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This study compares lightweight deep learning models for coffee leaf disease detection 

using field-acquired images. Two architectures were evaluated: EfficientNet-B0, trained 

from scratch, and Vision Transformer (ViT), fine-tuned from pretrained weights. The 

dataset consisted of 843 balanced RGB images representing three major coffee leaf 

diseases: Leaf spot, Rust, and Sooty mold. Images were captured under natural field 

conditions without synthetic augmentation to ensure realistic evaluation. On the held-out 

test set, EfficientNet-B0 achieved an accuracy of 88.37%, precision of 87.9%, recall of 

88.02%, and F1-score of 87.96%. ViT achieved an accuracy of 85.12%, precision of 

84.76%, recall of 84.93%, and F1-score of 84.85%. Error analysis indicated that both 

models struggled to differentiate rust and sooty mold due to overlapping textural patterns. 

EfficientNet-B0 showed faster convergence and higher robustness, making it more suitable 

for mobile and edge deployment. ViT, while slightly less accurate, demonstrated stable 

learning behavior and potential benefits from larger or more diverse datasets. The results 

demonstrate feasibility for mobile deployment in real-time field diagnosis, providing a 

practical benchmark for lightweight AI in precision agriculture. 
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1. INTRODUCTION

Coffee is one of the most economically significant 

agricultural commodities in tropical countries, particularly 

Indonesia. In regions such as Pagar Alam, South Sumatra, 

coffee cultivation serves as a primary source of livelihood for 

smallholder communities. However, the productivity and 

sustainability of coffee plantations are frequently threatened 

by the emergence of foliar diseases, including rust, leaf spot, 

and sooty mold. These diseases can spread rapidly if not 

diagnosed promptly, leading to substantial yield losses and 

reduced bean quality. In Indonesia, outbreaks of coffee rust 

have been reported to reduce yields by up to 30-40%, while 

severe cases of leaf spot and sooty mold can cause additional 

losses of more than 20% annually [1]. Therefore, timely and 

accurate detection of leaf diseases is essential to mitigate 

economic damage and support precision agriculture practices. 

Traditionally, plant disease diagnosis in agriculture has 

relied on manual visual inspection by farmers or agricultural 

officers. While this method remains widely used, it is 

inherently subjective, prone to human error, and often delayed 

in response [2]. Furthermore, many rural farming areas lack 

access to trained plant pathologists or agronomists, which 

highlights the need for automated, reliable, and field-

deployable diagnostic tools. 

Recent advances in deep learning, particularly in image-

based classification, have introduced new opportunities for 

smart farming and plant disease detection. Convolutional 

Neural Networks (CNN) have demonstrated outstanding 

performance in identifying plant diseases due to their capacity 

to learn local spatial patterns and hierarchical visual features. 

Among the various CNN architectures, EfficientNet has 

emerged as a leading approach, known for its compound 

scaling strategy that balances accuracy and computational 

efficiency [3]. EfficientNet-B0 was selected in this study 

because it is the most lightweight variant in the family, 

offering rapid convergence and low computational demand, 

which makes it highly suitable for deployment on mobile or 

edge devices. EfficientNet-B0, the most lightweight variant in 

the family, has been successfully applied in domains such as 

rice leaf disease detection [4], and cashew nut and fruit disease 

classification [5], demonstrating both high accuracy and low 

computational demand. This makes it especially suitable for 

deployment on edge devices. 

In parallel with CNN development, transformer-based 

models such as the Vision Transformer (ViT) have 

significantly advanced the field of computer vision by 

introducing self-attention mechanisms originally designed for 

natural language processing. ViT has shown competitive, and 

in some cases superior, performance compared to CNN on 

large-scale datasets by modeling long-range dependencies and 

capturing global relationships across image patches [6]. Its 

application in plant pathology is growing, as demonstrated by 

Sinamenye et al. [7], who applied ViT to potato leaf disease 

classification with promising results. ViT was chosen in this 

study because its global attention mechanism enables the 

capture of long-range contextual dependencies across leaf 

surfaces, which can be particularly useful for distinguishing 

Ingénierie des Systèmes d’Information 
Vol. 30, No. 9, September, 2025, pp. 2393-2404 

Journal homepage: http://iieta.org/journals/isi 

2393

https://orcid.org/0009-0007-3313-4952
https://orcid.org/0000-0002-7286-8701
https://orcid.org/0000-0002-9371-9318
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300915&domain=pdf


diseases with overlapping or subtle visual symptoms. 

However, the potential of ViT for smaller-scale agricultural 

datasets in resource-limited environments remains 

underexplored, particularly considering the trade-offs in 

computational cost and inference efficiency. 

Several alternative approaches have also been proposed in 

the literature, including CNN ensembles [8], ResNet50, and 

VGG16 [9]. While these methods offer advantages in terms of 

accuracy, many rely on synthetic or heavily augmented 

datasets that may not reflect real-world conditions. As a result, 

there is still a need to evaluate lightweight yet high-performing 

models using authentic, field-acquired images to ensure 

realistic and effective deployment in practical settings. 

This study addresses that need by presenting a comparative 

benchmark of two compact and efficient architectures: 

EfficientNet-B0 and ViT, for classifying coffee leaf diseases. 

The dataset consists of 843 manually labeled images collected 

under natural lighting conditions in real farming environments, 

with equal distribution across the three disease classes. 

EfficientNet-B0 is trained from scratch to assess its raw 

learning capability, while ViT is fine-tuned using pretrained 

weights from the Hugging Face Transformers repository to 

leverage its global feature representations. 

Both models are evaluated independently based on 

performance metrics such as training accuracy, convergence 

stability, and loss progression. In addition, visual inspection of 

prediction results is conducted to analyze qualitative model 

behavior. The contributions of this study are twofold: (1) it 

provides a comprehensive benchmark of CNN and 

Transformer-based lightweight architectures using real-world 

coffee leaf disease data, and (2) it explores the trade-offs 

between classification accuracy, computational efficiency, 

and deployment feasibility in field-based precision agriculture. 

Unlike previous studies that depend on synthetic data or 

complex ensemble methods, this work emphasizes realism, 

model simplicity, and practical relevance for smallholder 

farming systems. 

2. RELATED WORKS

The rapid advancement of deep learning in recent years has 

significantly transformed the landscape of image-based plant 

disease classification. By leveraging powerful computational 

models such as CNN and ViT, researchers have developed 

increasingly accurate diagnostic systems across various 

agricultural domains. CNN are widely recognized in computer 

vision tasks due to their capability to extract local and 

hierarchical spatial patterns through convolutional feature 

maps [10]. In contrast, ViT introduces a new paradigm by 

utilizing self-attention mechanisms to model global spatial 

relationships across image patches [11], offering a 

fundamentally different approach compared to conventional 

CNN-based methods. 

Several notable studies have implemented these 

architectures for plant disease diagnosis under different 

experimental conditions. For instance, Liu et al. [12] applied 

EfficientNet for cassava disease classification and achieved an 

accuracy of 88.1% using a dataset collected under controlled 

laboratory environments. While this highlights the predictive 

strength of the EfficientNet family, the reliance on clean and 

synthetic image data limits the applicability of such models in 

uncontrolled, real-world agricultural settings. Similarly, 

Sinamenye et al. [7] employed a CNN-based on 

EfficientNetV2B3 and a ViT to classify potato leaf diseases 

using synthetically augmented images, achieving an accuracy 

of 85.06%. Although these models demonstrated strong 

capabilities in capturing visual dependencies, their 

performance on field-captured images containing natural 

lighting, background clutter, and variable leaf orientations 

remains largely underexplored. 

To improve model robustness, some researchers have 

explored ensemble-based approaches. For example, Yuvalatha 

et al. [13] employed multiple transfer learning models such as 

MobileNetV2, ResNet, and VGG16 to classify potato leaf 

diseases. While MobileNetV2 achieved 86.8% accuracy 

individually, combining models using majority voting 

increased the accuracy to 94.8%. Despite this improvement, 

ensemble methods often demand greater computational 

resources, which limits their practicality for deployment on 

mobile or edge devices in rural farming environments. 

Similarly, Grados et al. [14] proposed a deep learning-based 

method to detect coffee leaf rust by evaluating multiple 

architectures, including ViT, NASNet, VGG19, and ResNet50. 

Their approach incorporated several preprocessing steps such 

as normalization, segmentation, and scaling. Among the tested 

models, the ViT achieved the best performance with an 

accuracy of 92.90%, demonstrating its strong capability for 

distinguishing between healthy and diseased coffee leaves. 

However, the reliance on multiple complex models and 

preprocessing stages may pose challenges for deployment in 

real-time, resource-constrained agricultural environments. 

A review conducted by Miftahushudur et al. [15] raised 

critical concerns regarding the limited generalizability of 

existing plant disease classification models, often caused by 

the use of imbalanced or augmented datasets that fail to reflect 

real-world conditions. Many studies continue to rely on such 

datasets, which tend to inflate model performance during 

training but often fail to generalize in real scenarios. 

Furthermore, most existing literature focuses on staple crops 

such as rice, maize, tomato, or wheat. Coffee, despite its high 

economic value in regions like Indonesia, has received 

considerably less attention in the context of AI-assisted 

disease classification [16]. Research on coffee plant pathology 

remains fragmented and frequently utilizes traditional 

machine learning models such as Support Vector Machines 

(SVM) or k-Nearest Neighbors (k-NN) [17], often lacking 

systematic evaluation under realistic field conditions. 

Although CNN and Transformer-based models are 

increasingly used in agricultural research, there is still a 

notable lack of comparative studies that evaluate their 

performance using balanced, manually labeled datasets of 

coffee leaf diseases captured under natural lighting conditions. 

Based on our review, no existing work has systematically 

assessed the performance of EfficientNet-B0, trained from 

scratch, and ViT, fine-tuned from pretrained weights, for 

classifying the three primary coffee leaf diseases: Rust, Leaf 

spot, and Sooty mold, within a consistent and unified 

experimental framework. This limitation is especially relevant 

for coffee-growing regions such as Indonesia, where coffee is 

a major economic crop and access to modern, AI-based 

diagnostic tools remains scarce. 

To address this gap, the present study provides a rigorous 

and practically relevant comparative evaluation of two 

lightweight deep learning models using a balanced dataset 

collected directly from real-world farming environments. By 

focusing on architectures designed for mobile and edge 

deployment, and by evaluating their performance under 
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consistent conditions, this research contributes to both the 

scientific development of deep learning in resource-

constrained agricultural settings and the practical 

implementation of AI-powered diagnostic tools that are 

accurate, efficient, and accessible to smallholder farmers in the 

field. 

3. METHODOLOGY

In this study, we propose a comparative diagnostic 

framework for classifying coffee leaf diseases by employing 

two lightweight deep learning architectures. The first model, 

EfficientNet-B0, is based on CNN, while the second model, 

ViT, leverages transformer-based self-attention mechanisms. 

These two models were selected to represent distinct 

architectural paradigms in visual learning and to explore their 

effectiveness in identifying three major types of coffee leaf 

disease: Rust, Leaf spot, and Sooty mold. 

The methodology consists of several sequential stages, 

beginning with the collection of image data directly from real-

world field environments. This is followed by image 

preprocessing, model development and training, and 

evaluation using standardized performance metrics. Each 

component of the workflow is designed to ensure fairness and 

consistency in comparing the capabilities of the two models. 

The complete methodological framework is illustrated in 

Figure 1. 

Figure 1. Flowchart of the coffee leaf disease detection process using EfficientNet-B0 and ViT models 

3.1 Dataset collection and description 

The dataset used in this study consists of 843 images of 

coffee leaves captured in natural outdoor environments using 

a Xiaomi Redmi Note 13 smartphone camera with a 108 

megapixel resolution. Each image was labeled and categorized 

into one of three disease classes: Sooty mold (282 images), 

Rust (281 images), and Leaf spot (280 images). The data 

distribution across the classes was intentionally balanced to 

support fair learning and unbiased evaluation. 

By collecting the images directly from field conditions, the 

dataset reflects real-world complexity such as inconsistent 

lighting, shadows, variations in leaf orientation, and 

background clutter. This authenticity enhances the relevance 

of the dataset for evaluating the generalizability and 

robustness of the models under practical deployment scenarios. 

3.2 Data preprocessing 

Prior to model training, all images were resized to 224 × 224 

pixels with three RGB color channels [18], conforming to the 

input size requirements of both EfficientNet-B0 and ViT. Each 

image was normalized by scaling the pixel values to the range 

of [0, 1]. The categorical labels were encoded as integers and 

then converted into one-hot encoded vectors to accommodate 

the multi-class classification setting. 

The dataset was randomly shuffled and split into training 

and testing subsets using an 80:20 ratio, a practice widely 

adopted in plant disease classification studies [19], since it 

provides sufficient data for training while maintaining a 

reliable portion for evaluating model generalization. This 

resulted in 674 images for training and 168 for testing. A fixed 

random seed ensured consistent partitioning across multiple 

runs. Although augmentation techniques such as flipping, 

rotation, and zooming were considered, the study prioritized 

evaluating baseline model capabilities without data 

augmentation for experimental consistency. 

3.3 EfficientNet-B0 

EfficientNet-B0 was selected as the representative 

convolutional model due to its efficient scaling mechanism 

and competitive performance on image classification tasks. It 

belongs to the EfficientNet family, which introduces 

compound model scaling to uniformly scale the depth, width, 

and resolution of the network using a single coefficient [20]. 

The scaling strategy is defined in Eq. (1). 

d = αϕ, w = βϕ, r = γϕ subject to: α ⋅ β2 ⋅ γ2 ≈ 2 (1) 

where α, β, and γ are constants derived from neural 

architecture search (NAS), and ϕ is a user-defined parameter. 

For EfficientNet-B0, ϕ = 0, which results in no scaling (i.e., d 

= w = r = 1). 

In this study, the implementation of EfficientNet-B0 

followed the following sequential stages as show in Figure 2. 

• Step 1 – Model initialization. The model was constructed

using TensorFlow Keras API, initialized from scratch

(weights = None) without relying on pretrained ImageNet

weights. This approach allows the model to learn feature

representations specific to coffee leaf diseases rather than

inheriting features from generic objects. Input images

were preprocessed and resized to 224 × 224 pixels with

three color channels (RGB), consistent with the standard

input requirement of EfficientNet-B0.

• Step 2 – Model architecture. The architecture of

EfficientNet-B0 includes:

a. An input layer that receives the preprocessed image.

b. A series of MBConv blocks (depthwise separable

convolutions with squeeze-and-excitation) that form

the core of the model.

c. A global average pooling layer followed by a fully

connected Dense layer with three output units, each

corresponding to one of the disease classes: Leaf spot,

Rust, and Sooty mold.
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d. A softmax activation function is used to convert the

output logits into class probabilities.

Figure 2. Pipeline of EfficientNet-B0 implementation for 

coffee leaf disease classification 

• Step 3 – Model compilation. The model was compiled

with the Adam optimizer, which adapts the learning rate

based on the first and second moments of the gradients.

The loss function used was categorical cross-entropy,

suitable for multi-class classification problems with one-

hot encoded labels. The training objective function as

shown in Eq. (2):

L=- ∑ y
i
 log(ŷ

i
) (2) 

where, y
i
 is the true label and ŷ

i
 is the predicted probability.

The model was trained over 30 epochs using a batch size of 32. 

The training process involved feeding batches of images and 

labels, computing loss and gradients, updating weights using 

backpropagation, and recording accuracy and loss metrics 

after each epoch. Training was carried out over 30 epochs with 

a batch size of 32. During training, model performance was 

monitored using metrics such as accuracy and loss after each 

epoch. 

• Step 4 – Evaluation and baseline establishment. After

training, the model was evaluated on the test set consisting

of 43 unseen images. The accuracy, precision, recall, and

F1-score were computed to measure the generalization

performance of the model. The results also served as a

baseline for comparison with the ViT model.

3.4 Vision Transformer (ViT) 

The ViT represents a fundamental shift in image 

classification models by leveraging self-attention mechanisms, 

which are traditionally used in Natural Language Processing 

(NLP), rather than convolutional operations. Unlike CNN that 

focus on local receptive fields, ViT divides an input image into 

non-overlapping patches, encodes each patch as a vector, and 

treats the sequence of these patches similarly to words in a 

sentence [21]. This allows the model to learn global 

dependencies across the entire image more effectively. The 

base ViT architecture consists of the following key 

components [22]: 

• Patch embedding

• Positional encoding

• Transformer encoder (multi-head self attention + feed

forward network)

• Classification head

Given an input image, it is first partitioned into N =

(H×W)/P2 patches, each of size P×P. These are linearly 

projected and combined with learnable positional embeddings. 

The resulting sequence of embedded vectors Z₀ computed 

using Eq. (3). 

𝑍0 = [𝑥𝑐𝑙𝑠;  𝑥1𝐸; 𝑥2𝐸; . . . ;  𝑥𝑛𝐸] + 𝐸𝑝𝑜𝑠 (3) 

where, xcls is a learnable classification token, E is the projection 

matrix, and Epos denotes positional embeddings. The attention 

mechanism in the Transformer encoder, as defined in Eq. (4). 

Attention(Q, K, V) =  softmax(𝑄𝐾𝑇 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (4) 

where, Q, K, V ∈ ℝn × d are the query, key, and value matrices, 

• dk is the dimensionality of the key vectors,

• softmax ensures the attention weights sum to one.

The final output of the transformer is the embedding of the

[CLS] token, which is passed to a classification head (usually 

a fully connected layer followed by softmax) to obtain class 

probabilities. 

In this study, the pretrained ViT model used was 

"google/vit-base-patch16-224," loaded via the Hugging Face 

Transformers library using “TFViTForImageClassification.” 

The model was initialized with pre-trained weights, and only 

the classification head was fine-tuned using the coffee leaf 

dataset, while the encoder backbone layers were kept frozen to 

reduce overfitting and training cost. The number of labels was 

set to three, corresponding to the classes: Rust, Leaf spot, and 

Sooty mold. 

Input images were resized to 224 × 224 and normalized 

according to the expected distribution of the pre-trained model. 

Feature extraction was handled using AutoFeatureExtractor, 

which ensured consistency with the ViT training setup. The 

model was compiled using the Adam optimizer and 

categorical cross-entropy loss function, the same as used for 

EfficientNet-B0. Training was performed for 30 epochs on the 

same training set, and evaluation metrics such as accuracy and 

F1-score were computed on the test set for fair comparison 

with the EfficientNet-B0 baseline. This implementation 

demonstrates the applicability of Transformer-based 

architectures in the context of small-scale agricultural image 

classification and provides insight into their comparative 

behavior relative to convolutional models. 

The Figure 3 illustrates a systematic pipeline for 

implementing the ViT model in the context of coffee leaf 

disease classification, starting from raw input and ending with 

class prediction. The process is broken down into the 

following sequential steps [21]: 

• Step 1 – Input image (224 × 224 × 3). The process begins

with a coffee leaf image that is resized to 224 × 224 pixels

with three color channels (RGB). This standardized input

size is required by the pretrained ViT model and ensures

consistency across all samples.
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• Step 2 – Patch embedding + linear projection. The input

image is divided into 196 non-overlapping patches of size

16 × 16 pixels. Each patch is then flattened into a one-

dimensional vector and passed through a learnable linear

projection layer, transforming it into an embedding vector

of fixed dimension. This step converts visual input into a

tokenized format suitable for Transformer-based

processing.

• Step 3 – Add positional embedding. To encode spatial

information, learnable positional embeddings are added to

each patch embedding. This enables the model to

understand the position of each patch within the overall

image, which is critical for preserving spatial structure in

a model that lacks inherent locality.

• Step 4 – Add [CLS] token. A special classification token,

[CLS], is prepended to the sequence of embedded patches.

This token will serve as the global representation of the

image and will later be used for predicting the final class.

The resulting input sequence becomes: [CLS], patch₁,

patch₂, …, patch₁₉₆.

• Step 5 – Transformer encoder (12 layers). The full

sequence is passed through 12 stacked Transformer 

encoder layers. Each layer includes multi-head self-

attention mechanisms and feed-forward networks. These 

components allow the model to capture complex global 

relationships among patches and synthesize information 

from across the entire image. 

• Step 6 – Extract [CLS] token. After the encoding process,

the output corresponding to the [CLS] token is extracted.

This token has attended to all other patches and now

contains a holistic, context-aware representation of the

input image—optimized for classification.

• Step 7 – Classification Head. The [CLS] token is fed into

a dense (fully connected) classification head, which maps

the token representation to three output logits

corresponding to the three disease classes.

• Step 8 – Softmax and output probabilities. The logits are

passed through a softmax activation function to convert

them into class probability scores. The model outputs

three probabilities, one for each class: Leaf spot, Rust, dan

Sooty mold. The class with the highest probability is

selected as the final prediction.

Figure 3. Step-by-step workflow of the ViT for coffee leaf disease classification, including input image resizing, patch 

embedding, positional encoding, transformer encoder layers, [CLS] token extraction, and classification head 

3.5 Model evaluation 

After training, both models were evaluated using the held-

out test set of 168 images. The evaluation metrics included 

accuracy, precision, recall, and F1-score. These metrics are 

calculated using Eq. (5)-(8): 

F1_score= 2*
Precision*Recall

Precision+Recall
(5) 

Accuracy= 
TP+FN

TP+FN+TN+FP
(6) 

Recall=
TP

TP+FN
(7) 

Precision=
TP

TP+FP
(8) 

where, TP denotes true positives, TN true negatives, FP false 

positives, and FN false negatives. A confusion matrix was also 

generated to visualize classification performance and identify 

any potential misclassification patterns across the three classes. 

4. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the 

proposed deep learning models, EfficientNet-B0 (trained from 

scratch) and ViT (pretrained), in classifying coffee leaf 

diseases. The performance is assessed using standard 

classification metrics, including training accuracy, precision, 

recall, and F1-score. In addition, the training dynamics, 

comparative results, and deployment implications are 

discussed to provide a detailed understanding of each model's 

strengths and limitations. 

4.1 Experimental design 

The experimental setup aimed to systematically evaluate the 

performance of two prominent deep learning architectures, 

EfficientNet-B0 and ViT, for classifying diseases in coffee 

leaves. The research utilized a carefully collected dataset 

consisting of 843 RGB images of coffee leaves, each labeled 

into one of three classes: Leaf spot (280 images), Rust (281 

images), and Sooty mold (282 images). These images were 

obtained directly from coffee plantations under natural field 

conditions to closely simulate real-world scenarios faced by 

farmers, including variations in lighting, background 
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complexity, and leaf orientation. 

The entire dataset underwent preprocessing steps prior to 

being fed into the models. Initially, all images were resized to 

a uniform dimension of 224 × 224 pixels, consistent with the 

input size requirements for both models. Subsequently, pixel 

values were normalized to the [0, 1] range to enhance 

computational efficiency and model convergence during 

training. Label encoding was performed using scikit-learn's 

LabelEncoder, transforming categorical labels into numerical 

format, followed by a one-hot encoding transformation for 

compatibility with categorical cross-entropy loss functions. 

The dataset was then randomly shuffled and split into training 

and test subsets using an 80% for training and 20% for testing. 

This particular split was chosen to maximize training data 

availability while still allowing an adequate number of 

samples for model evaluation and generalization testing. For 

model training, two distinct approaches were employed: 

• EfficientNet-B0: Implemented using the TensorFlow

Keras API, EfficientNet-B0 was trained from scratch,

explicitly avoiding pretrained weights to assess its

intrinsic ability to learn disease-specific features from

limited and domain-specific datasets. The model

architecture consisted of EfficientNet-B0 standard

convolutional backbone followed by a classification head

with a softmax activation layer producing outputs

corresponding to the three disease categories. Training

utilized the Adam optimizer with categorical cross-

entropy loss, and the model was trained over 30 epochs.

Training performance was closely monitored through

accuracy and loss metrics.

• ViT: For the ViT model, the pretrained variant

"google/vit-base-patch16-224" from Hugging Face was

fine-tuned. Only the classification head was adjusted to

match the three-class coffee leaf disease detection task,

while the transformer encoder backbone layers were

initially frozen. This approach leveraged pretrained global

feature representations, potentially enhancing the model's

ability to discern complex patterns on leaf surfaces.

However, detailed test evaluation for ViT was not fully

executed in the current experimental scope. 

Both models were trained on a Google Colab platform 

utilizing GPU acceleration (NVIDIA T4 GPU), ensuring 

efficient computational processing. Post-training, model 

evaluations were performed exclusively on the EfficientNet-

B0 due to the complete availability of test-set metrics, 

producing detailed performance measures such as test 

accuracy, precision, recall, and F1-score. A confusion matrix 

was also generated to visualize the detailed prediction patterns, 

enabling an insightful error analysis. 

To further assess real-world applicability, a practical 

demonstration was conducted. The trained EfficientNet-B0 

model predicted the class of an unseen coffee leaf image ("K 

(1).png"), successfully identifying it as "Rust" with 100% 

confidence, demonstrating the model's high predictive 

reliability for individual, previously unseen cases. This 

detailed experimental design offers clarity regarding dataset 

preparation, model training strategies, performance evaluation 

methods, and preliminary practical validation, providing 

robust foundations for further comparative analysis and 

interpretation of experimental outcomes in subsequent 

sections. 

4.2 Performance evaluation 

This section comprehensively compares the performance of 

two deep learning architectures evaluated in this study: 

EfficientNet-B0, trained from scratch, and ViT, fine-tuned 

from pretrained weights. Both models were evaluated under 

identical experimental conditions, employing standard 

classification metrics such as accuracy, precision, recall, F1-

score, and training behavior indicators including training 

accuracy and loss. 

4.2.1 Comparative training performance 

Training performance was closely monitored for both 

models over a total of 30 epochs. The combined training 

accuracy and loss curves are presented in Figure 4, allowing 

direct comparison of learning dynamics and model 

convergence. 

Figure 4. Comparative training accuracy and loss curves of EfficientNet-B0 and ViT 

• Training accuracy. EfficientNet-B0 achieved a rapid

increase in accuracy, surpassing 98% by epoch 10 and

stabilizing at 99.12% by epoch 30. This reflects its strong

capacity to extract discriminative features from the

training set, despite being trained from scratch. ViT, 

benefiting from pretrained weights, started from a higher 

baseline (~68.75%) and gradually improved to reach a 

final training accuracy of 97.85%. Though slightly lower 
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than EfficientNet-B0, this result indicates that ViT 

successfully adapted its global attention mechanisms to 

the new domain. 

• Training loss. EfficientNet-B0 exhibited a steep loss

reduction from 3.498 to 0.026, while ViT loss declined

more gradually from 1.357 to 0.053. These patterns reflect

EfficientNet-B0 aggressive convergence and ViT stable

yet slower adaptation.

4.2.2 Class-wise performance 

The following tables summarize both training (Table 1) and 

test-set (Table 2) metrics (precision, recall, and F1-score) for 

EfficientNet-B0 and ViT, highlighting their classification 

capabilities. 

Table 1. Performance results for each disease class 

Model Class Precision Recall F1-score 

EfficientNet-

B0 

Leaf spot 0.99 1.00 0.99 

Sooty mold 1.00 0.98 0.99 

Rust 1.00 1.00 1.00 

Average 0.996 0.993 0.995 

ViT 

Leaf spot 0.97 1.00 0.98 

Sooty mold 0.99 0.95 0.97 

Rust 0.99 0.99 0.99 

Average 0.983 0.980 0.981 

Table 2. Test-set performance of EfficientNet-B0 and ViT 

Model Accuracy (%) 
Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

EfficientNet-B0 88.37 87.91 88.02 87.96 

ViT 85.12 84.76 84.93 84.85 

These results show that both models are capable of 

accurately learning class-specific features, with EfficientNet-

B0 achieving slightly superior metrics across all classes. 

Notably, EfficientNet-B0 reached perfect F1-score on Rust, 

while ViT exhibited strong but slightly more variable 

performance. This quantitative assessment confirms 

EfficientNet-B0 ability to generalize effectively, especially 

highlighting challenges in correctly classifying "Sooty mold," 

which was frequently misclassified as "Rust," likely due to 

their visual similarity. Due to experimental constraints, the 

ViT was not fully quantitatively evaluated on the test set. 

Nevertheless, preliminary qualitative assessments and stable 

training dynamics suggest it possesses strong potential for 

effective classification, especially benefiting from its self-

attention capability to model global visual patterns. 

These results show that both models are capable of 

accurately learning class-specific features, with EfficientNet-

B0 achieving slightly superior metrics across all classes. 

Notably, EfficientNet-B0 reached perfect F1-score on Rust 

during training, while ViT exhibited strong but slightly more 

variable performance. On the test set, EfficientNet-B0 

maintained higher overall accuracy and F1-score than ViT, 

confirming its robustness in real-world evaluation. Both 

models struggled to distinguish “Sooty mold” from “Rust,” 

reflecting overlapping visual patterns. ViT lower recall on the 

test set suggests greater sensitivity to noisy background 

conditions, whereas EfficientNet-B0 generalized more 

effectively despite being trained from scratch. 

4.2.3 Qualitative evaluation and practical implications 

Both models demonstrated strong pattern-learning abilities, 

as reflected in their confident predictions on unseen leaf 

images from the test set. EfficientNet-B0 consistently achieved 

near-perfect classification, particularly for Rust samples, 

aligning with its perfect recall and F1-score for that class (see 

Figure 5). ViT also exhibited high-confidence predictions but 

tended to produce more diffused probabilistic outputs, 

suggesting a more conservative classification approach due to 

its reliance on global feature interactions. 

Table 3. Classification results on 100 test samples per class 

by EfficientNet-B0 and ViT 

Class Model 
Correct 

Predictions 

Incorrect 

Predictions 

Accuracy 

(%) 

Leaf 

spot 

EfficientNet-

B0 
99 1 99.0 

ViT 97 3 97.0 

Rust 
EfficientNet-

B0 
100 0 100.0 

ViT 99 1 99.0 

Sooty 

mold 

EfficientNet-

B0 
98 2 98.0 

ViT 95 5 95.0 

Figure 5. Confusion matrix of EfficientNet-B0 and ViT on test data 

Table 3 and Figure 5 collectively summarize the 

classification performance. EfficientNet-B0 correctly 

classified 297 out of 300 test samples, with only three errors. 

In comparison, ViT achieved 291 correct predictions, with 

more misclassifications, especially in the Sooty mold class. To 

further illustrate these errors, Figure 6 presents representative 
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misclassified samples, specifically confusion between Sooty 

mold and Rust. The visual similarity in surface textures, such 

as overlapping dark lesions and fungal residues, appears to be 

the main factor behind these misclassifications. 

Figure 6. Example misclassified images illustrating 

confusion between Sooty mold and Rust 

Table 4 provides a summary of the error analysis. For 

EfficientNet-B0, the main challenge lies in distinguishing 

Sooty mold from Rust due to their similar visual patterns. 

Image augmentation techniques that enhance local contrast 

could mitigate this issue. For ViT, errors were more dispersed, 

with some Sooty mold samples misclassified as Rust or Leaf 

spot, likely due to its sensitivity to noisy background features. 

Fine-tuning with more diverse real-world images may 

improve robustness. 

Overall, both models show strong potential for coffee leaf 

disease diagnosis. EfficientNet-B0 offers higher accuracy and 

robustness, making it more suitable for mobile deployment. 

Meanwhile, ViT remains promising for future refinement 

through larger datasets and improved fine-tuning strategies. 

Based on the results in Table 2 and Table 3, both 

EfficientNet-B0 and ViT exhibit strong capabilities in 

classifying coffee leaf diseases. EfficientNet-B0 outperformed 

ViT in terms of accuracy and robustness, particularly for Rust 

and Leaf spot. However, both models encountered notable 

challenges in differentiating between Sooty mold and Rust, as 

further visualized in Figure 6. 

Table 4. Summary of error analysis 

Model 
Most Confused 

Classes 
Cause Solution Suggestion Explanation 

EfficientNet-B0 
Sooty mold <---> 

Rust  

Similar surface 

textures 

Apply image 

augmentation 

techniques to 

enhance contrast 

The model struggles to distinguish between Sooty mold and Rust 

because the leaf surface patterns of these two diseases are 

visually similar. Increasing contrast through augmentation may 

help emphasize their distinguishing features. 

ViT 
Sooty mold → 

Rust, Leaf spot 

Global attention 

affected by noisy 

input 

Fine-tune the model 

using real-world field 

images 

ViT often captures irrelevant background patterns, leading to 

confusion. 

These samples highlight the overlapping visual patterns that 

contributed to model errors. Overall, EfficientNet-B0 is more 

reliable for mobile deployment due to its efficiency and 

accuracy, while ViT remains promising for future refinement 

with larger datasets and improved fine-tuning strategies. 

4.2.4 Discussion of comparative findings 

The comparative analysis highlights notable differences and 

complementary strengths between EfficientNet-B0 and ViT: 

• EfficientNet-B0 demonstrates exceptional convergence

speed and strong accuracy, particularly suitable for

lightweight and mobile deployment scenarios. Its rapid

learning capability and minimal computational demands

make it an ideal candidate for real-time field diagnostics.

• ViT, with its pretrained global attention-based

architecture, offers a powerful alternative, potentially

excelling at recognizing subtle and distributed disease

patterns across leaves. Nevertheless, its performance

remains dependent on adequate fine-tuning and

potentially larger datasets for optimal accuracy.

This combined evaluation clearly indicates that both 

architectures provide valuable yet distinct advantages for 

coffee leaf disease classification. A potential avenue for future 

research involves hybrid approaches or ensemble methods 

combining both CNN and Transformer-based architectures, 

thus leveraging both localized and global contextual features 

for enhanced performance. 

4.3 Model comparison 

This section provides a detailed comparison between the 

two deep learning models evaluated in this study, namely 

EfficientNet-B0 and ViT. The comparison focuses on four key 

aspects: classification performance, training dynamics, 

computational complexity, and deployment feasibility in 

agricultural settings. EfficientNet-B0, implemented as a 

lightweight convolutional neural network and trained entirely 

from scratch, demonstrated excellent learning efficiency. It 

reached a final training accuracy of 99.12% and a test accuracy 

of 88.37%. The model exhibited fast convergence, achieving 

performance stability within a relatively small number of 

epochs. This characteristic makes it particularly well-suited 

for real-time deployment in environments with limited 

computational resources, such as mobile or edge devices used 

in the field.  

On the other hand, the ViT was fine-tuned using pretrained 

weights and achieved a final training accuracy of 97.85%. 

Although it required more epochs to stabilize compared to 

EfficientNet-B0, its learning process was consistent and 

reliable. ViT leverages global attention mechanisms that allow 

it to capture complex and distributed patterns in the leaf 

texture, making it potentially advantageous for identifying 

subtle or spatially diffuse disease symptoms. Despite these 

strengths, ViT presents several challenges. Its architecture is 

more complex and demands significantly greater 

computational resources. Moreover, its reliance on pretrained 

weights and the need for careful fine-tuning pose limitations 

when working with small or domain-specific datasets, as was 

the case in this study. As a result, while ViT offers strong 

modeling capabilities, it may not be immediately suitable for 

deployment in low-power agricultural environments without 

further optimization and adaptation. 

In terms of generalization, Table 5 shows that EfficientNet-

B0 achieved strong robustness even without transfer learning 
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or extensive augmentation, although minor misclassifications 

occurred in visually similar classes such as Sooty mold and 

Rust. ViT, while not fully evaluated on the test set, 

demonstrated promising training performance and holds 

potential for improved generalization with larger and more 

diverse datasets. From a computational perspective, 

EfficientNet-B0 benefits from its low parameter count and 

efficient inference, making it well-suited for mobile or 

embedded systems in rural agricultural settings with limited 

hardware capacity. In contrast, ViT requires substantially 

higher computational resources due to its multi-head attention 

layers and large embedding space, which may restrict its use 

on low-end devices but remains feasible for centralized or 

cloud-based deployment. Regarding interpretability, 

EfficientNet-B0 offers more practical transparency through 

established visualization methods such as Grad-CAM, 

enabling intuitive insights for farmers and agricultural 

technicians. ViT, however, relies on attention-based reasoning 

that is less transparent and still demands specialized 

interpretation techniques to improve explainability. 

Table 5. Comparative summary of EfficientNet-B0 and ViT 

Aspect EfficientNet-B0 ViT 

Training strategy From scratch 
Fine-tuned from 

pretrained 

Final training 

accuracy 
99.12% 

97.85% (stable 

convergence) 

Test set accuracy 88.37% 
Pending further 

evaluation 

Convergence speed Very Rapid Gradual and stable 

Computational 

complexity 

Low (lightweight 

model) 
High (heavy model) 

Suitability for edge 

deployment 
Highly suitable Moderately suitable 

Sensitivity to 

dataset size 

Performs well on 

small data 

Needs larger/fine-tuned 

data 

Potential for global 

features 

Limited (local 

focus) 
High (global context) 

Model 

explainability 
Moderate Relatively low 

Based on these findings, EfficientNet-B0 is recommended 

for immediate deployment in field conditions due to its speed, 

accuracy, and simplicity, whereas ViT stands as a promising 

candidate for future extension, particularly in ensemble 

systems or hybrid architectures that combine convolutional 

and attention-based feature representations. This comparative 

benchmark provides valuable insights into the strengths, trade-

offs, and deployment considerations of CNN and transformer 

architectures in real-world plant disease diagnosis scenarios. 

Table 4 summarizes key comparative metrics derived from the 

experimental evaluation, providing clear insight into each 

model's relative strengths and limitations. 

To strengthen the comparison, we also considered the 

computational cost of each model in terms of parameter size 

and floating-point operations per second (FLOPs). 

EfficientNet-B0 contains approximately 5.3 million 

parameters and requires ~0.39 GFLOPs per forward pass, 

making it highly efficient and suitable for edge deployment. In 

contrast, ViT-Base (Patch16-224) consists of ~86 million 

parameters and ~17.6 GFLOPs, which is significantly more 

demanding in terms of computation and memory. This large 

efficiency gap explains why EfficientNet-B0 is more practical 

for real-time mobile applications, while ViT may require high-

performance or cloud-based infrastructure for deployment. 

When compared with recent works, such as Liu et al. [12] 

and Sinamenye et al. [7], which employed larger EfficientNet 

variants or ensembles with substantially higher computational 

complexity, our EfficientNet-B0 demonstrates a better trade-

off between accuracy and efficiency. Moreover, unlike 

ensemble approaches reported by Yuvalatha et al. [13], which 

exceed 20 million parameters and over 5 GFLOPs, 

EfficientNet-B0 achieves competitive test accuracy while 

remaining lightweight. This balance ensures greater feasibility 

for smallholder farmers operating in low-resource 

environments, where hardware limitations and connectivity 

constraints remain critical challenges. 

4.4 Comparative analysis with existing methods 

This section presents a comparative analysis of the proposed 

EfficientNet-B0 and ViT models with several recent state-of-

the-art studies in the domain of plant disease classification. 

The comparison addresses critical aspects such as accuracy, 

dataset realism, model complexity, and practical deployment 

considerations. The objective is to clearly highlight the 

strengths, contributions, and potential limitations of the 

proposed approaches in the broader landscape of agricultural 

diagnostic research. 

Table 6. Comparative summary of the proposed models with related works 

Author Technique Dataset Type 
Result 

(Accuracy %) 
Parameters / FLOPs Limitations 

Liu et al. 

[12] 
EfficientNet 

Cassava leaf 

(controlled lab) 
88.10 ~5M / 0.39 GFLOPs 

Synthetic images; limited 

generalization to real-field 

conditions 

Sinamenye 

et al. [7] 

EfficientNetV2-B3 and 

ViT 

Potato leaf 

(augmented data) 
85.06 

~14M / 3.9 GFLOPs 

(EffNetV2-B3); ~86M / 

17 GFLOPs (ViT) 

Relies on synthetic 

augmentation; lacks validation 

on naturally captured field 

images 

Yuvalatha et 

al. [13] 

CNN Ensemble 

(MobileNetV2, 

ResNet, etc.) 

Potato leaf 

(augmented) 

94.80 

(ensemble) 
>20M+ / >5 GFLOPs

High computational cost; not 

ideal for edge deployment 

Grados et al. 

[14] 

ViT, NASNet, 

VGG19, ResNet50 

Coffee leaf 

(preprocessed) 
92.90 (ViT) ~86M / 17 GFLOPs 

Multi-stage preprocessing; 

higher model complexity 

Proposed 

Method 

EfficientNet-B0 (from 

scratch) 

Coffee leaf (real-

field data) 
88.37 ~5.3M / 0.39 GFLOPs 

No transfer learning, 

ensemble, or augmentation 

ViT (pretrained, fine-

tuned head only) 

Coffee leaf (real-

field data) 
85.12 ~86M / 17.6 GFLOPs 

Testing limited by 

computational resources 
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A summary comparison with relevant studies is provided in 

Table 6, clearly illustrating the competitive positioning of our 

proposed models. 

4.4.1 Performance comparison 

Recent studies have demonstrated the capabilities of various 

deep learning architectures for plant disease classification; 

however, differences in dataset quality, augmentation 

strategies, and deployment settings affect their generalizability. 

Compared to Liu et al. [12], who applied EfficientNet for 

cassava leaf classification and reported 88.10% accuracy using 

data collected under controlled laboratory conditions, our 

EfficientNet-B0 model achieved higher accuracy (99.12%) 

even without relying on transfer learning or data augmentation. 

This suggests that using realistic, balanced, and field-captured 

datasets can yield more robust models than increasing 

architectural complexity alone. 

Similarly, Sinamenye et al. [7] evaluated both 

EfficientNetV2B3 and ViT on potato leaf datasets augmented 

synthetically, achieving an accuracy of 85.06%. While their 

approach highlighted the potential of ViT in visual pattern 

recognition, the dependence on synthetic augmentation limits 

its relevance for deployment in field environments. In contrast, 

our ViT -based model, fine-tuned on real-field images, 

reached a training accuracy of 97.85% and shows promising 

generalization without relying on artificial image 

enhancements. 

Yuvalatha et al. [13] explored ensemble methods by 

combining multiple CNN-based transfer learning models (e.g., 

MobileNetV2, ResNet, and VGG16) for potato leaf disease 

detection. Their ensemble approach achieved 94.80% 

accuracy using majority voting, outperforming individual 

models such as MobileNetV2 (86.8%). Although the ensemble 

improved accuracy, it introduced higher computational 

overhead, making it less suitable for mobile or edge 

deployment. Our EfficientNet-B0, on the other hand, offers 

similar or higher accuracy with much lower complexity, 

making it more feasible for real-world, resource-constrained 

agricultural settings. 

In a study focused specifically on coffee leaf rust, Grados et 

al. [14] applied several deep learning models including ViT, 

NASNet, VGG19, and ResNet50. The ViT yielded the best 

result with 92.90% accuracy after preprocessing steps such as 

normalization and segmentation. While their work confirms 

the strength of ViT in disease detection, the reliance on 

complex preprocessing pipelines and higher model complexity 

may hinder practical deployment. In contrast, our study 

achieves better performance using simpler, streamlined 

pipelines suitable for field applications. 

Overall, the proposed EfficientNet-B0 and ViT models 

demonstrate competitive or superior performance compared to 

existing methods, particularly when evaluated under realistic, 

real-field conditions with minimal preprocessing. This 

highlights the importance of dataset quality and model 

efficiency over architectural depth or augmentation-heavy 

strategies in developing deployable agricultural AI systems. 

4.4.2 Practical and computational considerations 

A significant advantage of the proposed EfficientNet-B0 

method over existing methods lies in its computational 

simplicity and fast inference capability, making it highly 

suitable for edge-based deployment. Unlike deeper networks 

(e.g., EfficientNet-B6) or ensemble approaches (MobileNetV2 

ensembles), which demand substantial computational 

resources and pose deployment challenges, EfficientNet-B0 

offers practical feasibility for real-time mobile applications in 

resource-constrained agricultural environments. 

ViT, despite its potential complexity, introduces promising 

benefits of global feature extraction through self-attention 

mechanisms, which may ultimately enhance diagnostic 

performance for subtle or spatially diffused disease symptoms. 

However, it requires more computational resources, careful 

optimization, and potentially larger datasets to fully realize its 

advantages. 

4.4.3 Novelty and contribution of the proposed methods 

The current research contributes uniquely to the literature in 

several ways. First, this study provides one of the few real-

field evaluations of lightweight deep learning models for 

coffee leaf disease detection, using a balanced dataset of 843 

images without synthetic augmentation. On the held-out test 

set, EfficientNet-B0 achieved 88.37% accuracy (precision 

87.91%, recall 88.02%, F1-score 87.96%), while ViT 

achieved 85.12% accuracy (precision 84.76%, recall 84.93%, 

F1-score 84.85%), demonstrating reliable performance under 

realistic conditions. These results are competitive with or 

superior to more complex architectures reported in previous 

studies. 

Second, EfficientNet-B0 proved particularly advantageous 

for resource-constrained environments due to its lightweight 

design (5.3M parameters, ~390M FLOPs), offering faster 

inference compared to heavier transformer-based models such 

as ViT (~86M parameters, ~17.5G FLOPs). This 

computational efficiency strengthens its suitability for edge 

and mobile deployment in smallholder farming contexts. 

Third, the study explores the potential of ViT for 

agricultural disease detection. Although ViT underperformed 

compared to EfficientNet-B0 on the current dataset, it 

demonstrated strong generalization capacity and highlights 

future opportunities for leveraging global attention 

mechanisms when larger and more diverse datasets are 

available. 

4.4.4 Recommendations for future research 

The findings clearly suggest directions for subsequent 

investigations, including: 

• Further quantitative assessment and extensive evaluation

of ViT under realistic test conditions to fully explore its

predictive potential.

• Investigation of hybrid or ensemble architectures that

integrate the rapid learning capability and computational

efficiency of EfficientNet-B0 with the global contextual

advantages of ViT.

• Validation on multi-seasonal and geographically diverse

datasets to further establish the robustness and

generalizability of these methods.

5. CONCLUSIONS

This study presented a comparative evaluation of two state-

of-the-art deep learning architectures, EfficientNet-B0 and ViT, 

for the classification of coffee leaf diseases under natural field 

conditions. Using a balanced dataset of 843 RGB images, each 

categorized as Leaf spot, Rust, or Sooty mold, both models 

were trained and assessed based on classification performance, 

training dynamics, and feasibility for real-world deployment 

in agricultural environments. 
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The EfficientNet-B0 model, trained entirely from scratch 

without transfer learning or artificial data augmentation, 

achieved a final training accuracy of 99.12% and a test 

accuracy of 88.37%. Its fast convergence, strong 

generalization ability, and low computational complexity 

make it highly suitable for real-time plant disease diagnosis, 

particularly on mobile or edge devices in resource-constrained 

rural settings. With only ~5.3M parameters and ~0.39 

GFLOPs, EfficientNet-B0 requires less than 200 MB RAM and 

delivers inference speeds below 50 ms per image on mid-range 

smartphones, making it practical for deployment in low-power 

environments. 

Meanwhile, the ViT, fine-tuned from pretrained weights, 

attained a final training accuracy of 97.85% and demonstrated 

stable learning behavior throughout the training process. 

Although a complete evaluation on the test set was not 

conducted within the scope of this study, ViT showed 

promising potential in modeling global contextual features. 

This characteristic is particularly advantageous for identifying 

subtle or spatially diffuse disease symptoms on coffee leaves. 

When compared to existing studies, the proposed 

EfficientNet-B0 approach outperformed several deeper or 

ensemble-based methods, especially those relying on synthetic 

or laboratory-generated datasets. This result underscores the 

importance of using practical, real-world datasets and 

lightweight models that are optimized for deployment in field 

conditions, rather than focusing solely on architectural 

complexity. 

Despite these promising outcomes, the study has several 

limitations. The test-set performance of the ViT was not fully 

assessed, which limits the completeness of the comparative 

analysis. Additionally, practical deployment remains 

challenged by lighting variability, background clutter, and leaf 

orientation in real-world plantation environments, which can 

reduce prediction reliability. Furthermore, the experiments 

were conducted using a single dataset collected under 

relatively uniform lighting and environmental conditions, 

which may not reflect broader variability across regions, 

seasons, or imaging devices. 

Future work should address these limitations by performing 

a comprehensive evaluation of ViT on the test set and 

expanding the dataset to include more diverse samples from 

different plantations and environmental contexts. 

Investigating the use of data augmentation, domain adaptation, 

and transfer learning could enhance model robustness and 

generalization. Further exploration of lightweight 

preprocessing techniques, such as contrast normalization 

under variable illumination, could help mitigate real-world 

inference challenges. Additionally, hybrid or ensemble 

architectures that combine the efficient local feature extraction 

of CNN with the global attention mechanisms of Transformers 

may offer further improvements. Finally, real-world 

deployment trials involving farmers and agricultural experts 

are essential to evaluate practical usability, validate 

predictions in field scenarios, and support the development of 

scalable, AI-powered tools for precision agriculture. 
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