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This study presents an image-based machine learning framework for efficient LiDAR data 

analysis implemented on FPGA hardware. Unlike conventional point cloud processing 

approaches that demand extensive computational resources, the proposed method converts 

raw LiDAR measurements from CSV format into compact grayscale image representations, 

enabling efficient feature extraction and compatibility with hardware accelerators. The 

workflow comprises data normalization, model training, hardware compilation, and 

deployment on the PYNQ-Z2 FPGA board using the Tensil AI toolchain. Experimental 

results show that the FPGA-accelerated convolutional neural network (CNN) achieves a 

classification accuracy of 98.8%, outperforming software-based implementations while 

reducing inference time by more than twofold and power consumption by approximately 

24 times compared with a GPU. These results confirm the advantages of FPGA acceleration 

in achieving real-time performance with minimal energy overhead. The proposed 

framework offers a scalable and energy-efficient solution for LiDAR data classification and 

can be seamlessly integrated into embedded systems for real-time applications in 

autonomous navigation, smart city monitoring, and edge computing.  
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1. INTRODUCTION

The use of LiDAR data has become increasingly crucial for 

many applications, such as smart cities, autonomous vehicles, 

forest management, precision agriculture, and robotics. 

LiDAR technology is used to get a detailed picture of the shape 

and structure of an area of interest in either 2D or 3D point-

cloud data. This data can then be utilized for object detection 

and classification of the designated area. However, the 

complex and large amount of data captured by LiDAR poses 

significant challenges to efficient processing in real-time 

decision-making applications [1, 2]. 

Techniques for analyzing LiDAR data have shifted from 

feature extraction methods that were hand-crafted to the 

utilization of machine learning (ML) methods such as deep 

learning. This has completely changed how LiDAR data is 

processed. The use of ML techniques cleared the way for 

LiDAR’s solutions, which are more robust and adaptive. 

Training the ML algorithms on diverse and large LiDAR 

datasets can be beneficial in extracting meaningful patterns 

and features from them, which can achieve efficient 

classification, object detection, and semantic segmentation 

with high accuracy [2, 3]. 

While machine learning models can be useful, they pose 

significant challenges as they need a great deal of processing 

power, especially when they are used in real-time systems. 

FPGAs present a viable solution for LiDAR dataset analysis 

because the FPGA technology offers a unique blend of 

flexibility, energy efficiency, and parallelism. FPGAs are a 

well-suited processing element for the implementation of ML-

based LiDAR datasets, especially for robotic or embedded 

systems applications. They can customize hardware 

architectures that align with the ML-based LiDAR datasets 

algorithm requirements. This allows for a real-time LiDAR 

implementation that uses little energy and low latency [4-6]. 

For easier understanding, LiDAR data can be shown as 

pictures that make the data easier to understand [7, 8]. Also, 

for machine learning algorithms like CNNs, images are a 

standard format that can make integrating the ML model into 

an FPGA easier [9, 10]. The images’ hierarchical features can 

be extracted automatically, which benefits the classification 

performance greatly without the need for extensive feature 

engineering [11]. An image represents each processed version 

of the LiDAR dataset, illustrating intensity, height 

information, or other attributes. Therefore, different colours 

can visually represent the image’s various features, aiding in 

data interpretation. In addition, images make the analysis and 

understanding of its object characteristics or the underlying 

terrain more accessible, as the pixel values correspond to 

various measurements (e.g., elevation). 

The research in this paper goes into excellent detail about 

how to use machine learning methods, especially image-based 

deep learning methods, to look at LiDAR data on FPGA 

platforms. The suggested framework looks at the difficulties 

and chances of creating effective and reliable LiDAR 

processing solutions. It shows how real-time decision-making 
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and edge computing could be used in various robotic and 

embedded systems.  Although numerous FPGA accelerators 

for LiDAR exist, most operate on raw point clouds, voxels, or 

hand-crafted features, which complicate hardware mapping 

and increase on-chip memory use. Therefore, there is a need 

for an alternative that can map the LiDAR frame into a 

compact 2D image that captures intensity/elevation patterns. 

This image representation enables efficient use of standard 2D 

CNN layers, simplifies the operator set needed for hardware 

acceleration, and reduces the memory usage. Therefore, there 

is a need for an alternative that can map the LiDAR frame into 

a compact 2D image that captures intensity/elevation patterns. 

This image representation enables efficient use of standard 2D 

CNN layers, simplifies the operator set needed for hardware 

acceleration, and reduces the memory usage. Therefore, the 

research objectives of this paper aim to design a compact and 

reproducible pipeline to convert LiDAR scan rows into 2D 

image representations that are compatible with lightweight 

CNNs, develop and train a lightweight CNN that can be used 

for FPGA acceleration, and deploy and evaluate the CNN 

model on a PYNQ-Z2 board using the Tensil AI toolchain. 

This paper proposes a novel method that utilizes FPGAs and 

CNN algorithms to address challenges in processing LiDAR 

technology datasets. The proposed method proposes a unique 

method of converting the LiDAR dataset point cloud to an 

image format that is mostly compatible with FPGA hardware 

features. This approach shows an effective technique for 

achieving a reduction in processing time with low power 

consumption and increasing LiDAR accuracy. 

Our contribution unfolds into three points as follows: 

Convert LiDAR readings to compact image 

representations compatible with CNNs and FPGA constraints. 

Design and train a CNN optimized for small-footprint 

hardware acceleration. 

Deploy and evaluate the model on a PYNQ-Z2 FPGA 

board using the Tensil AI toolchain, reporting accuracy, 

latency, and power. 

The rest of the paper is structured as follows: Section 2 

discusses the related work on LiDAR-FPGA-based solutions. 

Section 3 presents the methodology implemented. Section 4 

delves into the experimental results with details on both the 

hardware and software findings. Section 5 discusses the 

results, implications, and findings. Section 6 concludes the 

work by suggesting potential avenues for future research.  
 

 

2. RELATED WORK 
 

This section discusses the emergence of FPGA utilization 

as a hardware acceleration for LiDAR data processing in many 

research studies. 

Using quantization techniques and a model of convolutional 

neural networks. Several studies [12-17] suggest an FPGA 

solution to improve the performance of processing LiDAR 

data. This made the analysis of LiDAR data more flexible and 

reliable. While the proposed approach demonstrated the 

benefits of hardware acceleration in enhancing LiDAR’s 

computationally intensive tasks, it does not utilize image-

based machine learning frameworks. In the same way, Brum 

et al. [1] used an FPGA and quantization techniques to create 

a fast and accurate 3D LiDAR data object detection 

accelerator. Xu et al. [8] did not consider enhancing the 

performance of their accelerator using image-based machine 

learning techniques. Xiao et al. [9] used a low-cost FPGA to 

design an accelerator for processing real-time simultaneous 

localization and mapping (SLAM) algorithms, which can be 

adopted for a variety of LiDAR datasets. Their hardware 

solution uses the flexibility and ability to do many tasks at 

once that FPGA technology provides to create an efficient 

method for processing LiDAR data in SLAM. This approach 

does not look at using machine learning methods with FPGA 

hardware acceleration for tasks like semantic segmentation or 

object detection, beyond just SLAM methods. 

Carvalho et al. [18] wanted to help automotive applications 

by making a ground segmentation method that works quickly, 

accurately, and in real time. This method uses an FPGA to 

separate LiDAR points that are on the ground from those that 

are not. However, Sugiura and Matsutani [3] did not consider 

the integration of machine learning algorithms. On the other 

hand, Chen et al. [19] utilized neural network-based solutions 

with FPGAs to provide a real-time accelerator that can process 

LiDAR data with high object detection and classification 

performance. While the proposed approach has demonstrated 

high performance by utilizing a neural network with an FPGA, 

it does not utilize image-based machine learning frameworks. 

Another example is provided by Bai et al. [20], where they 

offer a solution for improving LiDAR data quality for 

autonomous cars. A hardware design using an FPGA and 

machine learning models to quickly fill in missing depth data 

in LiDAR point clouds in real-time. Li et al. [21] showed a 

voxel encoding accelerator that works well for object detection 

tasks. This is another example of an FPGA-LiDAR 

contribution. This work demonstrates how an FPGA can be an 

efficient solution for speedup; however, it is recommended to 

consider integrating machine learning techniques such as 

CNN, which can provide better overall accuracy and 

performance efficiency. One of the essential tasks for LiDAR 

data alignment is the performance of point cloud registration. 

Sugiura and Matsutani [22] proposed an FPGA-based 

accelerator to speed up the point cloud registration. This work 

does not consider the integration of image-based machine 

learning methods, as it could be a useful method for enhancing 

the versatility and adaptability of point cloud registration. 

Zolanvari et al. [23] leverage the FPGA capability with the 

deep learning models to improve real-time LiDAR data 

analysis. An example of an FPGA-image-based solution for 

the LiDAR data is proposed by Wu et al. [24]. This work 

shows a case of scene reconstruction and object detection 

using a range of image generation and image-based machine 

learning frameworks for enhancing real-time analysis of 

LiDAR data. 

Table 1 summarizes the contribution details of the presented 

studies of the FPGA-ML used to optimize solutions for 

LiDAR dataset processing. Different FPGA platforms, 

LiDARs, and machine learning methods for various 

application domains show the vital effort and interest in 

contributing to this research area. However, there is clear 

evidence that the effort in exploring combining image-based 

machine learning techniques with the FPGA acceleration is 

rare. Therefore, our work tries to fill that gap by suggesting a 

new framework that uses both FPGA and deep learning to 

make LiDAR data analysis faster, more flexible, and scalable. 

This will also make current systems more useful by giving 

them more options. In addition, Table 2 summarizes the 

several platforms and toolchains that were utilized by the 

various presented studies, which allow compiling ML models 

for FPGA deployment, and illustrates why Tensil AI, which 

this work utilized, might be suitable for users with basic 

knowledge of FPGA design flow.
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Table 1. Summary of key contributions in FPGA-based LiDAR data processing 

Paper 

Ref. 
Used FPGA Platform LiDAR Type Indoor/Outdoor Target Application 

[8] N/A N/A Outdoor Automotive Object Detection 

[9] Pynq-Z2 2D LiDAR Indoor (SLAM) SLAM for mobile robots and indoor navigation 

[10] ALFA FPGA
LiDAR (VLP-16, HDL-32, 

HDL-64, VLS-128) 
Outdoor Ground segmentation for road navigation 

[11] 
Enclustra Mars ZX3 

FPGA 

LiDAR (SPAD-based d-TOF 

LiDAR) 
Outdoor LiDAR histogram processing for ADAS 

[12] PYNQ-based FPGA LiDAR (Velodyne HDL-64E) Outdoor Depth completion for autonomous vehicles 

[13] N/A LiDAR (General 3D LiDAR) Outdoor 
3D object detection in LiDAR point clouds for 

Autonomous Vehicles 

[14] 
Avnet Ultra96v2, 

Xilinx ZCU104 
LiDAR (3D Point Cloud) Outdoor 

Point cloud registration for odometry and 

SLAM for Autonomous Vehicles 

[15] N/A Aerial LiDAR (ALS) Outdoor 
Classifying urban elements and semantic 

segmentation 

[16] N/A N/A Outdoor 
Range image generation and LiDAR processing 

for Automotive, Robotics 

Table 2. Comparison of AI model compilation platforms for FPGA 

AI Tool Platform Features 

Vitis AI Xilinx FPGAs 

- Optimized for Xilinx FPGAs

- Uses Deep Learning Processing Unit (DPU) for acceleration

- Requires quantization and model-specific compilation

- Best suited for high-end Xilinx FPGAs

Vivado HLS Xilinx FPGAs 
- Converts C/C++ models into FPGA-compatible hardware

- Allows designing custom ML accelerators

PYNQ (Python on Zynq) Xilinx FPGAs 
- Enables FPGA-based ML deployment using Jupyter Notebooks

- Supports pre-compiled bitstreams

Tensil AI Xilinx FPGAs 

- AI inference on FPGAs

- Converts ONNX/TensorFlow models into hardware-optimized execution

- Works with PYNQ-Z2 and low-power FPGAs

- Suitable for low-power embedded AI

OpenVINO for FPGA Intel FPGAs - Optimized for deep learning models on Intel FPGAs

oneAPI DPC++ Compiler Intel FPGAs 
- Uses SYCL-based programming for FPGA acceleration

- Best suited for Intel FPGAs in data centers

HLS4ML Vendor-Neutral - Converts ML models into RTL for FPGA deployment

FINN (Xilinx Research) Vendor-Neutral 
- Optimized for quantized ML models

- Designed for low-latency inference on FPGAs

TVM / Apache TVM Vendor-Neutral 
- Compiles ML models into FPGA-optimized code

- Supports various FPGA architectures

DPU Compiler Vendor-Neutral - Converts trained models into hardware-optimized bitstreams for AI acceleration

3. METHODOLOGY

This section presents the methodology followed and details 

the tools, LiDAR datasets, ML models, and hardware 

integration that are utilized in this work. In addition, the 

process of converting the LiDAR dataset to images and the 

deployment of machine learning models on the FPGA PYNQ-

Z2 platform is detailed. 

To conduct this study, the publicly available LiDAR dataset 

on Kaggle [25] is used. The data is generated by an RPLIDAR-

A1 laser range scanner that is equipped in a mobile robot. It 

contains 360 different LiDAR signals for four different 

environments: corridors, doorways, halls, and rooms. Each of 

the four different environments (corridors, doorways, halls, 

and rooms) corresponds to one of the 411 instances in the data. 

The dataset is a near-balanced class distribution where each 

environment type has a similar number of instances. 

The Xilinx PYNQ-Z2 [26] is chosen as the FPGA platform, 

which is an evaluation board that has the Zynq-7000 All 

Programmable SoC (System on Chip) devices. PYNQ-Z2 is 

part of the PYNQ (Python + Zynq) ecosystem, which offers 

the programming of the FPGA using Python to simplify the 

development process of hardware programming. Besides the 

Zynq-7000 SoC, the board contains an ARM Cortex-A9 

processor, which makes it a flexible platform for applications 

such as robotics, signal processing, and embedded systems. 

Figure 1 shows the framework methodology followed, 

which consists of five phases. The framework starts with the 

model development, which consists of several steps. Then in 

the second phase, the model is converted. The third phase 

involves preparing the FPGA platform. Phases two and three 

serve the fourth phase, which relates to the development of the 

model. And the final phase is where the inferencing takes 

place. The following subsections present these different 

phases. 
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Figure 1. Overall methodology framework of the proposed system 

3.1 Model development phase 

This phase has three steps, which start with the framework 

selection to specify the environment that is best suited for the 

model building. 

Data Preparation: For the purpose of this work, the 

LiDAR dataset [25] is converted from its original CSV format 

into images for every class in order to prepare it for CNN 

machine learning tasks. Firstly, the data is obtained using the 

Pandas library, concentrating on only the relevant 

measurement data. The core of the conversion process 

involves reshaping the data into a three-dimensional array 

suitable for image representation. Specifically, the 

measurements are restructured into a defined height and width 

of 20 by 18 pixels in this case—resulting in a format of 

(num_samples, height, width). Normalization is then applied 

to the pixel values, scaling them to a range between 0 and 1, 

which is essential for improving the performance of machine 

learning models. In addition, the dataset is split into two 

subsets using the 80-20 ratio, one subset for training and the 

other for validation. It is a vital step to preventing overfitting 

and performance assessments. The dataset used in this work is 

provided in the CSV format and contains a total of 411 

examples. Each row contains an ID column, 360 flattened 

feature values, and a final label column. The LiDAR dataset is 

stored as CSV by removing non-signal columns (ID and label) 

and extracting the 1D scan vector of length L for each sample. 

Each vector was reshaped into a compact 2D image of size 

height × width, such that height × width = L (used 20 × 18 = 

360). Missing values were imputed using column means, and 

values outside the 0.5th–99.5th percentiles were clipped. 

Dataset-wise min–max normalization is applied to scale values 

to 0,1, expanded the tensors to single-channel format (Height, 

Width, 1). Finally, the images were saved, and arrays were 

also saved as .npy files for reproducibility. This compactness 

is essential for the FPGA implementation on the PYNQ-Z2, 

where on-chip BRAM and DSP resources are limited. Table 3 

summarizes the dataset and its class naming and distribution. 

Table 3. Dataset summary 

Item Value 

Total samples 411 

Image size (H × W) 20 × 18 (360 features) 

Class distribution (total) 

Class 0 109 

Class 1 100 

Class 2 99 

Class 3 103 

Train / Val 

Train (total) 328 

Class 0 77 

Class 1 80 

Class 2 88 

Class 3 83 

Validation (total) 83 

Class 0 32 

Class 1 20 

Class 2 11 

Class 3 20 

Model Training: To facilitate the organization of the 

images for the model training and validation tasks, directories 

are established for each class label within the two subsets. And 

the final step is generating and saving the images. The 

corresponding LIDAR data is visualized in both the training 

and validation sets using Matplotlib. Then the visualized 

images are saved as greyscale images within their respective 

class directories. This process helps with the image 

classification tasks. These steps are essential for transforming 

the LiDAR dataset [25] into the desired format that is suitable 

for image classification tasks in this work. Furthermore, these 
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steps enhance the deep learning techniques for analysis and 

prediction. The model was compiled using the Adam 

optimizer with the sparse categorical cross-entropy loss and 

trained to monitor accuracy. Training was performed with a 

batch size (B) of 32 and up to 300 epochs (E), learning rate () 

of 0.0001 and no momentum/decay parameter (). A Model 

Checkpoint callback was used to save the best model 

according to validation loss. The training call used an 

augmented data generator and after training the best model for 

final evaluation is reloaded. 

During training on-the-fly augmentation is applied using the 

Keras ImageDataGenerator with the following parameters: 

rotation_range = 20, width_shift_range = 0.2, 

height_shift_range = 0.2, shear_range = 0.2, zoom_range = 

0.2, horizontal_flip = True, and fill_mode = 'nearest'. The 

augmentation generator was fit on the training set and then 

used to provide augmented batches to the network during 

training. 

For model selection, the checkpoint with the minimum 

validation loss is saved and is used for evaluation. Final 

performance on the held-out validation set was obtained using 

model.evaluate(X_val, y_val), which reports validation loss 

and accuracy. To assess per-class behavior, predictions are 

computed to convert probabilities into discrete labels. The 

confusion matrix and a full classification report (precision, 

recall, F1-score, and support) are generated. The confusion 

matrix was visualized, displaying integer counts with class 

labels 0–3 on the axes. 

3.2 Model conversion phase 

Prior to the model training, the TensorFlow platform [27] 

output in HD5 format is utilized for the model conversion 

phase. The TensorFlow output is exported using a Python 

script as a .pb file. It is then compiled and converted using 

Tensil AI framework that is designed for the ML model to the 

FPGA integration process. Upon successful conversion, Tensil 

AI produces an RTL (Register Transfer Level) written using 

Verilog HW language, which is used for the preparation of the 

board’s internal logic, and three model files: .tdata, .tmodel 

and .tprog. The .tdata files typically contain information 

related to the dataset structure and input shape. The .tmodel 

file represents the architecture and parameters of the trained 

model. The .tprog contains programming or configuration data 

related to deploying the model on the PYNQ-Z2 board. The 

Verilog file is used to prepare the HW design of the board 

using the Xilinx Vivado tool, while the other three files are 

used later to deploy the model into the PYNQ-Z2 board using 

Jupyter Notebook. Figure 2 illustrates the Tensil AI 

framework and the files it is outputting. It is worthwhile to 

mention that, unlike other frameworks, Tensil AI only requires 

the HD5 format file for the model to generate the HW files of 

the CNN model, which does not require a high level of 

experience in HW design flow. 

Tensil AI facilitates the compilation and generation of the 

HW files of the CNN model. 

3.3 Prepare the PYNQ-Z2 environment phase 

The PYNQ-Z2 platform is selected for deployment because 

its Zynq-7000 SoC integrates an ARM Cortex-A9 processing 

system with programmable logic (PL), allowing the Tensil 

runtime and Jupyter notebooks to run directly on-board while 

the accelerator overlay executes in the PL. The PYNQ 

framework provides overlay support and Python APIs that 

significantly accelerate development, debugging, and 

reproducibility. This enables flexible integration between the 

host code and the Hardware files loading. 

In order to deploy the CNN model in the PYNQ-Z2 FPGA 

board, the board must be prepared in order to receive the HW 

and CNN model files and perform the inference. To prepare 

the FPGA platform for the implementation of our model, three 

steps are necessary. First is the setting up of the PYNQ-Z2 

board. Setting up the board involves loading the PYNQ-Z1 

image, officially available on the PYNQ IO website, into an 

SD card and then inserting the SD card image to the board to 

boot the board from it. The second step is the installation of 

necessary packages, in which software tools such as Xilinx 

Vivado, the PYNQ framework, and Python with its libraries 

are installed. Xilinx Vivado is installed inside the host 

computer, while the PYNQ framework and Python are 

installed inside the PYNQ-Z2 board. The last step involves 

preparation of the HW design of the PYNQ-Z2 fabric. The 

HW design is an RTL file written using Verilog language and 

is produced by Tensil AI. It describes the internal logic that 

should be inside the FPGA fabric and is compiled, 

synthesized, and installed using the Xilinx Vivado tool. 

After preparing the PYNQ-Z2 board, it can be booted as a 

network component with a specific IP address, and ML models 

can be downloaded to it using an Ethernet cable and Jupyter 

Notebook. It is worthwhile to mention that this preparation can 

be done only once, and every time the board is needed, it can 

be booted normally without any further preparation. 

Figure 2. Tensil AI framework and its role 

3.4 The model deployment phase 

The CNN model was chosen to process and sort the LiDAR 

image dataset that was made by using multiple convolutional 

and pooling layers to pull out features. The CNN model 

architecture starts with an input layer that processes the raw 

data; see Figure 3. The next layer is a group of convolutional 

layers (Conv2D), each with a set of filters for capturing spatial 

hierarchies in the data. As you go deeper, the number of 

parameters increases. The MaxPooling2D layers disperse 

throughout the model, aiding in the reduction of the spatial 

dimensions of the map’s features. In addition, they maintain 
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essential information, which ensures computational efficiency 

and the avoidance of overfitting; see Figure 3. To avoid 

overfitting and encourage generalization, the model includes a 

dropout layer that randomly disables a portion of neurons 

during training; see Figure 3. The final layer of the model 

architecture flattens the output into a one-dimensional vector, 

preparing the data for the dense layers. The dense layer has 

128 neurons and combines the information learned in the 

earlier layers. It ends with an output layer that has four neurons 

that handle the classification tasks. 

Figure 3. Model architecture and layers 

3.5 Inference phase 

The final phase in our framework is the inference phase, 

which is where the model is run to make predictions on new 

data. This step includes refining the output using post-

processing and ensuring that it achieves the application 

requirements. Following that, as a last step, a comprehensive 

testing procedure was conducted for the model’s performance 

validation. 

This framework gives a planned way to create and use 

machine learning models on FPGA platforms, making sure 

that each step is done carefully to get the best performance and 

dependability. 

4. RESULTS

This section presents the findings from the analysis of 

LiDAR data using image-based methods. The results 

demonstrate the model’s performance in classifying various 

features extracted from processed images. This section is 

divided into two parts; the first part describes the performance 

of the SW model, and the second part details the PYNQ-Z2 

implementation of the model and the acceleration gained. 

The LidarDataFrames dataset [25] contains a collection of 

LiDAR point cloud data. A point cloud is a collection of data 

points in a 3D coordinate system that represents the spatial 

structure of an environment. This dataset includes various 

indoor attributes such as rooms, doorways, corridors, and 

halls. To convert this LiDAR data into greyscale images, 

techniques such as rasterization were used, where the point 

cloud data is transformed into a 2D image. This involves 

projecting the 3D points onto a 2D plane to create an intensity 

image. By assigning pixel values based on elevation or 

intensity metrics from the LiDAR data, images that represent 

the spatial features of the environment were generated. These 

images were then used as input for training, validating, and 

testing the CNN model. Each row of height values is reshaped 

into a 20×18 grid, scaled to 0-255, and converted into 

greyscale images using the PIL library. The last column is 

separately extracted, class_ids, to represent the classification 

labels. 

4.1 SW version 

The CNN model was trained on a desktop workstation 

equipped with an Intel Core i7 11800H, operating at a clock 

speed of 2.30 GHz and working on a 64-bit version of 

Windows 11. It features 16GB of DDR4 RAM, and the 

workstation is powered by an NVIDIA GeForce RTX 3050 

graphics card. The software environment includes CUDA 

version 11.8.522 and cuDNN version 11.2.0. The training was 

conducted using Python 3.9.0, with TensorFlow 2.1.0 and 

Keras 2.3.1 as the primary libraries for building and training 

the CNN model. 

Figure 4. Training and validation loss vs. epoch 

Figure 5. Training and validation accuracy vs. epoch 

Figure 4 presents the training and validation loss over 200 

epochs during the model training process. Initially, both 

training and validation losses are relatively high, and as 

training progresses, the training loss exhibits a steady decline, 

reflecting the model’s ability to learn from the training data 

effectively. This trend continues until about epoch 150, where 

the training loss stabilizes at a lower value, suggesting that the 

model has reached a satisfactory level of fit to the training data. 

The validation loss also decreases throughout the early epochs, 

which indicates that the model generalizes well to unseen data. 

However, it is important to note that after epoch 150, the 

validation loss begins to fluctuate, suggesting potential 

instability in the model’s performance. Despite these 

fluctuations, the final validation loss remains relatively low, 

which demonstrates that the model maintains a good fit to the 
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validation dataset. The gap between the training and validation 

loss curves is minimal, which is indicative of a well-

regularized model that is not overfitting the training data. The 

results suggest that the model is effective in learning the 

underlying patterns in the data while maintaining 

generalizability. 

Curves are from a representative run (no smoothing). The 

model was trained for up to 300 epochs with ModelCheckpoint 

saving the best model by validation loss. 

Similarly, Figure 5 illustrates the training and validation 

accuracy of the model over 200 epochs. The training accuracy 

shows a steady increase and stabilizes at a high value, which 

suggests that the model effectively learns from the training 

data. The validation accuracy closely follows the training 

accuracy throughout the epochs. This alignment suggests that 

the model generalizes well to unseen data without significant 

overfitting. Both accuracy curves converge towards 1, 

indicating that the model achieves a high level of performance 

on both the training and validation datasets. The relatively 

smooth lines with minor fluctuations suggest stability in the 

model’s learning process. The plot indicates that the model is 

performing well with high training and validation accuracies 

and reflects the effective learning and generalization 

capabilities. 

Figure 6. Samples of true and predicted images (part a) 

Figure 7. Samples of true and predicted images (part b) 
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Figure 8. The confusion matrix 

Figure 9. The hardware setup used in this work 

Samples of the images for the predicted classes, along with 

the actual class, are shown in Figure 6 and Figure 7. It is 

worthwhile to mention that the pattern in the images is 

different among the images, and therefore, the model should 

be trained efficiently to correctly classify them. As can be seen 

in Figure 8, the confusion matrix visualizes the performance 

of a classification model across the four classes labelled 0, 1, 

2, and 3. Each cell in the matrix indicates the number of 

instances predicted by the model versus the actual instances. 

The model was able to correctly classify all the classes 

expected for two images from class 3, which were classified 

as class 0. The reason for this misclassification could be due 

to the imbalance in the dataset, where class 0 had more 

samples than class 2. On the held-out validation set of 83 

samples, the best saved model achieved a high overall 

accuracy as reported. The classification report further breaks 

down performance into precision, recall, and F1-score for each 

of the four classes (corridors, doorways, halls, and rooms). The 

confusion matrix highlights correct predictions along the 

diagonal and misclassifications off-diagonal. Notably, class 2 

(halls) shows fewer validation samples (11 instances), which 

should be considered when interpreting its per-class metrics. 

The heatmap visualization generated provides an intuitive 

overview of these results, with darker diagonal cells reflecting 

stronger class-specific accuracy. 

Table 4. The classification report of our model 

Precision Recall F1-Score Accuracy 

0 0.94 1.00 0.97 

0.98 
1 1.00 1.00 1.00 

2 1.00 0.82 0.90 

3 1.00 1.00 1.00 

The classification report is shown in Table 4 and 

summarizes the performance metrics of a model across the 

four classes, including precision, recall, F1-score, and 

accuracy metrics. For class 0, the model has a precision of 

0.94, meaning that 94% of instances predicted as class 0 were 

correct. The recall is 1.00, indicating that all actual instances 
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of class 0 were correctly identified. The F1-score, which 

balances precision and recall, is 0.97, reflecting strong 

performance. For class 1, the model achieved a perfect 

precision and recall of 1.00, resulting in an F1-score of 1.00 as 

well. Similarly for class 3, the model also achieved perfect 

scores across all metrics. The model is highly effective in 

identifying instances of these classes without any false 

positives or negatives. Class 2 shows a precision of 1.00, 

which suggests that all predicted instances of this class were 

correct. However, the recall is 0.82, which suggests that 82% 

of actual instances were correctly identified, leading to an F1-

score of 0.90. 

The metrics used are denoted by the following Eqs. (1-4) as 

follows: 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
(1) 

TP
Precision

TP FP
=

+
(2) 

TN
Recall

TN FP
=

+
(3) 

1 2
Precision Recall

F Score
Precision Recall


= 

+
(4) 

4.2 HW version 

The results presented in this subsection demonstrate the use 

of PYNQ-Z2 FPGA platform for the proposed framework for 

the analysis of LiDAR data. The hardware implementation of 

the proposed framework, shown in Figure 9, Figure 10, and 

Figure 11, was carried out and was tested using the same 83 

images used for testing the SW version. The FPGA-based 

solution completed the inference time in just 0.6207 seconds 

with an average inference time of about 0.0077 seconds per 

image. As can be shown in the Jupyter Notebook in Figure 10, 

first the HW design bitstream file (.bit) generated by Xilinx 

Vivado to the FPGA fabric is loaded, and using the helper 

functions in the script, a sample image along with its true class 

is shown (Figure 11). Then, the compiled model is loaded to 

the FPGA, and test images are fed as input to the model inside 

the FPGA. The FPGA, in turn, performs the prediction and 

produces the output. The script then reports the number of 

images, average inference time, and accuracy. For more 

comprehensive image analysis and illustration, a summary of 

more sample images, including inference time, actual, and 

predicted classes, is also reported in Figure 11. 

Figure 10. Snippet of Python script used for FOGA inference on Jupyter Notebook 
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Figure 11. A summary of more sample images, including inference time, actual and predicted classes 

Table 5 summarizes the findings of the model for both the 

SW and HW implementations using the test dataset, which 

consists of 83 images. The hardware version is faster than the 

software version by more than 2x, and the average inference 

time per image is also improved, making HW more efficient 

for real-time. The hardware optimization does not compromise 

model performance, as the accuracy of the SW and the HW 

versions are almost identical. The FPGA-based 

implementation of the model consumes only 1.616W in total, 

with 1.472W attributed to dynamic power usage. In contrast, 

GPU-based implementations, such as the NVIDIA RTX 3050, 

measured and used in the comparative study, consume around 

37.7W. The FPGA-based solution consumes nearly 24x less 

power than the SW GPU-based solution. 

The results highlight the advantages of the proposed real-

time image-based framework for LiDAR data analysis using 

the PYNQ-Z2 FPGA. The convolutional neural networks and 

the performance capabilities of the PYNQ-Z2 FPGA could 

create many innovative applications in indoor/outdoor 

robotics equipped with LiDAR and the medical field, where 

real-time and low-cost devices are necessary for running ML 

models. Furthermore, the energy efficiency of FPGA-based 
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implementations makes them suitable for edge AI LiDAR 

applications to reduce the reliance on cloud computing while 

maintaining high accuracy and low latency. Future research 

directions may include the exploration of end-to-end deep 

learning solutions for LiDAR data analysis, the incorporation 

of advanced neural network architectures, and the 

investigation of hardware-aware model optimization 

techniques to further enhance the efficiency and real-time 

performance of the system. Further support for FPGA 

platforms for ML models, such as pre-trained models, could 

hugely impact the adoption of the FPGA platforms in various 

AI applications. 

Table 5. Summary of the findings of the model for both the 

SW and HW implementations using the test dataset 

SW 

Version 

HW 

Version 

Inference Time 1.3888 s 0.6207 s 

Average Inference Time Per 

Image 
0.01673 s 0.0077 s 

Accuracy 98% 98.80% 

Power consumption 37.70W 1.61W 

5. DISCUSSION

The results indicated that the proposed image-based 

machine learning framework for analyzing the LiDAR dataset 

is effective, particularly its deployment on an FPGA platform. 

Transforming the raw LiDAR data into images has facilitated 

the use of the convolutional neural network (CNN) method, 

which helps in classification accuracy and feature extraction 

tasks. In addition, further performance optimization resulted 

from integrating FPGA-based acceleration, which provided 

real-time inference along with efficient energy consumption. 

The main achievement of this work is improving the 

accuracy and inference speed of the LiDAR dataset 

classification. The FPGA-based implementation achieved an 

accuracy of 98.80%, which is slightly higher than the 

software-based implementation (98%). It also took 2 times less 

time for the FPGA version to draw conclusions than the 

software version (0.6207 seconds for 83 test images, or 0.0077 

seconds per image), which shows that it can be used in real-

time situations. In real-time applications, the inference time is 

a vital element, particularly in autonomous navigation, 

robotics, and edge computing. The performance boost comes 

from the PYNQ-Z2 FPGA’s efficient hardware and the ability 

to do computing in parallel. This work’s FPGA 

implementation consumed ultra-low power, just 1.616 W, 

which is about 24 times more efficient than the GPU-based 

processing used in the study. These enhancement results show 

that our proposal is an efficient real-time candidate solution 

for applications such as autonomous navigation, robotics, and 

edge computing. 

In comparison with the related studies listed in the related 

work section, our work provides a different approach that 

facilitates the integration of deep learning models on FPGA 

platforms. It leverages CNN-based classification on LiDAR 

data, represented as images. Unlike our approach, which is 

highly compatible with CNN architectures, the other 

approaches [1, 12, 28, 29] are focused mostly on traditional 

feature extraction techniques or direct point cloud 

computations. These approaches did not explore image 

transformation techniques that enable seamless deployment of 

the ML models to FPGAs. Studies [20, 22] utilized a CNN-

based method for processing the LiDAR dataset; however, it 

utilized high FPGA resources, while our method achieved a 

balanced solution with high accuracy and speed and low power 

consumption (1.616W). 

Furthermore, the LiDAR data-to-image transformation 

facilitates the data interpretation and allows for the reuse of 

well-established image processing and deep learning 

methodologies. The CNN architecture works well for 

classifying images, and the proposed framework takes 

advantage of this to find intensity-related and spatial patterns 

in the dataset that might be hard to handle with traditional 

point-cloud-based processing methods. The results provided a 

more intuitive interpretation of the LiDAR dataset features and 

improved the classification capabilities. 

Although the proposed framework showed many 

advantages, some drawbacks should be acknowledged. One of 

them is that the dataset used does not represent the complexity 

of real-world environments and might not be a candidate that 

can be generalized. Therefore, the incorporation of diverse 

datasets that have different outdoor scenes, complex obstacles, 

varying lighting conditions, and different environmental 

settings can address this limitation. Also, the CNN model can 

be made even more efficient on FPGA platforms by using 

techniques like quantization, hardware-aware neural 

architecture search (NAS), and pruning, along with other 

optimizations. 

The preprocessing overhead associated with the initial 

conversion of the LiDAR dataset to the image format presents 

another limitation. Therefore, exploring more efficient direct 

feature extraction techniques or efficient encoding strategies 

to convert LiDAR raw data into images is recommended. In 

addition, the performance can be further enhanced by 

integrating extra neural networks, like lightweight deep 

learning frameworks or transformer-based models, which 

could be useful to explore in future work. 

The findings in this work proved the viability of combining 

FPGA acceleration with the CNN method to analyze and 

classify LiDAR data. The result paves the way for integrating 

the energy-efficient hardware elements and real-time-capable 

LiDAR classification systems, particularly in applications 

such as autonomous navigation, edge computing, and robotics. 

In addition, this work shows a promising solution for elevating 

the real-time LiDAR processing. 

6. CONCLUSIONS

In this work, a novel LiDAR dataset analysis framework 

combines FPGA acceleration and image-based machine 

learning methods to improve the inference efficiency and 

classification performance of the LiDAR dataset. The work 

showcases a significant enhancement in processing, accuracy, 

and power efficiency by utilizing image representations for the 

LiDAR point cloud data, which are then processed using CNN 

methods. 

The findings show that the FPGA implementation version 

achieved better performance than the traditional software-

based models as a result of a reduction in inference time by 

more than 50% and a high accuracy rate. In addition, the 

energy savings that the FPGA platform has offered underscore 

the importance of such solutions for applications such as 

autonomous navigation, edge computing, and robotics, where 

low-power accelerators are a vital element. 
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Not only a solution for LiDAR data processing, the 

proposed framework can be adapted for many applications that 

operate on low-power real-time sensors, such as smart cities 

monitoring, robotic vision, and autonomous vehicles. So, 

bridging the gap between hardware acceleration based on 

FPGAs and CNN methods can give us a reliable and scalable 

way to process LiDAR data in real-time situations. The 

proposed framework has great potential with advancements in 

FPGA technology and machine learning methods to enhance 

LiDAR data utilization across a wide range of applications. 
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NOMENCLATURE 

N total number of samples in the dataset 

H image height 

W image width 

F total number of features per sample 

B batch size used in training 

E maximum number of training epochs 

Greek symbols 

 learning rate of optimizer 

 momentum/decay parameter 

Subscripts 

Train training set 

Val validation set 
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