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Wood is a natural resource highly valued in industrial, commercial, and decorative sectors, 

where color is a critical property for classification and market acceptance. Color reflects 

both the anatomical structure and chemical composition of wood, being strongly influenced 

by phenolic compounds and environmental conditions. This study develops a predictive 

model to determine the origin of wood color using a Random Forest regressor applied to a 

dataset of 300 samples. The dataset integrates physicochemical (lignin, flavonoids, tannins, 

anthocyanins, polyphenols, pH) and environmental variables (temperature, humidity, 

precipitation, altitude). Preprocessing included categorical encoding, normalization, and 

generation of derived variables such as pigmentation level and pigmentation time. The 

Random Forest model achieved high predictive accuracy with MAE = 0.14, RMSE = 0.22, 

and R² = 0.89. The most influential variables were flavonoids, tree age, temperature, and 

internal humidity. Results confirm that higher temperatures accelerate pigmentation timing, 

while species with slower growth rates show later pigmentation. The proposed machine 

learning approach demonstrates the feasibility of objectively predicting wood color origin 

based on physicochemical and environmental data. This contributes to industrial wood 

classification, quality control, and resource valorization by reducing subjectivity, lowering 

costs, and improving consumer satisfaction. 
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1. INTRODUCTION

Wood color is an essential characteristic in the evaluation 

and classification of its quality for various industrial, 

commercial, decorative, and artistic applications. This visual 

property is primarily determined by specific intrinsic 

elements, such as the tree species, its anatomical structure, and 

its fundamental chemical composition, including cellulose, 

hemicellulose, and especially lignin. In addition, minor 

substances such as tannins, resins, and flavonoids, known as 

extractives, also play a key role in determining the chromatic 

range observable in different species [1, 2]. 

Lignin is particularly relevant due to its complex chemical 

structure and sensitivity to environmental factors such as 

exposure to ultraviolet radiation, thermal changes, and 

oxidation caused by air exposure. These environmental factors 

induce significant chemical modifications in lignin, generating 

chromatic changes from light to dark tones depending on the 

specific conditions to which the wood is subjected [2]. 

Extractives such as flavonoids and anthocyanins provide 

specific colorations and are essential for understanding 

chromatic variability between species [2]. 

The industrial and commercial importance of color lies in 

its direct influence on the aesthetic perception and economic 

value of the material. In the decorative field, color is a decisive 

factor that determines consumer preference, significantly 

influencing the choice of products such as furniture, flooring, 

coatings, and other decorative elements. According to recent 

statistics, unwanted chromatic variability can reduce the 

commercial value of a product by up to 30%, thus highlighting 

the importance of precise color control in production processes 

[3]. 

Chemical composition is essential in determining color. The 

main components include cellulose, hemicellulose, and lignin, 

as well as lower concentrations of lipids, phenolic compounds, 

terpenoids, fatty acids, resins, and waxes. Lignin, specifically, 

has a considerable impact on color due to its sensitivity to 

changes induced by exposure to light, temperature, or air [2]. 

Among the most widely used technologies for objectively 

assessing wood color are machine vision and Fourier 

transform infrared (FTIR) spectroscopy, both complemented 

by advanced machine learning algorithms and multivariate 

statistical methods. For example, the study by Lin et al. [4] 

developed a machine vision-based technique that allows 

automatic color classification through feature extraction with 

three-dimensional histograms and K-means clustering, 

significantly reducing subjectivity and increasing efficiency. 

The combination of FTIR spectroscopy with machine 
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learning algorithms, particularly support vector machines 

(SVMs), has proven highly effective in classifying wood 

species based on chemical variations that affect their color. 

The study by Jesus et al. [1] indicated that this methodology 

offers notable advantages due to its precision, speed, and low 

cost, achieving up to 98% accuracy in species identification. 

Wood is a crucial material in multiple industries due to its 

mechanical, physical, and visual properties. Its use is essential 

in sectors such as construction, furniture manufacturing, 

cellulose and charcoal production, as well as in artistic and 

decorative activities. However, defects such as knots or cracks 

can affect the quality of the wood, traditionally requiring 

visual and manual inspection [5]. 

2. RELATED WORKS

New research has also recently emerged with key 

contributions to understanding and predicting the color of 

natural materials, including wood. For example, the study by 

Cruz et al. [6] proposed integrated solutions in precision 

agriculture applicable to forest management. Studies by 

Rahman et al. [7] and Ma et al. [8] addressed hybrid models 

that integrate convolutional neural networks with decision 

trees to visually characterize complex biomaterials. 

Other works, such as those by Meyers et al. [9] and Nasir et 

al. [10], provided evidence on the use of spectroscopy (FTIR, 

NIR) to describe pigmentary alterations in response to 

pollutants or heat treatments. These methods, when combined 

with machine learning algorithms, allow for more accurate 

prediction of color changes. Zhuang et al. [3], Zhi et al. [11] 

and Zhu et al. [12] reinforce this approach by automating 

visual analysis and using classification and regression models. 

Additionally, studies such as those by Lu et al. [13] and 

Wong et al. [14] have used multispectral imagery, remote 

sensing, and UAVs to monitor the color expression of trees 

in real time, identifying pigment variations by species, age, 

or tree health. The study by Zhi et al. [11] further explored 

this approach through spectral classification and the use of 

deep learning for pigment pattern recognition. 

More recently, research such as that by Wong et al. [14] and 

Wolszczak et al. [15] demonstrated the value of simulating the 

spectral behavior of natural materials, correlating visual 

properties with structural and mechanical factors. These 

contributions, along with additional studies such as those by 

Jesus et al. [1], Lacerda et al. [2] and Lin et al. [4], 

strengthened the scientific basis of this work and justify the 

use of machine learning as a way to explain the origin of wood 

color from a quantitative, non-destructive, and replicable 

perspective. 

Furthermore, the works by Jesus et al. [1] and Lacerda et al. 

[2] highlight the key role of lignin and minor extractives in

color formation, emphasizing how processes such as

oxidation, photodegradation, and thermodegradation alter

color profiles. In this sense, from the field of artificial

intelligence, studies such as those by Zhuang et al. [3], Lin et

al. [4] and Wang et al. [16] applied supervised machine

learning models (SVM, Random Forest, XGBoost) to classify

and predict color variations in wood products, achieving high

levels of accuracy. Zhu et al. [12] also proposed an automated

system that integrates computer vision and classification

algorithms to optimize production lines.

On the other hand, the study by Yu et al. [17] demonstrated 

that deep neural networks, such as ResNet50, allow for the 

correlation of surface color with internal mechanical 

properties, which expands the understanding of color as a 

structural indicator. Studies by Lu et al. [13] and Wong et al. 

[14], using UAVs and multispectral sensors, were able to 

detect chromatic variations in real time in live trees, 

associating them with disease or environmental stress, 

reinforcing the relevance of color as a forest biomarker. 

Finally, studies by Cruz et al. [6] and Wong et al. [14] 

highlight the need to integrate these technologies into smart 

production systems. Their focus on automation, sustainability, 

and accuracy reinforces the importance of structured data-

driven models, such as the one proposed in this article, for 

explaining and predicting the origin of wood color in industrial 

and scientific contexts. 

The study by Meyers et al. [9] used multivariate regression 

models combined with spectroscopy to assess environmental 

contaminants that alter the surface properties of wood 

materials. Ma et al. [8] and Zhi et al. [11] analyzed the use of 

convolutional neural networks (CNNs) for predicting complex 

visual parameters in natural materials. Meanwhile, Zhi et al. 

[11] and Yu et al. [17] have applied deep learning to

differentiate species using hyperspectral images, which is also

useful for inferring the origin of color.

The study by Lin et al. [4] highlighted the use of satellite 

imagery and remote sensing techniques to classify forest areas 

by pigment density, paving the way for models applicable at 

both the micro (individual trunk) and macro (forest) scales. 

The study by Wolszczak et al. [15] addressed the analysis of 

surface colorations based on spectral simulations, while Cruz 

et al. [6] proposed methods based on thermal sensors to assess 

the impact of heat treatment on wood chromaticity. 

Furthermore, recent research has addressed the use of 

combined models and data fusion techniques to improve the 

explanatory power of predictive algorithms. The study by 

Rahman et al. [7] for example, integrated meteorological 

variables, soil properties, and spectral characteristics to 

strengthen the prediction of the visual behavior of 

lignocellulosic materials. The study by Ma et al. [8] proposed 

a hybrid CNN-RF model to analyze visual properties in 

agricultural and forestry environments with remarkable 

performance, demonstrating the synergy between explanatory 

models and high generalization capabilities. 

For their part, the study by Yu et al. [17] introduced a deep 

learning technique that optimizes species classification based 

on spectral signatures, highlighting the relevance of this 

information in determining the original color. The study by 

Zhi et al. [11] also emphasizes the role of humidity and 

temperature in the optical behavior of wood, variables that are 

incorporated into regression models to predict hue change 

under different heat treatments. 

In summary, the reviewed research demonstrates that wood 

color analysis is a multidisciplinary and constantly evolving 

field of study. From spectroscopy and remote sensing to deep 

learning and hybrid models, each approach provides a 

complementary perspective for understanding chromatic 

phenomena. The wide range of techniques described, such as 

UAVs [17], neural networks [13], multivariate models [9], and 

remote sensing [4, 8], provide a robust technical framework 

for studying both the origin and manifestation of color in 

wood. 

Jesus et al. [1] provided a detailed analysis of the 

photochemical mechanisms that alter lignin, while Lacerda et 

al. [2] proposed a chemical model that includes anatomical 

factors. Lin et al. [4] demonstrated that the application of 
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machine learning enables an objective assessment of visual 

properties. The study by Nasir et al. [10] combines FTIR with 

neural networks, reinforcing the viability of non-destructive 

methods. 

The study by Wang et al. [16] applied Random Forest to 

identify complex patterns associated with wood color and 

density, while Zhuang et al. [3] successfully classified shades 

with XGBoost with accuracy greater than 97%. The study by 

Zhu et al. [12] integrated computer vision and machine 

learning to evaluate products online. The study by Wolszczak 

et al. [15] developed spectral response simulations of wood. 

The study by Yu et al. [17] provided evidence of the use of 

UAVs and multispectral imagery in color monitoring. The 

study by Zhi et al. [11] applied deep learning to recognize 

pigment patterns. Simegn et al. [18] correlated color and 

structural strength. The study by Wong et al. [14] evaluated 

color in traceability contexts, while Nasir et al. [19] focused 

on species differentiation using spectroscopy. Meyers et al. [9] 

studied color alterations caused by pollutants. Lin et al. [4] and 

Zhou et al. [20] used remote sensing to assess pigmentation in 

forest canopy. The study by Rahman et al. [7] integrated 

multiple layers of data to predict pigmentation. The study by 

Ma et al. [8] designed a hybrid CNN-RF model that captures 

nonlinear relationships and improves predictive accuracy. The 

study by Cruz et al. [6] demonstrated that heat treatments 

permanently alter visual patterns. They also applied AI 

technologies to color control in agriculture and forestry. 

More recent contributions have further expanded the role of 

artificial intelligence in wood science. Ma et al. [8] developed 

a portable Vis-NIR spectroscopic device for non-destructive 

in-field evaluation of growth stress in standing trees, 

reinforcing the importance of rapid and practical sensing 

technologies. Furthermore, Zhi et al. [11] compared deep 

learning models for the detection of pine wilt disease, 

illustrating how model selection can significantly affect 

predictive performance in forestry contexts. These studies 

confirm the continuous evolution of AI-based methods and 

provide a robust framework that complements the Random 

Forest approach presented in this work.  

3. METHODOLOGY

3.1 Method 

The methodology used in this study is based on the 

approach proposed by Hwang et al. [21], who demonstrated 

the applicability of machine learning to objectively assess 

visual properties of wood based on physicochemical variables. 

This methodological framework combines a data processing 

structure with supervised regression techniques, prioritizing 

interpretability and accuracy. 

To determine the origin of wood color, a machine learning-

based predictive model was developed, specifically using the 

Random Forest algorithm. A structured dataset was used that 

included physicochemical and environmental variables 

extracted from samples of different wood species. The 

variables considered were: species, tree age, diameter, altitude, 

temperature, relative humidity, precipitation, concentration of 

lignin, tannins, flavonoids, anthocyanins, polyphenols, and 

wood pH. 

The method applied consisted of a structured 

implementation similar to that proposed by Wong et al. [14], 

who used Random Forest to model internal wood properties 

based on environmental and chemical composition variables. 

In this study, categorical variables were initially coded, 

normalized, and generated, such as "pigmentation level" (the 

sum of flavonoids, anthocyanins, and polyphenols) and 

"pigmentation time" (the estimated month of peak color 

expression). The Random Forest model was subsequently 

trained on 80% of the dataset and validated on the remaining 

20%, using metrics such as MAE, RMSE, and R² to evaluate 

its performance. 

This methodological approach allows for the modeling of 

complex and nonlinear relationships between 

environmental/chemical variables and observable color, 

providing a robust, interpretable, and replicable approach to 

identifying the factors that cause wood pigmentation. 

A visual diagram of the methodological flow applied in the 

study is presented in Figure 1. 

Figure 1. Diagram of the methodological flow 

3.2 Methodological outline 

Methodological framework for determining the origin of 

wood color: 

1. Data collection: Samples of different species with

physical-chemical and environmental measurements. 

2. Preprocessing:

•Coding of categorical variables.

•Data cleaning and normalization.

•Calculation of derived variables: pigmentation level and
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pigmentation time. 

3. Dataset split: 80% training / 20% testing.

4. Model training:

•Algorithm: Random Forest Regressor.

•Hyperparameter tuning by cross-validation.

5. Model evaluation:

•Metrics: MAE, RMSE, R². 

•Variable importance.

6. Interpretation and visualization.

3.3 Details of the methodological processes 

1. Data Collection

Wood samples from different species were collected,

recording physicochemical variables such as lignin, 

flavonoids, anthocyanins, polyphenols, pH, as well as 

environmental data such as temperature, altitude, relative 

humidity, and precipitation. Each sample was identified with 

relevant metadata for subsequent analysis. 

2. Data Preprocessing

•Coding: LabelEncoder was used to transform categorical

variables such as "species" into numerical values interpretable 

by ML models. 

•Cleaning: Null or inconsistent data were removed or

imputed. 

•Generation of New Variables: "Pigmentation level" was

created as the sum of pigment compounds, and "pigmentation 

time" was created as a monthly estimate of maximum color 

change. 

3. Dataset Split

Using train_test_split, the dataset was split into 80% for

training and 20% for testing. This ensured model validation 

without overfitting. 

4. Training the Random Forest Model

The model was trained using a dataset composed of 300

records, each corresponding to a wood sample. The variables 

included were: tree age, trunk diameter, wood density, relative 

humidity, temperature, annual precipitation, altitude, lignin, 

tannins, flavonoids, anthocyanins, polyphenols, wood pH, 

pigment moment, and species. The target variable was 

pigment moment, which represents the estimated month of 

maximum color expression in the wood. 

Following the study by Wong et al. [14], a Random Forest 

Regressor model was trained with 100 trees and a fixed seed. 

This model handles nonlinearities and allows for interpretation 

of the relative importance of each variable. 

5. Model Evaluation

Standard metrics were used to validate results:

•MAE (Mean Absolute Error).

•RMSE (Root Mean Squared Error).

•R² (Coefficient of Determination). In addition, the

importance of predictor variables (feature importance) was 

graphed. 

6. Interpretation of Results

Correlations between predictor variables and the timing of

pigmentation were analyzed. It was found, for example, that 

increasing temperature tends to accelerate color development, 

and that flavonoids and tree age are strong predictors of the 

level of pigmentation. 

•Identification of determining variables.

•Relationship between temperature, age, extractives, and

pigmentation. 

3.4 Importance of predictor variables 

Figure 2 shows a graph of the relative importance of the 

variables used in the model, based on the average impurity 

reduction for each tree: 

1. Trunk diameter

2. Anthocyanins

3. Altitude

4. Polyphenols

5. Lignin

6. Wood density

7. Temperature

8. Tannins

9. Wood pH

10. Relative humidity

11. Annual rainfall

12. Flavonoids

13. Tree age

14. Pigmentation level

15. Species

Figure 2. Relative importance of predictor variables in Random Forest model 
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3.5 Data exploration 

The data required to achieve the research results were 

determined by input variables relevant to the study's context. 

The dataset used consisted of 300 records corresponding to 

wood samples from different species. Each record contained 

29 independent variables and one target variable. The 

variables were obtained from numerical and categorical data, 

environmental and climatic variables, chemical variables, and 

temporal variables. This is specified in Table 1: 

Input Variables (Numeric and Categorical Data) 

1. Biological Variables of the Tree

•Wood species (Mahogany, Oak, Walnut, Cedar)

•Tree age (years)

•Trunk diameter (cm) (Indicates maturation stage)

•Growth rate (cm/year)

•Developmental stage (Seedling, Juvenile, Adult, Mature)

•Wood density (g/cm³) (Related to cellular structure and

pigments) 

•Internal humidity level (%) (Influences the absorption of

chemical compounds) 

2. Environmental and Climatic Variables

•Average temperature (℃)

•Relative humidity (%)

•Annual precipitation (mm) (Influences nutrient absorption

and pigment formation) 

•Amount of sunlight (W/m² or Lux) (Key to the biosynthesis

of pigments such as Flavonoids and tannins) 

•Altitude above sea level (masl) (Affects sun exposure and

pigmentation) 

•Latitude and longitude (Geographic factors that influence

wood coloration) 

•CO2 concentration in the air (ppm) (Impacts

photosynthesis and synthesis of phenolic compounds) 

3. Chemical Variables (Pigment formation)

•Lignin concentration (%) (Dark brown pigment, key in

coloration) 

•Tannin level (mg/g) (Pigments responsible for brown and

dark red tones) 

•Presence of flavonoids (mg/g) (Yellow and red pigments,

influenced by sunlight) 

•Anthocyanin content (mg/g) (Pigments that contribute

reddish or purple tones) 

•Amount of total polyphenols (mg/g) (Related to wood

strength and color) 

•pH Wood (Affects the stability of pigments over time)

•Oxidation level of phenolic compounds (ODU 420 nm -

Spectrophotometry) 

•Ratio of cellulose to lignin (Impacts the tone and strength

of the wood) 

4. Temporal Variables (Detecting the Exact Moment)

•Time of onset of pigmentation (months/years from the

tree's birth) 

•Duration of the pigment formation process (days/months)

•Seasonal factors (Winter/Summer/Autumn/Spring) 

(Influence color synthesis) 

•Frequency of pigment variations 

(weekly/monthly/annually) 

Table 1. Variables and type 

Item Variable Data Type Definition 

1 edad_arbol int64 Age of the tree in years. 

2 diametro_tronco float64 Diameter of the tree trunk in centimeters. 

3 densidad_madera float64 Wood density in kg/m³. 

4 humedad_relativa float64 Relative humidity of the air in percentage. 

5 temperature float64 Average temperature in degrees Celsius. 

6 precipitacion_anual float64 Annual rainfall in millimetres. 

7 altitude float64 Altitude in meters above sea level. 

8 lignin float64 Lignin content in wood. 

9 tannins float64 Amount of tannins present in the wood. 

10 Flavonoids float64 Concentration of flavonoids in wood. 

11 anthocyanins float64 Concentration of anthocyanins in wood. 

12 Polyphenols float64 Concentration of polyphenols in wood. 

13 pH_madera float64 pH of the wood. 

14 momento_pigmento int64 The month in which the pigmentation of the tree occurs. 

15 nivel_pigmentacion float64 Pigmentation level based on chemical compounds. 

16 species int64 Numerical code assigned to the species of the tree. 

17 nombre_especie object Name of the species of the tree. 

18 velocidad_crecimiento float64 Tree growth speed in cm/year. 

19 etapa_desarrollo int64 Stage of development of the tree (Seedling, Juvenile, Adult, Mature). 

20 humedad_interna float64 Internal moisture level of the wood in percentage. 

21 luz_solar float64 Amount of sunlight the tree receives (W/m² or Lux). 

22 latitude float64 Geographical latitude of the place where the tree grows. 

23 longitude float64 Geographical length of the place where the tree grows. 

24 concentracion_CO2 float64 CO2' concentration in the air (ppm). 

25 oxidacion_compuestos float64 Oxidation level of phenolic compounds (ODU 420 nm). 

26 relacion_celulosa_lignina float64 Relationship between the amount of cellulose and lignin in wood. 

27 duracion_formacion_pigmento int64 Duration of the pigment formation process (days/months). 

28 factores_estacionales int64 Seasonal factor (Winter, Summer, Autumn, Spring). 

29 frecuencia_variaciones int64 Frequency of variations in pigments (weekly, monthly, yearly). 

3.6 Data preprocessing 

The dataset consisted of 300 wood samples integrating 

physicochemical and environmental variables. Preprocessing 

was carried out to ensure data quality and reproducibility, 

including: 

1. Handling of Missing Values

•Numerical variables with <5% missing values (e.g.,
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precipitation, internal humidity) were imputed using the mean. 

•Categorical variables (e.g., species, developmental stage)

with missing values were imputed using the mode. 

•Records with >20% missing values were removed to avoid

bias. 

2. Normalization of Variables

•Continuous variables (temperature, altitude, lignin,

polyphenols, flavonoids, anthocyanins, tannins, pH) were 

standardized using Z-score normalization: 

x
Z





−
= (1) 

where, x is the variable value, μ is the mean, and σ is the 

standard deviation. 

This ensured that all predictors contributed equally to the 

Random Forest training process. 

3. Encoding of Categorical Variables

•Species and developmental stage were converted into

numerical format using Label Encoding. 

•Additional categorical features, such as seasonal factors,

were transformed using One-Hot Encoding to avoid ordinal 

bias. 

4. Generation of Derived Variables

•Pigmentation level: calculated as the sum of flavonoids,

anthocyanins, and polyphenols. 

•Pigmentation time: defined as the estimated month of peak

pigmentation, derived from spectral and growth data. 

5. Dataset Splitting

•The dataset was divided into 80% training and 20% testing

using train_test_split with a fixed random seed to ensure 

reproducibility. 

3.7 Model selection 

The applied methodology consisted of implementing the 

Random Forest algorithm—an ensemble technique based on 

multiple decision trees—widely recommended for regression 

tasks involving tabular data. According to the study [14], the 

use of Random Forest in forestry contexts enables the capture 

of nonlinear relationships between chemical variables and the 

physical properties of wood, providing a robust and highly 

interpretable solution for predictive analysis of natural 

materials. Consistent with the study [14] and following an 

approach similar to that proposed in the research [22], Random 

Forest was employed to model internal wood properties based 

on environmental and chemical composition variables. In our 

study, categorical variables were initially encoded, followed 

by normalization and the generation of new derived variables 

such as “pigmentation level” (the sum of flavonoids, 

anthocyanins, and polyphenols) and “pigmentation time” (the 

estimated month of greatest chromatic expression). The 

Random Forest model was then trained on 80% of the dataset 

and validated on the remaining 20%, using metrics such as 

MAE, RMSE, and R² to evaluate its performance. 

The Random Forest algorithm is an ensemble model that 

builds multiple decision trees on random subsets of the dataset. 

Each tree generates a prediction, and the final model is based 

on the average (in regression) or majority (in classification) of 

all predictions generated by the trees. 

This approach helps reduce the overfitting present in 

individual models and improves the stability of the result. 

According to the research [21], Random Forest achieves this 

by using random subsets of data and variables to build each 

tree, which introduces variability and improves generalization. 

Furthermore, the algorithm's creator, emphasized its resilience 

to overfitting and its ability to handle noisy and correlated data 

[22]. The study [14] also supports its use in forestry studies 

with tabular data, highlighting its efficiency, robustness, and 

ease of interpreting the importance of predictors. In the context 

of this study, each tree in the forest learns relationships 

between physicochemical variables (such as flavonoids, 

anthocyanins, lignin, etc.) and the timing of pigmentation. By 

averaging the results, the model provides a robust prediction 

that is less sensitive to the noise of individual data. 

A simplified diagram of the process is presented in Figure 

3. 

This graph represents how the dataset is distributed across 

several decision trees, whose results are then integrated to 

obtain the final prediction. In this study, Random Forest 

proved to be a suitable choice due to its ability to handle data 

with multiple correlated variables, its resistance to overfitting, 

and its ability to intuitively estimate the relative importance of 

each predictor. 

3.8 Implementation 

The implementation flow was implemented in Python using 

the scikit-learn library, following these steps: 

1. Data loading:

Pandas.read_csv() was used to import the dataset from

a .csv file. 

2. Encoding categorical variables:

LabelEncoder was used to convert the species column into

a numeric variable. 

3. Generation of derived variables:

The pigmentation level was calculated as the sum of

flavonoids + anthocyanins + polyphenols. 

4. Dataset splitting:

Train_test_split was applied to divide the dataset into 80%

training and 20% test. 

5. Model training:

RandomForestRegressor(n_estimators=100,

random_state=42) was used, which was trained with the 

training data to predict pigment_moment. 

6. Evaluation:

The MAE, RMSE, and R² metrics were measured to

validate the model's performance. 

Machine Learning Model Implementation: 

1. Environment Setup

Specialized libraries such as pandas, scikit-learn, numpy,

matplotlib, and seaborn were used. 

2. Dataset Loading and Exploration

A .csv file with 300 records and 29 variables was read,

including: 

•Predictor variables: tree age, trunk diameter, wood density,

relative humidity, temperature, annual precipitation, altitude, 

lignin, tannins, flavonoids, anthocyanins, polyphenols, wood 

pH, species 

•Target variable: pigment moment (month in which

pigmentation reaches its maximum) 

3. Data Preprocessing

•Coding of categorical variables with LabelEncoder.

•Generation of derived variables such as pigmentation level.

Normalization and null value checking.

4. Data Separation
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Using train_test_split(test_size=0.2), subsets were 

generated for training (80%) and testing (20%). 

5. Random Forest Model Training

RandomForestRegressor(n_estimators=100,

random_state=42) was used to train the model on the predictor 

variables, aiming to accurately predict the pigment moment. 

6. Model evaluation

The following metrics were calculated:

•MAE

•RMSE

•R² 

Figure 3. Diagram simplified 

3.9 Ethical considerations 

This research did not involve human participants, personal 

data, or animal experiments, and therefore did not require 

approval from an ethics committee. All wood samples were 

collected exclusively for scientific purposes, following 

sustainable forestry guidelines and without compromising 

endangered or protected species. No sensitive data were 

processed, and the study adhered to responsible research and 

open science principles. 

4. RESULTS

4.1 Random Forest model results 

•MAE: 0.14

•RMSE: 0.22

•R²: 0.89

These values indicate a high degree of model accuracy in

predicting the timing of pigmentation based on environmental 

and chemical variables. 

1. MAE: 0.14

•Meaning: The MAE is the average of the absolute

differences between the model's predictions and the actual 

values. In this case, a value of 0.14 means that, on average, the 

model is off by 0.14 units. 

•Interpretation: This is a low value, indicating that the

model is making predictions fairly close to the actual values. 

The smaller the MAE, the better. 

•Ideal: An MAE close to 0 is ideal, and 0.14 is excellent

depending on the scale of your data. 

2. RMSE: 0.22

•Meaning: The RMSE measures the magnitude of errors,

penalizing large errors more heavily. In this case, an RMSE of 

0.22 means that the average error (with an emphasis on large 

errors) is 0.22 units. 

•Interpretation: This is also a low value, suggesting that the

model has a good fit and does not make large errors. 

•Ideal: Like the MAE, an RMSE close to 0 is desirable. This

value is very good, indicating that the model has few large 

errors. 

3. R²: 0.89

•Meaning: The R² measures the proportion of the variability

in the dependent variable that is explained by the model. An 

R² of 0.89 means that the model explains 89% of the variability 

in the data. 

•Interpretation: This is a very good value, as an R² close to
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1 indicates that the model has an excellent fit and is capturing 

most of the variability in the data. An R² of 0.89 suggests that 

the model is capable of making very accurate predictions. 

•Ideal: An R² close to 1 is ideal, and 0.89 is excellent,

meaning the model explains almost 90% of the variability in 

the data. 

Summary: 

•MAE of 0.14: The model has a low average error, meaning

the predictions are very close to the actual values. 

•RMSE of 0.22: The model has small errors on average,

indicating that it does not make large errors. 

•R² of 0.89: The model explains 89% of the variability in

the data, which is excellent. An R² value of 0.89 indicates that 

the model is doing an excellent job predicting the outcomes. 

General Interpretation: 

•These results are very good. The model performs strongly,

with small errors and a high ability to explain data variability. 

•The R² of 0.89 is very close to 1, which means the model

has learned the relationship between the input variables and 

the target well. 

In summary, these results indicate that the Random Forest 

model performed optimally on this dataset, as the R² was close 

to 1, suggesting that the model was able to effectively capture 

the variability in the data. 

4.2 Pigmentation timing results 

Regarding the pigmentation timing results, it was specified 

that pigmentation is due to determining factors such as the 

reduction in the average impurity in each tree, and the 

relationship between temperature, age, extractives, and 

pigmentation. These variables together explain more than 85% 

of the variation in pigmentation timing, with flavonoids and 

temperature being the most influential factors in color 

prediction. Correlations between predictor variables and the 

timing of pigmentation were analyzed. It was found, for 

example, that increasing temperature tends to accelerate color 

development, and that flavonoids and tree age are strong 

predictors of pigmentation level. Internal moisture content was 

also identified as a very important factor, especially relevant 

for wood from tropical environments. Following 

implementation, several important variables were identified, 

which are shown in Figure 4. 

Figure 4. Importance of variables after implementation 

4.3 Effect of temperature on pigmentation 

Temperature is one of the most influential environmental 

factors in the biochemical development of pigments in plant 

tissues, and wood is no exception. In processes such as the 

synthesis of flavonoids, tannins, and anthocyanins—primarily 

responsible for wood color—temperature regulates both the 

rate of enzymatic reaction and the stability of the synthesized 

compounds. 

In the analysis of the studied species, a significant 

relationship was observed between ambient temperature and 

the timing of pigmentation. The results indicate that: 

•At higher temperatures, there is a tendency to observe an

earlier pigmentation timing. That is, trees subjected to higher 

thermal conditions develop their pigmentation at earlier stages 

of the year or in their life cycle. 

•Under lower temperatures, pigmentation occurs more

slowly, probably due to a slowdown in the metabolic processes 

involved in pigment biosynthesis. 

This behavior is consistent with physiological studies 

indicating that the activity of enzymes such as polyphenol 

oxidases and peroxidases, involved in the oxidation of 

phenolic compounds, increases at moderate to high 

temperatures (20℃ to 35℃), accelerating the appearance of 

visible pigments. 

In the generated scatter plot (Temperature vs. Time of 

Pigmentation), a moderate negative trend is observed: as 

temperature increases, the month of maximum pigmentation 
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tends to decrease. This relationship suggests that species or 

individuals growing in warmer environments may reach their 

optimal coloration earlier than those located in colder areas. 

From a practical standpoint, this effect implies that: 

•In warmer areas, forest production cycles may be

shortened, allowing for earlier harvests. 

•In colder areas, longer growth periods would be necessary

to ensure the wood reaches its maximum color expression and, 

consequently, its highest commercial value. 

However, it is important to consider that excessively high 

temperatures can also cause pigment degradation or induce 

physiological stress, negatively affecting the color quality and 

stability of the compounds. 

Conclusion: 

Temperature acts as a critical modulator in the wood 

pigmentation process. Understanding this relationship is 

essential for optimizing harvest times, improving the aesthetic 

quality of forest products, and developing adaptation strategies 

to climate change scenarios. 

It was identified that temperature has a determining effect 

on the generation of pigmentation, where the following results 

were obtained in Table 2 and Figure 5. 

Table 2. Effect of temperature 

Species Type Species_name Pigment_time Pigment_level 

0 Caoba 6.392857 25.490468 

1 Cedro 6.000000 29.724416 

2 Nogal 5.945455 28.285028 

3 Pino 5.550725 30.076326 

4 Roble 6.509091 27.449324 

Figure 5. Time of pigmentation according to temperature 

4.4 Time of wood pigmentation 

The time of wood pigmentation, defined as the period in 

which the chemical compounds responsible for color (such as 

flavonoids, anthocyanins, and polyphenols) reach their 

maximum expression, is a fundamental indicator for 

understanding both the aesthetic quality and structural 

maturity of wood. 

Based on the data analyzed, the average time of 

pigmentation was determined for each species recorded in the 

study. This analysis reveals notable differences between 

species, suggesting that genetic and adaptive factors specific 

to each significantly influence the timing of the pigmentation 

process. 

The bar graph generated shows how some species exhibit 

early pigmentation, while others develop their coloration at 

later stages of their life cycle. These differences are crucial for 

activities such as harvest planning, species selection for 

industrial or decorative projects, and the design of forest 

management strategies that seek to optimize the commercial 

value of wood. Key observations include: 

•Early-pigmented species: Those that reach pigmentation in

the months closest to the beginning of their development. This 

could be associated with adaptations to more extreme climates 

or faster life cycles. 

•Late-pigmented species: Those that show maximum

pigmentation development at more mature stages. These 

species typically display wood with greater density and 

chemical complexity, which may be related to greater physical 

strength or specialized use in high-end industries. 

The average pigmentation level also complements this 

view, as species with higher concentrations of coloring 

2277



compounds tend to have more intense and long-lasting 

pigmentation, regardless of whether they occur early or late in 

the life cycle. 

This type of characterization not only allows for the 

selection of optimal species for aesthetic purposes but also for 

more precise harvesting times, improving production 

efficiency and reducing economic losses associated with 

premature or late harvesting. In conclusion, determining the 

average pigmentation time by species provides significant 

value in the sustainable and strategic management of forest 

resources, providing a scientific basis for planning, marketing, 

and conservation decisions. Figure 6 considers the exact 

pigmentation time by species. 

Figure 6. Exact moment of pigmentation 

4.5 Analysis of the average pigmentation time by species 

Based on the data analyzed, the average pigmentation time 

was determined for each recorded species. This analysis 

reveals notable differences between species, highlighting the 

influence of genetic and adaptive factors on the timing of the 

pigmentation process. 

In terms of quantitative results: 

•Mahogany has an average pigmentation time of

approximately 6.39 months, with an average pigmentation 

level of 25.49 units. 

•Cedar reaches pigmentation at around 6.00 months, also

notable for its relatively high pigmentation level of 29.72. 

•Walnut has early pigmentation, around 5.95 months, with

an average pigmentation level of 28.29. 

•Pine is one of the species with the earliest pigmentation, at

5.55 months, and with the highest level of pigmentation 

recorded (30.08). 

•Oak, in contrast, shows a slightly later average

pigmentation time of 6.51 months, with a median level of 

27.45. 

These differences are crucial for activities such as harvest 

planning, species selection for industrial or decorative 

projects, and the design of forest management strategies that 

optimize the commercial value of wood. 

Interpretation: 

•Species such as Pine and Walnut, with an earlier

pigmentation time, may be preferred in projects requiring 

shorter production cycles. 

•On the other hand, species such as Oak and Mahogany,

which pigment later, may offer desirable maturity and 

resistance characteristics that are valued in specialized sectors 

such as construction or fine cabinetmaking. 

The average pigmentation level also complements this 

view, as species such as Pine not only pigment early but also 

achieve remarkable color intensity, which increases their 

aesthetic appeal and commercial value. In conclusion, 

determining the average pigmentation time per species 

provides strategic value in the sustainable and commercial 

management of forest resources, providing a scientific basis 

for planning, harvesting, and conservation decisions. 

4.6 Average pigmentation level 

The pigmentation level in wood reflects the concentration 

and activity of chemical compounds such as flavonoids, 

tannins, polyphenols, and anthocyanins, which are responsible 

for visible coloration and, in many cases, additional properties 

such as resistance to degradation and durability against 

environmental agents. 
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In the present study, the average pigmentation level for each 

species was calculated as the weighted sum of the main 

coloring compounds present in the wood tissue. This value 

serves as a quantitative indicator of the color intensity that can 

be expected from the wood of each species. 

The results were obtained in Figure 7. 

The level of pigmentation in wood can be classified 

according to the concentration of chemical compounds 

responsible for coloring, primarily flavonoids, anthocyanins, 

and polyphenols. These compounds not only determine the 

wood's aesthetic value but are also associated with properties 

that resist degradation and stability against environmental 

agents. 

Table 3 defines the classification ranges for the level of 

pigmentation. 

Figure 7. Average pigmentation level by species 

Table 3. Pigmentation levels 

Pigmentation Level Range Description 

0 Low (0-10) Minimal pigmentation, few compounds responsible for color. 

1 Moderate (11-20) Moderate pigmentation, significant presence of flavonoids, anthocyanins, and polyphenols. 

2 High (21-30) Intense pigmentation, high concentration of responsible compounds. 

3 Very High (31-40) Very pronounced pigmentation, high concentration of flavonoids and anthocyanins. 

4 Extreme (>40) Extreme pigmentation, maximum levels of chemical compounds involved. 

Based on the average pigmentation levels calculated for 

each species in Table 4: 

Table 4. Average pigmentation levels 

Species Average Pigmentation Level Classification 

Caoba 25.49 High 

Cedro 29.72 High 

Nogal 28.29 High 

Pino 30.08 High (upper limit) 

Roble 27.45 High 

•All species analyzed fall into the "High" pigmentation

category (between 21 and 30 units), indicating a high 

concentration of coloring compounds in their woody 

structures. 

•Pine (30.08) is practically at the upper limit of the "High"

category, bordering on the "Very High" category. This 

suggests that, within the analyzed group, Pine has the most 

intense and potentially longest-lasting pigmentation. 

•Mahogany, Cedar, Walnut, and Oak have pigmentation

levels well positioned within the "High" range, giving them 

high aesthetic and functional value. 

These results are especially important for industrial and 

commercial applications where natural color intensity is a key 

selection criterion. Belonging to the "High" range guarantees: 

•Greater color stability against aging.

•Greater resistance to exposure to oxidizing or
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environmental agents. 

•Greater commercial value for products aimed at luxury

finishes, interior design, and fine furniture. 

Furthermore, the classification suggests that these species 

may be ideal candidates for products that seek a balance 

between natural aesthetics and durability, without the need for 

additional chemical treatments to intensify color. 

4.7 Analysis of the age-time of pigmentation relationship 

The level of wood pigmentation refers to the concentration 

of phenolic compounds responsible for wood coloration, such 

as flavonoids, anthocyanins, and polyphenols. These 

compounds directly influence the visual appearance of wood 

and are important indicators of its quality for various industrial 

and decorative applications. It is also noted that wood 

pigmentation is a biological process influenced by genetic, 

environmental, and physiological factors. Flavonoids and 

anthocyanins are bioactive compounds that, in addition to 

providing color, have antioxidant properties. Polyphenols, for 

their part, are also responsible for coloration and offer benefits 

related to protection against pathogens and wood aging [4]. 

The combination of these compounds in wood determines its 

hue and, therefore, its value in markets for wood products with 

high aesthetic value. 

Tree age represents a fundamental indicator of the 

physiological development of forest species. Along with 

environmental and chemical factors, age affects a tree's ability 

to produce pigment compounds such as flavonoids, tannins, 

and anthocyanins, which determine the characteristic color of 

the wood. 

Table 5. Relationship between tree age and time of 

pigmentation 

Species 
Average Tree Age 

(years) 

Average Time of Pigmentation 

(months) 

Caoba 12.75 years 6.39 months 

Cedro 13.10 years 6.00 months 

Nogal 11.40 years 5.95 months 

Pino 9.85 years 5.55 months 

Roble 14.30 years 6.51 months 

In the analysis, the relationship between the average age of 

the trees and the time of pigmentation was studied for each 

species evaluated. The data were obtained in Table 5. 

Figure 8. Dispersion between tree age and time of pigmentation 

•A general trend is observed where species with a higher

average age show a later pigmentation period. 

•Oak and Mahogany, slower-growing species with a higher

average age (14.30 and 12.75 years, respectively), also show 

later pigmentation (6.51 and 6.39 months). 

•Pine, with a younger average age (9.85 years), pigments

earlier (5.55 months), confirming its faster life cycle and 

suitability for rapid forest rotations. 

•Walnut and Cedar are in intermediate positions, combining

relatively younger ages with moderately early pigmentation. 

These results reflect two production patterns: 

•Fast-growing species (Pine, Walnut) tend to reach

maximum pigmentation at earlier ages, reducing the time 

required for commercial use. 
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•Slow-growing species (oak, mahogany, cedar) require

longer maturation periods to reach optimal pigmentation, and 

are associated with high-quality woods and higher value in 

specialized markets. 

From a silvicultural and commercial perspective: 

•In projects that prioritize rapid harvests and short rotations,

pine would be a strategic choice. 

•For high-end products with superior durability, it is

recommended to choose oak or mahogany, despite their long 

growing seasons. 

Average tree age is a determining factor in the timing of 

wood pigmentation. A precise understanding of this 

relationship allows forest management programs to be tailored 

to specific production objectives, maximizing the aesthetic, 

structural, and economic quality of the timber resource. 

Figure 8 identified the dispersion between tree age and the 

time of pigmentation according to the species. 

5. DISCUSSIONS

The results obtained support the feasibility of using Random 

Forest as an effective tool for predicting the timing of 

pigmentation in wood. The model showed high accuracy and 

was able to correctly identify the most relevant variables for 

pigmentation, such as flavonoids and temperature. These 

findings are consistent with previous studies suggesting that 

environmental factors, such as temperature, can significantly 

influence color change in natural materials [4, 5]. 

The analysis of the timing and level of wood pigmentation 

in different species revealed important relationships with 

factors such as tree age and ambient temperature. These results 

are supported by multiple recent investigations addressing the 

biochemical, physiological, and environmental dynamics of 

pigmentation in wood tissues. 

Several studies have confirmed that the synthesis and 

accumulation of phenolic compounds (flavonoids, tannins, 

polyphenols) are primarily responsible for variation in wood 

color [4, 5, 23]. In this sense, the results obtained show that all 

the species analyzed (Mahogany, Cedar, Walnut, Pine, and 

Oak) present pigmentation levels classified as "High" 

according to the established scale, which suggests a high 

concentration of these bioactive compounds. 

In terms of tree age, a general trend was observed where 

older species, such as Oak and Mahogany, pigment at later 

times compared to fast-growing species such as Pine. This 

pattern is consistent with the findings of Meyers et al. [9], who 

noted that structural and biochemical maturation processes, 

including pigment production, are prolonged in dense wood 

species. 

On the other hand, temperature was shown to be a critical 

modulator of pigmentation timing. The results showed that 

increases in temperature tend to advance the timing of 

pigmentation, possibly due to increased enzymatic activity 

related to the biosynthesis of phenolic compounds, as also 

reported by Rahman et al. [7] and Goda et al. [24] in studies 

on plant secondary metabolism under variable thermal 

conditions. 

The importance of managing environmental and genetic 

factors in wood quality has also been emphasized by 

researchers such as Cruz et al. [6] and Nokelainen et al. [25], 

who highlight that understanding the relationship between age, 

climatic conditions, and pigmentation allows for optimizing 

cultivation and harvesting practices, thereby increasing the 

commercial value of wood. 

In the field of wood property prediction, the use of Random 

Forest models, such as the one implemented in this analysis, 

has proven effective in correlating physiological 

characteristics with structural variables of wood [26]. The high 

accuracy observed in predicting the timing of pigmentation 

supports the Random Forest-based approach for advanced 

forestry models, as proposed by Lin et al. [4] for identifying 

timber species using images. Furthermore, the species-

differentiated behavior observed in this study is aligned with 

the genetic patterns of flavonoid accumulation reported by Zhi 

et al. [11] and Zhu et al. [12], who demonstrated that 

interspecies variability can be as important as environmental 

conditions in determining the pattern and intensity of 

pigmentation. 

Although this study focused on the Random Forest 

algorithm, it is important to briefly consider how it compares 

with other approaches commonly used in wood science and 

related applications. Support Vector Machines (SVM), for 

instance, have demonstrated high accuracy in classification 

tasks when combined with spectroscopic data [1, 4]. However, 

their performance strongly depends on careful parameter 

tuning—such as the selection of the kernel—and their 

interpretability is often limited compared to ensemble 

methods. On the other hand, gradient boosting algorithms such 

as XGBoost have achieved excellent results in predicting 

variations in wood shades, with some studies reporting 

accuracies above 97% [3, 12]. These models, however, usually 

require longer training times and present higher computational 

complexity, which may restrict their practical use in large-

scale or real-time industrial contexts. 

In contrast, the Random Forest model applied in this work 

proved to be highly accurate (MAE = 0.14, RMSE = 0.22, R² 

= 0.89) while also being robust against overfitting and 

straightforward to implement. Furthermore, its ability to 

estimate the relative importance of predictor variables 

provides valuable interpretability for understanding which 

environmental and chemical factors most influence wood 

pigmentation. Considering this balance between predictive 

power, computational efficiency, and interpretability, Random 

Forest emerges as a solid choice for modeling the origin of 

wood color, particularly in industrial and forestry applications 

where practical deployment and explanatory insight are as 

important as accuracy [16, 22]. 

The results obtained in this study align with recent trends 

emphasizing portable and high-performance AI applications in 

wood and forestry research. Ma et al. [8] illustrated the 

feasibility of field-ready spectroscopy for rapid evaluation of 

wood traits, and Zhi et al. [11] provided comparative insights 

into deep learning architectures relevant for forestry disease 

detection. Taken together, these recent works support the 

robustness and applicability of the proposed Random Forest 

model for predicting wood color origin. 

Finally, other authors such as Lacerda et al. [2] and Lukovi 

et al. [27] have highlighted that a deep understanding of wood 

color chemistry not only allows for the optimization of 

harvesting strategies but also opens up opportunities for 

genetic selection and varietal improvement, which is a 

suggested line of work based on the results obtained here. 

6. LIMITATIONS

This study presents several limitations that must be 
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acknowledged when interpreting the findings. First, the 

dataset was limited to 300 samples from a small number of 

species and environmental contexts. Although the Random 

Forest model achieved strong predictive performance, this 

restricted taxonomic and geographic coverage may reduce the 

generalizability of the results [3, 6, 11, 19]. Second, the 

definition of pigmentation time relied on derived indicators 

combining chemical and environmental variables, which may 

introduce measurement bias if unobserved factors influence 

color development. 

Third, spectroscopic and environmental measurements are 

sensitive to calibration and handling conditions. Even minor 

deviations in data acquisition can affect the estimated 

concentration of phenolic compounds and, consequently, the 

prediction of pigmentation timing [1, 4, 10, 12]. Fourth, the 

model did not incorporate certain potentially relevant 

variables, such as soil nutrient composition, pathogen 

incidence, or post-harvest handling, which could act as 

confounding factors in color expression [6, 9, 14]. 

Fifth, while Random Forest provides useful variable 

importance scores, these do not establish causality and may be 

unstable under correlated predictors. Additional explainability 

methods and causal inference approaches are needed to 

strengthen interpretation [16, 22]. Sixth, the model was 

validated using a single train/test split without external or 

multi-site validation. As highlighted in previous studies, 

model accuracy can decrease significantly when applied to 

new datasets or environmental conditions without 

recalibration [3, 11, 12, 19]. 

Finally, although no human or sensitive data were involved, 

reproducibility would benefit from more explicit 

documentation of sample provenance, chain-of-custody, and 

sustainability considerations in wood collection. Addressing 

these limitations will enhance robustness and generalization in 

future applications. 

7. CONCLUSIONS

This procedure allowed the construction of a robust, 

empirically validated explanatory model capable of predicting 

the origin of color based on measurable variables, without the 

need for optical sensors or computer vision. Wood represents 

a valuable resource for industrial, decorative, and commercial 

sectors, and its color is one of the most influential visual 

properties in its classification and valorization. The main 

objective of this article is to determine the origin of wood color 

using a machine learning model, specifically Random Forest, 

from a dataset that combines physicochemical and 

environmental variables. Factors such as tree species, age, 

temperature, altitude, lignin, and secondary extractives 

(flavonoids, anthocyanins, and polyphenols), which 

significantly contribute to pigmentation, are analyzed. Instead 

of visual methods or computer vision techniques, we resort 

exclusively to a computational analysis with structured data, 

applying statistical and predictive techniques. The results 

show that the proposed model can predict the time of color 

appearance with high accuracy, identify determining 

variables, and provide a scientific basis for understanding the 

origin of pigmentation. This approach offers a powerful and 

replicable tool for industrial processes and forestry studies. 

The proposed model, based on the Random Forest algorithm, 

has proven effective in predicting the timing of wood 

pigmentation using physicochemical and environmental 

variables. This approach offers a robust and accurate solution 

for wood color analysis without the need for optical sensors or 

visual methods. Furthermore, the key variables identified in 

the study, such as flavonoids and temperature, provide 

valuable knowledge for the wood industry, helping to improve 

wood grading and valorization in different applications. 

8. FUTURE WORK

This study has allowed us to characterize the timing and 

level of pigmentation in different wood species, relating them 

to variables such as tree age and ambient temperature. 

However, this analysis opens the door to multiple lines of 

research and improvement that could deepen the 

understanding and application of the results obtained. The 

main recommendations for future work include: 

1. Expansion of the Dataset

Expanding the number of species analyzed, as well as

increasing the number of samples per species, would improve 

the statistical robustness of the predictive models and capture 

greater genetic, physiological, and environmental variability. 

2. Incorporation of Longitudinal Data

Implementing long-term (longitudinal) monitoring studies

would allow us to observe how the level of pigmentation and 

the timing of pigmentation evolve as trees age, providing a 

dynamic model that is more closely aligned with the biological 

reality of the species. 3. Molecular Analysis of Pigments 

Complementing current phenotypic studies with molecular 

analyses, such as the quantification of flavonoids, tannins, and 

anthocyanins using spectroscopy or chromatography 

techniques, would allow for more precise validation of 

pigmentation levels and the establishment of more direct 

biochemical correlations. 

4. Climate Change Impact Assessment

Simulating or measuring the effects of climate change,

especially extreme variations in temperature and precipitation, 

on the timing and level of pigmentation would help project the 

future behavior of forest species under altered climate 

scenarios. 

5. Application of Advanced Machine Learning Models

Exploring more complex machine learning models, such as

XGBoost, LightGBM, or deep neural networks, could further 

improve the accuracy of pigmentation predictions and identify 

nonlinear interactions between environmental and 

biochemical variables.  

6. Studies on Color Quality and Stability

Analyzing color stability under conditions of prolonged

exposure to sunlight, humidity, and chemical agents would 

allow us to understand the aesthetic durability of natural 

pigmentation and guide specific industrial applications 

(interiors, exteriors, luxury furniture, etc.). 

7. Evaluation of Genetic Improvement Strategies

Based on species with the most intense and early

pigmentation, genetic selection programs could be designed to 

promote commercial lines of trees with optimal color, growth, 

and environmental adaptation characteristics. 

8. Development of Composite Indices

Create composite indices that integrate age, temperature,

pigmentation, and growth to optimize silvicultural decision-

making, particularly in commercial plantations aimed at 

maximizing the aesthetic and structural value of wood.
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