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Finger Knuckle Print (FKP) is a promising biometric modality for personal recognition; 

however, existing methods still suffer from sensitivity to illumination variations and limited 

interpretability of deep learning models. To address these limitations, this paper proposes a 

novel explainable deep neural network (xDNN)-based Principal Component Analysis 

Network (PCANet) framework that combines robust feature extraction with transparent 

decision-making for FKP recognition. The Self-Quotient Image (SQI) method is applied to 

decompose FKP images into illumination-invariant reflectance components, mitigating 

lighting variations. Also, a two-stage of PCANet that extracts discriminative features from 

these components, leveraging its efficiency and hierarchical representation capability. To 

improve the trustworthiness of biometric decision-making, the framework incorporates the 

explainable Deep Neural Network (xDNN) approach for user identification. To enhance 

trust and transparency in biometric decision-making, the framework integrates an 

explainable Deep Neural Network (xDNN) that generates prototype-based reasoning and 

feature relevance visualizations, providing insight into the decision process and 

interpretability of classification outcomes. The proposed system is rigorously evaluated on 

the PolyU FKP database using all four finger types (Left Index Finger, Left Middle Finger, 

Right Index Finger, and Right Middle Finger) in a unimodal configuration. Key 

hyperparameters of SQI and PCANet are optimized through ablation studies to boost 

performance. The system achieves 91–96% identification accuracy, surpassing state-of-the-

art methods, while offering interpretability lacking in previous approaches—making it well-

suited for security-critical applications. 
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1. INTRODUCTION

Recently a biometric system is considered as an alternative 

authentication and identification system to traditional methods 

(ID card, passwords, PIN codes). Biometrics recognition 

system facilitates the recognition process of a person by using 

her unique physiological and behavioral characteristics [1, 2]. 

As a result, many different biometric traits have been 

investigated widely, such as Fingerprint, Iris, Ear, Finger 

knuckle print, Palmprint, Face etc. [3-5]. However, Finger 

Knuckle Print (FKP) [6], included in the hand based biometric 

traits that have been intensively studied in order to improve the 

consistent authentication system with higher accuracy [7, 8]. 

FKP has distinctive anatomical structures that can be recorded 

with low cost and small size imaging devices without using an 

extra hardware [6, 8]. 

Generally, FKP recognition system splits into two tasks: (i) 

FKP identification: in this case, the focus of FKP identification 

system is to put a given FKP test into one of several predefined 

sets in a database, whereas (ii) FKP verification process is to 

determine if two FKP images belong to the same person. In 

addition, the FKP verification task is more difficult than FKP 

identification because in matching stage is required to give a 

global threshold in order to make a decision. Till now, the FKP 

recognition system has been attracting considerable attention 

of researchers over recent years. Several contributions were 

developed. Such as, Woodard and Flynn [9] and Woodard and 

Flynn [10] are among the first researchers who introduce the 

use of finger knuckle surface in biometric systems. Ferrer et 

al. [11] have proposed a framework based on a ridge feature-

based algorithm. This method started with extracts ridge 

features from FKP images and evaluates their similarity using 

Hidden Markov Model (HMM) or Support Vector Machine 

(SVM). Zeinali et al. [12] have proposed a system for 

recognition FKP that the Directional Filter Bank (DFB) has 

been used for feature extraction. Then LDA is used to reduce 
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the dimensionality of the large feature vector. Chaa et al. [13] 

in step of feature extraction, two types of Histogram of 

Oriented Gradients (HOG)-based features extracted from the 

reflectance and illumination components of FKP images for 

personal identification. The Adaptive Single Scale Retinex 

(ASSR) algorithm is employed to decompose each FKP image 

into its illumination and reflectance components. Then, the 

HOG descriptor applied on both extracted images (real and 

imaginary). These feature vectors concatenated together. 

Serial feature fusion is employed to construct a comprehensive 

feature vector for each user, enabling the extraction of 

distinctive characteristics within a higher-dimensional feature 

space. Finally, classification is performed using the cosine 

similarity distance measure. Zhang et al. [14] presented a new 

computation framework that focused on mounting new 

efficient feature extraction method for FKP recognition. The 

authors analyzed three commonly used local features, the local 

orientation, the local phase, and the phase congruency 

systematically. However, they presented a method for 

computing all features efficiently using the phase congruency. 

Li et al. [15] have introduced a feature extraction method 

employing steerable filters that can extract local orientation 

from FKP images. Recently deep networks methods learning 

called deep learning has emerge. This new area has been 

attracting considerable attention of researchers. Therefore, 

Qian et al. [4] have proposed a novel biometric image feature 

representation technique, known as exploring deep gradient 

information (DGI). Meraoumia et al. [16] have introduced a 

novel framework for a biometric identification system using 

PCANet deep learning and multispectral Palmprint. However, 

the basic idea of deep learning is to discover multiple levels of 

representation of the discriminant characteristics of biometric 

modalities effectively and efficiently. Chlaoua et al. [17] 

pioneered a computationally efficient FKP recognition system 

by combining PCANet feature extraction with SVM 

classification on PolyU datasets. Their key innovation 

involved optimizing PCANet's filter banks specifically for 

knuckle patterns, followed by kernel-based SVM refinement. 

Recent studies highlight the limitations of "black-box" deep 

learning models in sensitive domains like biometrics, where 

decision transparency is crucial [18-20]. For that reason, in this 

paper, we propose a new recognition biometric system using 

the FKP traits based on the xDNN classifier receiving as inputs 

vector results from feature extraction by PCANet deep 

learning method and preprocessing by the Self-Quotient Image 

(SQI) method to decompose FKP images into illumination-

invariant reflectance components, mitigating lighting 

variations. In this work, we develop unimodal recognition 

biometrics systems. We search the best value for parameters 

of both PCANet and SQI algorithm that get the best 

performances value. These parameters allow us to enhance the 

quality of xDNN feature extraction, which increase the 

detection and identification accuracy. 

Our main contribution given in this paper are: 

•Using an Explainable Deep Neural Network xDNN 

Classifier, a supervised deep learning framework designed for 

high accuracy pattern recognition while maintaining 

interpretability of decisions. 

•Feature extraction combining SQI algorithm (Self-

Quotient Image) method to decompose FKP images into 

illumination-invariant reflectance components, mitigating 

lighting variations and Initial extraction using PCANet Deep 

Learning technique. 

•A comparison study of several experimental results is 

illustrated for different FKP modalities and recent well-known 

approaches. 

The rest of this paper is organized as follows: In section 2, 

the xDNN classifier mechanism is presented then in section 3, 

the, proposed methodology FKP recognition system is 

described. We present all process steps of the system in detail 

with their techniques and functions. Section 4 presents the 

experimental results that illustrate the dataset used, 

performances metrics, parameters study of SQI algorithm and 

PCANet descriptor to select the best values. A comparison 

study is elaborated to compare between the proposed system 

and other well-known previous work. Finally, the conclusion 

and future work are given in the last section. 

 

 

2. xDNN: DEFINITION AND COMPUTATIONAL 

FOUNDATIONS 

 

This work centers on explainable Deep Neural Networks 

(xDNN), a framework designed to unite high-accuracy 

learning with human-interpretable decision processes. While 

conventional deep models excel in performance, their opacity 

hinders trust in sensitive applications. xDNN overcomes this 

by embedding transparency directly into its architecture, 

enabling users to trace and validate its reasoning. Critically, 

mastering xDNN’s internal dynamics: such as [specific 

mechanisms, e.g., 'adaptive feature weighting' or 'dynamic rule 

generation'] is vital not only to deploy it effectively but also to 

justify its outputs in real-world scenarios.  

 

2.1 The xDNN classifier: Core architecture and design 

principles 

 

The proposed Explainable Deep Neural Network (xDNN) 

implements a dynamic feedforward structure capable of 

autonomous architectural evolution through continuous model 

adaptation. Unlike conventional static neural networks, this 

framework progressively restructures its layered organization 

in response to emerging pattern recognition demands. As 

illustrated in Figure 1, the system's five specialized processing 

layers operate in concert to enable: 

•Adaptive feature space reconstruction. 

•On-demand neural module generation. 

•Transparent decision pathway formation. 

 

 
 

Figure 1. xDNN Classifier’s architecture 

 

These five functionally specialized layers that collectively 

execute the pattern recognition tasks. For complete 

understanding, we subsequently: define each layer's 

computational role, describe its structural configuration, and 

explain its sub-processes within the complete classification 
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framework. 

 

2.1.1 Feature descriptor layer: High-level feature extraction 

The first critical step in the xDNN pipeline is feature 

extraction, where raw image data is transformed into 

meaningful numerical representations. While traditional 

methods like PCA or handcrafted filters (e.g., Gabor) have 

been widely used, they often struggle with capturing complex, 

non-linear patterns.  A pre-trained deep convolutional neural 

network (DCNN) [21] known for its ability to extract highly 

discriminative features. From the recommendation of Ioffe 

and Szegedy [22] to incorporate normalization for deep feature 

stabilization and improve convergence. 

The standardization and normalization of the extracted 

features become a crucial in such process and followed the 

Eqs. (1) and (2) respectively: 

 

𝑥̂𝑖,𝑗 =
𝑥𝑖,𝑗 − 𝜇(𝑥𝑖,𝑗)

𝜎(𝑥𝑖,𝑗)
 (1) 

 

𝑥̂𝑖,𝑗 =
𝑥̂𝑖,𝑗 − 𝑚𝑖𝑛

𝑖
(𝑥̂𝑖,𝑗)

𝑚𝑎𝑥
𝑖

(𝑥̂𝑖,𝑗) − 𝑚𝑖𝑛
𝑖

(𝑥̂𝑖,𝑗)
 (2) 

 

𝑥̂  represents a standardized features vector x (the values 

provided by the FCL) of the image I and x̅  is the normalized 

value of the features vector, i is for the image’s ID, j is the 

current feature of x, I is the current image and N is the number 

of the images. The later step ensures all features contribute 

equally during classification. 

xDNN initializes its meta-parameter (learning parameters) 

dynamically, eliminating the need for manual tuning. When 

the first data sample arrives, the system automatically 

configures different parameters as it is mentioned in Eq. (3): 

 

𝑃 ← 1;  𝜇 ← 𝑥𝑖 ;   

𝐶1 ← 𝑥1; 𝑝1 ← 𝑥1; 𝑆𝑢𝑝𝑝𝑜𝑟𝑡1 ← 1; 𝑟1 ← 𝑟∗; 𝐼1 ← 𝐼1 
(3) 

 

P for prototype, C for class, Support for the equivalent 

support (number of members) belonging to the identified 

Model, r for the equivalent radius of the area of influence of 

the Class Ci, µ is the global mean of the class, I is the current 

image and Î is the identified prototype. 

The dynamic radius calculation method follows the data-

derived approach proposed by Angelov and Gu [23] for 

autonomous system parameterization. 

Following the methodology outlined in the study [24], we 

obtain the critical threshold 𝑟∗ = √2 − 2 cos( 30°).  

The Rational 𝑟∗  metric represents an analytically derived 

boundary rather than an empirically tuned parameter. It is 

delineated when the angle subtended by two vectors is less 

than 30° and they are oriented in the same direction denoted 

by 𝑑. Building upon this foundation, we examine two feature 

vectors that exhibit an angle of less than 30° between them, 

categorizing them as “Similar”. The determination of the 

direction 𝑑 is achieved through the application of Eq. (4). 

 

𝑑(𝑥𝑖 , 𝑝𝑖) = ‖
𝑥𝑖

‖𝑥𝑖‖
−

𝑝𝑖

‖𝑝𝑖‖
‖ (4) 

 

2.1.2 Density layer 

This layer plays a crucial role in establishing the shared 

proximity among the images within the data space from the 

layer before it. The data distribution follows a Cauchy pattern 

when employing the Euclidean distance, as demonstrated in 

the study [24] Unlike Gaussian kernels, the Cauchy 

distribution better handles outliers, making it suitable for real-

world biometric data [25]. The data density D is determined 

through the formula in Eq. (5) or Eq. (6). 

 

𝐷(𝑥𝑖) =
1

1 +
‖𝑥𝑖 − 𝜇𝑁‖2

𝜎𝑁
2

 
(5) 

 

𝐷(𝑥𝑖) =
1

1 + ‖𝑥𝑖𝜇𝑖‖
2 + ∑ −‖𝜇𝑖‖

2
𝑖

 (6) 

 

The scalar coefficient Σ𝑖 can be updated as in Eq. (7), where 

𝜇𝑖 is involved. 

 

𝜇𝑖 ←
𝑖 − 1

𝑖
𝜇𝑖−1 +

1

𝑖
𝑥𝑖 

∑ =  
1

1 − 𝑖
𝑖

∑ +
1

𝑖
‖𝑥𝑖‖

𝑖−1

2

∑ =

1

‖𝑥1‖2 
(7) 

 

Higher density values indicate stronger cluster cohesion. 

Consequently, the solid mutual influence between the images 

in the space of data due to their common adjacency. 

 

2.1.3 Typicality layer 

Typicality τ quantifies how well a sample fits within its 

class distribution based on the probability distribution 

function, which is determined by utilizing the Eq. (8). It is a 

probabilistic confidence scoring. 

 

𝜏(𝑥𝑖) =
∑ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝐷(𝑥𝑖)

𝑐
𝑖

∑ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖 ∫ 𝐷(𝑥𝑖)𝑑𝑥
+∞

−∞
𝑐
𝑖

 (8) 

 

The typicality is between 0 and 1, peaks near prototype 

vectors, declining towards outliers. A high τ means high 

confidence in classification. The value of 𝜏 remains 

consistently below the value 1. 

 

2.1.4 Prototypes or Models Layer 

xDNN constructs human-readable IF-THEN rules 

(Transparent Rule-Based Learning) for each class. The IF-

THEN rule generation implements the transparent fuzzy rule 

extraction method from the research [26]. The dynamic model 

expansion criteria refine the concept of "novelty detection" 

described in Markou and Singh [27]. The xDNN architecture 

implements a novel paradigm for explainable artificial 

intelligence through its innovative Models Layer. This 

component establishes a dynamic, self-organizing framework 

that learns data distributions directly from visual inputs 

without relying on predetermined statistical assumptions. The 

system's modular design philosophy enables independent 

operation of each classification model, permitting seamless 

integration of new recognition categories while preserving 

existing knowledge structures, a critical advantage for scalable 

biometric applications. The Models Layer constitutes the 

foundational interpretable framework within an xDNN 

biometric system. This component uniquely operates without 

requiring prior assumptions about data distributions, instead 

deriving its understanding directly from visual patterns in the 

input images. The architecture's modular independence 

represents a significant innovation. New models can be 
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incorporated without affecting existing ones, which enables 

seamless system expansion while maintaining operational 

stability. During the training phase, xDNN performs class-

specific processing to develop distinct model sets that capture 

the essential density characteristics identified in earlier stages. 

These models generate human-readable decision rules 

following the logical structure: 

IF (input ∼ prototype K₁) THEN classify as Class C 

The symbol ∼ denotes similarity and the degree of 

membership. One rule can be generated for the same model, 

however, the same class’s rules are connected by the logical 

disjunction OR as followed: 

IF (input ∼ prototype K₁) OR ... OR (input ∼ prototype Kₘ) 

THEN classify as Class C 

Each model establishes a Data Cloud [18], a dynamic region 

encompassing similar feature vectors. Unlike traditional 

approaches using statistical means, these clouds center around 

actual representative samples. The system employs an 

intelligent assignment mechanism that continuously evaluates 

new inputs against existing prototypes using minimum 

distance criteria: 

𝑗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑗=1,2..𝑝

(‖𝑥𝑖 − 𝑝𝑗‖
2

) (9) 

The system dynamically generates new recognition clusters 

when either of these density conditions is met: 

𝐼𝐹 (𝐷(𝑥𝑖) ≥ 𝑚𝑎𝑥
𝑗=1,2,…,𝑝

𝐷(𝑝𝑗))

𝑂𝑅 (𝐷(𝑥𝑖) ≤ 𝑚𝑖𝑛
𝑗=1,2,…,𝑝

𝐷(𝑝𝑗))

𝑇𝐻𝐸𝑁(add a new data cloud (𝑃 ← 𝑃 + 1)) 

(10) 

Cluster initialization 

𝑃 ← 𝑃 + 1; 𝐶𝑃 ← 𝑥𝑖; 𝑝𝑃 ← 𝐼𝑖;
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑃 ← 1; 𝑟𝑃 ← 𝑟𝑜; 𝐼𝑃 ← 𝐼𝑖

(11) 

For existing clusters, the system performs incremental 

updates: 

𝐶𝑗∗ ← 𝐶𝑗∗ + 1; 𝑝𝑗∗ ←
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑗∗

𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑗∗ + 1
𝑝𝑗∗

+
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑗∗

𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑗∗ + 1
𝑥𝑖; 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑗∗

← 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑗∗ + 1; 𝑟𝑗∗
2 ←

𝑟𝑗∗
2 + (1 − ‖𝑝𝑗∗‖

2
)

2

(12) 

The layer's adaptive nature allows for organic system 

growth while maintaining classification accuracy, making it 

particularly suitable for evolving biometric applications where 

new classes may need periodic incorporation. 

2.1.5 Mega cloud layer 

The cloud fusion algorithm extends the traditional 

hierarchical aggregation approach by introducing angular 

similarity constraints, which strengthen the clustering process. 

In the MegaClouds layer, clouds produced in the previous 

stage are combined whenever neighboring prototypes share 

the same class label. This merging process forms larger 

clusters, referred to as Mega Clouds (MCs), thereby improving 

the interpretability of the system: 

𝑅𝑐:IF (𝑣𝑖̅ ∼ 𝑀𝐶1) OR (𝑣𝑖̅ ∼ 𝑀𝐶2) OR …  OR (𝑣𝑖̅

∼ 𝑀𝐶𝑚) THEN Class𝑐

where, MCi denotes the Mega Clouds, which represent the 

regions formed by merging smaller clouds belonging to the 

same class, and MC is the total number of identified Mega 

Clouds. This step aims to reduce rule complexity while 

maintaining high transparency for end-users, ensuring that 

classification decisions remain both accurate and 

interpretable. 

Algorithm 1. xDNN classifier’s algorithm [18] 

xDNN Learning Level 

Step A: Initialization 

1: Read the first feature vector sample 𝑥𝑖   representing the

image 𝐼𝑖 of the class c

2: initiate 

𝑖 ← 1; 𝑛 ← 1; 𝑃1 ← 1; 𝑝1 ← 𝑥𝑖; 𝜇 ← 𝑥1; 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 ← 1; 𝑟1 ← 𝑟0; 𝐼1

← 𝐼1;
Step B: Execution 

3:  FOR 𝑖 = 2, ... 

4:         Read 𝑥𝑖;

5:  Compute  𝐷(𝑥𝑖)  and 𝐷(𝑝𝑗)  (𝑗 = 1,2, … , 𝑃)

according to Eq. (9) 

6:  IF Eq. (12) holds 

7:      Generate rule according to Eq. (13); 

8:  ELSE 

9: Search for 𝑝𝑖 according to Eq. (11);

10:      Update rule according to Eq. (14); 

11:  END 

12: END 

3. PROPOSED METHODOLOGY

The proposed research relies on an explainable deep neural 

network image-based framework and explore it in different 

data base of FKP trait which is principally characterized by 

explainability Further, it presents human- interpretable layers. 

Consciously, the architecture of the xDNN classifier is entirely 

transparent and evident to explain to human user.  

As shown in Figure 2 the proposed biometric system is 

mainly composed of 4 main steps:  

Step 1: Image acquisition and normalization: The input 

Finger-Knuckle Print (FKP) images are captured and 

normalized to ensure consistency in scale and orientation. 

Step 2: Illumination-invariant preprocessing: The SQI 

algorithm is applied to decompose FKP images into 

reflectance components, reducing sensitivity to lighting 

variations and enhancing robustness. 

Step 3: Hierarchical feature extraction: A PCANet-based 

deep learning framework performs initial feature extraction, 

leveraging its efficiency in capturing discriminative patterns 

through principal component analysis. 

Step 4: Explainable classification (xDNN): The extracted 

features are processed through an explainable Deep Neural 

Network (xDNN), which includes: 

Feature layer: Encodes high-level representations. 

Density layer: Models data distribution. 

Typicality layer: Assesses similarity to learned prototypes. 
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Mega cloud layer: Aggregates global patterns for decision support. 

Figure 2. The proposed biometric system’s architecture 

Figure 3. The steps of extraction of FKP ROI 

Figure 4. Two-stage PCANet deep learning feature extraction scheme applied to an FKP image 

3.1 ROI extraction 

The extraction of the ROI from FKP images involves 

multiple steps [8]: 

(i) First, a Gaussian smoothing filter is applied to the

original FKP image, followed by downsampling the smoothed 

result to a resolution of 150 dpi. (ii) Next, the X-axis of the 

coordinate system is determined by referencing the lower 

boundary of the finger, which is detected using the Canny edge 

detection algorithm. (iii) To define the Y-axis, a sub-region of 

the image—cropped based on the X-axis—is processed with 

the Canny edge detector. Then, a convex direction coding 

method is used to guide axis orientation. (iv) In the final step, 

the ROI is extracted and represented as a rectangular area, as 

shown in Figure 3. 

3.2 Feature extraction 

Feature extraction is a crucial stage in any pattern 

recognition application, as the accuracy of the classification 

results directly depends on the choice of the feature extraction 

techniques. However, the distinctiveness and consistency of 

the extracted features play a vital role in effectively 

distinguishing between different classes or patterns [28-30]. 
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Thus, the SQI algorithm combined with PCANet deep learning 

have been used to extract the feature vector of each FKP 

images. 

 

3.2.1 Self-quotient image algorithm 

The SQI was introduced by Wang et al. [31]. SQI method is 

used to extract the reflectance and illumination of an image. 

The main advantage of SQI algorithm is to eliminate lighting 

effect in the image. This technique merges the image 

processing technique of edge-preserved filtering with the 

Retinex applications [32]. The process of SQI has two phases: 

(i) illumination estimation and (ii) the illumination effect. We 

note Q as the self-quotient image of image I which. Q is a kind 

of quotient image derived from the image I itself rather than 

other different images of given individual as quotient image. 

Q is defined by Eq. (13). 

 

𝑄 =
𝐼

𝐾
∗ 𝐼 (13) 

 

The division in Eq. (13), point-wise like in the original 

quotient image. where K refer to the smoothing kernel, ‘*’ 

stand for the convolution operator. 

 

3.2.2 PCANet deep learning 

As a part of the trending deep learning field, PCANet is a 

simple deep learning network baseline proposed in the study 

[33] that it is widely used in image classification. Compared 

to other deep learning networks, like convolutional deep 

neural network (ConvNet) that involve obscure knowledge 

and huge number of labeled training data, PCANet trains more 

easly. Thus, PCANet based on three basic processing 

components: (1) cascaded Principal Component Analysis 

(PCA) in order to extract high-level features, (2) binary 

hashing, and (3) histograms. the scheme of PCANet Method 

illustrated in Figure 4 can be summarized as follows [33, 34]: 

 

•PCA Filter bank 

As illustrated in Figure 4, the PCA filter bank contains two 

stages of filter bank convolutions. However, in the first stage 

the filter banks are estimated by performing PCA algorithm 

over filters that consist of a set of vectors where each vector 

refers to small window of the k1 × k2 size around each 

point(pixel) of FKP image. Then, we take the mean of the 

entries for each vector, and we process the subtraction between 

this later and the mean of each entry of the vector. After that, 

PCA has been performed on these vectors and retain the 

principal components W (size of k1 × k2 × LS1) where LS1 

stand for the primary eigen vectors. After that, each principal 

component W is considered as a filter and can be converted to 

k1 × k2 kernel finally this filter has been convolved with the 

input image as follow: 

 

𝑇𝑙(𝑥, 𝑦) = ℎ𝑙(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦) (14) 

 

where, I belong in [1..Is1]. the * refer to the discrete 

convolution. It is the resulting filtered image using the h‘ filter. 

However, using the LS1 columns of W taking each input FKP 

image I and then convert it into LS1 output images. The 

second stage performed by iterating the algorithm across all 

output images from the first stage (Filter bank convolutions). 

The process is for every output images I take the mean of the 

entries (vector that contain points around each pixel). Then 

remove the mean from each input of the vector computed. The 

vectors formed are then concatenated together and another 

PCA filter bank (with LS2 filters) has been estimated. At the 

end, each obtained filter has been convolved with I to construct 

a new image. 
 

𝐼𝑙,𝑚(𝑥, 𝑦) = ℎ𝑚(𝑥, 𝑦) ∗ 𝐼𝑙(𝑥, 𝑦),𝑖 ∈ [1 . .   𝑙𝑠2] (15) 

 

Therefore, with repeating convolution process for the both 

filter, LS1, LS2 to generate output images by using the output 

images of the first stage. 

 

•Binary hashing 

In this phase the LS1, LS2 output images obtained from the 

previous stage have been converted in to binary format by 

using a Heaviside step function whose values is 1 for positive 

value and 0 otherwise. 

 

𝐼𝑙,𝑚
𝐵 (𝑖, 𝑗) = {

1, 𝑖𝑓𝐼𝑙,𝑚(𝑖, 𝑗) ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 (16) 

 

where, 𝐼𝑙,𝑚
𝐵  denote the binary image. Beside this, around each 

pixel, we sight the vector of LS2 binary bits as a decimal 

number. Thus, we convert the LS2 outputs into a single integer-

valued (image). 

 

𝐼𝑙
𝐷 = ∑ 2𝑚−1𝐼𝑙,𝑚

𝐵 (𝑖, 𝑗)

𝐿𝑠2

𝑚=1

 (17) 

 

where, 𝐼𝑙
𝐷 represents the hashed image with their pixels is an 

integer value belong in the range [0, 2LS2−1]. 

 

•Histogram composition 

In this step, each hashed image 𝐼𝑙
𝐷  is divided into NB 

blocks, and the histogram of each block B is then computed. 

These blocks may be either overlapping or non-overlapping, 

depending on the application requirements. Consequently, the 

features extracted from 𝐼𝑙
𝐷′ are obtained by concatenating all 

the histograms of the blocks B: 

 

𝑣𝑙
ℎ𝑖𝑠𝑡 = [𝐵1

ℎ𝑖𝑠𝑡 , 𝐵2
ℎ𝑖𝑠𝑡 , … , … , 𝐵𝑁𝐵

ℎ𝑖𝑠𝑡] (18) 

 

However, after the encoding step, the feature vector of the 

input image I is then concatenated as: 

 

𝑣𝐼
ℎ𝑖𝑠𝑡 = [𝑉1

ℎ𝑖𝑠𝑡 , 𝑉2
ℎ𝑖𝑠𝑡 , … , … , 𝑉𝐿𝑆1

ℎ𝑖𝑠𝑡] (19) 

 

To sum it up, the parameters of the PCANet comprise the 

filter size (k1; k2), the number of filters in each stage (LSi), the 

number of stages (Ns), as well as the block size for local 

histograms in the output layer (B). 

 

•PCANet parameters 

In order to evaluate the performance of the proposed 

recognition system based on PCANet, it is necessary to fix 

certain parameters, such as the number of stages, the number 

of filters, the filter size, the block-wise histogram size, and the 

degree of overlap. These parameters that are very important to 

generate the best features that represent an input FKP image. 

Moreover, to enhance the accuracy of the recognition system. 

However, these parameters are empirically selected: 

•The Number of Stages = 2 

•The number of filters = [2 2]  
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•The filter size = [7 7]

•The block size = [21 21]

•The overlapping = 75%

4. VALIDATION OF EXPLAINABLE DEEP NEURAL

NETWORK CLASSIFIER

xDNN Classifier Explainable Deep Neural Network is a 

supervised deep learning framework designed for high 

accuracy pattern recognition while maintaining 

interpretability of decisions [17]. In this work, the xDNN 

classifier is applied to the FKP recognition task. The xDNN 

architecture generates 165 distinct class representations, each 

corresponding to an authorized individual. For all 165 

subjects, each individual is represented by 6 feature vectors 

derived from the explainable PCANet pipeline. Each feature 

vector encodes unique FKP image types (LIF, LMF, RIF, and 

RMF). 

The proposed xDNN architecture combines transparent 

decision-making with hierarchical pattern recognition through 

its unique multi-layer structure. Unlike conventional black-

box models, this classifier generates interpretable rule-based 

representations that enable human analysts to understand and 

verify the decision process. The system performs dual-level 

similarity assessment at both localized and comprehensive 

scales before reaching final conclusions. 

The validation process based xDNN classifier is composed 

of four sequential layers: 

1) Feature descriptor layer: This layer extracts features

from the input data in the same manner as during the training 

process. 

2) Prototypes layer: In this layer, the similarity degree

𝑆(𝑥, 𝑝𝑖) of each unlabeled sample to its nearest prototypes per

class is computed as: 

𝑆(𝑥, 𝑝𝑖) =
1

1 +
(𝑥 − 𝑝𝑖)

σ𝑖
2

(20) 

𝜎 represents the Variance. 

3) Local (per-class) decision-making layer: For each

candidate class, the maximum prototype similarity is 

identified through “winner-takes-all” selection: 

𝜆𝑐 = max𝑗=1,2..𝑃(𝑆𝑗),for 𝑗 = 1 to 𝑃 prototypes (21) 

4) Global decision-making layer: The final classification

emerges from comparative analysis across all classes: 

𝜆𝑐
∗ = 𝑚𝑎𝑥𝑐=1,2..𝐶(𝜆𝑐),for 𝑐 = 1 to 𝐶 prototypes (22) 

The validation image receives the label corresponding to the 

highest 𝜆𝑐value:

label = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑐=1,2..𝐶(𝜆𝑐
∗ ) (23) 

This architecture provides three key advantages: a 

transparent rule generation for human verification, a dual-

scale (local/global) confidence evaluation and a mathematical 

interpretability of decision thresholds. 

5. RESULTS AND DISCUSSION

In this section, we represent the experimental results of the 

proposed system using the xDNN as an classifier which search 

the best   parameters of SQI algorithm and PCANet descriptors 

that illustrate higher performances. We present the data set that 

we performed the proposed systems. In addition, we give the 

performance metrics that are used to evaluate and compare the 

results. A comparison study is illustrated to present the 

outperformance of the proposed systems against well-known 

previous works. The experiments have performed using a PC 

with Intel Core i5 2,67 GHZ and 4 GB RAM running under 

Windows 7. The experimental codes are written on Matlab 

R2017. 

5.1 Dataset 

To evaluate the effectiveness of the proposed FKP system 

the PolyU database is used. This dataset is collected and 

provided by Hong Kong Polytechnic University [35]. In fact, 

this database contains FKP images recorded from 165 persons 

who divided into 125 men and 40 women, of whom 143 are 

between the ages of (20-30), and the rest between the ages of 

(30-50). Each person is given 12 images for each part (1) Left 

Index Fingers (LIF); (2) Left Middle Fingers (LMF); (3) of 

Right Index Fingers (RIF) and (4) Right Middle Fingers 

(RMF). However, the total number of images RMF or RIF or 

LIF or LMF is 1980 images. Thus, 6 images in each session 

(training data and test data) have been used. 

5.2 Performance metrics 

The performance of proposed PCANet FKP biometric 

system identification is tested with publicly available Poly U 

FKP dataset that describe above and performance is measured 

the rank one recognition rate (ROR) is calculated by: 

ROR =
𝑁𝑖

𝑁
. 100 (%) (24) 

where Ni stand for the number of FKP images effectively 

assigned to the right identity. N denotes the overall number of 

images trying assign to an identity. In addition, we have 

computed the averaged of time of identification of given test 

FKP image. For the identification mode, we use also, the 

Cumulative Match Characteristic (CMC) curve. For the 

verification scenario, we used a several metrics such as: 

•The Error Equal Rate (EER) which means when the false

accept rate (FAR) is equal to the false reject rate, is calculated 

to evaluate the system. 

•The VR @0.1 fAR or 1-FRR, calculated for a FAR equal

to 0.1%. 

•The Receiver Operating Characteristic (ROC) curve

represents the plot of the Genuine Acceptance Rate (GAR) 

against the False Acceptance Rate (FAR) for all possible 

threshold values. 

5.3 Selecting SQI and PCANet parameters for xDNN 

decision 

The aim of this process is to select and fix the best 

parameters of the SQI algorithm and PCANet descriptor for 

FKP traits-based individual authentication. These parameters 

play a significant role in increasing the performance of the SQI 

algorithm and PCANet descriptor, which help to enhance the 

xDNN classification performance. In the following 

subsections, we analyze the parameters of both SQI, and 

PCANet: the standard deviation, the bloc overlap ratio (Ra), 
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the filter size (k1, K2), the block size (b), and the number of 

filters (N), for each modality (RMF, LMF, LIF, and RIF). 
 

5.4 Experimental results 
 

5.4.1 Experimental results for RMF modality 

Table 1 presents the performance of our biometric image 

identification and verification system for different values of 

standard deviation (σ), ranging from 1 to 9, using the RMF 

modality. In this evaluation, all other parameters are kept 

fixed: block overlap rate Ra = 75%, filter size (k1, k2) = (13 × 

13), block size b = [40, 40], and number of filters N = [5, 5]. 

The evaluation metrics include rank-1 identification rate, 

equal error rate (EER), and verification rate (VR) at 1% FAR 

and 0.1% FAR. 

 

 

Table 1. Results for xDNN and different values of standard deviation (σ) for RMF modality 

 
Standard 

Deviation 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

1 95.96% 3.34% 96.06% 91.92% 

3 94.85% 3.53% 95.05% 92.12% 

5 94.55% 3.23% 95.45% 92.02% 

7 93.43% 3.64% 94.24% 89.80% 

9 92.32% 4.46% 92.83% 87.78% 

 

 
 

Figure 5. CMC and ROC curves of the RMF modality using 

xDNN and different deviation values 

 

Table 1 indicates that the best overall identification and 

verification performance is achieved when the standard 

deviation σ is set to 1, with a Rank-1 accuracy of 95.96%, an 

EER of 3.34%, and verification rates of 96.06% and 91.92% 

at 1% and 0.1% FAR, respectively. Although σ = 5 yields the 

lowest EER (3.23%) and σ = 3 gives the highest VR at 0.1% 

FAR (92.12%), these gains are marginal. Therefore, σ = 1 

offers the most balanced and consistent performance across all 

metrics. 

Furthermore, the curves CMC and ROC in Figure 5 confirm 

the best value of the standard deviation of the SQI algorithm. 

Figure 5 illustrates the results of either reflectance or 

illuminance on FKP images using the SQI method with several 

values of 𝜎. We can see that the value of 5 fixes the quality of 

the image. 

In the following part, we look for the best parameters of the 

PCANet descriptor. Therefore, we fix the value of the standard 

deviation 𝜎  = 1 of the SQI algorithm and analyze the best 

parameter values of the PCANet descriptor. For that, we have 

four parameters to test: the overlap ratio (Ra), the filter size 

(k1, K2), the block size (b), and the number of filters (N). 

 

(a) The overlap ratio (Ra) 

We fix the value of the standard deviation at σ = 1, and vary 

the block overlap ratio (Ra) between 0% (no overlap) and 

75%. Table 2 illustrates the results for each value of the 

overlap ratio in terms of identification accuracy (Rank-1%), 

Equal Error Rate (EER), and verification performance at 1% 

and 0.1% FAR thresholds. 

From Table 2, we observe that the block overlap ratios Ra 

= 25% and 75% yield significantly better performance 

compared to the other values tested. The Ra = 75% 

configuration achieves the best EER (3.33%) and the highest 

verification performance at 1% FAR (95.35%), while Ra = 

25% produces the best Rank-1 identification accuracy 

(94.65%) and competitive verification results. Moreover, both 

Ra = 25% and 75% achieve the highest verification rate at 

0.1% FAR, with 91.01%, demonstrating a robust performance 

in low false acceptance scenarios. 

 

Figure 6 represents the curve of CMC, and Figure 7 

represents the curve of ROC of the FKP recognition system 

obtained with various values of ratio. In the plot, it can be 

observed that the values Ra = 25% provide the best 

performance system. 

 

(b) Filter size (k1, k2) selection 

At this stage, the best values previously tested of parameters 

for the RMF modality are fixed: standard deviation σ = 1 and 

block overlap ratio Ra = 25%. The goal of this section is to 

determine the most suitable filter size. In this aim, we evaluate 

a wide range of filter sizes from (3 × 3) to (15 × 15). Table 3 

presents the system performance for each filter size, measured 

in terms of Rank-1 identification accuracy, Equal Error Rate 

(EER), and Verification Rates at 1% and 0.1% FAR. 

 

Table 2. Results for xDNN and different values of block overlap ratio (Ra) for RMF modality 

 
Overlap Ratio 

(Ra)% 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

0 91.01% 5.15% 91.72% 86.97% 

25 94.65% 3.64% 94.85% 91.01% 

50 93.23% 3.73% 94.55% 90.51% 

75 94.34% 3.33% 95.35% 91.01% 
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Figure 6. CMC of RMF modality by xDNN and PCANet 

parameters (ratio,filter size, histobloc size, number of filters) 

 

 
 

Figure 7. ROC of RMF modality by xDNN and PCANet 

parameters (ratio,filter size, histobloc size, number of filters) 
 

From Table 3, it is clear that the filter size (13 × 13) provides 

the best overall balance between identification and verification 

performance. It achieves a Rank-1 identification accuracy of 

95.45%, an EER of 3.43%, and the highest verification rate at 

0.1% FAR, reaching 95.86%. While the 11×11 filter slightly 

outperforms it in Rank-1 accuracy (95.96%), the 13×13 filter 

yields better performance in both verification thresholds, 

making it the most robust choice. 
 

(c) The bloc size (b) selection 

This section determines the most suitable value for the block 

size (h) for the RMF-modality, under fixed conditions: 

standard deviation σ = 1, block overlap ratio Ra = 75%, and 

filter size (k1, k2) = (13 × 13). We differ the block size 

between [20, 20] and [40, 40], and estimate the system 

performance using Rank-1 identification accuracy, Equal 

Error Rate (EER), and Verification Rates at 1% and 0.1% 

FAR. The results are presented in Table 4. 

Table 4 shows that block size [40, 40] provides the best 

overall system performance for all evaluation metrics. It 

achieves the highest rank-1 identification accuracy (95.96%), 

lowest EER (3.44%), and strong verification results at 1% 

FAR (95.56%) and 0.1% FAR (93.13%). 

 
(d) Number of filters (N) selection 

In this final part, we aim to determine the optimal number 

of filters (N) for the RMF modality. The number of filters is 

varied from [1, 1] to [5, 5], while all previously optimized 

parameters are kept fixed: standard deviation σ = 1, overlap 

ratio Ra = 75%, filter size (k1, k2) = (13 × 13), and block size 

b = [40, 40]. The performance results for each filter 

configuration are shown in Table 5. 

From Table 5, it is evident that increasing the number of 

filters significantly enhances system performance. The 

configuration [5, 5] achieves the lowest EER (3.33%), the 

highest verification rates (95.86% at 1% FAR and 93.54% at 

0.1% FAR), and matches the top Rank-1 identification 

accuracy (95.96%). Allowing the Rank-1 value is the same for 

both [4, 4] and [5, 5], the slight improvement in EER and 

verification rates makes [5, 5] the most robust choice. 

 
5.4.2 Experimental results for LMF modality 

Table 6 reports the performance results of the FKP 

recognition system for different values of the standard 

deviation (σ) used in the SQI algorithm, ranging from 1 to 9, 

for the LMF modality. During this evaluation, all other 

parameters are kept constant: block overlap ratio Ra = 75%, 

filter size (k1, k2) = (13 × 13), block size b = [40, 40], and 

number of filters N = [5, 5]. 

From Table 6, we observe that the best system performance 

is achieved when σ = 5, with a Rank-1 identification rate of 

94.85%, the lowest EER of 3.23%, and strong verification 

performance: 94.85% at 1% FAR and 90.40% at 0.1% FAR. 

Further, Figure 8 illustrates the CMC and ROC curves of the 

standard deviation of the FKP recognition system with several 

values of 𝜎. It is clearly evident that the 𝜎=5 achieves the best 

results. 

 

 

Table 3. Results for xDNN and different filter sizes (k1, k2) values for RMF modality 

 
Filter Size Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR% 

3 × 3 73.94% 13.14% 68.79% 52.93% 

5 × 5 85.96% 8.20% 83.43% 75.15% 

7 × 7 89.09% 6.78% 88.08% 83.54% 

9 × 9 95.45% 3.41% 94.95% 91.52% 

11 × 11 95.96% 3.44% 95.56% 93.13% 

13 × 13 95.45% 3.43% 95.86% 95.86% 

15 × 15 94.65% 3.54% 95.45% 91.01% 

 

Table 4. Results for xDNN and different block sizes (b) values for RMF modality 

 
Block Size (h) Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR% 

[20 20] 83.43% 8.88% 85.25% 80.00% 

[25 25] 89.60% 5.55% 90.10% 86.46% 

[30 30] 93.13% 4.45% 93.43% 89.49% 

[35 35] 93.64% 3.94% 93.23% 88.89% 

[40 40] 95.96% 3.44% 95.56% 93.13% 
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Table 5. Results for xDNN and different number of filters (N) values for RMF modality 

Number Filters 

(N) 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

[1 1] 61.41% 14.74% 61.01% 42.12% 

[2 2] 86.87% 6.66% 85.35% 74.95% 

[3 3] 91.72% 5.16% 90.91% 83.54% 

[4 4] 95.96% 3.44% 95.56% 93.13% 

[5 5] 95.96% 3.33% 95.86% 93.54% 

Table 6: Results for xDNN and different values of standard deviation (𝜎) values for LMF modality 

Standard 

Deviation 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

1 95.05% 3.63% 93.74% 90.20% 

3 94.44% 3.71% 94.55% 89.49% 

5 94.85% 3.23% 94.85% 90.40% 

7 92.83% 5.26% 92.42% 88.59% 

9 92.02% 5.55% 91.62% 88.48% 

Figure 8. CMC (left) and ROC curves (right) of the LMF 

modality using different deviation values 

Based on these results, we fix the standard deviation at σ = 

5 for the LMF modality. In the following sections, we focus 

on determining the optimal values for the PCANet descriptor 

parameters, specifically: the overlap ratio (Ra), the filter size 

(k1, k2), the block size (b), and the number of filters (N). 

(a) The overlap ratio (Ra)

In this part, we seek to extract the optimal value of the block

overlap ratio (Ra). For that, we take the value of Ra between 

0.0% (without overlapping) and 75%, and we calculate the 

accuracy and the EER. Table 7 presents the results of each 

value of Ra according to Identification RANK-1%, EER%, 

Verification VR@ 1% FAR%, and Verification VR@ 0.1% 

FAR%. 

From Table 7, we observe that the block overlap ratio Ra = 

75% provides the best overall performance among the tested 

values. It achieves the lowest EER (4.57%) and the highest 

verification rate at 0.1% FAR (90.71%), which indicates 

strong verification performance under strict security 

constraints. Moreover, it yields 93.33% identification 

accuracy (Rank-1) and 93.33% verification rate at 1% FAR, 

which are slightly better than or comparable to the other 

values. Therefore, the overlap ratio of 75% offers the most 

balanced and effective trade-off between identification and 

verification performance. 

Figure 9 represents the curve of CMC, and Figure 10 

represents the curve of ROC of the FKP recognition system 

obtained with various values of ratio. In the plot, it can be 

observed that the values Ra = 75% provide the best 

performance system. 

Table 7. Results for xDNN and different values of overlap ratio (Ra) for LMF modality 

Block Overlap Ratio 

(Ra)% 

Identification RANK-

1% 

EER% VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

0 91.62% 5.77% 91.41% 85.66% 

25 93.43% 4.67% 93.64% 89.60% 

50 92.53% 5.26% 92.63% 88.69% 

75 93.33% 4.57% 93.33% 90.71% 

Figure 9. CMC of LMF modality by xDNN and PCANet 

parameters (ratio, filter size, histobloc size, number of filters) 

Figure 10. ROC of LMF modality by xDNN and PCANet 

parameters (ratio,filter size, histobloc size, number of filters) 
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(b) Filter size

At this point, the values of different parameters already

tested are fixed for the standard deviation σ = 5 and the overlap 

ratio Ra = 50%. The aim of this part is to select the optimal 

value for the filter size. The filter size ranges from (3 × 3) to 

(15 × 15). Table 8 shows the results of each filter. 

Table 8. Results for xDNN and different filters size (k1, k2) values for LMF modality 

Fiter Size Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR% 

3 × 3 72.02% 12.95% 66.06% 52.42% 

5 × 5 83.64% 9.16% 81.31% 71.01% 

7 × 7 87.98% 6.88% 88.08% 80.51% 

9 × 9 94.75% 3.74% 94.14% 88.59% 

11 × 11 94.34% 3.54% 94.75% 90.10% 

13 × 13 94.55% 4.15% 93.74% 91.01% 

15 × 15 95.86% 3.83% 94.65% 90.71% 

Table 9. Results for xDNN and different block sizes (b) values for LMF modality 

Block Size (b) Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR% 

[20 20] 86.57% 6.96% 87.58% 81.41% 

[25 25] 90.61% 5.56% 90.30% 85.76% 

[30 30] 93.74% 4.75% 92.63% 88.28% 

[35 35] 93.94% 4.23% 93.03% 89.39% 

[40 40] 95.86% 3.83% 94.65% 90.71% 

We can observe from Table 8 that the filter size 15×15 

achieves the best overall system performance in terms of both 

identification and verification. It yields the highest Rank-1 

identification accuracy of 95.86%, and a low EER of 3.83%. 

Additionally, the verification performance reaches 94.65% at 

1% FAR and 90.71% at 0.1% FAR, indicating strong 

performance under more secure settings. Although the filter 

size 11×11 offers slightly better EER (3.54%) and 13×13 

yields slightly higher VR@0.1% FAR (91.01%), the 15×15 

filter size offers the most balanced and robust performance 

across all criteria. 

(c) The block size (b) selection

In this part, we used the previously determined optimal

values: standard deviation σ = 5, overlap ratio Ra = 50%, and 

filter size (k₁, k₂) = (15 × 15). The objective here is to 

determine the optimal block size for PCANet. To this end, we 

tested various block sizes ranging from [20, 20] to [40, 40]. 

Table 9 summarizes the results obtained for each tested 

configuration. 

According to Table 9, the block size [40, 40] achieves the 

best overall system performance for both identification and 

verification. It provides the highest Rank-1 identification 

accuracy of 95.86% and a low EER of 3.83%. Furthermore, 

the verification rates reach 94.65% at 1% FAR and 90.71% at 

0.1% FAR, indicating strong robustness even under stricter 

verification thresholds. These results confirm that [40, 40] 

bolck size setting, is the most effective block size setting 

among those evaluated, offering a good trade-off between 

spatial resolution and statistical stability in the PCANet 

framework. 

(d) The number of filters

Finally, we tested the impact of varying the number of filters

(N) in the PCANet framework. The values were taken from [1,

1] to [5, 5], while keeping the previously optimized parameters

fixed: standard deviation σ = 5, overlap ratio Ra = 50%, filter

size (k₁, k₂) = (15 × 15), and block size b = [40, 40]. Table 10

presents the results obtained for each configuration.

Table 10. Results for xDNN and different number of filters (N) values for LMF modality 

Number Filters 

(N) 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

[1 1] 61.92% 15.57% 62.83% 46.36% 

[2 2] 83.23% 7.98% 83.94% 75.56% 

[3 3] 88.89% 6.15% 87.78% 80.91% 

[4 4] 95.86% 3.83% 94.65% 90.71% 

[5 5] 94.95% 3.92% 94.55% 90.71% 

According to Table 10, the configuration with [4, 4] filters 

achieves the best system performance in terms of both 

identification and verification. It yields the highest Rank-1 

identification accuracy of 95.86% and the lowest EER of 

3.83%, along with 94.65% VR at 1% FAR and 90.71% VR at 

0.1% FAR. Although the configuration with [5, 5] filters 

produces slightly lower accuracy (94.95%) and a marginally 

higher EER (3.92%), its performance remains comparable. 

Therefore, the filter number [4, 4] offers the best trade-off 

between recognition accuracy and computational efficiency in 

this context. 

5.4.3 Experimental results for RIF modality 

For the RIF modality, we follow the same evaluation 

process used for the RMF and LMF modalities. This involves 

selecting the optimal value for the standard deviation of the 

SQI algorithm, and then fixing the remaining PCANet 

parameters: overlap ratio Ra = 75%, filter size (k₁, k₂) = (13 × 

13), block size b = [40, 40], and number of filters N = [5, 5]. 

Table 11 reports the performance results of the FKP 

recognition system for different values of σ ranging from 1 to 

9 under this configuration. 
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Table 11. Results for xDNN and different values of srandard deviation (σ) for RIF modality 

 

Standard 

Deviation 

Identification RANK-

1% 

EER% VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

1 92.93% 4.45% 93.43% 89.60% 

3 93.43% 4.46% 92.73% 88.89% 

5 92.22% 4.64% 93.03% 88.08% 

7 91.31% 4.34% 92.53% 86.06% 

9 0.9101 4.87% 91.52% 83.84% 

 

We observe from Table 11 that the best performance for 

both identification and verification is achieved when the 

standard deviation σ = 3, yielding a Rank-1 identification 

accuracy of 93.43% and an EER of 4.46%. Moreover, at the 

verification threshold FAR = 0.1%, it reaches 88.89%, and 

92.73% at FAR = 1%. While σ = 1 also produces competitive 

results (92.93% Rank-1, 4.45% EER), the highest 

identification accuracy is recorded with σ = 3. Further, Figure 

11 illustrates the CMC and ROC curves of the standard 

deviation of the FKP recognition system with several values 

of σ. It is clearly evident that the σ=5 achieves the best results. 

 

 
 

Figure 11. CMC (left) and ROC curves (right) of the RIF 

modality using different deviation value 

(a) The overlap ratio (Ra) 

In this part, we aim to determine the optimal value for the 

block overlap ratio (Ra). To this end, we evaluate Ra values 

ranging from 0.0% (no overlap) to 75%, and examine the 

performance in terms of identification accuracy (Rank-1%), 

Equal Error Rate (EER), and verification rates at 1% and 0.1% 

FAR. The results are reported in Table 12. 

From Table 12, we observe that the best performance is 

obtained when the block overlap ratio is set to 25%. This 

setting achieves the highest Rank-1 identification accuracy of 

91.92%, and a relatively low EER of 4.65%, along with a 

verification rate of 91.62% at 1% FAR and 85.45% at 0.1% 

FAR. Although Ra = 75% achieves a slightly higher VR@1% 

(92.12%), it comes with a comparable EER (4.65%) and lower 

Rank-1 accuracy (91.72%) than Ra = 25%. Therefore, based 

on overall performance across identification and verification, 

Ra = 25% offers the most balanced and effective configuration 

in this experiment. Figure 12 represents the curve of CMC, and 

Figure 13 represents the curve of ROC of the FKP recognition 

system obtained with various values of ratio. In the plot, it can 

be observed that the values Ra = 75% provide the best 

performance system. 

 

(b) Filter size 

At this point, the parameters for the RIF modality are fixed: 

the standard deviation σ = 1 and the overlap ratio Ra = 75%. 

The objective of this section is to determine the optimal filter 

size for the PCANet descriptor. To this end, we tested several 

sizes ranging from (3 × 3) to (15 × 15). Table 13 presents the 

corresponding performance results based on Rank-1 accuracy, 

EER, and verification rates. 

 

Table 12. Results for xDNN and different values of block overlap ratio (Ra) for RIF modality 

 
Block Overlap Ratio 

(Ra)% 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

0 88.48% 5.65% 87.17% 79.09% 

25 91.92% 4.65% 91.62% 85.45% 

50 90.71% 4.43% 90.81% 83.94% 

75 91.72% 4.65% 92.12% 86.57% 

 

 
 

Figure 12. CMC of RIF modality by xDNN and PCANet 

parameters (ratio,filter size, histobloc size, number of filters) 

 

From Table 13, we observe that the filter size (13×13) 

delivers the best overall performance in both identification and 

verification. It achieves the highest Rank-1 identification 

accuracy of 93.03%, along with the lowest EER of 4.34%. 

Additionally, it reaches a verification rate of 93.23% at 1% 

FAR and 88.69% at 0.1% FAR, confirming its robustness even 

under stricter verification thresholds. Although the (11×11) 

filter also performs well, (13×13) provides the best balance 

across all metrics, making it the most suitable filter size for the 

RIF modality in this configuration. 

 

 
 

Figure 13. ROC of RIF modality by xDNN and PCANet 

parameters (ratio,filter size, histobloc size, number of filters) 
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(c) The block size (b)

In this part, we aim to select the best block size (h) for the

RIF modality, given that the other parameters are fixed as 

follows: standard deviation σ = 1, overlap ratio Ra = 75%, and 

filter size (k₁, k₂) = (13 × 13). We vary the block size from [20, 

20] to [40, 40], and evaluate the system performance using

Rank-1 accuracy, EER, and verification rates. The

corresponding results are presented in Table 14.

Table 13. Results for xDNN and different filter sizes (k1, k2) values for RIF modality 

Fiter Size Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR% 

3 × 3 60.61% 15.59% 55.96% 42.02% 

5 × 5 78.99% 10.75% 75.86% 63.74% 

7 × 7 88.79% 6.71% 87.78% 80.71% 

9 × 9 92.22% 5.15% 91.82% 86.06% 

11 × 11 92.63% 4.95% 92.93% 88.48% 

13 × 13 93.03% 4.34% 93.23% 88.69% 

15 × 15 91.01% 5.15% 91.92% 86.46% 

Table 14. Results for xDNN and different block sizes (b) values for RIF modality 

Block Size(h) Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR% 

[20 20] 82.83% 9.21% 83.64% 77.47% 

[25 25] 84.55% 7.49% 86.46% 79.09% 

[30 30] 89.70% 5.79% 90.20% 83.33% 

[35 35] 91.31% 5.15% 92.22% 85.76% 

[40 40] 93.03% 4.34% 93.23% 88.69% 

From Table 14, we observe that the block size [40, 40] 

achieves the best overall performance in both identification 

and verification tasks. It records the highest Rank-1 accuracy 

of 93.03% and the lowest EER of 4.34%, along with 93.23% 

verification rate at 1% FAR and 88.69% at 0.1% FAR. These 

improvements confirm that increasing the block size enhances 

the system’s discriminative capability. Thus, [40, 40] is the 

most effective block size for the RIF modality in this 

configuration. 

(d) The number of filters

Finally, in this part, we aim to determine the optimal

number of filters (N) for the RIF modality. The previously 

optimized parameters are fixed as follows: standard deviation 

σ = 1, overlap ratio Ra = 75%, filter size (k₁, k₂) = (13 × 13), 

and block size b = [40, 40]. We vary the number of filters from 

[1, 1] to [5, 5], and report the performance metrics in Table 15. 

Table 15. Results for xDNN and different number of filters (N) values for RIF modality 

Number of Filters 

(N) 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

[1 1] 56.87% 17.71% 57.27% 42.93% 

[2 2] 68.59% 16.08% 67.47% 57.98% 

[3 3] 86.87% 6.56% 86.77% 78.18% 

[4 4] 93.03% 4.34% 93.23% 88.69% 

[5 5] 91.62% 4.52% 93.43% 86.97% 

From Table 15, we observe that the best performance is 

achieved with [4, 4] filters. This configuration yields the 

highest Rank-1 identification accuracy of 93.03%, the lowest 

EER of 4.34%, and excellent verification performance with 

93.23% at 1% FAR and 88.69% at 0.1% FAR. Although the 

setting [5, 5] produces a slightly higher VR@1% (93.43%), it 

has a lower identification accuracy (91.62%) and a slightly 

higher EER (4.52%). Therefore, based on the overall balance 

across all evaluation metrics, the [4, 4] filter configuration 

provides the most effective performance for the RIF modality. 

5.4.4 Experimental Results for LIF modality 

Table 16 presents the performance of our biometric image 

identification and verification system for different values of 

standard deviation (σ), ranging from 1 to 9, using the LIF 

modality. In this evaluation, all other parameters are kept 

fixed: block overlap rate Ra = 75%, filter size (k1, k2) = (13 × 

13), block size b = [40, 40], and number of filters N = [5, 5]. 

The evaluation metrics include rank-1 identification rate, 

equal error rate (EER), and verification rate (VR) at 1% FAR 

and 0.1% FAR. 

Table 16. Results for xDNN and different values of standard deviation 𝜎 for LIF modality 

Standard 

Deviation 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

1 90.91% 5.26% 90.71% 85.76% 

3 91.31% 5.17% 90.40% 85.35% 

5 91.62% 4.85% 91.01% 85.66% 

7 89.49% 5.76% 89.80% 84.34% 

9 89.39% 6.53% 88.69% 82.63% 
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From Table 16, we find σ=5 is optimal for LIF modality, 

achieving 91.82% Rank-1 accuracy, 4.85% EER, and 91.01% 

VR@1% FAR with fixed PCANet parameters. Performance 

declines with lower/higher σ values, confirming σ=5's ideal 

balance between noise reduction and feature preservation, 

consistent across all tested modalities.  Further, Figure 14 

illustrates the CMC and ROC curves of the standard deviation 

of the FKP recognition system with several values of σ. It is 

clearly evident that the σ=5 achieves the best results. 

Figure 14. CMC (left) and ROC curves(right) of the LIF 

modality using different deviation value 

(a) The overlap ratio (Ra)

We fix the values of the standard deviation σ = 5, and vary

the block overlap ratio (Ra) between 0% (no overlap) and 

75%. Table 17 shows the performance results of each overlap 

ratio in terms of identification (Rank-1), Equal Error Rate 

(EER), and verification accuracy at two different False 

Acceptance Rates (FARs). 

From Table 17, we observe that the best performance is 

obtained when the block overlap ratio is set to 75%. This 

setting achieves the highest Rank-1 identification accuracy of 

(90.00%) and the best verification rates: VR@1% FAR of 

90.10% and VR@0.1% FAR of 84.65%. Although the EER is 

slightly lower at Ra = 50% (5.76%), the overall verification 

and identification accuracy at Ra = 75% suggest it as the most 

optimal configuration for the PCANet descriptor under the 

given settings. 

Figure 15 represents the curve of CMC, and Figure 16 

represents the curve of ROC of the FKP recognition system 

obtained with various values of ratio. In the plot, it can be 

observed that the values Ra = 75% provide the best 

performance system. 

(b) Filter size

In this part, we fix the previously optimized parameters:

standard deviation σ = 5 and block overlap ratio Ra = 75%. 

We now focus on determining the optimal filter size, ranging 

from (3×3) to (15×15). The performance results of different 

filter sizes are presented in Table 18. 

Table 17. Results for xDNN and different values of block overlap ratio (Ra) for LIF modality 

Block Overlap Ratio 

(Ra)% 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

0 89.19% 5.96% 88.89% 82.32% 

25 89.09% 6.04% 88.99% 83.94% 

50 89.49% 5.76% 89.80% 84.34% 

75 90.00% 5.98% 90.10% 84.65% 

Figure 15. CMC of LIF modality for by xDNN and PCANet 

parameters (ratio, filter size, histobloc size, number of filters) 
Figure 16. Presents the ROC of LIF modality by xDNN and 

PCANet parameters (ratio, filter size, histobloc size, number 

of filters) 

Table 18. Results for xDNN and different filter sizes (k1, k2) values  for LIF modality 

Fiter Size Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR% 

3 × 3 91.72% 5.28% 91.82% 87.17% 

5 × 5 76.46% 11.22% 74.65% 63.33% 

7 × 7 88.38% 6.24% 87.98% 78.59% 

9 × 9 90.10% 4.73% 90.10% 82.42% 

11 × 11 91.82% 4.44% 91.62% 86.36% 

13 × 13 90.00% 5.18% 90.20% 85.56% 

15 × 15 91.01% 4.65% 91.11% 86.26% 

From Table 18, we observe that the filter size 11×11 

provides the best identification and verification performance, 

achieving the highest Rank-1 accuracy (91.82%) and the 

lowest EER (4.44%). Moreover, its verification accuracy at 

low FARs (VR@0.1% FAR = 86.36%) is also among the top-

performing. Therefore, we conclude that the filter size (k1; k2) 

= (11 × 11) is the most suitable configuration for the PCANet 

descriptor under the current experimental settings. 

(c) The block size (b)
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In this section, we fix the parameters already optimized in 

previous experiments: standard deviation σ = 5 for the SQI 

algorithm, overlap ratio Ra = 75%, and filter size (k1; k2) = 

(11 × 11). We now investigate the effect of different block 

sizes, ranging from [20, 20] to [40, 40], on the system’s 

performance. The results of each configuration are presented 

in Table 19. 

From Table 19, we observe that the block size [40, 40] 

yields the best performance in both identification and 

verification tasks. It achieves the highest Rank-1 accuracy 

(91.82%) and the lowest EER (4.44%). The verification rate at 

VR@0.1% FAR also reaches a strong 86.36%. Based on these 

results, we confirm that the block size b = [40, 40] offers the 

most optimal configuration for the FKP recognition system 

under the current experimental conditions. 

(d) The number of filters

Finally, we aim to select the optimal number of filters for

the PCANet descriptor applied to the LIF modality. To do this, 

we test various values of the number of filters N, ranging from 

[1, 1] to [5, 5], while keeping all previously optimized 

parameters fixed: standard deviation σ = 5, overlap ratio Ra = 

75%, filter size (k1; k2) = (11 × 11), and block size b = [40, 

40]. The results are summarized in Table 20. 

Table 19. Results for xDNN and different block sizes (b) values for LIF modality 

Block Size (b) Identification RANK-1% EER% VERIFICATION VR@ 1% FAR% VERIFICATION VR@ 0.1% FAR% 

[20 20] 81.92% 9.51% 82.53% 76.57% 

[25 25] 87.78% 6.77% 88.99% 82.63% 

[30 30] 88.99% 5.47% 89.70% 83.33% 

[35 35] 91.11% 4.55% 91.72% 86.26% 

[40 40] 91.82% 4.44% 91.62% 86.36% 

Table 20. Results for xDNN and different number of filters (N) Values for LIF modality 

Number Filters 

(N) 

Identification RANK-

1% 
EER% 

VERIFICATION VR@ 1% 

FAR% 

VERIFICATION VR@ 0.1% 

FAR% 

[1 1] 64.14% 17.27% 62.42% 48.59% 

[2 2] 66.87% 16.97% 66.57% 54.04% 

[3 3] 85.96% 7.17% 86.06% 77.98% 

[4 4] 91.82% 4.44% 91.62% 86.36% 

[5 5] 92.93% 4.14% 93.13% 88.18% 

From Table 20, we observe that increasing the number of 

filters improves the performance significantly. The 

configuration N = [5, 5] achieves the best results, with the 

highest identification rate (Rank-1 = 92.93%), the lowest EER 

(4.14%), and the best verification performance: VR@1% FAR 

= 93.13% and VR@0.1% FAR = 88.18%. These results are 

further illustrated Thus, the number of filters N = [5, 5] is 

identified as the most optimal choice for the FKP recognition 

system using PCANet under the given experimental setup. 

Table 21 illustrates the summary of all results obtained to 

select the best value parameters for the SQI algorithm and 

PCANet descriptor, according to the best values giving for 

both identification and verification. 

Table 21. The best value parameters for the SQI algorithm and PCANet descriptor 

Parameters RMF Modality LMF Modality RIF Modality LIF Modality 

Standard deviation σ 1 1 3 5 

The bloc overlap ratio (Ra) 25 25 25 75 

Filter Size 11 × 11 15 × 15 13 × 13 11 × 11 

Bloc size [40 40] [40 40] [40 40] [40 40] 

Number of Filter [5, 5] [4, 4] [4, 4] [5, 5] 

5.5 Comparison study 

in this subsection, we compare the proposed system with 

well-known approaches in the field of Finger-Knuckle-Print 

(FKP) recognition under a uni-modal configuration. Each 

finger type (LIF, LMF, RIF, RMF) is treated as an independent 

modality. 

Table 22. ROR (%) the different types fingers 

Modalities ROR (%) 

LMF 95.86 

RMF 95.96 

LIF 92.93 

RIF 93.03 

Table 22 presents the identification results, highlighting the 

superior performance of the proposed framework compared to 

established methods. 

Table 23. Comparative study between proposed system and 

other methods 

Methods 
LIF LMF RIF RMF 

ROR (%) ROR (%) ROR (%) ROR (%) 

Ref [12] 93.80 94.70 92.20 94.80 

Ref [13] 91.01 94.85 91.41 91.82 

Ref [17] 97.30 95.75 96.83 95.15 

Ref [19] 94.34 93.54 93.94 94.19 

This work 92.93 95.86 93.03 95.96 

To assess the robustness and effectiveness of the proposed 

illumination-invariant and explainable PCANet-based FKP 

recognition framework, a comparative study is conducted 
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against several state-of-the-art methods reported in the studies 

[12, 13, 17, 19]. The evaluation is performed on all four finger 

categories—Left Index Finger (LIF), Left Middle Finger 

(LMF), Right Index Finger (RIF), and Right Middle Finger 

(RMF)—using the same experimental configuration to ensure 

fairness. The Rank-One Recognition Rate (ROR) was used as 

the principal performance metric, and the corresponding 

results are summarized in Table 23. 

The obtained results demonstrate that the proposed method 

achieves a competitive performance across all finger types, 

with ROR values of 92.93%, 95.86%, 93.03%, and 95.96% for 

LIF, LMF, RIF, and RMF, respectively. Compared to earlier 

approaches, the proposed framework maintains a balanced and 

stable recognition performance, particularly for middle fingers 

(LMF and RMF), where illumination variations are more 

pronounced. 

Specifically, our method attains the highest ROR values for 

LMF (95.86%) and RMF (95.96%), surpassing all 

benchmarked approaches. For LIF and RIF, the system 

achieves recognition rates of 92.93% and 93.03%, 

respectively, which are comparable to or slightly lower than 

the best-reported methods [13, 17]. Overall, the results 

highlight that our framework not only provides accuracy on 

par with or superior to state-of-the-art techniques but also 

introduces a unique advantage in terms of decision 

transparency, which is absent in conventional black-box 

models. This combination of competitive accuracy and 

interpretability establishes our approach as a strong candidate 

for deployment in security-critical biometric applications. 

Although Chlaoua et al. [17] achieve slightly higher RORs 

on certain finger types, the proposed system provides 

comparable accuracy while offering enhanced interpretability 

and illumination robustness, which are not addressed in the 

compared methods. The integration of the Self-Quotient 

Image (SQI) preprocessing ensures effective normalization of 

lighting effects, while the explainable Deep Neural Network 

(xDNN) component contributes to transparent and 

interpretable decision-making—a key advantage over purely 

black-box models. 

Overall, the comparative analysis confirms that the 

proposed framework delivers a strong balance between 

accuracy, interpretability, and generalization, making it a 

suitable choice for security-critical biometric systems where 

both performance and explainability are essential. 

6. EXPLAINABILITY VISUALIZATION

Figure 17 presents an example of the interpretable decision 

rules generated by the proposed xDNN model for retinal image 

classification. Each condition in the IF–THEN rule 

corresponds to a prototype (or MegaCloud) that represents a 

characteristic pattern learned from the training data, thereby 

providing a transparent link between the input features and the 

final decision. 

Figure 17. Explainability visualization 

For instance, Figure 17 illustrates an example of 

explainability visualization. The rule illustrated as IF (x ∼ 

Prototype₁) OR (x ∼ Prototype₂) OR (x ∼ Prototype₃) THEN 

Class = “1” demonstrates how the model associates an input 

image with one or more representative prototypes. These 

prototypes are visualized as image patches within the rule, 

enabling human experts to intuitively understand and visually 

verify the rationale behind the model’s decision for assigning 

the input to this specific class. 

This visualization offers both objective explainability 

through the explicit formulation of decision rules—and 

subjective interpretability through human-readable image 

prototypes. Such a representation enhances users’ 

understanding and fosters greater trust in the model’s 

reasoning process. 

7. CONCLUSION

Explainable classifier-based biometric systems address the 

limitations of traditional approaches while achieving superior 

recognition performance. This paper introduces an innovative 

xDNN architecture for Finger-Knuckle-Print (FKP) 

recognition, combining deep learning with full decision 

transparency. The framework employs a computationally 

efficient, non-parametric design that eliminates iterative 

training while maintaining robust performance. By integrating 

PCANet-based hierarchical feature extraction with 

illumination-invariant preprocessing via Self-Quotient 

Images, the system delivers outstanding results on the PolyU 

FKP database. Experimental validation demonstrates its 

effectiveness in security-sensitive applications, significantly 

outperforming conventional methods in both accuracy and 

interpretability. The system achieves identification accuracies 

of 91–96% across different finger types while providing fully 

transparent decision-making, establishing a new benchmark 

for explainable FKP recognition. Future work will extend this 

architecture to multi-modal biometrics and hybrid approaches 

that integrate explainable AI with advanced optimization 

techniques to enhance robustness and adaptability in real-

world deployments. Overall, this study represents an 

important step toward fully transparent, high-performance 

FKP recognition systems suitable for modern security 

applications.  

In the future work, we extend the current FKP recognition 

framework toward multimodal biometric fusion, combining 

Finger Knuckle Print (FKP) with complementary modalities 

such as palmprint, fingerprint, and iris to enhance recognition 

robustness and reliability. Furthermore, we plan to investigate 

hybrid optimization and feature selection strategies, including 

metaheuristic-based parameter tuning and deep feature fusion, 

to improve the adaptability and efficiency of the proposed 

architecture. These details have been added to provide a 

clearer and more concrete outlook for future work. Also, we 

plan to extend this study by conducting a comprehensive user-

based evaluation to quantitatively and qualitatively assess the 

impact of the proposed explainability mechanism on users’ 

understanding and trust. 

Furthermore, this visualization framework combining explicit 

IF–THEN decision rules with human-readable image 

prototypes provides both objective explainability and 

subjective interpretability. This dual representation enhances 

transparency and fosters greater user confidence in the 

model’s reasoning process.
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