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Finger Knuckle Print (FKP) is a promising biometric modality for personal recognition;
however, existing methods still suffer from sensitivity to illumination variations and limited
interpretability of deep learning models. To address these limitations, this paper proposes a
novel explainable deep neural network (xDNN)-based Principal Component Analysis
Network (PCANet) framework that combines robust feature extraction with transparent
decision-making for FKP recognition. The Self-Quotient Image (SQI) method is applied to
decompose FKP images into illumination-invariant reflectance components, mitigating
lighting variations. Also, a two-stage of PCANet that extracts discriminative features from
these components, leveraging its efficiency and hierarchical representation capability. To
improve the trustworthiness of biometric decision-making, the framework incorporates the
explainable Deep Neural Network (xDNN) approach for user identification. To enhance
trust and transparency in biometric decision-making, the framework integrates an
explainable Deep Neural Network (xXDNN) that generates prototype-based reasoning and
feature relevance visualizations, providing insight into the decision process and
interpretability of classification outcomes. The proposed system is rigorously evaluated on
the PolyU FKP database using all four finger types (Left Index Finger, Left Middle Finger,
Right Index Finger, and Right Middle Finger) in a unimodal configuration. Key
hyperparameters of SQI and PCANet are optimized through ablation studies to boost
performance. The system achieves 91-96% identification accuracy, surpassing state-of-the-
art methods, while offering interpretability lacking in previous approaches—making it well-
suited for security-critical applications.

1. INTRODUCTION

system is to put a given FKP test into one of several predefined
sets in a database, whereas (ii) FKP verification process is to

Recently a biometric system is considered as an alternative
authentication and identification system to traditional methods
(ID card, passwords, PIN codes). Biometrics recognition
system facilitates the recognition process of a person by using
her unique physiological and behavioral characteristics [1, 2].
As a result, many different biometric traits have been
investigated widely, such as Fingerprint, Iris, Ear, Finger
knuckle print, Palmprint, Face etc. [3-5]. However, Finger
Knuckle Print (FKP) [6], included in the hand based biometric
traits that have been intensively studied in order to improve the
consistent authentication system with higher accuracy [7, 8].
FKP has distinctive anatomical structures that can be recorded
with low cost and small size imaging devices without using an
extra hardware [6, 8].

Generally, FKP recognition system splits into two tasks: (i)
FKP identification: in this case, the focus of FKP identification
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determine if two FKP images belong to the same person. In
addition, the FKP verification task is more difficult than FKP
identification because in matching stage is required to give a
global threshold in order to make a decision. Till now, the FKP
recognition system has been attracting considerable attention
of researchers over recent years. Several contributions were
developed. Such as, Woodard and Flynn [9] and Woodard and
Flynn [10] are among the first researchers who introduce the
use of finger knuckle surface in biometric systems. Ferrer et
al. [11] have proposed a framework based on a ridge feature-
based algorithm. This method started with extracts ridge
features from FKP images and evaluates their similarity using
Hidden Markov Model (HMM) or Support Vector Machine
(SVM). Zeinali et al. [12] have proposed a system for
recognition FKP that the Directional Filter Bank (DFB) has
been used for feature extraction. Then LDA is used to reduce
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the dimensionality of the large feature vector. Chaa et al. [13]
in step of feature extraction, two types of Histogram of
Oriented Gradients (HOG)-based features extracted from the
reflectance and illumination components of FKP images for
personal identification. The Adaptive Single Scale Retinex
(ASSR) algorithm is employed to decompose each FKP image
into its illumination and reflectance components. Then, the
HOG descriptor applied on both extracted images (real and
imaginary). These feature vectors concatenated together.
Serial feature fusion is employed to construct a comprehensive
feature vector for each user, enabling the extraction of
distinctive characteristics within a higher-dimensional feature
space. Finally, classification is performed using the cosine
similarity distance measure. Zhang et al. [14] presented a new
computation framework that focused on mounting new
efficient feature extraction method for FKP recognition. The
authors analyzed three commonly used local features, the local
orientation, the local phase, and the phase congruency
systematically. However, they presented a method for
computing all features efficiently using the phase congruency.
Li et al. [15] have introduced a feature extraction method
employing steerable filters that can extract local orientation
from FKP images. Recently deep networks methods learning
called deep learning has emerge. This new area has been
attracting considerable attention of researchers. Therefore,
Qian et al. [4] have proposed a novel biometric image feature
representation technique, known as exploring deep gradient
information (DGI). Meraoumia et al. [16] have introduced a
novel framework for a biometric identification system using
PCANet deep learning and multispectral Palmprint. However,
the basic idea of deep learning is to discover multiple levels of
representation of the discriminant characteristics of biometric
modalities effectively and efficiently. Chlaoua et al. [17]
pioneered a computationally efficient FKP recognition system
by combining PCANet feature extraction with SVM
classification on PolyU datasets. Their key innovation
involved optimizing PCANet's filter banks specifically for
knuckle patterns, followed by kernel-based SVM refinement.

Recent studies highlight the limitations of "black-box" deep
learning models in sensitive domains like biometrics, where
decision transparency is crucial [ 18-20]. For that reason, in this
paper, we propose a new recognition biometric system using
the FKP traits based on the xXDNN classifier receiving as inputs
vector results from feature extraction by PCANet deep
learning method and preprocessing by the Self-Quotient Image
(SQI) method to decompose FKP images into illumination-
invariant reflectance components, mitigating lighting
variations. In this work, we develop unimodal recognition
biometrics systems. We search the best value for parameters
of both PCANet and SQI algorithm that get the best
performances value. These parameters allow us to enhance the
quality of xDNN feature extraction, which increase the
detection and identification accuracy.

Our main contribution given in this paper are:

*Using an Explainable Deep Neural Network xDNN
Classifier, a supervised deep learning framework designed for
high accuracy pattern recognition while maintaining
interpretability of decisions.

*Feature extraction combining SQI algorithm (Self-
Quotient Image) method to decompose FKP images into
illumination-invariant reflectance components, mitigating
lighting variations and Initial extraction using PCANet Deep
Learning technique.

*A comparison study of several experimental results is
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illustrated for different FKP modalities and recent well-known
approaches.

The rest of this paper is organized as follows: In section 2,
the xDNN classifier mechanism is presented then in section 3,
the, proposed methodology FKP recognition system is
described. We present all process steps of the system in detail
with their techniques and functions. Section 4 presents the
experimental results that illustrate the dataset used,
performances metrics, parameters study of SQI algorithm and
PCANet descriptor to select the best values. A comparison
study is elaborated to compare between the proposed system
and other well-known previous work. Finally, the conclusion
and future work are given in the last section.

2. xDNN: DEFINITION AND COMPUTATIONAL
FOUNDATIONS

This work centers on explainable Deep Neural Networks
(xDNN), a framework designed to unite high-accuracy
learning with human-interpretable decision processes. While
conventional deep models excel in performance, their opacity
hinders trust in sensitive applications. XDNN overcomes this
by embedding transparency directly into its architecture,
enabling users to trace and validate its reasoning. Critically,
mastering XxDNN’s internal dynamics: such as [specific
mechanisms, e.g., 'adaptive feature weighting' or 'dynamic rule
generation'] is vital not only to deploy it effectively but also to
justify its outputs in real-world scenarios.

2.1 The xDNN classifier: Core architecture and design
principles

The proposed Explainable Deep Neural Network (xDNN)
implements a dynamic feedforward structure capable of
autonomous architectural evolution through continuous model
adaptation. Unlike conventional static neural networks, this
framework progressively restructures its layered organization
in response to emerging pattern recognition demands. As
illustrated in Figure 1, the system's five specialized processing
layers operate in concert to enable:

*Adaptive feature space reconstruction.

*On-demand neural module generation.

*Transparent decision pathway formation.

CNN pretrained on Imagenet

Tully
comected

layer

Meza doud
layer

Prototype
Tayer

Figure 1. xDNN Classifier’s architecture

These five functionally specialized layers that collectively
execute the pattern recognition tasks. For complete
understanding, we subsequently: define each layer's
computational role, describe its structural configuration, and
explain its sub-processes within the complete classification



framework.

2.1.1 Feature descriptor layer: High-level feature extraction

The first critical step in the xXDNN pipeline is feature
extraction, where raw image data is transformed into
meaningful numerical representations. While traditional
methods like PCA or handcrafted filters (e.g., Gabor) have
been widely used, they often struggle with capturing complex,
non-linear patterns. A pre-trained deep convolutional neural
network (DCNN) [21] known for its ability to extract highly
discriminative features. From the recommendation of loffe
and Szegedy [22] to incorporate normalization for deep feature
stabilization and improve convergence.

The standardization and normalization of the extracted
features become a crucial in such process and followed the
Egs. (1) and (2) respectively:

. x.’ . — M x‘,'

y — L] ( l}) (1)
a(xi5)

R J?i,j - miin(a?i‘j)

Xij= (2)

max (%)) — miin (%))

X represents a standardized features vector x (the values
provided by the FCL) of the image I and X is the normalized
value of the features vector, i is for the image’s ID, j is the
current feature of x, I is the current image and N is the number
of the images. The later step ensures all features contribute
equally during classification.

xDNN initializes its meta-parameter (learning parameters)
dynamically, eliminating the need for manual tuning. When
the first data sample arrives, the system automatically
configures different parameters as it is mentioned in Eq. (3):

Pel;pexg; 3
Ci « x1;p1 < Xy; Support, « Ly «r5 1 « I 3)

P for prototype, C for class, Support for the equivalent
support (number of members) belonging to the identified
Model, r for the equivalent radius of the area of influence of
the Class C;, p is the global mean of the class, I is the current
image and 1 is the identified prototype.

The dynamic radius calculation method follows the data-
derived approach proposed by Angelov and Gu [23] for
autonomous system parameterization.

Following the methodology outlined in the study [24], we

obtain the critical threshold r* = /2 — 2 cos(30°).

The Rational r* metric represents an analytically derived
boundary rather than an empirically tuned parameter. It is
delineated when the angle subtended by two vectors is less
than 30° and they are oriented in the same direction denoted
by d. Building upon this foundation, we examine two feature
vectors that exhibit an angle of less than 30° between them,
categorizing them as “Similar”. The determination of the
direction d is achieved through the application of Eq. (4).

2.1.2 Density layer
This layer plays a crucial role in establishing the shared
proximity among the images within the data space from the

aGpo) = [ @
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layer before it. The data distribution follows a Cauchy pattern
when employing the Euclidean distance, as demonstrated in
the study [24] Unlike Gaussian kernels, the Cauchy
distribution better handles outliers, making it suitable for real-
world biometric data [25]. The data density D is determined
through the formula in Eq. (5) or Eq. (6).
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D(x) = (6)

The scalar coefficient X; can be updated as in Eq. (7), where
Wi is involved.

Wi
(7

2=

Higher density values indicate stronger cluster cohesion.
Consequently, the solid mutual influence between the images
in the space of data due to their common adjacency.

2.1.3 Typicality layer

Typicality t quantifies how well a sample fits within its
class distribution based on the probability distribution
function, which is determined by utilizing the Eq. (8). It is a
probabilistic confidence scoring.

%i Support; D (x;)
¢ Support; [ D(x;)dx

T(x;) = (8)

The typicality is between 0 and 1, peaks near prototype
vectors, declining towards outliers. A high T means high
confidence in classification. The value of 7 remains
consistently below the value 1.

2.1.4 Prototypes or Models Layer

xDNN constructs human-readable IF-THEN rules
(Transparent Rule-Based Learning) for each class. The IF-
THEN rule generation implements the transparent fuzzy rule
extraction method from the research [26]. The dynamic model
expansion criteria refine the concept of "novelty detection”
described in Markou and Singh [27]. The xDNN architecture
implements a novel paradigm for explainable artificial
intelligence through its innovative Models Layer. This
component establishes a dynamic, self-organizing framework
that learns data distributions directly from visual inputs
without relying on predetermined statistical assumptions. The
system's modular design philosophy enables independent
operation of each classification model, permitting seamless
integration of new recognition categories while preserving
existing knowledge structures, a critical advantage for scalable
biometric applications. The Models Layer constitutes the
foundational interpretable framework within an xDNN
biometric system. This component uniquely operates without
requiring prior assumptions about data distributions, instead
deriving its understanding directly from visual patterns in the
input images. The architecture's modular independence
represents a significant innovation. New models can be



incorporated without affecting existing ones, which enables
seamless system expansion while maintaining operational
stability. During the training phase, XDNN performs class-
specific processing to develop distinct model sets that capture
the essential density characteristics identified in earlier stages.
These models generate human-readable decision rules
following the logical structure:

IF (input ~ prototype K1) THEN classify as Class C

The symbol ~ denotes similarity and the degree of
membership. One rule can be generated for the same model,
however, the same class’s rules are connected by the logical
disjunction OR as followed:

IF (input ~ prototype K1) OR ... OR (input ~ prototype K)
THEN classify as Class C

Each model establishes a Data Cloud [18], a dynamic region
encompassing similar feature vectors. Unlike traditional
approaches using statistical means, these clouds center around
actual representative samples. The system employs an
intelligent assignment mechanism that continuously evaluates
new inputs against existing prototypes using minimum
distance criteria:

Y , T
j* = argmin (|lxi = ;") ©)

The system dynamically generates new recognition clusters
when either of these density conditions is met:

D) > .
IF (D(xl) > jfﬁgpr(pJ)

, (10)
OR (D (x) < j=‘l’i”lzl:l".l"pD(pj))
THEN(add anew data cloud (P « P + 1))
Cluster initialization

Supportp « 1;1p <« 1,5 Ip < I;

For existing clusters, the system performs incremental
updates:

c Cot1 Support;-
J J » P Support;- + 1Pi
Support;
PPoTY x;; Support;-

Support;« + 1 (12)

)

The layer's adaptive nature allows for organic system
growth while maintaining classification accuracy, making it
particularly suitable for evolving biometric applications where
new classes may need periodic incorporation.

i+ (1=l
2

« Support; + 1;7”].2* P

2.1.5 Mega cloud layer

The cloud fusion algorithm extends the traditional
hierarchical aggregation approach by introducing angular
similarity constraints, which strengthen the clustering process.
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In the MegaClouds layer, clouds produced in the previous
stage are combined whenever neighboring prototypes share
the same class label. This merging process forms larger
clusters, referred to as Mega Clouds (MCs), thereby improving
the interpretability of the system:

R.IF (7, ~ MC,) OR (%, ~ MC,) OR ... OR (7,
~ MC,,) THEN Class,

where, MC; denotes the Mega Clouds, which represent the
regions formed by merging smaller clouds belonging to the
same class, and MC is the total number of identified Mega
Clouds. This step aims to reduce rule complexity while
maintaining high transparency for end-users, ensuring that
classification decisions remain both accurate and
interpretable.

Algorithm 1. xXDNN classifier’s algorithm [18]

XDNN Learning Level

Step A: Initialization

1: Read the first feature vector sample x; representing the

image I; of the class ¢

2: initiate

ieLne1;P « 1;p < x; 1< xg; Support « 1;1 « 1o; I3
«I;

Step B: Execution
3: FOR /=2, ...

4: Read x;;
5:

according to Eq.
6:

Compute

(9)
IF Eq. (12) holds

D(x;) and D(p;) (j=12..,P)

7 Generate rule according to Eq. (13);
8: ELSE

9: Search for p; according to Eq. (11);
10: Update rule according to Eq. (14);
11: END

12: END

3. PROPOSED METHODOLOGY

The proposed research relies on an explainable deep neural
network image-based framework and explore it in different
data base of FKP trait which is principally characterized by
explainability Further, it presents human- interpretable layers.
Consciously, the architecture of the xDNN classifier is entirely
transparent and evident to explain to human user.

As shown in Figure 2 the proposed biometric system is
mainly composed of 4 main steps:

Step 1: Image acquisition and normalization: The input
Finger-Knuckle Print (FKP) images are captured and
normalized to ensure consistency in scale and orientation.

Step 2: Illumination-invariant preprocessing: The SQI
algorithm is applied to decompose FKP images into
reflectance components, reducing sensitivity to lighting
variations and enhancing robustness.

Step 3: Hierarchical feature extraction: A PCANet-based
deep learning framework performs initial feature extraction,
leveraging its efficiency in capturing discriminative patterns
through principal component analysis.

Step 4: Explainable classification (xDNN): The extracted
features are processed through an explainable Deep Neural
Network (xDNN), which includes:

Feature layer: Encodes high-level representations.

Density layer: Models data distribution.

Typicality layer: Assesses similarity to learned prototypes.



Mega cloud layer: Aggregates global patterns for decision support.
{ - { N { . { s 4 b { N
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Figure 2. The proposed biometric system’s architecture
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Figure 3. The steps of extraction of FKP ROI

rr’r

e N,
Input ROI
FKP

Output layer

Stage 2

Figure 4. Two-stage PCANet deep learning feature extraction scheme applied to an FKP image

3.1 ROI extraction

The extraction of the ROI from FKP images involves
multiple steps [8]:

(1) First, a Gaussian smoothing filter is applied to the
original FKP image, followed by downsampling the smoothed
result to a resolution of 150 dpi. (ii) Next, the X-axis of the
coordinate system is determined by referencing the lower
boundary of the finger, which is detected using the Canny edge
detection algorithm. (iii) To define the Y-axis, a sub-region of
the image—cropped based on the X-axis—is processed with
the Canny edge detector. Then, a convex direction coding
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method is used to guide axis orientation. (iv) In the final step,
the ROI is extracted and represented as a rectangular area, as
shown in Figure 3.

3.2 Feature extraction

Feature extraction is a crucial stage in any pattern
recognition application, as the accuracy of the classification
results directly depends on the choice of the feature extraction
techniques. However, the distinctiveness and consistency of
the extracted features play a vital role in effectively
distinguishing between different classes or patterns [28-30].



Thus, the SQI algorithm combined with PCANet deep learning
have been used to extract the feature vector of each FKP
images.

3.2.1 Self-quotient image algorithm

The SQI was introduced by Wang et al. [31]. SQI method is
used to extract the reflectance and illumination of an image.
The main advantage of SQI algorithm is to eliminate lighting
effect in the image. This technique merges the image
processing technique of edge-preserved filtering with the
Retinex applications [32]. The process of SQI has two phases:
(i) illumination estimation and (ii) the illumination effect. We
note Q as the self-quotient image of image [ which. Q is a kind
of quotient image derived from the image I itself rather than
other different images of given individual as quotient image.
Q is defined by Eq. (13).

I

(13)

The division in Eq. (13), point-wise like in the original
quotient image. where K refer to the smoothing kernel, “*’
stand for the convolution operator.

3.2.2 PCANet deep learning

As a part of the trending deep learning field, PCANet is a
simple deep learning network baseline proposed in the study
[33] that it is widely used in image classification. Compared
to other deep learning networks, like convolutional deep
neural network (ConvNet) that involve obscure knowledge
and huge number of labeled training data, PCANet trains more
easly. Thus, PCANet based on three basic processing
components: (1) cascaded Principal Component Analysis
(PCA) in order to extract high-level features, (2) binary
hashing, and (3) histograms. the scheme of PCANet Method
illustrated in Figure 4 can be summarized as follows [33, 34]:

*PCA Filter bank

As illustrated in Figure 4, the PCA filter bank contains two
stages of filter bank convolutions. However, in the first stage
the filter banks are estimated by performing PCA algorithm
over filters that consist of a set of vectors where each vector
refers to small window of the k1 X k2 size around each
point(pixel) of FKP image. Then, we take the mean of the
entries for each vector, and we process the subtraction between
this later and the mean of each entry of the vector. After that,
PCA has been performed on these vectors and retain the
principal components W (size of k1 x k2 x LS1) where LS1
stand for the primary eigen vectors. After that, each principal
component W is considered as a filter and can be converted to
k1l x k2 kernel finally this filter has been convolved with the

input image as follow:
Tl(x:}’)=hl(x:}’)*1(x'}’) (14)
where, I belong in [1..I;]. the * refer to the discrete
convolution. It is the resulting filtered image using the h* filter.
However, using the LS1 columns of W taking each input FKP
image I and then convert it into LS1 output images. The
second stage performed by iterating the algorithm across all
output images from the first stage (Filter bank convolutions).
The process is for every output images I take the mean of the
entries (vector that contain points around each pixel). Then
remove the mean from each input of the vector computed. The
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vectors formed are then concatenated together and another
PCA filter bank (with LS2 filters) has been estimated. At the
end, each obtained filter has been convolved with I to construct
a new image.

L (%, y) = hyp (x, y) % L(x, ¥),0 € [1.. 1] (15)
Therefore, with repeating convolution process for the both

filter, LS1, LS2 to generate output images by using the output
images of the first stage.

*Binary hashing

In this phase the Lsi, Ls; output images obtained from the
previous stage have been converted in to binary format by
using a Heaviside step function whose values is 1 for positive
value and 0 otherwise.

L if I (i) 2 0
0, otherwise

I2aGi) = { (16)

where, [ fm denote the binary image. Beside this, around each
pixel, we sight the vector of Ls, binary bits as a decimal
number. Thus, we convert the Ls> outputs into a single integer-
valued (image).

Ls2

D ) an
m=1

where, I represents the hashed image with their pixels is an
integer value belong in the range [0, 2552—1].

*Histogram composition

In this step, each hashed image IP is divided into NB
blocks, and the histogram of each block B is then computed.
These blocks may be either overlapping or non-overlapping,
depending on the application requirements. Consequently, the
features extracted from IP’ are obtained by concatenating all
the histograms of the blocks B:

vlhlst

[BRist, BYIst, ., ..., BRIt (18)
However, after the encoding step, the feature vector of the
input image I is then concatenated as:
vt = [yt st L VSt (19)
To sum it up, the parameters of the PCANet comprise the
filter size (k1; k2), the number of filters in each stage (Ls;), the
number of stages (Ns), as well as the block size for local
histograms in the output layer (B).

*PCANet parameters

In order to evaluate the performance of the proposed
recognition system based on PCANet, it is necessary to fix
certain parameters, such as the number of stages, the number
of filters, the filter size, the block-wise histogram size, and the
degree of overlap. These parameters that are very important to
generate the best features that represent an input FKP image.
Moreover, to enhance the accuracy of the recognition system.
However, these parameters are empirically selected:

*The Number of Stages = 2

*The number of filters = [2 2]



*The filter size = [7 7]
*The block size = [21 21]
*The overlapping = 75%

4. VALIDATION OF EXPLAINABLE DEEP NEURAL
NETWORK CLASSIFIER

xDNN Classifier Explainable Deep Neural Network is a
supervised deep learning framework designed for high
accuracy  pattern  recognition  while = maintaining
interpretability of decisions [17]. In this work, the xXDNN
classifier is applied to the FKP recognition task. The xDNN
architecture generates 165 distinct class representations, each
corresponding to an authorized individual. For all 165
subjects, each individual is represented by 6 feature vectors
derived from the explainable PCANet pipeline. Each feature
vector encodes unique FKP image types (LIF, LMF, RIF, and
RMF).

The proposed xDNN architecture combines transparent
decision-making with hierarchical pattern recognition through
its unique multi-layer structure. Unlike conventional black-
box models, this classifier generates interpretable rule-based
representations that enable human analysts to understand and
verify the decision process. The system performs dual-level
similarity assessment at both localized and comprehensive
scales before reaching final conclusions.

The validation process based xDNN classifier is composed
of four sequential layers:

1) Feature descriptor layer: This layer extracts features
from the input data in the same manner as during the training
process.

2) Prototypes layer: In this layer, the similarity degree
S(x,p;) of each unlabeled sample to its nearest prototypes per
class is computed as:

-
(x —p)

0;

S(x' pl) = (20)

o represents the Variance.

3) Local (per-class) decision-making layer: For each
candidate class, the maximum prototype similarity is
identified through “winner-takes-all” selection:

Ae = maxj=1,2“p(5j),forj = 1 to P prototypes (21

4) Global decision-making layer: The final classification
emerges from comparative analysis across all classes:

Ay = max,-q, c(4.),for ¢ = 1 to C prototypes (22)

The validation image receives the label corresponding to the

highest A, value:
label = arg max.-12.c(Ac) (23)

This architecture provides three key advantages: a

transparent rule generation for human verification, a dual-

scale (local/global) confidence evaluation and a mathematical
interpretability of decision thresholds.

5. RESULTS AND DISCUSSION
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In this section, we represent the experimental results of the
proposed system using the xXDNN as an classifier which search
the best parameters of SQI algorithm and PCANet descriptors
that illustrate higher performances. We present the data set that
we performed the proposed systems. In addition, we give the
performance metrics that are used to evaluate and compare the
results. A comparison study is illustrated to present the
outperformance of the proposed systems against well-known
previous works. The experiments have performed using a PC
with Intel Core i5 2,67 GHZ and 4 GB RAM running under
Windows 7. The experimental codes are written on Matlab
R2017.

5.1 Dataset

To evaluate the effectiveness of the proposed FKP system
the PolyU database is used. This dataset is collected and
provided by Hong Kong Polytechnic University [35]. In fact,
this database contains FKP images recorded from 165 persons
who divided into 125 men and 40 women, of whom 143 are
between the ages of (20-30), and the rest between the ages of
(30-50). Each person is given 12 images for each part (1) Left
Index Fingers (LIF); (2) Left Middle Fingers (LMF); (3) of
Right Index Fingers (RIF) and (4) Right Middle Fingers
(RMF). However, the total number of images RMF or RIF or
LIF or LMF is 1980 images. Thus, 6 images in each session
(training data and test data) have been used.

5.2 Performance metrics

The performance of proposed PCANet FKP biometric
system identification is tested with publicly available Poly U
FKP dataset that describe above and performance is measured
the rank one recognition rate (ROR) is calculated by:

N;

ROR = N 100 (%) (24)
where N; stand for the number of FKP images effectively
assigned to the right identity. N denotes the overall number of
images trying assign to an identity. In addition, we have
computed the averaged of time of identification of given test
FKP image. For the identification mode, we use also, the
Cumulative Match Characteristic (CMC) curve. For the
verification scenario, we used a several metrics such as:

*The Error Equal Rate (EER) which means when the false
accept rate (FAR) is equal to the false reject rate, is calculated
to evaluate the system.

*The VR @0.1 fAR or 1-FRR, calculated for a FAR equal
to 0.1%.

*The Receiver Operating Characteristic (ROC) curve
represents the plot of the Genuine Acceptance Rate (GAR)
against the False Acceptance Rate (FAR) for all possible
threshold values.

5.3 Selecting SQI and PCANet parameters for xDNN
decision

The aim of this process is to select and fix the best
parameters of the SQI algorithm and PCANet descriptor for
FKP traits-based individual authentication. These parameters
play a significant role in increasing the performance of the SQI
algorithm and PCANet descriptor, which help to enhance the
xDNN classification performance. In the following
subsections, we analyze the parameters of both SQI, and
PCANet: the standard deviation, the bloc overlap ratio (Ra),



the filter size (k1, K2), the block size (b), and the number of
filters (N), for each modality (RMF, LMF, LIF, and RIF).

5.4 Experimental results
5.4.1 Experimental results for RMF modality

Table 1 presents the performance of our biometric image
identification and verification system for different values of

standard deviation (o), ranging from 1 to 9, using the RMF
modality. In this evaluation, all other parameters are kept
fixed: block overlap rate Ra = 75%, filter size (k1, k2) = (13 x
13), block size b = [40, 40], and number of filters N = [5, 5].
The evaluation metrics include rank-1 identification rate,
equal error rate (EER), and verification rate (VR) at 1% FAR
and 0.1% FAR.

Table 1. Results for xDNN and different values of standard deviation (c) for RMF modality

Standard Identification RANK- EERY% VERIFICATION VR@ 1% VERIFICATION VR@ 0.1%
Deviation 1% ’ FAR% FAR%
1 95.96% 3.34% 96.06% 91.92%
3 94.85% 3.53% 95.05% 92.12%
5 94.55% 3.23% 95.45% 92.02%
7 93.43% 3.64% 94.24% 89.80%
9 92.32% 4.46% 92.83% 87.78%
5 curve CMC g, curve ROC / (a) The overlap ratio (Ra)
® o « il We fix the value of the standard deviation at 6 = 1, and vary
%096 % f1 the block overlap ratio (Ra) between 0% (no overlap) and
2 Soo _ :2 75%. Table 2 illustrates the results for each value of the
o ; ) E B p p 7 overlap ratio in terms of identification accuracy (Rank-1%),
X i 10 10 10 10 o=7 . . o
R _ Equal Error Rate (EER), and verification performance at 1%
ank False Accept Rate =9

Figure 5. CMC and ROC curves of the RMF modality using
xDNN and different deviation values

Table 1 indicates that the best overall identification and
verification performance is achieved when the standard
deviation o is set to 1, with a Rank-1 accuracy of 95.96%, an
EER of 3.34%, and verification rates of 96.06% and 91.92%
at 1% and 0.1% FAR, respectively. Although ¢ =5 yields the
lowest EER (3.23%) and o = 3 gives the highest VR at 0.1%
FAR (92.12%), these gains are marginal. Therefore, ¢ = 1
offers the most balanced and consistent performance across all
metrics.

Furthermore, the curves CMC and ROC in Figure 5 confirm
the best value of the standard deviation of the SQI algorithm.
Figure 5 illustrates the results of either reflectance or
illuminance on FKP images using the SQI method with several
values of a. We can see that the value of 5 fixes the quality of
the image.

In the following part, we look for the best parameters of the
PCANet descriptor. Therefore, we fix the value of the standard
deviation 0 = 1 of the SQI algorithm and analyze the best
parameter values of the PCANet descriptor. For that, we have
four parameters to test: the overlap ratio (Ra), the filter size
(k1, K2), the block size (b), and the number of filters (N).

and 0.1% FAR thresholds.

From Table 2, we observe that the block overlap ratios Ra
25% and 75% yield significantly better performance
compared to the other values tested. The Ra 75%
configuration achieves the best EER (3.33%) and the highest
verification performance at 1% FAR (95.35%), while Ra =
25% produces the best Rank-1 identification accuracy
(94.65%) and competitive verification results. Moreover, both
Ra = 25% and 75% achieve the highest verification rate at
0.1% FAR, with 91.01%, demonstrating a robust performance
in low false acceptance scenarios.

Figure 6 represents the curve of CMC, and Figure 7
represents the curve of ROC of the FKP recognition system
obtained with various values of ratio. In the plot, it can be
observed that the values Ra 25% provide the best
performance system.

(b) Filter size (k1, k2) selection

At this stage, the best values previously tested of parameters
for the RMF modality are fixed: standard deviation ¢ = 1 and
block overlap ratio Ra = 25%. The goal of this section is to
determine the most suitable filter size. In this aim, we evaluate
a wide range of filter sizes from (3 x 3) to (15 x 15). Table 3
presents the system performance for each filter size, measured
in terms of Rank-1 identification accuracy, Equal Error Rate
(EER), and Verification Rates at 1% and 0.1% FAR.

Table 2. Results for xDNN and different values of block overlap ratio (Ra) for RMF modality

Overlap Ratio Identification RANK-

EER%

VERIFICATION VR@ 1%

VERIFICATION VR@ 0.1%

(Ra)% 1% FAR% FAR%
0 91.01% 5.15% 91.72% 86.97%
25 94.65% 3.64% 94.85% 91.01%
50 93.23% 3.73% 94.55% 90.51%
75 94.34% 3.33% 95.35% 91.01%
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From Table 3, it is clear that the filter size (13 x 13) provides
the best overall balance between identification and verification
performance. It achieves a Rank-1 identification accuracy of
95.45%, an EER of 3.43%, and the highest verification rate at
0.1% FAR, reaching 95.86%. While the 11x11 filter slightly
outperforms it in Rank-1 accuracy (95.96%), the 13x13 filter
yields better performance in both verification thresholds,
making it the most robust choice.

(c) The bloc size (b) selection

This section determines the most suitable value for the block
size (h) for the RMF-modality, under fixed conditions:
standard deviation ¢ = 1, block overlap ratio Ra = 75%, and
filter size (k1, k2) = (13 x 13). We differ the block size

between [20, 20] and [40, 40], and estimate the system
performance using Rank-1 identification accuracy, Equal
Error Rate (EER), and Verification Rates at 1% and 0.1%
FAR. The results are presented in Table 4.

Table 4 shows that block size [40, 40] provides the best
overall system performance for all evaluation metrics. It
achieves the highest rank-1 identification accuracy (95.96%),
lowest EER (3.44%), and strong verification results at 1%
FAR (95.56%) and 0.1% FAR (93.13%).

(d) Number of filters (N) selection

In this final part, we aim to determine the optimal number
of filters (N) for the RMF modality. The number of filters is
varied from [1, 1] to [5, 5], while all previously optimized
parameters are kept fixed: standard deviation ¢ = 1, overlap
ratio Ra = 75%, filter size (k1, k2) = (13 x 13), and block size
b = [40, 40]. The performance results for each filter
configuration are shown in Table 5.

From Table 5, it is evident that increasing the number of
filters significantly enhances system performance. The
configuration [5, 5] achieves the lowest EER (3.33%), the
highest verification rates (95.86% at 1% FAR and 93.54% at
0.1% FAR), and matches the top Rank-1 identification
accuracy (95.96%). Allowing the Rank-1 value is the same for
both [4, 4] and [5, 5], the slight improvement in EER and
verification rates makes [5, 5] the most robust choice.

5.4.2 Experimental results for LMF modality

Table 6 reports the performance results of the FKP
recognition system for different values of the standard
deviation (o) used in the SQI algorithm, ranging from 1 to 9,
for the LMF modality. During this evaluation, all other
parameters are kept constant: block overlap ratio Ra = 75%,
filter size (k1, k2) = (13 x 13), block size b = [40, 40], and
number of filters N =[5, 5].

From Table 6, we observe that the best system performance
is achieved when ¢ = 5, with a Rank-1 identification rate of
94.85%, the lowest EER of 3.23%, and strong verification
performance: 94.85% at 1% FAR and 90.40% at 0.1% FAR.
Further, Figure 8 illustrates the CMC and ROC curves of the
standard deviation of the FKP recognition system with several
values of a. It is clearly evident that the 0=5 achieves the best
results.

Table 3. Results for xDNN and different filter sizes (k1, k2) values for RMF modality

Filter Size  Identification RANK-1% EER%  VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR%
3x3 73.94% 13.14% 68.79% 52.93%
5x5 85.96% 8.20% 83.43% 75.15%
7x7 89.09% 6.78% 88.08% 83.54%
9%x9 95.45% 3.41% 94.95% 91.52%
11 x11 95.96% 3.44% 95.56% 93.13%
13 x13 95.45% 3.43% 95.86% 95.86%
15 x15 94.65% 3.54% 95.45% 91.01%

Table 4. Results for xDNN and different block sizes (b) values for RMF modality

Block Size (h)  Identification RANK-1% EER%  VERIFICATION VR@ 1% FAR%  VERIFICATION VR@ 0.1% FAR%
[20 20] 83.43% 8.88% 85.25% 80.00%
[25 25] 89.60% 5.55% 90.10% 86.46%
[3030] 93.13% 4.45% 93.43% 89.49%
[35 35] 93.64% 3.94% 93.23% 88.89%
[40 40] 95.96% 3.44% 95.56% 93.13%
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Table 5. Results for xDNN and different number of filters (N) values for RMF modality

Number Filters Identification RANK- EER% VERIFICATION VR@ 1% VERIFICATION VR@ 0.1%
™) 1% FAR% FAR%
[11] 61.41% 14.74% 61.01% 42.12%
[2 2] 86.87% 6.66% 85.35% 74.95%
[3 3] 91.72% 5.16% 90.91% 83.54%
[4 4] 95.96% 3.44% 95.56% 93.13%
[55] 95.96% 3.33% 95.86% 93.54%
Table 6: Results for xDNN and different values of standard deviation (a) values for LMF modality
Standard Identification RANK- EER% VERIFICATION VR@ 1% VERIFICATION VR@ 0.1%

Deviation 1% FAR% FAR%
1 95.05% 3.63% 93.74% 90.20%
3 94.44% 3.71% 94.55% 89.49%
5 94.85% 3.23% 94.85% 90.40%
7 92.83% 5.26% 92.42% 88.59%
9 92.02% 5.55% 91.62% 88.48%

e, curve ROC N accuracy and the EER. Table 7 presents the results of each

© - [_1 value of Ra according to Identification RANK-1%, EER%,

S Z=3 Verification VR@ 1% FAR%, and Verification VR@ 0.1%

S 095 #=5 FAR%.
E 0 o o |07 From Table 7, we observe that the block overlap ratio Ra =

False Accept Rat o=9

Figure 8. CMC (left) and ROC curves (right) of the LMF
modality using different deviation values

Based on these results, we fix the standard deviation at ¢ =
5 for the LMF modality. In the following sections, we focus
on determining the optimal values for the PCANet descriptor
parameters, specifically: the overlap ratio (Ra), the filter size
(k1, k2), the block size (b), and the number of filters (N).

(a) The overlap ratio (Ra)

In this part, we seek to extract the optimal value of the block
overlap ratio (Ra). For that, we take the value of Ra between
0.0% (without overlapping) and 75%, and we calculate the

75% provides the best overall performance among the tested
values. It achieves the lowest EER (4.57%) and the highest
verification rate at 0.1% FAR (90.71%), which indicates
strong verification performance under strict security
constraints. Moreover, it yields 93.33% identification
accuracy (Rank-1) and 93.33% verification rate at 1% FAR,
which are slightly better than or comparable to the other
values. Therefore, the overlap ratio of 75% offers the most
balanced and effective trade-off between identification and
verification performance.

Figure 9 represents the curve of CMC, and Figure 10
represents the curve of ROC of the FKP recognition system
obtained with various values of ratio. In the plot, it can be
observed that the values Ra = 75% provide the best
performance system.

Table 7. Results for xDNN and different values of overlap ratio (Ra) for LMF modality

Block Overlap Ratio Identification RANK- EER% VERIFICATION VR@ 1% VERIFICATION VR@ 0.1%
(Ra)% 1% FAR% FAR%
0 91.62% 5.77% 91.41% 85.66%
25 93.43% 4.67% 93.64% 89.60%
50 92.53% 5.26% 92.63% 88.69%
75 93.33% 4.57% 93.33% 90.71%
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Figure 9. CMC of LMF modality by xXDNN and PCANet
parameters (ratio, filter size, histobloc size, number of filters)

Figure 10. ROC of LMF modality by xXDNN and PCANet
parameters (ratio, filter size, histobloc size, number of filters)



(b) Filter size
At this point, the values of different parameters already
tested are fixed for the standard deviation ¢ =5 and the overlap

ratio Ra = 50%. The aim of this part is to select the optimal
value for the filter size. The filter size ranges from (3 x 3) to
(15 x 15). Table 8 shows the results of each filter.

Table 8. Results for xDNN and different filters size (k1, k2) values for LMF modality

Fiter Size  Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR%
3x3 72.02% 12.95% 66.06% 52.42%
5x5 83.64% 9.16% 81.31% 71.01%
7x7 87.98% 6.88% 88.08% 80.51%
9x9 94.75% 3.74% 94.14% 88.59%
11 x11 94.34% 3.54% 94.75% 90.10%
13 x13 94.55% 4.15% 93.74% 91.01%
15 x 15 95.86% 3.83% 94.65% 90.71%

Table 9. Results for xDNN and different block sizes (b) values for LMF modality

Block Size (b) Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR%
[20 20] 86.57% 6.96% 87.58% 81.41%
[25 25] 90.61% 5.56% 90.30% 85.76%
[3030] 93.74% 4.75% 92.63% 88.28%
[3535] 93.94% 4.23% 93.03% 89.39%
[40 40] 95.86% 3.83% 94.65% 90.71%

We can observe from Table 8 that the filter size 15x15 configuration.

achieves the best overall system performance in terms of both
identification and verification. It yields the highest Rank-1
identification accuracy of 95.86%, and a low EER of 3.83%.
Additionally, the verification performance reaches 94.65% at
1% FAR and 90.71% at 0.1% FAR, indicating strong
performance under more secure settings. Although the filter
size 11x11 offers slightly better EER (3.54%) and 13x13
yields slightly higher VR@0.1% FAR (91.01%), the 15x15
filter size offers the most balanced and robust performance
across all criteria.

(c) The block size (b) selection

In this part, we used the previously determined optimal
values: standard deviation ¢ = 5, overlap ratio Ra = 50%, and
filter size (ki, k) = (15 x 15). The objective here is to
determine the optimal block size for PCANet. To this end, we
tested various block sizes ranging from [20, 20] to [40, 40].
Table 9 summarizes the results obtained for each tested

According to Table 9, the block size [40, 40] achieves the
best overall system performance for both identification and
verification. It provides the highest Rank-1 identification
accuracy of 95.86% and a low EER of 3.83%. Furthermore,
the verification rates reach 94.65% at 1% FAR and 90.71% at
0.1% FAR, indicating strong robustness even under stricter
verification thresholds. These results confirm that [40, 40]
bolck size setting, is the most effective block size setting
among those evaluated, offering a good trade-off between
spatial resolution and statistical stability in the PCANet
framework.

(d) The number of filters

Finally, we tested the impact of varying the number of filters
(N) in the PCANet framework. The values were taken from [1,
1]to [5, 5], while keeping the previously optimized parameters
fixed: standard deviation ¢ = 5, overlap ratio Ra = 50%, filter
size (ki, k2) = (15 x 15), and block size b = [40, 40]. Table 10
presents the results obtained for each configuration.

Table 10. Results for xDNN and different number of filters (N) values for LMF modality

Number Filters Identification RANK-

VERIFICATION VR@ 1%

VERIFICATION VR@ 0.1%

0,
™) 1% EER% FAR% FAR%
[11] 61.92% 15.57% 62.83% 46.36%
[22] 83.23% 7.98% 83.94% 75.56%
3 3] 88.89% 6.15% 87.78% 80.91%
[44] 95.86% 3.83% 94.65% 90.71%
[5 5] 94.95% 3.92% 94.55% 90.71%

According to Table 10, the configuration with [4, 4] filters
achieves the best system performance in terms of both
identification and verification. It yields the highest Rank-1
identification accuracy of 95.86% and the lowest EER of
3.83%, along with 94.65% VR at 1% FAR and 90.71% VR at
0.1% FAR. Although the configuration with [5, 5] filters
produces slightly lower accuracy (94.95%) and a marginally
higher EER (3.92%), its performance remains comparable.
Therefore, the filter number [4, 4] offers the best trade-off
between recognition accuracy and computational efficiency in
this context.
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5.4.3 Experimental results for RIF modality

For the RIF modality, we follow the same evaluation
process used for the RMF and LMF modalities. This involves
selecting the optimal value for the standard deviation of the
SQI algorithm, and then fixing the remaining PCANet
parameters: overlap ratio Ra = 75%, filter size (ki, k2) = (13 %
13), block size b = [40, 40], and number of filters N = [5, 5].
Table 11 reports the performance results of the FKP
recognition system for different values of ¢ ranging from 1 to
9 under this configuration.



Table 11. Results for xDNN and different values of srandard deviation (o) for RIF modality

Standard Identification RANK- EER% VERIFICATION VR@ 1% VERIFICATION VR@ 0.1%
Deviation 1% FAR% FAR%

1 92.93% 4.45% 93.43% 89.60%

3 93.43% 4.46% 92.73% 88.89%

5 92.22% 4.64% 93.03% 88.08%

7 91.31% 4.34% 92.53% 86.06%

9 0.9101 4.87% 91.52% 83.84%

We observe from Table 11 that the best performance for
both identification and verification is achieved when the
standard deviation ¢ = 3, yielding a Rank-1 identification
accuracy of 93.43% and an EER of 4.46%. Moreover, at the
verification threshold FAR = 0.1%, it reaches 88.89%, and
92.73% at FAR = 1%. While ¢ = 1 also produces competitive
results (92.93% Rank-1, 4.45% EER), the highest
identification accuracy is recorded with ¢ = 3. Further, Figure
11 illustrates the CMC and ROC curves of the standard
deviation of the FKP recognition system with several values
of . It is clearly evident that the 6=5 achieves the best results.
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Figure 11. CMC (left) and ROC curves (right) of the RIF

modality using different deviation value

(a) The overlap ratio (Ra)

In this part, we aim to determine the optimal value for the
block overlap ratio (Ra). To this end, we evaluate Ra values
ranging from 0.0% (no overlap) to 75%, and examine the
performance in terms of identification accuracy (Rank-1%),

Equal Error Rate (EER), and verification rates at 1% and 0.1%
FAR. The results are reported in Table 12.

From Table 12, we observe that the best performance is
obtained when the block overlap ratio is set to 25%. This
setting achieves the highest Rank-1 identification accuracy of
91.92%, and a relatively low EER of 4.65%, along with a
verification rate of 91.62% at 1% FAR and 85.45% at 0.1%
FAR. Although Ra = 75% achieves a slightly higher VR@1%
(92.12%), it comes with a comparable EER (4.65%) and lower
Rank-1 accuracy (91.72%) than Ra = 25%. Therefore, based
on overall performance across identification and verification,
Ra = 25% offers the most balanced and effective configuration
in this experiment. Figure 12 represents the curve of CMC, and
Figure 13 represents the curve of ROC of the FKP recognition
system obtained with various values of ratio. In the plot, it can
be observed that the values Ra = 75% provide the best
performance system.

(b) Filter size

At this point, the parameters for the RIF modality are fixed:
the standard deviation 6 = 1 and the overlap ratio Ra = 75%.
The objective of this section is to determine the optimal filter
size for the PCANet descriptor. To this end, we tested several
sizes ranging from (3 x 3) to (15 x 15). Table 13 presents the
corresponding performance results based on Rank-1 accuracy,
EER, and verification rates.

Table 12. Results for xDNN and different values of block overlap ratio (Ra) for RIF modality

Block Overlap Ratio Identification RANK-

VERIFICATION VR@ 1%

VERIFICATION VR@ 0.1%

EERY%
(Ra)% 1% ° FAR% FAR%
0 88.48% 5.65% 87.17% 79.09%
25 91.92% 4.65% 91.62% 85.45%
50 90.71% 4.43% 90.81% 83.94%
75 91.72% 4.65% 92.12% 86.57%
;'S . curve GMC ratio ﬁ , __curve CMC filter size FAR and 88.69% at 0.1% FAR, confirming its robustness even
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delivers the best overall performance in both identification and
verification. It achieves the highest Rank-1 identification
accuracy of 93.03%, along with the lowest EER of 4.34%.
Additionally, it reaches a verification rate of 93.23% at 1%
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Figure 13. ROC of RIF modality by xDNN and PCANet
parameters (ratio,filter size, histobloc size, number of filters)



(c) The block size (b)

In this part, we aim to select the best block size (h) for the
RIF modality, given that the other parameters are fixed as
follows: standard deviation ¢ = 1, overlap ratio Ra = 75%, and

filter size (ki, k2) = (13 x 13). We vary the block size from [20,
20] to [40, 40], and evaluate the system performance using
Rank-1 accuracy, EER, and verification rates. The
corresponding results are presented in Table 14.

Table 13. Results for xDNN and different filter sizes (k1, k2) values for RIF modality

Fiter Size  Identification RANK-1%  EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR%
3x3 60.61% 15.59% 55.96% 42.02%
5x5 78.99% 10.75% 75.86% 63.74%
7x7 88.79% 6.71% 87.78% 80.71%
9x9 92.22% 5.15% 91.82% 86.06%
11 x11 92.63% 4.95% 92.93% 88.48%
13 x13 93.03% 4.34% 93.23% 88.69%
15 x 15 91.01% 5.15% 91.92% 86.46%

Table 14. Results for xDNN and different block sizes (b) values for RIF modality

Block Size(h) Identification RANK-1% EER%  VERIFICATION VR@ 1% FAR%  VERIFICATION VR@ 0.1% FAR%
[20 20] 82.83% 9.21% 83.64% 77.47%
[2525] 84.55% 7.49% 86.46% 79.09%
[3030] 89.70% 5.79% 90.20% 83.33%
[3535] 91.31% 5.15% 92.22% 85.76%
[40 40] 93.03% 4.34% 93.23% 88.69%

From Table 14, we observe that the block size [40, 40]
achieves the best overall performance in both identification
and verification tasks. It records the highest Rank-1 accuracy
0f 93.03% and the lowest EER of 4.34%, along with 93.23%
verification rate at 1% FAR and 88.69% at 0.1% FAR. These
improvements confirm that increasing the block size enhances
the system’s discriminative capability. Thus, [40, 40] is the
most effective block size for the RIF modality in this
configuration.

(d) The number of filters

Finally, in this part, we aim to determine the optimal
number of filters (N) for the RIF modality. The previously
optimized parameters are fixed as follows: standard deviation
o = 1, overlap ratio Ra = 75%, filter size (ki, k2) = (13 x 13),
and block size b =[40, 40]. We vary the number of filters from
[1, 1]to [5, 5], and report the performance metrics in Table 15.

Table 15. Results for xDNN and different number of filters (N) values for RIF modality

Number of Filters Identification RANK- Lo, VERIFICATION VR@ 1% VERIFICATION VR@ 0.1%
() 1% ° FAR% FAR%
[11] 56.87% 17.71% 57.27% 42.93%
[22] 68.59% 16.08% 67.47% 57.98%
[3 3] 86.87% 6.56% 86.77% 78.18%
[4 4] 93.03% 4.34% 93.23% 88.69%
[55] 91.62% 4.52% 93.43% 86.97%

From Table 15, we observe that the best performance is
achieved with [4, 4] filters. This configuration yields the
highest Rank-1 identification accuracy of 93.03%, the lowest
EER of 4.34%, and excellent verification performance with
93.23% at 1% FAR and 88.69% at 0.1% FAR. Although the
setting [5, 5] produces a slightly higher VR@1% (93.43%), it
has a lower identification accuracy (91.62%) and a slightly
higher EER (4.52%). Therefore, based on the overall balance
across all evaluation metrics, the [4, 4] filter configuration
provides the most effective performance for the RIF modality.

5.4.4 Experimental Results for LIF modality

Table 16 presents the performance of our biometric image
identification and verification system for different values of
standard deviation (c), ranging from 1 to 9, using the LIF
modality. In this evaluation, all other parameters are kept
fixed: block overlap rate Ra = 75%, filter size (k1, k2) = (13 x
13), block size b = [40, 40], and number of filters N = [5, 5].
The evaluation metrics include rank-1 identification rate,
equal error rate (EER), and verification rate (VR) at 1% FAR
and 0.1% FAR.

Table 16. Results for xDNN and different values of standard deviation ¢ for LIF modality

Standard Identification RANK- EER% VERIFICATION VR@ 1% VERIFICATION VR@ 0.1%
Deviation 1% FAR% FAR%

1 90.91% 5.26% 90.71% 85.76%

3 91.31% 5.17% 90.40% 85.35%

5 91.62% 4.85% 91.01% 85.66%

7 89.49% 5.76% 89.80% 84.34%

9 89.39% 6.53% 88.69% 82.63%
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From Table 16, we find 6=5 is optimal for LIF modality,
achieving 91.82% Rank-1 accuracy, 4.85% EER, and 91.01%
VR@1% FAR with fixed PCANet parameters. Performance
declines with lower/higher ¢ values, confirming c=>5's ideal
balance between noise reduction and feature preservation,
consistent across all tested modalities. Further, Figure 14
illustrates the CMC and ROC curves of the standard deviation
of the FKP recognition system with several values of o. It is
clearly evident that the 6=5 achieves the best results.

£ curve CMC o curve ROC
1 — 1 _—

4 * =

S c —

S o095t o a=1

= —_— =09}

c © o=3

2 ost J— o 5

= a=

H D 08—l iy =7

[T 10° > 43 102 10! T=
Rank False Accept Rate a=9|

Figure 14. CMC (left) and ROC curves(right) of the LIF
modality using different deviation value

(a) The overlap ratio (Ra)

We fix the values of the standard deviation ¢ = 5, and vary
the block overlap ratio (Ra) between 0% (no overlap) and
75%. Table 17 shows the performance results of each overlap

ratio in terms of identification (Rank-1), Equal Error Rate
(EER), and verification accuracy at two different False
Acceptance Rates (FARs).

From Table 17, we observe that the best performance is
obtained when the block overlap ratio is set to 75%. This
setting achieves the highest Rank-1 identification accuracy of
(90.00%) and the best verification rates: VR@1% FAR of
90.10% and VR@0.1% FAR of 84.65%. Although the EER is
slightly lower at Ra = 50% (5.76%), the overall verification
and identification accuracy at Ra = 75% suggest it as the most
optimal configuration for the PCANet descriptor under the
given settings.

Figure 15 represents the curve of CMC, and Figure 16
represents the curve of ROC of the FKP recognition system
obtained with various values of ratio. In the plot, it can be
observed that the values Ra = 75% provide the best
performance system.

(b) Filter size

In this part, we fix the previously optimized parameters:
standard deviation ¢ = 5 and block overlap ratio Ra = 75%.
We now focus on determining the optimal filter size, ranging
from (3%3) to (15x15). The performance results of different
filter sizes are presented in Table 18.

Table 17. Results for xDNN and different values of block overlap ratio (Ra) for LIF modality

Block Overlap Ratio Identification RANK- EERY VERIFICATION VR@ 1% VERIFICATION VR@ 0.1%
(3
(Ra)% 1% FAR% FAR%
0 89.19% 5.96% 88.89% 82.32%
25 89.09% 6.04% 88.99% 83.94%
50 89.49% 5.76% 89.80% 84.34%
75 90.00% 5.98% 90.10% 84.65%
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Figure 15. CMC of LIF modality for by xDNN and PCANet
parameters (ratio, filter size, histobloc size, number of filters)

Figure 16. Presents the ROC of LIF modality by xDNN and
PCANet parameters (ratio, filter size, histobloc size, number
of filters)

Table 18. Results for xDNN and different filter sizes (k1, k2) values for LIF modality

Fiter Size  Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR%
3x3 91.72% 5.28% 91.82% 87.17%
5x35 76.46% 11.22% 74.65% 63.33%
7x7 88.38% 6.24% 87.98% 78.59%
9%x9 90.10% 4.73% 90.10% 82.42%
11 x 11 91.82% 4.44% 91.62% 86.36%
13 x13 90.00% 5.18% 90.20% 85.56%
15 x15 91.01% 4.65% 91.11% 86.26%

From Table 18, we observe that the filter size 11x11
provides the best identification and verification performance,
achieving the highest Rank-1 accuracy (91.82%) and the
lowest EER (4.44%). Moreover, its verification accuracy at
low FARs (VR@0.1% FAR = 86.36%) is also among the top-

performing. Therefore, we conclude that the filter size (k1; k2)
= (11 x 11) is the most suitable configuration for the PCANet
descriptor under the current experimental settings.

(c) The block size (b)

2360



In this section, we fix the parameters already optimized in
previous experiments: standard deviation ¢ = 5 for the SQI
algorithm, overlap ratio Ra = 75%, and filter size (k1; k2) =
(11 x 11). We now investigate the effect of different block
sizes, ranging from [20, 20] to [40, 40], on the system’s
performance. The results of each configuration are presented
in Table 19.

From Table 19, we observe that the block size [40, 40]
yields the best performance in both identification and
verification tasks. It achieves the highest Rank-1 accuracy
(91.82%) and the lowest EER (4.44%). The verification rate at
VR@0.1% FAR also reaches a strong 86.36%. Based on these

results, we confirm that the block size b = [40, 40] offers the
most optimal configuration for the FKP recognition system
under the current experimental conditions.

(d) The number of filters

Finally, we aim to select the optimal number of filters for
the PCANet descriptor applied to the LIF modality. To do this,
we test various values of the number of filters N, ranging from
[1, 1] to [5, 5], while keeping all previously optimized
parameters fixed: standard deviation ¢ = 5, overlap ratio Ra =
75%, filter size (k1; k2) = (11 x 11), and block size b = [40,
40]. The results are summarized in Table 20.

Table 19. Results for XDNN and different block sizes (b) values for LIF modality

Block Size (b) Identification RANK-1% EER% VERIFICATION VR@ 1% FAR%  VERIFICATION VR@ 0.1% FAR%
[20 20] 81.92% 9.51% 82.53% 76.57%
[2525] 87.78% 6.77% 88.99% 82.63%
[3030] 88.99% 5.47% 89.70% 83.33%
[3535] 91.11% 4.55% 91.72% 86.26%
40 40] 91.82% 4.44% 91.62% 86.36%
Table 20. Results for xDNN and different number of filters (N) Values for LIF modality
Number Filters Identification RANK- EER% VERIFICATION VR@ 1% VERIFICATION VR@ 0.1%
N) 1% FAR% FAR%
[11] 64.14% 17.27% 62.42% 48.59%
[2 2] 66.87% 16.97% 66.57% 54.04%
[3 3] 85.96% 7.17% 86.06% 77.98%
[4 4] 91.82% 4.44% 91.62% 86.36%
[55] 92.93% 4.14% 93.13% 88.18%

From Table 20, we observe that increasing the number of
filters 1improves the performance significantly. The
configuration N = [5, 5] achieves the best results, with the
highest identification rate (Rank-1 = 92.93%), the lowest EER
(4.14%), and the best verification performance: VR@1% FAR
= 93.13% and VR@0.1% FAR = 88.18%. These results are
further illustrated Thus, the number of filters N = [5, 5] is

identified as the most optimal choice for the FKP recognition
system using PCANet under the given experimental setup.

Table 21 illustrates the summary of all results obtained to
select the best value parameters for the SQI algorithm and
PCANet descriptor, according to the best values giving for
both identification and verification.

Table 21. The best value parameters for the SQI algorithm and PCANet descriptor

Parameters RMF Modality LMF Modality  RIF Modality LIF Modality
Standard deviation ¢ 1 1 3 5
The bloc overlap ratio (Ra) 25 25 25 75
Filter Size 11 x11 15 %15 13 x13 11 x11
Bloc size [40 40] [40 40] [40 40] [40 40]
Number of Filter [5, 5] [4, 4] [4, 4] [5,5]

5.5 Comparison study

in this subsection, we compare the proposed system with
well-known approaches in the field of Finger-Knuckle-Print
(FKP) recognition under a uni-modal configuration. Each
finger type (LIF, LMF, RIF, RMF) is treated as an independent
modality.

Table 22. ROR (%) the different types fingers

Modalities ROR (%)
LMF 95.86
RMF 95.96

LIF 92.93
RIF 93.03

Table 22 presents the identification results, highlighting the
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superior performance of the proposed framework compared to
established methods.

Table 23. Comparative study between proposed system and
other methods

Methods LIF LMF RIF RMF
ROR (%) ROR (%) ROR (%) ROR (%)

Ref[12] 93.80 94.70 92.20 94.80

Ref[13] 91.01 94.85 91.41 91.82

Ref[17] 97.30 95.75 96.83 95.15

Ref[19] 94.34 93.54 93.94 94.19

This work  92.93 95.86 93.03 95.96

To assess the robustness and effectiveness of the proposed
illumination-invariant and explainable PCANet-based FKP
recognition framework, a comparative study is conducted



against several state-of-the-art methods reported in the studies
[12, 13,17, 19]. The evaluation is performed on all four finger
categories—Left Index Finger (LIF), Left Middle Finger
(LMF), Right Index Finger (RIF), and Right Middle Finger
(RMF)—using the same experimental configuration to ensure
fairness. The Rank-One Recognition Rate (ROR) was used as
the principal performance metric, and the corresponding
results are summarized in Table 23.

The obtained results demonstrate that the proposed method
achieves a competitive performance across all finger types,
with ROR values 0 92.93%, 95.86%, 93.03%, and 95.96% for
LIF, LMF, RIF, and RMF, respectively. Compared to earlier
approaches, the proposed framework maintains a balanced and
stable recognition performance, particularly for middle fingers
(LMF and RMF), where illumination variations are more
pronounced.

Specifically, our method attains the highest ROR values for
LMF (95.86%) and RMF (95.96%), surpassing all
benchmarked approaches. For LIF and RIF, the system
achieves recognition rates of 92.93% and 93.03%,
respectively, which are comparable to or slightly lower than
the best-reported methods [13, 17]. Overall, the results
highlight that our framework not only provides accuracy on
par with or superior to state-of-the-art techniques but also
introduces a unique advantage in terms of decision
transparency, which is absent in conventional black-box
models. This combination of competitive accuracy and
interpretability establishes our approach as a strong candidate
for deployment in security-critical biometric applications.

Although Chlaoua et al. [17] achieve slightly higher RORs
on certain finger types, the proposed system provides
comparable accuracy while offering enhanced interpretability
and illumination robustness, which are not addressed in the
compared methods. The integration of the Self-Quotient
Image (SQI) preprocessing ensures effective normalization of
lighting effects, while the explainable Deep Neural Network
(xDNN) component contributes to transparent and
interpretable decision-making—a key advantage over purely
black-box models.

Overall, the comparative analysis confirms that the
proposed framework delivers a strong balance between
accuracy, interpretability, and generalization, making it a
suitable choice for security-critical biometric systems where
both performance and explainability are essential.

6. EXPLAINABILITY VISUALIZATION

Figure 17 presents an example of the interpretable decision
rules generated by the proposed xDNN model for retinal image
classification. Each condition in the IF-THEN rule
corresponds to a prototype (or MegaCloud) that represents a
characteristic pattern learned from the training data, thereby
providing a transparent link between the input features and the
final decision.

[_ e [l
IF (X~ JOR ( X~ JOR (X~ ) THEN iD="1"
Figure 17. Explainability visualization
For instance, Figure 17 illustrates an example of
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explainability visualization. The rule illustrated as IF (x ~
Prototypei) OR (x ~ Prototypez) OR (x ~ Prototypes) THEN
Class = “1” demonstrates how the model associates an input
image with one or more representative prototypes. These
prototypes are visualized as image patches within the rule,
enabling human experts to intuitively understand and visually
verify the rationale behind the model’s decision for assigning
the input to this specific class.

This visualization offers both objective explainability
through the explicit formulation of decision rules—and
subjective interpretability through human-readable image
prototypes. Such a representation enhances users’
understanding and fosters greater trust in the model’s
reasoning process.

7. CONCLUSION

Explainable classifier-based biometric systems address the
limitations of traditional approaches while achieving superior
recognition performance. This paper introduces an innovative
xDNN  architecture for Finger-Knuckle-Print (FKP)
recognition, combining deep learning with full decision
transparency. The framework employs a computationally
efficient, non-parametric design that eliminates iterative
training while maintaining robust performance. By integrating
PCANet-based  hierarchical feature extraction  with
illumination-invariant  preprocessing via Self-Quotient
Images, the system delivers outstanding results on the PolyU
FKP database. Experimental validation demonstrates its
effectiveness in security-sensitive applications, significantly
outperforming conventional methods in both accuracy and
interpretability. The system achieves identification accuracies
of 91-96% across different finger types while providing fully
transparent decision-making, establishing a new benchmark
for explainable FKP recognition. Future work will extend this
architecture to multi-modal biometrics and hybrid approaches
that integrate explainable Al with advanced optimization
techniques to enhance robustness and adaptability in real-
world deployments. Overall, this study represents an
important step toward fully transparent, high-performance
FKP recognition systems suitable for modern security
applications.

In the future work, we extend the current FKP recognition
framework toward multimodal biometric fusion, combining
Finger Knuckle Print (FKP) with complementary modalities
such as palmprint, fingerprint, and iris to enhance recognition
robustness and reliability. Furthermore, we plan to investigate
hybrid optimization and feature selection strategies, including
metaheuristic-based parameter tuning and deep feature fusion,
to improve the adaptability and efficiency of the proposed
architecture. These details have been added to provide a
clearer and more concrete outlook for future work. Also, we
plan to extend this study by conducting a comprehensive user-
based evaluation to quantitatively and qualitatively assess the
impact of the proposed explainability mechanism on users’
understanding and trust.
Furthermore, this visualization framework combining explicit
IF-THEN decision rules with human-readable image
prototypes provides both objective explainability and
subjective interpretability. This dual representation enhances
transparency and fosters greater user confidence in the
model’s reasoning process.
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