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Feature selection represents a critical pretreatment step that allows data size reduction, 

thereby decreasing the computational cost of applying classification models. However, a 

lack of examples can adversely impact this phase, as the chosen features may lack 

significance or relevance. Frequently, we encounter unlabeled and expensive-to-label data, 

rendering it unsuitable for model training or feature selection. Active learning strategies can 

handle this by selecting the most relevant examples from unannotated data to optimize 

performance, reduce computational time and cost. In this study, we evaluate Relief feature 

selection with linear and non-linear classifiers. The performance is assessed using 

Accuracy, F1-Score, and AUC metrics. The results demonstrate that optimal performance 

is achieved with 70–140 examples, and feature selection significantly improves after adding 

the optimal number of examples. To build upon this approach, we leverage three distinct 

datasets. 
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1. INTRODUCTION

In recent years, data mining has attracted considerable 

attention as the need to extract meaningful insights from vast 

and complex datasets has become increasingly important 

across various industries. The rapid expansion of digital 

information has created new opportunities for organizations to 

leverage data mining techniques, uncovering hidden patterns, 

trends, and relationships that inform decision-making and 

drive innovation. 

One crucial preprocessing step in data mining is feature 

selection, which aims to reduce dataset dimensionality by 

identifying the most relevant features or variables [1]. This 

process is especially valuable when dealing with datasets with 

a large number of features, as including irrelevant or redundant 

variables can degrade the performance of machine learning 

models [2]. Feature selection methods generally fall into three 

categories: filter methods [3], embedded methods [4, 5], and 

hybrid methods [6]. 

When working with limited datasets, selecting the most 

significant features presents a challenge, as the scarcity of 

information can make it difficult to identify meaningful 

correlations or trends. This issue is particularly relevant in 

feature selection, where insufficient data may lead to the 

inclusion of redundant or unnecessary attributes, ultimately 

affecting model performance. Additionally, small sample sizes 

can increase a model’s susceptibility to noise, reducing its 

ability to generalize effectively to new data [7, 8]. To address 

this, active learning has emerged as an effective strategy for 

enhancing both the quantity and quality of labeled data by 

selectively acquiring the most relevant examples from an 

unlabeled dataset [9]. This technique involves training a model 

on existing labeled data, using that model to identify the most 

informative unlabeled instances, and then obtaining labels for 

those instances to refine the training set. By focusing on the 

most valuable data points [10], active learning can improve 

model performance with fewer labeled samples compared to 

conventional passive learning approaches [11]. 

Active learning techniques have been widely applied across 

various fields, demonstrating their adaptability and 

effectiveness. In text classification [12], these methods have 

been used to enhance tasks such as document categorization, 

sentiment analysis, and named entity recognition. In image 

processing [13], active learning has been employed to improve 

object detection [14], credit scoring [15], facial recognition 

[16], and scene understanding, allowing for more efficient use 

of human expertise in labeling complex visual data. The 

medical field has also embraced active learning, particularly 

in improving diagnostic accuracy and accelerating drug 

discovery. For example, active learning has been applied to 

medical image analysis [17], enabling experts to prioritize the 

most challenging or ambiguous cases, leading to more precise 

and efficient diagnoses. 

Existing studies have generally treated active learning as a 

set of strategies to achieve increasing performance or as a 

means to verify and demonstrate its role in making models 

more effective. Most of this research has focused on 

evaluating active learning as a tool to boost predictive 

accuracy or enhance model robustness, without fully 

considering its potential impact on preprocessing steps such as 

feature selection. In particular, Relief, one of the most widely 

used filter-based feature selection methods, remains 

underexplored in the context of active learning integration. 

This study addresses this gap by exploring the effectiveness 
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of active learning techniques, specifically in the domain of 

feature selection for classification tasks. The primary objective 

is to investigate how active learning can strengthen the Relief 

method in identifying the most significant features within a 

dataset. By iteratively selecting and labeling the most 

informative examples, active learning not only enriches the 

quality of the training data but also guides Relief toward more 

relevant and stable feature subsets. This approach has the 

potential to reduce redundancy, mitigate the effect of limited 

data, and ultimately lead to improved classification outcomes. 

In this context, our method has been evaluated on several 

classifiers, and it can be extended in future work to other 

models, including decision trees and random forests [18]. 

2. METHOD

This section describes the active learning approach used to 

identify the most informative examples from the unlabeled 

dataset, along with the feature selection techniques applied to 

determine the most relevant features. These methods were 

implemented to assess the impact of integrating carefully 

chosen examples into the labeled dataset. 

Figure 1. Overview of the proposed methodology 

Figure 1 shows the proposed method, which operates in two 

phases. In the first phase, uncertainty sampling is applied by 

training a classifier, computing posterior probabilities for 

unlabeled instances, and selecting the most uncertain 

examples for labeling. In the second phase, the Relief 

algorithm is applied to the enriched labeled set to identify the 

most relevant features for classification. 

2.1 Active learning method: Uncertainty sampling 

Active learning techniques for query selection aim to 

identify the most informative data points to enhance model 

efficiency. The process begins with training the model on 

labeled data, after which it analyzes the available unlabeled 

examples to select the most relevant ones based on calculated 

information. Among the various active learning strategies, 

uncertainty sampling stands out as the most widely recognized 

technique in machine learning that aims to choose the most 

informative examples for labeling. This approach operates on 

the principle that a model learns most effectively from data 

points where its predictions are highly uncertain [19]. This 

approach includes three main variants: 

• Least confident approach [20]: This method is

especially useful for stochastic model in binary

supervised learning. It involves selecting the example

for which the model's posterior probability for a

positive label is close to 0.5. In multi-class

classification, this strategy translates to choosing the

example with the highest posterior probability that is

still near 0. This technique emphasizes information

from the most likely class while ignoring the others, 

the uncertainty score is:  

𝑢𝐿𝐶(𝑥)  =  1 −  𝑚𝑎𝑥𝑐∈𝐶  𝑃(𝑐|𝑥)

where, 𝑃(𝑐 ∣ 𝑥) is the posterior probability of class c given 

example x. The closer the maximum probability is to 0.5 

(binary) or low values (multi-class), the higher the uncertainty. 

• Margin sampling [21]: This approach selects

instance that give the small difference between the

predicted probabilities of the two most likely

categories. Nevertheless, in a multi-class context, this

method may neglect the other classes. The margin is

defined as:

𝑢𝑀𝑆(𝑥)  =  𝑃(𝑐1|𝑥)  −  𝑃(𝑐2|𝑥)

where, 𝑃(𝑐1 ∣ 𝑥)  and 𝑃(𝑐2 ∣ 𝑥) are the highest and second-

highest class probabilities. A smaller margin indicates higher 

uncertainty, hence the instance is selected. 

• Entropy sampling [22]: This approach considers all

classes within the dataset. It utilizes the entropy

function to assess the information content of class

probability predictions, selecting examples that

maximize this value. This approach helps ensure a

thorough exploration of the dataset. The entropy-

based uncertainty is defined as:

𝑢𝐸𝑁𝑇(𝑥)  =  − 𝛴𝑐∈𝐶𝑃(𝑐|𝑥) 𝑙𝑜𝑔 𝑃(𝑐|𝑥)
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A higher entropy value indicates greater uncertainty in 

classification, making such examples more informative for 

labeling. 

2.2 Feature selection technique: Relief 

Feature selection is a crucial technique used to identify the 

most relevant attributes in a dataset to enhance the 

performance of machine learning models. This approach helps 

reduce data dimensionality, eliminate unnecessary or 

redundant features, and improve both model interpretability 

and computational efficiency. Generally, feature selection 

methods are categorized into three main types: filter methods, 

wrapper methods, and embedded methods [23]. 

• Filter methods: These methods are commonly

used as a preliminary step to select relevant

features before applying more advanced

techniques. They assess the intrinsic properties of

the data, sometimes independently of the specific

problem, using statistical metrics [24].

• Wrapper methods: These approaches use a

learning algorithm to evaluate different feature

subsets and select those that maximize model

performance [25].

• Embedded methods: Unlike wrapper approaches,

embedded methods perform feature selection

during the training process. They are known for

their speed and efficiency [26].

Among feature selection algorithms, Relief stands out for 

its ability to identify the most influential attributes in 

classification or regression tasks [27]. Its core principle is to 

assign weights to features, reflecting their importance in 

distinguishing between different classes [28]. The algorithm 

for selecting relevant features is described as follows:  

Algorithm 1: Relief Algorithm 

Input: 𝑋: Training Set 

    Output: Fs: Selected features 

Initialize the weight vector to 𝑊 = 0 

for 𝑗 = 1 to 𝑝 do 

for 𝑖 = 1 to 𝑛 do 

𝑤𝑖, 𝑗 = 𝑑𝑖𝑓𝑓(𝑋𝑗 , 𝑥𝑖 , 𝑀(𝑥𝑖)) − 𝑑𝑖𝑓𝑓(𝑋𝑗 , 𝑥𝑖 , 𝐻(𝑥𝑖))
 end for 

𝑊𝑗 = ∑ 𝑤𝑖,𝑗

end for 

Establish the vector 𝑊. 

Select the features with the top values of 𝑊. 

end function 

The difference between two examples is calculated using 

the diff function based on the variable category 𝑋𝑗, where:

• If 𝑋𝑗 is non-numeric, the diff function is defined as:

𝑑𝑖𝑓𝑓(𝑋𝑗, 𝑥𝑖 , 𝑥𝑘) = {
0 𝑖𝑓    𝑥𝑖

𝑗
= 𝑥𝑘

𝑗

1 𝑖𝑓    𝑥𝑖
𝑗

≠ 𝑥𝑘
𝑗

• If 𝑋𝑗 is numeric then:

𝑑𝑖𝑓𝑓(𝑋𝑗, 𝑥𝑖 , 𝑥𝑘) =
|𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
|

𝜈

where, 

– 𝜈 normalizes the diff function values to the range [0,1];

– 𝑥𝑖
𝑗

 represents the value of the 𝑗𝑡ℎ  feature for the 𝑖𝑡ℎ

example.

2.3 Proposed method 

The proposed method combines uncertainty sampling with 

Relief-based feature selection to enhance the quality of 

selected features under limited labeled data. The process 

begins by initializing a small labeled subset and treating the 

remaining data as unlabeled. At each iteration, a classifier is 

trained on the labeled set, and uncertainty sampling is applied 

to identify the most informative examples among the 

unlabeled instances. These uncertain examples are queried and 

added to the labeled set, progressively enriching it with 

relevant data. Once the query budget is reached, the Relief 

algorithm is applied to the final labeled set to compute feature 

weights and generate a ranked list of features. This integration 

ensures that the most informative instances guide the selection 

process, leading to more stable and relevant feature subsets. 

The following pseudocode outlines the proposed method: 

Algorithm 2: Uncertainty Sampling with Relief Feature 

Selection 

 Input: Unlabeled dataset 𝑼, small labeled set 𝐿, batch size 

𝑏. 

 Output: Ranked list of features by importance 

1. Initialize 𝐿 with a small labeled subset (e.g., a few

examples per class).

2. Set 𝑈 ← remaining unlabeled data.

3. Train a model 𝑀 on 𝐿.

4. For each 𝑥 ∈  𝑈 do

5. Compute an uncertainty score u(x):

• Least-Confident:     1 − max
𝑐

𝑃(𝑐|𝑥) 

• Margin: 𝑃(𝑐1|𝑥) − 𝑃(𝑐2|𝑥)

• Entropy ∑ 𝑃(𝑐|𝑥)𝑙𝑜𝑔𝑃(𝑐|𝑥)𝑐

End For 

6. Select top b most uncertain samples 𝑆 ⊂ 𝑈
7. Query the true labels for 𝑆.

8. Update the sets: 𝐿 ←  𝐿 ∪  𝑆,    𝑈 ←  𝑈 ∖  𝑆
9. Apply Relief on 𝐿 to compute feature weights.

10. Rank features according to their weights.

11. Return: Ranked features.

3. EXPERIMENTATION

This section presents the preliminary methods used to 

evaluate the proposed approach, including the datasets, 

metrics, and classifiers employed. 

To pinpoint areas for improvement in active learning, we 

use three distinct binary datasets from the UCI Machine 

Learning Repository [29]. Table 1 provides a detailed 

overview of the properties of each dataset. 

Table 1. The data utilized in the experimental investigations 

Dataset Classes Instances Attributes 

Breast Cancer 2 569 30 

Ionosphere 2 351 34 

Sonar 2 207 60 

We use 5-fold cross-validation, where 
4

5
 of the dataset is 

used for training and the remaining 20% is reserved for testing. 

This well-established technique in machine learning helps 

evaluate and select models [30]. The process involves dividing 
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the data into 5 distinct subsets, using 4 for training and 1 for 

testing. This cycle is repeated five times, each time with a 

different subset used as the test set, while the other four subsets 

are used for training. The overall performance is then 

determined by averaging the results from all 5 test sets. Cross-

validation is a robust method for assessing a classifier's ability 

to generalize, as it tests the model on data that was not included 

in the training phase [31]. 

For implementing the active learning algorithm, we 

randomly select 10 examples from each class to serve as 

labeled data. The remaining examples have their labels 

removed and are treated as unlabeled. The data distribution for 

each dataset used is provided in Table 2.  

Table 2. Partitioning the datasets to implement active 

learning techniques 

Dataset 

Size of 

Labeled 

Data 

Size of 

Unlabeled 

Data 

Size of Test 

Dataset 

Breast Cancer 20 435 114 

IONOSPHERE 20 261 70 

SONOR 20 146 41 

We evaluate performance using four classifiers: 

• Ordinary Least Squares Linear Regression,

• Linear Support Vector Machine Classifier,

• Polynomial Support Vector Machine Classifier of

degree 3,

• A Multi-Layer Perceptron classifier featuring two

hidden layers (with 20 and 3 neurons) that employs

an LBFGS optimization solver and includes a

regularization parameter of 𝛼 = 10−5.

Additionally, three performance metrics were utilized to 

evaluate the effectiveness of the classifiers [32]:  

▪ Accuracy: This metric assesses 

performance in balanced datasets, gauging 

the model's efficacy in accurately 

discriminating between positive and 

negative examples. 

▪ F1-Score: This metric evaluates 

performance in imbalanced datasets, 

balancing precision and recall to offer a 

thorough assessment of model effectiveness. 

▪ AUC: This metric measures performance in

balanced datasets, evaluating e model's

ability to differentiate between positive and

negative examples across varied 

classification thresholds. 

4. RESULTS

The performance metrics for uncertainty sampling active 

learning, aimed at enhancing Relief feature selection, are 

presented in Table 3. These metrics include the highest values 

for Accuracy, F1-Score, and AUC, as well as the number of 

relevant features identified by the Relief algorithm and the 

important instances selected through the entropy-based 

Uncertainty Sampling method. 

Using Accuracy, F1-Score, and AUC provides a 

comprehensive evaluation of the model's performance. While 

Accuracy offers a general overview, it can be misleading in 

cases of imbalanced datasets. The F1-Score, on the other hand, 

gives a clearer view of the balance between precision and 

recall, which is especially useful for imbalanced data. The 

AUC metric reflects the model's ability to distinguish between 

classes across various decision thresholds, regardless of class 

distributions or threshold choices. 

Evaluating active learning strategies with Logistic 

Regression, Support Vector Machines, and Neural Networks 

offers valuable insights into how well these methods adapt to 

different decision boundaries and learning paradigms. By 

combining both linear and nonlinear classifiers, this approach 

ensures that the active learning strategy remains versatile, 

effective, and applicable to a wide range of classifier 

complexities, from basic to advanced. This highlights the 

flexibility of active learning techniques in handling datasets 

with varying levels of complexity and structure, ensuring their 

usefulness in a wide array of real-world applications. 

Table 3 provides a comprehensive summary of the peak 

performance of the examined models: Linear Regression, 

Support Vector Machine with both linear and polynomial 

kernels, and a Neural Network. For each classifier, we report 

its highest values of accuracy, F1-score, and area under the 

ROC curve (AUC), together with the corresponding number 

of training examples and features that led to these optimal 

outcomes. This overview offers a detailed comparison of the 

classifiers’ behavior under different data conditions and 

highlights the circumstances under which each model 

achieved its best performance. Figure 2 illustrates the average 

performance of each classifier on k-fold cross-validated data, 

using 0 to 200 instances in 5-instance increments. 

Table 3. Optimal outcomes for evaluated models 

Dataset Classifier 

Accuracy 

(Max 

value) 

# Selected 

Examples 

# 

Selected 

Features 

F1-

Score 

(Max 

value) 

# Selected 

Examples 

# 

Selected 

Features 

AUC 

(Max 

value) 

# Selected 

Examples 

# 

Selected 

Features 

Breast 

Cancer 

LR 0.9472 70 20 0.9555 70 20 0.9457 70 20 

SVCL 0.9320 140 25 0.9748 140 25 0.9696 140 20 

SVCP 0.9139 125 15 0.9264 125 15 0.9125 125 15 

NN 0.9244 130 15 0.9344 130 15 0.9251 130 15 

Sonar 

LR 0.7983 120 33 0.7904 125 39 0.8095 120 35 

SVCL 0.8082 100 31 0.8011 105 31 0.8223 100 37 

SVCP 0.8562 130 51 0.8369 130 51 0.8540 130 51 

NN 0.8608 135 51 0.8473 135 31 0.8693 135 39 

Ionosphere 

LR 0.8775 180 31 0.9063 180 31 0.8486 180 31 

SVCL 0.8890 175 17 0.9163 180 17 0.8582 175 17 

SVCP 0.8888 170 19 0.9168 170 19 0.8632 170 19 

NN 0.9287 205 23 0.9462 205 23 0.9173 200 23 
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Figure 2. Impact of feature and sample selection on Breast Cancer classification 

Figure 2 illustrates the impact of selecting varying numbers 

of features, represented by distinct colors, after different 

quantities of training examples have been chosen through the 

uncertainty sampling strategy. Using the Relief feature 

selection method, the results on the Breast Cancer dataset 

show that classifiers often reach their optimal performance 

before all unlabeled examples are utilized. This demonstrates 

the importance of focusing on the most informative examples, 

as Relief effectively identifies the most relevant features and 

enhances predictive performance. By jointly considering both 

the number of labeled samples and the dimensionality of the 

feature space, the analysis highlights how strategic feature 

selection can improve classifier accuracy, F1-score, and AUC, 

even without relying on the full dataset. 

Figure 3. Evaluation of relevant features selected using the 

Relief algorithm before selection, after evaluating n=170 

examples, and selection of the entire unlabeled dataset n= 

265 using F1-Score metric 

Figure 3 demonstrates the average F1-Score of various 

classifiers over varying numbers of the most relevant features, 

selected using the Relief algorithm. This includes the 

performance without any feature selection (Blue radar), as 

well as after selecting a subset of 170 features (Orange radar), 

and after utilizing the entire unlabeled dataset for feature 

selection (Grey Radar). 

Figure 4. Performance comparison of Uncertainty Sampling 

and Random Selection using multiple classifiers on the 

Breast Cancer dataset, with feature selection fixed at 20 

features 

It can be observed from the Figure 4 that Logistic 

Regression (LR) achieves a clear benefit from uncertainty 

sampling, with accuracy steadily improving beyond 0.95 after 

approximately 120 query examples, compared to around 0.93 

for random selection. The improvement of ~2% is statistically 
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meaningful (p < 0.05, paired t-test). For SVM, uncertainty 

sampling consistently outperforms random selection, reaching 

values close to 0.96 at its peak, while random selection 

remains slightly lower around 0.94, showing a gain of ~1.5% 

that is also significant (p < 0.05, paired t-test). In the case of 

the Neural Network (NN), performance is generally lower, 

fluctuating between 0.60 and 0.75, yet the uncertainty 

sampling curve remains above the random one by 

approximately 3–4% on average, especially after 50 queries. 

These results, obtained with an enhanced feature selection 

where 20 features were retained for the Breast Cancer dataset, 

confirm that uncertainty-based active learning yields more 

informative labeled sets and significantly improves 

classification performance across models when compared to 

random selection. 

5. DISCUSSION

The proposed strategy intends to initiate by implementing 

the most prevalent method in the area of active learning, 

uncertainty sampling, with the purpose to substantially 

increase the data size and evaluate this increase on feature 

selection, particularly for the Relief filtering approach. 

By incorporating additional data in general, the selected 

features will be more extensive, as the distribution is no longer 

confined to a small data size. However, this study observes 

that maximum performance is attained prior to the full 

incorporation of unlabeled data and with an optimal number of 

features, which underscores the necessity of employing active 

learning to minimize the cost of labeling. 

Carefully selecting a subset of training examples can refine 

the interpretation of feature selection algorithms. The Breast 

Cancer data analysis, as shown in Figure 2, reveals that after 

evaluating 70 examples, most classifiers attain their maximum 

predictive capacity, underscoring the importance of active 

learning strategies that identify the most informative examples 

to improve the relevance of the selected features. Selecting 

only 5 relevant features selected by Relief approach 

consistently leads to very poor performance across all 

classifiers. This is likely coming as a result of the complex 

constitution of the Breast Cancer dataset, which necessitates a 

more comprehensive set of features to accurately capture the 

underlying patterns. However, when 10 or more features are 

selected, the performance becomes more reliable, suggesting 

that a larger feature set is necessary to achieve better 

classification results. 

Each classifier exhibits varying levels of success depending 

on the number of selected features and examples as shown in 

Table 3, highlighting the importance of careful model 

selection and hyperparameter tuning for this problem domain. 

In cases where the initial dataset is limited to just 10 

instances, the performance of the chosen features tends to be 

suboptimal. However, by strategically incorporating the most 

informative instances through uncertainty sampling, we can 

enhance classification results across different numbers of 

selected features. As illustrated in Figure 3, selecting the right 

number of examples is vital for effective feature selection. The 

orange radar, representing 170 examples out of a total of 255, 

achieves the best performance among the classifiers. The 

graph also illustrates the range of features identified as most 

relevant by the Relief algorithm. 

The results in Figure 4 demonstrate that uncertainty 

sampling consistently outperforms random selection across 

classifiers on the Breast Cancer dataset with 20 selected 

features. This confirms that active learning provides a more 

effective strategy for guiding the feature selection process and 

improving classification performance compared to random 

querying. 

This approach addresses the challenge of small datasets by 

strategically selecting a few key examples, enhancing the 

model’s ability to recognize underlying patterns and produce 

a more meaningful subset of features. 

By leveraging performance metrics such as Accuracy, F1-

score, and Area Under the Curve (AUC), we obtain a 

comprehensive evaluation of the model’s effectiveness, 

regardless of dataset imbalance. These metrics provide an 

overall assessment of how well the model performs after 

example selection and preprocessing. 

Integrating both linear and nonlinear classifiers allows for a 

more thorough assessment of this method across different 

datasets. This strategy ensures a more well-rounded evaluation 

of model performance, as linear and nonlinear classifiers 

capture distinct aspects of the data and offer complementary 

insights. 

The study’s findings emphasize the advantages of 

combining active learning with feature selection techniques to 

enhance classification performance across diverse datasets. 

6. CONCLUSION

Active learning is a highly adaptable and efficient approach, 

particularly valuable in situations where labeled data is scarce. 

By strategically selecting the most informative examples for 

labeling, active learning helps overcome the challenges posed 

by limited labeled data and significantly enhances the 

effectiveness of machine learning models. This method 

optimizes the use of available labeled data, resulting in 

improved model performance compared to traditional 

supervised learning techniques. Among the various active 

learning strategies, uncertainty sampling is the most 

commonly applied in machine learning tasks. 

Feature selection aims to identify the most relevant features 

rather than relying on the entire feature set. Relief-F, a widely 

used feature selection algorithm, has been applied across 

multiple domains, demonstrating its ability to enhance model 

performance by reducing data dimensionality. 

When working with extremely small datasets, feature 

selection techniques may struggle to identify the most 

meaningful features. To address this issue, an active learning 

strategy based on uncertainty sampling is employed to 

significantly expand the dataset. This expansion is then 

followed by an evaluation of its impact on the performance of 

the Relief feature selection algorithm. 

Experiments Conducted on the Three Datasets in this 

research indicate that optimal performance can be attained by 

choosing an appropriate number of informative examples 

through an uncertainty sampling strategy.  

Moreover, the selection of features becomes even more 

critical after establishing the optimal number of examples. 

This study can be relevant for high-dimensional data, as the 

data volume is often slight in relation to the number of features, 

which can negatively influence the identification of the most 

relevant features. Additionally, the evaluation can be 

broadened to include other feature selection methods, such as 

filtering, wrapper, and embedded techniques, to significantly 

lower labeling costs and improve the identification of the most 
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relevant features. 

Additionally, using different active learning strategies can 

highlight the efficacy of the recommended approach. The main 

goal of this study is to create a thorough methodology for 

optimizing the balance between the number of examples and 

features in classification tasks. 

Increasing the dataset size can incur higher computational 

costs, but this investment may be justified by the resulting 

performance improvements observed in the classification task. 
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