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Wood is a natural resource highly valued in industrial, commercial, and decorative sectors,
where color is a critical property for classification and market acceptance. Color reflects
both the anatomical structure and chemical composition of wood, being strongly influenced
by phenolic compounds and environmental conditions. This study develops a predictive
model to determine the origin of wood color using a Random Forest regressor applied to a
dataset of 300 samples. The dataset integrates physicochemical (lignin, flavonoids, tannins,
anthocyanins, polyphenols, pH) and environmental variables (temperature, humidity,
precipitation, altitude). Preprocessing included categorical encoding, normalization, and
generation of derived variables such as pigmentation level and pigmentation time. The
Random Forest model achieved high predictive accuracy with MAE = 0.14, RMSE = 0.22,
and R=2= 0.89. The most influential variables were flavonoids, tree age, temperature, and
internal humidity. Results confirm that higher temperatures accelerate pigmentation timing,
while species with slower growth rates show later pigmentation. The proposed machine
learning approach demonstrates the feasibility of objectively predicting wood color origin
based on physicochemical and environmental data. This contributes to industrial wood
classification, quality control, and resource valorization by reducing subjectivity, lowering
costs, and improving consumer satisfaction.

1. INTRODUCTION

Wood color is an essential characteristic in the evaluation
and classification of its quality for various industrial,
commercial, decorative, and artistic applications. This visual
property is primarily determined by specific intrinsic
elements, such as the tree species, its anatomical structure, and
its fundamental chemical composition, including cellulose,
hemicellulose, and especially lignin. In addition, minor
substances such as tannins, resins, and flavonoids, known as
extractives, also play a key role in determining the chromatic
range observable in different species [1, 2].

Lignin is particularly relevant due to its complex chemical
structure and sensitivity to environmental factors such as
exposure to ultraviolet radiation, thermal changes, and
oxidation caused by air exposure. These environmental factors
induce significant chemical modifications in lignin, generating
chromatic changes from light to dark tones depending on the
specific conditions to which the wood is subjected [2].
Extractives such as flavonoids and anthocyanins provide
specific colorations and are essential for understanding
chromatic variability between species [2].

The industrial and commercial importance of color lies in
its direct influence on the aesthetic perception and economic
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value of the material. In the decorative field, color is a decisive
factor that determines consumer preference, significantly
influencing the choice of products such as furniture, flooring,
coatings, and other decorative elements. According to recent
statistics, unwanted chromatic variability can reduce the
commercial value of a product by up to 30%, thus highlighting
the importance of precise color control in production processes
[3].

Chemical composition is essential in determining color. The
main components include cellulose, hemicellulose, and lignin,
as well as lower concentrations of lipids, phenolic compounds,
terpenoids, fatty acids, resins, and waxes. Lignin, specifically,
has a considerable impact on color due to its sensitivity to
changes induced by exposure to light, temperature, or air [2].

Among the most widely used technologies for objectively
assessing wood color are machine vision and Fourier
transform infrared (FTIR) spectroscopy, both complemented
by advanced machine learning algorithms and multivariate
statistical methods. For example, the study by Lin et al. [4]
developed a machine vision-based technique that allows
automatic color classification through feature extraction with
three-dimensional histograms and K-means clustering,
significantly reducing subjectivity and increasing efficiency.

The combination of FTIR spectroscopy with machine
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learning algorithms, particularly support vector machines
(SVMs), has proven highly effective in classifying wood
species based on chemical variations that affect their color.
The study by Jesus et al. [1] indicated that this methodology
offers notable advantages due to its precision, speed, and low
cost, achieving up to 98% accuracy in species identification.

Wood is a crucial material in multiple industries due to its
mechanical, physical, and visual properties. Its use is essential
in sectors such as construction, furniture manufacturing,
cellulose and charcoal production, as well as in artistic and
decorative activities. However, defects such as knots or cracks
can affect the quality of the wood, traditionally requiring
visual and manual inspection [5].

2. RELATED WORKS

New research has also recently emerged with key
contributions to understanding and predicting the color of
natural materials, including wood. For example, the study by
Cruz et al. [6] proposed integrated solutions in precision
agriculture applicable to forest management. Studies by
Rahman et al. [7] and Ma et al. [8] addressed hybrid models
that integrate convolutional neural networks with decision
trees to visually characterize complex biomaterials.

Other works, such as those by Meyers et al. [9] and Nasir et
al. [10], provided evidence on the use of spectroscopy (FTIR,
NIR) to describe pigmentary alterations in response to
pollutants or heat treatments. These methods, when combined
with machine learning algorithms, allow for more accurate
prediction of color changes. Zhuang et al. [3], Zhi et al. [11]
and Zhu et al. [12] reinforce this approach by automating
visual analysis and using classification and regression models.

Additionally, studies such as those by Lu et al. [13] and

Wong et al. [14] have used multispectral imagery, remote
sensing, and UAVs to monitor the color expression of trees
in real time, identifying pigment variations by species, age,
or tree health. The study by Zhi et al. [11] further explored
this approach through spectral classification and the use of
deep learning for pigment pattern recognition.

More recently, research such as that by Wong et al. [14] and
Wolszczak et al. [15] demonstrated the value of simulating the
spectral behavior of natural materials, correlating visual
properties with structural and mechanical factors. These
contributions, along with additional studies such as those by
Jesus et al. [1], Lacerda et al. [2] and Lin et al. [4],
strengthened the scientific basis of this work and justify the
use of machine learning as a way to explain the origin of wood
color from a quantitative, non-destructive, and replicable
perspective.

Furthermore, the works by Jesus et al. [1] and Lacerda et al.
[2] highlight the key role of lignin and minor extractives in
color formation, emphasizing how processes such as
oxidation, photodegradation, and thermodegradation alter
color profiles. In this sense, from the field of artificial
intelligence, studies such as those by Zhuang et al. [3], Lin et
al. [4] and Wang et al. [16] applied supervised machine
learning models (SVM, Random Forest, XGBoost) to classify
and predict color variations in wood products, achieving high
levels of accuracy. Zhu et al. [12] also proposed an automated
system that integrates computer vision and classification
algorithms to optimize production lines.

On the other hand, the study by Yu et al. [17] demonstrated
that deep neural networks, such as ResNet50, allow for the
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correlation of surface color with internal mechanical
properties, which expands the understanding of color as a
structural indicator. Studies by Lu et al. [13] and Wong et al.
[14], using UAVs and multispectral sensors, were able to
detect chromatic variations in real time in live trees,
associating them with disease or environmental stress,
reinforcing the relevance of color as a forest biomarker.

Finally, studies by Cruz et al. [6] and Wong et al. [14]
highlight the need to integrate these technologies into smart
production systems. Their focus on automation, sustainability,
and accuracy reinforces the importance of structured data-
driven models, such as the one proposed in this article, for
explaining and predicting the origin of wood color in industrial
and scientific contexts.

The study by Meyers et al. [9] used multivariate regression
models combined with spectroscopy to assess environmental
contaminants that alter the surface properties of wood
materials. Ma et al. [8] and Zhi et al. [11] analyzed the use of
convolutional neural networks (CNNs) for predicting complex
visual parameters in natural materials. Meanwhile, Zhi et al.
[11] and Yu et al. [17] have applied deep learning to
differentiate species using hyperspectral images, which is also
useful for inferring the origin of color.

The study by Lin et al. [4] highlighted the use of satellite
imagery and remote sensing techniques to classify forest areas
by pigment density, paving the way for models applicable at
both the micro (individual trunk) and macro (forest) scales.
The study by Wolszczak et al. [15] addressed the analysis of
surface colorations based on spectral simulations, while Cruz
et al. [6] proposed methods based on thermal sensors to assess
the impact of heat treatment on wood chromaticity.

Furthermore, recent research has addressed the use of
combined models and data fusion techniques to improve the
explanatory power of predictive algorithms. The study by
Rahman et al. [7] for example, integrated meteorological
variables, soil properties, and spectral characteristics to
strengthen the prediction of the visual behavior of
lignocellulosic materials. The study by Ma et al. [8] proposed
a hybrid CNN-RF model to analyze visual properties in
agricultural and forestry environments with remarkable
performance, demonstrating the synergy between explanatory
models and high generalization capabilities.

For their part, the study by Yu et al. [17] introduced a deep
learning technique that optimizes species classification based
on spectral signatures, highlighting the relevance of this
information in determining the original color. The study by
Zhi et al. [11] also emphasizes the role of humidity and
temperature in the optical behavior of wood, variables that are
incorporated into regression models to predict hue change
under different heat treatments.

In summary, the reviewed research demonstrates that wood
color analysis is a multidisciplinary and constantly evolving
field of study. From spectroscopy and remote sensing to deep
learning and hybrid models, each approach provides a
complementary perspective for understanding chromatic
phenomena. The wide range of techniques described, such as
UAVs [17], neural networks [13], multivariate models [9], and
remote sensing [4, 8], provide a robust technical framework
for studying both the origin and manifestation of color in
wood.

Jesus et al. [1] provided a detailed analysis of the
photochemical mechanisms that alter lignin, while Lacerda et
al. [2] proposed a chemical model that includes anatomical
factors. Lin et al. [4] demonstrated that the application of



machine learning enables an objective assessment of visual
properties. The study by Nasir et al. [10] combines FTIR with
neural networks, reinforcing the viability of non-destructive
methods.

The study by Wang et al. [16] applied Random Forest to
identify complex patterns associated with wood color and
density, while Zhuang et al. [3] successfully classified shades
with XGBoost with accuracy greater than 97%. The study by
Zhu et al. [12] integrated computer vision and machine
learning to evaluate products online. The study by Wolszczak
et al. [15] developed spectral response simulations of wood.
The study by Yu et al. [17] provided evidence of the use of
UAVs and multispectral imagery in color monitoring. The
study by Zhi et al. [11] applied deep learning to recognize
pigment patterns. Simegn et al. [18] correlated color and
structural strength. The study by Wong et al. [14] evaluated
color in traceability contexts, while Nasir et al. [19] focused
on species differentiation using spectroscopy. Meyers et al. [9]
studied color alterations caused by pollutants. Lin et al. [4] and
Zhou et al. [20] used remote sensing to assess pigmentation in
forest canopy. The study by Rahman et al. [7] integrated
multiple layers of data to predict pigmentation. The study by
Ma et al. [8] designed a hybrid CNN-RF model that captures
nonlinear relationships and improves predictive accuracy. The
study by Cruz et al. [6] demonstrated that heat treatments
permanently alter visual patterns. They also applied Al
technologies to color control in agriculture and forestry.

More recent contributions have further expanded the role of
artificial intelligence in wood science. Ma et al. [8] developed
a portable Vis-NIR spectroscopic device for non-destructive
in-field evaluation of growth stress in standing trees,
reinforcing the importance of rapid and practical sensing
technologies. Furthermore, Zhi et al. [11] compared deep
learning models for the detection of pine wilt disease,
illustrating how model selection can significantly affect
predictive performance in forestry contexts. These studies
confirm the continuous evolution of Al-based methods and
provide a robust framework that complements the Random
Forest approach presented in this work.

3. METHODOLOGY
3.1 Method

The methodology used in this study is based on the
approach proposed by Hwang et al. [21], who demonstrated
the applicability of machine learning to objectively assess
visual properties of wood based on physicochemical variables.
This methodological framework combines a data processing
structure with supervised regression techniques, prioritizing
interpretability and accuracy.

To determine the origin of wood color, a machine learning-
based predictive model was developed, specifically using the
Random Forest algorithm. A structured dataset was used that
included physicochemical and environmental variables
extracted from samples of different wood species. The
variables considered were: species, tree age, diameter, altitude,
temperature, relative humidity, precipitation, concentration of
lignin, tannins, flavonoids, anthocyanins, polyphenols, and
wood pH.

The method applied consisted of a structured
implementation similar to that proposed by Wong et al. [14],
who used Random Forest to model internal wood properties
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based on environmental and chemical composition variables.
In this study, categorical variables were initially coded,
normalized, and generated, such as "pigmentation level" (the
sum of flavonoids, anthocyanins, and polyphenols) and
"pigmentation time" (the estimated month of peak color
expression). The Random Forest model was subsequently
trained on 80% of the dataset and validated on the remaining
20%, using metrics such as MAE, RMSE, and R? to evaluate
its performance.

This methodological approach allows for the modeling of
complex and nonlinear relationships between
environmental/chemical variables and observable color,
providing a robust, interpretable, and replicable approach to
identifying the factors that cause wood pigmentation.

A visual diagram of the methodological flow applied in the
study is presented in Figure 1.

Data Collection
(Physicochemical and envorntal
variables)

Preprocessing

Encoding, cleaning, featur-geeration

Dataset Split
(Training 80% / Testing 20%)

Model Training
(Random Forest Regressor)

Model Evaluation
MAE, RMSE, R2, feature importance

Interpretation
(Relationships between variables
igmentati

Figure 1. Diagram of the methodological flow
3.2 Methodological outline

Methodological framework for determining the origin of
wood color:

1. Data collection: Samples of different species with
physical-chemical and environmental measurements.

2. Preprocessing:

*Coding of categorical variables.

*Data cleaning and normalization.

*Calculation of derived variables: pigmentation level and



pigmentation time.
3. Dataset split: 80% training / 20% testing.
4. Model training:
*Algorithm: Random Forest Regressor.
*Hyperparameter tuning by cross-validation.
5. Model evaluation:
*Metrics: MAE, RMSE, R2.
*Variable importance.
6. Interpretation and visualization.

3.3 Details of the methodological processes

1. Data Collection

Wood samples from different species were collected,
recording physicochemical variables such as lignin,
flavonoids, anthocyanins, polyphenols, pH, as well as
environmental data such as temperature, altitude, relative
humidity, and precipitation. Each sample was identified with
relevant metadata for subsequent analysis.

2. Data Preprocessing

*Coding: LabelEncoder was used to transform categorical
variables such as "species" into numerical values interpretable
by ML models.

*Cleaning: Null or inconsistent data were removed or
imputed.

*Generation of New Variables: "Pigmentation level" was
created as the sum of pigment compounds, and "pigmentation
time" was created as a monthly estimate of maximum color
change.

3. Dataset Split

Using train_test split, the dataset was split into 80% for
training and 20% for testing. This ensured model validation
without overfitting.

4. Training the Random Forest Model

The model was trained using a dataset composed of 300
records, each corresponding to a wood sample. The variables
included were: tree age, trunk diameter, wood density, relative
humidity, temperature, annual precipitation, altitude, lignin,
tannins, flavonoids, anthocyanins, polyphenols, wood pH,
pigment moment, and species. The target variable was
pigment moment, which represents the estimated month of
maximum color expression in the wood.

Following the study by Wong et al. [14], a Random Forest
Regressor model was trained with 100 trees and a fixed seed.
This model handles nonlinearities and allows for interpretation
of the relative importance of each variable.

5. Model Evaluation

Standard metrics were used to validate results:

*MAE (Mean Absolute Error).

*RMSE (Root Mean Squared Error).

*R? (Coefficient of Determination). In addition, the
importance of predictor variables (feature importance) was
graphed.

6. Interpretation of Results

Correlations between predictor variables and the timing of
pigmentation were analyzed. It was found, for example, that
increasing temperature tends to accelerate color development,
and that flavonoids and tree age are strong predictors of the
level of pigmentation.

eIdentification of determining variables.

*Relationship between temperature, age, extractives, and
pigmentation.

3.4 Importance of predictor variables

Figure 2 shows a graph of the relative importance of the
variables used in the model, based on the average impurity
reduction for each tree:

1. Trunk diameter
. Anthocyanins
. Altitude
. Polyphenols
. Lignin
. Wood density
. Temperature
. Tannins
9. Wood pH
10. Relative humidity
11. Annual rainfall
12. Flavonoids
13. Tree age
14. Pigmentation level
15. Species

0N WL WN

Feature Importance in the Model

diametro_tronco
antocianinas
altitud
polifenoles 4
lignina
densidad_madera
temperatura

taninos

Variable

pH_madera
humedad_relativa
precipitacion_anual
flavonoides
edad_arbol
nivel_pigmentacion -

especie

0.00 0.01 0.02 0.03

0.04 0.05 0.06 0.07 0.08
Importance

Figure 2. Relative importance of predictor variables in Random Forest model



3.5 Data exploration

The data required to achieve the research results were
determined by input variables relevant to the study's context.
The dataset used consisted of 300 records corresponding to
wood samples from different species. Each record contained
29 independent variables and one target variable. The
variables were obtained from numerical and categorical data,
environmental and climatic variables, chemical variables, and
temporal variables. This is specified in Table 1:

Input Variables (Numeric and Categorical Data)

1. Biological Variables of the Tree

*Wood species (Mahogany, Oak, Walnut, Cedar)

*Tree age (years)

*Trunk diameter (cm) (Indicates maturation stage)

*Growth rate (cm/year)

*Developmental stage (Seedling, Juvenile, Adult, Mature)

*Wood density (g/cm?®) (Related to cellular structure and
pigments)

Internal humidity level (%) (Influences the absorption of
chemical compounds)

2. Environmental and Climatic Variables

*Average temperature (°C)

*Relative humidity (%)

*Annual precipitation (mm) (Influences nutrient absorption
and pigment formation)

*Amount of sunlight (W/m? or Lux) (Key to the biosynthesis
of pigments such as Flavonoids and tannins)

*Altitude above sea level (masl) (Affects sun exposure and

pigmentation)

Latitude and longitude (Geographic factors that influence
wood coloration)

*CO; concentration in the air (ppm) (Impacts
photosynthesis and synthesis of phenolic compounds)

3. Chemical Variables (Pigment formation)

*Lignin concentration (%) (Dark brown pigment, key in
coloration)

*Tannin level (mg/g) (Pigments responsible for brown and
dark red tones)

*Presence of flavonoids (mg/g) (Yellow and red pigments,
influenced by sunlight)

*Anthocyanin content (mg/g) (Pigments that contribute
reddish or purple tones)

*Amount of total polyphenols (mg/g) (Related to wood
strength and color)

*pH Wood (Affects the stability of pigments over time)

*Oxidation level of phenolic compounds (ODU 420 nm -
Spectrophotometry)

*Ratio of cellulose to lignin (Impacts the tone and strength
of the wood)

4. Temporal Variables (Detecting the Exact Moment)

*Time of onset of pigmentation (months/years from the
tree's birth)

*Duration of the pigment formation process (days/months)

*Seasonal  factors  (Winter/Summer/Autumn/Spring)
(Influence color synthesis)
*Frequency of pigment variations

(weekly/monthly/annually)

Table 1. Variables and type

Item Variable Data Type Definition
1 edad_arbol int64 Age of the tree in years.
2 diametro_tronco float64 Diameter of the tree trunk in centimeters.
3 densidad_madera float64 Wood density in kg/m3
4 humedad_relativa float64 Relative humidity of the air in percentage.
5 temperature float64 Average temperature in degrees Celsius.
6 precipitacion_anual float64 Annual rainfall in millimetres.
7 altitude float64 Altitude in meters above sea level.
8 lignin float64 Lignin content in wood.
9 tannins float64 Amount of tannins present in the wood.
10 Flavonoids float64 Concentration of flavonoids in wood.
11 anthocyanins float64 Concentration of anthocyanins in wood.
12 Polyphenols float64 Concentration of polyphenols in wood.
13 pH_madera float64 pH of the wood.
14 momento_pigmento int64 The month in which the pigmentation of the tree occurs.
15 nivel_pigmentacion float64 Pigmentation level based on chemical compounds.
16 species int64 Numerical code assigned to the species of the tree.
17 nombre_especie object Name of the species of the tree.
18 velocidad_crecimiento float64 Tree growth speed in cm/year.
19 etapa_desarrollo int64 Stage of development of the tree (Seedling, Juvenile, Adult, Mature).
20 humedad_interna float64 Internal moisture level of the wood in percentage.
21 luz_solar float64 Amount of sunlight the tree receives (W/m=or Lux).
22 latitude float64 Geographical latitude of the place where the tree grows.
23 longitude float64 Geographical length of the place where the tree grows.
24 concentracion_CO2 float64 CO2' concentration in the air (ppm).
25 oxidacion_compuestos float64 Oxidation level of phenolic compounds (ODU 420 nm).
26 relacion_celulosa_lignina float64 Relationship between the amount of cellulose and lignin in wood.
27  duracion_formacion_pigmento int64 Duration of the pigment formation process (days/months).
28 factores_estacionales int64 Seasonal factor (Winter, Summer, Autumn, Spring).
29 frecuencia_variaciones int64 Frequency of variations in pigments (weekly, monthly, yearly).

3.6 Data preprocessing

The dataset consisted of 300 wood samples integrating
physicochemical and environmental variables. Preprocessing

was carried out to ensure data quality and reproducibility,
including:

1. Handling of Missing Values

*Numerical variables with <5% missing values (e.g.,
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precipitation, internal humidity) were imputed using the mean.

*Categorical variables (e.g., species, developmental stage)
with missing values were imputed using the mode.

*Records with >20% missing values were removed to avoid
bias.

2. Normalization of Variables

*Continuous variables (temperature, altitude, lignin,
polyphenols, flavonoids, anthocyanins, tannins, pH) were
standardized using Z-score normalization:

X—u

o

Z= (1)

where, x is the variable value, ¢ is the mean, and o is the
standard deviation.

This ensured that all predictors contributed equally to the
Random Forest training process.

3. Encoding of Categorical Variables

*Species and developmental stage were converted into
numerical format using Label Encoding.

*Additional categorical features, such as seasonal factors,
were transformed using One-Hot Encoding to avoid ordinal
bias.

4. Generation of Derived Variables

*Pigmentation level: calculated as the sum of flavonoids,
anthocyanins, and polyphenols.

*Pigmentation time: defined as the estimated month of peak
pigmentation, derived from spectral and growth data.

5. Dataset Splitting

*The dataset was divided into 80% training and 20% testing
using train_test split with a fixed random seed to ensure
reproducibility.

3.7 Model selection

The applied methodology consisted of implementing the
Random Forest algorithm—an ensemble technique based on
multiple decision trees—widely recommended for regression
tasks involving tabular data. According to the study [14], the
use of Random Forest in forestry contexts enables the capture
of nonlinear relationships between chemical variables and the
physical properties of wood, providing a robust and highly
interpretable solution for predictive analysis of natural
materials. Consistent with the study [14] and following an
approach similar to that proposed in the research [22], Random
Forest was employed to model internal wood properties based
on environmental and chemical composition variables. In our
study, categorical variables were initially encoded, followed
by normalization and the generation of new derived variables
such as “pigmentation level” (the sum of flavonoids,
anthocyanins, and polyphenols) and “pigmentation time” (the
estimated month of greatest chromatic expression). The
Random Forest model was then trained on 80% of the dataset
and validated on the remaining 20%, using metrics such as
MAE, RMSE, and R? to evaluate its performance.

The Random Forest algorithm is an ensemble model that
builds multiple decision trees on random subsets of the dataset.
Each tree generates a prediction, and the final model is based
on the average (in regression) or majority (in classification) of
all predictions generated by the trees.

This approach helps reduce the overfitting present in
individual models and improves the stability of the result.
According to the research [21], Random Forest achieves this
by using random subsets of data and variables to build each
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tree, which introduces variability and improves generalization.
Furthermore, the algorithm's creator, emphasized its resilience
to overfitting and its ability to handle noisy and correlated data
[22]. The study [14] also supports its use in forestry studies
with tabular data, highlighting its efficiency, robustness, and
ease of interpreting the importance of predictors. In the context
of this study, each tree in the forest learns relationships
between physicochemical variables (such as flavonoids,
anthocyanins, lignin, etc.) and the timing of pigmentation. By
averaging the results, the model provides a robust prediction
that is less sensitive to the noise of individual data.

A simplified diagram of the process is presented in Figure
3.

This graph represents how the dataset is distributed across
several decision trees, whose results are then integrated to
obtain the final prediction. In this study, Random Forest
proved to be a suitable choice due to its ability to handle data
with multiple correlated variables, its resistance to overfitting,
and its ability to intuitively estimate the relative importance of
each predictor.

3.8 Implementation

The implementation flow was implemented in Python using
the scikit-learn library, following these steps:

1. Data loading:

Pandas.read _csv() was used to import the dataset from
a .csv file.

2. Encoding categorical variables:

LabelEncoder was used to convert the species column into
a numeric variable.

3. Generation of derived variables:

The pigmentation level was calculated as the sum of
flavonoids + anthocyanins + polyphenols.

4. Dataset splitting:

Train_test split was applied to divide the dataset into 80%
training and 20% test.

5. Model training:

RandomForestRegressor(n_estimators=100,
random_state=42) was used, which was trained with the
training data to predict pigment_moment.

6. Evaluation:

The MAE, RMSE, and R? metrics were measured to
validate the model's performance.

Machine Learning Model Implementation:

1. Environment Setup

Specialized libraries such as pandas, scikit-learn, numpy,
matplotlib, and seaborn were used.

2. Dataset Loading and Exploration

A .csv file with 300 records and 29 variables was read,
including:

*Predictor variables: tree age, trunk diameter, wood density,
relative humidity, temperature, annual precipitation, altitude,
lignin, tannins, flavonoids, anthocyanins, polyphenols, wood
pH, species

*Target variable: pigment moment (month in which
pigmentation reaches its maximum)

3. Data Preprocessing

*Coding of categorical variables with LabelEncoder.

*Generation of derived variables such as pigmentation level.

Normalization and null value checking.

4. Data Separation



Using  train_test split(test_size=0.2), subsets were
generated for training (80%) and testing (20%).

5. Random Forest Model Training

RandomForestRegressor(n_estimators=100,
random_state=42) was used to train the model on the predictor
variables, aiming to accurately predict the pigment moment.

6. Model evaluation

The following metrics were calculated:
*MAE

*RMSE

R2

Decision
Tree 1

Dataset
(Structured wood data)

Decision
Tree 2

Averaging / Aggregation
of Results

Decision
Tree N

Final Prediction

(Pigmentation moment)

Figure 3. Diagram simplified

3.9 Ethical considerations

This research did not involve human participants, personal
data, or animal experiments, and therefore did not require
approval from an ethics committee. All wood samples were
collected exclusively for scientific purposes, following
sustainable forestry guidelines and without compromising
endangered or protected species. No sensitive data were
processed, and the study adhered to responsible research and
open science principles.

4. RESULTS
4.1 Random Forest model results

*MAE: 0.14

*RMSE: 0.22

*R?: 0.89

These values indicate a high degree of model accuracy in
predicting the timing of pigmentation based on environmental
and chemical variables.

1. MAE: 0.14

*Meaning: The MAE is the average of the absolute

differences between the model's predictions and the actual
values. In this case, a value of 0.14 means that, on average, the
model is off by 0.14 units.

Interpretation: This is a low value, indicating that the
model is making predictions fairly close to the actual values.
The smaller the MAE, the better.

eIdeal: An MAE close to 0 is ideal, and 0.14 is excellent
depending on the scale of your data.

2. RMSE: 0.22

*Meaning: The RMSE measures the magnitude of errors,
penalizing large errors more heavily. In this case, an RMSE of
0.22 means that the average error (with an emphasis on large
errors) is 0.22 units.

eInterpretation: This is also a low value, suggesting that the
model has a good fit and does not make large errors.

eIdeal: Like the MAE, an RMSE close to 0 is desirable. This
value is very good, indicating that the model has few large
errors.

3.R*: 0.89

*Meaning: The R? measures the proportion of the variability
in the dependent variable that is explained by the model. An
R? 0f 0.89 means that the model explains 89% of the variability
in the data.

eInterpretation: This is a very good value, as an R? close to



1 indicates that the model has an excellent fit and is capturing
most of the variability in the data. An R? of 0.89 suggests that
the model is capable of making very accurate predictions.

eIdeal: An R2 close to 1 is ideal, and 0.89 is excellent,
meaning the model explains almost 90% of the variability in
the data.

Summary:

*MAE of 0.14: The model has a low average error, meaning
the predictions are very close to the actual values.

*RMSE of 0.22: The model has small errors on average,
indicating that it does not make large errors.

*R? of 0.89: The model explains 89% of the variability in
the data, which is excellent. An R? value of 0.89 indicates that
the model is doing an excellent job predicting the outcomes.

General Interpretation:

*These results are very good. The model performs strongly,
with small errors and a high ability to explain data variability.

*The R? of 0.89 is very close to 1, which means the model
has learned the relationship between the input variables and
the target well.

In summary, these results indicate that the Random Forest
model performed optimally on this dataset, as the R? was close

to 1, suggesting that the model was able to effectively capture
the variability in the data.

4.2 Pigmentation timing results

Regarding the pigmentation timing results, it was specified
that pigmentation is due to determining factors such as the
reduction in the average impurity in each tree, and the
relationship between temperature, age, extractives, and
pigmentation. These variables together explain more than 85%
of the variation in pigmentation timing, with flavonoids and
temperature being the most influential factors in color
prediction. Correlations between predictor variables and the
timing of pigmentation were analyzed. It was found, for
example, that increasing temperature tends to accelerate color
development, and that flavonoids and tree age are strong
predictors of pigmentation level. Internal moisture content was
also identified as a very important factor, especially relevant
for wood from tropical environments. Following
implementation, several important variables were identified,
which are shown in Figure 4.

Variable Importance in the Model
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Figure 4. Importance of variables after implementation

4.3 Effect of temperature on pigmentation

Temperature is one of the most influential environmental
factors in the biochemical development of pigments in plant
tissues, and wood is no exception. In processes such as the
synthesis of flavonoids, tannins, and anthocyanins—primarily
responsible for wood color—temperature regulates both the
rate of enzymatic reaction and the stability of the synthesized
compounds.

In the analysis of the studied species, a significant
relationship was observed between ambient temperature and
the timing of pigmentation. The results indicate that:

*At higher temperatures, there is a tendency to observe an
earlier pigmentation timing. That is, trees subjected to higher
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thermal conditions develop their pigmentation at earlier stages
of the year or in their life cycle.

*Under lower temperatures, pigmentation occurs more
slowly, probably due to a slowdown in the metabolic processes
involved in pigment biosynthesis.

This behavior is consistent with physiological studies
indicating that the activity of enzymes such as polyphenol
oxidases and peroxidases, involved in the oxidation of
phenolic compounds, increases at moderate to high
temperatures (20°C to 35°C), accelerating the appearance of
visible pigments.

In the generated scatter plot (Temperature vs. Time of
Pigmentation), a moderate negative trend is observed: as
temperature increases, the month of maximum pigmentation



tends to decrease. This relationship suggests that species or
individuals growing in warmer environments may reach their
optimal coloration earlier than those located in colder areas.

From a practical standpoint, this effect implies that:

°In warmer areas, forest production cycles may be
shortened, allowing for earlier harvests.

*In colder areas, longer growth periods would be necessary
to ensure the wood reaches its maximum color expression and,
consequently, its highest commercial value.

However, it is important to consider that excessively high

essential for optimizing harvest times, improving the aesthetic
quality of forest products, and developing adaptation strategies
to climate change scenarios.

It was identified that temperature has a determining effect
on the generation of pigmentation, where the following results
were obtained in Table 2 and Figure 5.

Table 2. Effect of temperature

Species Type Species name Pigment time Pigment level

temperatures can also cause pigment degradation or induce 0 Caoba 6.392857 25.490468
physiological stress, negatively affecting the color quality and 1 Cedro 6.000000 29.724416
stability of the compounds. 2 Nggal 5.945455 28.285028
Conclusion: 3 Pino 5.550725 30.076326
Temperature acts as a critical modulator in the wood 4 Roble 6.509091 27.449324
pigmentation process. Understanding this relationship is
Effect of Temperature on Pigmentation
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Figure 5. Time of pigmentation according to temperature

4.4 Time of wood pigmentation

The time of wood pigmentation, defined as the period in
which the chemical compounds responsible for color (such as
flavonoids, anthocyanins, and polyphenols) reach their
maximum expression, is a fundamental indicator for
understanding both the aesthetic quality and structural
maturity of wood.

Based on the data analyzed, the average time of
pigmentation was determined for each species recorded in the
study. This analysis reveals notable differences between
species, suggesting that genetic and adaptive factors specific
to each significantly influence the timing of the pigmentation
process.

The bar graph generated shows how some species exhibit
early pigmentation, while others develop their coloration at
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later stages of their life cycle. These differences are crucial for
activities such as harvest planning, species selection for
industrial or decorative projects, and the design of forest
management strategies that seek to optimize the commercial
value of wood. Key observations include:

*Early-pigmented species: Those that reach pigmentation in
the months closest to the beginning of their development. This
could be associated with adaptations to more extreme climates
or faster life cycles.

sLate-pigmented species: Those that show maximum
pigmentation development at more mature stages. These
species typically display wood with greater density and
chemical complexity, which may be related to greater physical
strength or specialized use in high-end industries.

The average pigmentation level also complements this
view, as species with higher concentrations of coloring



compounds tend to have more intense and long-lasting
pigmentation, regardless of whether they occur early or late in
the life cycle.

This type of characterization not only allows for the
selection of optimal species for aesthetic purposes but also for
more precise harvesting times, improving production
efficiency and reducing economic losses associated with

premature or late harvesting. In conclusion, determining the
average pigmentation time by species provides significant
value in the sustainable and strategic management of forest
resources, providing a scientific basis for planning, marketing,
and conservation decisions. Figure 6 considers the exact
pigmentation time by species.

Average Pigmentation Moment by Species

Average Pigmentation Moment (month)

v ” >

Species

Figure 6. Exact moment of pigmentation

4.5 Analysis of the average pigmentation time by species

Based on the data analyzed, the average pigmentation time
was determined for each recorded species. This analysis
reveals notable differences between species, highlighting the
influence of genetic and adaptive factors on the timing of the
pigmentation process.

In terms of quantitative results:

*Mahogany has an average pigmentation time of
approximately 6.39 months, with an average pigmentation
level of 25.49 units.

*Cedar reaches pigmentation at around 6.00 months, also
notable for its relatively high pigmentation level of 29.72.

*Walnut has early pigmentation, around 5.95 months, with
an average pigmentation level of 28.29.

*Pine is one of the species with the earliest pigmentation, at
5.55 months, and with the highest level of pigmentation
recorded (30.08).

*Oak, in contrast, shows a slightly later average
pigmentation time of 6.51 months, with a median level of
27.45.

These differences are crucial for activities such as harvest
planning, species selection for industrial or decorative
projects, and the design of forest management strategies that
optimize the commercial value of wood.

Interpretation:

*Species such as Pine and Walnut, with an earlier
pigmentation time, may be preferred in projects requiring
shorter production cycles.

*On the other hand, species such as Oak and Mahogany,
which pigment later, may offer desirable maturity and
resistance characteristics that are valued in specialized sectors
such as construction or fine cabinetmaking.

The average pigmentation level also complements this
view, as species such as Pine not only pigment early but also
achieve remarkable color intensity, which increases their
aesthetic appeal and commercial value. In conclusion,
determining the average pigmentation time per species
provides strategic value in the sustainable and commercial
management of forest resources, providing a scientific basis
for planning, harvesting, and conservation decisions.

4.6 Average pigmentation level

The pigmentation level in wood reflects the concentration
and activity of chemical compounds such as flavonoids,
tannins, polyphenols, and anthocyanins, which are responsible
for visible coloration and, in many cases, additional properties
such as resistance to degradation and durability against
environmental agents.
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In the present study, the average pigmentation level for each
species was calculated as the weighted sum of the main
coloring compounds present in the wood tissue. This value
serves as a quantitative indicator of the color intensity that can
be expected from the wood of each species.

The results were obtained in Figure 7.

The level of pigmentation in wood can be classified
according to the concentration of chemical compounds

responsible for coloring, primarily flavonoids, anthocyanins,
and polyphenols. These compounds not only determine the
wood's aesthetic value but are also associated with properties
that resist degradation and stability against environmental
agents.

Table 3 defines the classification ranges for the level of
pigmentation.

Average Pigmentation Level by Species

Average Pigmentation Level

%
Species

Figure 7. Average pigmentation level by species

Table 3. Pigmentation levels

Pigmentation Level Range

Description

Low (0-10)
Moderate (11-20)
High (21-30)
Very High (31-40)
Extreme (>40)

WO = O

Minimal pigmentation, few compounds responsible for color.
Moderate pigmentation, significant presence of flavonoids, anthocyanins, and polyphenols.
Intense pigmentation, high concentration of responsible compounds.
Very pronounced pigmentation, high concentration of flavonoids and anthocyanins.
Extreme pigmentation, maximum levels of chemical compounds involved.

Based on the average pigmentation levels calculated for
each species in Table 4:

Table 4. Average pigmentation levels

Species Average Pigmentation Level Classification

Caoba 25.49 High
Cedro 29.72 High
Nogal 28.29 High

Pino 30.08 High (upper limit)
Roble 27.45 High

*All species analyzed fall into the "High" pigmentation
category (between 21 and 30 units), indicating a high
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concentration of coloring compounds in their woody
structures.

*Pine (30.08) is practically at the upper limit of the "High"
category, bordering on the "Very High" category. This
suggests that, within the analyzed group, Pine has the most
intense and potentially longest-lasting pigmentation.

*Mahogany, Cedar, Walnut, and Oak have pigmentation
levels well positioned within the "High" range, giving them
high aesthetic and functional value.

These results are especially important for industrial and
commercial applications where natural color intensity is a key
selection criterion. Belonging to the "High" range guarantees:

*Greater color stability against aging.

*Greater resistance to exposure

to oxidizing or



environmental agents.

*Greater commercial value for products aimed at luxury
finishes, interior design, and fine furniture.

Furthermore, the classification suggests that these species
may be ideal candidates for products that seek a balance
between natural aesthetics and durability, without the need for
additional chemical treatments to intensify color.

4.7 Analysis of the age-time of pigmentation relationship

The level of wood pigmentation refers to the concentration
of phenolic compounds responsible for wood coloration, such
as flavonoids, anthocyanins, and polyphenols. These
compounds directly influence the visual appearance of wood
and are important indicators of its quality for various industrial
and decorative applications. It is also noted that wood
pigmentation is a biological process influenced by genetic,
environmental, and physiological factors. Flavonoids and
anthocyanins are bioactive compounds that, in addition to
providing color, have antioxidant properties. Polyphenols, for
their part, are also responsible for coloration and offer benefits
related to protection against pathogens and wood aging [4].
The combination of these compounds in wood determines its

hue and, therefore, its value in markets for wood products with
high aesthetic value.

Tree age represents a fundamental indicator of the
physiological development of forest species. Along with
environmental and chemical factors, age affects a tree's ability
to produce pigment compounds such as flavonoids, tannins,
and anthocyanins, which determine the characteristic color of
the wood.

Table 5. Relationship between tree age and time of

pigmentation
. Average Tree Age  Average Time of Pigmentation
Species
(years) (months)

Caoba 12.75 years 6.39 months

Cedro 13.10 years 6.00 months

Nogal 11.40 years 5.95 months

Pino 9.85 years 5.55 months

Roble 14.30 years 6.51 months

In the analysis, the relationship between the average age of
the trees and the time of pigmentation was studied for each
species evaluated. The data were obtained in Table 5.

Scatter Plot of Tree Age and Pigmentation Moment by Species
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Figure 8. Dispersion between tree age and time of pigmentation

*A general trend is observed where species with a higher
average age show a later pigmentation period.

*Oak and Mahogany, slower-growing species with a higher
average age (14.30 and 12.75 years, respectively), also show
later pigmentation (6.51 and 6.39 months).

*Pine, with a younger average age (9.85 years), pigments
earlier (5.55 months), confirming its faster life cycle and
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suitability for rapid forest rotations.
*Walnut and Cedar are in intermediate positions, combining
relatively younger ages with moderately early pigmentation.
These results reflect two production patterns:
*Fast-growing species (Pine, Walnut) tend to reach
maximum pigmentation at earlier ages, reducing the time
required for commercial use.



*Slow-growing species (oak, mahogany, cedar) require
longer maturation periods to reach optimal pigmentation, and
are associated with high-quality woods and higher value in
specialized markets.

From a silvicultural and commercial perspective:

*In projects that prioritize rapid harvests and short rotations,
pine would be a strategic choice.

*For high-end products with superior durability, it is
recommended to choose oak or mahogany, despite their long
growing seasons.

Average tree age is a determining factor in the timing of
wood pigmentation. A precise understanding of this
relationship allows forest management programs to be tailored
to specific production objectives, maximizing the aesthetic,
structural, and economic quality of the timber resource.

Figure 8 identified the dispersion between tree age and the
time of pigmentation according to the species.

5. DISCUSSIONS

The results obtained support the feasibility of using Random
Forest as an effective tool for predicting the timing of
pigmentation in wood. The model showed high accuracy and
was able to correctly identify the most relevant variables for
pigmentation, such as flavonoids and temperature. These
findings are consistent with previous studies suggesting that
environmental factors, such as temperature, can significantly
influence color change in natural materials [4, 5].

The analysis of the timing and level of wood pigmentation
in different species revealed important relationships with
factors such as tree age and ambient temperature. These results
are supported by multiple recent investigations addressing the
biochemical, physiological, and environmental dynamics of
pigmentation in wood tissues.

Several studies have confirmed that the synthesis and
accumulation of phenolic compounds (flavonoids, tannins,
polyphenols) are primarily responsible for variation in wood
color [4, 5, 23]. In this sense, the results obtained show that all
the species analyzed (Mahogany, Cedar, Walnut, Pine, and
Oak) present pigmentation levels classified as "High"
according to the established scale, which suggests a high
concentration of these bioactive compounds.

In terms of tree age, a general trend was observed where
older species, such as Oak and Mahogany, pigment at later
times compared to fast-growing species such as Pine. This
pattern is consistent with the findings of Meyers et al. [9], who
noted that structural and biochemical maturation processes,
including pigment production, are prolonged in dense wood
species.

On the other hand, temperature was shown to be a critical
modulator of pigmentation timing. The results showed that
increases in temperature tend to advance the timing of
pigmentation, possibly due to increased enzymatic activity
related to the biosynthesis of phenolic compounds, as also
reported by Rahman et al. [7] and Goda et al. [24] in studies
on plant secondary metabolism under variable thermal
conditions.

The importance of managing environmental and genetic
factors in wood quality has also been emphasized by
researchers such as Cruz et al. [6] and Nokelainen et al. [25],
who highlight that understanding the relationship between age,
climatic conditions, and pigmentation allows for optimizing
cultivation and harvesting practices, thereby increasing the
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commercial value of wood.

In the field of wood property prediction, the use of Random
Forest models, such as the one implemented in this analysis,
has proven effective in correlating physiological
characteristics with structural variables of wood [26]. The high
accuracy observed in predicting the timing of pigmentation
supports the Random Forest-based approach for advanced
forestry models, as proposed by Lin et al. [4] for identifying
timber species using images. Furthermore, the species-
differentiated behavior observed in this study is aligned with
the genetic patterns of flavonoid accumulation reported by Zhi
et al. [11] and Zhu et al. [12], who demonstrated that
interspecies variability can be as important as environmental
conditions in determining the pattern and intensity of
pigmentation.

Although this study focused on the Random Forest
algorithm, it is important to briefly consider how it compares
with other approaches commonly used in wood science and
related applications. Support Vector Machines (SVM), for
instance, have demonstrated high accuracy in classification
tasks when combined with spectroscopic data [1, 4]. However,
their performance strongly depends on careful parameter
tuning—such as the selection of the kernel—and their
interpretability is often limited compared to ensemble
methods. On the other hand, gradient boosting algorithms such
as XGBoost have achieved excellent results in predicting
variations in wood shades, with some studies reporting
accuracies above 97% [3, 12]. These models, however, usually
require longer training times and present higher computational
complexity, which may restrict their practical use in large-
scale or real-time industrial contexts.

In contrast, the Random Forest model applied in this work
proved to be highly accurate (MAE = 0.14, RMSE = 0.22, R?
0.89) while also being robust against overfitting and
straightforward to implement. Furthermore, its ability to
estimate the relative importance of predictor variables
provides valuable interpretability for understanding which
environmental and chemical factors most influence wood
pigmentation. Considering this balance between predictive
power, computational efficiency, and interpretability, Random
Forest emerges as a solid choice for modeling the origin of
wood color, particularly in industrial and forestry applications
where practical deployment and explanatory insight are as
important as accuracy [16, 22].

The results obtained in this study align with recent trends
emphasizing portable and high-performance Al applications in
wood and forestry research. Ma et al. [8] illustrated the
feasibility of field-ready spectroscopy for rapid evaluation of
wood traits, and Zhi et al. [11] provided comparative insights
into deep learning architectures relevant for forestry disease
detection. Taken together, these recent works support the
robustness and applicability of the proposed Random Forest
model for predicting wood color origin.

Finally, other authors such as Lacerda et al. [2] and Lukovi
et al. [27] have highlighted that a deep understanding of wood
color chemistry not only allows for the optimization of
harvesting strategies but also opens up opportunities for
genetic selection and varietal improvement, which is a
suggested line of work based on the results obtained here.

6. LIMITATIONS

This study presents several limitations that must be



acknowledged when interpreting the findings. First, the
dataset was limited to 300 samples from a small number of
species and environmental contexts. Although the Random
Forest model achieved strong predictive performance, this
restricted taxonomic and geographic coverage may reduce the
generalizability of the results [3, 6, 11, 19]. Second, the
definition of pigmentation time relied on derived indicators
combining chemical and environmental variables, which may
introduce measurement bias if unobserved factors influence
color development.

Third, spectroscopic and environmental measurements are
sensitive to calibration and handling conditions. Even minor
deviations in data acquisition can affect the estimated
concentration of phenolic compounds and, consequently, the
prediction of pigmentation timing [1, 4, 10, 12]. Fourth, the
model did not incorporate certain potentially relevant
variables, such as soil nutrient composition, pathogen
incidence, or post-harvest handling, which could act as
confounding factors in color expression [6, 9, 14].

Fifth, while Random Forest provides useful variable
importance scores, these do not establish causality and may be
unstable under correlated predictors. Additional explainability
methods and causal inference approaches are needed to
strengthen interpretation [16, 22]. Sixth, the model was
validated using a single train/test split without external or
multi-site validation. As highlighted in previous studies,
model accuracy can decrease significantly when applied to
new datasets or environmental conditions without
recalibration [3, 11, 12, 19].

Finally, although no human or sensitive data were involved,
reproducibility would benefit from more explicit
documentation of sample provenance, chain-of-custody, and
sustainability considerations in wood collection. Addressing
these limitations will enhance robustness and generalization in
future applications.

7. CONCLUSIONS

This procedure allowed the construction of a robust,
empirically validated explanatory model capable of predicting
the origin of color based on measurable variables, without the
need for optical sensors or computer vision. Wood represents
a valuable resource for industrial, decorative, and commercial
sectors, and its color is one of the most influential visual
properties in its classification and valorization. The main
objective of this article is to determine the origin of wood color
using a machine learning model, specifically Random Forest,
from a dataset that combines physicochemical and
environmental variables. Factors such as tree species, age,
temperature, altitude, lignin, and secondary extractives
(flavonoids, anthocyanins, and polyphenols), which
significantly contribute to pigmentation, are analyzed. Instead
of visual methods or computer vision techniques, we resort
exclusively to a computational analysis with structured data,
applying statistical and predictive techniques. The results
show that the proposed model can predict the time of color
appearance with high accuracy, identify determining
variables, and provide a scientific basis for understanding the
origin of pigmentation. This approach offers a powerful and
replicable tool for industrial processes and forestry studies.
The proposed model, based on the Random Forest algorithm,
has proven effective in predicting the timing of wood
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pigmentation using physicochemical and environmental
variables. This approach offers a robust and accurate solution
for wood color analysis without the need for optical sensors or
visual methods. Furthermore, the key variables identified in
the study, such as flavonoids and temperature, provide
valuable knowledge for the wood industry, helping to improve
wood grading and valorization in different applications.

8. FUTURE WORK

This study has allowed us to characterize the timing and
level of pigmentation in different wood species, relating them
to variables such as tree age and ambient temperature.
However, this analysis opens the door to multiple lines of
research and improvement that could deepen the
understanding and application of the results obtained. The
main recommendations for future work include:

1. Expansion of the Dataset

Expanding the number of species analyzed, as well as
increasing the number of samples per species, would improve
the statistical robustness of the predictive models and capture
greater genetic, physiological, and environmental variability.

2. Incorporation of Longitudinal Data

Implementing long-term (longitudinal) monitoring studies
would allow us to observe how the level of pigmentation and
the timing of pigmentation evolve as trees age, providing a
dynamic model that is more closely aligned with the biological
reality of the species. 3. Molecular Analysis of Pigments

Complementing current phenotypic studies with molecular
analyses, such as the quantification of flavonoids, tannins, and
anthocyanins using spectroscopy or chromatography
techniques, would allow for more precise validation of
pigmentation levels and the establishment of more direct
biochemical correlations.

4. Climate Change Impact Assessment

Simulating or measuring the effects of climate change,
especially extreme variations in temperature and precipitation,
on the timing and level of pigmentation would help project the
future behavior of forest species under altered climate
scenarios.

5. Application of Advanced Machine Learning Models

Exploring more complex machine learning models, such as
XGBoost, LightGBM, or deep neural networks, could further
improve the accuracy of pigmentation predictions and identify
nonlinear  interactions between environmental and
biochemical variables.

6. Studies on Color Quality and Stability

Analyzing color stability under conditions of prolonged
exposure to sunlight, humidity, and chemical agents would
allow us to understand the aesthetic durability of natural
pigmentation and guide specific industrial applications
(interiors, exteriors, luxury furniture, etc.).

7. Evaluation of Genetic Improvement Strategies

Based on species with the most intense and early
pigmentation, genetic selection programs could be designed to
promote commercial lines of trees with optimal color, growth,
and environmental adaptation characteristics.

8. Development of Composite Indices

Create composite indices that integrate age, temperature,
pigmentation, and growth to optimize silvicultural decision-
making, particularly in commercial plantations aimed at
maximizing the aesthetic and structural value of wood.
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