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Feature selection represents a critical pretreatment step that allows data size reduction,
thereby decreasing the computational cost of applying classification models. However, a
lack of examples can adversely impact this phase, as the chosen features may lack
significance or relevance. Frequently, we encounter unlabeled and expensive-to-label data,
rendering it unsuitable for model training or feature selection. Active learning strategies can
handle this by selecting the most relevant examples from unannotated data to optimize
performance, reduce computational time and cost. In this study, we evaluate Relief feature
selection with linear and non-linear classifiers. The performance is assessed using
Accuracy, F1-Score, and AUC metrics. The results demonstrate that optimal performance
is achieved with 70-140 examples, and feature selection significantly improves after adding

the optimal number of examples. To build upon this approach, we leverage three distinct

datasets.

1. INTRODUCTION

In recent years, data mining has attracted considerable
attention as the need to extract meaningful insights from vast
and complex datasets has become increasingly important
across various industries. The rapid expansion of digital
information has created new opportunities for organizations to
leverage data mining techniques, uncovering hidden patterns,
trends, and relationships that inform decision-making and
drive innovation.

One crucial preprocessing step in data mining is feature
selection, which aims to reduce dataset dimensionality by
identifying the most relevant features or variables [1]. This
process is especially valuable when dealing with datasets with
a large number of features, as including irrelevant or redundant
variables can degrade the performance of machine learning
models [2]. Feature selection methods generally fall into three
categories: filter methods [3], embedded methods [4, 5], and
hybrid methods [6].

When working with limited datasets, selecting the most
significant features presents a challenge, as the scarcity of
information can make it difficult to identify meaningful
correlations or trends. This issue is particularly relevant in
feature selection, where insufficient data may lead to the
inclusion of redundant or unnecessary attributes, ultimately
affecting model performance. Additionally, small sample sizes
can increase a model’s susceptibility to noise, reducing its
ability to generalize effectively to new data [7, 8]. To address
this, active learning has emerged as an effective strategy for
enhancing both the quantity and quality of labeled data by
selectively acquiring the most relevant examples from an
unlabeled dataset [9]. This technique involves training a model

on existing labeled data, using that model to identify the most
informative unlabeled instances, and then obtaining labels for
those instances to refine the training set. By focusing on the
most valuable data points [10], active learning can improve
model performance with fewer labeled samples compared to
conventional passive learning approaches [11].

Active learning techniques have been widely applied across
various fields, demonstrating their adaptability and
effectiveness. In text classification [12], these methods have
been used to enhance tasks such as document categorization,
sentiment analysis, and named entity recognition. In image
processing [13], active learning has been employed to improve
object detection [14], credit scoring [15], facial recognition
[16], and scene understanding, allowing for more efficient use
of human expertise in labeling complex visual data. The
medical field has also embraced active learning, particularly
in improving diagnostic accuracy and accelerating drug
discovery. For example, active learning has been applied to
medical image analysis [17], enabling experts to prioritize the
most challenging or ambiguous cases, leading to more precise
and efficient diagnoses.

Existing studies have generally treated active learning as a
set of strategies to achieve increasing performance or as a
means to verify and demonstrate its role in making models
more effective. Most of this research has focused on
evaluating active learning as a tool to boost predictive
accuracy or enhance model robustness, without fully
considering its potential impact on preprocessing steps such as
feature selection. In particular, Relief, one of the most widely
used filter-based feature selection methods, remains
underexplored in the context of active learning integration.

This study addresses this gap by exploring the effectiveness
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of active learning techniques, specifically in the domain of
feature selection for classification tasks. The primary objective
is to investigate how active learning can strengthen the Relief
method in identifying the most significant features within a
dataset. By iteratively selecting and labeling the most
informative examples, active learning not only enriches the
quality of the training data but also guides Relief toward more
relevant and stable feature subsets. This approach has the
potential to reduce redundancy, mitigate the effect of limited
data, and ultimately lead to improved classification outcomes.
In this context, our method has been evaluated on several
classifiers, and it can be extended in future work to other

models, including decision trees and random forests [18].

2. METHOD

This section describes the active learning approach used to
identify the most informative examples from the unlabeled
dataset, along with the feature selection techniques applied to
determine the most relevant features. These methods were
implemented to assess the impact of integrating carefully
chosen examples into the labeled dataset.
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Figure 1. Overview of the proposed methodology

Figure 1 shows the proposed method, which operates in two
phases. In the first phase, uncertainty sampling is applied by
training a classifier, computing posterior probabilities for
unlabeled instances, and selecting the most uncertain
examples for labeling. In the second phase, the Relief
algorithm is applied to the enriched labeled set to identify the
most relevant features for classification.

2.1 Active learning method: Uncertainty sampling

Active learning techniques for query selection aim to
identify the most informative data points to enhance model
efficiency. The process begins with training the model on
labeled data, after which it analyzes the available unlabeled
examples to select the most relevant ones based on calculated
information. Among the various active learning strategies,
uncertainty sampling stands out as the most widely recognized
technique in machine learning that aims to choose the most
informative examples for labeling. This approach operates on
the principle that a model learns most effectively from data
points where its predictions are highly uncertain [19]. This
approach includes three main variants:

Least confident approach [20]: This method is
especially useful for stochastic model in binary
supervised learning. It involves selecting the example
for which the model's posterior probability for a
positive label is close to 0.5. In multi-class
classification, this strategy translates to choosing the
example with the highest posterior probability that is
still near 0. This technique emphasizes information
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from the most likely class while ignoring the others,
the uncertainty score is:

uc(x) = 1 — maxcec P(clx)

where, P(c | x) is the posterior probability of class ¢ given
example x. The closer the maximum probability is to 0.5
(binary) or low values (multi-class), the higher the uncertainty.
Margin sampling [21]: This approach selects
instance that give the small difference between the
predicted probabilities of the two most likely
categories. Nevertheless, in a multi-class context, this
method may neglect the other classes. The margin is
defined as:

uys(x) = P(c1]x) — P(cz[x)

where, P(c; | x) and P(c, | x) are the highest and second-
highest class probabilities. A smaller margin indicates higher
uncertainty, hence the instance is selected.

e Entropy sampling [22]: This approach considers all
classes within the dataset. It utilizes the entropy
function to assess the information content of class
probability predictions, selecting examples that
maximize this value. This approach helps ensure a
thorough exploration of the dataset. The entropy-
based uncertainty is defined as:

ugyt(x) = — ZeecP(c|x) log P(c|x)



A higher entropy value indicates greater uncertainty in
classification, making such examples more informative for
labeling.

2.2 Feature selection technique: Relief

Feature selection is a crucial technique used to identify the
most relevant attributes in a dataset to enhance the
performance of machine learning models. This approach helps
reduce data dimensionality, eliminate unnecessary or
redundant features, and improve both model interpretability
and computational efficiency. Generally, feature selection
methods are categorized into three main types: filter methods,
wrapper methods, and embedded methods [23].

e Filter methods: These methods are commonly
used as a preliminary step to select relevant
features before applying more advanced
techniques. They assess the intrinsic properties of
the data, sometimes independently of the specific
problem, using statistical metrics [24].

e Wrapper methods: These approaches use a
learning algorithm to evaluate different feature
subsets and select those that maximize model
performance [25].

¢ Embedded methods: Unlike wrapper approaches,
embedded methods perform feature selection
during the training process. They are known for
their speed and efficiency [26].

Among feature selection algorithms, Relief stands out for
its ability to identify the most influential attributes in
classification or regression tasks [27]. Its core principle is to
assign weights to features, reflecting their importance in
distinguishing between different classes [28]. The algorithm
for selecting relevant features is described as follows:

Algorithm 1: Relief Algorithm
Input: X: Training Set
Output: Fs: Selected features

Initialize the weight vector to W = 0
forj=1top do

fori=1tondo

Wi'j = diff(X]'xi' M(xl)) - diff(X]! Xi H(xi))
end for
W =Lwi,

end for
Establish the vector W.
Select the features with the top values of W.
end function

The difference between two examples is calculated using
the diff function based on the variable category X/, where:
e If X/ is non-numeric, the diff function is defined as:

4 0 if x/=x]
dif f(X7, x;, x3,) ={ g k
JTX 00 =1 if x #x

e IfX/ is numeric then:

I ! — x|
dif f O, i, 3) = =

where,
- v normalizes the diff function values to the range [0,1];

x/ represents the value of the j* feature for the it
example.

2.3 Proposed method

The proposed method combines uncertainty sampling with
Relief-based feature selection to enhance the quality of
selected features under limited labeled data. The process
begins by initializing a small labeled subset and treating the
remaining data as unlabeled. At each iteration, a classifier is
trained on the labeled set, and uncertainty sampling is applied
to identify the most informative examples among the
unlabeled instances. These uncertain examples are queried and
added to the labeled set, progressively enriching it with
relevant data. Once the query budget is reached, the Relief
algorithm is applied to the final labeled set to compute feature
weights and generate a ranked list of features. This integration
ensures that the most informative instances guide the selection
process, leading to more stable and relevant feature subsets.

The following pseudocode outlines the proposed method:

Algorithm 2: Uncertainty Sampling with Relief Feature
Selection
Input: Unlabeled dataset U, small labeled set L, batch size

b.
Output: Ranked list of features by importance
1. Initialize L with a small labeled subset (e.g., a few
examples per class).
Set U « remaining unlabeled data.
Train a model M on L.
For eachx € U do
Compute an uncertainty score u(x):
o Least-Confident: 1 — max P(c|x)

e Margin: P(c;|x) — P(c;|x)

e Entropy Y P(clx)logP(c|x)
End For
Select top b most uncertain samples S € U
Query the true labels for S.
Update thesets: L « LU S, U« U\ S
Apply Relief on L to compute feature weights.
Rank features according to their weights.
Return: Ranked features.
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3. EXPERIMENTATION

This section presents the preliminary methods used to
evaluate the proposed approach, including the datasets,
metrics, and classifiers employed.

To pinpoint areas for improvement in active learning, we
use three distinct binary datasets from the UCI Machine
Learning Repository [29]. Table 1 provides a detailed
overview of the properties of each dataset.

Table 1. The data utilized in the experimental investigations

Dataset Classes | Instances | Attributes
Breast Cancer 2 569 30
Ionosphere 2 351 34
Sonar 2 207 60

We use 5-fold cross-validation, where % of the dataset is
used for training and the remaining 20% is reserved for testing.
This well-established technique in machine learning helps
evaluate and select models [30]. The process involves dividing



the data into 5 distinct subsets, using 4 for training and 1 for
testing. This cycle is repeated five times, each time with a
different subset used as the test set, while the other four subsets
are used for training. The overall performance is then
determined by averaging the results from all 5 test sets. Cross-
validation is a robust method for assessing a classifier's ability
to generalize, as it tests the model on data that was not included
in the training phase [31].

For implementing the active learning algorithm, we
randomly select 10 examples from each class to serve as
labeled data. The remaining examples have their labels
removed and are treated as unlabeled. The data distribution for
each dataset used is provided in Table 2.

Table 2. Partitioning the datasets to implement active
learning techniques

Size of Size of Size of Test
Dataset Labeled Unlabeled Dataset
Data Data
Breast Cancer 20 435 114
IONOSPHERE 20 261 70
SONOR 20 146 41

We evaluate performance using four classifiers:
Ordinary Least Squares Linear Regression,
Linear Support Vector Machine Classifier,
Polynomial Support Vector Machine Classifier of
degree 3,
A Multi-Layer Perceptron classifier featuring two
hidden layers (with 20 and 3 neurons) that employs
an LBFGS optimization solver and includes a
regularization parameter of @ = 107>,

Additionally, three performance metrics were utilized to
evaluate the effectiveness of the classifiers [32]:

=  Accuracy: This metric assesses
performance in balanced datasets, gauging
the model's efficacy in accurately
discriminating between positive and
negative examples.

= F1-Score: This  metric  evaluates
performance in imbalanced datasets,

balancing precision and recall to offer a

thorough assessment of model effectiveness.

AUC: This metric measures performance in
balanced datasets, evaluating e model's
ability to differentiate between positive and

negative examples varied

classification thresholds.

across

4. RESULTS

The performance metrics for uncertainty sampling active
learning, aimed at enhancing Relief feature selection, are
presented in Table 3. These metrics include the highest values
for Accuracy, F1-Score, and AUC, as well as the number of
relevant features identified by the Relief algorithm and the
important instances selected through the entropy-based
Uncertainty Sampling method.

Using Accuracy, F1-Score, and AUC provides a
comprehensive evaluation of the model's performance. While
Accuracy offers a general overview, it can be misleading in
cases of imbalanced datasets. The F1-Score, on the other hand,
gives a clearer view of the balance between precision and
recall, which is especially useful for imbalanced data. The
AUC metric reflects the model's ability to distinguish between
classes across various decision thresholds, regardless of class
distributions or threshold choices.

Evaluating active learning strategies with Logistic
Regression, Support Vector Machines, and Neural Networks
offers valuable insights into how well these methods adapt to
different decision boundaries and learning paradigms. By
combining both linear and nonlinear classifiers, this approach
ensures that the active learning strategy remains versatile,
effective, and applicable to a wide range of classifier
complexities, from basic to advanced. This highlights the
flexibility of active learning techniques in handling datasets
with varying levels of complexity and structure, ensuring their
usefulness in a wide array of real-world applications.

Table 3 provides a comprehensive summary of the peak
performance of the examined models: Linear Regression,
Support Vector Machine with both linear and polynomial
kernels, and a Neural Network. For each classifier, we report
its highest values of accuracy, Fl-score, and area under the
ROC curve (AUC), together with the corresponding number
of training examples and features that led to these optimal
outcomes. This overview offers a detailed comparison of the
classifiers’ behavior under different data conditions and
highlights the circumstances under which each model
achieved its best performance. Figure 2 illustrates the average
performance of each classifier on k-fold cross-validated data,
using 0 to 200 instances in 5-instance increments.

Table 3. Optimal outcomes for evaluated models

F1-
Accuracy # # AUC #
Dataset Classifier (Max ESelected Selected Score i Selected Selected (Max # Selected Selected
xamples (Max  Examples Examples
value) Features value) Features  value) Features
LR 0.9472 70 20 0.9555 70 20 0.9457 70 20
Breast SVCL 0.9320 140 25 0.9748 140 25 0.9696 140 20
Cancer SVCP 0.9139 125 15 0.9264 125 15 0.9125 125 15
NN 0.9244 130 15 0.9344 130 15 0.9251 130 15
LR 0.7983 120 33 0.7904 125 39 0.8095 120 35
Sonar SVCL 0.8082 100 31 0.8011 105 31 0.8223 100 37
SVCP 0.8562 130 51 0.8369 130 51 0.8540 130 51
NN 0.8608 135 51 0.8473 135 31 0.8693 135 39
LR 0.8775 180 31 0.9063 180 31 0.8486 180 31
lonosphere SVCL 0.8890 175 17 0.9163 180 17 0.8582 175 17
SVCP 0.8888 170 19 0.9168 170 19 0.8632 170 19
NN 0.9287 205 23 0.9462 205 23 0.9173 200 23
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Figure 2. Impact of feature and sample selection on Breast Cancer classification

Figure 2 illustrates the impact of selecting varying numbers
of features, represented by distinct colors, after different
quantities of training examples have been chosen through the
uncertainty sampling strategy. Using the Relief feature
selection method, the results on the Breast Cancer dataset
show that classifiers often reach their optimal performance
before all unlabeled examples are utilized. This demonstrates
the importance of focusing on the most informative examples,
as Relief effectively identifies the most relevant features and
enhances predictive performance. By jointly considering both
the number of labeled samples and the dimensionality of the
feature space, the analysis highlights how strategic feature
selection can improve classifier accuracy, F1-score, and AUC,

even without relying on the full dataset.

Selected examples

s n=) es—en=]170 e—nh=2065
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F11

F13
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Figure 3. Evaluation of relevant features selected using the
Relief algorithm before selection, after evaluating n=170
examples, and selection of the entire unlabeled dataset n=

265 using F1-Score metric
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Figure 3 demonstrates the average F1-Score of various
classifiers over varying numbers of the most relevant features,
selected using the Relief algorithm. This includes the
performance without any feature selection (Blue radar), as
well as after selecting a subset of 170 features (Orange radar),
and after utilizing the entire unlabeled dataset for feature
selection (Grey Radar).
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Figure 4. Performance comparison of Uncertainty Sampling
and Random Selection using multiple classifiers on the
Breast Cancer dataset, with feature selection fixed at 20

features

It can be observed from the Figure 4 that Logistic
Regression (LR) achieves a clear benefit from uncertainty
sampling, with accuracy steadily improving beyond 0.95 after
approximately 120 query examples, compared to around 0.93
for random selection. The improvement of ~2% is statistically



meaningful (p < 0.05, paired t-test). For SVM, uncertainty
sampling consistently outperforms random selection, reaching
values close to 0.96 at its peak, while random selection
remains slightly lower around 0.94, showing a gain of ~1.5%
that is also significant (p < 0.05, paired t-test). In the case of
the Neural Network (NN), performance is generally lower,
fluctuating between 0.60 and 0.75, yet the uncertainty
sampling curve remains above the random one by
approximately 3—4% on average, especially after 50 queries.
These results, obtained with an enhanced feature selection
where 20 features were retained for the Breast Cancer dataset,
confirm that uncertainty-based active learning yields more
informative labeled sets and significantly improves
classification performance across models when compared to
random selection.

5. DISCUSSION

The proposed strategy intends to initiate by implementing
the most prevalent method in the area of active learning,
uncertainty sampling, with the purpose to substantially
increase the data size and evaluate this increase on feature
selection, particularly for the Relief filtering approach.

By incorporating additional data in general, the selected
features will be more extensive, as the distribution is no longer
confined to a small data size. However, this study observes
that maximum performance is attained prior to the full
incorporation of unlabeled data and with an optimal number of
features, which underscores the necessity of employing active
learning to minimize the cost of labeling.

Carefully selecting a subset of training examples can refine
the interpretation of feature selection algorithms. The Breast
Cancer data analysis, as shown in Figure 2, reveals that after
evaluating 70 examples, most classifiers attain their maximum
predictive capacity, underscoring the importance of active
learning strategies that identify the most informative examples
to improve the relevance of the selected features. Selecting
only 5 relevant features selected by Relief approach
consistently leads to very poor performance across all
classifiers. This is likely coming as a result of the complex
constitution of the Breast Cancer dataset, which necessitates a
more comprehensive set of features to accurately capture the
underlying patterns. However, when 10 or more features are
selected, the performance becomes more reliable, suggesting
that a larger feature set is necessary to achieve better
classification results.

Each classifier exhibits varying levels of success depending
on the number of selected features and examples as shown in
Table 3, highlighting the importance of careful model
selection and hyperparameter tuning for this problem domain.

In cases where the initial dataset is limited to just 10
instances, the performance of the chosen features tends to be
suboptimal. However, by strategically incorporating the most
informative instances through uncertainty sampling, we can
enhance classification results across different numbers of
selected features. As illustrated in Figure 3, selecting the right
number of examples is vital for effective feature selection. The
orange radar, representing 170 examples out of a total of 255,
achieves the best performance among the classifiers. The
graph also illustrates the range of features identified as most
relevant by the Relief algorithm.

The results in Figure 4 demonstrate that uncertainty
sampling consistently outperforms random selection across
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classifiers on the Breast Cancer dataset with 20 selected
features. This confirms that active learning provides a more
effective strategy for guiding the feature selection process and
improving classification performance compared to random
querying.

This approach addresses the challenge of small datasets by
strategically selecting a few key examples, enhancing the
model’s ability to recognize underlying patterns and produce
a more meaningful subset of features.

By leveraging performance metrics such as Accuracy, F1-
score, and Area Under the Curve (AUC), we obtain a
comprehensive evaluation of the model’s effectiveness,
regardless of dataset imbalance. These metrics provide an
overall assessment of how well the model performs after
example selection and preprocessing.

Integrating both linear and nonlinear classifiers allows for a
more thorough assessment of this method across different
datasets. This strategy ensures a more well-rounded evaluation
of model performance, as linear and nonlinear classifiers
capture distinct aspects of the data and offer complementary
insights.

The study’s findings emphasize the advantages of
combining active learning with feature selection techniques to
enhance classification performance across diverse datasets.

6. CONCLUSION

Active learning is a highly adaptable and efficient approach,
particularly valuable in situations where labeled data is scarce.
By strategically selecting the most informative examples for
labeling, active learning helps overcome the challenges posed
by limited labeled data and significantly enhances the
effectiveness of machine learning models. This method
optimizes the use of available labeled data, resulting in
improved model performance compared to traditional
supervised learning techniques. Among the various active
learning strategies, uncertainty sampling is the most
commonly applied in machine learning tasks.

Feature selection aims to identify the most relevant features
rather than relying on the entire feature set. Relief-F, a widely
used feature selection algorithm, has been applied across
multiple domains, demonstrating its ability to enhance model
performance by reducing data dimensionality.

When working with extremely small datasets, feature
selection techniques may struggle to identify the most
meaningful features. To address this issue, an active learning
strategy based on uncertainty sampling is employed to
significantly expand the dataset. This expansion is then
followed by an evaluation of its impact on the performance of
the Relief feature selection algorithm.

Experiments Conducted on the Three Datasets in this
research indicate that optimal performance can be attained by
choosing an appropriate number of informative examples
through an uncertainty sampling strategy.

Moreover, the selection of features becomes even more
critical after establishing the optimal number of examples.
This study can be relevant for high-dimensional data, as the
data volume is often slight in relation to the number of features,
which can negatively influence the identification of the most
relevant features. Additionally, the evaluation can be
broadened to include other feature selection methods, such as
filtering, wrapper, and embedded techniques, to significantly
lower labeling costs and improve the identification of the most



relevant features.

Additionally, using different active learning strategies can
highlight the efficacy of the recommended approach. The main
goal of this study is to create a thorough methodology for
optimizing the balance between the number of examples and
features in classification tasks.

Increasing the dataset size can incur higher computational
costs, but this investment may be justified by the resulting
performance improvements observed in the classification task.

REFERENCES

(1]

(2]

(3]

(4]

(3]

(7]

(9]

[10]

(1]

Wan, J., Chen, H., Li, T., Huang, W., Li, M., Luo, C.
(2022). R2CI: Information theoretic-guided feature
selection with multiple correlations. Pattern Recognition,
127, 108603.
https://doi.org/10.1016/j.patcog.2022.108603

Qian, W., Huang, J., Xu, F., Shu, W., Ding, W. (2023).
A survey on multi-label feature selection from
perspectives of label fusion. Information Fusion, 100:
101948. https://doi.org/10.1016/j.inffus.2023.101948
Janane, F.Z., Ouvaderhman, T., Chamlal, H. (2023). A
filter feature selection for high-dimensional data. Journal
of Algorithms & Computational Technology, 17:
17483026231184171.
https://doi.org/10.1177/17483026231184171

Hasan, F.M., Hussein, T.F., Saleem, H.D., Qasim, O.S.
(2024). Enhanced Unsupervised Feature Selection
Method Using Crow Search Algorithm and Calinski-
Harabasz. International Journal of Computational
Methods and Experimental Measurements, 12(2): 185-
190. https://doi.org/10.18280/ijjcmem.120208

Aaboub, F., Chamlal, H., Ouaderhman, T. (2023).
Statistical analysis of various splitting criteria for
decision trees. Journal of Algorithms & Computational
Technology, 17: 17483026231198181.
https://doi.org/10.1177/17483026231198181

Chamlal, H., Benzmane, A., Ouaderhman, T. (2024).
Elastic net-based high dimensional data selection for
regression. Expert Systems with Applications, 244:
122958. https://doi.org/10.1016/j.eswa.2023.122958
Ali, M.Z., Abdullah, A., Zaki, A.M., Rizk, F.H., Eid,
MM., El-Kenway, E.M. (2024). Advances and
challenges in feature selection methods: A
comprehensive review. Journal of Artificial Intelligence
and Metaheuristics, 7(1): 67-71.
https://doi.org/10.54216/JAIM.070105

Rietdijk, H.H., Strijbos, D.O., Conde-Cespedes, P.,
Dijkhuis, T.B., Oldenhuis, H.K., Trocan, M. (2024).
Feature Selection with Small Data Sets: Identifying
Feature Importance for Predictive Classification of
Return-to-Work Date after Knee Arthroplasty. Applied
Sciences, 14(20): 9389.
https://doi.org/10.3390/app 14209389

Settles, B. (2010). Active Learning Literature Survey.
University of Wisconsin, Madison, 52.
http://digital.library.wisc.edu/1793/60660.

Tharwat, A., Schenck, W. (2023). A survey on active
learning: State-of-the-art, practical challenges and
research  directions. = Mathematics, 11(4): 820.
https://doi.org/10.3390/math11040820

Settles, B. (2012). Active Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning.

2345

[12]

[13]

(14]

[15]

[16]

[17]

[18]

[19]

(21]

(22]

(23]

[24]

(25]

Sahan, M., Smidl, V., Marik, R. (2021). Active Learning
for Text Classification and Fake News Detection. In
Proceedings of the International Symposium on
Computer Science and Intelligent Controls (ISCSIC),
Rome, Italy, pp- 87-94.
https://doi.org/10.1109/ISCSIC54682.2021.00027

Sun, L., Gong, Y. (2019). Active learning for image
classification: A deep reinforcement learning approach.
In 2019 2nd China Symposium on Cognitive Computing
and Hybrid Intelligence (CCHI), Xi'an, China, pp. 71-76.
https://doi.org/10.1109/CCHI.2019.8901911

Holub, A., Perona, P., Burl, M.C. (2008). Entropy-based
active learning for object recognition. In 2008 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, Anchorage, AK, USA,
pp. 1-8. https://doi.org/10.1109/CVPRW.2008.4563068
Mehdi, B., Hasna, C., Tayeb, O. (2019). Intelligent credit
scoring system using knowledge management. IAES
International Journal of Artificial Intelligence, 8(4): 391.
https://doi.org/10.11591/ijai.v8i4.pp391-398

Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder,
P., Perona, P., Belongie, S. (2010). Visual recognition
with humans in the loop. In European Conference on
Computer Vision, Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 438-451. https://doi.org/10.1007/978-3-
642-15561-1 32

Budd, S., Robinson, E., Kainz, B. (2021). A survey on
active learning and human-in-the-loop deep learning for
medical image analysis. Medical Image Analysis, 71:
102062. https://doi.org/10.1016/j.media.2021.102062
Chamlal, H., Aaboub, F., Ouaderhman, T. (2024). A
preordonance-based decision tree method and its parallel
implementation in the framework of Map-Reduce.
Applied Soft Computing, 167: 112261.
https://doi.org/10.1016/j.as0c.2024.112261

Sun, L.L., Wang, X.Z. (2010). A survey on active
learning strategy. In 2010 International Conference on
Machine Learning and Cybernetics, Qingdao, China, pp.
161-166. https://doi.org/10.1109/ICMLC.2010.5581075
RiickstieB3, T., Osendorfer, C., Van Der Smagt, P. (2011).
Sequential feature selection for classification. In
Australasian Joint Conference on Artificial Intelligence,
pp. 132-141. https://doi.org/10.1007/978-3-642-25832-
9 14

Scheffer, T., Decomain, C., Wrobel, S. (2001). Active
hidden markov models for information extraction. In
International symposium on intelligent data analysis,
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 309-
318. https://doi.org/10.1007/3-540-44816-0 31

Liu, S., Li, X. (2023). Understanding Uncertainty
Sampling. arXiv preprint arXiv:2307.02719.
https://doi.org/10.48550/arXiv.2307.02719

Guyon, 1., Elisseeff, A. (2003). An introduction to
variable and feature selection. Journal of Machine
Learning Research, 3(Mar): 1157-1182.
https://doi.org/10.1162/153244303322753616
Sanchez-Marofio, N., Alonso-Betanzos, A., Tombilla-
Sanroman, M. (2007). Filter methods for feature
selection-a comparative study. In International
conference on intelligent data engineering and automated
learning, Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 178-187. https://doi.org/10.1007/978.3.540-77226-
2.19

Patel, D., Saxena, A., Wang, J. (2024). A machine


https://doi.org/10.1109/CVPRW.2008.4563068
https://doi.org/10.1007/978-3-642-25832-9_14
https://doi.org/10.1007/978-3-642-25832-9_14

[26]

(27]

(28]

[29]

learning-based wrapper method for feature selection.
International Journal of Data Warehousing and Mining,
20(1): 1-33. https://doi.org/10.4018/IJ]DWM.352041
Zhang, Y., Zhao, Z., Zhao, S., Liu, Y., He, K. (2020). A
New Embedded Feature Selection Method using IBALO
mixed with MRMR criteria. Journal of Physics:
Conference Series, 1453(1): 012027.
https://doi.org/10.1088/1742-6596/1453/1/012027
Kamalov, F., Sulieman, H., Alzaatreh, A., Emarly, M.,
Chamlal, H., Safaraliev, M. (2025). Mathematical
methods in feature selection: A review. Mathematics,
13(6): 996. https://doi.org/10.3390/math13060996

Kira, K., Rendell, L. A. (1992). A practical approach to
feature selection. In Machine Learning Proceedings 1992,
Morgan Kaufmann, pp- 249-256.
https://doi.org/10.1016/B978-1-55860-247-2.50037-1
UCI Machine Learning Repository. (2017). University of

2346

[30]

California, Irvine.

Chamorro-Atalaya, O., Arévalo-Tuesta, J., Balarezo-
Mares, D., Gonzales-Pacheco, A., et al. (2023). K-fold
cross-validation through identification of the opinion
classification algorithm for the satisfaction of university
students. International Journal of Online & Biomedical
Engineering, 19(11): 39887.
https://doi.org/10.3991/ijoe.v19i11.39887

Hastie, T., Tibshirani, R., Friedman, J. (2009). The
elements of statistical learning. Preface to the Second
Edition.

Santoso, D.A., Rizqa, 1., Aqmala, D., Alzami, F., Rijati,
N., Marjuni, A. (2025). Performance analysis of multiple
knapsack problem optimization algorithms: A
comparative study for retail and SME applications.
Ingénierie des Systémes d’Information, 30(2): 533-550.
https://doi.org/10.18280/is1.300224


https://doi.org/10.1088/1742-6596/1453/1/012027



