
Image-Based Machine Learning Framework for LiDAR Data Analysis Accelerated on

FPGA Platforms

Moteb Alghamdi* , M. Al-Asli

Department of Computer Engineering, College of Computer Science and Engineering, Taibah University, Madinah 42353,

Saudi Arabia

Corresponding Author Email: mgamdi@taibahu.edu.sa

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300918 ABSTRACT

Received: 6 July 2025

Revised: 2 September 2025

Accepted: 10 September 2025

Available online: 30 September 2025

This study presents an image-based machine learning framework for efficient LiDAR data

analysis implemented on FPGA hardware. Unlike conventional point cloud processing

approaches that demand extensive computational resources, the proposed method converts

raw LiDAR measurements from CSV format into compact grayscale image representations,

enabling efficient feature extraction and compatibility with hardware accelerators. The

workflow comprises data normalization, model training, hardware compilation, and

deployment on the PYNQ-Z2 FPGA board using the Tensil AI toolchain. Experimental

results show that the FPGA-accelerated convolutional neural network (CNN) achieves a

classification accuracy of 98.8%, outperforming software-based implementations while

reducing inference time by more than twofold and power consumption by approximately

24 times compared with a GPU. These results confirm the advantages of FPGA acceleration

in achieving real-time performance with minimal energy overhead. The proposed

framework offers a scalable and energy-efficient solution for LiDAR data classification and

can be seamlessly integrated into embedded systems for real-time applications in

autonomous navigation, smart city monitoring, and edge computing.

Keywords:

FPGA, indoor LiDAR, CNN, machine

learning, FPGA accelerator, mobile robot

1. INTRODUCTION

The use of LiDAR data has become increasingly crucial for

many applications, such as smart cities, autonomous vehicles,

forest management, precision agriculture, and robotics.

LiDAR technology is used to get a detailed picture of the shape

and structure of an area of interest in either 2D or 3D point-

cloud data. This data can then be utilized for object detection

and classification of the designated area. However, the

complex and large amount of data captured by LiDAR poses

significant challenges to efficient processing in real-time

decision-making applications [1, 2].

Techniques for analyzing LiDAR data have shifted from

feature extraction methods that were hand-crafted to the

utilization of machine learning (ML) methods such as deep

learning. This has completely changed how LiDAR data is

processed. The use of ML techniques cleared the way for

LiDAR’s solutions, which are more robust and adaptive.

Training the ML algorithms on diverse and large LiDAR

datasets can be beneficial in extracting meaningful patterns

and features from them, which can achieve efficient

classification, object detection, and semantic segmentation

with high accuracy [2, 3].

While machine learning models can be useful, they pose

significant challenges as they need a great deal of processing

power, especially when they are used in real-time systems.

FPGAs present a viable solution for LiDAR dataset analysis

because the FPGA technology offers a unique blend of

flexibility, energy efficiency, and parallelism. FPGAs are a

well-suited processing element for the implementation of ML-

based LiDAR datasets, especially for robotic or embedded

systems applications. They can customize hardware

architectures that align with the ML-based LiDAR datasets

algorithm requirements. This allows for a real-time LiDAR

implementation that uses little energy and low latency [4-6].

For easier understanding, LiDAR data can be shown as

pictures that make the data easier to understand [7, 8]. Also,

for machine learning algorithms like CNNs, images are a

standard format that can make integrating the ML model into

an FPGA easier [9, 10]. The images’ hierarchical features can

be extracted automatically, which benefits the classification

performance greatly without the need for extensive feature

engineering [11]. An image represents each processed version

of the LiDAR dataset, illustrating intensity, height

information, or other attributes. Therefore, different colours

can visually represent the image’s various features, aiding in

data interpretation. In addition, images make the analysis and

understanding of its object characteristics or the underlying

terrain more accessible, as the pixel values correspond to

various measurements (e.g., elevation).

The research in this paper goes into excellent detail about

how to use machine learning methods, especially image-based

deep learning methods, to look at LiDAR data on FPGA

platforms. The suggested framework looks at the difficulties

and chances of creating effective and reliable LiDAR

processing solutions. It shows how real-time decision-making

Ingénierie des Systèmes d’Information
Vol. 30, No. 9, September, 2025, pp. 2433-2445

Journal homepage: http://iieta.org/journals/isi

2433

https://orcid.org/0000-0001-5763-8775
https://orcid.org/0000-0002-3358-7050
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300918&domain=pdf

and edge computing could be used in various robotic and

embedded systems. Although numerous FPGA accelerators

for LiDAR exist, most operate on raw point clouds, voxels, or

hand-crafted features, which complicate hardware mapping

and increase on-chip memory use. Therefore, there is a need

for an alternative that can map the LiDAR frame into a

compact 2D image that captures intensity/elevation patterns.

This image representation enables efficient use of standard 2D

CNN layers, simplifies the operator set needed for hardware

acceleration, and reduces the memory usage. Therefore, there

is a need for an alternative that can map the LiDAR frame into

a compact 2D image that captures intensity/elevation patterns.

This image representation enables efficient use of standard 2D

CNN layers, simplifies the operator set needed for hardware

acceleration, and reduces the memory usage. Therefore, the

research objectives of this paper aim to design a compact and

reproducible pipeline to convert LiDAR scan rows into 2D

image representations that are compatible with lightweight

CNNs, develop and train a lightweight CNN that can be used

for FPGA acceleration, and deploy and evaluate the CNN

model on a PYNQ-Z2 board using the Tensil AI toolchain.

This paper proposes a novel method that utilizes FPGAs and

CNN algorithms to address challenges in processing LiDAR

technology datasets. The proposed method proposes a unique

method of converting the LiDAR dataset point cloud to an

image format that is mostly compatible with FPGA hardware

features. This approach shows an effective technique for

achieving a reduction in processing time with low power

consumption and increasing LiDAR accuracy.

Our contribution unfolds into three points as follows:

Convert LiDAR readings to compact image

representations compatible with CNNs and FPGA constraints.

Design and train a CNN optimized for small-footprint

hardware acceleration.

Deploy and evaluate the model on a PYNQ-Z2 FPGA

board using the Tensil AI toolchain, reporting accuracy,

latency, and power.

The rest of the paper is structured as follows: Section 2

discusses the related work on LiDAR-FPGA-based solutions.

Section 3 presents the methodology implemented. Section 4

delves into the experimental results with details on both the

hardware and software findings. Section 5 discusses the

results, implications, and findings. Section 6 concludes the

work by suggesting potential avenues for future research.

2. RELATED WORK

This section discusses the emergence of FPGA utilization

as a hardware acceleration for LiDAR data processing in many

research studies.

Using quantization techniques and a model of convolutional

neural networks. Several studies [12-17] suggest an FPGA

solution to improve the performance of processing LiDAR

data. This made the analysis of LiDAR data more flexible and

reliable. While the proposed approach demonstrated the

benefits of hardware acceleration in enhancing LiDAR’s

computationally intensive tasks, it does not utilize image-

based machine learning frameworks. In the same way, Brum

et al. [1] used an FPGA and quantization techniques to create

a fast and accurate 3D LiDAR data object detection

accelerator. Xu et al. [8] did not consider enhancing the

performance of their accelerator using image-based machine

learning techniques. Xiao et al. [9] used a low-cost FPGA to

design an accelerator for processing real-time simultaneous

localization and mapping (SLAM) algorithms, which can be

adopted for a variety of LiDAR datasets. Their hardware

solution uses the flexibility and ability to do many tasks at

once that FPGA technology provides to create an efficient

method for processing LiDAR data in SLAM. This approach

does not look at using machine learning methods with FPGA

hardware acceleration for tasks like semantic segmentation or

object detection, beyond just SLAM methods.

Carvalho et al. [18] wanted to help automotive applications

by making a ground segmentation method that works quickly,

accurately, and in real time. This method uses an FPGA to

separate LiDAR points that are on the ground from those that

are not. However, Sugiura and Matsutani [3] did not consider

the integration of machine learning algorithms. On the other

hand, Chen et al. [19] utilized neural network-based solutions

with FPGAs to provide a real-time accelerator that can process

LiDAR data with high object detection and classification

performance. While the proposed approach has demonstrated

high performance by utilizing a neural network with an FPGA,

it does not utilize image-based machine learning frameworks.

Another example is provided by Bai et al. [20], where they

offer a solution for improving LiDAR data quality for

autonomous cars. A hardware design using an FPGA and

machine learning models to quickly fill in missing depth data

in LiDAR point clouds in real-time. Li et al. [21] showed a

voxel encoding accelerator that works well for object detection

tasks. This is another example of an FPGA-LiDAR

contribution. This work demonstrates how an FPGA can be an

efficient solution for speedup; however, it is recommended to

consider integrating machine learning techniques such as

CNN, which can provide better overall accuracy and

performance efficiency. One of the essential tasks for LiDAR

data alignment is the performance of point cloud registration.

Sugiura and Matsutani [22] proposed an FPGA-based

accelerator to speed up the point cloud registration. This work

does not consider the integration of image-based machine

learning methods, as it could be a useful method for enhancing

the versatility and adaptability of point cloud registration.

Zolanvari et al. [23] leverage the FPGA capability with the

deep learning models to improve real-time LiDAR data

analysis. An example of an FPGA-image-based solution for

the LiDAR data is proposed by Wu et al. [24]. This work

shows a case of scene reconstruction and object detection

using a range of image generation and image-based machine

learning frameworks for enhancing real-time analysis of

LiDAR data.

Table 1 summarizes the contribution details of the presented

studies of the FPGA-ML used to optimize solutions for

LiDAR dataset processing. Different FPGA platforms,

LiDARs, and machine learning methods for various

application domains show the vital effort and interest in

contributing to this research area. However, there is clear

evidence that the effort in exploring combining image-based

machine learning techniques with the FPGA acceleration is

rare. Therefore, our work tries to fill that gap by suggesting a

new framework that uses both FPGA and deep learning to

make LiDAR data analysis faster, more flexible, and scalable.

This will also make current systems more useful by giving

them more options. In addition, Table 2 summarizes the

several platforms and toolchains that were utilized by the

various presented studies, which allow compiling ML models

for FPGA deployment, and illustrates why Tensil AI, which

this work utilized, might be suitable for users with basic

knowledge of FPGA design flow.

2434

Table 1. Summary of key contributions in FPGA-based LiDAR data processing

Paper

Ref.
Used FPGA Platform LiDAR Type Indoor/Outdoor Target Application

[8] N/A N/A Outdoor Automotive Object Detection

[9] Pynq-Z2 2D LiDAR Indoor (SLAM) SLAM for mobile robots and indoor navigation

[10] ALFA FPGA
LiDAR (VLP-16, HDL-32,

HDL-64, VLS-128)
Outdoor Ground segmentation for road navigation

[11]
Enclustra Mars ZX3

FPGA

LiDAR (SPAD-based d-TOF

LiDAR)
Outdoor LiDAR histogram processing for ADAS

[12] PYNQ-based FPGA LiDAR (Velodyne HDL-64E) Outdoor Depth completion for autonomous vehicles

[13] N/A LiDAR (General 3D LiDAR) Outdoor
3D object detection in LiDAR point clouds for

Autonomous Vehicles

[14]
Avnet Ultra96v2,

Xilinx ZCU104
LiDAR (3D Point Cloud) Outdoor

Point cloud registration for odometry and

SLAM for Autonomous Vehicles

[15] N/A Aerial LiDAR (ALS) Outdoor
Classifying urban elements and semantic

segmentation

[16] N/A N/A Outdoor
Range image generation and LiDAR processing

for Automotive, Robotics

Table 2. Comparison of AI model compilation platforms for FPGA

AI Tool Platform Features

Vitis AI Xilinx FPGAs

- Optimized for Xilinx FPGAs

- Uses Deep Learning Processing Unit (DPU) for acceleration

- Requires quantization and model-specific compilation

- Best suited for high-end Xilinx FPGAs

Vivado HLS Xilinx FPGAs
- Converts C/C++ models into FPGA-compatible hardware

- Allows designing custom ML accelerators

PYNQ (Python on Zynq) Xilinx FPGAs
- Enables FPGA-based ML deployment using Jupyter Notebooks

- Supports pre-compiled bitstreams

Tensil AI Xilinx FPGAs

- AI inference on FPGAs

- Converts ONNX/TensorFlow models into hardware-optimized execution

- Works with PYNQ-Z2 and low-power FPGAs

- Suitable for low-power embedded AI

OpenVINO for FPGA Intel FPGAs - Optimized for deep learning models on Intel FPGAs

oneAPI DPC++ Compiler Intel FPGAs
- Uses SYCL-based programming for FPGA acceleration

- Best suited for Intel FPGAs in data centers

HLS4ML Vendor-Neutral - Converts ML models into RTL for FPGA deployment

FINN (Xilinx Research) Vendor-Neutral
- Optimized for quantized ML models

- Designed for low-latency inference on FPGAs

TVM / Apache TVM Vendor-Neutral
- Compiles ML models into FPGA-optimized code

- Supports various FPGA architectures

DPU Compiler Vendor-Neutral - Converts trained models into hardware-optimized bitstreams for AI acceleration

3. METHODOLOGY

This section presents the methodology followed and details

the tools, LiDAR datasets, ML models, and hardware

integration that are utilized in this work. In addition, the

process of converting the LiDAR dataset to images and the

deployment of machine learning models on the FPGA PYNQ-

Z2 platform is detailed.

To conduct this study, the publicly available LiDAR dataset

on Kaggle [25] is used. The data is generated by an RPLIDAR-

A1 laser range scanner that is equipped in a mobile robot. It

contains 360 different LiDAR signals for four different

environments: corridors, doorways, halls, and rooms. Each of

the four different environments (corridors, doorways, halls,

and rooms) corresponds to one of the 411 instances in the data.

The dataset is a near-balanced class distribution where each

environment type has a similar number of instances.

The Xilinx PYNQ-Z2 [26] is chosen as the FPGA platform,

which is an evaluation board that has the Zynq-7000 All

Programmable SoC (System on Chip) devices. PYNQ-Z2 is

part of the PYNQ (Python + Zynq) ecosystem, which offers

the programming of the FPGA using Python to simplify the

development process of hardware programming. Besides the

Zynq-7000 SoC, the board contains an ARM Cortex-A9

processor, which makes it a flexible platform for applications

such as robotics, signal processing, and embedded systems.

Figure 1 shows the framework methodology followed,

which consists of five phases. The framework starts with the

model development, which consists of several steps. Then in

the second phase, the model is converted. The third phase

involves preparing the FPGA platform. Phases two and three

serve the fourth phase, which relates to the development of the

model. And the final phase is where the inferencing takes

place. The following subsections present these different

phases.

2435

Figure 1. Overall methodology framework of the proposed system

3.1 Model development phase

This phase has three steps, which start with the framework

selection to specify the environment that is best suited for the

model building.

Data Preparation: For the purpose of this work, the

LiDAR dataset [25] is converted from its original CSV format

into images for every class in order to prepare it for CNN

machine learning tasks. Firstly, the data is obtained using the

Pandas library, concentrating on only the relevant

measurement data. The core of the conversion process

involves reshaping the data into a three-dimensional array

suitable for image representation. Specifically, the

measurements are restructured into a defined height and width

of 20 by 18 pixels in this case—resulting in a format of

(num_samples, height, width). Normalization is then applied

to the pixel values, scaling them to a range between 0 and 1,

which is essential for improving the performance of machine

learning models. In addition, the dataset is split into two

subsets using the 80-20 ratio, one subset for training and the

other for validation. It is a vital step to preventing overfitting

and performance assessments. The dataset used in this work is

provided in the CSV format and contains a total of 411

examples. Each row contains an ID column, 360 flattened

feature values, and a final label column. The LiDAR dataset is

stored as CSV by removing non-signal columns (ID and label)

and extracting the 1D scan vector of length L for each sample.

Each vector was reshaped into a compact 2D image of size

height × width, such that height × width = L (used 20 × 18 =

360). Missing values were imputed using column means, and

values outside the 0.5th–99.5th percentiles were clipped.

Dataset-wise min–max normalization is applied to scale values

to 0,1, expanded the tensors to single-channel format (Height,

Width, 1). Finally, the images were saved, and arrays were

also saved as .npy files for reproducibility. This compactness

is essential for the FPGA implementation on the PYNQ-Z2,

where on-chip BRAM and DSP resources are limited. Table 3

summarizes the dataset and its class naming and distribution.

Table 3. Dataset summary

Item Value

Total samples 411

Image size (H × W) 20 × 18 (360 features)

Class distribution (total)

Class 0 109

Class 1 100

Class 2 99

Class 3 103

Train / Val

Train (total) 328

Class 0 77

Class 1 80

Class 2 88

Class 3 83

Validation (total) 83

Class 0 32

Class 1 20

Class 2 11

Class 3 20

Model Training: To facilitate the organization of the

images for the model training and validation tasks, directories

are established for each class label within the two subsets. And

the final step is generating and saving the images. The

corresponding LIDAR data is visualized in both the training

and validation sets using Matplotlib. Then the visualized

images are saved as greyscale images within their respective

class directories. This process helps with the image

classification tasks. These steps are essential for transforming

the LiDAR dataset [25] into the desired format that is suitable

for image classification tasks in this work. Furthermore, these

2436

steps enhance the deep learning techniques for analysis and

prediction. The model was compiled using the Adam

optimizer with the sparse categorical cross-entropy loss and

trained to monitor accuracy. Training was performed with a

batch size (B) of 32 and up to 300 epochs (E), learning rate ()

of 0.0001 and no momentum/decay parameter (). A Model

Checkpoint callback was used to save the best model

according to validation loss. The training call used an

augmented data generator and after training the best model for

final evaluation is reloaded.

During training on-the-fly augmentation is applied using the

Keras ImageDataGenerator with the following parameters:

rotation_range = 20, width_shift_range = 0.2,

height_shift_range = 0.2, shear_range = 0.2, zoom_range =

0.2, horizontal_flip = True, and fill_mode = 'nearest'. The

augmentation generator was fit on the training set and then

used to provide augmented batches to the network during

training.

For model selection, the checkpoint with the minimum

validation loss is saved and is used for evaluation. Final

performance on the held-out validation set was obtained using

model.evaluate(X_val, y_val), which reports validation loss

and accuracy. To assess per-class behavior, predictions are

computed to convert probabilities into discrete labels. The

confusion matrix and a full classification report (precision,

recall, F1-score, and support) are generated. The confusion

matrix was visualized, displaying integer counts with class

labels 0–3 on the axes.

3.2 Model conversion phase

Prior to the model training, the TensorFlow platform [27]

output in HD5 format is utilized for the model conversion

phase. The TensorFlow output is exported using a Python

script as a .pb file. It is then compiled and converted using

Tensil AI framework that is designed for the ML model to the

FPGA integration process. Upon successful conversion, Tensil

AI produces an RTL (Register Transfer Level) written using

Verilog HW language, which is used for the preparation of the

board’s internal logic, and three model files: .tdata, .tmodel

and .tprog. The .tdata files typically contain information

related to the dataset structure and input shape. The .tmodel

file represents the architecture and parameters of the trained

model. The .tprog contains programming or configuration data

related to deploying the model on the PYNQ-Z2 board. The

Verilog file is used to prepare the HW design of the board

using the Xilinx Vivado tool, while the other three files are

used later to deploy the model into the PYNQ-Z2 board using

Jupyter Notebook. Figure 2 illustrates the Tensil AI

framework and the files it is outputting. It is worthwhile to

mention that, unlike other frameworks, Tensil AI only requires

the HD5 format file for the model to generate the HW files of

the CNN model, which does not require a high level of

experience in HW design flow.

Tensil AI facilitates the compilation and generation of the

HW files of the CNN model.

3.3 Prepare the PYNQ-Z2 environment phase

The PYNQ-Z2 platform is selected for deployment because

its Zynq-7000 SoC integrates an ARM Cortex-A9 processing

system with programmable logic (PL), allowing the Tensil

runtime and Jupyter notebooks to run directly on-board while

the accelerator overlay executes in the PL. The PYNQ

framework provides overlay support and Python APIs that

significantly accelerate development, debugging, and

reproducibility. This enables flexible integration between the

host code and the Hardware files loading.

In order to deploy the CNN model in the PYNQ-Z2 FPGA

board, the board must be prepared in order to receive the HW

and CNN model files and perform the inference. To prepare

the FPGA platform for the implementation of our model, three

steps are necessary. First is the setting up of the PYNQ-Z2

board. Setting up the board involves loading the PYNQ-Z1

image, officially available on the PYNQ IO website, into an

SD card and then inserting the SD card image to the board to

boot the board from it. The second step is the installation of

necessary packages, in which software tools such as Xilinx

Vivado, the PYNQ framework, and Python with its libraries

are installed. Xilinx Vivado is installed inside the host

computer, while the PYNQ framework and Python are

installed inside the PYNQ-Z2 board. The last step involves

preparation of the HW design of the PYNQ-Z2 fabric. The

HW design is an RTL file written using Verilog language and

is produced by Tensil AI. It describes the internal logic that

should be inside the FPGA fabric and is compiled,

synthesized, and installed using the Xilinx Vivado tool.

After preparing the PYNQ-Z2 board, it can be booted as a

network component with a specific IP address, and ML models

can be downloaded to it using an Ethernet cable and Jupyter

Notebook. It is worthwhile to mention that this preparation can

be done only once, and every time the board is needed, it can

be booted normally without any further preparation.

Figure 2. Tensil AI framework and its role

3.4 The model deployment phase

The CNN model was chosen to process and sort the LiDAR

image dataset that was made by using multiple convolutional

and pooling layers to pull out features. The CNN model

architecture starts with an input layer that processes the raw

data; see Figure 3. The next layer is a group of convolutional

layers (Conv2D), each with a set of filters for capturing spatial

hierarchies in the data. As you go deeper, the number of

parameters increases. The MaxPooling2D layers disperse

throughout the model, aiding in the reduction of the spatial

dimensions of the map’s features. In addition, they maintain

2437

essential information, which ensures computational efficiency

and the avoidance of overfitting; see Figure 3. To avoid

overfitting and encourage generalization, the model includes a

dropout layer that randomly disables a portion of neurons

during training; see Figure 3. The final layer of the model

architecture flattens the output into a one-dimensional vector,

preparing the data for the dense layers. The dense layer has

128 neurons and combines the information learned in the

earlier layers. It ends with an output layer that has four neurons

that handle the classification tasks.

Figure 3. Model architecture and layers

3.5 Inference phase

The final phase in our framework is the inference phase,

which is where the model is run to make predictions on new

data. This step includes refining the output using post-

processing and ensuring that it achieves the application

requirements. Following that, as a last step, a comprehensive

testing procedure was conducted for the model’s performance

validation.

This framework gives a planned way to create and use

machine learning models on FPGA platforms, making sure

that each step is done carefully to get the best performance and

dependability.

4. RESULTS

This section presents the findings from the analysis of

LiDAR data using image-based methods. The results

demonstrate the model’s performance in classifying various

features extracted from processed images. This section is

divided into two parts; the first part describes the performance

of the SW model, and the second part details the PYNQ-Z2

implementation of the model and the acceleration gained.

The LidarDataFrames dataset [25] contains a collection of

LiDAR point cloud data. A point cloud is a collection of data

points in a 3D coordinate system that represents the spatial

structure of an environment. This dataset includes various

indoor attributes such as rooms, doorways, corridors, and

halls. To convert this LiDAR data into greyscale images,

techniques such as rasterization were used, where the point

cloud data is transformed into a 2D image. This involves

projecting the 3D points onto a 2D plane to create an intensity

image. By assigning pixel values based on elevation or

intensity metrics from the LiDAR data, images that represent

the spatial features of the environment were generated. These

images were then used as input for training, validating, and

testing the CNN model. Each row of height values is reshaped

into a 20×18 grid, scaled to 0-255, and converted into

greyscale images using the PIL library. The last column is

separately extracted, class_ids, to represent the classification

labels.

4.1 SW version

The CNN model was trained on a desktop workstation

equipped with an Intel Core i7 11800H, operating at a clock

speed of 2.30 GHz and working on a 64-bit version of

Windows 11. It features 16GB of DDR4 RAM, and the

workstation is powered by an NVIDIA GeForce RTX 3050

graphics card. The software environment includes CUDA

version 11.8.522 and cuDNN version 11.2.0. The training was

conducted using Python 3.9.0, with TensorFlow 2.1.0 and

Keras 2.3.1 as the primary libraries for building and training

the CNN model.

Figure 4. Training and validation loss vs. epoch

Figure 5. Training and validation accuracy vs. epoch

Figure 4 presents the training and validation loss over 200

epochs during the model training process. Initially, both

training and validation losses are relatively high, and as

training progresses, the training loss exhibits a steady decline,

reflecting the model’s ability to learn from the training data

effectively. This trend continues until about epoch 150, where

the training loss stabilizes at a lower value, suggesting that the

model has reached a satisfactory level of fit to the training data.

The validation loss also decreases throughout the early epochs,

which indicates that the model generalizes well to unseen data.

However, it is important to note that after epoch 150, the

validation loss begins to fluctuate, suggesting potential

instability in the model’s performance. Despite these

fluctuations, the final validation loss remains relatively low,

which demonstrates that the model maintains a good fit to the

2438

validation dataset. The gap between the training and validation

loss curves is minimal, which is indicative of a well-

regularized model that is not overfitting the training data. The

results suggest that the model is effective in learning the

underlying patterns in the data while maintaining

generalizability.

Curves are from a representative run (no smoothing). The

model was trained for up to 300 epochs with ModelCheckpoint

saving the best model by validation loss.

Similarly, Figure 5 illustrates the training and validation

accuracy of the model over 200 epochs. The training accuracy

shows a steady increase and stabilizes at a high value, which

suggests that the model effectively learns from the training

data. The validation accuracy closely follows the training

accuracy throughout the epochs. This alignment suggests that

the model generalizes well to unseen data without significant

overfitting. Both accuracy curves converge towards 1,

indicating that the model achieves a high level of performance

on both the training and validation datasets. The relatively

smooth lines with minor fluctuations suggest stability in the

model’s learning process. The plot indicates that the model is

performing well with high training and validation accuracies

and reflects the effective learning and generalization

capabilities.

Figure 6. Samples of true and predicted images (part a)

Figure 7. Samples of true and predicted images (part b)

2439

Figure 8. The confusion matrix

Figure 9. The hardware setup used in this work

Samples of the images for the predicted classes, along with

the actual class, are shown in Figure 6 and Figure 7. It is

worthwhile to mention that the pattern in the images is

different among the images, and therefore, the model should

be trained efficiently to correctly classify them. As can be seen

in Figure 8, the confusion matrix visualizes the performance

of a classification model across the four classes labelled 0, 1,

2, and 3. Each cell in the matrix indicates the number of

instances predicted by the model versus the actual instances.

The model was able to correctly classify all the classes

expected for two images from class 3, which were classified

as class 0. The reason for this misclassification could be due

to the imbalance in the dataset, where class 0 had more

samples than class 2. On the held-out validation set of 83

samples, the best saved model achieved a high overall

accuracy as reported. The classification report further breaks

down performance into precision, recall, and F1-score for each

of the four classes (corridors, doorways, halls, and rooms). The

confusion matrix highlights correct predictions along the

diagonal and misclassifications off-diagonal. Notably, class 2

(halls) shows fewer validation samples (11 instances), which

should be considered when interpreting its per-class metrics.

The heatmap visualization generated provides an intuitive

overview of these results, with darker diagonal cells reflecting

stronger class-specific accuracy.

Table 4. The classification report of our model

Precision Recall F1-Score Accuracy

0 0.94 1.00 0.97

0.98
1 1.00 1.00 1.00

2 1.00 0.82 0.90

3 1.00 1.00 1.00

The classification report is shown in Table 4 and

summarizes the performance metrics of a model across the

four classes, including precision, recall, F1-score, and

accuracy metrics. For class 0, the model has a precision of

0.94, meaning that 94% of instances predicted as class 0 were

correct. The recall is 1.00, indicating that all actual instances

2440

of class 0 were correctly identified. The F1-score, which

balances precision and recall, is 0.97, reflecting strong

performance. For class 1, the model achieved a perfect

precision and recall of 1.00, resulting in an F1-score of 1.00 as

well. Similarly for class 3, the model also achieved perfect

scores across all metrics. The model is highly effective in

identifying instances of these classes without any false

positives or negatives. Class 2 shows a precision of 1.00,

which suggests that all predicted instances of this class were

correct. However, the recall is 0.82, which suggests that 82%

of actual instances were correctly identified, leading to an F1-

score of 0.90.

The metrics used are denoted by the following Eqs. (1-4) as

follows:

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
(1)

TP
Precision

TP FP
=

+
(2)

TN
Recall

TN FP
=

+
(3)

1 2
Precision Recall

F Score
Precision Recall


= 

+
(4)

4.2 HW version

The results presented in this subsection demonstrate the use

of PYNQ-Z2 FPGA platform for the proposed framework for

the analysis of LiDAR data. The hardware implementation of

the proposed framework, shown in Figure 9, Figure 10, and

Figure 11, was carried out and was tested using the same 83

images used for testing the SW version. The FPGA-based

solution completed the inference time in just 0.6207 seconds

with an average inference time of about 0.0077 seconds per

image. As can be shown in the Jupyter Notebook in Figure 10,

first the HW design bitstream file (.bit) generated by Xilinx

Vivado to the FPGA fabric is loaded, and using the helper

functions in the script, a sample image along with its true class

is shown (Figure 11). Then, the compiled model is loaded to

the FPGA, and test images are fed as input to the model inside

the FPGA. The FPGA, in turn, performs the prediction and

produces the output. The script then reports the number of

images, average inference time, and accuracy. For more

comprehensive image analysis and illustration, a summary of

more sample images, including inference time, actual, and

predicted classes, is also reported in Figure 11.

Figure 10. Snippet of Python script used for FOGA inference on Jupyter Notebook

2441

Figure 11. A summary of more sample images, including inference time, actual and predicted classes

Table 5 summarizes the findings of the model for both the

SW and HW implementations using the test dataset, which

consists of 83 images. The hardware version is faster than the

software version by more than 2x, and the average inference

time per image is also improved, making HW more efficient

for real-time. The hardware optimization does not compromise

model performance, as the accuracy of the SW and the HW

versions are almost identical. The FPGA-based

implementation of the model consumes only 1.616W in total,

with 1.472W attributed to dynamic power usage. In contrast,

GPU-based implementations, such as the NVIDIA RTX 3050,

measured and used in the comparative study, consume around

37.7W. The FPGA-based solution consumes nearly 24x less

power than the SW GPU-based solution.

The results highlight the advantages of the proposed real-

time image-based framework for LiDAR data analysis using

the PYNQ-Z2 FPGA. The convolutional neural networks and

the performance capabilities of the PYNQ-Z2 FPGA could

create many innovative applications in indoor/outdoor

robotics equipped with LiDAR and the medical field, where

real-time and low-cost devices are necessary for running ML

models. Furthermore, the energy efficiency of FPGA-based

2442

implementations makes them suitable for edge AI LiDAR

applications to reduce the reliance on cloud computing while

maintaining high accuracy and low latency. Future research

directions may include the exploration of end-to-end deep

learning solutions for LiDAR data analysis, the incorporation

of advanced neural network architectures, and the

investigation of hardware-aware model optimization

techniques to further enhance the efficiency and real-time

performance of the system. Further support for FPGA

platforms for ML models, such as pre-trained models, could

hugely impact the adoption of the FPGA platforms in various

AI applications.

Table 5. Summary of the findings of the model for both the

SW and HW implementations using the test dataset

SW

Version

HW

Version

Inference Time 1.3888 s 0.6207 s

Average Inference Time Per

Image
0.01673 s 0.0077 s

Accuracy 98% 98.80%

Power consumption 37.70W 1.61W

5. DISCUSSION

The results indicated that the proposed image-based

machine learning framework for analyzing the LiDAR dataset

is effective, particularly its deployment on an FPGA platform.

Transforming the raw LiDAR data into images has facilitated

the use of the convolutional neural network (CNN) method,

which helps in classification accuracy and feature extraction

tasks. In addition, further performance optimization resulted

from integrating FPGA-based acceleration, which provided

real-time inference along with efficient energy consumption.

The main achievement of this work is improving the

accuracy and inference speed of the LiDAR dataset

classification. The FPGA-based implementation achieved an

accuracy of 98.80%, which is slightly higher than the

software-based implementation (98%). It also took 2 times less

time for the FPGA version to draw conclusions than the

software version (0.6207 seconds for 83 test images, or 0.0077

seconds per image), which shows that it can be used in real-

time situations. In real-time applications, the inference time is

a vital element, particularly in autonomous navigation,

robotics, and edge computing. The performance boost comes

from the PYNQ-Z2 FPGA’s efficient hardware and the ability

to do computing in parallel. This work’s FPGA

implementation consumed ultra-low power, just 1.616 W,

which is about 24 times more efficient than the GPU-based

processing used in the study. These enhancement results show

that our proposal is an efficient real-time candidate solution

for applications such as autonomous navigation, robotics, and

edge computing.

In comparison with the related studies listed in the related

work section, our work provides a different approach that

facilitates the integration of deep learning models on FPGA

platforms. It leverages CNN-based classification on LiDAR

data, represented as images. Unlike our approach, which is

highly compatible with CNN architectures, the other

approaches [1, 12, 28, 29] are focused mostly on traditional

feature extraction techniques or direct point cloud

computations. These approaches did not explore image

transformation techniques that enable seamless deployment of

the ML models to FPGAs. Studies [20, 22] utilized a CNN-

based method for processing the LiDAR dataset; however, it

utilized high FPGA resources, while our method achieved a

balanced solution with high accuracy and speed and low power

consumption (1.616W).

Furthermore, the LiDAR data-to-image transformation

facilitates the data interpretation and allows for the reuse of

well-established image processing and deep learning

methodologies. The CNN architecture works well for

classifying images, and the proposed framework takes

advantage of this to find intensity-related and spatial patterns

in the dataset that might be hard to handle with traditional

point-cloud-based processing methods. The results provided a

more intuitive interpretation of the LiDAR dataset features and

improved the classification capabilities.

Although the proposed framework showed many

advantages, some drawbacks should be acknowledged. One of

them is that the dataset used does not represent the complexity

of real-world environments and might not be a candidate that

can be generalized. Therefore, the incorporation of diverse

datasets that have different outdoor scenes, complex obstacles,

varying lighting conditions, and different environmental

settings can address this limitation. Also, the CNN model can

be made even more efficient on FPGA platforms by using

techniques like quantization, hardware-aware neural

architecture search (NAS), and pruning, along with other

optimizations.

The preprocessing overhead associated with the initial

conversion of the LiDAR dataset to the image format presents

another limitation. Therefore, exploring more efficient direct

feature extraction techniques or efficient encoding strategies

to convert LiDAR raw data into images is recommended. In

addition, the performance can be further enhanced by

integrating extra neural networks, like lightweight deep

learning frameworks or transformer-based models, which

could be useful to explore in future work.

The findings in this work proved the viability of combining

FPGA acceleration with the CNN method to analyze and

classify LiDAR data. The result paves the way for integrating

the energy-efficient hardware elements and real-time-capable

LiDAR classification systems, particularly in applications

such as autonomous navigation, edge computing, and robotics.

In addition, this work shows a promising solution for elevating

the real-time LiDAR processing.

6. CONCLUSIONS

In this work, a novel LiDAR dataset analysis framework

combines FPGA acceleration and image-based machine

learning methods to improve the inference efficiency and

classification performance of the LiDAR dataset. The work

showcases a significant enhancement in processing, accuracy,

and power efficiency by utilizing image representations for the

LiDAR point cloud data, which are then processed using CNN

methods.

The findings show that the FPGA implementation version

achieved better performance than the traditional software-

based models as a result of a reduction in inference time by

more than 50% and a high accuracy rate. In addition, the

energy savings that the FPGA platform has offered underscore

the importance of such solutions for applications such as

autonomous navigation, edge computing, and robotics, where

low-power accelerators are a vital element.

2443

Not only a solution for LiDAR data processing, the

proposed framework can be adapted for many applications that

operate on low-power real-time sensors, such as smart cities

monitoring, robotic vision, and autonomous vehicles. So,

bridging the gap between hardware acceleration based on

FPGAs and CNN methods can give us a reliable and scalable

way to process LiDAR data in real-time situations. The

proposed framework has great potential with advancements in

FPGA technology and machine learning methods to enhance

LiDAR data utilization across a wide range of applications.

ACKNOWLEDGMENT

This work is supported by Taibah University.

REFERENCES

[1] Brum, H., Véstias, M., Neto, H. (2024). LiDAR 3D

object detection in FPGA with low bitwidth quantization.

In International Symposium on Applied Reconfigurable

Computing, pp. 90-105. https://doi.org/10.1007/978-3-

031-55673-9_7

[2] Wang, R., An, M., Shao, S., Yu, M., Wang, S., Xu, X.

(2021). Lidar sensor-based object recognition using

machine learning. Journal of Russian Laser Research,

42(4): 484-493. https://doi.org/10.1007/s10946-021-

09986-x

[3] Sugiura, K., Matsutani, H. (2022). A universal LiDAR

SLAM accelerator system on low-cost FPGA. IEEE

Access, 10: 26931-26947.

https://doi.org/10.1109/ACCESS.2022.3157822

[4] Bai, L., Lyu, Y., Xu, X., Huang, X. (2020). Pointnet on

FPGA for real-time lidar point cloud processing. In 2020

IEEE International Symposium on Circuits and Systems

(ISCAS), Seville, pp. 1-5.

https://doi.org/10.1109/ISCAS45731.2020.9180841

[5] Flottmann, M., Eisoldt, M., Gaal, J., Rothmann, M.,

Tassemeier, M., Wiemann, T., Porrmann, M. (2021).

Energy-efficient FPGA-accelerated LiDAR-based

SLAM for embedded robotics. In 2021 International

Conference on Field-Programmable Technology

(ICFPT), Auckland, New Zealand, pp. 1-6.

https://doi.org/10.1109/ICFPT52863.2021.9609934

[6] Lis, K., Kryjak, T., Gorgoń, M. (2025). LiFT:

Lightweight, FPGA-tailored 3D object detection based

on LiDAR data. In International Workshop on Design

and Architectures for Signal and Image Processing, pp.

28-40. https://doi.org/10.1007/978-3-031-87897-8_3

[7] Lyu, Y., Bai, L., Huang, X. (2018). ChipNet: Real-time

LiDAR processing for drivable region segmentation on

an FPGA. IEEE Transactions on Circuits and Systems I:

Regular Papers, 66(5): 1769-1779.

https://doi.org/10.1109/TCSI.2018.2881162

[8] Xu, Y., Tong, X., Stilla, U. (2021). Voxel-based

representation of 3D point clouds: Methods, applications,

and its potential use in the construction industry.

Automation in Construction, 126: 103675.

https://doi.org/10.1016/j.autcon.2021.103675

[9] Xiao, A., Huang, J., Guan, D., Cui, K., Lu, S., Shao, L.

(2022). Polarmix: A general data augmentation

technique for lidar point clouds. Advances in Neural

Information Processing Systems, 35: 11035-11048.

[10] Shinohara, T., Xiu, H., Matsuoka, M. (2020). FWNet:

semantic segmentation for full-waveform LiDAR data

using deep learning. Sensors, 20(12): 3568.

https://doi.org/10.3390/s20123568

[11] Koo, J., Klabjan, D., Utke, J. (2020). Combined

convolutional and recurrent neural networks for

hierarchical classification of images. In 2020 IEEE

International Conference on Big Data (Big Data),

Atlanta, GA, USA, pp. 1354-1361.

https://doi.org/10.1109/BigData50022.2020.9378237

[12] Silva, J., Pereira, P., Machado, R., Névoa, R., Melo-

Pinto, P., Fernandes, D. (2022). Customizable FPGA-

based hardware accelerator for standard convolution

processes empowered with quantization applied to

LiDAR data. Sensors, 22(6): 2184.

https://doi.org/10.3390/s22062184

[13] Pistellato, M., Bergamasco, F., Bigaglia, G., Gasparetto,

A., Albarelli, A., Boschetti, M., Passerone, R. (2023).

Quantization-aware NN layers with high-throughput

fpga implementation for edge AI. Sensors, 23(10): 4667.

https://doi.org/10.3390/s23104667

[14] Tasci, M., Istanbullu, A., Tumen, V., Kosunalp, S.

(2025). FPGA-QNN: Quantized neural network

hardware acceleration on FPGAs. Applied Sciences,

15(2): 688. https://doi.org/10.3390/app15020688

[15] Zhang, Q., Cao, J., Zhang, Y., Zhang, S., Zhang, Q., Yu,

D. (2019). FPGA implementation of quantized

convolutional neural networks. In 2019 IEEE 19th

International Conference on Communication

Technology (ICCT), Xi'an, China, pp. 1605-1610.

https://doi.org/10.1109/ICCT46805.2019.8947168

[16] Sun, M., Li, Z., Lu, A., Li, Y., et al. (2022). Film-qnn:

Efficient fpga acceleration of deep neural networks with

intra-layer, mixed-precision quantization. In Proceedings

of the 2022 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 134-145.

https://doi.org/10.1145/3490422.3502364

[17] Wei, X., Liu, W., Chen, L., Ma, L., Chen, H., Zhuang, Y.

(2019). FPGA-based hybrid-type implementation of

quantized neural networks for remote sensing

applications. Sensors, 19(4): 924.

https://doi.org/10.3390/s19040924

[18] Carvalho, J., Cunha, L., Pinto, S., Gomes, T. (2024).

FESTA: FPGA-enabled ground segmentation technique

for automotive LiDAR. IEEE Sensors Journal, 24(22):

38005-38014.

https://doi.org/10.1109/JSEN.2024.3470591

[19] Chen, G., Kirtiz, G.A., Wiede, C., Kokozinski, R. (2021).

Implementation and evaluation of a neural network-

based lidar histogram processing method on fpga. In

2021 IEEE 34th International System-on-Chip

Conference (SOCC), Las Vegas, NV, US, pp. 1-6.

https://doi.org/10.1109/SOCC52499.2021.9739527

[20] Bai, L., Zhao, Y., Elhousni, M., Huang, X. (2020).

DepthNet: Real-time LiDAR point cloud depth

completion for autonomous vehicles. IEEE access, 8:

227825-227833.

https://doi.org/10.1109/ACCESS.2020.3045681

[21] Li, X., Ren, A., Tan, Y., Li, X., et al. (2022). Vea: An

fpga-based voxel encoding accelerator for 3d object

detection with lidar. In 2022 IEEE 40th International

Conference on Computer Design (ICCD), Olympic

Valley, CA, USA, pp. 509-516. IEEE.

https://doi.org/10.1109/ICCD56317.2022.00081

2444

https://doi.org/10.3390/s23104667
https://doi.org/10.1109/ICCT46805.2019.8947168
https://doi.org/10.3390/s19040924

[22] Sugiura, K., Matsutani, H. (2023). An efficient

accelerator for deep learning-based point cloud

registration on FPGAs. In 2023 31st Euromicro

International Conference on Parallel, Distributed and

Network-Based Processing (PDP), Naples, Italy, pp. 68-

75. https://doi.org/10.1109/PDP59025.2023.00018

[23] Zolanvari, S.M., Ruano, S., Rana, A., Cummins, A., Da

Silva, R.E., Rahbar, M., Smolic, A. (2019). DublinCity:

Annotated LiDAR point cloud and its applications. arXiv

preprint arXiv:1909.03613.

https://doi.org/10.48550/arXiv.1909.03613

[24] Wu, T., Fu, H., Liu, B., Xue, H., Ren, R., Tu, Z. (2021).

Detailed analysis on generating the range image for lidar

point cloud processing. Electronics, 10(11): 1224.

https://doi.org/10.3390/electronics10111224

[25] Alhmiedat, T. (2024). LidarDataFrames.

https://www.kaggle.com/datasets/tareqalhmiedat/lidarda

taframes.

[26] AMD. PYNQ-Z2.

https://www.amd.com/en/corporate/university-

program/aup-boards/pynq-z2.html.

[27] TensorFlow. TensorFlow. https://www.tensorflow.org/.

[28] Abdoune, L., Fezari, M., Dib, A. (2024). Indoor sound

classification with support vector machines: State of the

art and experimentation. International Journal of

Computational Methods and Experimental

Measurements, 12(3): 269-279.

https://doi.org/10.18280/ijcmem.120307

[29] Seniguer, A., Iratni, A., Aouache, M., Yakoubi, H.,

Mekhermeche, H. (2025). A machine learning-based tool

for indoor lighting compliance and energy optimization.

International Journal of Computational Methods and

Experimental Measurements, 13(2): 259-271.

https://doi.org/10.18280/ijcmem.130205

NOMENCLATURE

N total number of samples in the dataset

H image height

W image width

F total number of features per sample

B batch size used in training

E maximum number of training epochs

Greek symbols

 learning rate of optimizer

 momentum/decay parameter

Subscripts

Train training set

Val validation set

2445

