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Diabetic retinopathy (DR) is a common microvascular problem of diabetes. Early 

examination and treatment of this problem can efficiently moderate its risk. Therefore, a 

robust and automated diagnosis system is essential and very important in this context. The 

first advances in fully automated methods based on diagnostics have already revolutionized 

the way of detecting and identifying DR. However, further exciting advances are still 

possible. For example, using fuzzy rules, explainable methods, fully data driven models, 

and deep learning models. Based on the considered fundus images, we propose in this paper 

an explainable classification model based on the ALMMo-0 classifier that used the CLAHE 

technique as a preprocessing method and the VGG16 deep feature to improve the DR 

diagnosis in terms of robustness by using supervised fuzzy learning. The deep features 

obtained from VGG16 are used as the input vector for the ALMMo-0 classifier. The model 

is evaluated with several DR datasets and data augmentation techniques. The proposed 

ALMMo-0 classifier-based model for the detection of DR achieves high accuracy scores of 

0.87 on MESSIDOR-2, 0.93 on APTOS-2019, and 0.97 on IDRiD, along with excellent 

sensitivity (0.88 on MESSIDOR-2, 0.92 on APTOS-2019, and 0.96 on IDRiD) and 

specificity (0.98 on MESSIDOR-2, 0.93 on APTOS-2019, and 0.98 on IDRiD) scores. 

Moreover, further comparative study demonstrates the effectiveness of the proposed model. 
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1. INTRODUCTION

Diabetic retinopathy (DR) is a dangerous optical illness 

concerning diabetes and it is a well-known cause of blindness 

[1]. An early diagnosis of DR requires an effective screening 

procedure. Systematic screening for diabetes can decrease the 

danger of blindness. Nevertheless, DR diagnosis is an 

intensive process. Therefore, computer aided diagnosis 

models for DR are indispensable. Numerous diagnosis models 

of DR based on machine learning techniques (ML) have been 

planned for automatic diabetic retinopathy classification [2-5]. 

In these models, the fundamentals of a computer-aided 

diagnosis system have been employed. In ML techniques, the 

data is essential and crucial for training the classifiers [6]. 

Various fully automatic models of DR classification based on 

deep learning have been widely used and have reached state-

of-the-art performance. 

Frequent deep learning methods suffer from the absence of 

explanation and are strongly influenced by training 

parameters. The explanation and robustness need 

enhancement to make other classification approaches more 

explainable for diabetic retinopathy. 

Fuzzy rule-based learning (FRBL) is an alternative 

approach to enhance the robustness and explainability of the 

classification task. However, it has not been yet applied for the 

diabetic retinopathy classification problem. 

The motivation behind the use of fuzzy rule-based learning 

is that, rather than classical classifiers, it is based on 

interpretable and easy to understand if-then fuzzy rules to 

classify an object. Hence, FRBL is an excellent tool in the 

medical diagnosis context where it is crucial to be able to 

explain the decisions made by doctors. In addition, this kind 

of models naturally contracts with uncertainty and 

imprecision. Besides, FRBL generally achieves high 

classification accuracy which is a motivating point for doctors. 

So, in order to enhance the robustness, the effectiveness and 

the explainability of the proposed model, we apply in this 

paper the ALMMo-0 classifier, which is based on fuzzy 

learning, to classify the fundus images. The performance and 

robustness results of the proposed solution are computed and 

discussed.  

The remainder of this paper is organized as follows: The 

related work is described in Section 2. This section also 

discusses the motivation of this work by identifying the 

research gaps to be addressed. Section 3 is devoted to the 

classification approach based on ALMMo-0 classifier and its 

modeling method. The description of the main steps involved 

in our proposed system is presented in Section 4. The 

experimental validation of the proposed model is described 

and discussed in Section 5. Finally, Section 6 concludes the 
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paper and gives some directions for future work. 

2. RELATED WORK

Diabetic retinopathy (DR) is a leading cause of preventable 

blindness among diabetic patients, necessitating early 

detection and treatment. Manual diagnosis requires significant 

time and resources, prompting the development of automated 

detection and classification methods using deep learning 

techniques [7]. These approaches analyze retinal fundus 

images to detect blood vessels, hemorrhages, and other DR-

related features. Various machine learning algorithms and 

deep learning models, have been employed to classify DR 

stages with high accuracy. 

The autonomous learning multi-model classifier of 0-order 

(ALMMo-0) is a noniterative, data-driven classifier that 

automatically extracts data clouds and forms, for each class, 

sub-classifiers based on fuzzy rules [8]. While originally 

parameter-free, a new approach introduces an initial radius 

hyper-parameter, allowing users to choose between accuracy 

and complexity [9]. The ALMMo-0 system has been extended 

to first-order (ALMMo-1) and adapted for multi-class 

classification tasks, demonstrating flexibility and comparable 

performance to benchmark methods [10]. Both ALMMo-0 and 

ALMMo-1 systems have shown high accuracy and efficiency 

in classification and regression tasks, with the ability to learn 

from streaming data and self-evolve their structure. These 

characteristics make ALMMo systems attractive solutions for 

various real-world applications, offering a balance between 

performance and adaptability. 

The xDNN model achieves a high accuracy of 99.7% on the 

APTOS-2019 dataset, emphasizing the importance of 

interpretability in clinical applications [11]. 

One study reported a deep learning model achieving 94% 

sensitivity and 98% specificity in DR detection [10]. These 

automated systems show promise in reducing vision loss by 

enabling timely referrals to ophthalmologists for further 

evaluation and treatment [12]. 

Combining CNNs with techniques like Adaptive Gabor 

Filters and Random Forests has improved classification 

accuracy to nearly 98% [13]. Recent models utilize attention 

mechanisms and vision transformers to enhance feature 

extraction, achieving accuracies of 99.63% [14]. 

Transfer learning has been widely used for DR detection. 

The work presented in the study [15] proposes a model for DR 

detection based on transfer learning. Bodapati et al. [16] 

combine feature extraction and transfer learning techniques. 

Bhardwaj et al. [17] developed a deep learning model to 

distinguish DR disease identification and its grading using a 

transfer learning approach. Pour et al. [18] performed feature 

extraction and classification in DR detection by using 

EfficientNet. 

Jena et al. [19] proposed a novel approach for DR screening 

using asymmetric deep learning features, achieving 98.6% 

accuracy on the APTOS dataset and 91.9% on the MESSIDOR 

dataset. Nur-A-Alam et al. [20] introduced an automated 

technique for classifying retinal fundus images into DR and 

normal states using feature fusion, achieving a detection 

accuracy of 95.75%. Incir and Bozkurt [21] used K-Means 

clustering for lesion segmentation and pretrained models like 

EfficientNetV2-M, achieving 95.16% accuracy. 

Omer [22] presented a computer-aided screening system 

(DREAM) utilizing a bilayered neural network for classifying 

DR severity, achieving 98.5% accuracy on 6,332 fundus 

images. Akhtar et al. [23] proposed a binary classification 

framework for DR detection using Transfer Learning, 

achieving a test accuracy of 97.82% with an image dataset 

from APTOS-2019. In the reference [24], machine learning 

algorithms such as logistic regression, naive bayes (NB), 

support vector machine (SVM) and random forest are used for 

DR detection and classification. 

Table 1. Summary of models and results obtained by related works 

Reference Method / Model Dataset Performance 

Mecili et al. [11] xDNN model APTOS-2019 99.7% accuracy 

Gargeya and Leng [12] Deep learning model - 
94% sensitivity, 

98% specificity 

Thanikachalam et al. [13] 
CNN + Adaptive Gabor Filters 

+ Random Forests
- 98% accuracy 

Ainapur and Patil [14] 
Attention mechanisms + 

Vision Transformers 
- 99.63% accuracy 

Le et al. [15] Transfer learning model - - 

Bodapati et al. [16] 
Transfer learning + Feature 

extraction 
- - 

Bhardwaj et al. [17] Transfer learning for DR grading - - 

Pour et al. [18] EfficientNet for feature extraction - - 

Jena et al. [19] Asymmetric deep learning features 
APTOS, MESSIDOR 98.6% (APTOS), 

91.9% (MESSIDOR) 

Nur-A-Alam et al. [20] Feature fusion for classification - 95.75% accuracy 

Incir and Bozkurt [21] K-Means + EfficientNetV2-M - 95.16% accuracy 

Omer [22] Bilayered neural network (DREAM) 6,332 fundus images 98.5% accuracy 

Akhtar et al. [23] 
Transfer learning for binary 

classification 
APTOS-2019 97.82% accuracy 

Manasa et al. [24] 
SVM, logistic regression, random 

forest, NB 
- - 

Costaner et al. [25] 
LBP + Wavelet transform + 

SVM 
- 

95.59% accuracy, 

96% precision, 

97.96% recall 

Costaner et al. [25] developed a machine learning-based 

method for DR detection using local binary pattern (LBP) and 

wavelet transform, achieving 95.59% accuracy, 96% 

precision, and 97.96% recall with SVM classification. Table 1 

2254



summarizes the related works for the DR automatic detection 

tasks. 

Recent research on Transformer-based architectures for 

diabetic retinopathy (DR) classification has demonstrated 

impressive results, particularly in improving feature 

representation and global contextual understanding. For 

instance, Li and Huang [26] proposed a vision transformer 

(ViT)-based model that achieved an accuracy of 93.8% and an 

AUC of 0.97 on the EyePACS dataset, showing strong 

robustness in detecting different DR severity levels. Similarly, 

Dosovitskiy [27] highlighted the superior generalization 

ability of Transformer backbones over CNNs like ResNet50 

and VGG16, reporting state-of-the-art results in image 

recognition tasks with accuracies exceeding 90% in medical 

imaging benchmarks. In another study, Xu and Wang [28] 

employed a Swin Transformer-based hierarchical network that 

reached 95.2% accuracy and an F1-score of 0.94 on the 

APTOS 2019 dataset, particularly excelling in identifying 

subtle lesion regions and inter-class boundaries. 

Current research on detecting and classifying diabetic 

retinopathy (DR) by using explainable methods reveals several 

critical gaps that hinder advancements in accurate diagnosis 

and treatment. While recent studies have made significant 

strides using deep learning, AI technologies, and explainable 

AI (XAI), the integration of these methods into practical 

clinical applications remains underexplored. There is a 

pressing need for comprehensive methodologies that 

effectively integrate various components to address these 

challenges. Key gaps include: 

 Lack of Comprehensive Explainability. Many existing

models, such as those utilizing Concept Activation Vectors 

(CAVs) and Concept Bottleneck Models (CBMs), have not 

been thoroughly evaluated for their interpretability in clinical 

contexts [29, 30]. This limits their adoption in real-world 

healthcare settings. 

 Need for Intuitive Explanations. Medical professionals

require explanations that align with their clinical 

understanding, yet current XAI methods often fall short in 

providing clear, actionable insights into model decisions [31]. 

This gap reduces the trust and usability of AI systems in 

clinical practice. 

 Underdeveloped Hybrid Frameworks. Hybrid approaches

combining techniques like fuzzy logic and explainable neural 

networks are still in their early stages and require further 

development to improve accuracy, robustness, and user trust 

[32]. 

 Limited Generalizability. Many studies rely on specific

datasets, which restricts the generalizability of findings across 

diverse populations and clinical settings [33]. This makes 

difficult the application of models in real-world scenarios. 

 Challenges with Synthetic Data. While synthetic data

generation shows promise for augmenting training datasets, it 

requires more rigorous validation to ensure robustness and 

reliability in real-world applications [34]. 

 Classification Accuracy Issues. Many models struggle

with false positives, misclassifying healthy images as 

diseased, which can lead to unnecessary interventions [35]. 

 Additionally, there is insufficient emphasis on extracting

and utilizing morphological features, such as lesion shape and 

texture, to improve classification accuracy [36]. 

To address these gaps, future research should focus on 

developing comprehensive, intuitive, and clinically relevant 

frameworks that balance accuracy and explainability. This 

perspective highlights a potential trade-off between model 

performance and the clarity of explanations provided to 

clinicians, underscoring the need for a balanced approach in 

future research. 

3. THE ALMMo-0 SYSTEM

In the reference [8], the authors introduced the ALMMo-0 

system within the empirical data analytics (EDA) framework 

[37]. EDA is a data-driven approach that focuses on extracting 

meaningful patterns and insights from empirical data without 

relying on strict assumptions about the underlying data 

distribution. It is particularly useful for handling complex, 

real-world datasets where traditional statistical methods may 

fall short. 

The ALMMo-0 Classifier is an innovative approach to 

classification, developed as part of ongoing research in 

evolving and autonomous intelligent systems. This classifier, 

created by Professor Plamen Angelov and his team, is 

designed to operate in a dynamic and adaptive manner, 

addressing the limitations of traditional machine learning 

models that require extensive manual tuning and static 

structures. The ALMMo-0 classifier belongs to a family of 

models that emphasize autonomy, interpretability, and real-

time adaptability, making it highly suitable for applications in 

environments where data evolves continuously. 

Core Principles and Architecture. The ALMMo-0 

classifier is built upon the foundations of the 0-Order AnYa 

Fuzzy Rules, which is known for its simplicity and direct data-

driven approach. Unlike traditional machine learning models 

that often require iterative training processes and complex 

optimization, ALMMo-0 operates in a non-iterative, 

feedforward manner. This means that the model does not 

require repeated cycles of learning to improve performance; 

instead, it learns directly from the data as it arrives. The 

classifier is fundamentally data-driven, forming its structure 

based on the incoming data without the need for predefined 

parameters or extensive human intervention. 

Data Clouds and Fuzzy Rules. A distinctive feature of the 

ALMMo-0 classifier is its ability to automatically extract data 

clouds from the dataset for each class. These data clouds 

represent clusters or groupings of data points that share similar 

characteristics. The classifier uses these clouds as the basis for 

generating fuzzy rules, which are central to its decision-

making process. These fuzzy rules are of 0-order, meaning 

they are simple and do not involve complex mathematical 

functions, making them both efficient and interpretable. The 

use of data clouds allows the classifier to capture the inherent 

structure of the data in a way that is both flexible and robust. 

Classification Strategy. When presented with new data, 

the ALMMo-0 classifier employs a "winner takes all" strategy 

to determine the class of the data point. This approach involves 

comparing the new data point against the established data 

clouds for each class. The classifier then generates confidence 

scores based on how well the new data fits into these clouds. 

The class with the highest confidence score is selected as the 

predicted class. This strategy not only ensures accurate 

classification but also provides a degree of confidence in each 

prediction, which can be crucial in applications where decision 

certainty is important.  

Interpretability and Explainability. One of the key 

advantages of the ALMMo-0 model is its focus on 

explainability. In an era where artificial intelligence is 

increasingly being deployed in critical domains such as 
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healthcare, finance, and autonomous systems, the ability to 

understand and trust the decisions made by AI systems is 

paramount. The ALMMo-0 classifier addresses this need by 

producing models that are inherently interpretable. The use of 

simple, 0-order fuzzy rules derived directly from data clouds 

allows users to understand the reasoning behind each 

classification decision. This transparency is vital in gaining the 

trust of end-users and ensuring that AI systems can be 

integrated seamlessly into decision-making processes. 

Applications and Impact. The ALMMo-0 classifier is 

particularly well-suited for applications in dynamic 

environments where data is constantly evolving, and where 

models need to adapt in real-time. It is able to autonomously 

learn from data without requiring manual updates, which 

makes it ideal for scenarios such as real-time monitoring 

systems, adaptive control systems, and other applications 

where traditional static models may fail to keep pace with 

changing conditions. Additionally, the model’s explainability 

makes it valuable in fields where understanding the decision 

process is as important as the decision itself, such as in 

regulatory environments or areas requiring high levels of 

accountability. 

In summary, the ALMMo-0 classifier represents a 

significant advancement in the field of autonomous and 

explainable AI. Its combination of non-iterative learning, real 

time adaptability, and interpretability sets it apart from more 

conventional machine learning approaches, making it a 

powerful tool for tackling complex, dynamic problems in 

numerous applications. 

4. PROPOSED APPROACH

The general architecture of our proposal consists of several 

key components, as shown in Figure 1. These components 

work together to process empirical data, generate fuzzy rules, 

and optimize models using the EDA framework.

Figure 1. ALMMo-0 system: general architecture 

 Input Data. The raw empirical data collected from the

system or environment. 

 Preprocessing. The stage where data is cleaned,

normalized, and prepared for analysis. 

 Feature extraction. The stage where relevant,

meaningful and discriminative features are extracted from 

images. 

 AnYa FRB System. The fuzzy rule-based system that

generates adaptive rules using data clouds. 

 Output Model. The final optimized model ready for

deployment or further analysis. 

4.1 Preprocessing 

Pre-processing fundus images is a crucial step used to 

reduce noise and inconsistencies from different imaging 

devices and environments. Techniques like resizing, cropping, 

contrast adjustment, normalization, and data augmentation 

applied to enhance image quality. This guarantees 

classification models emphasis on key features, improving 

accuracy and robustness in term of classification performance. 

Particularly in diabetic retinopathy detection, it leads to more 

reliable and consistent medical image analysis. 

Diabetic retinopathy datasets frequently contain fundus 

images with different resolutions and aspect ratios, sometimes 

containing black space. To normalize input sizes, cropping 

image is applied to eliminate useless areas. This ensures 

images with fixed resolution, which permit to enhancing 

classification model performance. In addition, CLAHE 

(Contrast Limited Adaptive Histogram Equalization) method 

[38] efficiently enhances image quality by improving low-

contrast areas. It highlights lesions in fundus images (FIs),

making medical image analysis more reliable.

Figure 2. Examples of some preprocessed and original fundus images, associated with their respective classes
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Also, CLAHE enhances local contrast, making subtle 

details more visible in regions where there are significant 

variations of intensity levels. One main parameter of CLAHE 

method is the clip limit: It regulates the contrast adjustment 

process. Besides, the clip limit parameter plays an important 

role in balancing image clarity with preservation of details. 

This user-defined value modifies the histogram to prevent 

excessive distortion. As a result, good tuning guarantees 

effective improvement without over-amplifying noise or 

artifacts. 

Data augmentation generates diverse training samples 

through transformations such as rotation, flipping, scaling, and 

brightness adjustment, thereby improving model robustness 

and generalizability. 

Finally, normalization standardizes pixel values, scaling 

them to a consistent range (e.g., [0, 1] or zero mean and unit 

variance), which stabilizes training and ensures faster 

convergence. 

Together, these preprocessing steps: Circle cropping, 

CLAHE, data augmentation and normalization, create a robust 

foundation for accurate and reliable DR detection and 

classification. Figure 2 shows some examples of original and 

preprocessed images. 

 

4.2 Feature extraction 

 

In computer vision, obtaining relevant features from traits 

plays a vital role in tasks like object detection, content-based 

retrieval, and image classification. Deep learning has 

revolutionized this process by offering advanced methods for 

feature extraction, particularly leveraging pre-trained CNNs, a 

widely used approach is transfer learning which enables the 

adaptation of knowledge from pre-trained models to new 

applications. Rather than constructing a deep neural network 

from the ground up, we can utilize a model trained on 

extensive datasets like ImageNet and fine-tune to enhance 

performance on specific tasks This approach is especially 

useful when working with smaller datasets or when 

computational resources are limited. Transfer learning has 

been successfully applied in various medical diagnostics, such 

as developing a cloud-based solution for liver cancer detection 

using deep learning and classifying cancer from DNA 

microarray data with genetic algorithms and case-based 

reasoning. These examples demonstrate how transfer learning 

can enhance the adaptability and effectiveness of models 

across different healthcare applications. 

One well-known network frequently applied in transfer 

learning is VGG16, which achieved prominence during the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) due to its impressive accuracy. Developed by the 

Visual Geometry Group at the University of Oxford, VGG16 

is a deep convolutional neural network featuring 16 layers and 

utilizing small 33 convolutional filters consistently. It’s 

simple yet effective architecture, along with strong 

performance on ImageNet, has made it a widely adopted 

choice for numerous computer vision applications. The 

VGG16 architecture includes several convolutional layers 

followed by maxpooling layers, leading up to fully connected 

layers. After the final convolutional layer, which produces a 

77512 tensor, the output is flattened into a single-

dimensional vector of length 25,088. This vector is then passed 

through fully connected layers, where it is reduced to a 

14096-dimensional vector through matrix multiplication and 

a ReLU activation function. 

In transfer learning, VGG16 functions as a feature extractor 

by retaining its convolutional layers and removing the fully 

connected layers. This adaptation allows the network to 

process images and generate a 14096-dimensional feature 

vector. The process involves image pre-processing, passing it 

through the modified network, and extracting meaningful 

features. This method enables efficient feature extraction 

without requiring extensive retraining. Typically, VGG16 uses 

weights pre-trained on the ImageNet dataset, which captures a 

broad range of visual features useful for various tasks. If the 

application domain differs significantly from ImageNet, 

additional domain-specific pretraining or fine-tuning may be 

required. However, in many cases, the default ImageNet 

weights suffice for feature extraction, unless the domain 

images are vastly different. In our experience, using the 

ImageNet weights yielded the best results, likely due to the 

diverse and rich feature representations learned from the 

extensive ImageNet dataset. 

 

4.3 ALMMo-0 classifier 

 

This section briefly recalls the main notions related to the 0-

order AnYa Fuzzy Rule-Based (FRB) system and the EDA 

estimator. The AnYa FRB system is a type of fuzzy rule-based 

model that uses data clouds to represent rules, eliminating the 

need for predefined membership functions. This makes the 

system highly adaptive and capable of handling non-linear and 

dynamic data. The EDA estimator, on the other hand, is a 

computational tool used within the EDA framework to 

estimate parameters and optimize models based on empirical 

data. The AnYa Fuzzy rule-based system and the EDA 

estimator provide Together a flexible and efficient approach 

for modeling complex systems. 

 

4.3.1 0-Order AnYa fuzzy rule-based system 

The ALMMo-0 classification consists of a collection of 

AnYa fuzzy rules [8]. Unlike the commonly used Mamdani 

and Assilian [39], Zadeh [40] and Takagi and Sugeno [41] 

fuzzy rule-based (FRB) systems, in an AnYa fuzzy rule, the 

antecedent is simplified into a vector representing the focal 

points corresponding to the different data clouds. The concept 

of data clouds refers to clusters of data samples with shared 

characteristics, organized around focal points similar to 

Voronoi tessellation [42]. In the AnYa approach, the data 

clouds as well as their focal points serve as the foundation for 

the antecedent, i.e., the IF part, of the fuzzy rule. A zero-order 

AnYa fuzzy rule is formulated as follows: 

 

𝑅𝑢𝑙𝑒 𝑖: 𝐼𝐹 𝑥 ≈ 𝑥𝑖
∗   𝑇𝐻𝐸𝑁 𝐿𝑎𝑏𝑒𝑙𝑖   (1) 

 

where, 𝑥𝑖
∗  is the focal point of the ith cloud; 𝐿𝑎𝑏𝑒𝑙𝑖  is the 

corresponding label. When classification is considered, 

inference in the 0-order AnYa rule of is done based on the 

principle “winner takes all”. 

 

4.3.2 EDA estimator 

In the present paper, the EDA framework, and especially the 

unimodal density, is used as the main estimator to 

autonomously reveal global properties from observed data. 

We define the dataset or data stream in the Euclidean space 

ℝ𝑑 as {𝑥1, 𝑥2, . . . , 𝑥𝑘}, where subscripts denote time instances 

of data observation. For simplicity, Euclidean distance is used 

in the mathematical formulation, though other distance metrics 

can also be applied. The unimodal density of the ith data 
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sample at the kth time instance is computed as: 

 

𝐷𝑘(𝑥𝑖) =
1

1 +
‖𝑥𝑖 − 𝜇𝑘‖

2

𝜎𝑘
2

=
1

1 +
‖𝑥𝑖 − 𝜇𝑘‖

2

𝑋𝑘 − ‖𝜇𝑘‖
2

 
(2) 

 

where, 𝜇𝑘 is the mean of all the samples computed at the kth 

time instance and 𝑋𝑘 is the average scalar product: 𝜎𝑘
2 = 𝑋𝑘 −

‖𝜇𝑘‖
2  . It is worth noting that in the case of Euclidean 

distance, the unimodal density has the form of a Cauchy 

function, even if there is no assumption that the distribution is 

a Cauchy distribution. 

For efficient streaming data processing, recursive 

computation plays a fundamental role in optimizing memory 

usage and computational performance. The values of 𝜇𝑘 and 

𝑋𝑘  are updated by using Eqs. (3) and (4), that recursively 

compute the unimodal density without explicit loops: 

 

1 1 1

1 1
;k k k

k
x x

k k
  −

−
= + =  (3) 

𝑋𝑘 =
𝑘 − 1

𝑘
𝑋𝑘−1 +

1

𝑘
‖𝑥𝑘‖

2;     𝑋1 = ‖𝑥1‖
2 (4) 

 

4.3.3 Overview of multiple model architecture 

This architecture utilizes multiple sub-classifiers to process 

incoming data samples within a classification framework. We 

evaluate every new data sample, 𝑥𝑘 , by all available sub-

classifiers. Each sub-classifier i produces a confidence score, 

𝜆𝑖, representing the probability that 𝑥𝑘 belongs to a particular 

class. The final classification is determined using a “winner-

takes-all” approach, where 𝑥𝑘 is assigned to the class with the 

highest confidence score. 

 

( )1,2, ,i R iLabel argmax = =  (5) 

 

This multiple-model approach enhances the classifier’s 

capacity for handling complex problems by combining the 

strengths of each sub-classifier as shown in Figure 3.

 

 
 

Figure 3. A conceptual framework diagram of a multiple-model classifier 

 

4.3.4 Learning stage in the ALMMo-0 classifier 

During the learning phase, we only update the AnYa fuzzy 

rule-based (FRB) rules relaying on new data sample’s class 

with normalizing these new samples: 

 

𝑥𝑘 ←
𝑥𝑘
‖𝑥𝑘‖

 (6) 

 

In the case of high-dimensional data, this normalization 

improves the classifier’s performance. Let 𝑥𝑘
𝑖  be a new data 

sample from class i. We update 𝜇𝑘−1
𝑖 , which denotes the 

class’s global mean, to a new mean 𝜇𝑘
𝑖 . Since each data sample 

is normalized, the update of the average scalar product is not 

necessary. 

The found focal points of class i, denoted as 𝑥𝑗
∗𝑖  for 𝑗 =

 1, 2, . . . , 𝐹𝑖 (where 𝐹𝑖 is the number of focal points) as well as 

the unimodal densities of the new data sample 𝑥𝑘
𝑖  are 

computed using the following Eq. (7): 

 

( ),i i

k jDendity f x x=  (7) 

 

This density computation helps the classifier to effectively 

adapt itself to changing data distributions, particularly in high-

dimensional spaces. 

To determine if 𝑥𝑘
𝑖  should create a new data cloud or a new 

rule, the following condition (Condition 1) is checked: 

 

( ) ( )( )( )
( ) ( )( )( )

1,2, ,

1,2, ,

i

i

i i

k k j F k j

i i

k k j F k j

i

k

D x max D x
IF

OR D x max D x

THEN Add x as a novel focal point



= 



= 

 
 
 

 
 

 (8) 

 

In the case where Condition 1 holds, a new fuzzy rule or 

data cloud is constructed and associated with 𝑥𝑘
𝑖 . The 

adaptation of the parameters of this new data cloud is done as 

follows: 

 

{
 
 

 
 
𝐹𝑖 ← 𝐹𝑖 + 1

𝑥
𝐹𝑖
∗𝑖 ← 𝑥𝑘

𝑖       

𝑀
𝐹𝑖
∗𝑖 ← 1      

𝑟
𝐹𝑖
∗𝑖 ← 𝑟0       

  (9) 

 

where, 𝑀
𝐹𝑖
∗𝑖  is the number of members in the data cloud, 𝑟

𝐹𝑖
∗𝑖 is 

the radius of the influence area, and ro is a small stabilizing 
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value for initializing new data clouds, set by 𝑟0 =

√2(1 − 𝑐𝑜𝑠(15°)). 

In the case where Condition 1 does not hold, Eq. (10) is used 

to identify the nearest data cloud to 𝑥𝑖
𝑘: 

 

1, , *
i

i

N j Fx argmin xki xj i

= = −  (10) 

 

If Condition 2 is verified (‖𝑥𝑘
𝑖 − 𝑥𝑁

∗𝑖‖ ≤ 𝑟𝑁
∗𝑖 ), then 𝑥𝑖

𝑘  is 

assigned to the nearest data cloud. Besides, the following Eq. 

(11) shows how the meta-parameters of the nearest data cloud 

are updated: 

 

{
 
 

 
 𝑥𝑁

∗𝑖 ←
𝑀𝑁
∗𝑖

𝑀𝑁
∗𝑖 + 1

𝑥𝑁
∗𝑖 +

1

𝑀𝑁
∗𝑖 + 1

𝑥𝑘
𝑖

𝑀𝑁
∗𝑖 ← 𝑀𝑁

∗𝑖 + 1

𝑟𝑁
∗𝑖 ← √0.5(𝑟𝑁

∗𝑖)
2
+ (1 − ‖𝑥𝑁

∗𝑖‖
2
)

  

 

(11) 

 

In the case where Condition 2 does not hold, 𝑥𝑘
𝑖  gives rise 

to a new data cloud using the parameters defined in Eq. (8). 

Notice that, for the next cycle, no change is performed on the 

parameters of data clouds without new members.  

Algorithm 1 summarizes the previous steps of the learning 

stage. 

 

Algorithm 1. Processing new data samples 

while new  

data sample 𝑥𝑖
𝑘 from class i is available do 

Normalize 𝑥𝑖
𝑘 as 𝑥𝑘

𝑖 ←
𝑥𝑘
𝑖

‖𝑥𝑘
𝑖 ‖

 

if   ( 𝑘 =  1 ) then 

         Initialize the parameters for the first data cloud. 

         Set 𝜇1
𝑖 ← 𝑥1

𝑖 , 𝐹𝑖 ← 1, 𝑥𝐹𝑖
∗𝑖 ← 𝑥𝑘

𝑖 , 𝑀𝐹𝑖
∗𝑖 ← 1, 𝑟𝐹𝑖

∗𝑖 ← 𝑟0 

else 

     Update 𝜇𝑘−1
𝑖  to  𝜇𝑘

𝑖  

      Calculate 𝐷(𝑥𝑘
𝑖 ) 

      Update 𝐷(𝑥𝑗
∗𝑖) for each 𝑗 =  1, 2, . . . , 𝐹𝑖 

      if   Condition 1 holds   then 

         Introduce a novel data cloud by using Eq. (8). 

      else 

         the nearest data cloud is identified by using Eq. (9). 

         if   Condition 2 holds   then 

             the meta-parameters of the nearest data cloud are 

updated by using Eq. (11). 

          else 

             A new data cloud is introduced by using Eq. (8). 

          end if 

      end if 

  end if 

end while 

 

4.3.5 Validation stage 

During validation, each sample is given as input to the 

different AnYa FRB sub-classifiers that correspond to our C 

classes. Each AnYa FRB rule 𝑗 (𝑓𝑜𝑟 𝑗 =  1, 2, . . . , 𝑅) 
generates a confidence score as follows: 

 

𝜆𝑗 = 𝑒−
1
2
‖𝑥𝑘−𝑥𝑗

∗‖
2

 (12) 

 

After all R rules have generated their scores, the rule with 

the highest confidence score is selected based on the “winner 

takes all” principle. This assigns the appropriate label to the 

validation data sample. 

 

 

5. EXPERIMENTAL STUDY 

 

The algorithm was developed using Keras with TensorFlow 

as the backend within PyCharm Community Edition. To 

conduct model training and testing, we have used a system 

equipped with an Intel(R) Core (TM) i7-11800H CPU 

(2.30GHz), a RAM of 16GB RAM, and an NVIDIA GeForce 

RTX 3060 GPU. The setup ran on a 64-bit Windows 11 Pro 

operating system. 

 

5.1 Used datasets 

 

In retinal ophthalmology field, some key public and private 

accessible image datasets are often used to evaluate the 

effectiveness of different proposed algorithms. These datasets 

cover various retinal conditions, including diabetic 

retinopathy (DR). 

Notably, three major datasets-MESSIDOR, APTOS, and 

IDRID-are discussed in the following subsections. Figure 4 

illustrates the difference between the data distribution in these 

datasets. 

 

5.1.1 MESSIDOR 

The MESSIDOR dataset contains 1,200 color fundus 

images in TIFF format. Initially created for assessing retinal 

lesion segmentation algorithms, it includes detailed 

annotations with diabetic retinopathy (DR) grades assigned to 

each image [43]. As depicted in Figure 4(a), the images are 

divided into four classification categories. This dataset is 

among the largest available and plays a crucial role in 

advancing computer-assisted diagnosis (CAD) systems for 

DR. 

 

5.1.2 APTOS 

The APTOS dataset is collected by the Indian Aravind Eye 

Hospital in collaboration with the Asia pacific tele-

ophthalmology society (APTOS). It contains 3,662 retinal 

images captured using various cameras in different 

resolutions. It involves five classification levels (see Figure 

4(b)). However, the only publicly accessible labels are the 

ground-truth labels. There is a notable class imbalance, with 

1,805 normal retina images against 183 images that show 

severe non-proliferative diabetic retinopathy (NPDR) [44]. 

Because of the variations in imaging equipment and settings 

across different centers, the dataset reflects real-world 

inconsistencies. 

 

 
(a) MESSIDOR dataset 
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(b) APTOS-2019 dataset 

 

 
(c) IDRID dataset 

 

Figure 4. Difference between MESSIDOR, APTOS-2019 

and IDRID datasets in terms of data distribution 

 

5.1.3 IDRID 

The Indian diabetic retinopathy image dataset (IDRID) is a 

key resource for diabetic retinopathy research, offering 516 

high-resolution retinal fundus images from diabetic patients. 

These images are divided into training and testing sets and 

come with detailed annotations indicating diabetic retinopathy 

(DR) severity levels and specific lesions such as 

microaneurysms, hemorrhages, soft exudates, and hard 

exudates. IDRID dataset involves five classification levels 

(see Figure 4(c)). 

Captured with high-resolution fundus cameras, the IDRID 

images mirror the diversity and variability found in clinical 

practice, making the dataset especially valuable for creating 

robust models. It supports a range of applications, including 

DR classification, fine-grained grading, lesion detection, and 

segmentation, proving essential resource for the development 

and testing of machine learning algorithms. 

Recognized and widely used in the research community, the 

IDRID dataset is crucial for advancing computer-assisted 

diagnosis (CAD) systems, which are vital for the early 

detection and treatment of diabetic retinopathy. Its public 

availability ensures global access, encouraging collaboration 

and speeding up progress in the field. 

In summary, the comprehensive annotations and high-

quality images provided by the IDRID dataset are vital for 

enhancing the accuracy and reliability of automated DR 

detection and assessment systems, establishing it as a 

fundamental resource in diabetic retinopathy research. 

The MESSIDOR, APTOS, and IDRID datasets serve as 

essential resources for both research and and development in 

the domain of retinal ophthalmology. Indeed, these datasets 

enable a comprehensive evaluation and benchmarking of 

algorithms for detecting and classifying retinal diseases like 

diabetic retinopathy (DR), especially, in presence of well-

annotated data and established ground-truth. They play a vital 

role in fostering advancements in Computer-Aided Diagnosis 

(CAD) systems and AI-driven solutions in ophthalmology. 

 

5.2 Performance evaluation metrics 

 

Given that TP (resp. FP) indicates the number of positive 

samples correctly predicted (resp. incorrectly predicted) and 

TN (resp. FN) indicates the number of negative samples 

correctly predicted (resp. incorrectly predicted), in his paper, 

we use the following main performance evaluation metrics: 

 

5.2.1 Accuracy 

Accuracy is calculated as the ratio of the number of samples 

that are correctly predicted to the total number of samples (see 

Eq. (13)). 

 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (13) 

 

5.2.2 Precision 

Precision measures the proportion of true positive 

predictions (correct positive predictions) out of all positive 

predictions made by the model. It is calculated by Eq. (14): 

 

TP
Precision

TP FP
=

+
 (14) 

 

5.2.3 Recall (Sensitivity) 

Recall, also known as sensitivity or true positive rate, 

measures the proportion of true positive predictions that are 

correctly identified by the model. It is calculated by Eq. (15): 

 

TP
Recall

TP FN
=

+
 (15) 

 

5.2.4 F1-Score 

The F1-score is the harmonic mean of precision and recall, 

providing a single metric that balances both measures. It is 

calculated by Eq. (16): 

 

1 2
Precision Recall

F score
Precision Recall


− = 

+
 (16) 

 

5.2.5 Cohen’s kappa coefficient (𝜿) 

Cohen’s kappa coefficient (κ) is a statistical metric used to 

evaluate inter-rater and intra-rater reliability [45]. Unlike a 

simple agreement calculation, it provides a more reliable 

measure by accounting for the likelihood of agreement 

occurring by chance. Cohen’s kappa is mathematically 

represented in Eq. (17): 

 

1
1

1 1

o e o

c c

p p p

p p


− −
= = −

− −
 (17) 

 

where 𝑝𝑜  denotes the observed agreement and pe represents 

the expected agreement. Essentially, this metric indicates how 

much better a classifier performs compared to random 

guessing based on class distribution. The formula can also be 

derived from the confusion matrix, as shown in Eq. (18): 

 

( )
( ) ( ) ( ) ( )

2 TP TN FN FP

TP FP FP TN TP FN FN TN


  − 
=

+  + + +  +
 (18) 
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In this paper, we use multiple metrics, including sensitivity 

(Precision), specificity (Recall), accuracy (ACC), F1-score 

(F1), and the area under the ROC curve (AUCROC) multiple 

metrics, to evaluate classification performance. 

To highlight the effectiveness of the ALMMo-0 

methodology, we compared it with a diverse set of well-known 

machine learning and deep learning algorithms. These include 

traditional machine learning models: gaussian naïve bayes 

(GNB), support vector machine (SVM), K-Nearest Neighbors 

(KNN), random forest (RF), extra trees (ET), and logistic 

regression (LR). Additionally, we evaluated deep learning 

approaches such as deep neural networks (DNN), 

convolutional neural networks (CNN), and long short-term 

memory (LSTM) networks. The classification results obtained 

from these models are detailed in Tables 2-13 and visually 

represented in Figures 5-10. 

 

 
 

Figure 5. The multiclass receiver operating characteristic for 

MESSIDOR-2 dataset 

 

 
 

Figure 6. Confusion Matrix for MESSIDOR-2 

 

 
 

Figure 7. Confusion Matrix for IDRID dataset 

 
 

Figure 8. The multiclass receiver operating characteristic for 

IDRID dataset 

 

 
 

Figure 9. The multiclass receiver operating characteristic for 

APTOS-2019 dataset 

 

 
 

Figure 10. Confusion Matrix for APTOS-2019 

 

5.3 Results for MESSIDOR-2 dataset 

 

The ALMOO-0 model was trained on the MESSIDOR-2 

dataset, achieving outstanding performance across all 

evaluated metrics. As shown in Table 5, ALMOO-0 reached 

average scores of 98% for precision, 88% for recall, 87% for 

F1-score, 87% for accuracy, 88% for ROC-AUC, and 82% for 

Cohen’s κ. 

Among the evaluated models, the KNN algorithm delivered 

the second-best overall performance, with 95% precision, 95% 

recall, 95% accuracy, and a ROC-AUC of 89%. Tree-based 

ensemble methods such as RF and ET also performed strongly, 

each scoring 94% in precision, recall, accuracy, and F1-score, 

along with a ROC-AUC of 98%. In contrast, traditional 

algorithms like GB and SVM achieved notably lower results, 

with average precision values of 63% and 45%, respectively. 

The ALMOO-0 model demonstrated excellent precision 

across all DR categories (Table 2), with particularly high 
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values for Severe DR (0.93) and None (0.89). Its F1-scores 

(Table 3) were also consistently high, achieving 0.92 for None 

and 0.86 for Mild DR, and an overall average of 0.88. For 

recall (Table 4), ALMOO-0 maintained balanced sensitivity 

across all classes, with 0.95 for None and 0.95 for Mild DR. 

 

 

Table 2. Precision of the different classification algorithms with MESSIDOR-2 dataset 

 
Precision 

 Ours GB SVM RF KNN LR ET DNN CNN LSTM 

None 0.89 0.81 0.53 0.90 0.95 0.61 0.91 0.61 0.84 0.53 

Mild DR 0.79 0.20 0.00 1.00 0.91 0.29 1.00 1.00 0.83 0.00 

Moderate DR 0.86 0.43 0.00 0.95 0.92 0.47 0.96 0.75 0.62 0.00 

Severe DR 0.93 0.66 0.73 0.98 0.97 0.66 0.95 0.76 1.00 0.82 

Avg 0.88 0.63 0.41 0.94 0.95 0.56 0.94 0.72 0.83 0.42 

 

Table 3. F1-score of the different classification algorithms with MESSIDOR-2 dataset 

 
F1-Score 

 Ours GB SVM RF KNN LR ET DNN CNN LSTM 

None 0.92 0.37 0.68 0.94 0.95 0.71 0.95 0.74 0.86 0.69 

Mild DR 0.86 0.32 0.00 0.92 0.92 0.06 0.92 0.04 0.81 0.00 

Moderate DR 0.83 0.37 0.00 0.92 0.93 0.37 0.92 0.51 0.72 0.00 

Severe DR 0.86 0.31 0.61 0.94 0.96 0.61 0.93 0.73 0.78 0.68 

Avg 0.88 0.40 0.45 0.94 0.95 0.45 0.94 0.60 0.80 0.47 

 

Table 4. Recall of the different classification algorithms with MESSIDOR-2 dataset 

 
Recall 

 Ours GB SVM RF KNN LR ET DNN CNN LSTM 

None 0.95 0.24 0.96 0.99 0.95 0.85 0.99 0.92 0.87 0.98 

Mild DR 0.95 0.93 0.00 0.86 0.93 0.04 0.86 0.02 0.79 0.00 

Moderate DR 0.79 0.32 0.00 0.90 0.94 0.31 0.89 0.39 0.84 0.00 

Severe DR 0.80 0.41 0.52 0.91 0.94 0.63 0.92 0.70 0.63 0.58 

Avg 0.88 0.38 0.56 0.94 0.95 0.60 0.94 0.66 0.80 0.58 

 

Table 5. Performance of the different classification algorithms with MESSIDOR-2 dataset 

 
All Metrics 

 Precision Recall ACC F1-score ROC  

KNN 0.95 0.95 0.95 0.95 0.89 0.92 

GB 0.63 0.38 0.38 0.40 0.71 0.23 

ET 0.94 0.94 0.94 0.94 0.98 0.90 

RF 0.94 0.94 0.94 0.94 0.98 0.90 

SVM 0.45 0.56 0.56 0.45 0.79 0.24 

LR 0.55 0.60 0.60 0.55 0.80 0.36 

CNN 0.83 0.80 0.80 0.80 0.95 0.71 

DNN 0.72 0.66 0.65 0.60 0.84 0.44 

LSTM 0.42 0.58 0.57 0.47 0.70 0.27 

Ours 0.98 0.88 0.87 0.87 0.88 0.82 

5.4 Results for IDRID dataset 

 

The ALMMo-0 model was rigorously trained on the IDRID 

dataset, leading to exceptional evaluation results. As detailed 

in Table 9, the model achieved outstanding performance 

metrics, with an average precision, recall, F1-score, and 

accuracy rate all reaching 99.7%. In addition to these metrics, 

the ALMMo-0 model delivered remarkable results in terms of 

the area under the curve (AUC), with an average AUC of 

99.8%. The AUC values for individual classes are visually 

represented in Figure 8, demonstrating excellent performance 

across all categories. AUC values exceeded 95% for all 

classes, highlighting the robustness of the proposed approach 

in successfully detecting all classes of diabetic retinopathy 

(DR). 

 

 

Table 6. F1-score of the different classification algorithms with IDRID dataset 

 
F1-score 

 Ours GB SVM RF KNN LR ET DNN CNN LSTM 

No DR 0.98 0.58 0.92 0.99 1.00 0.94 0.99 0.94 0.86 0.82 

Mild 0.89 0.28 0.07 0.94 0.97 0.48 0.94 0.52 0.81 0.00 

Moderate 0.98 0.18 0.68 0.96 0.98 0.72 0.95 0.72 0.72 0.58 

Severe 0.96 0.41 0.00 0.93 0.96 0.35 0.92 0.59 0.78 0.36 

Proliferative DR 0,96 0.38 0.01 0.93 0.96 0.38 0.93 0.57 0.99 0.07 

Avg 0.97 0.42 0.64 0.97 0.98 0.75 0.97 0.79 0.81 0.58 
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Table 7. Precision of the different classification algorithms with IDRID dataset 

 
Precision 

 Ours GB SVM RF KNN LR ET DNN CNN LSTM 

No DR 0.97 0.92 0.87 0.99 1.00 0.90 0.98 0.98 0.84 0.99 

Mild 1.00 0.16 0.62 0.97 0.96 0.67 0.97 0.58 0.83 0.00 

Moderate 0.99 0.70 0.55 0.93 0.98 0.64 0.93 0.64 0.62 0.42 

Severe 0.93 0.38 0.00 0.98 0.97 0.74 0.97 0.60 1.00 0.42 

Proliferative DR 1.00 0.36 1.00 0.98 0.96 0.55 0.97 0.67 0.99 0.75 

Avg 0.97 0.70 0.72 0.97 0.98 0.77 0.97 0.80 0.83 0.69 

 

Table 8. Recall of the different classification algorithms with IDRID dataset 

 
Recall 

 Ours GB SVM RF KNN LR ET DNN CNN LSTM 

No DR 1.00 0.43 0.98 1.00 0.99 0.98 0.99 0.90 0.87 0.70 

Mild 0.80 0.88 0.04 0.92 0.98 0.38 0.91 0.47 0.79 0.00 

Moderate 0.97 0.11 0.90 0.98 0.98 0.83 0.97 0.83 0.84 0.95 

Severe 1.00 0.45 0.00 0.89 0.94 0.23 0.88 0.59 0.63 0.32 

Proliferative DR 0.93 0.41 0.01 0.89 0.96 0.29 0.89 0.49 0.99 0.04 

Avg 0.97 0.39 0.72 0.97 0.98 0.78 0.97 0.79 0.80 0.62 

 

Table 9. Performance of the different classification algorithms with IDRID dataset 

 

All metrics 

 Precision Recall ACC F1-Score ROC  

KNN 0.98 0.98 0.98 0.98 0.95 0.98 

GB 0.50 0.39 0.39 0.42 0.51 0.54 

ET 0.97 0.97 0.96 0.97 0.96 0.97 

RF 0.97 0.97 0.97 0.97 0.96 0.97 

SVM 0.72 0.72 0.72 0.64 0.70 0.73 

LR 0.77 0.78 0.78 0.75 0.75 0.80 

CNN 0.83 0.80 0.80 0.80 0.95 0.71 

DNN 0.80 0.79 0.79 0.79 0.94 0.68 

LSTM 0.69 0.62 0.61 0.58 0.86 0.42 

Ours 0.98 0.96 0.97 0.97 0.99 0.96 

5.5 Results for APTOS-2019 dataset 

 

The APTOS (Asia Pacific Tele-Ophthalmology Society) 

dataset is a significant resource used in the development of 

machine learning models for detecting diabetic retinopathy 

from retinal images. This dataset was created as part of a 

Kaggle competition in 2019 and contains 3,662 high-

resolution fundus images, each annotated by medical experts 

with one of five severity levels of diabetic retinopathy, ranging 

from no retinopathy to proliferative diabetic retinopathy. The 

APTOS dataset is particularly valuable due to its diversity in 

image quality and variation in retinal conditions, which 

provides a challenging environment for developing robust and 

generalizable models. 

 

Table 10. F1-score of the different classification algorithms with APTOS-2019 dataset 

 
F1-Score 

 Ours GB SVM RF KNN LR ET DNN CNN LSTM 

No DR 0.98 0.56 0.90 0.99 1.00 0.94 0.99 0.87 0.87 0.76 

Mild 0.86 0.28 0.10 0.94 0.96 0.48 0.94 0.99 0.29 0.00 

Moderate 0.92 0.18 0.70 0.96 0.98 0.72 0.95 0.81 0.81 0.58 

Severe 0.82 0.41 0.00 0.93 0.95 0.35 0.92 0.81 0.72 0.30 

Proliferative DR 0.85 0.40 0.10 0.93 0.96 0.38 0.93 0.69 0.77 0.00 

Avg 0.93 0.42 0.64 0.91 0.98 0.75 0.97 0.79 0.80 0.49 

 

Table 11. Precision of the different classification algorithms with APTOS-2019 dataset 

 
Precision 

 Ours GB SVM RF KNN LR ET DNN CNN LSTM 

No DR 0.98 0.92 0.87 0.99 1.00 0.90 0.98 0.83 0.98 0.73 

Mild 0.86 0.16 0.62 0.97 0.96 0.67 0.97 1.00 0.67 0.00 

Moderate 0.89 0.70 0.55 0.93 0.98 0.64 0.93 0.75 0.70 0.46 

Severe 0.87 0.38 0.00 0.98 0.97 0.74 0.97 0.84 0.96 0.50 

Proliferative DR 0.90 0.36 1.00 0.98 0.96 0.55 0.79 0.65 0.99 0.00 

Avg 0.90 0.70 0.72 0.97 0.98 0.77 0.97 0.81 0.84 0.49 
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Table 12. Recall of the different classification algorithms with APTOS-2019 dataset 

 
Recall 

 Ours GB SVM RF KNN LR ET DNN CNN LSTM 

No DR 0.98 0.43 0.98 1.00 0.99 0.98 0.99 0.91 0.78 0.79 

Mild 0.86 0.88 0.04 0.92 0.98 0.38 0.91 0.17 0.67 0.00 

Moderate 0.95 0.11 0.90 0.98 0.98 0.83 0.97 0.87 0.96 0.78 

Severe 0.77 0.45 0.00 0.89 0.94 0.23 0.88 0.79 0.57 0.21 

Proliferative DR 0.88 0.41 0.01 0.89 0.96 0.61 0.89 0.94 0.99 0.00 

Avg 0.93 0.39 0.72 0.97 0.98 0.78 0.97 0.80 0.80 0.55 

 

Table 13. Performance of the different classification algorithms with APTOS-2019 dataset 

 
All Metrics 

 Precision Recall ACC F1-score ROC  

KNN 0.98 0.98 0.98 0.98 0.95 0.98 

GB 0.50 0.39 0.39 0.42 0.51 0.54 

ET 0.97 0.97 0.96 0.97 0.96 0.97 

RF 0.97 0.97 0.97 0.97 0.96 0.97 

SVM 0.72 0.72 0.72 0.64 0.70 0.73 

LR 0.77 0.78 0.78 0.75 0.75 0.80 

CNN 0.84 0.80 0.79 0.80 0.97 0.72 

DNN 0.81 0.80 0.81 0.79 0.97 0.72 

LSTM 0.49 0.55 0.54 0.49 0.81 0.53 

Ours 0.93 0.92 0.93 0.93 0.93 0.89 

Researchers and developers use the APTOS dataset to train 

and evaluate deep learning algorithms, aiming to improve the 

accuracy and reliability of automated diabetic retinopathy 

screening tools. Given the global burden of diabetic 

retinopathy as a leading cause of blindness, datasets like 

APTOS play a crucial role in advancing telemedicine and AI-

driven healthcare solutions, enabling earlier detection and 

treatment of this preventable condition. 

5.6 Ablation study 

 

To evaluate the impact of the proposed method on the 

pipeline, an ablation study was conducted. Table 14 presents 

the results for key components, including resizing (RS), 

CLAHE preprocessing (CL), and data augmentation (DA), 

highlighting their individual contributions to overall 

performance.

 

Table 14. Ablation study of individual contributions to the overall performance on the three datasets 

 
MESSIDOR-2 APTOS-2019 IDRID 

Pipeline Acc CK Pipeline Acc CK Pipeline Acc CK 

RS+ALMMo-0 0.37 0.11 RS+ALMMo-0 0.61 0.43 RS+ALMMo-0 0.30 0.07 

RS+CL+ALMMo-0 0.41 0.17 RS+CL+ALMMo-0 0.71 0.53 RS+CL+ALMMo-0 0.42 0.19 

RS+CL+DA+ALMMo-

0 
0.87 0.82 

RS+CL+DA+ALMMo-

0 
0.93 0.89 

RS+CL+DA+ALMMo-

0 
0.97 0.96 

The results demonstrate that resizing the images is a critical 

first step, providing the foundation for subsequent 

improvements. The inclusion of CLAHE preprocessing 

significantly boosts accuracy, and its combination with data 

augmentation creates the most effective pipeline. Specifically, 

the combination of resizing, preprocessing, and data 

augmentation yields the best performance, underscoring the 

importance of these components working in harmony. The 

addition of CLAHE preprocessing alone improves accuracy, 

while the integration of data augmentation further enhances 

performance, reinforcing the effectiveness of the combined 

approach. These findings highlight the complementary nature 

of preprocessing and augmentation techniques in optimizing 

the overall performance of the method. 

 

5.7 Comparison of results 

 

Table 15 compares our results with the best-reported 

accuracies from the studies summarized in Table 1. The 

comparison is divided into three datasets: MESSIDOR-2, 

APTOS-2019, and IDRID. For each dataset, our accuracy is 

compared against the accuracies reported in the literature, 

along with the model used to achieve that performance. 

 MESSIDOR-2 Dataset. The obtained accuracy (0.87%) 

on the MESSIDOR-2 dataset is slightly lower than the 91.9% 

accuracy achieved by Jena et al. [19] using asymmetric deep 

learning features. 

 APTOS-2019 Dataset. On the APTOS-2019 dataset, our 

accuracy of 0.93% is competitive but falls short of the state-

of-the-art results. For instance, Mecili et al. [11] achieved 

99.7% accuracy using the xDNN model, and Ainapur et al. 

[14] reported 99.63% accuracy using Vision Transformers. 

These results indicate that incorporating advanced 

architectures like xDNN or Vision Transformers could 

significantly improve our model’s performance. 

 IDRID Dataset. Our accuracy of 0.97% on the IDRID 

dataset is an excellent result. However, since none of the 

studies in Table 1 report results on IDRID, it is difficult to 

contextualize our performance against existing work. This 

result could serve as a benchmark for future studies on this 

dataset. 

Although the proposed ALMMo-0-based model 

demonstrates strong overall performance, some evaluation 

metrics are slightly lower than those achieved by certain 
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traditional ensemble methods. This difference reflects the 

model’s design philosophy, which prioritizes explainability 

and generalization rather than solely optimizing predictive 

accuracy. While ensemble techniques often function as black-

box systems with limited interpretability, the ALMMo-0 

classifier integrates fuzzy rule-based reasoning with deep 

feature representations extracted from VGG16 and ResNet50, 

enabling transparent and interpretable decision-making. This 

balance between accuracy and interpretability is particularly 

important in medical diagnosis, where understanding the 

rationale behind predictions is as critical as the performance 

itself. Furthermore, the proposed approach shows stable and 

reliable behavior across various datasets, confirming its 

robustness and clinical relevance.

Table 15. Comparison of our results with the main related works 

Reference Method/Model Accuracy 

Mecili et al. [11] xDNN model 99.7% (APTOS-2019) 

Thanikachalam et al. [13] 
CNN + Adaptive Gabor Filters + Random 

Forests 
98% 

Ainapur and Patil [14] Attention mechanisms + Vision Transformers 99.63% 

Jena et al. [19] Asymmetric deep learning features 98.6% (APTOS-2019), 91.9% (MESSIDOR) 

Nur-A-Alam et al. [20] Feature fusion for classification 95.75% 

Incir and Bozkurt [21] K-Means + EfficientNetV2-M 95.16% 

Omer [22] Bilayered neural network (DREAM) 98.5% 

Akhtar et al. [23] Transfer learning for binary classification 97.82% (APTOS-2019) 

Costaner et al. [25] LBP + Wavelet transform + SVM 95.59% 

Ours Almoo-0 
0.87% (MESSIDOR-2), 0.93% (APTOS-2019), 

0.97% (IDRID) 

On MESSIDOR-2 Our result of 0.87% accuracy is slightly 

lower than the 91.9% accuracy reported using asymmetric 

deep learning features. On APTOS-2019 Our result of 0.93% 

is competitive but falls short of the top-performing models like 

xDNN 99.7% and Vision Transformers 99.63%. Finally, on 

IDRID Our result 0.97% is excellent, but no direct 

comparisons are available in the table. 

6. CONCLUSION

This research paper introduces a novel method for efficient 

diabetic retinopathy detection using the Adaptive learning 

multimodal optimization-oriented (ALMMo-0) model. Unlike 

traditional deep learning techniques, this approach offers a 

transparent and interpretable internal architecture. The 

ALMMo-0 model not only ensures excellent accuracy, but 

also significantly improves training efficiency and 

explainability. 

Training Efficiency. One of the key advantages of the 

ALMMo-0 model is its efficiency in terms of computational 

resources and training time. Unlike conventional deep learning 

methods that often require powerful GPUs and extended 

training periods, ALMMo-0 operates effectively with minimal 

computational demands. 

Prototype-Based Architecture. The ALMMo-0 architecture 

is built on a prototype-based framework, leveraging real 

training data samples that correspond to local maxima in the 

data distribution. The resulting prototypes capture 

characteristic data points and density patterns, serving as the 

foundation for a generative model expressed in a closed-form 

solution. As a result, the model operates without requiring user 

defined thresholds, parameters, or manual tuning, making it 

fully data-driven and systematically derived from the training 

set. 

Harmonized Learning and Reasoning. ALMMo-0 combines 

learning and reasoning in a non-parametric, non-iterative and 

cohesive approach, improving both efficiency and 

interpretability. This approach provides a clear and 

understandable classifier that is easily interpretable by human 

users. 

Outstanding Performance. Our empirical findings indicate 

that the ALMMo-0 model outperforms leading deep learning 

models, such as VGG-VD-16, in terms of training efficiency, 

accuracy a well as clarity of its decision-making process. 

While the results of our study are promising, we recognize 

certain limitations that must be addressed to broaden the 

model’s applicability. The datasets used, such as MESSIDOR-

2, APTOS-2019, and IDRID, may not fully represent the 

geographic and demographic diversity required for global 

generalizability. Despite careful preprocessing, image quality 

variability remains an issue, and the datasets are primarily 

focused on diabetic retinopathy and related conditions. 

Additionally, the model’s interpretability for clinicians, 

particularly in fast-paced clinical environments, requires 

further validation. 

To overcome these challenges, future research will focus on 

acquiring more diverse datasets that encompass a broader 

range of demographics and retinal conditions. We will also 

explore advanced preprocessing and augmentation techniques, 

along with adaptive learning strategies, to enhance the model’s 

robustness. Pilot studies in various clinical settings will be 

conducted to validate the model’s performance and gather 

feedback for improving its integration into healthcare systems. 

Developing more intuitive explanation interfaces and 

interactive training modules for clinicians will be crucial for 

ensuring the model’s practical utility. 

Our assumptions regarding the effectiveness of 

preprocessing techniques, the representativeness of the 

datasets, and the clinical relevance of the model’s explanations 

require further empirical validation. Future research will 

explore adaptive learning methods for minimal intervention 

updates and develop advanced monitoring tools for deeper 

performance insights. By addressing these limitations and 

pursuing these future directions, we aim to create a 

comprehensive and reliable model suitable for diverse clinical 

applications. 

In future work, we aim to enhance the generalizability and 

clinical reliability of our approach through two main 

directions. First, we will integrate datasets from diverse 

geographic and clinical sources—or collect new ones—to 

reduce dataset bias and better represent global retinal 
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variations. Second, we plan to collaborate with medical 

professionals to validate the system’s explainability by 

extracting and visualizing the fuzzy rules triggered during 

each diagnostic decision. This will provide clinicians with 

transparent insights into the model’s reasoning, supporting the 

development of a more interpretable and trustworthy 

diagnostic support system. 
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