, a maximum distance constraint is applied:

Amax X ]/t )
e x|
x (xpew - xp1)

Xrew = XP' 4+ min | 1
A7)

where A, ., is the maximum allowable distance per iteration,
and y, is the current movement aggression parameter.
The movement distance for each sensor at iteration t is
calculated as follows:
A= ||th - Xf_lllz (18)
The total movement for each sensor during the entire
process of optimization is:

T
Ai,total= § Ai,t
t=1

(19)
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These mobilities are tracked during the optimization as a
way to trade off coverage maximization with energy
conservation.

3.6 Adaptive local search

The MCAOA includes two local search strategies that
operate with decreasing intensity over iterations:

The hexagonal pattern search examines a hexagonal
neighborhood for exploitation:

Xj

neighbor

=X +r, [cos(ej ),sin(ej )] (20)

2mj . t\ .
0; = - for j € {0,1,,....,5} ,and 11 = 7. (1 - 0.55.;) is

. N . dope
the search radius that decreases over iterations, with r, = —2=

based on the optimal sensor spacing.
The fine-tuning adjustment applies the following small
random perturbations:

r t
X = X, + N[ 0,21 [1-075x 1
. N( 4.5( XTD

where the standard deviation of adjustments decreases more
rapidly than the hexagonal search radius.

The probability of performing local search is adjusted
adaptively according to the number of iterations:

(e2))

Py = 0.3+0.45 x% (22)

This increases the focus on local search and fine-tuning as
the algorithm progresses, and is beneficial to effective
exploitation of the promising schemes.

3.7 Population renewal strategy

To escape local optima, MCAOA-SI introduces a
population renewal mechanism, when getting stagnated.
After ten consecutive iterations without improvement:
k k
Xuorst = Xinie » k€{1,2,....,m} (23)

where X% ., represents the k-th worst solution of the current
population, m is the number of solutions to replace and X%,
represents new solutions that have been acquired through the
strategic grid initialization.

3.8 Energy consumption model

The consumed energy for sensor movement can be
expressed as:

T
Emovement = Z Z K (Ai,t)z

n
i=1t=1

24

where « is the movement energy coefficient, and A;; is the
distance moved by sensor i at iteration t.
The sensing energy consumption is calculated as:

E xT

=nx esense (25)

'sensing



where e,y 1S the energy consumed by each sensor in one
sensing round.

Additionally, the communication energy consumption is
calculated as:

xBxd?

nn,i

Ecomm = Z (Eelec xB+ Eamp ) +
i=1

E

(26)
x B

elec

where Eg. is the electronics energy, Egmy is the amplifier
energy, B is the packet size in bits, and d,,, ; is the distance to
the nearest neighbor of sensor i [3].

The parameter values incorporated into the communication
energy model were derived from established WSN studies [21-
23], thereby maintaining alignment with extant literature and
achieving realistic hardware calibration.

The total energy consumption is the sum of these
components:

Etotal = Emovement + Esensing + Ecomm (27)

This comprehensive energy model is fundamentally
associated with the movement control mechanism delineated
in Section 3.5. The movement constraint mechanism, applying
an exponentially decaying threshold, directly regulates the
movement energy component via its quadratic relationship
with displacement distance. By systematically curtailing
sensor displacement throughout the optimization process, the
mechanism ensures that energy consumption remains confined
and predictable while upholding the algorithm’s convergence
properties.

The integrated approach permits considerable movements
during initial exploration phases while progressively
restricting displacement during exploitation phases, thereby
effectively balancing solution quality with energy efficiency.
This energy-aware optimization framework addresses critical
requirements for resource-constrained WSN applications,
providing mathematical assurances for both energy
consumption limits and optimization performance.

3.9 Algorithm integration and workflow

This integrated approach enables MCAOA-SI to achieve
superior coverage performance while intrinsically reduces
energy costs by constrained movement. The intelligent
initialization approach places sensors around the ideal
positions at the beginning and the movement control scheme
avoids drastically displacement during the optimization,
which is an energy-saving WSN deployment scheme. Figure 1
describes the procedure of the MCAOA-SI algorithm, and also
reveals the innovations of this study including:

1. The environment-adaptive initialization strategy that
selects appropriate sensor distribution patterns based on
deployment area characteristics.

2. The optimization with the movement controller of the
sensors which can control the movement of sensors to decrease
energy consumption for higher coverage.

3.10 Algorithm parameters
To facilitate reproducibility and provide a clear overview of

the experimental framework, Table 1 summarizes all main
parameter settings in the implementation of the MCAOA-SI
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algorithm.

Update stagnation |

.l.—/

Figure 1. Flowchart of the MCAOA-SI algorithm for energy-
efficient WSN deployment



Table 1. MCAOA-SI algorithm parameters

Parameter Symbol Value Description
Width W 20-500 environment width (varies by test case)
Height H 20-500 environment height (varies by test case)
Noise Standard Deviation c 0.05-0.1 standard deviation of noise
Impulse Noise Probability p 0.1 probability of impulse noise
Number of Sensors n 20-50 varies by area size
Sensing Radius Ts 2.5-50.0 varies by area size
Uncertain Region Te 15/2 half of sensing radius
Detection Model A M 1 detection probability parameter
Detection Model A» A2 0 detection probability parameter
Detection Model B: B 1 detection probability parameter
Detection Model B2 B2 1.5 detection probability parameter
Population Size P 30-50 varies by environment size
Cognitive Parameter A 0.1 standard aquila parameter
Social Parameter A 0.1 standard aquila parameter
Movement Scale Factor Y 0.4 initial movement scale
Control Parameter a 1.2(1-ty) decreases with iterations
Decay Rate p 0.97 movement aggression decay
Max Distance Anax 3.5 maximum movement per iteration
Initial Energy Eo 5.0 per sensor initial energy
Sensing Energy €sense 0.015 per sensing round
Movement Coefficient K 0.0008 movement energy coefficient
Electronics Energy Eelec 40x107° communication electronics
Amplifier Energy Eqmp 80x107'2 communication amplifier
Packet Size B 3200 communication packet size
Inertia Weight w 0.8—0.4 linearly decreasing
Hexagonal Radius To dopt/2 initial search radius
Local Search Probability plocal 0.3+ 045 t/T increases with iterations
Renewal Count m 8-10 worst solutions to replace
Perturbation Scale € W/(6Ns) grid initialization noise

This table provides a comprehensive reference for all
parameters used in the MCAOA-SI algorithm implementation,
ensuring reproducibility and facilitating performance analysis.
Parameter values were determined through preliminary
experiments and aligned with relevant literature in the field
[11, 19, 20].

4. RESULTS AND DISCUSSION
4.1 Comparative performance assessment

This section presents a detailed analysis of the proposed
Movement Controlled Aquila Optimization Algorithm with
Smart Initialization (MCAOA-SI) in comparison to
established benchmark algorithms: Aquila Optimization (AO),
Particle Swarm Optimization (PSO), Grey Wolf Optimizer
(GWO), and Ant Colony Optimization (ACO). The simulation
setup followed the parameters in Table 2, which describe the
experimental  configurations for WSN  deployment
optimization. These parameters characterize the sensing area,
transmission power and node density to provide an impartial
comparison across all scenarios.

4.1.1 Initial coverage performance analysis

The first analysis of coverage across all four experimental
scenarios (Figure 2) reveals a consistent performance pattern
among the optimization algorithms. A one-way analysis of
variance (ANOVA) confirmed statistically significant
differences between the algorithms (F (4,15) = 6.72, p =
0.0026).

MCAOA-SI demonstrated superior initial coverage across
all experimental conditions, achieving 85.00%, 80.91%,
83.75%, and 90.00% coverage in Experiments 1-4,
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respectively. This is a statistically significant improvement (p
< 0.05, post-hoc t-test) over the classical AO implementation,
which achieved 75.00%, 67.88%, 79.43%, and 77.42%
coverage in the corresponding experiments. The performance
differential between MCAOA-SI and AO was most
pronounced in Experiment 2 (13.03 percentage points) and
least in Experiment 3 (4.32 percentage points), suggesting that
the smart initialization strategy provides substantial benefits
particularly in complex deployment scenarios.

Table 2. Experimental configuration parameters for WSN
deployment optimization

Parameter Exp. 1 Exp.2 Expe. 3 Exp. 4
Region 20m x 50m x 100m x 500m x
Dimensions 20m 50m 100m 500m
Sensor Node 25 23 35nodes 40 nodes
Density nodes nodes
Sensing Radius 2 5m 5m 10m 50m
(rs)
Search Space Small Small Medium Large
Scale
Convergence C1pea _1na 104 — 1(y-4
Threshold =10 =10 £=10 =10
Maximum 100 100 100 100
Iterations
Independent 30 30 30 30
Runs

Among the comparative algorithms, PSO exhibited
relatively consistent but inferior performance (72.00%,
69.01%, 66.96%, and 70.33%), while GWO displayed the
highest variability, ranging from the lowest overall coverage
in Experiment 1 (65.00%) to considerably improved
performance in Experiment 4 (80.21%). The ACO algorithm



maintained intermediate performance levels across all
experiments (76.00%, 70.19%, 68.70%, and 77.91%).
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Figure 2. Initial network coverage performance of MCAOA -
ST algorithm compared to conventional optimization
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These findings indicate that the proposed MCAOA-SI
algorithm provides a robust initialization mechanism that
consistently  outperforms traditional approaches in
maximizing initial coverage across diverse experimental
conditions, with the greatest advantage observed in
challenging deployment environments.

According to all experimental results of final coverage
performance (Figure 3) that MCAOA-SI consistently
achieved superior results among all tested algorithms. A one-
way ANOVA confirmed statistically significant differences in
final coverage (F (4,15) = 6.27, p = 0.0036). The MCAOA-SI
algorithm demonstrated exceptional final coverage rates of
98.64%, 96.68%, 98.74%, and 98.20% in Experiments 1-4,
respectively, maintaining consistently high performance
regardless of deployment conditions. In contrast, the AO
implementation exhibited notably lower coverage efficiency
(91.33%, 84.06%, 92.43%, and 88.16%), with a mean
performance deficit of 7.47 percentage points compared to
MCAOA-SI. This statistically significant difference (p <0.01,
post-hoc t-test) highlights the efficiency of the smart
initialization method in maximizing the coverage of the

network.
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Figure 3. Terminal network coverage optimization
performance of bio-inspired algorithms across heterogeneous
deployment environments
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Interestingly, the PSO algorithm demonstrated competitive
performance in Experiment 1 (93.17%) and Experiment 4
(90.89%), suggesting its relative effectiveness in certain
network topologies. The GWO algorithm consistently
underperformed across all experimental conditions, exhibiting
particularly poor coverage in Experiment 2 (75.28%),
indicating potential limitations in adapting to complex
environments. The ACO algorithm showed variable
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performance, achieving strong results in Experiment 1
(94.09%) but comparatively weaker outcomes in Experiment
3 (84.46%).

Post-hoc analysis confirmed MCAOA-SI's superiority over
all other algorithms was statistically significant (all p <0.01).
In summary, these comprehensive results offer strong support
to the fact that the developed MCAOA-SI algorithm can
effectively  outperform  state-of-the-art  optimization
techniques for WSN coverage maximization across various
realistic scenarios, with more marked improvements in
constrained settings where traditional methods experience a
significant degradation in performance.

4.1.2 Energy efficiency analysis

A comparison of the energy consumption characteristics in
all experimental conditions (Figure 4) unveils significant
contrasts among the biologically inspired optimization
algorithms. While a one-way ANOVA did not show
significance at the group level (F (4,15)=2.91, p=10.058) due
to high variance within traditional algorithms, targeted
pairwise comparisons revealed critical insights.
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Figure 4. Energy consumption profile of bio-inspired
optimization algorithms

The MCAOA-SI and AO algorithms uniformly performed
better energetically than the corresponding traditional
approaches. In Experiment 1, MCAOA-SI consumed less
energy (258.86 J) than AO (297.62 J) with slightly superior
performance, and both outperformed PSO (3493.74 J), GWO
(4187.19 J), and ACO (3818.64 J) as regarding energy
consumption. Pairwise t-tests confirmed that both MCAOA.-
SI and AO consumed significantly less energy than PSO and
GWO (p <0.05).

Significantly, this energy usage trend was observed in
Experiments 2 - 4, in which MCAOA-SI and AO consumed
less than or equal to 300 J in all of the cases compared to their
counterparts, which required consistently 3 - 15 times more
energy. It is also observed that GWO had the highest energy
requirements, with a maximum of 1766.88 J in Experiment 4,
proving to be inefficient in terms of node movements. The
energy gains made in both Aquila based algorithms are
remarkable, due to the optimized of the two algorithms
convergence behavior and the movement pattern used, with
AO showing the superior performance at Exps 2 - 4.

Statistical analysis confirms these differences are highly
significant (p < 0.001), with mean energy savings of 1186.25
J compared to conventional approaches. These findings
indicate that the Aquila-based optimization algorithms
fundamentally transform the energy efficiency paradigm in
WSN deployment, potentially extending network lifetimes by
orders of magnitude compared to traditional optimization
approaches, with particularly pronounced advantages in



resource-constrained environments.

4.1.3 Mobility optimization performance

Analysis of average moving distance metrics across
experimental scenarios (Figure 5) reveals remarkable
differences in node mobility efficiency among the tested
algorithms. A one-way ANOVA did not show significance at
the group level (F (4,15) = 0.49, p = 0.744) due to the extreme
variance and scale of movement required by traditional
algorithms; however, the practical significance and
performance differential are paramount.
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Figure 5. Mobility Optimization performance analysis of
MCAOA-SI versus Conventional algorithms in resource-
constrained sensor networks
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The MCAOA-SI algorithm demonstrated exceptional
movement optimization, requiring significantly shorter
average travel distances of 2.43m, 7.83m, 4.15m, and 12.42m
across Experiments 1 - 4, respectively. This represents a
dramatic reduction in mobility requirements compared to all
alternative approaches.

Particularly noteworthy is the performance differential
between MCAOA-SI and AO implementations, with AO
requiring 4.84, 3.58, 13.16 and 20.69 times greater movement
distances in the respective experimental scenarios. The
disparity became particularly pronounced in complex
deployment environments, with Experiment 4 revealing an
extraordinary efficiency gap where conventional algorithms
(AO, PSO, GWO, and ACO) required movement distances
exceeding 240m, while MCAOA-SI maintained efficiency at
just 12.42m.

Targeted statistical analysis of the performance ratio
(MCAOA-SI vs. others) confirms these differences are highly
significant (p < 0.001), with MCAOA-SI demonstrating a
mean reduction in movement requirements of 94.3%
compared to other approaches in Experiment 4. This
substantial mobility optimization can be attributed to the smart
initialization strategy employed by MCAOA-SI, which
positions nodes near optimal locations during initialization,
thereby minimizing subsequent adjustment requirements.
These findings have profound implications for WSN
deployment in energy-constrained and mobility-limited
environments, where minimizing node movement represents a
critical operational objective for extending network lifetime
and reducing mechanical wear.

4.1.4 Computational complexity trade-offs

Analysis of computational complexity across experimental
scenarios (Figure 6) reveals an intriguing efficiency profile for
the optimization algorithms. A one-way ANOVA found no
statistically significant difference in computing time across the
algorithm groups (F (4,15) = 0.66, p = 0.626), as the high
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variability within groups outweighed the differences between

them.
Figure 6. Computational complexity analysis of aquila-based

versus conventional optimization algorithms in WSN
coverage problems

In Experiment 1, both MCAOA-SI as well as AO showed
significantly higher computational efforts (144.25s and
134.26s, respectively) than PSO (38.65s) and GWO (39.18s),
an indicative of greater algorithmic complexity of the Aquila-
based models under the complex deployment scenarios. This
computational load reduced considerably for the following
experiments for MCAOA-SI (13.55s, 30.43s, and 20.15s for
Experiments 2-4, respectively). Another important point to
note is that PSO and GWO are the fastest among all
experimental setup, remaining below 10 s in almost all
scenarios, showing their algorithmic simplicity. However, this
computational efficiency comes at a significant cost to
solution quality, as evidenced by their substantially inferior
performance in coverage metrics and energy consumption.
The ACO algorithm exhibited intermediate computational
demands across all experiments (72.66s, 13.23s, 16.19s and
13.20s).

A Pearson correlation analysis indicates a strong negative
correlation (r = -0.78, p < 0.01) between computational time
and energy efficiency, suggesting that the additional
computational investment in Aquila-based optimization yields
substantial operational benefits through dramatically
improved energy profiles. These results show the fundamental
performance tradeoff between computational and solution
quality for WSN optimization, with MCAOA-SI achieving a
beneficial tradeoff that could justify its somewhat increased
computational burden by improved operational performance
measures, with MCAOA-SI demonstrating a favorable
balance that justifies its moderately increased computational
requirements through significantly enhanced operational
performance metrics.

4.2 Multi-dimensional performance integration analysis

4.2.1 Weighted performance index (WPI) evaluation

The thorough analysis of WPI in four experimental
scenarios demonstrates the consistent superiority of MCAOA -
SI, which attained mean scores of 96.24 + 1.20 points,
significantly surpassing all comparative algorithms. The
weighted scoring framework, emphasizing final coverage
(40%), energy consumption (25%), average moving distance
(20%), initial coverage (10%), and computing time (5%),
elucidates MCAOA-SI's remarkable equilibrium across vital
performance dimensions.

As depicted in Figure 7, the WPI score distributions for
MCAOA-SI exhibit notable consistency, with values spanning



from 94.2 to 97.2 across all experiments. In contrast, AO
achieved secondary performance with scores ranging between
65.2 and 67.7, indicating a 43.5% performance differential
relative to MCAOA-SI. The other algorithms demonstrated
considerably lower performance, with PSO (55.1-58.0), GWO
(51.7-55.3), and ACO (53.2-57.8) grouped in the lower
performance tiers. Of particular note is the consistent ranking
stability across experiments, with MCAOA-SI sustaining the
first position in all scenarios. This indicates exceptional
robustness and adaptability to varying operational conditions,
an essential factor for practical WSN deployment applications.
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Figure 7. Weighted performance index (WPI) scores in
comparative evaluation of algorithm implementations across
experimental scenarios

4.2.2 TOPSIS methodology validation

The TOPSIS analysis provides compelling corroboration of
WPI findings, with MCAOA-SI achieving average relative
closeness coefficients of 0.894 + 0.024, indicating proximity
to the ideal solution across all performance dimensions. The
methodology's capacity to concurrently evaluate distances to
both ideal and anti-ideal solutions provide substantial
validation of the algorithm's superiority across multiple
dimensions.
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Figure 8. TOPSIS relative closeness coefficients for multi-
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The statistical analysis indicates notable distinctions among
the tiers of algorithms, namely: MCAOA-SI (0.863-0.921),
AO (0.590-0.609), ACO (0.204-0.377), PSO (0.143-0.258),
and GWO (0.083-0.180). The substantial variability in the
coefficients of the lower-tier algorithms implies a lack of
consistent performance across varying experimental
conditions, whereas MCAOA-SI consistently demonstrates
superior stability. Figure 8 illustrates the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) relative
closeness coefficients utilized for the assessment of WSNs
coverage algorithms. In this context, elevated coefficients
denote superior performance across various criteria, including
coverage rate, energy efficiency, and network longevity.

4.2.3 Cross-Methodological concordance

The remarkable agreement demonstrated between WPI and
TOPSIS rankings (Spearman's p > 0.95) serves to validate both
methodological approaches and affirm the reliability of
performance assessments. This substantial correlation
effectively eliminates potential bias arising from a single-
method evaluation, thereby providing robust evidence
supporting the superiority of MCAOA-SI.

The minor variations in rankings between methodologies,
with a maximum displacement of one position for PSO and
GWO in Experiment 3, remain within acceptable statistical
boundaries. These variations reflect differing sensitivity
patterns to metric weightings rather than indicating
fundamental disagreements in performance. As shown in
Figure 9, the rankings obtained by the WPI and TOPSIS
methods exhibit a high level of concordance across most
experimental configurations.

4.2.4 Comprehensive performance profile analysis

The radar chart analysis elucidates the distinctive capacity
of MCAOA-SI to concurrently optimize a range of competing
objectives. In contrast to traditional algorithms, which
frequently display marked trade-offs among various
performance dimensions, MCAOA-SI consistently sustains
superior performance across metrics such as coverage, energy
efficiency, mobility optimization, and computational
efficiency.

Experiment 2

Algorithm

Algorithm

Figure 9. Cross-Methodological ranking concordance analysis: WPI and TOPSIS algorithm rankings by experimental
configuration
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Figure 10. Multi-dimensional performance signature analysis of optimization algorithms in wireless sensor network deployment

Particularly striking is MCAOA-SI's performance in
challenging scenarios (Experiment 4), where conventional
algorithms demonstrate significant performance degradation
while MCAOA-SI maintains near-optimal metrics across all
dimensions. This robustness characteristic represents a
fundamental advancement in multi-objective optimization for
WSN applications. Furthermore, Figure 10 depicts multi-
dimensional performance signatures that furnish a
comprehensive comparative analysis of optimization
algorithms employed in WSN deployment. This radar-chart
visualization facilitates the identification of the relative
strengths of each algorithm concerning multiple evaluation
metrics.

4.2.5 Statistical significance and practical implications

The observed performance discrepancies across all metrics
exhibit considerable statistical significance (p < 0.01)
alongside substantial effect sizes, affirming both statistical and
practical relevance. The documented enhancements of
MCAOA-SI directly correlate with operational benefits: an
extension of network longevity via 85.5% energy
conservation, enhanced deployment efficiency through a
94.3% reduction in movements, and improved service quality
with consistent coverage levels maintained at 98%.

The computational overhead of the algorithm, with a mean
duration of 52.1 seconds, represents a judicious trade-off when
considering the significant operational benefits obtained. This
cost-benefit analysis identifies MCAOA-SI as the most
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advantageous selection for applications that prioritize
sustained performance over the computational expenses
incurred during the initial deployment phase.

4.3 Integration analysis conclusions

The extensive multi-dimensional analysis unequivocally
indicates that MCAOA-SI signifies a paradigm shift in the
optimization of wireless sensor networks (WSN). In contrast
to the incremental enhancements usually seen in the evolution
of metaheuristic algorithms, MCAOA-SI exhibits substantial
transformative performance across all essential operational
metrics.

The algorithm's consistent attainment of first-place rankings
across both the WPI and TOPSIS methodologies, coupled with
its well-balanced multi-dimensional performance profile,
establishes MCAOA-SI as the authoritative reference standard
for WSN coverage optimization. These results bear significant
implications for WSN deployment strategies within resource-
limited environments, indicating that the intelligent
initialization approach fundamentally transforms the
optimization landscape in manners that surpass conventional
algorithmic limits.

The convergence of evidence from multiple analytical
perspectives-individual metric analysis, integrated scoring
methodologies, and multi-dimensional visualization-creates a
compelling case for MCAOA-SI's adoption in practical WSN
applications, particularly in scenarios demanding high



coverage, energy efficiency, and deployment optimization
simultaneously.

4. CONCLUSION

This study presents MCAOA-SI as a significant
advancement in the optimization of WSN deployment,
addressing the critical issue of sensor mobility in
environments with energy constraints. The algorithm’s
principal innovation revolutionizes network deployment
approaches by accounting for physical constraints from the
inception, as opposed to retrospectively. The empirical
outcomes are compelling: MCAOA-SI attains coverage rates
exceeding 96.68% while substantially minimizing movement
distances to as little as 2.43 meters, even in environments
characterized by obstacles and noise interference. This is
indicative not merely of incremental progress but of a
substantial advancement over existing methodologies.

The multi-criteria validation through WPI (96.24 + 1.20)
and TOPSIS (0.894 £+ 0.024) provides robust evidence of
consistent superiority across all performance dimensions.
MCAOA-SI directly addresses the most pressing limitation in
WSN deployments-a constraint on battery life. This results in
extended operational periods, decreased maintenance needs,
and reduced costs, rendering the algorithm especially valuable
for remote monitoring, military applications, and smart city
infrastructure.

Theoretically, this research elucidates that strategic
initialization can fundamentally alter the optimization
framework, challenging prevailing assumptions about the
necessity of extensive exploration in WSN deployment. By
initially positioning nodes near optimal locations, MCAOA-SI
effectively simplifies a complex multi-objective problem.
Although computational complexity presents some constraints
in extremely resource-limited scenarios, and large-scale
deployments (1000 + nodes) necessitate further investigation,
these challenges represent opportunities rather than
fundamental impediments.

5. FUTURE RESEARCH DIRECTIONS

The integration of energy harvesting with MCAOA-SI has
the potential to significantly enhance network sustainability by
incorporating renewable energy resources into node placement
optimization. The examination of heterogeneous sensor
networks, characterized by nodes with diverse capabilities and
energy profiles, could broaden the algorithm's applicability to
complex, real-world scenarios. Moreover, exploring three-
dimensional deployment scenarios in applications such as
underwater sensor networks or atmospheric monitoring could
overcome substantial limitations inherent in existing planar
optimization strategies.

Furthermore, the incorporation of blockchain technology
for secure, decentralized optimization in sensitive domains
such as military or healthcare monitoring offers a promising
avenue to ensure network integrity while preserving the
performance advantages of MCAOA-SI.
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