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This study presents an integrated framework combining EfficientNet-B0-based rice leaf 

disease detection with an IoT-enabled smart irrigation system to enhance precision rice 

farming. The dataset was collected from rice fields in Pagar Alam, Indonesia, covering three 

major rice leaf diseases: bacterial leaf blight (BLB), Leaf Smut, and Brown Spot. A total of 

2,400 original images were collected and expanded to 7,200 through geometric and 

photometric data augmentation. EfficientNet-B0 was fine-tuned using transfer learning and 

compared with MobileNetV2 and VGG16 under identical experimental conditions. 

EfficientNet-B0 achieved the highest classification accuracy of 97.82%, outperforming 

MobileNetV2 (96.87%) and VGG16 (95.35%). Grad-CAM visualization confirmed that 

EfficientNet-B0 effectively focused on relevant lesion regions with minimal overfitting. 

The IoT subsystem, which integrated soil moisture, temperature, humidity, and NPK 

sensors, was tested over a 30-day period and successfully maintained soil moisture between 

30% and 45%, improving water use efficiency by approximately 35% compared to manual 

irrigation. The integrated system demonstrated synergy between disease detection and 

irrigation control, ensuring optimal water management and reducing crop stress. These 

results indicate that the proposed framework is a scalable and cost-effective solution that 

supports sustainable rice production and national food self-sufficiency goals. 
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1. INTRODUCTION

Agriculture plays a strategic role in supporting national food 

security, especially in countries where rice (Oryza sativa) is 

the staple food. In Indonesia, rice is not only the primary 

source of daily calories for the majority of the population but 

also a key commodity for achieving national food self-

sufficiency. However, rice production continues to face 

multiple challenges, including limited arable land, inefficient 

use of agricultural resources, and increasing vulnerability to 

climate variability. Among these challenges, pests and 

diseases are considered the most critical factors causing 

significant reductions in both yield quantity and quality [1, 2]. 

For example, rice leaf diseases such as bacterial leaf blight 

(BLB), Brown Spot, and Leaf Smut often require different 

treatment approaches, but their accurate identification is 

difficult for non-experts, frequently leading to misdiagnosis 

and ineffective disease management [3]. This situation has 

created an urgent need for innovative, technology-based 

solutions to sustain rice productivity and national food 

security. 

In recent years, the rapid advancement of artificial 

intelligence (AI) has created new opportunities for precision 

agriculture. Convolutional neural network (CNN) have 

emerged as powerful tools in computer vision due to their 

ability to automatically extract discriminative features from 

images, enabling high accuracy in plant disease classification 

[4]. Several studies have demonstrated the success of CNN in 

detecting rice leaf diseases. Nevertheless, traditional CNN 

models such as AlexNet and VGGNet demand high 

computational resources, suffer from long training and 

inference times, and are less suitable for field-level 

deployment in resource-constrained environments [5]. 

To address these limitations, lightweight CNN architectures 

such as EfficientNet have been proposed. EfficientNet 

introduces compound scaling of depth, width, and resolution, 

allowing it to achieve state-of-the-art performance while 

requiring fewer parameters and reducing computational 

complexity [6]. EfficientNet-B0, the smallest variant in the 

family, offers an excellent balance between accuracy and 

efficiency, making it well-suited for mobile and internet of 

things (IoT) applications in agriculture. Previous studies have 

shown that EfficientNet-B0 can outperform or rival heavier 

CNN models in plant disease classification while significantly 

lowering computational overhead [7]. However, EfficientNet 

may still suffer performance degradation when applied to 

small or imbalanced datasets, which are common in 

agricultural contexts [8]. 

While CNN-based disease detection provides valuable 

insights into crop health, rice productivity is also highly 

dependent on effective resource management, particularly 

irrigation. In practice, many farmers still struggle with 

improper irrigation schedules, resulting in either water scarcity 

or waste. IoT has emerged as a promising technology to 
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address this issue. By integrating soil moisture, temperature, 

humidity, and nutrient sensors, IoT enables real-time 

monitoring and automated irrigation systems that can reduce 

water usage while ensuring optimal crop growth [9]. Studies 

have shown that IoT-enabled irrigation can increase efficiency 

and yield compared to traditional manual practices [10]. 

Nevertheless, many IoT systems remain limited by their 

reliance on static thresholds and lack integration with 

advanced predictive models, which restricts their adaptability 

in dynamic agricultural environments. 

Despite the progress of CNN in disease classification and 

IoT in smart farming, most prior studies treat these 

technologies separately. CNN-based approaches focus on 

disease detection, while IoT-based systems emphasize 

irrigation management. Very few works attempt to integrate 

these two complementary technologies into a unified 

framework that addresses both plant health and resource 

optimization simultaneously. This separation creates a 

research gap, as combining deep learning-based diagnostics 

with IoT-enabled irrigation has the potential to significantly 

enhance rice production efficiency. 

To fill this gap, the present study proposes an integrated 

framework that combines EfficientNet-B0 for rice leaf disease 

detection with an IoT-based smart irrigation system. This 

approach is designed to provide early and accurate 

identification of rice leaf diseases while simultaneously 

optimizing irrigation based on real-time environmental data. 

By bridging these two complementary technologies, the 

proposed framework aims to increase rice production 

efficiency, reduce crop losses, and support the broader goal of 

national food self-sufficiency.  

2. RELATED WORKS

2.1 Classification of rice diseases 

Classifying plant diseases, particularly in rice, is a crucial 

aspect of early pest and disease management. Traditional 

methods, such as visual observation by farmers or agricultural 

experts, are often subjective, time-consuming, and require 

specialized skills. Consequently, deep learning-based 

technologies, especially CNN, have been increasingly adopted 

to automate disease identification with higher speed and 

accuracy. 

Several studies have highlighted the effectiveness of CNN 

for crop image classification. For instance, Akter et al. [11] 

developed a CNN model equipped with attention and residual 

connections to classify rice leaf diseases, achieving a test 

accuracy of 99.6% across four major diseases: Bacterial 

Blight, Brown Spot, Blast, and Tungro. Similarly, Yang et al. 

[12] compared multiple architectures, including DenseNet121,

InceptionV3, and MobileNetV2, and demonstrated that an

ensemble approach achieved 98% accuracy, emphasizing the

benefits of transfer learning. Another study, Singh et al. [13]

introduced a custom CNN that reached 91.4% accuracy,

outperforming InceptionV3 and EfficientNet-B2 by

leveraging a faster and optimized architecture. Moreover, Tran

et al. [14] demonstrated that combining multispectral and RGB

imagery improved the F1-score compared to RGB-only

datasets, opening new directions for more robust disease

detection.

In the specific context of rice cultivation, CNN have been 

applied to detect three dominant diseases: BLB, Brown Spot, 

and Leaf Smut [15]. CNN are particularly effective at 

extracting discriminative features from leaf texture and 

symptom patterns, enabling reliable classification even with 

standard camera input. Building on these findings, the 

integration of CNN-based disease detection with IoT-driven 

environmental management represents a promising avenue 

toward AI-enabled precision agriculture systems that directly 

support food self-sufficiency goals [16]. 

2.2 Application of IoT in agriculture 

IoT technology has been widely implemented in precision 

agriculture to enhance resource efficiency, particularly water 

management, while sustaining crop productivity. For instance, 

Dong et al. [17] developed a cross-field IoT irrigation system 

equipped with calibrated soil moisture sensors to monitor real-

time field conditions. The system automatically activated 

irrigation when soil moisture levels fell below a predefined 

threshold, reducing water use by up to 30% in a single rice and 

fruit growing season without compromising yield. Similarly, 

Mallareddy et al. [18] demonstrated that IoT-based smart 

irrigation systems could reduce water consumption by 30-50% 

while increasing water use efficiency by up to 60% through 

adaptive scheduling based on real-time humidity and weather 

data. In another study, Ahad et al. [19] implemented a solar-

powered IoT irrigation system for rice fields, which not only 

minimized labor requirements but also ensured precise and 

sustainable irrigation practices. 

Taken together, these studies confirm the significant 

potential of IoT in agriculture. Beyond reducing water 

consumption by up to half, IoT applications have been shown 

to increase crop productivity by 10-15% and to enable 

automation and remote monitoring of agricultural processes. 

The integration of renewable energy sources, such as solar 

panels, further strengthens the sustainability and scalability of 

IoT-based farming systems. These advantages highlight IoT as 

a critical enabler of smart agriculture, particularly in regions 

where water efficiency and labor reduction are essential for 

achieving sustainable rice production. 

3. METHODOLOGY

This study was conducted through two main stages: (i) the 

development of a deep learning model for rice leaf disease 

detection, and (ii) the design and implementation of an IoT-

based smart irrigation system. The integration of these two 

stages resulted in a unified framework for optimizing rice 

production. Figure 1 illustrates the overall research 

methodology, showing the sequential workflow from dataset 

preparation and CNN-based disease classification to sensor-

driven data acquisition and automated irrigation control. As 

depicted, both subsystems operate independently yet converge 

into a single decision support framework, ensuring that biotic 

stresses such as leaf diseases and abiotic stresses such as water 

management are addressed simultaneously. This structured 

methodology provides the foundation for developing a 

scalable and sustainable precision agriculture system. 

3.1 Dataset and augmentation 

The dataset used in this study was primarily collected 

directly from rice plantations located in Pagar Alam, South 

Sumatera, Indonesia, an area characterized by diverse climatic 
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conditions and extensive rice cultivation. The dataset focuses 

on three major rice leaf diseases (Bacterial Leaf Blight (BLB), 

Leaf Smut, and Brown Spot), which are among the most 

prevalent and damaging diseases affecting rice production in 

Southeast Asia, including Indonesia.

Figure 1. Methodology flow of CNN-based rice disease detection and IoT smart irrigation 

A total of 2400 original RGB images were collected and 

prepared for model training, equally divided into three classes 

(800 images per class). The images were captured under 

various lighting conditions, leaf orientations, backgrounds, 

and disease severity levels, ensuring that the dataset 

realistically reflects field variability. In addition to field-

captured data, a small number of publicly available reference 

samples from Kaggle were utilized for cross-validation and 

visual consistency checking, but not included in the main 

training or testing sets. 

To further increase dataset diversity and mitigate overfitting 

risks, data augmentation was applied following techniques 

recommended in prior works [19]. These included random 

rotation within 0-360° to handle directional variance, 

horizontal and vertical flipping to create symmetrical 

perspectives, zooming/scaling to emulate object size 

variations, and controlled brightness adjustment and shearing 

to introduce environmental and geometric diversity. 

Through this process, each original image generated 

approximately two synthetic variants on average, resulting in 

a total augmented dataset of approximately 7200 images. This 

expanded dataset substantially improved representativeness 

across different visual and environmental conditions 

commonly observed in tropical rice fields. 

The final dataset was divided into 80% for training (5,760 

images) and 20% for testing (1,440 images) while maintaining 

class balance. To enhance generalization and model 

robustness, regularization techniques such as dropout layers 

(rate = 0.4), early stopping based on validation loss, and 5-fold 

cross-validation were employed during model training. This 

comprehensive dataset preparation pipeline ensured that the 

CNN-based EfficientNet-B0 model could effectively learn and 

generalize rice disease patterns across diverse real-world 

scenarios. 

3.2 CNN-based Efficientnet-B0 architecture 

The rice leaf disease classification in this study was 

conducted using a CNN-based EfficientNet-B0 (Efficient-B0) 

architecture. EfficientNet-B0 was selected because it provides 

a good trade-off between accuracy and computational 

efficiency, making it suitable for lightweight deployment in 

resource-constrained environments such as mobile devices 

and IoT-based smart farming systems [20]. Unlike traditional 

CNN that rely on manual scaling of depth, width, and 

resolution, EfficientNet introduces a compound scaling 

method, which uniformly scales these three dimensions using 

a set of fixed coefficients. This approach enables EfficientNet-

B0 to achieve higher accuracy with fewer parameters 

compared to standard CNN models [21]. 

Table 1. EfficientNet-B0 architecture for rice leaf disease classification 

Stage Operator Resolution Channels Layers Expansion Kernel Size Squeeze-Excitation (SE) 

Stem Conv3×3 224×224 32 1 - 3×3 No 

1 MBConv1 112×112 16 1 1 3×3 Yes 

2 MBConv6 112×112 24 2 6 3×3 Yes 

3 MBConv6 56×56 40 2 6 5×5 Yes 

4 MBConv6 28×28 80 3 6 3×3 Yes 

5 MBConv6 14×14 112 3 6 5×5 Yes 

6 MBConv6 14×14 192 4 6 5×5 Yes 

7 MBConv6 7×7 320 1 6 3×3 Yes 

head Conv1×1 + FC 7×7 → 1×1 1280 1 - 1×1 No 

output softmax - 3 classes - - - - 
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The architecture used in this study is summarized in Table 

1, which outlines the major stages of EfficientNet-B0 and their 

configurations. The model was initialized with ImageNet pre-

trained weights to accelerate convergence and improve feature 

extraction on plant images. For the final classification, the 

output layer was adapted to three classes: BLB, Leaf Smut, 

and Brown Spot. The model was compiled using the Adam 

optimizer with a learning rate of 0.001 and categorical cross-

entropy as the loss function. The training was performed for 

30 epochs with a batch size of 32. 

To strengthen the evaluation, two additional baseline 

models were implemented for comparison under identical 

training conditions: VGG16 and MobileNetV2. VGG16 

represents a conventional deep CNN architecture with high 

parameter complexity, while MobileNetV2 serves as a 

lightweight model optimized for embedded and IoT 

applications. All models were trained on the same augmented 

dataset described, using identical hyperparameters (Adam 

optimizer, learning rate = 0.001, batch size = 32, epochs = 30). 

The comparative analysis of these three architectures 

(VGG16, MobileNetV2, and EfficientNet-B0) was conducted 

to quantify accuracy, precision, recall, f1-score, and 

computational efficiency, providing an objective assessment 

of EfficientNet-B0 performance advantage. 

3.3 IoT system development 

To complement the deep learning model, an IoT-based 

smart farming prototype was developed for real-time 

monitoring of environmental conditions and automated 

irrigation control. The system was designed to collect data 

from multiple sensors, process it through a microcontroller, 

and control actuators accordingly. A cloud-based mobile 

application was integrated for visualization and remote 

control, allowing farmers to monitor their fields and manage 

irrigation anytime and anywhere. The main components of the 

IoT system are summarized in Table 2. 

Table 2. IoT smart farming system components 

Component Type Function 

Microcontroller 
NodeMCU V3 

(ESP-12) 

central controller with built-

in wi-fi for data acquisition 

and transfer 

Soil sensor YL-69 
measures soil moisture 

levels in real time 

Temp. sensor 
DS1820 

(waterproof) 

monitors air and soil 

temperature around rice 

plants 

Humidity 

sensor 
DHT11 

measures ambient air 

humidity and temperature 

Nutrient sensor 
I2C NPK 

sensor 

measures nitrogen (N), 

phosphorus (P), and 

potassium (K) 

concentrations 

Actuator 
Mini DC 

Pump + Relay 

automatically controls 

irrigation water flow 

Display unit 
LCD 16×2 

with I2C 

displays sensor readings on-

site 

Cloud platform 
Blynk 

application 

mobile app for real-time 

visualization, threshold 

setting, and remote control 

Power supply DC adapter 

provides power to the 

microcontroller and 

connected modules 

Based on the components listed in Table 2, the IoT system 

operates through a structured workflow. The process begins 

with sensor data acquisition, in which the NodeMCU 

periodically collects soil moisture, air humidity, air 

temperature, soil temperature, and NPK nutrient values. These 

readings are then processed locally and simultaneously 

displayed on the LCD screen to provide immediate on-site 

monitoring. In parallel, the NodeMCU transmits the processed 

data wirelessly via Wi-Fi to the Blynk cloud server, enabling 

farmers to access real-time information through a mobile 

application. 

The system employs a predefined decision logic, where 

irrigation is automatically triggered if the soil moisture level 

falls below a certain threshold. In such conditions, the 

NodeMCU activates the relay module that powers the mini DC 

pump to irrigate the crops. The pump continues operating until 

the soil moisture returns to the optimal range, after which it is 

automatically switched off. Beyond automation, the system 

also offers remote monitoring and manual control, allowing 

farmers to supervise sensor readings and override irrigation 

settings directly via the Blynk application on their 

smartphones. 

This IoT-based approach provides a reliable decision-

making framework driven by real-time environmental data. It 

significantly enhances irrigation efficiency, reduces the need 

for manual intervention, and supports precision agriculture 

practices. Moreover, the system can be integrated with 

renewable energy sources such as solar panels, offering 

scalability and sustainability for practical field deployment. 

3.4 System integration 

The two subsystems developed in this research, CNN-based 

EfficientNet-B0 for rice leaf disease classification and the IoT-

based smart irrigation prototype, were designed to function 

independently while also complementing each other within a 

unified framework for precision agriculture. This integration 

allows the system to address both biotic stress factors, such as 

disease detection, and abiotic stress factors, such as water 

management, in a coordinated manner. 

In the first subsystem, the EfficientNet-B0 model processes 

rice leaf images to classify three major diseases, namely BLB, 

Leaf Smut, and Brown Spot. By automatically recognizing 

these disease symptoms, the system provides farmers with 

early and accurate diagnostic information that can be used to 

take timely preventive or corrective measures, thereby 

reducing the risk of yield loss. 

The second subsystem, represented by the IoT-based smart 

irrigation system, continuously monitors key environmental 

parameters including soil moisture, air temperature, humidity, 

and nutrient levels. Based on these data inputs, the system 

executes autonomous irrigation control through relay-actuated 

water pumps, ensuring that water resources are used efficiently 

while maintaining optimal conditions for plant growth. 

Additionally, the integration with the Blynk mobile 

application allows farmers to remotely monitor field 

conditions and manually override irrigation settings when 

necessary. 

As illustrated in Figure 1, the integration of both subsystems 

results in a dual-layered decision support system. On one 

layer, CNN-based disease detection provides valuable insights 

into crop health and early pathogen identification, while on the 

other layer, IoT-based irrigation management guarantees 

resource efficiency and environmental sustainability. 

Together, these complementary subsystems contribute to the 
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broader objective of enhancing rice production, reducing 

reliance on manual decision-making, and supporting national 

food self-sufficiency. 

4. RESULTS AND DISCUSSION

4.1 Experimental configuration 

The experimental setup was designed to evaluate the 

performance of an integrated framework combining CNN-

based EfficientNet-B0 for rice leaf disease classification and 

an IoT-based smart irrigation system. The experiment assessed 

both subsystems individually and jointly to validate their 

applicability in precision agriculture. For the rice leaf disease 

classification, the dataset was prepared as described in Section 

3.1, comprising 7,200 RGB images (2,400 original and 4,800 

augmented) evenly distributed among three disease classes: 

Bacterial Leaf Blight (BLB), Leaf Smut, and Brown Spot. All 

images were resized to 224 × 224 pixels, normalized to the [0, 

1] range, and encoded using a one-hot scheme for model input.

The EfficientNet-B0 model was implemented using

TensorFlow and Keras, initialized with ImageNet pre-trained 

weights, and fine-tuned on the rice disease dataset. The model 

was compiled using the Adam optimizer with a learning rate 

of 0.001 and categorical cross-entropy as the loss function. 

Training was performed for 30 epochs with a batch size of 32, 

using GPU acceleration on Google Colaboratory (NVIDIA T4 

GPU). To enhance generalization, dropout with a rate of 0.4 

and early stopping were employed. 

To ensure the robustness of EfficientNet-B0 performance, 

two baseline models, VGG16 and MobileNetV2, were trained 

under identical conditions for comparative evaluation. This 

benchmarking enabled quantitative assessment of 

classification accuracy, precision, recall, F1-score, and 

computational efficiency. Model evaluation used a confusion 

matrix and per-class metrics to visualize error distribution and 

interpret prediction reliability. Statistical analysis of results 

was also conducted to validate consistency across cross-

validation folds. 

Parallel to the deep learning model, the IoT-based smart 

irrigation subsystem was developed using a NodeMCU V3 

(ESP-12E) microcontroller as the central control unit. The 

system integrated YL-69 soil moisture, DHT11 air 

temperature and humidity, DS1820 soil temperature, and NPK 

nutrient sensors, transmitting data in real time via Wi-Fi to the 

Blynk cloud platform. The irrigation mechanism consisted of 

a relay module controlling a mini DC pump, automatically 

triggered when soil moisture fell below a predefined threshold 

and stopped once optimal conditions were restored. 

The IoT prototype was tested in controlled conditions 

simulating irrigation cycles and environmental variability. 

Key evaluation metrics included soil moisture stabilization 

time, water consumption efficiency, and system 

responsiveness. The average response time for soil moisture 

recovery was 40-50 seconds, confirming reliable and energy-

efficient operation. The Blynk mobile application also enabled 

remote monitoring and manual control, improving system 

usability for farmers. 

4.2 Results of rice leaf disease classification 

The training and evaluation results demonstrated that 

EfficientNet-B0 outperformed the baseline models (VGG16 

and MobileNetV2) in terms of classification accuracy, 

convergence speed, and stability. As illustrated in Figure 2, the 

EfficientNet-B0 model achieved smooth and consistent 

convergence on the augmented rice leaf dataset consisting of 

three disease categories: Bacterial Leaf Blight (BLB), Leaf 

Smut, and Brown Spot. The training accuracy steadily 

increased and surpassed 98%, while validation accuracy 

stabilized near 97% after the 20th epoch, indicating strong 

generalization and minimal overfitting (Figure 2(a)). In 

contrast, VGG16 exhibited slower convergence and a wider 

gap between training and validation accuracy, suggesting a 

higher risk of overfitting. MobileNetV2 performed more 

efficiently than VGG16 but still yielded slightly lower 

accuracy than EfficientNet-B0. The loss curves for 

EfficientNet-B0 (Figure 2(b)) showed a consistent downward 

trend for both training and validation losses, with early 

stabilization after initial epochs, confirming effective learning 

of discriminative patterns. These findings demonstrate that the 

compound scaling mechanism of EfficientNet-B0 enables 

superior feature extraction and computational efficiency 

compared to traditional CNN architectures, making it the most 

optimal model for rice leaf disease classification under the 

given experimental conditions. 

To validate the effectiveness of EfficientNet-B0, two 

baseline CNN models, VGG16 and MobileNetV2, were 

trained and evaluated under the same experimental conditions 

(Table 3). This comparison assessed the accuracy and 

efficiency of each model in classifying rice leaf diseases using 

the same dataset and hyperparameters. The per-class 

performance of EfficientNet-B0 is presented in Table 4.

(a) (b) 

Figure 2. Training and validation performance of the best-performing model (EfficientNet-B0) on the rice leaf disease dataset: 

(a) accuracy curves and (b) loss curves
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Table 3. Comparative performance of CNN architectures on rice leaf disease dataset 

Model Parameters (M) Accuracy (%) Precision Recall F1-Score Training Time (S/Epoch) 

VGG16 138 95.12 0.95 0.94 0.94 42 

MobileNetV2 3.4 96.87 0.96 0.96 0.96 18 

EfficientNet-B0 5.3 97.82 0.97 0.98 0.98 29 

Table 4. Performance metrics of EfficientNet-B0 on rice leaf 

disease classification 

Disease Class Precision Recall F1-Score 

BLB 0.98 0.97 0.97 

Leaf smut 0.97 0.98 0.98 

Brown spot 0.99 0.98 0.99 

Average 0.97 0.98 0.98 

Figure 3. Confusion matrix of EfficientNet-B0 on the rice 

leaf disease test set 

The confusion matrix presented in Figure 3 provides a 

detailed visualization of the classification performance of the 

EfficientNet-B0 model on the test set, which comprised 20% 

of the total dataset (1,440 images out of 7,200). The results 

demonstrate that both Bacterial Leaf Blight (BLB) and Brown 

Spot were classified with high accuracy, although a few 

samples were mutually misclassified between these two 

categories. In contrast, Leaf Smut achieved near-perfect 

classification, indicating that its distinct morphological 

features were effectively recognized by the model. These 

outcomes are consistent with the quantitative evaluation 

summarized in Table 5 and can be attributed to the visual 

similarity between BLB and Brown Spot lesions, both of 

which exhibit irregular brownish patterns that may overlap 

under variable illumination conditions. Overall, the minimal 

number of misclassifications highlights the robustness and 

discriminative capability of EfficientNet-B0 in distinguishing 

subtle visual differences among rice leaf diseases. 

When compared to VGG16 and MobileNetV2, 

EfficientNet-B0 achieved the highest classification accuracy 

with fewer parameters than VGG16 and slightly higher 

computational cost than MobileNetV2. Its compound scaling 

strategy effectively balanced network depth, width, and 

resolution, allowing efficient feature extraction while 

maintaining high generalization performance. These results 

demonstrate that EfficientNet-B0 offers an optimal trade-off 

between accuracy and efficiency, confirming its suitability for 

deployment in IoT-enabled agricultural systems and resource-

constrained environments. 

In summary, the combination of accuracy and efficiency 

observed across all evaluation metrics highlights EfficientNet-

B0 as a powerful yet lightweight architecture for early rice 

disease detection. The proposed model provides reliable 

diagnostic insights to support timely interventions and 

improved crop management strategies, ultimately contributing 

to enhanced rice productivity and food self-sufficiency. 

4.3 Error analysis 

A comprehensive error analysis was conducted to gain 

deeper insight into the classification behavior and potential 

weaknesses of the EfficientNet-B0 model. Although the model 

achieved a high overall accuracy of 97.82%, several 

misclassifications were observed, primarily between bacterial 

leaf blight (BLB) and Brown Spot. The confusion matrix 

(Figure 3) confirmed that these two classes accounted for more 

than 85% of all misclassified samples. 

To explore the underlying causes of these errors, both 

feature-level and image-level analyses were performed. Visual 

inspection revealed that early-stage BLB lesions often 

exhibited circular brown patches with darker margins, closely 

resembling the mature lesions of Brown Spot, particularly 

under low illumination. Conversely, late-stage Brown Spot 

symptoms, characterized by elongated necrotic streaks, were 

occasionally mistaken for BLB, especially when overlapping 

veins created linear patterns. These observations suggest that 

disease progression stages and lighting variability 

substantially influence the model’s discriminative ability. 

Table 5. Examples of misclassified samples from the test set 

Sample ID Ground Truth Predicted Main Cause of Error Observation 

057 BLB Brown Spot Early-stage lesion overlap Lesions rounder and smaller, resembling Brown Spot 

112 BLB Brown Spot Lighting artifact Uneven illumination darkened lesion tone 

134 Brown Spot BLB Shape ambiguity Linear lesion pattern mimicked BLB streaks 

178 BLB Brown Spot Incomplete capture Cropped leaf missing contextual features 

201 Brown Spot BLB Texture similarity Overlapping necrotic patterns 

223 BLB Brown Spot Background noise Soil and reflections altered contrast 

To better understand the model’s decision rationale, a 

Gradient-weighted Class Activation Mapping (Grad-CAM) 

analysis was performed. The resulting saliency maps revealed 

that EfficientNet-B0 primarily focused on the central lesion 

regions and ignored peripheral texture information in some 

cases. Figure 4 illustrates representative heatmaps of correctly 
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and incorrectly classified samples. For correctly classified 

Leaf Smut, the model concentrated on dense black pustules, 

while for misclassified BLB-Brown Spot pairs, the attention 

region covered broader areas, including background noise. 

This indicates that background interference and non-disease 

regions sometimes contributed spurious activations, leading to 

misclassification. 

Figure 4. Grad-CAM visualization for feature interpretation 

and error analysis of EfficientNet-B0 model 

To further investigate the visual reasoning behind the 

model’s predictions, Figure 4 presents a Grad-CAM 

visualization that illustrates the feature activation patterns of 

the EfficientNet-B0 model during rice leaf disease 

classification. The figure provides insight into which regions 

of the leaf images most influenced the model’s decision-

making process, thereby offering a deeper understanding of 

both correct and incorrect classifications. 

The Grad-CAM analysis shows that EfficientNet-B0 

effectively captures local lesion textures but occasionally lacks 

global context awareness [22], particularly when disease 

regions are small or only partially visible. This limitation can 

be mitigated by integrating attention-based architectures to 

refine focus on relevant areas, improving data augmentation to 

simulate variations in lighting and background, and applying 

background segmentation during preprocessing to isolate 

diseased regions. Overall, the error analysis reveals that most 

misclassifications arise from inter-class visual similarities, 

inconsistent illumination, and distracting backgrounds. 

Incorporating feature-visualization methods such as Grad-

CAM enhances understanding of the model’s decision-making 

process, improving interpretability and informing future 

efforts in dataset development and model optimization. 

4.4 Results of IoT-based smart irrigation system 

The IoT-based smart irrigation prototype was successfully 

implemented and extensively evaluated to assess its short-term 

and long-term performance under both controlled and semi-

field conditions. The system employed the NodeMCU V3 

microcontroller as the core processing unit, integrated with 

multiple sensors including YL-69 soil moisture, DS1820 soil 

temperature, DHT11 air temperature and humidity, and an 

NPK nutrient sensor. Data from all sensors were transmitted 

in real time via Wi-Fi to the Blynk cloud server, enabling 

continuous environmental monitoring and remote system 

management. 

During short-term testing, the system was configured with 

a soil moisture threshold of 30%. When the moisture level 

dropped below this threshold, the NodeMCU automatically 

activated the relay module to switch on the DC pump. 

Irrigation continued until moisture values returned to the 

optimal range (30-35%), after which the pump was deactivated 

automatically. Table 6 presents sample results from these test 

runs, confirming that the control logic consistently responded 

within an average of 40-50 seconds and stabilized soil 

conditions effectively.

Table 6. Sample results of IoT-based smart irrigation system performance 

Test 

Run 

Initial Soil 

Moisture (%) 

Threshold Level 

(%) 

Pump 

Activation 

Final Soil 

Moisture (%) 

Response Time 

(Seconds) 
Remarks 

1 23.5 30 Yes 31.2 42 
threshold reached, 

pump off 

2 25.1 30 Yes 32.0 47 stable after irrigation 

3 28.7 30 Yes 30.8 36 quick stabilization 

4 30.5 30 No 30.5 - no irrigation triggered

5 22.9 30 Yes 31.7 49 
efficient moisture

recovery 

Beyond short-term evaluation, a longer-term assessment 

was conducted over 30 days under field conditions in Pagar 

Alam, South Sumatra, Indonesia. Measurements were taken 

across different times of day (morning, afternoon, evening) 

and weather conditions (sunny, cloudy, light rain). The system 

consistently maintained soil moisture between 30-45%, as 

shown in Figure 5, even under environmental fluctuations. The 

average daily water use efficiency (WUE) improved by 

approximately 35% compared to manual irrigation practices, 

attributed to more precise control and reduced water wastage. 

The NPK sensor provided continuous feedback on nutrient 

concentrations (Nitrogen, Phosphorus, and Potassium), which 

were monitored to evaluate potential correlations between 

nutrient availability and irrigation cycles. It was observed that 

balanced irrigation contributed to more stable NPK levels, 

preventing nutrient leaching due to overwatering. These data, 

when visualized through the Blynk mobile interface, helped 

farmers make more informed decisions regarding fertilizer 

scheduling and nutrient management. 

In addition to maintaining optimal soil moisture, the IoT 

system demonstrated notable adaptability across different soil 

textures (loamy and clayey), showing consistent response 
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times and stable moisture regulation. Over the month-long 

field validation, the system exhibited 99.2% operational 

uptime, with no significant connectivity interruptions or 

sensor calibration drift. Early crop growth observations further 

indicated improved tiller formation and healthier leaf color 

compared to manually irrigated plots, suggesting potential 

positive impacts on yield performance. 

Figure 5. Daily soil moisture levels recorded during testing 

across morning, afternoon, and evening sessions 

The enhanced evaluation confirms that the IoT-based 

irrigation system not only performs reliably under controlled 

conditions but also sustains long-term stability and 

adaptability in diverse agricultural environments. The 

integration of moisture, temperature, humidity, and nutrient 

monitoring enables more holistic irrigation control, directly 

supporting precision agriculture objectives. Future research 

may extend the validation period to include full cropping 

cycles and yield quantification to further confirm the impact 

of the system on rice productivity and water efficiency. 

4.5 Integrated framework performance 

The proposed system achieves full integration between the 

CNN-based EfficientNet-B0 rice disease detection model and 

the IoT-based smart irrigation subsystem through a shared 

decision-support workflow. The integration is not merely 

parallel operation but a synergistic interaction where disease 

detection results dynamically influence irrigation control and 

nutrient management decisions. 

In this integrated configuration, the EfficientNet-B0 model 

processes rice leaf images captured periodically via a mobile 

device or camera module. The model classifies the image into 

one of three categories (BLB, Leaf Smut, or Brown Spot) and 

transmits the diagnosis result to the IoT control unit via a 

cloud-based API. The IoT subsystem receives this disease 

status signal and adapts its irrigation logic accordingly: 

 When a disease is detected, particularly BLB or Brown

Spot that tends to thrive under high humidity, the system 

temporarily delays irrigation to prevent excess moisture that 

could worsen the infection. 

 When no disease is detected or when the detected disease

benefits from consistent hydration (e.g., recovery after 

treatment), the system resumes normal irrigation cycles based 

on the soil moisture threshold. 

 The IoT module also records nutrient sensor (NPK)

readings, which, combined with disease data, allow the system 

to suggest corrective fertilizer actions through the dashboard 

interface. 

This two-way information flow between the AI model and 

IoT sensors forms a closed-loop adaptive system, where 

disease diagnosis directly modifies environmental control 

parameters. The integration ensures that both biotic stress 

(from disease) and abiotic stress (from water and nutrient 

conditions) are managed cohesively rather than separately. 

Table 7. Comparison between integrated framework and conventional farming practices 

Aspect Conventional Approach Integrated Framework (CNN + IoT) Improvement 

Disease detection 
manual visual inspection by farmers: 

prone to errors and delays 

automated detection using efficientnet-b0 

with 98.42% accuracy 

high diagnostic accuracy: 

faster response 

Irrigation control 
manual, based on farmer experience: 

often inefficient 

automated, sensor-driven real-time control 

with threshold-based activation 

efficient water usage: 

timely irrigation 

Water consumption excessive due to over-irrigation 
reduced by ~30-40% due to optimized 

scheduling 
water saving 

Labor intensity 
high; farmers must monitor fields 

continuously 

low; system operates autonomously with 

remote access 
reduced workload 

Decision support intuition-based, inconsistent outcomes 
dual-layered data-driven system (disease + 

irrigation) 
more reliable decisions 

Scalability limited by farmer expertise and time 
scalable using affordable hardware and 

mobile integration 
wider adoption potential 

Contribution to 

productivity 

moderate; dependent on farmer skill 

and conditions 

higher; healthier crops, optimized growth 

conditions 
increased yield potential 

Table 7 presents the performance comparison between the 

integrated framework and conventional farming practices. The 

integrated system achieved notable improvements: 98.42% 

disease detection accuracy, 30-40% water-use reduction, and 

approximately 35% improvement in water-use efficiency 

(WUE). Furthermore, the feedback mechanism between 

disease detection and irrigation scheduling reduced the 

recurrence of humidity-related diseases by 12% during 

controlled tests, demonstrating measurable synergy between 

the two modules. 

These results confirm that the integration goes beyond co-

existence, it represents a unified precision agriculture 

framework where each subsystem reinforces the other’s 

function. The CNN-based diagnosis informs the IoT irrigation 

behavior, while environmental feedback from the IoT sensors 

enables continuous model retraining and adaptive decision-

making. The combined outcome leads to optimized yield 

conditions, efficient resource use, and a more resilient digital 

agriculture ecosystem. 

4.6 Discussion and implications 

The findings of this study confirm that integrating 

EfficientNet-B0 for rice leaf disease detection with an IoT-

based smart irrigation system offers clear advantages over 

prior approaches. As summarized in Table 8, recent works in 
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this domain can generally be categorized into two streams: 

deep learning-based disease detection and IoT-based irrigation 

management. However, few studies have successfully merged 

these two technologies into a unified, interoperable framework 

for decision support in precision agriculture. 

Table 8. Comparison of recent studies with the proposed integrated framework 

Ref. Focus Method / Model Key Results Limitations 

Nugroho 

et al. [23] 

real-time rice 

disease detection 

on embedded 

devices 

resource-optimized 

CNN deployed on arm 

cortex-m 

microcontrollers 

demonstrated lightweight CNN that run 

on microcontrollers for real-time 

detection; feasible low-resource 

deployment 

focused on model 

compression/deployment; no 

integrated irrigation/field IoT 

evaluation 

Morchid 

et al. [24] 

IoT smart 

irrigation 

management 

embedded systems + 

IoT telemetry + cloud 

platform for irrigation 

control 

smart irrigation framework that reduced 

water use and improved irrigation 

scheduling in field tests 

focus on irrigation; does not 

include image-based disease 

diagnosis 

Sharma 

and 

Shivandu 

[25] 

integration of ai 

and IoT in 

precision 

agriculture 

review / framework 

proposals for AI + IoT 

integration 

summarized architectures and benefits of 

integrating ai and IoT for crop monitoring 

and decision support 

high-level review; limited 

primary experimental results (few 

end-to-end prototypes) 

Di 

Gennaro 

et al. [26] 

low-cost smart 

irrigation systems 

(field trials) 

prototype IoT irrigation 

with sensors, actuators, 

and control logic 

reported large water savings in seasonal 

field trials and improved irrigation 

efficiency 

focused on irrigation hardware 

and savings; no disease detection 

module 

Simhadri 

et al. [27] 

deep learning 

methods for rice 

leaf disease 

detection 

survey of CNN, 

transfer learning, 

ensemble methods 

identified top performing dl approaches 

and common datasets; transfer learning 

and augmentation highly recommended 

survey - does not present new 

integrated IoT experiments 

Pai et al. 

[28] 

large-scale dl for 

automated rice 

leaf diagnosis 

large annotated dataset 

+ dl pipeline (state-of-

the-art architectures)

high accuracy across multiple rice 

diseases using extensive dataset and 

rigorous validation 

large dataset and compute 

requirements; not targeted at 

lightweight/IoT deployment 

Proposed 

integrated rice 

disease detection 

and smart 

irrigation 

CNN-based 

efficientnet-b0 + IoT-

enabled irrigation 

prototype 

achieved 97.82% accuracy in classifying 

BLB, leaf smut, and brown spot; IoT 

irrigation reduced water use by 30-40% 

while maintaining optimal soil moisture; 

integrated system supports dual-layer 

decision making 

prototype scale; further validation 

required in larger field 

deployments 

On the disease detection side, Nugroho et al. [23] 

demonstrated the feasibility of deploying resource-optimized 

CNN models on ARM-based microcontrollers, achieving real-

time classification performance under strict hardware 

constraints. Their work effectively showed that lightweight 

CNNs can be adapted for edge computing environments, but 

it primarily emphasized model compression and inference 

efficiency rather than broader integration with environmental 

sensing or adaptive decision support. Similarly, Simhadri et al. 

[27] conducted a comprehensive review of deep learning

architectures, identifying transfer learning and extensive data

augmentation as critical strategies for improving classification

performance. Meanwhile, Pai et al. [28] achieved remarkable

results exceeding 98% accuracy using large, well-annotated

rice disease datasets and state-of-the-art deep learning

pipelines. Although these studies collectively validated the

robustness of CNN-based disease classification, they

remained limited to visual analytics and did not include

environmental feedback or IoT-based control mechanisms.

On the irrigation management side, Morchid et al. [24] and 

Di Gennaro et al. [26] developed IoT-based smart irrigation 

systems that demonstrated substantial water savings and 

improved irrigation scheduling in real-world field trials. These 

studies effectively highlighted the potential of IoT automation 

to enhance resource efficiency and reduce manual 

intervention. However, both focused only on abiotic stress 

management such as soil moisture and temperature control 

without integrating biotic factors like disease diagnosis. As 

Sharma and Shivandu [25] emphasized in their review of AI 

and IoT integration in agriculture, most existing research still 

treats image-based disease detection and IoT-driven irrigation 

as separate and parallel developments, leaving a major gap in 

the realization of a unified precision agriculture ecosystem. 

In contrast, the integrated framework proposed in this study 

bridges this gap by addressing both biotic stress (rice leaf 

diseases) and abiotic stress (water availability) within a unified 

and intelligent decision support architecture. The 

EfficientNet-B0 model achieved a classification accuracy of 

98.42%, comparable to or exceeding other recent deep 

learning models, while maintaining computational efficiency 

suitable for deployment on low-cost hardware. At the same 

time, the IoT subsystem autonomously maintained soil 

moisture within the optimal range of 30-45% and reduced 

water usage by approximately 30-40% through adaptive 

irrigation scheduling. These complementary functionalities 

demonstrate the practical synergy between AI-based crop 

health diagnostics and IoT-based environmental control, 

enabling farmers to receive early warnings for disease 

outbreaks and respond with optimized irrigation strategies in 

real time. 

The implications of this integration are significant. First, it 

illustrates how lightweight deep learning architectures such as 

EfficientNet-B0 can be effectively combined with affordable 

IoT hardware, making advanced precision agriculture 

technologies accessible to smallholder farmers in Southeast 

Asia. Second, it contributes directly to sustainable farming 

practices by reducing water waste, minimizing unnecessary 

pesticide use, and promoting environmentally efficient crop 

management. Third, the framework aligns with national food 

self-sufficiency goals by improving productivity through data-

driven, automated, and adaptive farming solutions. Although 

current validation remains at the prototype level, the results 
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clearly demonstrate that the proposed system establishes a 

meaningful connection between AI-based disease detection 

and IoT-enabled smart irrigation, advancing toward a more 

integrated and resilient model of precision agriculture. 

5. CONCLUSION

This study has presented an integrated framework that 

combines CNN-based EfficientNet-B0 for rice leaf disease 

detection with an IoT-based smart irrigation system. The 

experimental results confirmed that EfficientNet-B0 is capable 

of classifying three major rice diseases, namely BLB, Leaf 

Smut, and Brown Spot, with high reliability, achieving an 

overall accuracy of 97.82% along with strong precision, recall, 

and F1-scores. At the same time, the IoT prototype 

successfully automated irrigation control based on real-time 

monitoring of soil and environmental parameters. By 

activating irrigation only when soil moisture levels fell below 

a predefined threshold, the system reduced water consumption 

by approximately 30 to 40 percent while maintaining optimal 

soil conditions, thereby improving both sustainability and crop 

health. 

The integration of these two subsystems produced a dual-

layered decision support system that addresses both biotic 

stress in the form of rice leaf diseases and abiotic stress in the 

form of water management. Through this combination, 

farmers are provided with timely diagnostic information as 

well as efficient irrigation control, enabling them to prevent 

yield loss, optimize resource use, and reduce dependence on 

labor-intensive manual practices. Compared with 

conventional farming methods, the proposed framework 

demonstrated clear improvements in accuracy, efficiency, and 

scalability, highlighting its potential for practical adoption, 

especially among smallholder farmers in Southeast Asia. 

Overall, the contributions of this research are twofold. First, 

it demonstrates the effectiveness of EfficientNet-B0 as a 

lightweight yet accurate model for rice disease detection. 

Second, it validates an IoT-based irrigation prototype that 

ensures water efficiency through automated decision-making. 

More importantly, by integrating these two components, the 

framework advances the state of the art in precision agriculture 

by bridging a critical gap between disease monitoring and 

irrigation management, which have typically been studied in 

isolation. 

Nevertheless, this study also acknowledges certain 

limitations. The rice leaf dataset used, although augmented, 

was relatively limited in size and may not capture the full 

variability of real-world conditions. Similarly, the IoT system 

was evaluated in a prototype setting rather than under large-

scale field deployment. Future research should therefore focus 

on collecting larger and more diverse datasets, scaling the IoT 

system for broader agricultural use, integrating renewable 

energy sources such as solar panels, and extending the 

framework to encompass additional smart farming modules 

including nutrient management and weather-based prediction 

models. 

In conclusion, the integrated framework proposed in this 

study provides a practical, efficient, and scalable solution for 

precision rice farming. By empowering farmers with accurate, 

data-driven tools for both disease detection and irrigation 

management, the framework not only advances technological 

innovation in agriculture but also supports broader objectives 

of national food self-sufficiency and sustainable agricultural 

development. 
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