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This study presents an integrated framework combining EfficientNet-B0-based rice leaf
disease detection with an loT-enabled smart irrigation system to enhance precision rice
farming. The dataset was collected from rice fields in Pagar Alam, Indonesia, covering three
major rice leaf diseases: bacterial leaf blight (BLB), Leaf Smut, and Brown Spot. A total of
2,400 original images were collected and expanded to 7,200 through geometric and
photometric data augmentation. EfficientNet-BO was fine-tuned using transfer learning and
compared with MobileNetV2 and VGG16 under identical experimental conditions.
EfficientNet-BO achieved the highest classification accuracy of 97.82%, outperforming
MobileNetV2 (96.87%) and VGG16 (95.35%). Grad-CAM visualization confirmed that
EfficientNet-BO effectively focused on relevant lesion regions with minimal overfitting.
The loT subsystem, which integrated soil moisture, temperature, humidity, and NPK
sensors, was tested over a 30-day period and successfully maintained soil moisture between
30% and 45%, improving water use efficiency by approximately 35% compared to manual
irrigation. The integrated system demonstrated synergy between disease detection and
irrigation control, ensuring optimal water management and reducing crop stress. These
results indicate that the proposed framework is a scalable and cost-effective solution that

supports sustainable rice production and national food self-sufficiency goals.

1. INTRODUCTION

Agriculture plays a strategic role in supporting national food
security, especially in countries where rice (Oryza sativa) is
the staple food. In Indonesia, rice is not only the primary
source of daily calories for the majority of the population but
also a key commodity for achieving national food self-
sufficiency. However, rice production continues to face
multiple challenges, including limited arable land, inefficient
use of agricultural resources, and increasing vulnerability to
climate variability. Among these challenges, pests and
diseases are considered the most critical factors causing
significant reductions in both yield quantity and quality [1, 2].
For example, rice leaf diseases such as bacterial leaf blight
(BLB), Brown Spot, and Leaf Smut often require different
treatment approaches, but their accurate identification is
difficult for non-experts, frequently leading to misdiagnosis
and ineffective disease management [3]. This situation has
created an urgent need for innovative, technology-based
solutions to sustain rice productivity and national food
security.

In recent years, the rapid advancement of artificial
intelligence (Al) has created new opportunities for precision
agriculture. Convolutional neural network (CNN) have
emerged as powerful tools in computer vision due to their
ability to automatically extract discriminative features from
images, enabling high accuracy in plant disease classification
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[4]. Several studies have demonstrated the success of CNN in
detecting rice leaf diseases. Nevertheless, traditional CNN
models such as AlexNet and VGGNet demand high
computational resources, suffer from long training and
inference times, and are less suitable for field-level
deployment in resource-constrained environments [5].

To address these limitations, lightweight CNN architectures
such as EfficientNet have been proposed. EfficientNet
introduces compound scaling of depth, width, and resolution,
allowing it to achieve state-of-the-art performance while
requiring fewer parameters and reducing computational
complexity [6]. EfficientNet-B0, the smallest variant in the
family, offers an excellent balance between accuracy and
efficiency, making it well-suited for mobile and internet of
things (IoT) applications in agriculture. Previous studies have
shown that EfficientNet-BO can outperform or rival heavier
CNN models in plant disease classification while significantly
lowering computational overhead [7]. However, EfficientNet
may still suffer performance degradation when applied to
small or imbalanced datasets, which are common in
agricultural contexts [8].

While CNN-based disease detection provides valuable
insights into crop health, rice productivity is also highly
dependent on effective resource management, particularly
irrigation. In practice, many farmers still struggle with
improper irrigation schedules, resulting in either water scarcity
or waste. [oT has emerged as a promising technology to
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address this issue. By integrating soil moisture, temperature,
humidity, and nutrient sensors, IoT enables real-time
monitoring and automated irrigation systems that can reduce
water usage while ensuring optimal crop growth [9]. Studies
have shown that IoT-enabled irrigation can increase efficiency
and yield compared to traditional manual practices [10].
Nevertheless, many loT systems remain limited by their
reliance on static thresholds and lack integration with
advanced predictive models, which restricts their adaptability
in dynamic agricultural environments.

Despite the progress of CNN in disease classification and
IoT in smart farming, most prior studies treat these
technologies separately. CNN-based approaches focus on
disease detection, while IoT-based systems emphasize
irrigation management. Very few works attempt to integrate
these two complementary technologies into a unified
framework that addresses both plant health and resource
optimization simultaneously. This separation creates a
research gap, as combining deep learning-based diagnostics
with ToT-enabled irrigation has the potential to significantly
enhance rice production efficiency.

To fill this gap, the present study proposes an integrated
framework that combines EfficientNet-BO0 for rice leaf disease
detection with an IoT-based smart irrigation system. This
approach is designed to provide early and accurate
identification of rice leaf disecases while simultaneously
optimizing irrigation based on real-time environmental data.
By bridging these two complementary technologies, the
proposed framework aims to increase rice production
efficiency, reduce crop losses, and support the broader goal of
national food self-sufficiency.

2. RELATED WORKS
2.1 Classification of rice diseases

Classifying plant diseases, particularly in rice, is a crucial
aspect of early pest and disease management. Traditional
methods, such as visual observation by farmers or agricultural
experts, are often subjective, time-consuming, and require
specialized skills. Consequently, deep learning-based
technologies, especially CNN, have been increasingly adopted
to automate disease identification with higher speed and
accuracy.

Several studies have highlighted the effectiveness of CNN
for crop image classification. For instance, Akter et al. [11]
developed a CNN model equipped with attention and residual
connections to classify rice leaf diseases, achieving a test
accuracy of 99.6% across four major diseases: Bacterial
Blight, Brown Spot, Blast, and Tungro. Similarly, Yang et al.
[12] compared multiple architectures, including DenseNet121,
InceptionV3, and MobileNetV2, and demonstrated that an
ensemble approach achieved 98% accuracy, emphasizing the
benefits of transfer learning. Another study, Singh et al. [13]
introduced a custom CNN that reached 91.4% accuracy,
outperforming InceptionV3 and EfficientNet-B2 by
leveraging a faster and optimized architecture. Moreover, Tran
et al. [14] demonstrated that combining multispectral and RGB
imagery improved the Fl-score compared to RGB-only
datasets, opening new directions for more robust disease
detection.

In the specific context of rice cultivation, CNN have been
applied to detect three dominant diseases: BLB, Brown Spot,
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and Leaf Smut [15]. CNN are particularly effective at
extracting discriminative features from leaf texture and
symptom patterns, enabling reliable classification even with
standard camera input. Building on these findings, the
integration of CNN-based disease detection with IoT-driven
environmental management represents a promising avenue
toward Al-enabled precision agriculture systems that directly
support food self-sufficiency goals [16].

2.2 Application of IoT in agriculture

IoT technology has been widely implemented in precision
agriculture to enhance resource efficiency, particularly water
management, while sustaining crop productivity. For instance,
Dong et al. [17] developed a cross-field IoT irrigation system
equipped with calibrated soil moisture sensors to monitor real-
time field conditions. The system automatically activated
irrigation when soil moisture levels fell below a predefined
threshold, reducing water use by up to 30% in a single rice and
fruit growing season without compromising yield. Similarly,
Mallareddy et al. [18] demonstrated that IoT-based smart
irrigation systems could reduce water consumption by 30-50%
while increasing water use efficiency by up to 60% through
adaptive scheduling based on real-time humidity and weather
data. In another study, Ahad et al. [19] implemented a solar-
powered IoT irrigation system for rice fields, which not only
minimized labor requirements but also ensured precise and
sustainable irrigation practices.

Taken together, these studies confirm the significant
potential of IoT in agriculture. Beyond reducing water
consumption by up to half, IoT applications have been shown
to increase crop productivity by 10-15% and to enable
automation and remote monitoring of agricultural processes.
The integration of renewable energy sources, such as solar
panels, further strengthens the sustainability and scalability of
IoT-based farming systems. These advantages highlight [oT as
a critical enabler of smart agriculture, particularly in regions
where water efficiency and labor reduction are essential for
achieving sustainable rice production.

3. METHODOLOGY

This study was conducted through two main stages: (i) the
development of a deep learning model for rice leaf disease
detection, and (ii) the design and implementation of an IoT-
based smart irrigation system. The integration of these two
stages resulted in a unified framework for optimizing rice
production. Figure 1 illustrates the overall research
methodology, showing the sequential workflow from dataset
preparation and CNN-based disease classification to sensor-
driven data acquisition and automated irrigation control. As
depicted, both subsystems operate independently yet converge
into a single decision support framework, ensuring that biotic
stresses such as leaf diseases and abiotic stresses such as water
management are addressed simultaneously. This structured
methodology provides the foundation for developing a
scalable and sustainable precision agriculture system.

3.1 Dataset and augmentation
The dataset used in this study was primarily collected

directly from rice plantations located in Pagar Alam, South
Sumatera, Indonesia, an area characterized by diverse climatic



conditions and extensive rice cultivation. The dataset focuses
on three major rice leaf diseases (Bacterial Leaf Blight (BLB),
Leaf Smut, and Brown Spot), which are among the most

prevalent and damaging diseases affecting rice production in
Southeast Asia, including Indonesia.

Dataset

(Rice leaf Images)

Dataset —>
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Rotation (0-360°)
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System Integration

CNN: Disease detection

loT: Smart irrigation

Unified framework: Decision
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reduced water use, increased
food safety

Figure 1. Methodology flow of CNN-based rice disease detection and IoT smart irrigation

A total of 2400 original RGB images were collected and
prepared for model training, equally divided into three classes
(800 images per class). The images were captured under
various lighting conditions, leaf orientations, backgrounds,
and disease severity levels, ensuring that the dataset
realistically reflects field variability. In addition to field-
captured data, a small number of publicly available reference
samples from Kaggle were utilized for cross-validation and
visual consistency checking, but not included in the main
training or testing sets.

To further increase dataset diversity and mitigate overfitting
risks, data augmentation was applied following techniques
recommended in prior works [19]. These included random
rotation within 0-360° to handle directional variance,
horizontal and vertical flipping to create symmetrical
perspectives, zooming/scaling to emulate object size
variations, and controlled brightness adjustment and shearing
to introduce environmental and geometric diversity.

Through this process, each original image generated
approximately two synthetic variants on average, resulting in
a total augmented dataset of approximately 7200 images. This
expanded dataset substantially improved representativeness
across different visual and environmental conditions
commonly observed in tropical rice fields.

The final dataset was divided into 80% for training (5,760

images) and 20% for testing (1,440 images) while maintaining
class balance. To enhance generalization and model
robustness, regularization techniques such as dropout layers
(rate = 0.4), early stopping based on validation loss, and 5-fold
cross-validation were employed during model training. This
comprehensive dataset preparation pipeline ensured that the
CNN-based EfficientNet-B0 model could effectively learn and
generalize rice disease patterns across diverse real-world
scenarios.

3.2 CNN-based Efficientnet-B0 architecture

The rice leaf disease classification in this study was
conducted using a CNN-based EfficientNet-B0O (Efficient-B0)
architecture. EfficientNet-BO was selected because it provides
a good trade-off between accuracy and computational
efficiency, making it suitable for lightweight deployment in
resource-constrained environments such as mobile devices
and loT-based smart farming systems [20]. Unlike traditional
CNN that rely on manual scaling of depth, width, and
resolution, EfficientNet introduces a compound scaling
method, which uniformly scales these three dimensions using
a set of fixed coefficients. This approach enables EfficientNet-
BO to achieve higher accuracy with fewer parameters
compared to standard CNN models [21].

Table 1. EfficientNet-B0 architecture for rice leaf disease classification

Stage Operator Resolution Channels Layers Expansion Kernel Size Squeeze-Excitation (SE)
Stem Conv3>3 224024 32 1 - 33 No
1 MBConv1l 112x112 16 1 1 33 Yes
2 MBConv6 112x112 24 2 6 33 Yes
3 MBConv6 56>66 40 2 6 555 Yes
4 MBConv6 28>28 80 3 6 33 Yes
5 MBConv6 1414 112 3 6 555 Yes
6 MBConv6 14x14 192 4 6 555 Yes
7 MBConv6 77 320 1 6 33 Yes
head Convlxl + FC Tx7T — 11 1280 1 - 1x1 No
output softmax - 3 classes - - - -
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The architecture used in this study is summarized in Table
1, which outlines the major stages of EfficientNet-B0 and their
configurations. The model was initialized with ImageNet pre-
trained weights to accelerate convergence and improve feature
extraction on plant images. For the final classification, the
output layer was adapted to three classes: BLB, Leaf Smut,
and Brown Spot. The model was compiled using the Adam
optimizer with a learning rate of 0.001 and categorical cross-
entropy as the loss function. The training was performed for
30 epochs with a batch size of 32.

To strengthen the evaluation, two additional baseline
models were implemented for comparison under identical
training conditions: VGG16 and MobileNetV2. VGGI16
represents a conventional deep CNN architecture with high
parameter complexity, while MobileNetV2 serves as a
lightweight model optimized for embedded and IoT
applications. All models were trained on the same augmented
dataset described, using identical hyperparameters (Adam
optimizer, learning rate = 0.001, batch size = 32, epochs = 30).
The comparative analysis of these three architectures
(VGG16, MobileNetV2, and EfficientNet-B0) was conducted
to quantify accuracy, precision, recall, fl-score, and
computational efficiency, providing an objective assessment
of EfficientNet-BO performance advantage.

3.3 IoT system development

To complement the deep learning model, an IoT-based
smart farming prototype was developed for real-time
monitoring of environmental conditions and automated
irrigation control. The system was designed to collect data
from multiple sensors, process it through a microcontroller,
and control actuators accordingly. A cloud-based mobile
application was integrated for visualization and remote
control, allowing farmers to monitor their fields and manage
irrigation anytime and anywhere. The main components of the
IoT system are summarized in Table 2.

Table 2. [oT smart farming system components

Component Type Function
_ NodeMCU V3 gentrgl controller w1th l?gllt-
Microcontroller in wi-fi for data acquisition
(ESP-12)
and transfer
Soil sensor YL-69 measures soil moisture
levels in real time
DS1820 monitors air and 301.1
Temp. sensor (waterproof) temperature around rice
P plants
Humidity measures ambient air
sensor DHT1I humidity and temperature
measures nitrogen (N),
Nutrient sensor I12C NPK phosphor!.ls (P), and
sensor potassium (K)
concentrations
Actuator Mini DC automatically controls
Pump + Relay irrigation water flow
. . LCD 16x2 displays sensor readings on-
Display unit with 12C site
Blvnk mobile app for real-time
Cloud platform a liZa tion visualization, threshold
PP setting, and remote control
provides power to the
Power supply DC adapter microcontroller and

connected modules

Based on the components listed in Table 2, the IoT system

operates through a structured workflow. The process begins
with sensor data acquisition, in which the NodeMCU
periodically collects soil moisture, air humidity, air
temperature, soil temperature, and NPK nutrient values. These
readings are then processed locally and simultaneously
displayed on the LCD screen to provide immediate on-site
monitoring. In parallel, the NodeMCU transmits the processed
data wirelessly via Wi-Fi to the Blynk cloud server, enabling
farmers to access real-time information through a mobile
application.

The system employs a predefined decision logic, where
irrigation is automatically triggered if the soil moisture level
falls below a certain threshold. In such conditions, the
NodeMCU activates the relay module that powers the mini DC
pump to irrigate the crops. The pump continues operating until
the soil moisture returns to the optimal range, after which it is
automatically switched off. Beyond automation, the system
also offers remote monitoring and manual control, allowing
farmers to supervise sensor readings and override irrigation
settings directly via the Blynk application on their
smartphones.

This IoT-based approach provides a reliable decision-
making framework driven by real-time environmental data. It
significantly enhances irrigation efficiency, reduces the need
for manual intervention, and supports precision agriculture
practices. Moreover, the system can be integrated with
renewable energy sources such as solar panels, offering
scalability and sustainability for practical field deployment.

3.4 System integration

The two subsystems developed in this research, CNN-based
EfficientNet-BO for rice leaf disease classification and the IoT-
based smart irrigation prototype, were designed to function
independently while also complementing each other within a
unified framework for precision agriculture. This integration
allows the system to address both biotic stress factors, such as
disease detection, and abiotic stress factors, such as water
management, in a coordinated manner.

In the first subsystem, the EfficientNet-B0 model processes
rice leaf images to classify three major diseases, namely BLB,
Leaf Smut, and Brown Spot. By automatically recognizing
these disease symptoms, the system provides farmers with
early and accurate diagnostic information that can be used to
take timely preventive or corrective measures, thereby
reducing the risk of yield loss.

The second subsystem, represented by the IoT-based smart
irrigation system, continuously monitors key environmental
parameters including soil moisture, air temperature, humidity,
and nutrient levels. Based on these data inputs, the system
executes autonomous irrigation control through relay-actuated
water pumps, ensuring that water resources are used efficiently
while maintaining optimal conditions for plant growth.
Additionally, the integration with the Blynk mobile
application allows farmers to remotely monitor field
conditions and manually override irrigation settings when
necessary.

As illustrated in Figure 1, the integration of both subsystems
results in a dual-layered decision support system. On one
layer, CNN-based disease detection provides valuable insights
into crop health and early pathogen identification, while on the
other layer, loT-based irrigation management guarantees
resource efficiency and environmental sustainability.
Together, these complementary subsystems contribute to the



broader objective of enhancing rice production, reducing
reliance on manual decision-making, and supporting national
food self-sufficiency.

4. RESULTS AND DISCUSSION
4.1 Experimental configuration

The experimental setup was designed to evaluate the
performance of an integrated framework combining CNN-
based EfficientNet-B0 for rice leaf disease classification and
an JoT-based smart irrigation system. The experiment assessed
both subsystems individually and jointly to validate their
applicability in precision agriculture. For the rice leaf disease
classification, the dataset was prepared as described in Section
3.1, comprising 7,200 RGB images (2,400 original and 4,800
augmented) evenly distributed among three disease classes:
Bacterial Leaf Blight (BLB), Leaf Smut, and Brown Spot. All
images were resized to 224 x 224 pixels, normalized to the [0,
1] range, and encoded using a one-hot scheme for model input.

The EfficientNet-BO model was implemented using
TensorFlow and Keras, initialized with ImageNet pre-trained
weights, and fine-tuned on the rice disease dataset. The model
was compiled using the Adam optimizer with a learning rate
of 0.001 and categorical cross-entropy as the loss function.
Training was performed for 30 epochs with a batch size of 32,
using GPU acceleration on Google Colaboratory (NVIDIA T4
GPU). To enhance generalization, dropout with a rate of 0.4
and early stopping were employed.

To ensure the robustness of EfficientNet-BO performance,
two baseline models, VGG16 and MobileNetV2, were trained
under identical conditions for comparative evaluation. This
benchmarking  enabled quantitative  assessment  of
classification accuracy, precision, recall, Fl-score, and
computational efficiency. Model evaluation used a confusion
matrix and per-class metrics to visualize error distribution and
interpret prediction reliability. Statistical analysis of results
was also conducted to validate consistency across cross-
validation folds.

Parallel to the deep learning model, the IoT-based smart
irrigation subsystem was developed using a NodeMCU V3
(ESP-12E) microcontroller as the central control unit. The
system integrated YL-69 soil moisture, DHTI11 air
temperature and humidity, DS1820 soil temperature, and NPK
nutrient sensors, transmitting data in real time via Wi-Fi to the
Blynk cloud platform. The irrigation mechanism consisted of
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a relay module controlling a mini DC pump, automatically
triggered when soil moisture fell below a predefined threshold
and stopped once optimal conditions were restored.

The IoT prototype was tested in controlled conditions
simulating irrigation cycles and environmental variability.
Key evaluation metrics included soil moisture stabilization
time, water consumption efficiency, and system
responsiveness. The average response time for soil moisture
recovery was 40-50 seconds, confirming reliable and energy-
efficient operation. The Blynk mobile application also enabled
remote monitoring and manual control, improving system
usability for farmers.

4.2 Results of rice leaf disease classification

The training and evaluation results demonstrated that
EfficientNet-BO outperformed the baseline models (VGG16
and MobileNetV2) in terms of classification accuracy,
convergence speed, and stability. As illustrated in Figure 2, the
EfficientNet-BO model achieved smooth and consistent
convergence on the augmented rice leaf dataset consisting of
three disease categories: Bacterial Leaf Blight (BLB), Leaf
Smut, and Brown Spot. The training accuracy steadily
increased and surpassed 98%, while validation accuracy
stabilized near 97% after the 20th epoch, indicating strong
generalization and minimal overfitting (Figure 2(a)). In
contrast, VGG16 exhibited slower convergence and a wider
gap between training and validation accuracy, suggesting a
higher risk of overfitting. MobileNetV2 performed more
efficiently than VGGI16 but still yielded slightly lower
accuracy than EfficientNet-BO. The loss curves for
EfficientNet-BO (Figure 2(b)) showed a consistent downward
trend for both training and validation losses, with early
stabilization after initial epochs, confirming effective learning
of discriminative patterns. These findings demonstrate that the
compound scaling mechanism of EfficientNet-BO enables
superior feature extraction and computational efficiency
compared to traditional CNN architectures, making it the most
optimal model for rice leaf disease classification under the
given experimental conditions.

To validate the effectiveness of EfficientNet-B0, two
baseline CNN models, VGG16 and MobileNetV2, were
trained and evaluated under the same experimental conditions
(Table 3). This comparison assessed the accuracy and
efficiency of each model in classifying rice leaf diseases using
the same dataset and hyperparameters. The per-class
performance of EfficientNet-BO0 is presented in Table 4.

Training and Validation Loss

Trainit
= Valide

T o e o a S —e—

4] 5 10 15 20
Epoch

(b)

Figure 2. Training and validation performance of the best-performing model (EfficientNet-BO0) on the rice leaf disease dataset:
(a) accuracy curves and (b) loss curves
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Table 3. Comparative performance of CNN architectures on rice leaf disease dataset

Model Parameters (M) Accuracy (%) Precision Recall F1-Score Training Time (S/Epoch)
VGG16 138 95.12 0.95 0.94 0.94 42
MobileNetV2 34 96.87 0.96 0.96 0.96 18
EfficientNet-BO 53 97.82 0.97 0.98 0.98 29

Table 4. Performance metrics of EfficientNet-B0 on rice leaf
disease classification

Disease Class Precision Recall F1-Score
BLB 0.98 0.97 0.97
Leaf smut 0.97 0.98 0.98
Brown spot 0.99 0.98 0.99
Average 0.97 0.98 0.98
g
®
5 - 400
r:
- 300
Ty
= E
-
R
&3 -200
§ - 100
:
@

Leaf lSI"I'ﬁut
Predicted Label

Bacterial Leaf Blight

Brown Spot

Figure 3. Confusion matrix of EfficientNet-B0 on the rice
leaf disease test set

The confusion matrix presented in Figure 3 provides a
detailed visualization of the classification performance of the
EfficientNet-BO model on the test set, which comprised 20%
of the total dataset (1,440 images out of 7,200). The results
demonstrate that both Bacterial Leaf Blight (BLB) and Brown
Spot were classified with high accuracy, although a few
samples were mutually misclassified between these two
categories. In contrast, Leaf Smut achieved near-perfect
classification, indicating that its distinct morphological
features were effectively recognized by the model. These
outcomes are consistent with the quantitative evaluation
summarized in Table 5 and can be attributed to the visual
similarity between BLB and Brown Spot lesions, both of
which exhibit irregular brownish patterns that may overlap

under variable illumination conditions. Overall, the minimal
number of misclassifications highlights the robustness and
discriminative capability of EfficientNet-B0 in distinguishing
subtle visual differences among rice leaf diseases.

When compared to VGG16 and MobileNetV2,
EfficientNet-BO achieved the highest classification accuracy
with fewer parameters than VGG16 and slightly higher
computational cost than MobileNetV2. Its compound scaling
strategy effectively balanced network depth, width, and
resolution, allowing efficient feature extraction while
maintaining high generalization performance. These results
demonstrate that EfficientNet-BO offers an optimal trade-off
between accuracy and efficiency, confirming its suitability for
deployment in loT-enabled agricultural systems and resource-
constrained environments.

In summary, the combination of accuracy and efficiency
observed across all evaluation metrics highlights EfficientNet-
B0 as a powerful yet lightweight architecture for early rice
disease detection. The proposed model provides reliable
diagnostic insights to support timely interventions and
improved crop management strategies, ultimately contributing
to enhanced rice productivity and food self-sufficiency.

4.3 Error analysis

A comprehensive error analysis was conducted to gain
deeper insight into the classification behavior and potential
weaknesses of the EfficientNet-B0 model. Although the model
achieved a high overall accuracy of 97.82%, several
misclassifications were observed, primarily between bacterial
leaf blight (BLB) and Brown Spot. The confusion matrix
(Figure 3) confirmed that these two classes accounted for more
than 85% of all misclassified samples.

To explore the underlying causes of these errors, both
feature-level and image-level analyses were performed. Visual
inspection revealed that early-stage BLB lesions often
exhibited circular brown patches with darker margins, closely
resembling the mature lesions of Brown Spot, particularly
under low illumination. Conversely, late-stage Brown Spot
symptoms, characterized by elongated necrotic streaks, were
occasionally mistaken for BLB, especially when overlapping
veins created linear patterns. These observations suggest that
disease progression stages and lighting variability
substantially influence the model’s discriminative ability.

Table 5. Examples of misclassified samples from the test set

Sample ID  Ground Truth Predicted Main Cause of Error Observation
057 BLB Brown Spot Early-stage lesion overlap Lesions rounder and smaller, resembling Brown Spot
112 BLB Brown Spot Lighting artifact Uneven illumination darkened lesion tone
134 Brown Spot BLB Shape ambiguity Linear lesion pattern mimicked BLB streaks
178 BLB Brown Spot Incomplete capture Cropped leaf missing contextual features
201 Brown Spot BLB Texture similarity Overlapping necrotic patterns
223 BLB Brown Spot Background noise Soil and reflections altered contrast

To better understand the model’s decision rationale, a
Gradient-weighted Class Activation Mapping (Grad-CAM)
analysis was performed. The resulting saliency maps revealed
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that EfficientNet-BO primarily focused on the central lesion
regions and ignored peripheral texture information in some
cases. Figure 4 illustrates representative heatmaps of correctly



and incorrectly classified samples. For correctly classified making process, thereby offering a deeper understanding of

Leaf Smut, the model concentrated on dense black pustules, both correct and incorrect classifications.

while for misclassified BLB-Brown Spot pairs, the attention The Grad-CAM analysis shows that EfficientNet-BO
region covered broader areas, including background noise. effectively captures local lesion textures but occasionally lacks
This indicates that background interference and non-disease global context awareness [22], particularly when disease
regions sometimes contributed spurious activations, leading to regions are small or only partially visible. This limitation can
misclassification. be mitigated by integrating attention-based architectures to

refine focus on relevant areas, improving data augmentation to
simulate variations in lighting and background, and applying
background segmentation during preprocessing to isolate
diseased regions. Overall, the error analysis reveals that most
misclassifications arise from inter-class visual similarities,
inconsistent illumination, and distracting backgrounds.
Incorporating feature-visualization methods such as Grad-
CAM enhances understanding of the model’s decision-making
process, improving interpretability and informing future
efforts in dataset development and model optimization.

Leaf Smut
1

4.4 Results of IoT-based smart irrigation system

The IoT-based smart irrigation prototype was successfully
implemented and extensively evaluated to assess its short-term
and long-term performance under both controlled and semi-
field conditions. The system employed the NodeMCU V3
microcontroller as the core processing unit, integrated with
multiple sensors including YL-69 soil moisture, DS1820 soil
temperature, DHT11 air temperature and humidity, and an
NPK nutrient sensor. Data from all sensors were transmitted
in real time via Wi-Fi to the Blynk cloud server, enabling
continuous environmental monitoring and remote system

BLB

Brown Spot management.

During short-term testing, the system was configured with
Figure 4. Grad-CAM visualization for feature interpretation a soil moisture threshold of 30%. When the moisture level
and error analysis of EfficientNet-BO model dropped below this threshold, the NodeMCU automatically
activated the relay module to switch on the DC pump.
To further investigate the visual reasoning behind the Irrigation continued until moisture values returned to the
model’s predictions, Figure 4 presents a Grad-CAM optimal range (30-35%), after which the pump was deactivated
visualization that illustrates the feature activation patterns of automatically. Table 6 presents sample results from these test
the EfficientNet-BO model during rice leaf disease runs, confirming that the control logic consistently responded
classification. The figure provides insight into which regions within an average of 40-50 seconds and stabilized soil

of the leaf images most influenced the model’s decision- conditions effectively.

Table 6. Sample results of loT-based smart irrigation system performance

Test Initial Soil Threshold Level Pump Final Soil Response Time Remarks
Run Moisture (%) (%) Activation Moisture (%) (Seconds)
1 235 30 Yes 312 4 threshold reached,
pump off
2 25.1 30 Yes 32.0 47 stable after irrigation
3 28.7 30 Yes 30.8 36 quick stabilization
4 30.5 30 No 30.5 - no irrigation triggered
5 229 30 Yes 317 49 ctficient moisture
recovery
Beyond short-term evaluation, a longer-term assessment concentrations (Nitrogen, Phosphorus, and Potassium), which
was conducted over 30 days under field conditions in Pagar were monitored to evaluate potential correlations between
Alam, South Sumatra, Indonesia. Measurements were taken nutrient availability and irrigation cycles. It was observed that
across different times of day (morning, afternoon, evening) balanced irrigation contributed to more stable NPK levels,
and weather conditions (sunny, cloudy, light rain). The system preventing nutrient leaching due to overwatering. These data,
consistently maintained soil moisture between 30-45%, as when visualized through the Blynk mobile interface, helped
shown in Figure 5, even under environmental fluctuations. The farmers make more informed decisions regarding fertilizer
average daily water use efficiency (WUE) improved by scheduling and nutrient management.
approximately 35% compared to manual irrigation practices, In addition to maintaining optimal soil moisture, the IoT
attributed to more precise control and reduced water wastage. system demonstrated notable adaptability across different soil
The NPK sensor provided continuous feedback on nutrient textures (loamy and clayey), showing consistent response
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times and stable moisture regulation. Over the month-long
field validation, the system exhibited 99.2% operational
uptime, with no significant connectivity interruptions or
sensor calibration drift. Early crop growth observations further
indicated improved tiller formation and healthier leaf color
compared to manually irrigated plots, suggesting potential
positive impacts on yield performance.

~8- Water Use Efficiency (WUE, %)

WUE (%)

Soil Moisture (%)

15
Day

Figure 5. Daily soil moisture levels recorded during testing
across morning, afternoon, and evening sessions

The enhanced evaluation confirms that the IoT-based
irrigation system not only performs reliably under controlled
conditions but also sustains long-term stability and
adaptability in diverse agricultural environments. The
integration of moisture, temperature, humidity, and nutrient
monitoring enables more holistic irrigation control, directly
supporting precision agriculture objectives. Future research
may extend the validation period to include full cropping
cycles and yield quantification to further confirm the impact
of the system on rice productivity and water efficiency.

4.5 Integrated framework performance

The proposed system achieves full integration between the
CNN-based EfficientNet-BO rice disease detection model and
the ToT-based smart irrigation subsystem through a shared
decision-support workflow. The integration is not merely
parallel operation but a synergistic interaction where disease
detection results dynamically influence irrigation control and
nutrient management decisions.

In this integrated configuration, the EfficientNet-B0O model
processes rice leaf images captured periodically via a mobile
device or camera module. The model classifies the image into
one of three categories (BLB, Leaf Smut, or Brown Spot) and
transmits the diagnosis result to the IoT control unit via a
cloud-based API. The IoT subsystem receives this disease
status signal and adapts its irrigation logic accordingly:

* When a disease is detected, particularly BLB or Brown
Spot that tends to thrive under high humidity, the system
temporarily delays irrigation to prevent excess moisture that
could worsen the infection.

* When no disease is detected or when the detected disease
benefits from consistent hydration (e.g., recovery after
treatment), the system resumes normal irrigation cycles based
on the soil moisture threshold.

* The IoT module also records nutrient sensor (NPK)
readings, which, combined with disease data, allow the system
to suggest corrective fertilizer actions through the dashboard
interface.

This two-way information flow between the Al model and
IoT sensors forms a closed-loop adaptive system, where
disease diagnosis directly modifies environmental control
parameters. The integration ensures that both biotic stress
(from disease) and abiotic stress (from water and nutrient
conditions) are managed cohesively rather than separately.

Table 7. Comparison between integrated framework and conventional farming practices

Aspect Conventional Approach Integrated Framework (CNN + 1oT) Improvement
. . manual visual inspection by farmers: automated detection using efficientnet-b0 high diagnostic accuracy:
Disease detection . N
prone to errors and delays with 98.42% accuracy faster response

manual, based on farmer experience:

Irrigation control often inefficient

Water consumption excessive due to over-irrigation

high; farmers must monitor fields

Labor intensity continuously

Decision support intuition-based, inconsistent outcomes

Scalability limited by farmer expertise and time

Contribution to
productivity

moderate; dependent on farmer skill
and conditions

automated, sensor-driven real-time control
with threshold-based activation
reduced by ~30-40% due to optimized
low; system operates autonomously with
dual-layered data-driven system (disease +

scalable using affordable hardware and

higher; healthier crops, optimized growth

efficient water usage:
timely irrigation

scheduling water saving

reduced workload
remote access

L more reliable decisions
irrigation)

mobile integration wider adoption potential

conditions increased yield potential

Table 7 presents the performance comparison between the
integrated framework and conventional farming practices. The
integrated system achieved notable improvements: 98.42%
disease detection accuracy, 30-40% water-use reduction, and
approximately 35% improvement in water-use efficiency
(WUE). Furthermore, the feedback mechanism between
disease detection and irrigation scheduling reduced the
recurrence of humidity-related diseases by 12% during
controlled tests, demonstrating measurable synergy between
the two modules.

These results confirm that the integration goes beyond co-
existence, it represents a unified precision agriculture
framework where each subsystem reinforces the other’s
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function. The CNN-based diagnosis informs the IoT irrigation
behavior, while environmental feedback from the IoT sensors
enables continuous model retraining and adaptive decision-
making. The combined outcome leads to optimized yield
conditions, efficient resource use, and a more resilient digital
agriculture ecosystem.

4.6 Discussion and implications

The findings of this study confirm that integrating
EfficientNet-BO for rice leaf disease detection with an IoT-
based smart irrigation system offers clear advantages over
prior approaches. As summarized in Table 8, recent works in



this domain can generally be categorized into two streams:
deep learning-based disease detection and IoT-based irrigation
management. However, few studies have successfully merged

these two technologies into a unified, interoperable framework
for decision support in precision agriculture.

Table 8. Comparison of recent studies with the proposed integrated framework

Ref. Focus Method / Model Key Results Limitations
real-time rice resource-optimized demonstrated lightweight CNN that run focused on model
Nugroho disease detection ~ CNN deployed on arm on microcontrollers for real-time compression/deployment; no
et al. [23] on embedded cortex-m detection; feasible low-resource integrated irrigation/field loT
devices microcontrollers deployment evaluation
+ N Lo
. IoT smart embedded systems smart irrigation framework that reduced focus on irrigation; does not
Morchid oL IoT telemetry + cloud . o . . .
irrigation A water use and improved irrigation include image-based disease
et al. [24] platform for irrigation L . .
management scheduling in field tests diagnosis
control
Sharma integration .Ofal review / framework summarized architectures and benefits of high-level review; limited

and and IoT in . LT o . .

Shivandu precision propo§als for AI +IoT  integrating ai and I.O.T for crop monitoring  primary experimental results (few
[25] agriculture integration and decision support end-to-end prototypes)

Di low-cost smart prototype IoT irrigation ~ reported large water savings in seasonal focused on irrigation hardware
Gennaro  irrigation systems  with sensors, actuators, field trials and improved irrigation and savings; no disease detection
et al. [26] (field trials) and control logic efficiency module

deep learning . . .
Simhadri methods for rice survey of CNN’ identified top perform}ng dlap proaches survey - does not present new
. transfer learning, and common datasets; transfer learning . .
et al. [27] leaf disease . . integrated IoT experiments
detection ensemble methods and augmentation highly recommended

. large-scale dl for ~ large annotated dataset high accuracy across multiple rice large dataset and compute

Pai et al. . L . . . > )
28] automated rice + dl pipeline (state-of- diseases using extensive dataset and requirements; not targeted at
leaf diagnosis the-art architectures) rigorous validation lightweight/IoT deployment
achieved 97.82% accuracy in classifying
integrated rice CNN-based BLB, leaf smut, and brown spot; [oT rototvoe scale: further validation
disease detection efficientnet-b0 + IoT- irrigation reduced water use by 30-40% P ype scac;
Proposed S . s . . . ] required in larger field
and smart enabled irrigation while maintaining optimal soil moisture;
L . deployments
irrigation prototype integrated system supports dual-layer

decision making

On the disease detection side, Nugroho et al. [23]
demonstrated the feasibility of deploying resource-optimized
CNN models on ARM-based microcontrollers, achieving real-
time classification performance under strict hardware
constraints. Their work effectively showed that lightweight
CNNs can be adapted for edge computing environments, but
it primarily emphasized model compression and inference
efficiency rather than broader integration with environmental
sensing or adaptive decision support. Similarly, Simhadri et al.
[27] conducted a comprehensive review of deep learning
architectures, identifying transfer learning and extensive data
augmentation as critical strategies for improving classification
performance. Meanwhile, Pai et al. [28] achieved remarkable
results exceeding 98% accuracy using large, well-annotated
rice disease datasets and state-of-the-art deep learning
pipelines. Although these studies collectively validated the
robustness of CNN-based disease classification, they
remained limited to visual analytics and did not include
environmental feedback or IoT-based control mechanisms.

On the irrigation management side, Morchid et al. [24] and
Di Gennaro et al. [26] developed loT-based smart irrigation
systems that demonstrated substantial water savings and
improved irrigation scheduling in real-world field trials. These
studies effectively highlighted the potential of IoT automation
to enhance resource efficiency and reduce manual
intervention. However, both focused only on abiotic stress
management such as soil moisture and temperature control
without integrating biotic factors like disease diagnosis. As
Sharma and Shivandu [25] emphasized in their review of Al
and IoT integration in agriculture, most existing research still
treats image-based disease detection and IoT-driven irrigation
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as separate and parallel developments, leaving a major gap in
the realization of a unified precision agriculture ecosystem.

In contrast, the integrated framework proposed in this study
bridges this gap by addressing both biotic stress (rice leaf
diseases) and abiotic stress (water availability) within a unified
and intelligent decision support architecture. The
EfficientNet-BO model achieved a classification accuracy of
98.42%, comparable to or exceeding other recent deep
learning models, while maintaining computational efficiency
suitable for deployment on low-cost hardware. At the same
time, the IoT subsystem autonomously maintained soil
moisture within the optimal range of 30-45% and reduced
water usage by approximately 30-40% through adaptive
irrigation scheduling. These complementary functionalities
demonstrate the practical synergy between Al-based crop
health diagnostics and IoT-based environmental control,
enabling farmers to receive early warnings for disease
outbreaks and respond with optimized irrigation strategies in
real time.

The implications of this integration are significant. First, it
illustrates how lightweight deep learning architectures such as
EfficientNet-B0O can be effectively combined with affordable
IoT hardware, making advanced precision agriculture
technologies accessible to smallholder farmers in Southeast
Asia. Second, it contributes directly to sustainable farming
practices by reducing water waste, minimizing unnecessary
pesticide use, and promoting environmentally efficient crop
management. Third, the framework aligns with national food
self-sufficiency goals by improving productivity through data-
driven, automated, and adaptive farming solutions. Although
current validation remains at the prototype level, the results



clearly demonstrate that the proposed system establishes a
meaningful connection between Al-based disease detection
and IoT-enabled smart irrigation, advancing toward a more
integrated and resilient model of precision agriculture.

5. CONCLUSION

This study has presented an integrated framework that
combines CNN-based EfficientNet-BO for rice leaf disease
detection with an IoT-based smart irrigation system. The
experimental results confirmed that EfficientNet-BO0 is capable
of classifying three major rice diseases, namely BLB, Leaf
Smut, and Brown Spot, with high reliability, achieving an
overall accuracy of 97.82% along with strong precision, recall,
and Fl-scores. At the same time, the IoT prototype
successfully automated irrigation control based on real-time
monitoring of soil and environmental parameters. By
activating irrigation only when soil moisture levels fell below
a predefined threshold, the system reduced water consumption
by approximately 30 to 40 percent while maintaining optimal
soil conditions, thereby improving both sustainability and crop
health.

The integration of these two subsystems produced a dual-
layered decision support system that addresses both biotic
stress in the form of rice leaf diseases and abiotic stress in the
form of water management. Through this combination,
farmers are provided with timely diagnostic information as
well as efficient irrigation control, enabling them to prevent
yield loss, optimize resource use, and reduce dependence on
labor-intensive ~ manual  practices. = Compared  with
conventional farming methods, the proposed framework
demonstrated clear improvements in accuracy, efficiency, and
scalability, highlighting its potential for practical adoption,
especially among smallholder farmers in Southeast Asia.

Overall, the contributions of this research are twofold. First,
it demonstrates the effectiveness of EfficientNet-BO as a
lightweight yet accurate model for rice disease detection.
Second, it validates an lIoT-based irrigation prototype that
ensures water efficiency through automated decision-making.
More importantly, by integrating these two components, the
framework advances the state of the art in precision agriculture
by bridging a critical gap between disease monitoring and
irrigation management, which have typically been studied in
isolation.

Nevertheless, this study also acknowledges certain
limitations. The rice leaf dataset used, although augmented,
was relatively limited in size and may not capture the full
variability of real-world conditions. Similarly, the IoT system
was evaluated in a prototype setting rather than under large-
scale field deployment. Future research should therefore focus
on collecting larger and more diverse datasets, scaling the IoT
system for broader agricultural use, integrating renewable
energy sources such as solar panels, and extending the
framework to encompass additional smart farming modules
including nutrient management and weather-based prediction
models.

In conclusion, the integrated framework proposed in this
study provides a practical, efficient, and scalable solution for
precision rice farming. By empowering farmers with accurate,
data-driven tools for both disease detection and irrigation
management, the framework not only advances technological
innovation in agriculture but also supports broader objectives
of national food self-sufficiency and sustainable agricultural
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development.
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