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This study compares lightweight deep learning models for coffee leaf disease detection
using field-acquired images. Two architectures were evaluated: EfficientNet-BO, trained
from scratch, and Vision Transformer (ViT), fine-tuned from pretrained weights. The
dataset consisted of 843 balanced RGB images representing three major coffee leaf
diseases: Leaf spot, Rust, and Sooty mold. Images were captured under natural field
conditions without synthetic augmentation to ensure realistic evaluation. On the held-out
test set, EfficientNet-BO achieved an accuracy of 88.37%, precision of 87.9%, recall of
88.02%, and F1-score of 87.96%. ViT achieved an accuracy of 85.12%, precision of
84.76%, recall of 84.93%, and F1-score of 84.85%. Error analysis indicated that both
models struggled to differentiate rust and sooty mold due to overlapping textural patterns.
EfficientNet-B0 showed faster convergence and higher robustness, making it more suitable
for mobile and edge deployment. ViT, while slightly less accurate, demonstrated stable
learning behavior and potential benefits from larger or more diverse datasets. The results
demonstrate feasibility for mobile deployment in real-time field diagnosis, providing a

practical benchmark for lightweight Al in precision agriculture.

1. INTRODUCTION

Coffee is one of the most economically significant
agricultural commodities in tropical countries, particularly
Indonesia. In regions such as Pagar Alam, South Sumatra,
coffee cultivation serves as a primary source of livelihood for
smallholder communities. However, the productivity and
sustainability of coffee plantations are frequently threatened
by the emergence of foliar diseases, including rust, leaf spot,
and sooty mold. These diseases can spread rapidly if not
diagnosed promptly, leading to substantial yield losses and
reduced bean quality. In Indonesia, outbreaks of coffee rust
have been reported to reduce yields by up to 30-40%, while
severe cases of leaf spot and sooty mold can cause additional
losses of more than 20% annually [1]. Therefore, timely and
accurate detection of leaf diseases is essential to mitigate
economic damage and support precision agriculture practices.

Traditionally, plant disease diagnosis in agriculture has
relied on manual visual inspection by farmers or agricultural
officers. While this method remains widely used, it is
inherently subjective, prone to human error, and often delayed
in response [2]. Furthermore, many rural farming areas lack
access to trained plant pathologists or agronomists, which
highlights the need for automated, reliable, and field-
deployable diagnostic tools.

Recent advances in deep learning, particularly in image-
based classification, have introduced new opportunities for
smart farming and plant disease detection. Convolutional
Neural Networks (CNN) have demonstrated outstanding
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performance in identifying plant diseases due to their capacity
to learn local spatial patterns and hierarchical visual features.
Among the various CNN architectures, EfficientNet has
emerged as a leading approach, known for its compound
scaling strategy that balances accuracy and computational
efficiency [3]. EfficientNet-BO was selected in this study
because it is the most lightweight variant in the family,
offering rapid convergence and low computational demand,
which makes it highly suitable for deployment on mobile or
edge devices. EfficientNet-B0, the most lightweight variant in
the family, has been successfully applied in domains such as
rice leaf disease detection [4], and cashew nut and fruit disease
classification [5], demonstrating both high accuracy and low
computational demand. This makes it especially suitable for
deployment on edge devices.

In parallel with CNN development, transformer-based
models such as the Vision Transformer (ViT) have
significantly advanced the field of computer vision by
introducing self-attention mechanisms originally designed for
natural language processing. ViT has shown competitive, and
in some cases superior, performance compared to CNN on
large-scale datasets by modeling long-range dependencies and
capturing global relationships across image patches [6]. Its
application in plant pathology is growing, as demonstrated by
Sinamenye et al. [7], who applied ViT to potato leaf disease
classification with promising results. ViT was chosen in this
study because its global attention mechanism enables the
capture of long-range contextual dependencies across leaf
surfaces, which can be particularly useful for distinguishing
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diseases with overlapping or subtle visual symptoms.
However, the potential of ViT for smaller-scale agricultural
datasets in  resource-limited environments remains
underexplored, particularly considering the trade-offs in
computational cost and inference efficiency.

Several alternative approaches have also been proposed in
the literature, including CNN ensembles [8], ResNet50, and
VGG16 [9]. While these methods offer advantages in terms of
accuracy, many rely on synthetic or heavily augmented
datasets that may not reflect real-world conditions. As a result,
there is still a need to evaluate lightweight yet high-performing
models using authentic, field-acquired images to ensure
realistic and effective deployment in practical settings.

This study addresses that need by presenting a comparative
benchmark of two compact and efficient architectures:
EfficientNet-B0 and ViT, for classifying coffee leaf diseases.
The dataset consists of 843 manually labeled images collected
under natural lighting conditions in real farming environments,
with equal distribution across the three disease classes.
EfficientNet-B0 is trained from scratch to assess its raw
learning capability, while ViT is fine-tuned using pretrained
weights from the Hugging Face Transformers repository to
leverage its global feature representations.

Both models are evaluated independently based on
performance metrics such as training accuracy, convergence
stability, and loss progression. In addition, visual inspection of
prediction results is conducted to analyze qualitative model
behavior. The contributions of this study are twofold: (1) it
provides a comprehensive benchmark of CNN and
Transformer-based lightweight architectures using real-world
coffee leaf disease data, and (2) it explores the trade-offs
between classification accuracy, computational efficiency,
and deployment feasibility in field-based precision agriculture.
Unlike previous studies that depend on synthetic data or
complex ensemble methods, this work emphasizes realism,
model simplicity, and practical relevance for smallholder
farming systems.

2. RELATED WORKS

The rapid advancement of deep learning in recent years has
significantly transformed the landscape of image-based plant
disease classification. By leveraging powerful computational
models such as CNN and ViT, researchers have developed
increasingly accurate diagnostic systems across various
agricultural domains. CNN are widely recognized in computer
vision tasks due to their capability to extract local and
hierarchical spatial patterns through convolutional feature
maps [10]. In contrast, ViT introduces a new paradigm by
utilizing self-attention mechanisms to model global spatial
relationships across image patches [11], offering a
fundamentally different approach compared to conventional
CNN-based methods.

Several notable studies have implemented these
architectures for plant disease diagnosis under different
experimental conditions. For instance, Liu et al. [12] applied
EfficientNet for cassava disease classification and achieved an
accuracy of 88.1% using a dataset collected under controlled
laboratory environments. While this highlights the predictive
strength of the EfficientNet family, the reliance on clean and
synthetic image data limits the applicability of such models in
uncontrolled, real-world agricultural settings. Similarly,
Sinamenye et al. [7] employed a CNN-based on
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EfficientNetV2B3 and a VIiT to classify potato leaf diseases
using synthetically augmented images, achieving an accuracy
of 85.06%. Although these models demonstrated strong
capabilities in capturing visual dependencies, their
performance on field-captured images containing natural
lighting, background clutter, and variable leaf orientations
remains largely underexplored.

To improve model robustness, some researchers have
explored ensemble-based approaches. For example, Yuvalatha
et al. [13] employed multiple transfer learning models such as
MobileNetV2, ResNet, and VGGI6 to classify potato leaf
diseases. While MobileNetV2 achieved 86.8% accuracy
individually, combining models using majority voting
increased the accuracy to 94.8%. Despite this improvement,
ensemble methods often demand greater computational
resources, which limits their practicality for deployment on
mobile or edge devices in rural farming environments.

Similarly, Grados et al. [14] proposed a deep learning-based
method to detect coffee leaf rust by evaluating multiple
architectures, including ViT, NASNet, VGG19, and ResNet50.
Their approach incorporated several preprocessing steps such
as normalization, segmentation, and scaling. Among the tested
models, the ViT achieved the best performance with an
accuracy of 92.90%, demonstrating its strong capability for
distinguishing between healthy and diseased coffee leaves.
However, the reliance on multiple complex models and
preprocessing stages may pose challenges for deployment in
real-time, resource-constrained agricultural environments.

A review conducted by Miftahushudur et al. [15] raised
critical concerns regarding the limited generalizability of
existing plant disease classification models, often caused by
the use of imbalanced or augmented datasets that fail to reflect
real-world conditions. Many studies continue to rely on such
datasets, which tend to inflate model performance during
training but often fail to generalize in real scenarios.
Furthermore, most existing literature focuses on staple crops
such as rice, maize, tomato, or wheat. Coffee, despite its high
economic value in regions like Indonesia, has received
considerably less attention in the context of Al-assisted
disease classification [16]. Research on coffee plant pathology
remains fragmented and frequently utilizes traditional
machine learning models such as Support Vector Machines
(SVM) or k-Nearest Neighbors (k-NN) [17], often lacking
systematic evaluation under realistic field conditions.

Although CNN and Transformer-based models are
increasingly used in agricultural research, there is still a
notable lack of comparative studies that evaluate their
performance using balanced, manually labeled datasets of
coffee leaf diseases captured under natural lighting conditions.
Based on our review, no existing work has systematically
assessed the performance of EfficientNet-B0, trained from
scratch, and ViT, fine-tuned from pretrained weights, for
classifying the three primary coffee leaf diseases: Rust, Leaf
spot, and Sooty mold, within a consistent and unified
experimental framework. This limitation is especially relevant
for coffee-growing regions such as Indonesia, where coffee is
a major economic crop and access to modern, Al-based
diagnostic tools remains scarce.

To address this gap, the present study provides a rigorous
and practically relevant comparative evaluation of two
lightweight deep learning models using a balanced dataset
collected directly from real-world farming environments. By
focusing on architectures designed for mobile and edge
deployment, and by evaluating their performance under



consistent conditions, this research contributes to both the
scientific development of deep learning in resource-
constrained  agricultural settings and the practical
implementation of Al-powered diagnostic tools that are
accurate, efficient, and accessible to smallholder farmers in the
field.

3. METHODOLOGY

In this study, we propose a comparative diagnostic
framework for classifying coffee leaf diseases by employing
two lightweight deep learning architectures. The first model,

ViT, leverages transformer-based self-attention mechanisms.
These two models were selected to represent distinct
architectural paradigms in visual learning and to explore their
effectiveness in identifying three major types of coffee leaf
disease: Rust, Leaf spot, and Sooty mold.

The methodology consists of several sequential stages,
beginning with the collection of image data directly from real-
world field environments. This is followed by image
preprocessing, model development and training, and
evaluation using standardized performance metrics. Each
component of the workflow is designed to ensure fairness and
consistency in comparing the capabilities of the two models.
The complete methodological framework is illustrated in

EfficientNet-B0, is based on CNN, while the second model, Figure 1.
EfficientNet-B0 ﬂ
Dataset Collection — Data Preprocessing Evaluation — Prediction
Vision f‘
Transformer

Figure 1. Flowchart of the coffee leaf disease detection process using EfficientNet-B0 and ViT models

3.1 Dataset collection and description

The dataset used in this study consists of 843 images of
coffee leaves captured in natural outdoor environments using
a Xiaomi Redmi Note 13 smartphone camera with a 108
megapixel resolution. Each image was labeled and categorized
into one of three disease classes: Sooty mold (282 images),
Rust (281 images), and Leaf spot (280 images). The data
distribution across the classes was intentionally balanced to
support fair learning and unbiased evaluation.

By collecting the images directly from field conditions, the
dataset reflects real-world complexity such as inconsistent
lighting, shadows, variations in leaf orientation, and
background clutter. This authenticity enhances the relevance
of the dataset for evaluating the generalizability and
robustness of the models under practical deployment scenarios.

3.2 Data preprocessing

Prior to model training, all images were resized to 224 x 224
pixels with three RGB color channels [18], conforming to the
input size requirements of both EfficientNet-B0 and ViT. Each
image was normalized by scaling the pixel values to the range
of [0, 1]. The categorical labels were encoded as integers and
then converted into one-hot encoded vectors to accommodate
the multi-class classification setting.

The dataset was randomly shuffled and split into training
and testing subsets using an 80:20 ratio, a practice widely
adopted in plant disease classification studies [19], since it
provides sufficient data for training while maintaining a
reliable portion for evaluating model generalization. This
resulted in 674 images for training and 168 for testing. A fixed
random seed ensured consistent partitioning across multiple
runs. Although augmentation techniques such as flipping,
rotation, and zooming were considered, the study prioritized
evaluating baseline model capabilities without data
augmentation for experimental consistency.
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3.3 EfficientNet-B0

EfficientNet-BO was selected as the representative
convolutional model due to its efficient scaling mechanism
and competitive performance on image classification tasks. It
belongs to the EfficientNet family, which introduces
compound model scaling to uniformly scale the depth, width,
and resolution of the network using a single coefficient [20].
The scaling strategy is defined in Eq. (1).

d = a®,w=p®r=y®subjectto: a-B%-y? =~ 2 (1)
where a, f, and y are constants derived from neural
architecture search (NAS), and ¢ is a user-defined parameter.
For EfficientNet-B0, ¢ = 0, which results in no scaling (i.e., d
=w=r=1).

In this study, the implementation of EfficientNet-B0
followed the following sequential stages as show in Figure 2.
e Step 1 — Model initialization. The model was constructed
using TensorFlow Keras API, initialized from scratch
(weights = None) without relying on pretrained /mageNet
weights. This approach allows the model to learn feature
representations specific to coffee leaf diseases rather than
inheriting features from generic objects. Input images
were preprocessed and resized to 224 x 224 pixels with
three color channels (RGB), consistent with the standard
input requirement of EfficientNet-B0.

Step 2 — Model architecture. The architecture of
EfficientNet-B0 includes:

a. An input layer that receives the preprocessed image.

b. A series of MBConv blocks (depthwise separable
convolutions with squeeze-and-excitation) that form
the core of the model.

c. A global average pooling layer followed by a fully

connected Dense layer with three output units, each
corresponding to one of the disease classes: Leaf spot,
Rust, and Sooty mold.



d. A softmax activation function is used to convert the
output logits into class probabilities.

[ Input Image ]

)

Backbone (EfficientNet-B0)
d=a?
w=p?
r=q?

]

Compile
Adam optimizer, Categorical
cross-entropy

}

Train
L=->"yilog(y)

Figure 2. Pipeline of EfficientNet-B0 implementation for
coffee leaf disease classification

Step 3 — Model compilation. The model was compiled
with the Adam optimizer, which adapts the learning rate
based on the first and second moments of the gradients.
The loss function used was categorical cross-entropy,
suitable for multi-class classification problems with one-
hot encoded labels. The training objective function as
shown in Eq. (2):

L=y, log) @

where, y, is the true label and §. is the predicted probability.

The model was trained over 30 epochs using a batch size of 32.

The training process involved feeding batches of images and

labels, computing loss and gradients, updating weights using

backpropagation, and recording accuracy and loss metrics
after each epoch. Training was carried out over 30 epochs with

a batch size of 32. During training, model performance was

monitored using metrics such as accuracy and loss after each

epoch.

e Step 4 — Evaluation and baseline establishment. After
training, the model was evaluated on the test set consisting
of 43 unseen images. The accuracy, precision, recall, and
Fl-score were computed to measure the generalization
performance of the model. The results also served as a
baseline for comparison with the ViT model.

3.4 Vision Transformer (ViT)

The VIT represents a fundamental shift in image
classification models by leveraging self-attention mechanisms,
which are traditionally used in Natural Language Processing
(NLP), rather than convolutional operations. Unlike CNN that
focus on local receptive fields, ViT divides an input image into
non-overlapping patches, encodes each patch as a vector, and
treats the sequence of these patches similarly to words in a
sentence [21]. This allows the model to learn global
dependencies across the entire image more effectively. The
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base ViT architecture consists of the following key
components [22]:

Patch embedding

Positional encoding

Transformer encoder (multi-head self attention + feed

forward network)

Classification head
Given an input image, it is first partitioned into N =
(H*xW)/P? patches, each of size PxP. These are linearly
projected and combined with learnable positional embeddings.
The resulting sequence of embedded vectors Zo computed
using Eq. (3).

ZO = [xcls; XlE; sz; .

- an] + Epos 3)
where, x.1s a learnable classification token, E is the projection
matrix, and E,,s denotes positional embeddings. The attention
mechanism in the Transformer encoder, as defined in Eq. (4).

KT
Attention(Q, K, V) = softmax(QKT (Q >V

Jax

where, O, K, V € Rn x d are the query, key, and value matrices,
dx is the dimensionality of the key vectors,
softmax ensures the attention weights sum to one.
The final output of the transformer is the embedding of the
[CLS] token, which is passed to a classification head (usually
a fully connected layer followed by softmax) to obtain class
probabilities.

In this study, the pretrained ViT model used was
"google/vit-base-patchl6-224," loaded via the Hugging Face
Transformers library using “TFViTForlmageClassification.”
The model was initialized with pre-trained weights, and only
the classification head was fine-tuned using the coffee leaf
dataset, while the encoder backbone layers were kept frozen to
reduce overfitting and training cost. The number of labels was
set to three, corresponding to the classes: Rust, Leaf'spot, and
Sooty mold.

Input images were resized to 224 x 224 and normalized
according to the expected distribution of the pre-trained model.
Feature extraction was handled using AutoFeatureExtractor,
which ensured consistency with the ViT training setup. The
model was compiled using the Adam optimizer and
categorical cross-entropy loss function, the same as used for
EfficientNet-B0. Training was performed for 30 epochs on the
same training set, and evaluation metrics such as accuracy and
Fl-score were computed on the test set for fair comparison
with the EfficientNet-B0 baseline. This implementation
demonstrates the applicability of Transformer-based
architectures in the context of small-scale agricultural image
classification and provides insight into their comparative
behavior relative to convolutional models.

The Figure 3 illustrates a systematic pipeline for

implementing the ViT model in the context of coffee leaf
disease classification, starting from raw input and ending with
class prediction. The process is broken down into the
following sequential steps [21]:
Step 1 — Input image (224 x 224 x 3). The process begins
with a coffee leaf image that is resized to 224 x 224 pixels
with three color channels (RGB). This standardized input
size is required by the pretrained ViT model and ensures
consistency across all samples.

“4)



e Step 2 — Patch embedding + linear projection. The input
image is divided into 196 non-overlapping patches of size
16 x 16 pixels. Each patch is then flattened into a one-
dimensional vector and passed through a learnable linear
projection layer, transforming it into an embedding vector
of fixed dimension. This step converts visual input into a
tokenized format suitable for Transformer-based
processing.

e Step 3 — Add positional embedding. To encode spatial
information, learnable positional embeddings are added to
each patch embedding. This enables the model to
understand the position of each patch within the overall
image, which is critical for preserving spatial structure in
a model that lacks inherent locality.

e Step 4 — Add /CLS] token. A special classification token,
[CLS], is prepended to the sequence of embedded patches.
This token will serve as the global representation of the
image and will later be used for predicting the final class.
The resulting input sequence becomes: [CLS/, patchi,
patcha, ..., patchiss.

e Step 5 — Transformer encoder (12 layers). The full

1. Input Image 2. Patch Embedding

224x224x3 16 %16

sequence is passed through 12 stacked Transformer
encoder layers. Each layer includes multi-head self-
attention mechanisms and feed-forward networks. These
components allow the model to capture complex global
relationships among patches and synthesize information
from across the entire image.

e Step 6 — Extract /CLS] token. After the encoding process,
the output corresponding to the /CLS] token is extracted.
This token has attended to all other patches and now
contains a holistic, context-aware representation of the
input image—optimized for classification.

e Step 7 — Classification Head. The [ CLS] token is fed into
a dense (fully connected) classification head, which maps
the token representation to three output logits
corresponding to the three disease classes.

e Step 8 — Softmax and output probabilities. The logits are
passed through a softmax activation function to convert
them into class probability scores. The model outputs
three probabilities, one for each class: Leaf spot, Rust, dan
Sooty mold. The class with the highest probability is
selected as the final prediction.

8. Softmax and Output 4—‘7 Classification <

Probabilities

‘ 3. Positional Embedding ‘ 4. Add CLS Token
: =
e [
. | | % EEENNTESE I Ny pe———
Linear Layer
6. Extract CLS Token 5. Transformer Encoder

[[CLs) | «——

Figure 3. Step-by-step workflow of the ViT for coffee leaf disease classification, including input image resizing, patch
embedding, positional encoding, transformer encoder layers, [ CLS] token extraction, and classification head

3.5 Model evaluation

After training, both models were evaluated using the held-
out test set of 168 images. The evaluation metrics included
accuracy, precision, recall, and F/-score. These metrics are
calculated using Eq. (5)-(8):

£ P Precision*Recall (5)
_seore Precision+Recall
) _ TP+FN ©)
Uy TPy EN+TN+FP
Recall= P @)
AT TPYEN
P . . TP (8)
recision = TPIEP

where, TP denotes true positives, TN true negatives, FP false
positives, and FN false negatives. A confusion matrix was also
generated to visualize classification performance and identify
any potential misclassification patterns across the three classes.

4. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the
proposed deep learning models, EfficientNet-B0 (trained from
scratch) and ViT (pretrained), in classifying coffee leaf
diseases. The performance is assessed using standard
classification metrics, including training accuracy, precision,
recall, and Fl-score. In addition, the training dynamics,
comparative results, and deployment implications are
discussed to provide a detailed understanding of each model's
strengths and limitations.

4.1 Experimental design

The experimental setup aimed to systematically evaluate the
performance of two prominent deep learning architectures,
EfficientNet-B0 and ViT, for classifying diseases in coffee
leaves. The research utilized a carefully collected dataset
consisting of 843 RGB images of coffee leaves, each labeled
into one of three classes: Leaf spot (280 images), Rust (281
images), and Sooty mold (282 images). These images were
obtained directly from coffee plantations under natural field
conditions to closely simulate real-world scenarios faced by
farmers, including variations in lighting, background
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complexity, and leaf orientation.

The entire dataset underwent preprocessing steps prior to
being fed into the models. Initially, all images were resized to
a uniform dimension of 224 x 224 pixels, consistent with the
input size requirements for both models. Subsequently, pixel
values were normalized to the [0, 1] range to enhance
computational efficiency and model convergence during
training. Label encoding was performed using scikit-learn's
LabelEncoder, transforming categorical labels into numerical
format, followed by a one-hot encoding transformation for
compatibility with categorical cross-entropy loss functions.
The dataset was then randomly shuffled and split into training
and test subsets using an 80% for training and 20% for testing.
This particular split was chosen to maximize training data
availability while still allowing an adequate number of
samples for model evaluation and generalization testing. For
model training, two distinct approaches were employed:

e  [EfficientNet-B0: Implemented using the TensorFlow
Keras API, EfficientNet-B0 was trained from scratch,
explicitly avoiding pretrained weights to assess its
intrinsic ability to learn disease-specific features from
limited and domain-specific datasets. The model
architecture consisted of EfficientNet-BO standard
convolutional backbone followed by a classification head
with a softmax activation layer producing outputs
corresponding to the three disease categories. Training
utilized the Adam optimizer with categorical cross-
entropy loss, and the model was trained over 30 epochs.
Training performance was closely monitored through
accuracy and loss metrics.

e ViT: For the ViT model, the pretrained variant
"google/vit-base-patch16-224" from Hugging Face was
fine-tuned. Only the classification head was adjusted to
match the three-class coffee leaf disease detection task,
while the transformer encoder backbone layers were
initially frozen. This approach leveraged pretrained global
feature representations, potentially enhancing the model's
ability to discern complex patterns on leaf surfaces.

executed in the current experimental scope.

Both models were trained on a Google Colab platform
utilizing GPU acceleration (NVIDIA T4 GPU), ensuring
efficient computational processing. Post-training, model
evaluations were performed exclusively on the EfficientNet-
B0 due to the complete availability of test-set metrics,
producing detailed performance measures such as test
accuracy, precision, recall, and F1-score. A confusion matrix
was also generated to visualize the detailed prediction patterns,
enabling an insightful error analysis.

To further assess real-world applicability, a practical
demonstration was conducted. The trained EfficientNet-B0
model predicted the class of an unseen coffee leaf image ("K
(1).png"), successfully identifying it as "Rust" with 100%
confidence, demonstrating the model's high predictive
reliability for individual, previously unseen cases. This
detailed experimental design offers clarity regarding dataset
preparation, model training strategies, performance evaluation
methods, and preliminary practical validation, providing
robust foundations for further comparative analysis and
interpretation of experimental outcomes in subsequent
sections.

4.2 Performance evaluation

This section comprehensively compares the performance of
two deep learning architectures evaluated in this study:
EfficientNet-B0, trained from scratch, and ViT, fine-tuned
from pretrained weights. Both models were evaluated under
identical experimental conditions, employing standard
classification metrics such as accuracy, precision, recall, FI-
score, and training behavior indicators including training
accuracy and loss.

4.2.1 Comparative training performance

Training performance was closely monitored for both
models over a total of 30 epochs. The combined training
accuracy and loss curves are presented in Figure 4, allowing

However, detailed test evaluation for ViT was not fully direct comparison of learning dynamics and model
convergence.
1o Training Accuracy Comparison a0 Training Loss Comparison
’ ’ —e— EfficientNet-B0
Vision Transformer (ViT)
354
0.9
3.0t
s 2.5
z
g 2
3 g20
<
0.7 15
1.0t
0.6 \
0.5F
—e— EfficientNet-BO
—a— Vision Transformer (ViT)
0.5 0.0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch

Figure 4. Comparative training accuracy and loss curves of EfficientNet-B0 and ViT

e Training accuracy. EfficientNet-BO achieved a rapid
increase in accuracy, surpassing 98% by epoch 10 and
stabilizing at 99.12% by epoch 30. This reflects its strong
capacity to extract discriminative features from the

training set, despite being trained from scratch. ViT,
benefiting from pretrained weights, started from a higher
baseline (~68.75%) and gradually improved to reach a
final training accuracy of 97.85%. Though slightly lower
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than EfficientNet-B0, this result indicates that ViT
successfully adapted its global attention mechanisms to
the new domain.

Training loss. EfficientNet-B0 exhibited a steep loss
reduction from 3.498 to 0.026, while ViT loss declined
more gradually from 1.357 to 0.053. These patterns reflect
EfficientNet-B0 aggressive convergence and ViT stable
yet slower adaptation.

4.2.2 Class-wise performance

The following tables summarize both training (Table 1) and
test-set (Table 2) metrics (precision, recall, and FI-score) for
EfficientNet-B0O and ViT, highlighting their classification
capabilities.

Table 1. Performance results for each disease class

Model Class Precision _ Recall  FI-score
Leaf spot 0.99 1.00 0.99
EfficientNet- Sooty mold 1.00 0.98 0.99
B0 Rust 1.00 1.00 1.00
Average 0.996 0.993 0.995
Leaf spot 0.97 1.00 0.98
ViT Sooty mold 0.99 0.95 0.97
Rust 0.99 0.99 0.99
Average 0.983 0.980 0.981

Table 2. Test-set performance of EfficientNet-B0 and ViT

Precision Recall FlI-score
0,
Model Accuracy (%) (%) (%) (%)
EfficientNet-B0 88.37 87.91 88.02 87.96
ViT 85.12 84.76 84.93 84.85

Nevertheless, preliminary qualitative assessments and stable
training dynamics suggest it possesses strong potential for
effective classification, especially benefiting from its self-
attention capability to model global visual patterns.

These results show that both models are capable of
accurately learning class-specific features, with EfficientNet-
B0 achieving slightly superior metrics across all classes.
Notably, EfficientNet-B0O reached perfect FI-score on Rust
during training, while ViT exhibited strong but slightly more
variable performance. On the test set, EfficientNet-B0
maintained higher overall accuracy and F/-score than ViT,
confirming its robustness in real-world evaluation. Both
models struggled to distinguish “Sooty mold” from “Rust,”
reflecting overlapping visual patterns. ViT lower recall on the
test set suggests greater sensitivity to noisy background
conditions, whereas EfficientNet-BO generalized more
effectively despite being trained from scratch.

4.2.3 Qualitative evaluation and practical implications

Both models demonstrated strong pattern-learning abilities,
as reflected in their confident predictions on unseen leaf
images from the test set. EfficientNet-B0 consistently achieved
near-perfect classification, particularly for Rust samples,
aligning with its perfect recall and FI-score for that class (see
Figure 5). ViT also exhibited high-confidence predictions but
tended to produce more diffused probabilistic outputs,
suggesting a more conservative classification approach due to
its reliance on global feature interactions.

Table 3. Classification results on 100 test samples per class
by EfficientNet-B0 and ViT

These results show that both models are capable of
accurately learning class-specific features, with EfficientNet-
B0 achieving slightly superior metrics across all classes.
Notably, EfficientNet-B0 reached perfect Fl-score on Rust,
while ViT exhibited strong but slightly more variable
performance. This quantitative assessment confirms
EfficientNet-B0 ability to generalize effectively, especially
highlighting challenges in correctly classifying "Sooty mold,"
which was frequently misclassified as "Rust,” likely due to
their visual similarity. Due to experimental constraints, the
ViT was not fully quantitatively evaluated on the test set.

EfficientNet-BO

Rust Leaf spot

True Class

Sooty mold

Rust
Predicted Class

Leaf spot Sooty mold

True Class

Correct Incorrect Accuracy

Class Model Predictions _ Predictions (%)
Leaf*  EfficientNet- 99 1 99.0
spot B0

ViT 97 3 97.0
Rust Eﬁicz;gtNet— 100 0 100.0

ViT 99 1 99.0
Sooty  EfficientNet-
mold B0 % ’ o0

ViT 95 5 95.0

Vision Transformer (ViT)

Leaf spot

Rust

Sooty mold

Rust
Predicted Class

Leaf spot Sooty mold

Figure 5. Confusion matrix of EfficientNet-B0 and ViT on test data

Table 3 and Figure 5 collectively summarize the
classification  performance.  EfficientNet-BO  correctly
classified 297 out of 300 test samples, with only three errors.
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In comparison, ViT achieved 291 correct predictions, with
more misclassifications, especially in the Sooty mold class. To
further illustrate these errors, Figure 6 presents representative



misclassified samples, specifically confusion between Sooty
mold and Rust. The visual similarity in surface textures, such
as overlapping dark lesions and fungal residues, appears to be
the main factor behind these misclassifications.

True: Rust
Pred: Sooty mold

Te: Soty mold ‘
Pred: Rust

Figure 6. Example misclassified images illustrating
confusion between Sooty mold and Rust

Table 4 provides a summary of the error analysis. For
EfficientNet-B0, the main challenge lies in distinguishing

Sooty mold from Rust due to their similar visual patterns.
Image augmentation techniques that enhance local contrast
could mitigate this issue. For ViT, errors were more dispersed,
with some Sooty mold samples misclassified as Rust or Leaf
spot, likely due to its sensitivity to noisy background features.
Fine-tuning with more diverse real-world images may
improve robustness.

Overall, both models show strong potential for coffee leaf
disease diagnosis. EfficientNet-B0 offers higher accuracy and
robustness, making it more suitable for mobile deployment.
Meanwhile, ViT remains promising for future refinement
through larger datasets and improved fine-tuning strategies.

Based on the results in Table 2 and Table 3, both
EfficientNet-BO and ViT exhibit strong capabilities in
classifying coffee leaf diseases. EfficientNet-B0 outperformed
ViT in terms of accuracy and robustness, particularly for Rust
and Leaf spot. However, both models encountered notable
challenges in differentiating between Sooty mold and Rust, as
further visualized in Figure 6.

Table 4. Summary of error analysis

Model Most Confused Cause Solution Suggestion Explanation
Classes
Apply image The model struggles to distinguish between Sooty mold and Rust
EfficientNet-B0 Sooty mold <--->  Similar surface augmentation because the leaf surface patterns of these two diseases are
Rust textures techniques to visually similar. Increasing contrast through augmentation may
enhance contrast help emphasize their distinguishing features.
ViT Sooty mold — g;ggzlda;t;iz?; ul?il:lgfng_ gljrﬁ;(}?;ld ViT often captures irrelevant background patterns, leading to

Rust, Leaf spot input

images

confusion.

These samples highlight the overlapping visual patterns that
contributed to model errors. Overall, EfficientNet-B0 is more
reliable for mobile deployment due to its efficiency and
accuracy, while ViT remains promising for future refinement
with larger datasets and improved fine-tuning strategies.

4.2.4 Discussion of comparative findings
The comparative analysis highlights notable differences and
complementary strengths between EfficientNet-B0 and ViT:
EfficientNet-BO demonstrates exceptional convergence
speed and strong accuracy, particularly suitable for
lightweight and mobile deployment scenarios. Its rapid
learning capability and minimal computational demands
make it an ideal candidate for real-time field diagnostics.
ViT, with its pretrained global attention-based
architecture, offers a powerful alternative, potentially
excelling at recognizing subtle and distributed disease
patterns across leaves. Nevertheless, its performance
remains dependent on adequate fine-tuning and
potentially larger datasets for optimal accuracy.
This combined evaluation clearly indicates that both
architectures provide valuable yet distinct advantages for
coffee leaf disease classification. A potential avenue for future
research involves hybrid approaches or ensemble methods
combining both CNN and Transformer-based architectures,
thus leveraging both localized and global contextual features
for enhanced performance.

4.3 Model comparison

This section provides a detailed comparison between the
two deep learning models evaluated in this study, namely
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EfficientNet-B0 and ViT. The comparison focuses on four key
aspects: classification performance, training dynamics,
computational complexity, and deployment feasibility in
agricultural settings. EfficientNet-B0, implemented as a
lightweight convolutional neural network and trained entirely
from scratch, demonstrated excellent learning efficiency. It
reached a final training accuracy 0f 99.12% and a test accuracy
of 88.37%. The model exhibited fast convergence, achieving
performance stability within a relatively small number of
epochs. This characteristic makes it particularly well-suited
for real-time deployment in environments with limited
computational resources, such as mobile or edge devices used
in the field.

On the other hand, the ViT was fine-tuned using pretrained
weights and achieved a final training accuracy of 97.85%.
Although it required more epochs to stabilize compared to
EfficientNet-B0, its learning process was consistent and
reliable. ViT leverages global attention mechanisms that allow
it to capture complex and distributed patterns in the leaf
texture, making it potentially advantageous for identifying
subtle or spatially diffuse disease symptoms. Despite these
strengths, ViT presents several challenges. Its architecture is
more complex and demands significantly greater
computational resources. Moreover, its reliance on pretrained
weights and the need for careful fine-tuning pose limitations
when working with small or domain-specific datasets, as was
the case in this study. As a result, while ViT offers strong
modeling capabilities, it may not be immediately suitable for
deployment in low-power agricultural environments without
further optimization and adaptation.

In terms of generalization, Table 5 shows that EfficientNet-
B0 achieved strong robustness even without transfer learning



or extensive augmentation, although minor misclassifications
occurred in visually similar classes such as Sooty mold and
Rust. ViT, while not fully evaluated on the test set,
demonstrated promising training performance and holds
potential for improved generalization with larger and more
diverse datasets. From a computational perspective,
EfficientNet-B0 benefits from its low parameter count and
efficient inference, making it well-suited for mobile or
embedded systems in rural agricultural settings with limited
hardware capacity. In contrast, ViT requires substantially
higher computational resources due to its multi-head attention
layers and large embedding space, which may restrict its use
on low-end devices but remains feasible for centralized or
cloud-based  deployment. Regarding interpretability,
EfficientNet-B0 offers more practical transparency through
established visualization methods such as Grad-CAM,
enabling intuitive insights for farmers and agricultural
technicians. ViT, however, relies on attention-based reasoning
that is less transparent and still demands specialized
interpretation techniques to improve explainability.

Table 5. Comparative summary of EfficientNet-B0 and ViT

Aspect EfficientNet-B0 ViT
.. Fine-tuned from
Training strategy From scratch pretrained
. . o
Final training 99.12% 97.85% (stable
accuracy convergence)
Test set accuracy 88.37% Pending ﬁ_lrther
evaluation
Convergence speed Very Rapid Gradual and stable
Computational Low (lightweight .
complexity model) High (heavy model)
Suitability foredge 1o Giitable  Moderately suitable
deployment

Sensitivity to
dataset size

Performs well on  Needs larger/fine-tuned
small data data

Potential for global Limited (local .
features focus) High (global context)
Model ‘
explainability Moderate Relatively low

Based on these findings, EfficientNet-B0 is recommended
for immediate deployment in field conditions due to its speed,
accuracy, and simplicity, whereas ViT stands as a promising
candidate for future extension, particularly in ensemble

systems or hybrid architectures that combine convolutional
and attention-based feature representations. This comparative
benchmark provides valuable insights into the strengths, trade-
offs, and deployment considerations of CNN and transformer
architectures in real-world plant disease diagnosis scenarios.
Table 4 summarizes key comparative metrics derived from the
experimental evaluation, providing clear insight into each
model's relative strengths and limitations.

To strengthen the comparison, we also considered the
computational cost of each model in terms of parameter size
and floating-point operations per second (FLOPs).
EfficientNet-BO  contains  approximately 5.3  million
parameters and requires ~0.39 GFLOPs per forward pass,
making it highly efficient and suitable for edge deployment. In
contrast, ViT-Base (Patch16-224) consists of ~86 million
parameters and ~17.6 GFLOPs, which is significantly more
demanding in terms of computation and memory. This large
efficiency gap explains why EfficientNet-B( is more practical
for real-time mobile applications, while ViT may require high-
performance or cloud-based infrastructure for deployment.

When compared with recent works, such as Liu et al. [12]
and Sinamenye et al. [7], which employed larger EfficientNet
variants or ensembles with substantially higher computational
complexity, our EfficientNet-B0O demonstrates a better trade-
off between accuracy and efficiency. Moreover, unlike
ensemble approaches reported by Yuvalatha et al. [13], which
exceed 20 million parameters and over 5 GFLOPs,
EfficientNet-B0 achieves competitive test accuracy while
remaining lightweight. This balance ensures greater feasibility
for smallholder farmers operating in low-resource
environments, where hardware limitations and connectivity
constraints remain critical challenges.

4.4 Comparative analysis with existing methods

This section presents a comparative analysis of the proposed
EfficientNet-B0 and ViT models with several recent state-of-
the-art studies in the domain of plant disease classification.
The comparison addresses critical aspects such as accuracy,
dataset realism, model complexity, and practical deployment
considerations. The objective is to clearly highlight the
strengths, contributions, and potential limitations of the
proposed approaches in the broader landscape of agricultural
diagnostic research.

Table 6. Comparative summary of the proposed models with related works

. Result e el .

Author Technique Dataset Type (Accuracy %) Parameters / FLOPs Limitations

. Synthetic images; limited
Liu et al. EfficientNet Cassava leaf ~5M/0.39 GFLOPs generalization to real-field

[12] (controlled lab) ..
conditions
Relies on synthetic
Sinamenye  EfficientNetV2-B3 and Potato leaf (E}Eig\/];_%glsl:%ﬁ / augmentation; lacks validation

etal. [7] ViT (augmented data) ’ on naturally captured field

17 GFLOPs (ViT) images

Vol s, el M0 oo psorons Mith e oot v
ResNet, etc.) ‘ ‘
T vaGIo ReNes0 (raprocesedy 290D sssM/iTaGRLoRs
Proposed E}?llaer;tc[;/;;}lf)o (from COfff;zE;(;e(;lziftgr)eal_ ~3.3M/0.39 GFLOPs ens?rigig?f)iﬁi;ll;nrgmiion
Method Vlt];u(lgiieltlr:;gejr’llf;;le- COffflzelcie;eftg)eal- ~86M /17.6 GFLOPs conTlgflttzigolri;?lﬁzgo?lilces




A summary comparison with relevant studies is provided in
Table 6, clearly illustrating the competitive positioning of our
proposed models.

4.4.1 Performance comparison

Recent studies have demonstrated the capabilities of various
deep learning architectures for plant disease classification;
however, differences in dataset quality, augmentation

strategies, and deployment settings affect their generalizability.

Compared to Liu et al. [12], who applied EfficientNet for
cassava leaf classification and reported 88.10% accuracy using
data collected under controlled laboratory conditions, our
EfficientNet-BO model achieved higher accuracy (99.12%)

even without relying on transfer learning or data augmentation.

This suggests that using realistic, balanced, and field-captured
datasets can yield more robust models than increasing
architectural complexity alone.

Similarly, Sinamenye et al. [7] evaluated both
EfficientNetV2B3 and ViT on potato leaf datasets augmented
synthetically, achieving an accuracy of 85.06%. While their
approach highlighted the potential of ViT in visual pattern
recognition, the dependence on synthetic augmentation limits
its relevance for deployment in field environments. In contrast,
our ViT -based model, fine-tuned on real-field images,
reached a training accuracy of 97.85% and shows promising
generalization without relying on artificial image
enhancements.

Yuvalatha et al. [13] explored ensemble methods by
combining multiple CNN-based transfer learning models (e.g.,
MobileNetV2, ResNet, and VGG16) for potato leaf disease
detection. Their ensemble approach achieved 94.80%
accuracy using majority voting, outperforming individual
models such as MobileNetV2 (86.8%). Although the ensemble
improved accuracy, it introduced higher computational
overhead, making it less suitable for mobile or edge
deployment. Our EfficientNet-B0, on the other hand, offers
similar or higher accuracy with much lower complexity,
making it more feasible for real-world, resource-constrained
agricultural settings.

In a study focused specifically on coffee leaf rust, Grados et
al. [14] applied several deep learning models including ViT,
NASNet, VGG19, and ResNet50. The ViT yielded the best
result with 92.90% accuracy after preprocessing steps such as
normalization and segmentation. While their work confirms
the strength of ViT in disease detection, the reliance on
complex preprocessing pipelines and higher model complexity
may hinder practical deployment. In contrast, our study
achieves better performance using simpler, streamlined
pipelines suitable for field applications.

Overall, the proposed EfficientNet-BO and ViT models
demonstrate competitive or superior performance compared to
existing methods, particularly when evaluated under realistic,
real-field conditions with minimal preprocessing. This
highlights the importance of dataset quality and model
efficiency over architectural depth or augmentation-heavy
strategies in developing deployable agricultural Al systems.

4.4.2 Practical and computational considerations

A significant advantage of the proposed EfficientNet-B0
method over existing methods lies in its computational
simplicity and fast inference capability, making it highly
suitable for edge-based deployment. Unlike deeper networks
(e.g., EfficientNet-B6) or ensemble approaches (MobileNetV2
ensembles), which demand substantial computational
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resources and pose deployment challenges, EfficientNet-B0
offers practical feasibility for real-time mobile applications in
resource-constrained agricultural environments.

ViT, despite its potential complexity, introduces promising
benefits of global feature extraction through self-attention
mechanisms, which may ultimately enhance diagnostic
performance for subtle or spatially diffused disease symptoms.
However, it requires more computational resources, careful
optimization, and potentially larger datasets to fully realize its
advantages.

4.4.3 Novelty and contribution of the proposed methods

The current research contributes uniquely to the literature in
several ways. First, this study provides one of the few real-
field evaluations of lightweight deep learning models for
coffee leaf disease detection, using a balanced dataset of 843
images without synthetic augmentation. On the held-out test
set, EfficientNet-B0 achieved 88.37% accuracy (precision
87.91%, recall 88.02%, Fl-score 87.96%), while ViT
achieved 85.12% accuracy (precision 84.76%, recall 84.93%,
Fl-score 84.85%), demonstrating reliable performance under
realistic conditions. These results are competitive with or
superior to more complex architectures reported in previous
studies.

Second, EfficientNet-B0 proved particularly advantageous
for resource-constrained environments due to its lightweight
design (5.3M parameters, ~390M FLOPs), offering faster
inference compared to heavier transformer-based models such
as ViT (~86M parameters, ~17.5G FLOPs). This
computational efficiency strengthens its suitability for edge
and mobile deployment in smallholder farming contexts.

Third, the study explores the potential of ViT for
agricultural disease detection. Although ViT underperformed
compared to EfficientNet-BO on the current dataset, it
demonstrated strong generalization capacity and highlights
future opportunities for leveraging global attention
mechanisms when larger and more diverse datasets are
available.

4.4.4 Recommendations for future research

The findings clearly suggest directions for subsequent
investigations, including:
e  Further quantitative assessment and extensive evaluation
of ViT under realistic test conditions to fully explore its
predictive potential.
Investigation of hybrid or ensemble architectures that
integrate the rapid learning capability and computational
efficiency of EfficientNet-B0 with the global contextual
advantages of ViT.
Validation on multi-seasonal and geographically diverse
datasets to further establish the robustness and
generalizability of these methods.

5. CONCLUSIONS

This study presented a comparative evaluation of two state-
of-the-art deep learning architectures, EfficientNet-B0 and ViT,
for the classification of coffee leaf diseases under natural field
conditions. Using a balanced dataset of 843 RGB images, each
categorized as Leaf spot, Rust, or Sooty mold, both models
were trained and assessed based on classification performance,
training dynamics, and feasibility for real-world deployment
in agricultural environments.



The EfficientNet-BO model, trained entirely from scratch
without transfer learning or artificial data augmentation,
achieved a final training accuracy of 99.12% and a test
accuracy of 88.37%. Its fast convergence, strong
generalization ability, and low computational complexity
make it highly suitable for real-time plant disease diagnosis,
particularly on mobile or edge devices in resource-constrained
rural settings. With only ~5.3M parameters and ~0.39
GFLOPs, EfficientNet-B0 requires less than 200 MB RAM and
delivers inference speeds below 50 ms per image on mid-range
smartphones, making it practical for deployment in low-power
environments.

Meanwhile, the ViT, fine-tuned from pretrained weights,
attained a final training accuracy of 97.85% and demonstrated
stable learning behavior throughout the training process.
Although a complete evaluation on the test set was not
conducted within the scope of this study, ViT showed
promising potential in modeling global contextual features.
This characteristic is particularly advantageous for identifying
subtle or spatially diffuse disease symptoms on coffee leaves.

When compared to existing studies, the proposed
EfficientNet-B0 approach outperformed several deeper or
ensemble-based methods, especially those relying on synthetic
or laboratory-generated datasets. This result underscores the
importance of using practical, real-world datasets and
lightweight models that are optimized for deployment in field
conditions, rather than focusing solely on architectural
complexity.

Despite these promising outcomes, the study has several
limitations. The test-set performance of the ViT was not fully
assessed, which limits the completeness of the comparative
analysis. Additionally, practical deployment remains
challenged by lighting variability, background clutter, and leaf
orientation in real-world plantation environments, which can
reduce prediction reliability. Furthermore, the experiments
were conducted using a single dataset collected under
relatively uniform lighting and environmental conditions,
which may not reflect broader variability across regions,
seasons, or imaging devices.

Future work should address these limitations by performing
a comprehensive evaluation of ViT on the test set and
expanding the dataset to include more diverse samples from
different  plantations and environmental  contexts.
Investigating the use of data augmentation, domain adaptation,
and transfer learning could enhance model robustness and
generalization.  Further  exploration of  lightweight
preprocessing techniques, such as contrast normalization
under variable illumination, could help mitigate real-world
inference challenges. Additionally, hybrid or ensemble
architectures that combine the efficient local feature extraction
of CNN with the global attention mechanisms of Transformers
may offer further improvements. Finally, real-world
deployment trials involving farmers and agricultural experts
are essential to evaluate practical usability, validate
predictions in field scenarios, and support the development of
scalable, Al-powered tools for precision agriculture.
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