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Road infrastructure plays a crucial role in urban development and public safety. To 

overcome the limitations of traditional road inspection methods, the study presents a real-

time AI-based system that integrates YOLOv8 object detection with GNSS-based 

geolocation for the automatic detection and mapping of road faults. The system operates on 

Android smartphones, which are connected to cameras and GNSS receivers, allowing for 

synchronized image acquisition and position marking during surveys. A dataset consisting 

of 7,518 annotated road surface images was used to train the YOLOv8 model, achieving a 

precision of 82.9%, a recall of 81.8%, and an F1 score of 76.4% to detect common types of 

damage (e.g., potholes, cracks). Geographic coordinates extracted from images via Optical 

Character Recognition (OCR) are validated against ground truth GNSS measurements. 

Planimetric verification yielded a total RMS error of 5.523 m. GNSS signal quality affects 

variations in accuracy, the distance between the camera and the surface, and vehicle speed 

during data collection. Despite these irregularities, the location of the detected damage can 

still be verified in the field. This integrated solution offers scalable and efficient tools for 

georeferenced road condition monitoring, supporting data-driven infrastructure 

maintenance and planning. 

Keywords: 

road, Artificial Intelligence (AI), object 

detection, You Only Look Once (YOLO), 

road damage detection, Global Navigation 

Satellite System (GNSS), Optical Character 

Recognition (OCR) 

1. INTRODUCTION

The road network serves not only as a key indicator of a 

city’s development but also as a foundational element in urban 

planning. As such, proper management is essential to ensure 

its effective functioning and sustainability [1]. Despite their 

importance, roads often present hazardous conditions for both 

humans and animals, prompting extensive research aimed at 

reducing accidents and improving road safety [2, 3]. In 

response to these challenges, conventional methods of road 

damage inspection—traditionally conducted manually and 

visually—have gradually evolved into automated approaches 

driven by Artificial Intelligence (AI) [4]. 

One of the most significant developments in AI is object 

detection in images and videos, which is being increasingly 

utilized in applications such as road surface monitoring. These 

methods use machine learning algorithms that can interpret 

complex data inputs, such as images, text, or audio [5-7]. 

Machine Learning (ML) offers a practical approach to 

achieving AI’s broader objective of extracting meaningful 

patterns from data, resulting in high accuracy across various 

domains, including image classification, facial recognition, 

and even human pose estimation [8-10]. 

Among the many algorithms developed for object detection, 

You Only Look Once (YOLO) stands out for its speed and 

efficiency [11, 12]. As a single-stage detector, YOLO has 

undergone several updates, including YOLOv3, YOLOv4, 

YOLOv5, and, most recently, YOLOv8, each offering 

significant performance improvements [13-16]. Earlier 

models, such as YOLOv5 and YOLOv7, achieved real-time 

detection with respectable accuracy; however, they often faced 

limitations in complex scenes involving small or overlapping 

objects—typical in road environments with varied lighting and 

surface conditions. Moreover, their modular architectures 

required additional customization for tasks like instance 

segmentation or object tracking. Ultralytics YOLOv8, 

released on January 10, 2023, addresses these limitations by 

offering an integrated, end-to-end architecture comprising a 

Backbone, Neck, and Head, optimized for object detection, 

classification, and instance segmentation [17, 18]. Compared 

to YOLOv5, YOLOv8 delivers improved precision, faster 

inference times, and native support for TensorRT and ONNX 

deployment, making it highly suitable for mobile and edge 

computing [19, 20]. Compared to two-stage detectors like 

Faster R-CNN, YOLOv8 offers significantly lower latency 

while maintaining competitive accuracy, an essential 

advantage for real-time road monitoring applications. This 

justifies the selection of YOLOv8 in this study, aiming to 

achieve a balance between speed, accuracy, and deployment 

flexibility. 

However, while YOLO-based models are effective at 

identifying road damage types such as cracks, potholes, and 
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patches, they do not inherently provide geographic 

information about the detected objects. In geospatial 

applications, position is typically represented using 

geographic coordinates, latitude and longitude, and in some 

cases, altitude. Without spatial context, the practical utility of 

detected road damage remains limited, particularly for tasks 

involving maintenance planning, navigation, or public 

reporting. Most existing studies on road damage detection 

using YOLO (e.g., YOLOv5 or YOLOv7) focus solely on 

detection accuracy, without addressing how to georeference 

the detected damage effectively [21]. This gap hinders the 

real-world usability of such systems, particularly in mobile 

and field-based deployments. 

To address this gap, this study integrates YOLOv8 with 

Global Navigation Satellite System (GNSS) data to 

automatically tag detected damage with real-world geographic 

coordinates. GNSS provides real-time, global positioning 

capabilities that are unaffected by weather conditions, making 

it an ideal choice for outdoor data collection [22, 23]. 

Integrating GNSS with image and video capture enables 

seamless synchronization between visual data and spatial 

information. Android smartphones provide an ideal platform 

for this integration, offering support for both USB and wireless 

communication with external devices, such as cameras and 

GNSS receivers [24, 25]. Within this system, YOLOv8 is 

employed to detect road surface damage, while Optical 

Character Recognition (OCR) is used to extract coordinate 

information displayed on the screen. OCR tools, known for 

their high accuracy in recognizing Latin characters, facilitate 

this extraction process [26, 27]. 

In this context, the primary objective of the study is to 

develop an integrated system capable of detecting road 

damage while simultaneously capturing its spatial location in 

the form of geographic coordinates. The proposed solution 

simulates real-time object detection enriched with location 

tagging and further validates the accuracy of these coordinates 

through field-based GNSS measurements. This approach 

enhances the practicality and reliability of automated road 

damage detection systems, making it easier to identify, locate, 

and address road defects in real-world environments. 

2. METHODOLOGY

The hardware configuration for the recording system uses a 

smartphone as the primary control and processing unit. The 

smartphone serves multiple functions, including managing the 

connected camera and GNSS receiver, running the data 

acquisition application, and storing the recorded image and 

position data. In addition to smartphones, tablet devices with 

compatible operating systems and sufficient hardware 

capabilities can also be used as alternatives. Tablets may offer 

larger screen sizes, which can improve user interaction during 

field operations, particularly for monitoring real-time video 

streams and reviewing positional accuracy. This flexibility in 

hardware selection allows the system to adapt to various 

operational needs and user preferences, making it suitable for 

a range of mobile data acquisition scenarios. 

GNSS-based systems are particularly vulnerable to signal 

degradation in challenging environments such as urban 

canyons, tunnels, and dense foliage due to multipath effects 

and satellite signal obstructions [28]. These limitations can 

introduce significant positioning errors, often exceeding 10-20 

meters in severe cases. To address these challenges, 

researchers have developed several mitigation strategies, 

including differential GPS (DGPS), real-time kinematic 

(RTK) correction, and sensor fusion with inertial measurement 

units (IMUs) [29, 30]. For this study, we selected the Beitian 

BN-220 DGPS receiver due to its optimal balance of 

portability, affordability (< $100), and demonstrated 

positioning accuracy (< 2.5 m in open sky conditions) 

compared to conventional GPS modules. 

Figure 1. Recording equipment system design 

In Figure 1, this image recording device and position meter 

are developed using Android technology. The recording and 

its position are displayed on the screen of the phone or tablet. 

Image recorders typically use a live mobile phone camera 

device when recording from a motorcycle, or an external 

camera, such as an action camera or a regular digital camera, 

when using a car. The GNSS board used, Beitian BN-220 

DGPS, offers sub-meter level accuracy in open environments 

and supports GPS and GLONASS satellites, enhancing 

performance under urban conditions. The device is connected 

via Bluetooth to the mobile phone to facilitate real-time data 

exchange. 

Implementation of acquisition data recording on several 

roads in Semarang City, Central Java, Indonesia. The results 

of image and coordinate recording are then processed through 

a detection algorithm using the application created in the first 

stage. The results of the process will be presented as an image 

with a bounding box that displays the classification of road 

damage and the corresponding position coordinates of the 

damage.  

The OCR library used in this study is implemented in 

Python and serves to extract coordinate text embedded within 

images. OCR is a widely adopted method for recognizing and 

converting printed or handwritten text in images into machine-

readable digital formats [31, 32]. OCR is utilized in this 

context because it enables coordinate extraction directly from 

overlaid information shown in the camera’s live feed during 

recording. This method simplifies the synchronization process 

by embedding coordinates visually within the image frame, 

ensuring that each detected object has an apparent spatial 

reference without needing to match separate GNSS logs. 

While direct GNSS data logging could reduce complexity, the 

current OCR-based approach offers flexibility in various 

recording setups where data overlay is embedded in real time. 

One of the most commonly used OCR engines in Python is 

Tesseract, an open-source software developed by Google. 

Tesseract has been extensively validated for its high accuracy 
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in recognizing Latin characters, making it suitable for 

extracting numerical and alphabetic data from various image 

sources [33, 34]. Its integration with Python through libraries 

such as Pytesseract enables seamless processing of image data, 

allowing for the automated reading of positional information 

without manual transcription. This capability plays a crucial 

role in synchronizing visual object detection results with 

precise location data, forming a complete and georeferenced 

dataset for road damage analysis.  

YOLOv8 Model Training: The YOLOv8 object detection 

model was trained on a custom dataset containing 7,518 

annotated images of road surface conditions. Data 

augmentation techniques included random flipping, rotation, 

brightness adjustment, and scaling to improve generalization 

across diverse road and lighting conditions. Training was 

conducted for 100 epochs using a batch size of 16 and an 

image input resolution of 640 × 640 pixels. The Adam 

optimizer was used with an initial learning rate of 0.001. The 

model was validated using a separate dataset (1,000 images), 

achieving a precision of 82.9%, a recall of 81.8%, and an F1 

score of 76.4%. 

Testing of the coordinates of the damage site was also 

carried out by measuring samples in the field. Coordinate 

validation measurements were carried out using GNSS/GPS 

Geodetic tools. Geodetic GNSS tools were chosen as the 

validation tool due to their meticulous and fast measurement 

results. The results of the model and validation are compared 

to determine their accuracy and precision. The accuracy 

assessment is carried out by calculating the Root Mean Square 

Error (RMSE) of the process, which is the square root of the 

sum of the squares of the size difference between the total 

square root value and the number of measurements used. 

RMSE, also known as standard error (σ), is calculated from 

the process of taking the square root of the sum of the squares 

of the size differences and the number of measurements used 

[35-37]. The mathematical definition of RMSE is similar to 

standard deviation, which is the square root of the average of 

the residual squares. The RMSE, denoted as 𝜎, is a commonly 

used statistical metric to measure the magnitude of error 

between predicted or modeled values and actual observed 

values. The formula for calculating RMSE is presented in Eq. 

(1). 

𝜎 = √
∑ 𝐸𝑖

2𝑛
𝑖=0

𝑛
(1) 

where, σ is RMSE, also called standard error, ∑ 𝐸𝑖
2𝑛

𝑖=0  is the 

sum of the squared errors in an observation, and n is the 

number of measurements taken. 

Additionally, positional accuracy is influenced by factors 

such as vehicle speed and camera angle during data 

acquisition. Although not analyzed quantitatively in this study, 

observational data indicated that higher speeds and oblique 

angles can degrade the clarity of coordinate overlays, 

potentially affecting OCR accuracy and GNSS signal stability. 

Future work will explore systematic analysis of these effects. 

3. RESULTS AND DISCUSSIONS

The design of the image recording device is developed by 

integrating several modular components that work together to 

enable the synchronized acquisition of image and positional 

data. The primary components in this system include a camera, 

a GNSS receiver, and a smartphone or tablet, which serves as 

the central processing and control unit. Each element plays a 

specific role in the data collection process: the camera captures 

real-time images or video of the road surface, the GNSS 

receiver provides accurate geographic coordinates, and the 

smartphone functions as both the controller and storage device. 

The connection between the camera and the smartphone is 

established via a USB-C interface, ensuring high-speed and 

stable data transfer for video streaming and control commands. 

Meanwhile, the GNSS receiver communicates wirelessly with 

the smartphone via Bluetooth, allowing for the flexible 

placement of the receiver module without the constraints of 

physical wiring. This modular and wireless design improves 

ease of use in field conditions, reduces clutter, and enhances 

mobility during data collection. The system is designed to be 

lightweight, portable, and adaptable, making it suitable for 

mobile surveying applications such as road condition 

monitoring, asset mapping, and geospatial data acquisition in 

dynamic environments. 

GNSS circuit in Figure 2 is built utilizing the Beitian BN-

220ZF GPS module, the ESP-32 IoT module, and the TP4056 

Protect Charger. The circuit is created using a GNSS Module 

and an IoT-Nodemcu ESP-32 microcontroller. This Receiver 

GPS/GNSS device can stream NMEA positioning data 

wirelessly via Bluetooth. Smartphones receive a precision 

position streaming data acquisition application. This low-

power, portable GNSS receiver design is optimized for field 

deployment where wired connections are impractical. By 

leveraging the wireless communication capabilities of the 

ESP-32 and the compact form factor of the BN-220ZF 

module, the system offers a flexible and efficient solution for 

integrating accurate geospatial data into mobile survey 

workflows. It is instrumental in road condition monitoring, 

asset mapping, and other field-based geoinformatics 

applications requiring centimeter-level positional accuracy. 

Figure 2. GNSS circuit 

The sturdy aluminum bracket serves as the central mount 

for various data acquisition devices installed on the car hood. 

Designed to be horizontal and symmetrical, this bracket 

supports the primary equipment. System stability is 

maintained by two strong suction cups, ensuring all devices 

remain secure even when the vehicle is in motion. The 

bracket’s design enables flexible and precise installation, 
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making it ideal for road survey applications and automated 

field data collection. 

Figure 3. Camera and GNSS receiver configuration on a 

bracket for road data acquisition 

Figure 3 shows a camera mounted on one side of the support 

bar, as indicated by the left arrow, which records the journey 

or visually documents road conditions during data acquisition. 

On the opposite side, shown by the right arrow, a GNSS 

receiver is installed to obtain precise positioning data. Both 

devices are mounted on a horizontal bracket designed to 

provide stability and ensure optimal performance under 

dynamic conditions during field surveys. 

A road data acquisition system is installed on a vehicle for 

visual surveying and position-based mapping. The system 

integrates several key components, including a USB camera, a 

GNSS receiver, a support bracket, and a smartphone, which 

serves as the monitoring device. The camera and receiver are 

mounted on the front hood of the vehicle using a horizontal 

metal bracket secured with suction cups to ensure device 

stability during vehicle movement. Inside the car, a 

smartphone is mounted on the dashboard, serving as a display 

unit to monitor the live video feed from the external camera in 

real-time. 

The image in Figure 4 illustrates that the external camera is 

connected to the smartphone via a USB interface and 

controlled using a dedicated application. This application 

displays the live video stream from the camera, complete with 

a simple user interface, such as a “Record” button to start or 

stop recording. The GNSS receiver installed on the opposite 

side captures precise positional coordinates, allowing each 

video frame to be associated with accurate location data. This 

integrated setup enables efficient and synchronized road 

surveys, providing both visual and spatial documentation that 

can be used for various analyses, such as detecting road 

damage, mapping assets, or monitoring longitudinal 

environmental conditions. 

The survey system produces data in the form of road surface 

images enriched with spatial information such as geographic 

coordinates (latitude and longitude), altitude, speed, and 

timestamp. This integration of visual and spatial data enables 

each captured image to be precisely georeferenced, allowing 

users to identify not only the type and severity of road surface 

conditions but also the exact location of the observed damage 

on a map. The inclusion of timestamp data ensures temporal 

tracking, which is essential for monitoring degradation over 

time or for comparing data across different survey periods. 

Meanwhile, vehicle speed is a critical factor affecting the 

reliability of recorded coordinates, as higher speeds can 

increase the margin of error in location measurement due to 

temporal displacement and GNSS lag. Altogether, this 

combination of attributes allows the dataset to support 

comprehensive spatial analysis, infrastructure planning, and 

maintenance decision-making, making it highly valuable for 

transportation authorities, urban planners, and geospatial 

analysts. 

Figure 4. In-vehicle monitoring of external camera feed 

for road surveying 

Figure 5. Detection image with additional coordinates 

The image captured in Figure 5 shows the output of an 

automated road damage detection system that utilizes 

computer vision and geospatial tagging to identify and localize 

road surface defects. The image shows a pothole (“lubang”) 

detected with a confidence score of 0.87, enclosed in a 

bounding box and visually highlighted for straightforward 

interpretation. The system overlays metadata directly onto the 

video frame, including latitude, longitude, altitude, accuracy, 

and timestamp, enabling precise geolocation of the identified 

road damage. 

Such a system combines visual analysis from a front-facing 

camera with GNSS data to support real-time condition 

monitoring of roads. The information displayed—such as 

coordinates and detection confidence—can be stored and later 

used for road maintenance planning, infrastructure audits, or 
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integration into GIS-based asset management systems. This 

approach improves efficiency and consistency in road 

assessments, especially for large-scale urban or rural 

monitoring programs. 

Furthermore, a position test was carried out. This test aims 

to obtain quantitative data regarding the position of the road 

damage class. Through this measurement, the information on 

the position or location of road damage, as shown by the 

model’s results in the application system, can be as precise or 

accurate. The use of the position or location generated by this 

application aims to facilitate identifying the damage site. 

Subsequently, it will make it easier for surveyors or those on 

duty to locate it again in the field. 

The image shows a field verification activity conducted to 

directly identify road surface damage while simultaneously 

recording positional coordinates using a GNSS device with the 

NRTK (Network Real-time Kinematic) method. This method 

allows for centimeter-level positional accuracy, making it 

highly suitable for validating damage detection results from 

the automated system. Measurements are taken precisely at the 

damage point (in this case, a pothole), with the operator 

ensuring the device is held perpendicular to the surface and 

that the RTK correction signal remains stable. This process is 

essential to ensure the spatial reliability of the detection data. 

It serves as a reference for evaluating the performance of the 

image and AI-based mapping system used in the previous road 

survey. 

The test compared the model-generated coordinates with 

the field verification results, revealing positional discrepancies 

between the automated detection system and the GNSS NRTK 

ground measurements. These differences were calculated as 

the deviation in latitude (ΔE) and longitude (ΔN), and the total 

positional error was computed in meters using the RMSE 

method. The resulting error values provide insight into the 

spatial accuracy of the automated detection system and serve 

as a critical reference for evaluating model performance and 

identifying potential improvements, whether in the detection 

algorithm or the integration of spatial data. 

Table 1. Comparison of model and verified coordinates with positional error metrics 

No. 
Model Verification Speed 

Km/h 
ΔE ΔN Error Total 

E N E N 

1 438283.730 9221107.683 438284.756 9221109.742 19.760 -1.026 -2.059 2.300 

2 438289.164 9221100.030 438290.371 9221103.034 20.230 -1.207 -3.004 3.238 

3 438315.850 9221111.554 438318.237 9221114.240 21.740 -2.387 -2.686 3.594 

4 438016.951 9221011.747 438020.771 9221015.716 27.860 -3.820 -3.969 5.509 

5 438023.893 9221009.166 438027.903 9221013.253 26.420 -4.010 -4.087 5.725 

6 437926.281 9221608.627 437919.677 9221603.324 34.130 6.604 5.303 8.470 

7 437914.045 9221680.691 437909.621 9221685.548 32.180 4.424 -4.857 6.570 

8 437897.541 9221755.230 437899.245 9221756.914 20.840 -1.704 -1.684 2.396 

9 440642.436 9221129.655 440639.228 9221131.255 27.100 3.208 -1.601 3.585 

10 440637.403 9221131.082 440640.228 9221133.255 18.540 -2.825 -2.174 3.565 

11 440615.998 9221138.099 440613.136 9221139.880 20.700 2.863 -1.781 3.371 

12 440592.903 9221146.836 440594.379 9221146.935 17.240 -1.476 -0.099 1.480 

13 440575.907 9221152.192 440577.338 9221152.135 19.780 -1.431 0.057 1.433 

14 440501.840 9221180.812 440503.082 9221181.186 24.300 -1.242 -0.374 1.297 

15 440453.134 9221285.477 440452.452 9221282.406 25.810 0.681 3.071 3.145 

16 440470.726 9221410.460 440465.205 9221406.988 33.730 5.521 3.472 6.522 

17 440476.448 9221485.162 440480.899 9221489.231 33.050 -4.451 -4.068 6.031 

18 440446.637 9221665.537 440443.411 9221668.971 31.280 3.226 -3.434 4.712 

19 440150.786 9222026.462 440151.578 9222017.945 33.280 -0.792 8.517 8.554 

20 440163.250 9222097.480 440166.027 9222102.124 25.960 -2.777 -4.644 5.411 

21 440162.332 9222090.578 440165.492 9222094.429 26.100 -3.160 -3.851 4.981 

22 440156.610 9222033.089 440157.180 9222034.826 25.700 -0.570 -1.737 1.829 

23 440156.141 9222012.453 440155.528 9222012.722 24.910 0.613 -0.269 0.670 

24 440191.349 9221961.923 440197.264 9221954.957 35.500 -5.915 6.966 9.138 

25 440287.317 9221847.925 440284.727 9221844.968 30.600 2.590 2.956 3.931 

26 440424.814 9221699.578 440421.916 9221707.200 39.700 2.898 -7.621 8.154 

27 440400.019 9221738.976 440396.222 9221745.120 42.200 3.797 -6.144 7.223 

28 440424.814 9221699.578 440428.390 9221692.310 39.800 -3.576 7.268 8.100 

29 440389.213 9221758.927 440393.726 9221751.654 40.210 -4.513 7.273 8.559 

30 440430.912 9221690.489 440426.286 9221695.181 37.690 4.625 -4.692 6.589 

31 440382.711 9221765.442 440378.255 9221770.787 36.500 4.456 -5.345 6.959 

30 440430.912 9221690.489 440426.286 9221695.181 37.690 4.625 -4.692 6.589 

31 440382.711 9221765.442 440378.255 9221770.787 36.500 4.456 -5.345 6.959 

Min: 0.670 

Max: 9.138 

Average: 4.937 

RMS 

error: 
5.523 

Table 1 presents the comparison results between the model-

generated coordinates and the verified field measurements 

used to evaluate the positional accuracy of road damage 

detection. The ΔE (Delta Easting) and ΔN (Delta Northing) 

values represent the differences between the model and 

ground-truth coordinates, which were used to compute the 

total positional error using Euclidean distance. Figure 6 

illustrates the ground verification process conducted using a 

GNSS RTK receiver, where the detected road damage points 

were precisely measured in the field to obtain high-accuracy 
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reference coordinates. This procedure ensured that each 

detected defect was spatially validated against the model-

generated coordinates, thereby supporting the positional 

accuracy assessment presented in Table 1. Across all 

observations, the RMSE was calculated at 5.523 m, with error 

values ranging from 0.670 m to 9.138 m. These errors reflect 

the overall spatial deviation and are influenced by factors such 

as the accuracy limitations of the GNSS module used (DGPS-

grade), the relative distance between the camera and damage 

point, and the vehicle’s speed during data acquisition. 

Further analysis revealed that vehicle speed has a 

measurable impact on geolocation accuracy. As detailed in 

Table 1 and visualized in Figure 7, higher speeds consistently 

resulted in greater positional discrepancies. Regression 

analysis confirmed a strong linear correlation between speed 

and positional error (R²  = 0.7168), indicating that motion 

dynamics during capture can significantly degrade spatial 

accuracy. This result suggests that operating at lower speeds 

(≤ 30 km/h) can improve accuracy in mobile survey settings. 

Figure 6. Implementation of verification of damage positions in the field 

Figure 7. Plot of vehicle speed vs. RMSE 
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Figure 8. Differences in the distance of road damage relative to the camera: (A) damage captured from a far distance, (B) 

damage captured from a closer distance within the image frame 

While the achieved RMSE does not satisfy sub-meter 

georeferencing standards, it is sufficient for practical road 

maintenance tasks where errors within a few meters remain 

visually traceable. Furthermore, a comparative evaluation with 

similar mobile mapping systems [38, 39] indicates that the 

system's performance aligns with industry-accepted accuracy 

levels for field-level planning and damage documentation. 

These results confirm that controlling vehicle speed can 

enhance spatial accuracy in mobile surveys, and we 

recommend limiting speed to below 30 km/h for improved 

precision. The YOLOv8 model used for damage detection 

achieved reliable performance with mAP@0.5 of 76.4% and 

mAP@0.5:0.95 of 76.4% at an IoU threshold of 0.76, ensuring 

the reliability of visual detection outcomes. 

Additionally, the study initially observed that the relative 

position of road damage within the image frame—specifically, 

the proximity of the damage to the camera—may influence 

detection clarity and, consequently, spatial accuracy. However, 

due to limitations in data collection, particularly the absence 

of direct measurements of object distance during field surveys, 

this relationship could not be quantitatively assessed. As such, 

we treat this influence as hypothetical in the present study. 

Prior literature in photogrammetry and geolocation has 

demonstrated that increased object distance can reduce image 

resolution and introduce geometric distortions, which may 

affect both detection performance and coordinate estimation. 

Notably, Dai et al. [40] highlight that spatial errors in 

photogrammetric measurements increase proportionally with 

object distance relative to the camera baseline, thereby 

degrading geolocation accuracy. In this context, we retain the 

discussion to contextualize possible sources of error observed 

in our spatial accuracy results. Figure 8 illustrates this concept 

by comparing two image captures of the same road defect 

taken from different distances. In subgraph (A) of Figure 8, the 

damage is recorded from a greater distance, while in subgraph 

(B), it is captured more closely. Although the damage and 

location are constant, the difference in visual appearance 

across frames likely influenced detection outcomes and could 

contribute to coordinate deviation. 

The vehicle speed and distance between the camera and the 

actual damage location are critical factors that can affect the 

positional accuracy of data acquisition. This factor helps 

explain the spatial deviations observed, where differences 

between model-generated and verified coordinates reached 

several meters. Therefore, the relative position of the damage 

within the image frame should be considered a potential source 

of error in image-based geospatial data acquisition systems. 

4. CONCLUSIONS

The developed system integrates a GNSS receiver with a 

mobile device to acquire georeferenced imagery of road 

surface conditions. The GNSS module communicates 

wirelessly with the smartphone via Bluetooth, facilitating real-

time positional data exchange during field surveys. 

Planimetric verification using field measurements 

demonstrated positional discrepancies, with total error values 

ranging from 0.670 meters to 9.138 meters. The average error 

was 4.937 meters, culminating in an RMSE of 5.523 meters. 

These deviations are influenced by several factors, including 

the inherent accuracy limitations of the GPS device (DGPS-

grade), the movement speed of the vehicle, and the varying 

distance between the camera and the damaged object during 

capture. Despite these challenges, the error margins remain 

within a field-verifiable range, supporting practical road 

condition monitoring applications. 

To enhance spatial accuracy and system robustness, 

especially in dynamic field environments, future 

improvements should consider the integration of RTK-GNSS 
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modules (e.g., u-blox ZED-F9P), which provide centimeter-

level accuracy suitable for municipal asset management tasks. 

Although these modules incur higher costs, they offer a 

favorable cost-benefit ratio for large-scale deployments where 

positional precision is critical. Additionally, refining camera-

GNSS synchronization, optimizing image acquisition angles, 

and extending battery life and data storage capabilities will 

support system scalability for prolonged and wide-area 

surveys. Ultimately, the system provides a portable, low-cost, 

and scalable solution for road surface damage detection and 

geospatial documentation, with potential for further 

enhancements to meet the demands of smart city infrastructure 

monitoring. 
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