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Road infrastructure plays a crucial role in urban development and public safety. To
overcome the limitations of traditional road inspection methods, the study presents a real-
time Al-based system that integrates YOLOV8 object detection with GNSS-based
geolocation for the automatic detection and mapping of road faults. The system operates on
Android smartphones, which are connected to cameras and GNSS receivers, allowing for
synchronized image acquisition and position marking during surveys. A dataset consisting
of 7,518 annotated road surface images was used to train the YOLOv8 model, achieving a
precision of 82.9%, a recall of 81.8%, and an F1 score of 76.4% to detect common types of
damage (e.g., potholes, cracks). Geographic coordinates extracted from images via Optical
Character Recognition (OCR) are validated against ground truth GNSS measurements.
Planimetric verification yielded a total RMS error of 5.523 m. GNSS signal quality affects
variations in accuracy, the distance between the camera and the surface, and vehicle speed
during data collection. Despite these irregularities, the location of the detected damage can
still be verified in the field. This integrated solution offers scalable and efficient tools for

georeferenced

road condition

monitoring, supporting data-driven infrastructure

maintenance and planning.

1. INTRODUCTION

The road network serves not only as a key indicator of a
city’s development but also as a foundational element in urban
planning. As such, proper management is essential to ensure
its effective functioning and sustainability [1]. Despite their
importance, roads often present hazardous conditions for both
humans and animals, prompting extensive research aimed at
reducing accidents and improving road safety [2, 3]. In
response to these challenges, conventional methods of road
damage inspection—traditionally conducted manually and
visually—have gradually evolved into automated approaches
driven by Artificial Intelligence (AI) [4].

One of the most significant developments in Al is object
detection in images and videos, which is being increasingly
utilized in applications such as road surface monitoring. These
methods use machine learning algorithms that can interpret
complex data inputs, such as images, text, or audio [5-7].
Machine Learning (ML) offers a practical approach to
achieving AI’s broader objective of extracting meaningful
patterns from data, resulting in high accuracy across various
domains, including image classification, facial recognition,
and even human pose estimation [8-10].

Among the many algorithms developed for object detection,
You Only Look Once (YOLO) stands out for its speed and
efficiency [11, 12]. As a single-stage detector, YOLO has
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undergone several updates, including YOLOv3, YOLOv4,
YOLOvS, and, most recently, YOLOvS8, each offering
significant performance improvements [13-16]. Earlier
models, such as YOLOv5 and YOLOvV7, achieved real-time
detection with respectable accuracy; however, they often faced
limitations in complex scenes involving small or overlapping
objects—typical in road environments with varied lighting and
surface conditions. Moreover, their modular architectures
required additional customization for tasks like instance
segmentation or object tracking. Ultralytics YOLOVS,
released on January 10, 2023, addresses these limitations by
offering an integrated, end-to-end architecture comprising a
Backbone, Neck, and Head, optimized for object detection,
classification, and instance segmentation [17, 18]. Compared
to YOLOvS, YOLOVS delivers improved precision, faster
inference times, and native support for TensorRT and ONNX
deployment, making it highly suitable for mobile and edge
computing [19, 20]. Compared to two-stage detectors like
Faster R-CNN, YOLOVS offers significantly lower latency
while maintaining competitive accuracy, an essential
advantage for real-time road monitoring applications. This
justifies the selection of YOLOVS in this study, aiming to
achieve a balance between speed, accuracy, and deployment
flexibility.

However, while YOLO-based models are effective at
identifying road damage types such as cracks, potholes, and
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patches, they do not inherently provide geographic
information about the detected objects. In geospatial
applications, position is typically represented using

geographic coordinates, latitude and longitude, and in some
cases, altitude. Without spatial context, the practical utility of
detected road damage remains limited, particularly for tasks
involving maintenance planning, navigation, or public
reporting. Most existing studies on road damage detection
using YOLO (e.g., YOLOvS or YOLOvV7) focus solely on
detection accuracy, without addressing how to georeference
the detected damage effectively [21]. This gap hinders the
real-world usability of such systems, particularly in mobile
and field-based deployments.

To address this gap, this study integrates YOLOv8 with
Global Navigation Satellite System (GNSS) data to
automatically tag detected damage with real-world geographic
coordinates. GNSS provides real-time, global positioning
capabilities that are unaffected by weather conditions, making
it an ideal choice for outdoor data collection [22, 23].
Integrating GNSS with image and video capture enables
seamless synchronization between visual data and spatial
information. Android smartphones provide an ideal platform
for this integration, offering support for both USB and wireless
communication with external devices, such as cameras and
GNSS receivers [24, 25]. Within this system, YOLOvVS is
employed to detect road surface damage, while Optical
Character Recognition (OCR) is used to extract coordinate
information displayed on the screen. OCR tools, known for
their high accuracy in recognizing Latin characters, facilitate
this extraction process [26, 27].

In this context, the primary objective of the study is to
develop an integrated system capable of detecting road
damage while simultaneously capturing its spatial location in
the form of geographic coordinates. The proposed solution
simulates real-time object detection enriched with location
tagging and further validates the accuracy of these coordinates
through field-based GNSS measurements. This approach
enhances the practicality and reliability of automated road
damage detection systems, making it easier to identify, locate,
and address road defects in real-world environments.

2. METHODOLOGY

The hardware configuration for the recording system uses a
smartphone as the primary control and processing unit. The
smartphone serves multiple functions, including managing the
connected camera and GNSS receiver, running the data
acquisition application, and storing the recorded image and
position data. In addition to smartphones, tablet devices with
compatible operating systems and sufficient hardware
capabilities can also be used as alternatives. Tablets may offer
larger screen sizes, which can improve user interaction during
field operations, particularly for monitoring real-time video
streams and reviewing positional accuracy. This flexibility in
hardware selection allows the system to adapt to various
operational needs and user preferences, making it suitable for
a range of mobile data acquisition scenarios.

GNSS-based systems are particularly vulnerable to signal
degradation in challenging environments such as urban
canyons, tunnels, and dense foliage due to multipath effects
and satellite signal obstructions [28]. These limitations can
introduce significant positioning errors, often exceeding 10-20
meters in severe cases. To address these challenges,
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researchers have developed several mitigation strategies,
including differential GPS (DGPS), real-time kinematic
(RTK) correction, and sensor fusion with inertial measurement
units (IMUs) [29, 30]. For this study, we selected the Beitian
BN-220 DGPS receiver due to its optimal balance of
portability, affordability (< $100), and demonstrated
positioning accuracy (< 2.5 m in open sky conditions)
compared to conventional GPS modules.

\I‘nternet

Action Camera

GNSS Board
Figure 1. Recording equipment system design

In Figure 1, this image recording device and position meter
are developed using Android technology. The recording and
its position are displayed on the screen of the phone or tablet.
Image recorders typically use a live mobile phone camera
device when recording from a motorcycle, or an external
camera, such as an action camera or a regular digital camera,
when using a car. The GNSS board used, Beitian BN-220
DGPS, offers sub-meter level accuracy in open environments
and supports GPS and GLONASS satellites, enhancing
performance under urban conditions. The device is connected
via Bluetooth to the mobile phone to facilitate real-time data
exchange.

Implementation of acquisition data recording on several
roads in Semarang City, Central Java, Indonesia. The results
of image and coordinate recording are then processed through
a detection algorithm using the application created in the first
stage. The results of the process will be presented as an image
with a bounding box that displays the classification of road
damage and the corresponding position coordinates of the
damage.

The OCR library used in this study is implemented in
Python and serves to extract coordinate text embedded within
images. OCR is a widely adopted method for recognizing and
converting printed or handwritten text in images into machine-
readable digital formats [31, 32]. OCR is utilized in this
context because it enables coordinate extraction directly from
overlaid information shown in the camera’s live feed during
recording. This method simplifies the synchronization process
by embedding coordinates visually within the image frame,
ensuring that each detected object has an apparent spatial
reference without needing to match separate GNSS logs.
While direct GNSS data logging could reduce complexity, the
current OCR-based approach offers flexibility in various
recording setups where data overlay is embedded in real time.

One of the most commonly used OCR engines in Python is
Tesseract, an open-source software developed by Google.
Tesseract has been extensively validated for its high accuracy



in recognizing Latin characters, making it suitable for
extracting numerical and alphabetic data from various image
sources [33, 34]. Its integration with Python through libraries
such as Pytesseract enables seamless processing of image data,
allowing for the automated reading of positional information
without manual transcription. This capability plays a crucial
role in synchronizing visual object detection results with
precise location data, forming a complete and georeferenced
dataset for road damage analysis.

YOLOvVS8 Model Training: The YOLOVS object detection
model was trained on a custom dataset containing 7,518
annotated images of road surface conditions. Data
augmentation techniques included random flipping, rotation,
brightness adjustment, and scaling to improve generalization
across diverse road and lighting conditions. Training was
conducted for 100 epochs using a batch size of 16 and an
image input resolution of 640 x 640 pixels. The Adam
optimizer was used with an initial learning rate of 0.001. The
model was validated using a separate dataset (1,000 images),
achieving a precision of 82.9%, a recall of 81.8%, and an F1
score of 76.4%.

Testing of the coordinates of the damage site was also
carried out by measuring samples in the field. Coordinate
validation measurements were carried out using GNSS/GPS
Geodetic tools. Geodetic GNSS tools were chosen as the
validation tool due to their meticulous and fast measurement
results. The results of the model and validation are compared
to determine their accuracy and precision. The accuracy
assessment is carried out by calculating the Root Mean Square
Error (RMSE) of the process, which is the square root of the
sum of the squares of the size difference between the total
square root value and the number of measurements used.
RMSE, also known as standard error (o), is calculated from
the process of taking the square root of the sum of the squares
of the size differences and the number of measurements used
[35-37]. The mathematical definition of RMSE is similar to
standard deviation, which is the square root of the average of
the residual squares. The RMSE, denoted as o, is a commonly
used statistical metric to measure the magnitude of error
between predicted or modeled values and actual observed
values. The formula for calculating RMSE is presented in Eq.

(D).
’ n o E?
o= [&i=07 (1
n
where, ¢ is RMSE, also called standard error, Y%, E;? is the

sum of the squared errors in an observation, and n is the
number of measurements taken.

Additionally, positional accuracy is influenced by factors
such as vehicle speed and camera angle during data
acquisition. Although not analyzed quantitatively in this study,
observational data indicated that higher speeds and oblique
angles can degrade the clarity of coordinate overlays,
potentially affecting OCR accuracy and GNSS signal stability.
Future work will explore systematic analysis of these effects.

3. RESULTS AND DISCUSSIONS

The design of the image recording device is developed by
integrating several modular components that work together to
enable the synchronized acquisition of image and positional
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data. The primary components in this system include a camera,
a GNSS receiver, and a smartphone or tablet, which serves as
the central processing and control unit. Each element plays a
specific role in the data collection process: the camera captures
real-time images or video of the road surface, the GNSS
receiver provides accurate geographic coordinates, and the
smartphone functions as both the controller and storage device.
The connection between the camera and the smartphone is
established via a USB-C interface, ensuring high-speed and
stable data transfer for video streaming and control commands.
Meanwhile, the GNSS receiver communicates wirelessly with
the smartphone via Bluetooth, allowing for the flexible
placement of the receiver module without the constraints of
physical wiring. This modular and wireless design improves
ease of use in field conditions, reduces clutter, and enhances
mobility during data collection. The system is designed to be
lightweight, portable, and adaptable, making it suitable for
mobile surveying applications such as road condition
monitoring, asset mapping, and geospatial data acquisition in
dynamic environments.

GNSS circuit in Figure 2 is built utilizing the Beitian BN-
220ZF GPS module, the ESP-32 IoT module, and the TP4056
Protect Charger. The circuit is created using a GNSS Module
and an loT-Nodemcu ESP-32 microcontroller. This Receiver
GPS/GNSS device can stream NMEA positioning data
wirelessly via Bluetooth. Smartphones receive a precision
position streaming data acquisition application. This low-
power, portable GNSS receiver design is optimized for field
deployment where wired connections are impractical. By
leveraging the wireless communication capabilities of the
ESP-32 and the compact form factor of the BN-220ZF
module, the system offers a flexible and efficient solution for
integrating accurate geospatial data into mobile survey
workflows. It is instrumental in road condition monitoring,
asset mapping, and other field-based geoinformatics
applications requiring centimeter-level positional accuracy.

NODEMCU ESP32

Beitian
BN-220 GPS

Saklar ON/OF prerrey

UsB-C
Charging board

r—

Figure 2. GNSS circuit

The sturdy aluminum bracket serves as the central mount
for various data acquisition devices installed on the car hood.
Designed to be horizontal and symmetrical, this bracket
supports the primary equipment. System stability is
maintained by two strong suction cups, ensuring all devices
remain secure even when the vehicle is in motion. The
bracket’s design enables flexible and precise installation,



making it ideal for road survey applications and automated
field data collection.

CAMERA

BRACKET

Figure 3. Camera and GNSS receiver configuration on a
bracket for road data acquisition

Figure 3 shows a camera mounted on one side of the support
bar, as indicated by the left arrow, which records the journey
or visually documents road conditions during data acquisition.
On the opposite side, shown by the right arrow, a GNSS
receiver is installed to obtain precise positioning data. Both
devices are mounted on a horizontal bracket designed to
provide stability and ensure optimal performance under
dynamic conditions during field surveys.

A road data acquisition system is installed on a vehicle for
visual surveying and position-based mapping. The system
integrates several key components, including a USB camera, a
GNSS receiver, a support bracket, and a smartphone, which
serves as the monitoring device. The camera and receiver are
mounted on the front hood of the vehicle using a horizontal
metal bracket secured with suction cups to ensure device
stability during vehicle movement. Inside the car, a
smartphone is mounted on the dashboard, serving as a display
unit to monitor the live video feed from the external camera in
real-time.

The image in Figure 4 illustrates that the external camera is
connected to the smartphone via a USB interface and
controlled using a dedicated application. This application
displays the live video stream from the camera, complete with
a simple user interface, such as a “Record” button to start or
stop recording. The GNSS receiver installed on the opposite
side captures precise positional coordinates, allowing each
video frame to be associated with accurate location data. This
integrated setup enables efficient and synchronized road
surveys, providing both visual and spatial documentation that
can be used for various analyses, such as detecting road
damage, mapping assets, or monitoring longitudinal
environmental conditions.

The survey system produces data in the form of road surface
images enriched with spatial information such as geographic
coordinates (latitude and longitude), altitude, speed, and
timestamp. This integration of visual and spatial data enables
each captured image to be precisely georeferenced, allowing
users to identify not only the type and severity of road surface
conditions but also the exact location of the observed damage
on a map. The inclusion of timestamp data ensures temporal
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tracking, which is essential for monitoring degradation over
time or for comparing data across different survey periods.
Meanwhile, vehicle speed is a critical factor affecting the
reliability of recorded coordinates, as higher speeds can
increase the margin of error in location measurement due to
temporal displacement and GNSS lag. Altogether, this
combination of attributes allows the dataset to support
comprehensive spatial analysis, infrastructure planning, and
maintenance decision-making, making it highly valuable for
transportation authorities, urban planners, and geospatial
analysts.

CONTROLLER
Smartphone

Figure 4. In-vehicle monitoring of external camera feed
for road surveying

Figure 5. Detection image with additional coordinates

The image captured in Figure 5 shows the output of an
automated road damage detection system that utilizes
computer vision and geospatial tagging to identify and localize
road surface defects. The image shows a pothole (“lubang”)
detected with a confidence score of 0.87, enclosed in a
bounding box and visually highlighted for straightforward
interpretation. The system overlays metadata directly onto the
video frame, including latitude, longitude, altitude, accuracy,
and timestamp, enabling precise geolocation of the identified
road damage.

Such a system combines visual analysis from a front-facing
camera with GNSS data to support real-time condition
monitoring of roads. The information displayed—such as
coordinates and detection confidence—can be stored and later
used for road maintenance planning, infrastructure audits, or



integration into GIS-based asset management systems. This
approach improves efficiency and consistency in road
assessments, especially for large-scale urban or rural
monitoring programs.

Furthermore, a position test was carried out. This test aims
to obtain quantitative data regarding the position of the road
damage class. Through this measurement, the information on
the position or location of road damage, as shown by the
model’s results in the application system, can be as precise or
accurate. The use of the position or location generated by this
application aims to facilitate identifying the damage site.
Subsequently, it will make it easier for surveyors or those on
duty to locate it again in the field.

The image shows a field verification activity conducted to
directly identify road surface damage while simultaneously
recording positional coordinates using a GNSS device with the
NRTK (Network Real-time Kinematic) method. This method
allows for centimeter-level positional accuracy, making it
highly suitable for validating damage detection results from

the automated system. Measurements are taken precisely at the
damage point (in this case, a pothole), with the operator
ensuring the device is held perpendicular to the surface and
that the RTK correction signal remains stable. This process is
essential to ensure the spatial reliability of the detection data.
It serves as a reference for evaluating the performance of the
image and Al-based mapping system used in the previous road
survey.

The test compared the model-generated coordinates with
the field verification results, revealing positional discrepancies
between the automated detection system and the GNSS NRTK
ground measurements. These differences were calculated as
the deviation in latitude (AE) and longitude (AN), and the total
positional error was computed in meters using the RMSE
method. The resulting error values provide insight into the
spatial accuracy of the automated detection system and serve
as a critical reference for evaluating model performance and
identifying potential improvements, whether in the detection
algorithm or the integration of spatial data.

Table 1. Comparison of model and verified coordinates with positional error metrics

Model

Verification

Speed

No. E N E N Km/h AE AN Error Total

1 438283.730 9221107.683  438284.756 9221109.742 19.760 -1.026 -2.059 2.300

2 438289.164 9221100.030  438290.371 9221103.034 20.230  -1.207 -3.004 3.238

3 438315.850 9221111.554  438318.237 9221114.240 21.740  -2.387 -2.686 3.594

4 438016.951 9221011.747  438020.771 9221015.716 27.860 -3.820 -3.969 5.509

5 438023.893 9221009.166  438027.903 9221013.253 26.420 -4.010 -4.087 5.725

6 437926.281 9221608.627  437919.677 9221603.324 34.130 6.604 5.303 8.470

7 437914.045 9221680.691  437909.621 9221685.548 32.180 4.424 -4.857 6.570

8 437897.541 9221755.230  437899.245 9221756.914 20.840 -1.704 -1.684 2.396

9 440642.436 9221129.655  440639.228 9221131.255 27.100 3.208 -1.601 3.585

10 440637.403 9221131.082  440640.228 9221133.255 18.540 -2.825 -2.174 3.565

11  440615.998 9221138.099  440613.136 9221139.880 20.700 2.863 -1.781 3.371

12 440592.903 9221146.836  440594.379 9221146.935 17.240 -1.476 -0.099 1.480

13 440575.907 9221152.192  440577.338 9221152.135 19.780 -1.431 0.057 1.433

14  440501.840 9221180.812  440503.082 9221181.186 24300 -1.242 -0.374 1.297

15  440453.134 9221285.477  440452.452 9221282.406 25.810 0.681 3.071 3.145

16  440470.726 9221410.460  440465.205 9221406.988 33.730 5.521 3.472 6.522

17  440476.448 9221485.162  440480.899 9221489.231 33.050 -4.451 -4.068 6.031

18  440446.637 9221665.537  440443.411 9221668.971 31.280 3.226 -3.434 4,712

19 440150.786 9222026.462  440151.578 9222017.945 33.280 -0.792 8.517 8.554

20 440163.250 9222097.480  440166.027 9222102.124 25960 -2.777 -4.644 5.411

21  440162.332 9222090.578  440165.492 9222094.429 26.100 -3.160 -3.851 4,981

22  440156.610 9222033.089  440157.180 9222034.826 25.700 -0.570 -1.737 1.829

23 440156.141 9222012.453  440155.528 9222012.722 24910 0.613 -0.269 0.670

24  440191.349 9221961.923  440197.264 9221954.957 35,500 -5.915 6.966 9.138

25 440287.317 9221847.925  440284.727 9221844.968 30.600 2.590 2.956 3.931

26  440424.814 9221699.578  440421.916 9221707.200 39.700 2.898 -7.621 8.154

27  440400.019 9221738.976  440396.222 9221745.120 42.200 3.797 -6.144 7.223

28  440424.814 9221699.578  440428.390 9221692.310 39.800 -3.576 7.268 8.100

29  440389.213 9221758.927  440393.726 9221751.654 40.210 -4.513 7.273 8.559

30 440430.912 9221690.489  440426.286 9221695.181 37.690 4.625 -4.692 6.589

31 440382.711 9221765.442  440378.255 9221770.787 36.500 4.456 -5.345 6.959

30 440430.912 9221690.489  440426.286 9221695.181 37.690 4.625 -4.692 6.589

31 440382.711 9221765.442  440378.255 9221770.787 36.500 4.456 -5.345 6.959
Min: 0.670
Max: 9.138
Average: 4.937
RMS 5503

error:

Table 1 presents the comparison results between the model-
generated coordinates and the verified field measurements
used to evaluate the positional accuracy of road damage
detection. The AE (Delta Easting) and AN (Delta Northing)
values represent the differences between the model and
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ground-truth coordinates, which were used to compute the
total positional error using Euclidean distance. Figure 6
illustrates the ground verification process conducted using a
GNSS RTK receiver, where the detected road damage points
were precisely measured in the field to obtain high-accuracy



reference coordinates. This procedure ensured that each
detected defect was spatially validated against the model-
generated coordinates, thereby supporting the positional
accuracy assessment presented in Table 1. Across all
observations, the RMSE was calculated at 5.523 m, with error
values ranging from 0.670 m to 9.138 m. These errors reflect
the overall spatial deviation and are influenced by factors such
as the accuracy limitations of the GNSS module used (DGPS-
grade), the relative distance between the camera and damage
point, and the vehicle’s speed during data acquisition.

Further analysis revealed that vehicle speed has a
measurable impact on geolocation accuracy. As detailed in
Table 1 and visualized in Figure 7, higher speeds consistently
resulted in greater positional discrepancies. Regression
analysis confirmed a strong linear correlation between speed
and positional error (R*> = 0.7168), indicating that motion
dynamics during capture can significantly degrade spatial
accuracy. This result suggests that operating at lower speeds
(= 30 km/h) can improve accuracy in mobile survey settings.

Figure 6. Implementation of verification of damage positions in the field
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Figure 7. Plot of vehicle speed vs. RMSE
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Figure 8. Differences in the distance of road damage relative to the camera: (A) damage captured from a far distance, (B)
damage captured from a closer distance within the image frame

While the achieved RMSE does not satisfy sub-meter
georeferencing standards, it is sufficient for practical road
maintenance tasks where errors within a few meters remain
visually traceable. Furthermore, a comparative evaluation with
similar mobile mapping systems [38, 39] indicates that the
system's performance aligns with industry-accepted accuracy
levels for field-level planning and damage documentation.

These results confirm that controlling vehicle speed can
enhance spatial accuracy in mobile surveys, and we
recommend limiting speed to below 30 km/h for improved
precision. The YOLOvV8 model used for damage detection
achieved reliable performance with mAP@0.5 of 76.4% and
mAP@0.5:0.95 of 76.4% at an IoU threshold of 0.76, ensuring
the reliability of visual detection outcomes.

Additionally, the study initially observed that the relative
position of road damage within the image frame—specifically,
the proximity of the damage to the camera—may influence
detection clarity and, consequently, spatial accuracy. However,
due to limitations in data collection, particularly the absence
of direct measurements of object distance during field surveys,
this relationship could not be quantitatively assessed. As such,
we treat this influence as hypothetical in the present study.
Prior literature in photogrammetry and geolocation has
demonstrated that increased object distance can reduce image
resolution and introduce geometric distortions, which may
affect both detection performance and coordinate estimation.
Notably, Dai et al. [40] highlight that spatial errors in
photogrammetric measurements increase proportionally with
object distance relative to the camera baseline, thereby
degrading geolocation accuracy. In this context, we retain the
discussion to contextualize possible sources of error observed
in our spatial accuracy results. Figure 8 illustrates this concept
by comparing two image captures of the same road defect
taken from different distances. In subgraph (A) of Figure 8, the
damage is recorded from a greater distance, while in subgraph
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(B), it is captured more closely. Although the damage and
location are constant, the difference in visual appearance
across frames likely influenced detection outcomes and could
contribute to coordinate deviation.

The vehicle speed and distance between the camera and the
actual damage location are critical factors that can affect the
positional accuracy of data acquisition. This factor helps
explain the spatial deviations observed, where differences
between model-generated and verified coordinates reached
several meters. Therefore, the relative position of the damage
within the image frame should be considered a potential source
of error in image-based geospatial data acquisition systems.

4. CONCLUSIONS

The developed system integrates a GNSS receiver with a
mobile device to acquire georeferenced imagery of road
surface conditions. The GNSS module communicates
wirelessly with the smartphone via Bluetooth, facilitating real-
time positional data exchange during field surveys.
Planimetric ~ verification using field measurements
demonstrated positional discrepancies, with total error values
ranging from 0.670 meters to 9.138 meters. The average error
was 4.937 meters, culminating in an RMSE of 5.523 meters.
These deviations are influenced by several factors, including
the inherent accuracy limitations of the GPS device (DGPS-
grade), the movement speed of the vehicle, and the varying
distance between the camera and the damaged object during
capture. Despite these challenges, the error margins remain
within a field-verifiable range, supporting practical road
condition monitoring applications.

To enhance spatial accuracy and system robustness,
especially in dynamic field environments, future
improvements should consider the integration of RTK-GNSS



modules (e.g., u-blox ZED-F9P), which provide centimeter-
level accuracy suitable for municipal asset management tasks.
Although these modules incur higher costs, they offer a
favorable cost-benefit ratio for large-scale deployments where
positional precision is critical. Additionally, refining camera-
GNSS synchronization, optimizing image acquisition angles,
and extending battery life and data storage capabilities will
support system scalability for prolonged and wide-area
surveys. Ultimately, the system provides a portable, low-cost,
and scalable solution for road surface damage detection and

geospatial

documentation, with potential for further

enhancements to meet the demands of smart city infrastructure
monitoring.

REFERENCES

(1]

(2]

(3]

(4]

(3]

(6]

(9]

[10]

Ahmadzai, F., Rao, K.L., Ulfat, S. (2019). Assessment
and modelling of urban road networks using Integrated
Graph of Natural Road Network (a GIS-based approach).
Journal of Urban Management, 8(1): 109-125.
https://doi.org/10.1016/j.jum.2018.11.001

Wegman, F. (2017). The future of road safety: A
worldwide perspective. IATSS Research, 40(2): 66-71.
https://doi.org/10.1016/j.iatssr.2016.05.003

Kek, S.L., Lim, F.P., Yap, H.K. (2025). Prediction of
road safety risks through crack detection and structural
deterioration assessment. Mechatronics and Intelligent
Transportation Systems, 4(4): 198-209.
https://doi.org/10.56578/mits040403

Shang, J., Zhang, A.A., Dong, Z.S., Zhang, H., He, A.Z.
(2024). Automated pavement detection and artificial
intelligence pavement image data processing technology.
Automation in Construction, 168: 105797.
https://doi.org/10.1016/j.autcon.2024.105797

Vrtagic, S., Dordevic, M., Dogan, F., Codur, M., Hoxha,
M., Softic, E. (2023). Al-enabled assessment of roadway
integrity: Forecasting bitumen deformation and road
stability throughout the lifecycle under traffic impact.
International Journal of Transport Development and
Integration, 7(4): 321-329.
https://doi.org/10.18280/ijtdi.070406

Pei, X., Zuo, K., Li, Y., Pang, Z. (2023). A review of the
application of multi-modal deep learning in medicine:
Bibliometrics and future directions. International Journal
of Computational Intelligence Systems, 16(1): 44.
https://doi.org/10.1007/s44196-023-00225-6

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.
(2020). Generative adversarial networks.
Communications of the ACM, 63(11): 139-144.

https://doi.org/10.1145/3422622

Orgovan, L., Bécsi, T., Aradi, S. (2021). Autonomous
drifting using reinforcement learning. Periodica
Polytechnica Transportation Engineering, 49(3): 292-
300. https://doi.org/10.3311/PPtr.18581

Nasution, S.M., Septiawan, R.R., Fikri, R.M., Dirgantoro,

B. (2024). Traffic management enhancement: A
competitive machine learning system for traffic
condition classification. International Journal of

Transport Development and Integration, 8(4): 553-567.
https://doi.org/10.18280/ijtdi.080407

Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.
(2019). OpenPose: Realtime multi-person 2D pose
estimation using part affinity fields. IEEE Transactions

2328

[11]

[13]

[14]

[15]

[16]

[17]

[20]

(21]

[22]

(23]

on Pattern Analysis and Machine Intelligence, 43(1):
172-186. https://doi.org/10.1109/TPAMI.2019.2929257
Alsuwaylimi, A.A., Alanazi, R., Alanazi, S.M., Alenezi,
S.M., Saidani, T., Ghodhbani, R. (2024). Improved and
efficient object detection algorithm based on YOLOVS.
Engineering, Technology & Applied Science Research,
14(3): 14380-14386. https://doi.org/10.48084/ctasr.7386
Liu, Z., Zhang, E., Ding, Q., Liao, W., Wu, Z. (2024). An
improved method for enhancing the accuracy and speed
of dynamic object detection based on YOLOvV8s. Sensors,
25(1): 85. https://doi.org/10.3390/s25010085

Li, S, Gu, X., Xu, X., Xu, D., Zhang, T., Liu, Z., Dong,
Q. (2021). Detection of concealed cracks from ground
penetrating radar images based on deep learning
algorithm. Construction and Building Materials, 273:
121949.
https://doi.org/10.1016/j.conbuildmat.2020.121949
Megaarta, M.A. (2025). Comparative evaluation of
YOLOvVS and YOLOVS Models in detecting smoking
behavior. Journal of Artificial Intelligence and
Engineering Applications (JAIEA), 4(3): 2048-2056.
https://doi.org/10.59934/jaiea.v4i3.1089

Cheng, G., Chao, P.Z., Yang, J., Ding, H. (2024). SGST-
YOLOVS: An improved lightweight YOLOVS for real-
time target detection for campus surveillance. Applied
Sciences, 14(12): 5341.
https://doi.org/10.3390/app14125341

Yilmaz, B., Kutbay, U. (2024). YOLOvS8-based drone
detection: Performance analysis and optimization.
Computers, 13(9): 234,
https://doi.org/10.3390/computers 13090234

Wang, G., Chen, Y.F., An, P, Hong, H.Y., Hu, J.H,,
Huang, T.G. (2023). UAV-YOLOvVS: A small-object-
detection model based on improved YOLOVS for UAV
aerial photography scenarios. Sensors, 23(16): 7190.
https://doi.org/10.3390/s23167190

Xiao, B.J.., Nguyen, M., Yan, W.Q. (2024). Fruit
ripeness identification using YOLOvVS  model.
Multimedia Tools and Applications, 83(9): 28039-28056.
https://doi.org/10.1007/s11042-023-16570-9

Yang, W.J., Wu, J.C., Zhang, J.L., Gao, K., Du, R.H.,
Wu, Z., Firkat, E., Li, D.W. (2023). Deformable
convolution and coordinate attention for fast cattle
detection. Computers and Electronics in Agriculture, 211:
108006. https://doi.org/10.1016/j.compag.2023.108006
Talaat, F.M., ZainEldin, H. (2023). An improved fire
detection approach based on YOLO-v8 for smart cities.
Neural Computing and Applications, 35(28): 20939-
20954. https://doi.org/10.1007/s00521-023-08809-1
Wu, T.Y., Dong, Y.K. (2023). YOLO-SE: Improved
YOLOv8 for remote sensing object detection and
recognition. Applied Sciences, 13(24): 12977.
https://doi.org/10.3390/app132412977

Jin, S.G., Meng, X.Y., Dardanelli, G., Zhu, Y.L. (2024).
Multi-global navigation satellite system for earth
observation: Recent developments and new progress.
Remote Sensing, 16(24): 4800.
https://doi.org/10.3390/rs16244800

Hernandez Olcina, J., Anquela Julian, A.B., Martin
Furones, A.E. (2024). Real-time cloud computing of
GNSS measurements from smartphones and mobile
devices for enhanced positioning and navigation. GPS
Solutions, 28(4): 167. https://doi.org/10.1007/s10291-
024-01705-8



(24]

[25]

(27]

(28]

[29]

[30]

[31]

Najafabadi, M.D., Shojaei, K. (2024). Robo-platform: A
robotic system for recording sensors and controlling
robots. arXiv preprint arXiv:2409.16595.
https://doi.org/10.48550/arXiv.2409.16595

Osborne, A., Mossman, H., Caporn, S., Coulthard, E.
(2025). Comparing the accuracy and precision of
smartphone and specialist handheld GNSS receivers for
use in ecological fieldwork. Ecological Solutions and
Evidence, 6(1): €70015. https://doi.org/10.1002/2688-
8319.70015

Wick, C., Reul, C., Puppe, F. (2018). Calamari—A high-
performance tensorflow-based deep learning package for
optical ~ character recognition. arXiv  preprint
arXiv:1807.02004.
https://doi.org/10.48550/arXiv.1807.02004

Anand, R., Shanthi, T., Sabeenian, R.S., Veni, S. (2020).
Real time noisy dataset implementation of optical
character identification using CNN. International Journal
of Intelligent Enterprise, 7(1-3): 67-80.
https://doi.org/10.1504/1J1E.2020.104646

Groves, P.D. (2011). Shadow matching: A new GNSS
positioning technique for urban canyons. The Journal of
Navigation, 64(3): 417-430.
https://doi.org/10.1017/S0373463311000087

Wang, L., Li, Z.S., Wang, N.B., Wang, Z.Y. (2021).
Real-time GNSS precise point positioning for low-cost
smart  devices. GPS  Solutions, 25(2): 69.
https://doi.org/10.1007/s10291-021-01106-1

Li, Z., Tao, J., Lei, Z., Guo, J., Zhao, Q.L., Guo, X.X.
(2025). Factor graph optimization-based RTK/INS
integration with raw observations for robust positioning
in urban canyons. IEEE Transactions on Instrumentation
and Measurement, 74: 1-11.
https://doi.org/10.1109/TIM.2025.3577823

Drobac, S., Lindén, K. (2020). Optical character
recognition with neural networks and post-correction
with finite state methods. International Journal on
Document Analysis and Recognition (IJDAR), 23(4):
279-295. https://doi.org/10.1007/s10032-020-00359-9
Salma, Saeed, M., ur Rahim, R., Gufran Khan, M.,
Zulfiqar, A., Bhatti, M.T. (2021). Development of ANPR

2329

[33]

[35]

[36]

[37]

[38]

[39]

[40]

framework for Pakistani vehicle number plates using
object detection and OCR. Complexity, 2021(1):
5597337. https://doi.org/10.1155/2021/5597337
Hegghammer, T. (2022). OCR with Tesseract, Amazon
Textract, and Google Document Al: A benchmarking
experiment. Journal of Computational Social Science,
5(1): 861-882. https://doi.org/10.1007/s42001-021-
00149-1

Park, J., Lee, E., Kim, Y., Kang, 1., Koo, H.I., Cho, N.I.
(2020). Multi-lingual optical character recognition
system using the reinforcement learning of character
segmenter. IEEE  Access, 8: 174437-174448.
https://doi.org/10.1109/ACCESS.2020.3025769

Chai, T., Draxler, R.R. (2014). Root mean square error
(RMSE) or mean absolute error (MAE)? - Arguments
against avoiding RMSE in the literature. Geoscientific
Model Development, 7(3): 1247-1250.
https://doi.org/10.5194/gmd-7-1247-2014

Ghilani, C.D. (2018). Adjustment Computations: Spatial
Data Analysis (Sixth Edition). John Wiley & Sons, Inc.,
Hoboken, New Jersey.

Ghilani, C.D., Wolf, P.R. (2015). Elementary Surveying:
An Introduction to Geomatics (14th Edition). Boston:
Pearson-Prentice Hall.

Specht, M., Specht, C., Dgbrowski, P., Czaplewski, K.,
Smolarek, L., Lewicka, O. (2020). Road tests of the
positioning accuracy of INS/GNSS systems based on
MEMS technology for navigating railway vehicles.
Energies, 13(17): 4463.
https://doi.org/10.3390/en13174463

Specht, C., Pawelski, J., Smolarek, L., Specht, M.,
Dabrowski, P. (2019). Assessment of the positioning
accuracy of DGPS and EGNOS systems in the Bay of
Gdansk using maritime dynamic measurements. The
Journal of Navigation, 72(3): 575-587.
https://doi.org/10.1017/S0373463318000838

Dai, F., Feng, Y., Hough, R. (2014). Photogrammetric
error sources and impacts on modeling and surveying in
construction engineering applications. Visualization in
Engineering, 2(1): 2. https://doi.org/10.1186/2213-7459-
2-2


https://doi.org/10.1186/2213-7459-2-2
https://doi.org/10.1186/2213-7459-2-2



