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This study presents an image-based machine learning framework for efficient LIDAR data
analysis implemented on FPGA hardware. Unlike conventional point cloud processing
approaches that demand extensive computational resources, the proposed method converts
raw LiDAR measurements from CSV format into compact grayscale image representations,
enabling efficient feature extraction and compatibility with hardware accelerators. The
workflow comprises data normalization, model training, hardware compilation, and
deployment on the PYNQ-Z2 FPGA board using the Tensil Al toolchain. Experimental
results show that the FPGA-accelerated convolutional neural network (CNN) achieves a
classification accuracy of 98.8%, outperforming software-based implementations while
reducing inference time by more than twofold and power consumption by approximately
24 times compared with a GPU. These results confirm the advantages of FPGA acceleration
in achieving real-time performance with minimal energy overhead. The proposed
framework offers a scalable and energy-efficient solution for LiDAR data classification and
can be seamlessly integrated into embedded systems for real-time applications in
autonomous navigation, smart city monitoring, and edge computing.

1. INTRODUCTION

The use of LiDAR data has become increasingly crucial for
many applications, such as smart cities, autonomous vehicles,
forest management, precision agriculture, and robotics.
LiDAR technology is used to get a detailed picture of the shape
and structure of an area of interest in either 2D or 3D point-
cloud data. This data can then be utilized for object detection
and classification of the designated area. However, the
complex and large amount of data captured by LiDAR poses
significant challenges to efficient processing in real-time
decision-making applications [1, 2].

Techniques for analyzing LiDAR data have shifted from
feature extraction methods that were hand-crafted to the
utilization of machine learning (ML) methods such as deep
learning. This has completely changed how LiDAR data is
processed. The use of ML techniques cleared the way for
LiDAR’s solutions, which are more robust and adaptive.
Training the ML algorithms on diverse and large LiDAR
datasets can be beneficial in extracting meaningful patterns
and features from them, which can achieve efficient
classification, object detection, and semantic segmentation
with high accuracy [2, 3].

While machine learning models can be useful, they pose
significant challenges as they need a great deal of processing
power, especially when they are used in real-time systems.
FPGAs present a viable solution for LiDAR dataset analysis
because the FPGA technology offers a unique blend of
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flexibility, energy efficiency, and parallelism. FPGAs are a
well-suited processing element for the implementation of ML-
based LiDAR datasets, especially for robotic or embedded
systems applications. They can customize hardware
architectures that align with the ML-based LiDAR datasets
algorithm requirements. This allows for a real-time LiDAR
implementation that uses little energy and low latency [4-6].

For easier understanding, LiDAR data can be shown as
pictures that make the data easier to understand [7, 8]. Also,
for machine learning algorithms like CNNs, images are a
standard format that can make integrating the ML model into
an FPGA easier [9, 10]. The images’ hierarchical features can
be extracted automatically, which benefits the classification
performance greatly without the need for extensive feature
engineering [11]. An image represents each processed version
of the LiDAR dataset, illustrating intensity, height
information, or other attributes. Therefore, different colours
can visually represent the image’s various features, aiding in
data interpretation. In addition, images make the analysis and
understanding of its object characteristics or the underlying
terrain more accessible, as the pixel values correspond to
various measurements (e.g., elevation).

The research in this paper goes into excellent detail about
how to use machine learning methods, especially image-based
deep learning methods, to look at LiDAR data on FPGA
platforms. The suggested framework looks at the difficulties
and chances of creating effective and reliable LiDAR
processing solutions. It shows how real-time decision-making
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and edge computing could be used in various robotic and
embedded systems. Although numerous FPGA accelerators
for LiDAR exist, most operate on raw point clouds, voxels, or
hand-crafted features, which complicate hardware mapping
and increase on-chip memory use. Therefore, there is a need
for an alternative that can map the LiDAR frame into a
compact 2D image that captures intensity/elevation patterns.
This image representation enables efficient use of standard 2D
CNN layers, simplifies the operator set needed for hardware
acceleration, and reduces the memory usage. Therefore, there
is a need for an alternative that can map the LiDAR frame into
a compact 2D image that captures intensity/elevation patterns.
This image representation enables efficient use of standard 2D
CNN layers, simplifies the operator set needed for hardware
acceleration, and reduces the memory usage. Therefore, the
research objectives of this paper aim to design a compact and
reproducible pipeline to convert LiDAR scan rows into 2D
image representations that are compatible with lightweight
CNNs, develop and train a lightweight CNN that can be used
for FPGA acceleration, and deploy and evaluate the CNN
model on a PYNQ-Z2 board using the Tensil Al toolchain.

This paper proposes a novel method that utilizes FPGAs and
CNN algorithms to address challenges in processing LiDAR
technology datasets. The proposed method proposes a unique
method of converting the LiDAR dataset point cloud to an
image format that is mostly compatible with FPGA hardware
features. This approach shows an effective technique for
achieving a reduction in processing time with low power
consumption and increasing LiDAR accuracy.

Our contribution unfolds into three points as follows:

*Convert LiDAR readings to compact image
representations compatible with CNNs and FPGA constraints.

*Design and train a CNN optimized for small-footprint
hardware acceleration.

*Deploy and evaluate the model on a PYNQ-Z2 FPGA
board using the Tensil Al toolchain, reporting accuracy,
latency, and power.

The rest of the paper is structured as follows: Section 2
discusses the related work on LiDAR-FPGA-based solutions.
Section 3 presents the methodology implemented. Section 4
delves into the experimental results with details on both the
hardware and software findings. Section 5 discusses the
results, implications, and findings. Section 6 concludes the
work by suggesting potential avenues for future research.

2. RELATED WORK

This section discusses the emergence of FPGA utilization
as a hardware acceleration for LIDAR data processing in many
research studies.

Using quantization techniques and a model of convolutional
neural networks. Several studies [12-17] suggest an FPGA
solution to improve the performance of processing LiDAR
data. This made the analysis of LIDAR data more flexible and
reliable. While the proposed approach demonstrated the
benefits of hardware acceleration in enhancing LiDAR’s
computationally intensive tasks, it does not utilize image-
based machine learning frameworks. In the same way, Brum
et al. [1] used an FPGA and quantization techniques to create
a fast and accurate 3D LiDAR data object detection
accelerator. Xu et al. [8] did not consider enhancing the
performance of their accelerator using image-based machine
learning techniques. Xiao et al. [9] used a low-cost FPGA to
design an accelerator for processing real-time simultaneous
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localization and mapping (SLAM) algorithms, which can be
adopted for a variety of LiDAR datasets. Their hardware
solution uses the flexibility and ability to do many tasks at
once that FPGA technology provides to create an efficient
method for processing LiDAR data in SLAM. This approach
does not look at using machine learning methods with FPGA
hardware acceleration for tasks like semantic segmentation or
object detection, beyond just SLAM methods.

Carvalho et al. [18] wanted to help automotive applications
by making a ground segmentation method that works quickly,
accurately, and in real time. This method uses an FPGA to
separate LiDAR points that are on the ground from those that
are not. However, Sugiura and Matsutani [3] did not consider
the integration of machine learning algorithms. On the other
hand, Chen et al. [19] utilized neural network-based solutions
with FPGAs to provide a real-time accelerator that can process
LiDAR data with high object detection and classification
performance. While the proposed approach has demonstrated
high performance by utilizing a neural network with an FPGA,
it does not utilize image-based machine learning frameworks.

Another example is provided by Bai et al. [20], where they
offer a solution for improving LiDAR data quality for
autonomous cars. A hardware design using an FPGA and
machine learning models to quickly fill in missing depth data
in LiDAR point clouds in real-time. Li et al. [21] showed a
voxel encoding accelerator that works well for object detection
tasks. This is another example of an FPGA-LiDAR
contribution. This work demonstrates how an FPGA can be an
efficient solution for speedup; however, it is recommended to
consider integrating machine learning techniques such as
CNN, which can provide better overall accuracy and
performance efficiency. One of the essential tasks for LIDAR
data alignment is the performance of point cloud registration.

Sugiura and Matsutani [22] proposed an FPGA-based
accelerator to speed up the point cloud registration. This work
does not consider the integration of image-based machine
learning methods, as it could be a useful method for enhancing
the versatility and adaptability of point cloud registration.

Zolanvari et al. [23] leverage the FPGA capability with the
deep learning models to improve real-time LiDAR data
analysis. An example of an FPGA-image-based solution for
the LiDAR data is proposed by Wu et al. [24]. This work
shows a case of scene reconstruction and object detection
using a range of image generation and image-based machine
learning frameworks for enhancing real-time analysis of
LiDAR data.

Table 1 summarizes the contribution details of the presented
studies of the FPGA-ML used to optimize solutions for
LiDAR dataset processing. Different FPGA platforms,
LiDARs, and machine learning methods for various
application domains show the vital effort and interest in
contributing to this research area. However, there is clear
evidence that the effort in exploring combining image-based
machine learning techniques with the FPGA acceleration is
rare. Therefore, our work tries to fill that gap by suggesting a
new framework that uses both FPGA and deep learning to
make LiDAR data analysis faster, more flexible, and scalable.
This will also make current systems more useful by giving
them more options. In addition, Table 2 summarizes the
several platforms and toolchains that were utilized by the
various presented studies, which allow compiling ML models
for FPGA deployment, and illustrates why Tensil Al, which
this work utilized, might be suitable for users with basic
knowledge of FPGA design flow.



Table 1. Summary of key contributions in FPGA-based LiDAR data processing

Paper

Ref Used FPGA Platform LiDAR Type Indoor/Outdoor Target Application
[8] N/A N/A Outdoor Automotive Object Detection
[9] Pynqg-Z2 2D LiDAR Indoor (SLAM)  SLAM for mobile robots and indoor navigation
LiDAR (VLP-16, HDL-32, . .
[10] ALFA FPGA HDL-64, VLS-128) Outdoor Ground segmentation for road navigation
Enclustra Mars ZX3 LiDAR (SPAD-based d-TOF . . .
[11] FPGA LiDAR) Outdoor LiDAR histogram processing for ADAS
[12] PYNQ-based FPGA LiDAR (Velodyne HDL-64E) Outdoor Depth completion for autonomous vehicles
. . 3D object detection in LiDAR point clouds for
[13] N/A LiDAR (General 3D LiDAR) Outdoor .
Autonomous Vehicles
Avnet Ultra96v2, . . Point cloud registration for odometry and
[14] Xilinx ZCU104 LiDAR (3D Point Cloud) Outdoor SLAM for Autonomous Vehicles
[15] N/A Aerial LIDAR (ALS) Outdoor Classifying urban eleme‘nts and semantic
segmentation
[16] N/A N/A Outdoor Range image generation and LiDAR processing

for Automotive, Robotics

Table 2. Comparison of Al model compilation platforms for FPGA

Al Tool Platform Features
- Optimized for Xilinx FPGAs
Vitis AT Xilinx FPGAs - Uses Def:p Learnn}g Brocess1ng Unit (DHU) for acgelgratlon
- Requires quantization and model-specific compilation
- Best suited for high-end Xilinx FPGAs
Vivado HLS Xilinx FPGAs - Converts C/C++ mpdqls into FPGA-compatible hardware
- Allows designing custom ML accelerators
. - Enables FPGA-based ML deployment using Jupyter Notebooks
PYNQ (Python on Zynq)  Xilinx FPGAs - Supports pre-compiled bitstreams
- Al inference on FPGAs
. . - Converts ONNX/TensorFlow models into hardware-optimized execution
Tensil Al Xilinx FPGAs - Works with PYNQ-Z2 and low-power FPGAs
- Suitable for low-power embedded Al
OpenVINO for FPGA Intel FPGAs - Optimized for deep learning models on Intel FPGAs
. - Uses SYCL-based programming for FPGA acceleration
oneAPI DPC++ Compiler Intel FPGAs - Best suited for Intel FPGAs in data centers
HLS4ML Vendor-Neutral - Converts ML models into RTL for FPGA deployment
. - Optimized for quantized ML models
FINN (Xilinx Research) - Vendor-Neutral - Designed for low-latency inference on FPGAs
- Compiles ML models into FPGA-optimized code
TVM/ Apache TVM Vendor-Neutral - Supports various FPGA architectures
DPU Compiler Vendor-Neutral - Converts trained models into hardware-optimized bitstreams for Al acceleration
3. METHODOLOGY which is an evaluation board that has the Zynq-7000 All

This section presents the methodology followed and details
the tools, LiDAR datasets, ML models, and hardware
integration that are utilized in this work. In addition, the
process of converting the LiDAR dataset to images and the
deployment of machine learning models on the FPGA PYNQ-
72 platform is detailed.

To conduct this study, the publicly available LIDAR dataset
on Kaggle [25] is used. The data is generated by an RPLIDAR-
Al laser range scanner that is equipped in a mobile robot. It
contains 360 different LiDAR signals for four different
environments: corridors, doorways, halls, and rooms. Each of
the four different environments (corridors, doorways, halls,
and rooms) corresponds to one of the 411 instances in the data.
The dataset is a near-balanced class distribution where each
environment type has a similar number of instances.

The Xilinx PYNQ-Z2 [26] is chosen as the FPGA platform,
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Programmable SoC (System on Chip) devices. PYNQ-Z2 is
part of the PYNQ (Python + Zynq) ecosystem, which offers
the programming of the FPGA using Python to simplify the
development process of hardware programming. Besides the
Zyng-7000 SoC, the board contains an ARM Cortex-A9
processor, which makes it a flexible platform for applications
such as robotics, signal processing, and embedded systems.

Figure 1 shows the framework methodology followed,
which consists of five phases. The framework starts with the
model development, which consists of several steps. Then in
the second phase, the model is converted. The third phase
involves preparing the FPGA platform. Phases two and three
serve the fourth phase, which relates to the development of the
model. And the final phase is where the inferencing takes
place. The following subsections present these different
phases.
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Figure 1. Overall methodology framework of the proposed system

3.1 Model development phase

This phase has three steps, which start with the framework
selection to specify the environment that is best suited for the
model building.

Data Preparation: For the purpose of this work, the
LiDAR dataset [25] is converted from its original CSV format
into images for every class in order to prepare it for CNN
machine learning tasks. Firstly, the data is obtained using the
Pandas library, concentrating on only the relevant
measurement data. The core of the conversion process
involves reshaping the data into a three-dimensional array
suitable for 1image representation. Specifically, the
measurements are restructured into a defined height and width
of 20 by 18 pixels in this case—resulting in a format of
(num_samples, height, width). Normalization is then applied
to the pixel values, scaling them to a range between 0 and 1,
which is essential for improving the performance of machine
learning models. In addition, the dataset is split into two
subsets using the 80-20 ratio, one subset for training and the
other for validation. It is a vital step to preventing overfitting
and performance assessments. The dataset used in this work is
provided in the CSV format and contains a total of 411
examples. Each row contains an ID column, 360 flattened
feature values, and a final label column. The LiDAR dataset is
stored as CSV by removing non-signal columns (ID and label)
and extracting the 1D scan vector of length L for each sample.
Each vector was reshaped into a compact 2D image of size
height x width, such that height x width = L (used 20 x 18 =
360). Missing values were imputed using column means, and
values outside the 0.5th-99.5th percentiles were clipped.
Dataset-wise min—max normalization is applied to scale values
to 0,1, expanded the tensors to single-channel format (Height,
Width, 1). Finally, the images were saved, and arrays were
also saved as .npy files for reproducibility. This compactness
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is essential for the FPGA implementation on the PYNQ-Z2,
where on-chip BRAM and DSP resources are limited. Table 3
summarizes the dataset and its class naming and distribution.

Table 3. Dataset summary

Value
411
20 x 18 (360 features)

Item
Total samples
Image size (H x W)
Class distribution (total)

Class 0 109
Class 1 100
Class 2 99
Class 3 103

Train / Val

Train (total) 328
Class 0 77
Class 1 80
Class 2 88
Class 3 83

Validation (total) 83

Class 0 32
Class 1 20
Class 2 11
Class 3 20

Model Training: To facilitate the organization of the
images for the model training and validation tasks, directories
are established for each class label within the two subsets. And
the final step is generating and saving the images. The
corresponding LIDAR data is visualized in both the training
and validation sets using Matplotlib. Then the visualized
images are saved as greyscale images within their respective
class directories. This process helps with the image
classification tasks. These steps are essential for transforming
the LiDAR dataset [25] into the desired format that is suitable
for image classification tasks in this work. Furthermore, these



steps enhance the deep learning techniques for analysis and
prediction. The model was compiled using the Adam
optimizer with the sparse categorical cross-entropy loss and
trained to monitor accuracy. Training was performed with a
batch size (B) of 32 and up to 300 epochs (E), learning rate (o)
of 0.0001 and no momentum/decay parameter (). A Model
Checkpoint callback was used to save the best model
according to validation loss. The training call used an
augmented data generator and after training the best model for
final evaluation is reloaded.

During training on-the-fly augmentation is applied using the
Keras ImageDataGenerator with the following parameters:
rotation_range 20, width shift range 0.2,
height shift range = 0.2, shear range = 0.2, zoom_range =
0.2, horizontal flip = True, and fill mode = 'nearest'. The
augmentation generator was fit on the training set and then
used to provide augmented batches to the network during
training.

For model selection, the checkpoint with the minimum
validation loss is saved and is used for evaluation. Final
performance on the held-out validation set was obtained using
model.evaluate(X val, y val), which reports validation loss
and accuracy. To assess per-class behavior, predictions are
computed to convert probabilities into discrete labels. The
confusion matrix and a full classification report (precision,
recall, Fl-score, and support) are generated. The confusion
matrix was visualized, displaying integer counts with class
labels 0-3 on the axes.

3.2 Model conversion phase

Prior to the model training, the TensorFlow platform [27]
output in HD5 format is utilized for the model conversion
phase. The TensorFlow output is exported using a Python
script as a .pb file. It is then compiled and converted using
Tensil Al framework that is designed for the ML model to the
FPGA integration process. Upon successful conversion, Tensil
Al produces an RTL (Register Transfer Level) written using
Verilog HW language, which is used for the preparation of the
board’s internal logic, and three model files: .tdata, .tmodel
and .tprog. The .tdata files typically contain information
related to the dataset structure and input shape. The .tmodel
file represents the architecture and parameters of the trained
model. The .tprog contains programming or configuration data
related to deploying the model on the PYNQ-Z2 board. The
Verilog file is used to prepare the HW design of the board
using the Xilinx Vivado tool, while the other three files are
used later to deploy the model into the PYNQ-Z2 board using
Jupyter Notebook. Figure 2 illustrates the Tensil Al
framework and the files it is outputting. It is worthwhile to
mention that, unlike other frameworks, Tensil Al only requires
the HDS format file for the model to generate the HW files of
the CNN model, which does not require a high level of
experience in HW design flow.

Tensil Al facilitates the compilation and generation of the
HW files of the CNN model.

3.3 Prepare the PYNQ-Z2 environment phase

The PYNQ-Z2 platform is selected for deployment because
its Zynqg-7000 SoC integrates an ARM Cortex-A9 processing
system with programmable logic (PL), allowing the Tensil
runtime and Jupyter notebooks to run directly on-board while
the accelerator overlay executes in the PL. The PYNQ
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framework provides overlay support and Python APIs that
significantly accelerate development, debugging, and
reproducibility. This enables flexible integration between the
host code and the Hardware files loading.

In order to deploy the CNN model in the PYNQ-Z2 FPGA
board, the board must be prepared in order to receive the HW
and CNN model files and perform the inference. To prepare
the FPGA platform for the implementation of our model, three
steps are necessary. First is the setting up of the PYNQ-Z2
board. Setting up the board involves loading the PYNQ-Z1
image, officially available on the PYNQ IO website, into an
SD card and then inserting the SD card image to the board to
boot the board from it. The second step is the installation of
necessary packages, in which software tools such as Xilinx
Vivado, the PYNQ framework, and Python with its libraries
are installed. Xilinx Vivado is installed inside the host
computer, while the PYNQ framework and Python are
installed inside the PYNQ-Z2 board. The last step involves
preparation of the HW design of the PYNQ-Z2 fabric. The
HW design is an RTL file written using Verilog language and
is produced by Tensil Al It describes the internal logic that
should be inside the FPGA fabric and is compiled,
synthesized, and installed using the Xilinx Vivado tool.

After preparing the PYNQ-Z2 board, it can be booted as a
network component with a specific IP address, and ML models
can be downloaded to it using an Ethernet cable and Jupyter
Notebook. It is worthwhile to mention that this preparation can
be done only once, and every time the board is needed, it can
be booted normally without any further preparation.

Choose PYNQ
FPGA Architecture
l .tarch l
Generate RTL files Compile ML model
v ] =
Xilinx Vivado i
R
=4 P
- &
;..;_; =)
PYNQ FPGA

Figure 2. Tensil Al framework and its role
3.4 The model deployment phase

The CNN model was chosen to process and sort the LiDAR
image dataset that was made by using multiple convolutional
and pooling layers to pull out features. The CNN model
architecture starts with an input layer that processes the raw
data; see Figure 3. The next layer is a group of convolutional
layers (Conv2D), each with a set of filters for capturing spatial
hierarchies in the data. As you go deeper, the number of
parameters increases. The MaxPooling2D layers disperse
throughout the model, aiding in the reduction of the spatial
dimensions of the map’s features. In addition, they maintain



essential information, which ensures computational efficiency
and the avoidance of overfitting; see Figure 3. To avoid
overfitting and encourage generalization, the model includes a
dropout layer that randomly disables a portion of neurons
during training; see Figure 3. The final layer of the model
architecture flattens the output into a one-dimensional vector,
preparing the data for the dense layers. The dense layer has
128 neurons and combines the information learned in the
earlier layers. It ends with an output layer that has four neurons
that handle the classification tasks.

CNN Model Architecture

Input Layer Hnout Layer

Comnv2D (32) fConv2D (32}
Maxbooling2 (2 [MaxFooling2D

Corn2D (6d) Conv2D {64}
MaxPooling20 [MaxPooling2D

Flatten [Flatten
Dense (128) Dense (128)

Dense (4) | Dense (4)

10000 20000 30000 40000 50000 60000 70000 80000
Number of Parameters

Figure 3. Model architecture and layers
3.5 Inference phase

The final phase in our framework is the inference phase,
which is where the model is run to make predictions on new
data. This step includes refining the output using post-
processing and ensuring that it achieves the application
requirements. Following that, as a last step, a comprehensive
testing procedure was conducted for the model’s performance
validation.

This framework gives a planned way to create and use
machine learning models on FPGA platforms, making sure
that each step is done carefully to get the best performance and
dependability.

4. RESULTS

This section presents the findings from the analysis of
LiDAR data using image-based methods. The results
demonstrate the model’s performance in classifying various
features extracted from processed images. This section is
divided into two parts; the first part describes the performance
of the SW model, and the second part details the PYNQ-Z2
implementation of the model and the acceleration gained.

The LidarDataFrames dataset [25] contains a collection of
LiDAR point cloud data. A point cloud is a collection of data
points in a 3D coordinate system that represents the spatial
structure of an environment. This dataset includes various
indoor attributes such as rooms, doorways, corridors, and
halls. To convert this LiDAR data into greyscale images,
techniques such as rasterization were used, where the point
cloud data is transformed into a 2D image. This involves
projecting the 3D points onto a 2D plane to create an intensity
image. By assigning pixel values based on elevation or
intensity metrics from the LiDAR data, images that represent
the spatial features of the environment were generated. These
images were then used as input for training, validating, and
testing the CNN model. Each row of height values is reshaped
into a 20x18 grid, scaled to 0-255, and converted into
greyscale images using the PIL library. The last column is
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separately extracted, class_ids, to represent the classification
labels.

4.1 SW version

The CNN model was trained on a desktop workstation
equipped with an Intel Core 17 11800H, operating at a clock
speed of 2.30 GHz and working on a 64-bit version of
Windows 11. It features 16GB of DDR4 RAM, and the
workstation is powered by an NVIDIA GeForce RTX 3050
graphics card. The software environment includes CUDA
version 11.8.522 and cuDNN version 11.2.0. The training was
conducted using Python 3.9.0, with TensorFlow 2.1.0 and
Keras 2.3.1 as the primary libraries for building and training
the CNN model.

Loss over Epochs

\ —— Train Loss
Validation Loss

Loss

0.4 4 \\

0.2 Y \ A
VAL ol

w"‘WI\WWMIM

0 25 50 75 100 125 150 175 200
Epachs

0.0

Figure 4. Training and validation loss vs. epoch

Accuracy over Epochs

0.3 —— Train Accuracy
— Validation A((uraty

o 25 50 3 100 125 150 175 200
Epochs

Figure 5. Training and validation accuracy vs. epoch

Figure 4 presents the training and validation loss over 200
epochs during the model training process. Initially, both
training and validation losses are relatively high, and as
training progresses, the training loss exhibits a steady decline,
reflecting the model’s ability to learn from the training data
effectively. This trend continues until about epoch 150, where
the training loss stabilizes at a lower value, suggesting that the
model has reached a satisfactory level of fit to the training data.
The validation loss also decreases throughout the early epochs,
which indicates that the model generalizes well to unseen data.
However, it is important to note that after epoch 150, the
validation loss begins to fluctuate, suggesting potential
instability in the model’s performance. Despite these
fluctuations, the final validation loss remains relatively low,
which demonstrates that the model maintains a good fit to the



validation dataset. The gap between the training and validation
loss curves is minimal, which is indicative of a well-
regularized model that is not overfitting the training data. The
results suggest that the model is effective in learning the
underlying patterns in the data while maintaining
generalizability.

Curves are from a representative run (no smoothing). The
model was trained for up to 300 epochs with ModelCheckpoint
saving the best model by validation loss.

Similarly, Figure 5 illustrates the training and validation
accuracy of the model over 200 epochs. The training accuracy
shows a steady increase and stabilizes at a high value, which

True: 0
Pred: 0

True: 1
Pred: 1

True: 0
Pred: 0

suggests that the model effectively learns from the training
data. The validation accuracy closely follows the training
accuracy throughout the epochs. This alignment suggests that
the model generalizes well to unseen data without significant
overfitting. Both accuracy curves converge towards 1,
indicating that the model achieves a high level of performance
on both the training and validation datasets. The relatively
smooth lines with minor fluctuations suggest stability in the
model’s learning process. The plot indicates that the model is
performing well with high training and validation accuracies
and reflects the effective learning and generalization
capabilities.

True: 3
Pred: 3

True: 3
Pred: 3

LI |

Figure 6. Samples of true and predicted images (part a)

Trua: 1

Truss: 2 True: 2

Figure 7. Samples of true and predicted images (part b)
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Figure 8. The confusion matrix

Figure 9. The hardware setup used in this work

Samples of the images for the predicted classes, along with
the actual class, are shown in Figure 6 and Figure 7. It is
worthwhile to mention that the pattern in the images is
different among the images, and therefore, the model should
be trained efficiently to correctly classify them. As can be seen
in Figure 8, the confusion matrix visualizes the performance
of a classification model across the four classes labelled 0, 1,
2, and 3. Each cell in the matrix indicates the number of
instances predicted by the model versus the actual instances.
The model was able to correctly classify all the classes
expected for two images from class 3, which were classified
as class 0. The reason for this misclassification could be due
to the imbalance in the dataset, where class 0 had more
samples than class 2. On the held-out validation set of 83
samples, the best saved model achieved a high overall
accuracy as reported. The classification report further breaks
down performance into precision, recall, and F1-score for each
of the four classes (corridors, doorways, halls, and rooms). The
confusion matrix highlights correct predictions along the
diagonal and misclassifications off-diagonal. Notably, class 2
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(halls) shows fewer validation samples (11 instances), which
should be considered when interpreting its per-class metrics.
The heatmap visualization generated provides an intuitive
overview of these results, with darker diagonal cells reflecting
stronger class-specific accuracy.

Table 4. The classification report of our model

Precision Recall F1-Score Accuracy
0 0.94 1.00 0.97
1 1.00 1.00 1.00
2 1.00 0.82 0.90 0.98
3 1.00 1.00 1.00

The classification report is shown in Table 4 and
summarizes the performance metrics of a model across the
four classes, including precision, recall, Fl-score, and
accuracy metrics. For class 0, the model has a precision of
0.94, meaning that 94% of instances predicted as class 0 were
correct. The recall is 1.00, indicating that all actual instances



of class 0 were correctly identified. The Fl-score, which
balances precision and recall, is 0.97, reflecting strong
performance. For class 1, the model achieved a perfect
precision and recall of 1.00, resulting in an F1-score of 1.00 as
well. Similarly for class 3, the model also achieved perfect
scores across all metrics. The model is highly effective in
identifying instances of these classes without any false
positives or negatives. Class 2 shows a precision of 1.00,
which suggests that all predicted instances of this class were
correct. However, the recall is 0.82, which suggests that 82%
of actual instances were correctly identified, leading to an F1-
score of 0.90.

The metrics used are denoted by the following Eqgs. (1-4) as
follows:

TP+TN
Accuracy = (1)
TP+TN+FP+FN
Precision = ——— 2)
TP+FP
Recall = N 3)
TN+ FP
7 Jupyter  lidar Last Checkpoint Last Wedhesday at 726 PM (autosaved
File ~ Edit View Inset Cell Kemel Widgets Help
B+ & B 4% PRin B C W cCode v @ Vo

In [4]: tcu.load_model('/home/xilinx/model _onnx_pynqzl.tmodel")

: import time
import numpy as np

# Assuming you have
#n=144

i img « get img(data, n)

# Label_idx, Label = get_Label(labels, Label_names, n)

the following variables set up

total_count = 83
correct_count = @

start_time = time.time()

tt=8

for n in range(total_count):
img - get_img(data, n)
label idx, label - get_label(labels, label names, n)
inputs ~ {‘input 1': img}

start « time.time()

outputs = tcu.run(inputs)

end = time.time()

tt +=end-start

classes = outputs['dense_1"][:4]
result_idx = np.argmax(classes)
#print(result_idx)

result = label names[result_idx]

if result -- label:
correct_count 4= 1

end_time - time.time()

total_time = end_time - start_time
avg_time = total_time / total_count

print("Ran infe v {}
print("Avera;
print("Accuracy
print(tt)

e tine: {:.4) .format(avg_time))

Ran inference on 83 images in 0.6397s
Average inference time: 8.807707s
Accuracy: 82/83 = 98.80%
0.6207865582275391

Precision x Recall
Precision + Recall

F1Score = 2x “4)

4.2 HW version

The results presented in this subsection demonstrate the use
of PYNQ-Z2 FPGA platform for the proposed framework for
the analysis of LIDAR data. The hardware implementation of
the proposed framework, shown in Figure 9, Figure 10, and
Figure 11, was carried out and was tested using the same 83
images used for testing the SW version. The FPGA-based
solution completed the inference time in just 0.6207 seconds
with an average inference time of about 0.0077 seconds per
image. As can be shown in the Jupyter Notebook in Figure 10,
first the HW design bitstream file (.bit) generated by Xilinx
Vivado to the FPGA fabric is loaded, and using the helper
functions in the script, a sample image along with its true class
is shown (Figure 11). Then, the compiled model is loaded to
the FPGA, and test images are fed as input to the model inside
the FPGA. The FPGA, in turn, performs the prediction and
produces the output. The script then reports the number of
images, average inference time, and accuracy. For more
comprehensive image analysis and illustration, a summary of
more sample images, including inference time, actual, and
predicted classes, is also reported in Figure 11.

A

| Python 3 (ipykemel)

Logout

Connecting to kemel

il #oe

images in {:.4}s".format(total_count, total_time))

-{:.21:-‘:.for\mat(corr\ect_count, total _count, correct_count / total _count))

Figure 10. Snippet of Python script used for FOGA inference on Jupyter Notebook
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Inference time 0.0097s
Result: class0

Inference time 0.0106s
Result: class0

Actual: class0 Actual: class0

Actual:

Inference time 0.0101s
Result: class0

Inference time 0.0104s
Result: class0

class0 Actual: class0

Inference time 0.0093s
Result: classl

Inference time 0.00%1ls
Result: classl

Actual: classl Actual: classl

Inference time 0.009%1ls
Result: classl

Inference time 0.00%0s
Result: classl
classl

classl Actual:

Inference time 0.00%3s Inference time 0.00%%s

Inference time 0.00%8s Inference time 0.0100s

Result: class2 Result: class2 Result: class2 Result: class2
Actual: class2 Actual: class2 Actual: class2 Actual: class2
I

i}

Inference time 0.0102s
Result: class3

Inference time 0.00%0s
Result: class3

Actual: class3 Actual: class3

Inference time 0.0101s
Result: class3

Inference time 0.0107s
Result: class3

Actual: class3 Actual: class3

Figure 11. A summary of more sample images, including inference time, actual and predicted classes

Table 5 summarizes the findings of the model for both the
SW and HW implementations using the test dataset, which
consists of 83 images. The hardware version is faster than the
software version by more than 2x, and the average inference
time per image is also improved, making HW more efficient
for real-time. The hardware optimization does not compromise
model performance, as the accuracy of the SW and the HW
versions are almost identical. The FPGA-based
implementation of the model consumes only 1.616W in total,
with 1.472W attributed to dynamic power usage. In contrast,
GPU-based implementations, such as the NVIDIA RTX 3050,

measured and used in the comparative study, consume around
37.7W. The FPGA-based solution consumes nearly 24x less
power than the SW GPU-based solution.

The results highlight the advantages of the proposed real-
time image-based framework for LiDAR data analysis using
the PYNQ-Z2 FPGA. The convolutional neural networks and
the performance capabilities of the PYNQ-Z2 FPGA could
create many innovative applications in indoor/outdoor
robotics equipped with LiDAR and the medical field, where
real-time and low-cost devices are necessary for running ML
models. Furthermore, the energy efficiency of FPGA-based

2442



implementations makes them suitable for edge Al LiDAR
applications to reduce the reliance on cloud computing while
maintaining high accuracy and low latency. Future research
directions may include the exploration of end-to-end deep
learning solutions for LiDAR data analysis, the incorporation
of advanced neural network architectures, and the
investigation of hardware-aware model optimization
techniques to further enhance the efficiency and real-time
performance of the system. Further support for FPGA
platforms for ML models, such as pre-trained models, could
hugely impact the adoption of the FPGA platforms in various
Al applications.

Table 5. Summary of the findings of the model for both the
SW and HW implementations using the test dataset

SW HW
Version Version
Inference Time 1.3888 s 0.6207 s
Average Inference Time Per 0.01673 s 0.0077 s
Image
Accuracy 98% 98.80%
Power consumption 37.70W 1.61W

5. DISCUSSION

The results indicated that the proposed image-based
machine learning framework for analyzing the LiDAR dataset
is effective, particularly its deployment on an FPGA platform.
Transforming the raw LiDAR data into images has facilitated
the use of the convolutional neural network (CNN) method,
which helps in classification accuracy and feature extraction
tasks. In addition, further performance optimization resulted
from integrating FPGA-based acceleration, which provided
real-time inference along with efficient energy consumption.

The main achievement of this work is improving the
accuracy and inference speed of the LiDAR dataset
classification. The FPGA-based implementation achieved an
accuracy of 98.80%, which is slightly higher than the
software-based implementation (98%). It also took 2 times less
time for the FPGA version to draw conclusions than the
software version (0.6207 seconds for 83 test images, or 0.0077
seconds per image), which shows that it can be used in real-
time situations. In real-time applications, the inference time is
a vital element, particularly in autonomous navigation,
robotics, and edge computing. The performance boost comes
from the PYNQ-Z2 FPGA’s efficient hardware and the ability
to do computing in parallel. This work’s FPGA
implementation consumed ultra-low power, just 1.616 W,
which is about 24 times more efficient than the GPU-based
processing used in the study. These enhancement results show
that our proposal is an efficient real-time candidate solution
for applications such as autonomous navigation, robotics, and
edge computing.

In comparison with the related studies listed in the related
work section, our work provides a different approach that
facilitates the integration of deep learning models on FPGA
platforms. It leverages CNN-based classification on LiDAR
data, represented as images. Unlike our approach, which is
highly compatible with CNN architectures, the other
approaches [1, 12, 28, 29] are focused mostly on traditional
feature extraction techniques or direct point cloud
computations. These approaches did not explore image
transformation techniques that enable seamless deployment of
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the ML models to FPGAs. Studies [20, 22] utilized a CNN-
based method for processing the LIDAR dataset; however, it
utilized high FPGA resources, while our method achieved a
balanced solution with high accuracy and speed and low power
consumption (1.616W).

Furthermore, the LiDAR data-to-image transformation
facilitates the data interpretation and allows for the reuse of
well-established image processing and deep learning
methodologies. The CNN architecture works well for
classifying images, and the proposed framework takes
advantage of this to find intensity-related and spatial patterns
in the dataset that might be hard to handle with traditional
point-cloud-based processing methods. The results provided a
more intuitive interpretation of the LIDAR dataset features and
improved the classification capabilities.

Although the proposed framework showed many
advantages, some drawbacks should be acknowledged. One of
them is that the dataset used does not represent the complexity
of real-world environments and might not be a candidate that
can be generalized. Therefore, the incorporation of diverse
datasets that have different outdoor scenes, complex obstacles,
varying lighting conditions, and different environmental
settings can address this limitation. Also, the CNN model can
be made even more efficient on FPGA platforms by using
techniques like quantization, hardware-aware neural
architecture search (NAS), and pruning, along with other
optimizations.

The preprocessing overhead associated with the initial
conversion of the LIDAR dataset to the image format presents
another limitation. Therefore, exploring more efficient direct
feature extraction techniques or efficient encoding strategies
to convert LIDAR raw data into images is recommended. In
addition, the performance can be further enhanced by
integrating extra neural networks, like lightweight deep
learning frameworks or transformer-based models, which
could be useful to explore in future work.

The findings in this work proved the viability of combining
FPGA acceleration with the CNN method to analyze and
classify LiDAR data. The result paves the way for integrating
the energy-efficient hardware elements and real-time-capable
LiDAR classification systems, particularly in applications
such as autonomous navigation, edge computing, and robotics.
In addition, this work shows a promising solution for elevating
the real-time LiDAR processing.

6. CONCLUSIONS

In this work, a novel LiDAR dataset analysis framework
combines FPGA acceleration and image-based machine
learning methods to improve the inference efficiency and
classification performance of the LiDAR dataset. The work
showcases a significant enhancement in processing, accuracy,
and power efficiency by utilizing image representations for the
LiDAR point cloud data, which are then processed using CNN
methods.

The findings show that the FPGA implementation version
achieved better performance than the traditional software-
based models as a result of a reduction in inference time by
more than 50% and a high accuracy rate. In addition, the
energy savings that the FPGA platform has offered underscore
the importance of such solutions for applications such as
autonomous navigation, edge computing, and robotics, where
low-power accelerators are a vital element.



Not only a solution for LiDAR data processing, the
proposed framework can be adapted for many applications that
operate on low-power real-time sensors, such as smart cities
monitoring, robotic vision, and autonomous vehicles. So,
bridging the gap between hardware acceleration based on
FPGAs and CNN methods can give us a reliable and scalable
way to process LiDAR data in real-time situations. The
proposed framework has great potential with advancements in
FPGA technology and machine learning methods to enhance
LiDAR data utilization across a wide range of applications.
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NOMENCLATURE

total number of samples in the dataset
image height

image width

total number of features per sample
batch size used in training

maximum number of training epochs

W T T Z

Greek symbols

o learning rate of optimizer

B momentum/decay parameter
Subscripts

Train training set

Val validation set





