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Diabetic retinopathy (DR) is a common microvascular problem of diabetes. Early
examination and treatment of this problem can efficiently moderate its risk. Therefore, a
robust and automated diagnosis system is essential and very important in this context. The
first advances in fully automated methods based on diagnostics have already revolutionized
the way of detecting and identifying DR. However, further exciting advances are still
possible. For example, using fuzzy rules, explainable methods, fully data driven models,
and deep learning models. Based on the considered fundus images, we propose in this paper
an explainable classification model based on the ALMMo-0 classifier that used the CLAHE
technique as a preprocessing method and the VGG16 deep feature to improve the DR
diagnosis in terms of robustness by using supervised fuzzy learning. The deep features
obtained from VGG16 are used as the input vector for the ALMMo-0 classifier. The model
is evaluated with several DR datasets and data augmentation techniques. The proposed
ALMMo-0 classifier-based model for the detection of DR achieves high accuracy scores of
0.87 on MESSIDOR-2, 0.93 on APTOS-2019, and 0.97 on IDRID, along with excellent
sensitivity (0.88 on MESSIDOR-2, 0.92 on APT0S-2019, and 0.96 on IDRID) and
specificity (0.98 on MESSIDOR-2, 0.93 on APTOS-2019, and 0.98 on IDRID) scores.
Moreover, further comparative study demonstrates the effectiveness of the proposed model.

1. INTRODUCTION

Diabetic retinopathy (DR) is a dangerous optical illness
concerning diabetes and it is a well-known cause of blindness
[1]. An early diagnosis of DR requires an effective screening
procedure. Systematic screening for diabetes can decrease the
danger of blindness. Nevertheless, DR diagnosis is an
intensive process. Therefore, computer aided diagnosis
models for DR are indispensable. Numerous diagnosis models
of DR based on machine learning techniques (ML) have been
planned for automatic diabetic retinopathy classification [2-5].
In these models, the fundamentals of a computer-aided
diagnosis system have been employed. In ML techniques, the
data is essential and crucial for training the classifiers [6].
Various fully automatic models of DR classification based on
deep learning have been widely used and have reached state-
of-the-art performance.

Frequent deep learning methods suffer from the absence of
explanation and are strongly influenced by training
parameters. The explanation and robustness need
enhancement to make other classification approaches more
explainable for diabetic retinopathy.

Fuzzy rule-based learning (FRBL) is an alternative
approach to enhance the robustness and explainability of the
classification task. However, it has not been yet applied for the
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diabetic retinopathy classification problem.

The motivation behind the use of fuzzy rule-based learning
is that, rather than classical classifiers, it is based on
interpretable and easy to understand if-then fuzzy rules to
classify an object. Hence, FRBL is an excellent tool in the
medical diagnosis context where it is crucial to be able to
explain the decisions made by doctors. In addition, this kind
of models naturally contracts with uncertainty and
imprecision. Besides, FRBL generally achieves high
classification accuracy which is a motivating point for doctors.
So, in order to enhance the robustness, the effectiveness and
the explainability of the proposed model, we apply in this
paper the ALMMo-0 classifier, which is based on fuzzy
learning, to classify the fundus images. The performance and
robustness results of the proposed solution are computed and
discussed.

The remainder of this paper is organized as follows: The
related work is described in Section 2. This section also
discusses the motivation of this work by identifying the
research gaps to be addressed. Section 3 is devoted to the
classification approach based on ALMMo-0 classifier and its
modeling method. The description of the main steps involved
in our proposed system is presented in Section 4. The
experimental validation of the proposed model is described
and discussed in Section 5. Finally, Section 6 concludes the


https://orcid.org/0009-0001-4613-7569
https://orcid.org/0000-0002-6901-246X
https://orcid.org/0000-0002-6505-9797
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300904&domain=pdf

paper and gives some directions for future work.

2. RELATED WORK

Diabetic retinopathy (DR) is a leading cause of preventable
blindness among diabetic patients, necessitating early
detection and treatment. Manual diagnosis requires significant
time and resources, prompting the development of automated
detection and classification methods using deep learning
techniques [7]. These approaches analyze retinal fundus
images to detect blood vessels, hemorrhages, and other DR-
related features. Various machine learning algorithms and
deep learning models, have been employed to classify DR
stages with high accuracy.

The autonomous learning multi-model classifier of 0-order
(ALMMo-0) is a noniterative, data-driven classifier that
automatically extracts data clouds and forms, for each class,
sub-classifiers based on fuzzy rules [8]. While originally
parameter-free, a new approach introduces an initial radius
hyper-parameter, allowing users to choose between accuracy
and complexity [9]. The ALMMo-0 system has been extended
to first-order (ALMMo-1) and adapted for multi-class
classification tasks, demonstrating flexibility and comparable
performance to benchmark methods [10]. Both ALMMo-0 and
ALMMo-1 systems have shown high accuracy and efficiency
in classification and regression tasks, with the ability to learn
from streaming data and self-evolve their structure. These
characteristics make ALMMo systems attractive solutions for
various real-world applications, offering a balance between
performance and adaptability.

The xDNN model achieves a high accuracy of 99.7% on the
APTOS-2019 dataset, emphasizing the importance of
interpretability in clinical applications [11].

One study reported a deep learning model achieving 94%
sensitivity and 98% specificity in DR detection [10]. These

automated systems show promise in reducing vision loss by
enabling timely referrals to ophthalmologists for further
evaluation and treatment [12].

Combining CNNs with techniques like Adaptive Gabor
Filters and Random Forests has improved classification
accuracy to nearly 98% [13]. Recent models utilize attention
mechanisms and vision transformers to enhance feature
extraction, achieving accuracies of 99.63% [14].

Transfer learning has been widely used for DR detection.
The work presented in the study [15] proposes a model for DR
detection based on transfer learning. Bodapati et al. [16]
combine feature extraction and transfer learning techniques.
Bhardwaj et al. [17] developed a deep learning model to
distinguish DR disease identification and its grading using a
transfer learning approach. Pour et al. [18] performed feature
extraction and classification in DR detection by using
EfficientNet.

Jena et al. [19] proposed a novel approach for DR screening
using asymmetric deep learning features, achieving 98.6%
accuracy on the APTOS dataset and 91.9% on the MESSIDOR
dataset. Nur-A-Alam et al. [20] introduced an automated
technique for classifying retinal fundus images into DR and
normal states using feature fusion, achieving a detection
accuracy of 95.75%. Incir and Bozkurt [21] used K-Means
clustering for lesion segmentation and pretrained models like
EfficientNetV2-M, achieving 95.16% accuracy.

Omer [22] presented a computer-aided screening system
(DREAM) utilizing a bilayered neural network for classifying
DR severity, achieving 98.5% accuracy on 6,332 fundus
images. Akhtar et al. [23] proposed a binary classification
framework for DR detection using Transfer Learning,
achieving a test accuracy of 97.82% with an image dataset
from APTOS-2019. In the reference [24], machine learning
algorithms such as logistic regression, naive bayes (NB),
support vector machine (SVM) and random forest are used for
DR detection and classification.

Table 1. Summary of models and results obtained by related works

Reference Method / Model

Dataset Performance

Mecili et al. [11] xDNN model

APTOS-2019 99.7% accuracy

94% sensitivity,

Gargeya and Leng [12]

Thanikachalam et al. [13]

Ainapur and Patil [14]
Leetal. [15]
Bodapati et al. [16]

Bhardwaj et al. [17]
Pour et al. [18]

Jena et al. [19]

Nur-A-Alam et al. [20]
Incir and Bozkurt [21]
Omer [22]

Deep learning model

CNN + Adaptive Gabor Filters
+ Random Forests
Attention mechanisms +
Vision Transformers
Transfer learning model
Transfer learning + Feature
extraction
Transfer learning for DR grading
EfficientNet for feature extraction

Asymmetric deep learning features

Feature fusion for classification
K-Means + EfficientNetV2-M
Bilayered neural network (DREAM)
Transfer learning for binary

APTOS, MESSIDOR

6,332 fundus images

98% specificity

98% accuracy

99.63% accuracy

98.6% (APTOS),
91.9% (MESSIDOR)
95.75% accuracy
95.16% accuracy
98.5% accuracy

Akhtar et al. [23] . . APTOS-2019 97.82% accuracy
classification
SVM, logistic regression, random
Manasa et al. [24] forest, NB - -
0,

LBP + Wavelet transform + 93.59% accuracy,

Costaner et al. [25] SVM - 96% precision,

97.96% recall

Costaner et al. [25] developed a machine learning-based wavelet transform, achieving 95.59% accuracy, 96%

method for DR detection using local binary pattern (LBP) and
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precision, and 97.96% recall with SVM classification. Table 1



summarizes the related works for the DR automatic detection
tasks.

Recent research on Transformer-based architectures for
diabetic retinopathy (DR) classification has demonstrated
impressive results, particularly in improving feature
representation and global contextual understanding. For
instance, Li and Huang [26] proposed a vision transformer
(ViT)-based model that achieved an accuracy of 93.8% and an
AUC of 0.97 on the EyePACS dataset, showing strong
robustness in detecting different DR severity levels. Similarly,
Dosovitskiy [27] highlighted the superior generalization
ability of Transformer backbones over CNNs like ResNet50
and VGGI16, reporting state-of-the-art results in image
recognition tasks with accuracies exceeding 90% in medical
imaging benchmarks. In another study, Xu and Wang [28]
employed a Swin Transformer-based hierarchical network that
reached 95.2% accuracy and an Fl-score of 0.94 on the
APTOS 2019 dataset, particularly excelling in identifying
subtle lesion regions and inter-class boundaries.

Current research on detecting and classifying diabetic
retinopathy (DR) by using explainable methods reveals several
critical gaps that hinder advancements in accurate diagnosis
and treatment. While recent studies have made significant
strides using deep learning, Al technologies, and explainable
Al (XAI), the integration of these methods into practical
clinical applications remains underexplored. There is a
pressing need for comprehensive methodologies that
effectively integrate various components to address these
challenges. Key gaps include:

e Lack of Comprehensive Explainability. Many existing
models, such as those utilizing Concept Activation Vectors
(CAVs) and Concept Bottleneck Models (CBMs), have not
been thoroughly evaluated for their interpretability in clinical
contexts [29, 30]. This limits their adoption in real-world
healthcare settings.

* Need for Intuitive Explanations. Medical professionals
require explanations that align with their clinical
understanding, yet current XAI methods often fall short in
providing clear, actionable insights into model decisions [31].
This gap reduces the trust and usability of Al systems in
clinical practice.

* Underdeveloped Hybrid Frameworks. Hybrid approaches
combining techniques like fuzzy logic and explainable neural
networks are still in their early stages and require further
development to improve accuracy, robustness, and user trust
[32].

* Limited Generalizability. Many studies rely on specific
datasets, which restricts the generalizability of findings across
diverse populations and clinical settings [33]. This makes
difficult the application of models in real-world scenarios.

* Challenges with Synthetic Data. While synthetic data
generation shows promise for augmenting training datasets, it
requires more rigorous validation to ensure robustness and
reliability in real-world applications [34].

* Classification Accuracy Issues. Many models struggle
with false positives, misclassifying healthy images as
diseased, which can lead to unnecessary interventions [35].

* Additionally, there is insufficient emphasis on extracting
and utilizing morphological features, such as lesion shape and
texture, to improve classification accuracy [36].

To address these gaps, future research should focus on
developing comprehensive, intuitive, and clinically relevant
frameworks that balance accuracy and explainability. This
perspective highlights a potential trade-off between model
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performance and the clarity of explanations provided to
clinicians, underscoring the need for a balanced approach in
future research.

3. THE ALMMo-0 SYSTEM

In the reference [8], the authors introduced the ALMMo-0
system within the empirical data analytics (EDA) framework
[37]. EDA is a data-driven approach that focuses on extracting
meaningful patterns and insights from empirical data without
relying on strict assumptions about the underlying data
distribution. It is particularly useful for handling complex,
real-world datasets where traditional statistical methods may
fall short.

The ALMMo-0 Classifier is an innovative approach to
classification, developed as part of ongoing research in
evolving and autonomous intelligent systems. This classifier,
created by Professor Plamen Angelov and his team, is
designed to operate in a dynamic and adaptive manner,
addressing the limitations of traditional machine learning
models that require extensive manual tuning and static
structures. The ALMMo-0 classifier belongs to a family of
models that emphasize autonomy, interpretability, and real-
time adaptability, making it highly suitable for applications in
environments where data evolves continuously.

Core Principles and Architecture. The ALMMo-0
classifier is built upon the foundations of the 0-Order AnYa
Fuzzy Rules, which is known for its simplicity and direct data-
driven approach. Unlike traditional machine learning models
that often require iterative training processes and complex
optimization, ALMMo-0 operates in a non-iterative,
feedforward manner. This means that the model does not
require repeated cycles of learning to improve performance;
instead, it learns directly from the data as it arrives. The
classifier is fundamentally data-driven, forming its structure
based on the incoming data without the need for predefined
parameters or extensive human intervention.

Data Clouds and Fuzzy Rules. A distinctive feature of the
ALMMo-0 classifier is its ability to automatically extract data
clouds from the dataset for each class. These data clouds
represent clusters or groupings of data points that share similar
characteristics. The classifier uses these clouds as the basis for
generating fuzzy rules, which are central to its decision-
making process. These fuzzy rules are of 0-order, meaning
they are simple and do not involve complex mathematical
functions, making them both efficient and interpretable. The
use of data clouds allows the classifier to capture the inherent
structure of the data in a way that is both flexible and robust.

Classification Strategy. When presented with new data,
the ALMMo-0 classifier employs a "winner takes all" strategy
to determine the class of the data point. This approach involves
comparing the new data point against the established data
clouds for each class. The classifier then generates confidence
scores based on how well the new data fits into these clouds.
The class with the highest confidence score is selected as the
predicted class. This strategy not only ensures accurate
classification but also provides a degree of confidence in each
prediction, which can be crucial in applications where decision
certainty is important.

Interpretability and Explainability. One of the key
advantages of the ALMMo-0 model is its focus on
explainability. In an era where artificial intelligence is
increasingly being deployed in critical domains such as



healthcare, finance, and autonomous systems, the ability to process is as important as the decision itself, such as in

understand and trust the decisions made by Al systems is regulatory environments or areas requiring high levels of
paramount. The ALMMo-0 classifier addresses this need by accountability.

producing models that are inherently interpretable. The use of In summary, the ALMMo-0 classifier represents a
simple, 0-order fuzzy rules derived directly from data clouds significant advancement in the field of autonomous and
allows users to understand the reasoning behind each explainable Al Its combination of non-iterative learning, real
classification decision. This transparency is vital in gaining the time adaptability, and interpretability sets it apart from more
trust of end-users and ensuring that Al systems can be conventional machine learning approaches, making it a
integrated seamlessly into decision-making processes. powerful tool for tackling complex, dynamic problems in

Applications and Impact. The ALMMo-0 classifier is numerous applications.

particularly ~well-suited for applications in dynamic
environments where data is constantly evolving, and where
models need to adapt in real-time. It is able to autonomously 4. PROPOSED APPROACH
learn from data without requiring manual updates, which

makes it ideal for scenarios such as real-time monitoring The general architecture of our proposal consists of several
systems, adaptive control systems, and other applications key components, as shown in Figure 1. These components
where traditional static models may fail to keep pace with work together to process empirical data, generate fuzzy rules,
changing conditions. Additionally, the model’s explainability and optimize models using the EDA framework.

makes it valuable in fields where understanding the decision

Pro processing AnYa FRS System

AnYa FRB Rule 2
o
Database —— Takes All > Label
Operator
Data Augmentatuon
Figure 1. ALMMo-0 system: general architecture

¢ Input Data. The raw empirical data collected from the contrast adjustment, normalization, and data augmentation
system or environment. applied to enhance image quality. This guarantees
* Preprocessing. The stage where data is cleaned, classification models emphasis on key features, improving
normalized, and prepared for analysis. accuracy and robustness in term of classification performance.
¢ Feature extraction. The stage where relevant, Particularly in diabetic retinopathy detection, it leads to more

meaningful and discriminative features are extracted from reliable and consistent medical image analysis.
images. Diabetic retinopathy datasets frequently contain fundus
¢ AnYa FRB System. The fuzzy rule-based system that images with different resolutions and aspect ratios, sometimes
generates adaptive rules using data clouds. containing black space. To normalize input sizes, cropping
¢ Qutput Model. The final optimized model ready for image is applied to eliminate useless areas. This ensures
deployment or further analysis. images with fixed resolution, which permit to enhancing
classification model performance. In addition, CLAHE
4.1 Preprocessing (Contrast Limited Adaptive Histogram Equalization) method
[38] efficiently enhances image quality by improving low-
Pre-processing fundus images is a crucial step used to contrast areas. It highlights lesions in fundus images (FIs),

reduce noise and inconsistencies from different imaging making medical image analysis more reliable.

devices and environments. Techniques like resizing, cropping,

00 00 00
00 00 00
00 00 00
00 00 00
00 0

0 200 400 200 400 200 40 200 40 0 200 400
Class 0 Class 1 Class 2 Class 3 Class 4

Figure 2. Examples of some preprocessed and original fundus images, associated with their respective classes
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Also, CLAHE enhances local contrast, making subtle
details more visible in regions where there are significant
variations of intensity levels. One main parameter of CLAHE
method is the clip limit: It regulates the contrast adjustment
process. Besides, the clip limit parameter plays an important
role in balancing image clarity with preservation of details.
This user-defined value modifies the histogram to prevent
excessive distortion. As a result, good tuning guarantees
effective improvement without over-amplifying noise or
artifacts.

Data augmentation generates diverse training samples
through transformations such as rotation, flipping, scaling, and
brightness adjustment, thereby improving model robustness
and generalizability.

Finally, normalization standardizes pixel values, scaling
them to a consistent range (e.g., [0, 1] or zero mean and unit
variance), which stabilizes training and ensures faster
convergence.

Together, these preprocessing steps: Circle cropping,
CLAHE, data augmentation and normalization, create a robust
foundation for accurate and reliable DR detection and
classification. Figure 2 shows some examples of original and
preprocessed images.

4.2 Feature extraction

In computer vision, obtaining relevant features from traits
plays a vital role in tasks like object detection, content-based
retrieval, and image classification. Deep learning has
revolutionized this process by offering advanced methods for
feature extraction, particularly leveraging pre-trained CNNs, a
widely used approach is transfer learning which enables the
adaptation of knowledge from pre-trained models to new
applications. Rather than constructing a deep neural network
from the ground up, we can utilize a model trained on
extensive datasets like ImageNet and fine-tune to enhance
performance on specific tasks This approach is especially
useful when working with smaller datasets or when
computational resources are limited. Transfer learning has
been successfully applied in various medical diagnostics, such
as developing a cloud-based solution for liver cancer detection
using deep learning and classifying cancer from DNA
microarray data with genetic algorithms and case-based
reasoning. These examples demonstrate how transfer learning
can enhance the adaptability and effectiveness of models
across different healthcare applications.

One well-known network frequently applied in transfer
learning is VGG16, which achieved prominence during the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) due to its impressive accuracy. Developed by the
Visual Geometry Group at the University of Oxford, VGG16
is a deep convolutional neural network featuring 16 layers and
utilizing small 3x3 convolutional filters consistently. It’s
simple yet effective architecture, along with strong
performance on ImageNet, has made it a widely adopted
choice for numerous computer vision applications. The
VGG16 architecture includes several convolutional layers
followed by maxpooling layers, leading up to fully connected
layers. After the final convolutional layer, which produces a
7x7x512 tensor, the output is flattened into a single-
dimensional vector of length 25,088. This vector is then passed
through fully connected layers, where it is reduced to a
1x4096-dimensional vector through matrix multiplication and
a ReLU activation function.
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In transfer learning, VGG16 functions as a feature extractor
by retaining its convolutional layers and removing the fully
connected layers. This adaptation allows the network to
process images and generate a 1x4096-dimensional feature
vector. The process involves image pre-processing, passing it
through the modified network, and extracting meaningful
features. This method enables efficient feature extraction
without requiring extensive retraining. Typically, VGG16 uses
weights pre-trained on the ImageNet dataset, which captures a
broad range of visual features useful for various tasks. If the
application domain differs significantly from ImageNet,
additional domain-specific pretraining or fine-tuning may be
required. However, in many cases, the default ImageNet
weights suffice for feature extraction, unless the domain
images are vastly different. In our experience, using the
ImageNet weights yielded the best results, likely due to the
diverse and rich feature representations learned from the
extensive ImageNet dataset.

4.3 ALMMo-0 classifier

This section briefly recalls the main notions related to the 0-
order AnYa Fuzzy Rule-Based (FRB) system and the EDA
estimator. The AnYa FRB system is a type of fuzzy rule-based
model that uses data clouds to represent rules, eliminating the
need for predefined membership functions. This makes the
system highly adaptive and capable of handling non-linear and
dynamic data. The EDA estimator, on the other hand, is a
computational tool used within the EDA framework to
estimate parameters and optimize models based on empirical
data. The AnYa Fuzzy rule-based system and the EDA
estimator provide Together a flexible and efficient approach
for modeling complex systems.

4.3.1 0-Order AnYa fuzzy rule-based system

The ALMMo-0 classification consists of a collection of
AnYa fuzzy rules [8]. Unlike the commonly used Mamdani
and Assilian [39], Zadeh [40] and Takagi and Sugeno [41]
fuzzy rule-based (FRB) systems, in an AnYa fuzzy rule, the
antecedent is simplified into a vector representing the focal
points corresponding to the different data clouds. The concept
of data clouds refers to clusters of data samples with shared
characteristics, organized around focal points similar to
Voronoi tessellation [42]. In the AnYa approach, the data
clouds as well as their focal points serve as the foundation for
the antecedent, i.e., the IF part, of the fuzzy rule. A zero-order
AnYa fuzzy rule is formulated as follows:

Rule i:IF x = x; THEN Label; (1)

where, x; is the focal point of the i cloud; Label; is the
corresponding label. When classification is considered,
inference in the 0-order AnYa rule of is done based on the
principle “winner takes all”.

4.3.2 EDA estimator

In the present paper, the EDA framework, and especially the
unimodal density, is used as the main estimator to
autonomously reveal global properties from observed data.
We define the dataset or data stream in the Euclidean space
R% as {x;, x;, ..., X}, Where subscripts denote time instances
of data observation. For simplicity, Euclidean distance is used
in the mathematical formulation, though other distance metrics
can also be applied. The unimodal density of the i data



sample at the k” time instance is computed as:

1 1

e — well? . Il — P )
e R
e X — Nll?

Dy (x;) =

where, i, is the mean of all the samples computed at the k"
time instance and X is the average scalar product: 6 = X, —
lluell? . It is worth noting that in the case of Euclidean
distance, the unimodal density has the form of a Cauchy
function, even if there is no assumption that the distribution is
a Cauchy distribution.

For efficient streaming data processing, recursive
computation plays a fundamental role in optimizing memory
usage and computational performance. The values of y;, and
X} are updated by using Egs. (3) and (4), that recursively
compute the unimodal density without explicit loops:

k-1 1 .
Mo =7t t7 X

K K =% A3)

k-1 1
Xe=——Xea+lwlls Xo=lml? @

4.3.3 Overview of multiple model architecture

This architecture utilizes multiple sub-classifiers to process
incoming data samples within a classification framework. We
evaluate every new data sample, x;, by all available sub-
classifiers. Each sub-classifier i produces a confidence score,
A;, representing the probability that x; belongs to a particular
class. The final classification is determined using a “winner-
takes-all” approach, where x;, is assigned to the class with the
highest confidence score.

Label = argmax_,, (%) (5)

This multiple-model approach enhances the classifier’s
capacity for handling complex problems by combining the
strengths of each sub-classifier as shown in Figure 3.

| AnYa FRB

7 ' New Data

Normalization p
Sample | )

Rule 1
}_l(x-)
3 | Winner |
AnYa FRB A% \
Rule 2 Takes All Label
Operator
'L(x.)
AnYa FRB
Rule R

Figure 3. A conceptual framework diagram of a multiple-model classifier

4.3.4 Learning stage in the ALMMo-0 classifier

During the learning phase, we only update the AnYa fuzzy
rule-based (FRB) rules relaying on new data sample’s class
with normalizing these new samples:

Xk 6
X & —
E T el ©)

In the case of high-dimensional data, this normalization
improves the classifier’s performance. Let x. be a new data
sample from class i. We update u'_,, which denotes the
class’s global mean, to a new mean y,. Since each data sample
is normalized, the update of the average scalar product is not
necessary.

The found focal points of class i, denoted as xj*i forj =
1,2,..., F; (where F; is the number of focal points) as well as
the unimodal densities of the new data sample x. are
computed using the following Eq. (7):

Dendity = f (X, ;') 7)

This density computation helps the classifier to effectively
adapt itself to changing data distributions, particularly in high-

dimensional spaces.
To determine if x}, should create a new data cloud or a new
rule, the following condition (Condition 1) is checked:

i (Dk (% )>max;,, . (Dk (x; )))

OR(D, (%) >max;, (D, (x}'))) 8)

THEN Add x, as a novel focal point

In the case where Condition 1 holds, a new fuzzy rule or
data cloud is constructed and associated with x. . The
adaptation of the parameters of this new data cloud is done as
follows:

FleF +1
X7 e X
M;‘l «1 ©)
rF*f “1
where, M ;ll is the number of members in the data cloud, rF*f is
the radius of the influence area, and r, is a small stabilizing
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value for initializing new data clouds,

/2(1 — cos(15%)).

In the case where Condition 1 does not hold, Eq. (10) is used
to identify the nearest data cloud to x:

set by 15 =

Xy =argmin,_; - xki—xj *i

(10)

If Condition 2 is verified (||x,i( — x| < b, then xF is
assigned to the nearest data cloud. Besides, the following Eq.
(11) shows how the meta-parameters of the nearest data cloud
are updated:

My i
vy 1N T Xk
My +1 My +1

My« My +1

* 2)

b e \/O.S(r,(,“')z + (1 — ||x

*1

*1
XN < N

(11

In the case where Condition 2 does not hold, x/ gives rise
to a new data cloud using the parameters defined in Eq. (8).
Notice that, for the next cycle, no change is performed on the
parameters of data clouds without new members.

Algorithm 1 summarizes the previous steps of the learning
stage.

Algorithm 1. Processing new data samples
while new

data sample x} from class i is available do
i

Normalize x[ as x} « ”i—’f”
k

if (k = 1) then
Initialize the parameters for the first data cloud.
Setpf < xf, F; « 1, X3t < xp, Mil « 1,13l 1y
else
Update ul,_, to p
Calculate D (x})
Update D(x]f"") foreachj = 1,2,...
if Condition 1 holds then
Introduce a novel data cloud by using Eq. (8).
else
the nearest data cloud is identified by using Eq. (9).
if Condition 2 holds then
the meta-parameters of the nearest data cloud are
updated by using Eq. (11).
else
A new data cloud is introduced by using Eq. (8).
end if
end if
end if
end while

lFi

4.3.5 Validation stage

During validation, each sample is given as input to the
different AnYa FRB sub-classifiers that correspond to our C
classes. Each AnYa FRB rule j(forj = 1,2,...,R)
generates a confidence score as follows:

(12)

1 *
/’]_]. = e‘i“"k"‘i”
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After all R rules have generated their scores, the rule with
the highest confidence score is selected based on the “winner
takes all” principle. This assigns the appropriate label to the
validation data sample.

5. EXPERIMENTAL STUDY

The algorithm was developed using Keras with TensorFlow
as the backend within PyCharm Community Edition. To
conduct model training and testing, we have used a system
equipped with an Intel(R) Core (TM) i7-11800H CPU
(2.30GHz), a RAM of 16GB RAM, and an NVIDIA GeForce
RTX 3060 GPU. The setup ran on a 64-bit Windows 11 Pro
operating system.

5.1 Used datasets

In retinal ophthalmology field, some key public and private
accessible image datasets are often used to evaluate the
effectiveness of different proposed algorithms. These datasets
cover various retinal conditions, including diabetic
retinopathy (DR).

Notably, three major datasets-MESSIDOR, APTOS, and
IDRID-are discussed in the following subsections. Figure 4
illustrates the difference between the data distribution in these
datasets.

5.1.1 MESSIDOR

The MESSIDOR dataset contains 1,200 color fundus
images in TIFF format. Initially created for assessing retinal
lesion segmentation algorithms, it includes detailed
annotations with diabetic retinopathy (DR) grades assigned to
each image [43]. As depicted in Figure 4(a), the images are
divided into four classification categories. This dataset is
among the largest available and plays a crucial role in
advancing computer-assisted diagnosis (CAD) systems for
DR.

5.1.2 APTOS

The APTOS dataset is collected by the Indian Aravind Eye
Hospital in collaboration with the Asia pacific tele-
ophthalmology society (APTOS). It contains 3,662 retinal
images captured using various cameras in different
resolutions. It involves five classification levels (see Figure
4(b)). However, the only publicly accessible labels are the
ground-truth labels. There is a notable class imbalance, with
1,805 normal retina images against 183 images that show
severe non-proliferative diabetic retinopathy (NPDR) [44].
Because of the variations in imaging equipment and settings
across different centers, the dataset reflects real-world
inconsistencies.

Output Class Distribution MESSIDOR
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(a) MESSIDOR dataset
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Figure 4. Difference between MESSIDOR, APTOS-2019
and IDRID datasets in terms of data distribution

5.1.3 IDRID

The Indian diabetic retinopathy image dataset (IDRID) is a
key resource for diabetic retinopathy research, offering 516
high-resolution retinal fundus images from diabetic patients.
These images are divided into training and testing sets and
come with detailed annotations indicating diabetic retinopathy
(DR) severity levels and specific lesions such as
microaneurysms, hemorrhages, soft exudates, and hard
exudates. IDRID dataset involves five classification levels
(see Figure 4(c)).

Captured with high-resolution fundus cameras, the IDRID
images mirror the diversity and variability found in clinical
practice, making the dataset especially valuable for creating
robust models. It supports a range of applications, including
DR classification, fine-grained grading, lesion detection, and
segmentation, proving essential resource for the development
and testing of machine learning algorithms.

Recognized and widely used in the research community, the
IDRID dataset is crucial for advancing computer-assisted
diagnosis (CAD) systems, which are vital for the early
detection and treatment of diabetic retinopathy. Its public
availability ensures global access, encouraging collaboration
and speeding up progress in the field.

In summary, the comprehensive annotations and high-
quality images provided by the IDRID dataset are vital for
enhancing the accuracy and reliability of automated DR
detection and assessment systems, establishing it as a
fundamental resource in diabetic retinopathy research.

The MESSIDOR, APTOS, and IDRID datasets serve as
essential resources for both research and and development in
the domain of retinal ophthalmology. Indeed, these datasets
enable a comprehensive evaluation and benchmarking of
algorithms for detecting and classifying retinal diseases like
diabetic retinopathy (DR), especially, in presence of well-
annotated data and established ground-truth. They play a vital
role in fostering advancements in Computer-Aided Diagnosis
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(CAD) systems and Al-driven solutions in ophthalmology.
5.2 Performance evaluation metrics

Given that TP (resp. FP) indicates the number of positive
samples correctly predicted (resp. incorrectly predicted) and
TN (resp. FN) indicates the number of negative samples
correctly predicted (resp. incorrectly predicted), in his paper,
we use the following main performance evaluation metrics:

5.2.1 Accuracy
Accuracy is calculated as the ratio of the number of samples
that are correctly predicted to the total number of samples (see

Eq. (13)).

TP+TN
TP+TN+FP+FN

Accuracy = (13)

5.2.2 Precision

Precision measures the proportion of true positive
predictions (correct positive predictions) out of all positive
predictions made by the model. It is calculated by Eq. (14):

TP

Precision = ————
TP+ FP

(14)

5.2.3 Recall (Sensitivity)

Recall, also known as sensitivity or true positive rate,
measures the proportion of true positive predictions that are
correctly identified by the model. It is calculated by Eq. (15):

P

Recall = ———
TP+FN

(15)

5.2.4 F1-Score
The F1-score is the harmonic mean of precision and recall,

providing a single metric that balances both measures. It is
calculated by Eq. (16):

Precisionx Recall
Precision + Recall

F1-score=2x

(16)

5.2.5 Cohen’s kappa coefficient (k)

Cohen’s kappa coefficient (k) is a statistical metric used to
evaluate inter-rater and intra-rater reliability [45]. Unlike a
simple agreement calculation, it provides a more reliable
measure by accounting for the likelihood of agreement
occurring by chance. Cohen’s kappa is mathematically
represented in Eq. (17):

K= P — Pe

— _l_l_ pO
1- pc

- 1- pc

(17)

where p, denotes the observed agreement and p. represents
the expected agreement. Essentially, this metric indicates how
much better a classifier performs compared to random
guessing based on class distribution. The formula can also be
derived from the confusion matrix, as shown in Eq. (18):

2x(TPxTN —FN xFP)
(TP+FP)x(FP+TN)+(TP+FN)x(FN +TN)

(18)



In this paper, we use multiple metrics, including sensitivity
(Precision), specificity (Recall), accuracy (ACC), F1-score
(F1), and the area under the ROC curve (AUCROC) multiple
metrics, to evaluate classification performance.

To highlight the effectiveness of the ALMMo-0
methodology, we compared it with a diverse set of well-known
machine learning and deep learning algorithms. These include
traditional machine learning models: gaussian naive bayes
(GNB), support vector machine (SVM), K-Nearest Neighbors
(KNN), random forest (RF), extra trees (ET), and logistic
regression (LR). Additionally, we evaluated deep learning
approaches such as deep neural networks (DNN),
convolutional neural networks (CNN), and long short-term
memory (LSTM) networks. The classification results obtained
from these models are detailed in Tables 2-13 and visually
represented in Figures 5-10.
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Receiver Operating Characteristic (ROC) Curve for Multi-class Classification
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5.3 Results for MESSIDOR-2 dataset

The ALMOO-0 model was trained on the MESSIDOR-2
dataset, achieving outstanding performance across all
evaluated metrics. As shown in Table 5, ALMOO-0 reached
average scores of 98% for precision, 88% for recall, 87% for
F1-score, 87% for accuracy, 88% for ROC-AUC, and 82% for
Cohen’s k.

Among the evaluated models, the KNN algorithm delivered
the second-best overall performance, with 95% precision, 95%
recall, 95% accuracy, and a ROC-AUC of 89%. Tree-based
ensemble methods such as RF and ET also performed strongly,
each scoring 94% in precision, recall, accuracy, and F1-score,
along with a ROC-AUC of 98%. In contrast, traditional
algorithms like GB and SVM achieved notably lower results,
with average precision values of 63% and 45%, respectively.

The ALMOO-0 model demonstrated excellent precision
across all DR categories (Table 2), with particularly high



values for Severe DR (0.93) and None (0.89). Its Fl-scores
(Table 3) were also consistently high, achieving 0.92 for None
and 0.86 for Mild DR, and an overall average of 0.88. For

recall (Table 4), ALMOO-0 maintained balanced sensitivity
across all classes, with 0.95 for None and 0.95 for Mild DR.

Table 2. Precision of the different classification algorithms with MESSIDOR-2 dataset

Precision
Qurs GB SVM RF KNN LR ET DNN CNN LSTM
None 0.89 0.81 0.53 0.90 0.95 0.61 0.91 0.61 0.84 0.53
Mild DR 0.79 0.20 0.00 1.00 0.91 0.29 1.00 1.00 0.83 0.00
Moderate DR 0.86 0.43 0.00 0.95 0.92 0.47 0.96 0.75 0.62 0.00
Severe DR 0.93 0.66 0.73 0.98 0.97 0.66 0.95 0.76 1.00 0.82
Avg 0.88 0.63 0.41 0.94 0.95 0.56 0.94 0.72 0.83 0.42
Table 3. F1-score of the different classification algorithms with MESSIDOR-2 dataset
F1-Score
Qurs GB SVM RF KNN LR ET DNN CNN LSTM
None 0.92 0.37 0.68 0.94 0.95 0.71 0.95 0.74 0.86 0.69
Mild DR 0.86 0.32 0.00 0.92 0.92 0.06 0.92 0.04 0.81 0.00
Moderate DR 0.83 0.37 0.00 0.92 0.93 0.37 0.92 0.51 0.72 0.00
Severe DR 0.86 0.31 0.61 0.94 0.96 0.61 0.93 0.73 0.78 0.68
Avg 0.88 0.40 0.45 0.94 0.95 0.45 0.94 0.60 0.80 0.47
Table 4. Recall of the different classification algorithms with MESSIDOR-2 dataset
Recall
Qurs GB SVM RF KNN LR ET DNN CNN LSTM
None 0.95 0.24 0.96 0.99 0.95 0.85 0.99 0.92 0.87 0.98
Mild DR 0.95 0.93 0.00 0.86 0.93 0.04 0.86 0.02 0.79 0.00
Moderate DR 0.79 0.32 0.00 0.90 0.94 0.31 0.89 0.39 0.84 0.00
Severe DR 0.80 0.41 0.52 0.91 0.94 0.63 0.92 0.70 0.63 0.58
Avg 0.88 0.38 0.56 0.94 0.95 0.60 0.94 0.66 0.80 0.58
Table 5. Performance of the different classification algorithms with MESSIDOR-2 dataset
All Metrics
Precision Recall ACC F1-score ROC K
KNN 0.95 0.95 0.95 0.95 0.89 0.92
GB 0.63 0.38 0.38 0.40 0.71 0.23
ET 0.94 0.94 0.94 0.94 0.98 0.90
RF 0.94 0.94 0.94 0.94 0.98 0.90
SVM 0.45 0.56 0.56 0.45 0.79 0.24
LR 0.55 0.60 0.60 0.55 0.80 0.36
CNN 0.83 0.80 0.80 0.80 0.95 0.71
DNN 0.72 0.66 0.65 0.60 0.84 0.44
LSTM 0.42 0.58 0.57 0.47 0.70 0.27
QOurs 0.98 0.88 0.87 0.87 0.88 0.82

5.4 Results for IDRID dataset

The ALMMo-0 model was rigorously trained on the IDRID
dataset, leading to exceptional evaluation results. As detailed
in Table 9, the model achieved outstanding performance
metrics, with an average precision, recall, Fl-score, and
accuracy rate all reaching 99.7%. In addition to these metrics,
the ALMMo-0 model delivered remarkable results in terms of

the area under the curve (AUC), with an average AUC of
99.8%. The AUC values for individual classes are visually
represented in Figure 8, demonstrating excellent performance
across all categories. AUC values exceeded 95% for all
classes, highlighting the robustness of the proposed approach
in successfully detecting all classes of diabetic retinopathy
(DR).

Table 6. F1-score of the different classification algorithms with IDRID dataset

F1-score
Ours GB SVM RF KNN LR ET DNN CNN LSTM
No DR 0.98 0.58 0.92 0.99 1.00 0.94 0.99 0.94 0.86 0.82
Mild 0.89 0.28 0.07 0.94 0.97 0.48 0.94 0.52 0.81 0.00
Moderate 0.98 0.18 0.68 0.96 0.98 0.72 0.95 0.72 0.72 0.58
Severe 0.96 0.41 0.00 0.93 0.96 0.35 0.92 0.59 0.78 0.36
Proliferative DR 0,96 0.38 0.01 0.93 0.96 0.38 0.93 0.57 0.99 0.07
Avg 0.97 0.42 0.64 0.97 0.98 0.75 0.97 0.79 0.81 0.58
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Table 7. Precision of the different classification algorithms with IDRID dataset

Precision
ours GB SVM RF KNN LR ET DNN CNN LSTM
No DR 0.97 0.92 0.87 0.99 1.00 0.90 0.98 0.98 0.84 0.99
Mild 1.00 0.16 0.62 0.97 0.96 0.67 0.97 0.58 0.83 0.00
Moderate 0.99 0.70 0.55 0.93 0.98 0.64 0.93 0.64 0.62 0.42
Severe 0.93 0.38 0.00 0.98 0.97 0.74 0.97 0.60 1.00 0.42
Proliferative DR 1.00 0.36 1.00 0.98 0.96 0.55 0.97 0.67 0.99 0.75
Avg 0.97 0.70 0.72 0.97 0.98 0.77 0.97 0.80 0.83 0.69
Table 8. Recall of the different classification algorithms with IDRID dataset
Recall
Oours GB SVM RF KNN LR ET DNN CNN LSTM
No DR 1.00 0.43 0.98 1.00 0.99 0.98 0.99 0.90 0.87 0.70
Mild 0.80 0.88 0.04 0.92 0.98 0.38 0.91 0.47 0.79 0.00
Moderate 0.97 0.11 0.90 0.98 0.98 0.83 0.97 0.83 0.84 0.95
Severe 1.00 0.45 0.00 0.89 0.94 0.23 0.88 0.59 0.63 0.32
Proliferative DR 0.93 0.41 0.01 0.89 0.96 0.29 0.89 0.49 0.99 0.04
Avg 0.97 0.39 0.72 0.97 0.98 0.78 0.97 0.79 0.80 0.62
Table 9. Performance of the different classification algorithms with IDRID dataset
All metrics
Precision Recall ACC F1-Score ROC K
KNN 0.98 0.98 0.98 0.98 0.95 0.98
GB 0.50 0.39 0.39 0.42 0.51 0.54
ET 0.97 0.97 0.96 0.97 0.96 0.97
RF 0.97 0.97 0.97 0.97 0.96 0.97
SVM 0.72 0.72 0.72 0.64 0.70 0.73
LR 0.77 0.78 0.78 0.75 0.75 0.80
CNN 0.83 0.80 0.80 0.80 0.95 0.71
DNN 0.80 0.79 0.79 0.79 0.94 0.68
LSTM 0.69 0.62 0.61 0.58 0.86 0.42
Ours 0.98 0.96 0.97 0.97 0.99 0.96

5.5 Results for APTOS-2019 dataset

The APTOS (Asia Pacific Tele-Ophthalmology Society)
dataset is a significant resource used in the development of
machine learning models for detecting diabetic retinopathy
from retinal images. This dataset was created as part of a
Kaggle competition in 2019 and contains 3,662 high-

resolution fundus images, each annotated by medical experts
with one of five severity levels of diabetic retinopathy, ranging
from no retinopathy to proliferative diabetic retinopathy. The
APTOS dataset is particularly valuable due to its diversity in
image quality and variation in retinal conditions, which
provides a challenging environment for developing robust and
generalizable models.

Table 10. F1-score of the different classification algorithms with APTOS-2019 dataset

F1-Score
Ours GB SVM RF KNN LR ET DNN CNN LSTM
No DR 0.98 0.56 0.90 0.99 1.00 0.94 0.99 0.87 0.87 0.76
Mild 0.86 0.28 0.10 0.94 0.96 0.48 0.94 0.99 0.29 0.00
Moderate 0.92 0.18 0.70 0.96 0.98 0.72 0.95 0.81 0.81 0.58
Severe 0.82 0.41 0.00 0.93 0.95 0.35 0.92 0.81 0.72 0.30
Proliferative DR 0.85 0.40 0.10 0.93 0.96 0.38 0.93 0.69 0.77 0.00
Avg 0.93 0.42 0.64 0.91 0.98 0.75 0.97 0.79 0.80 0.49
Table 11. Precision of the different classification algorithms with APTOS-2019 dataset
Precision
Ours GB SVM RF KNN LR ET DNN CNN LSTM
No DR 0.98 0.92 0.87 0.99 1.00 0.90 0.98 0.83 0.98 0.73
Mild 0.86 0.16 0.62 0.97 0.96 0.67 0.97 1.00 0.67 0.00
Moderate 0.89 0.70 0.55 0.93 0.98 0.64 0.93 0.75 0.70 0.46
Severe 0.87 0.38 0.00 0.98 0.97 0.74 0.97 0.84 0.96 0.50
Proliferative DR 0.90 0.36 1.00 0.98 0.96 0.55 0.79 0.65 0.99 0.00
Avg 0.90 0.70 0.72 0.97 0.98 0.77 0.97 0.81 0.84 0.49
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Table 12. Recall of the different classification algorithms with APTOS-2019 dataset

Recall
Ours GB SVM RF KNN LR ET DNN CNN LSTM
No DR 0.98 0.43 0.98 1.00 0.99 0.98 0.99 0.91 0.78 0.79
Mild 0.86 0.88 0.04 0.92 0.98 0.38 0.91 0.17 0.67 0.00
Moderate 0.95 0.11 0.90 0.98 0.98 0.83 0.97 0.87 0.96 0.78
Severe 0.77 0.45 0.00 0.89 0.94 0.23 0.88 0.79 0.57 0.21
Proliferative DR 0.88 0.41 0.01 0.89 0.96 0.61 0.89 0.94 0.99 0.00
Avg 0.93 0.39 0.72 0.97 0.98 0.78 0.97 0.80 0.80 0.55
Table 13. Performance of the different classification algorithms with APTOS-2019 dataset
All Metrics
Precision Recall ACC F1-score ROC K
KNN 0.98 0.98 0.98 0.98 0.95 0.98
GB 0.50 0.39 0.39 0.42 0.51 0.54
ET 0.97 0.97 0.96 0.97 0.96 0.97
RF 0.97 0.97 0.97 0.97 0.96 0.97
SVM 0.72 0.72 0.72 0.64 0.70 0.73
LR 0.77 0.78 0.78 0.75 0.75 0.80
CNN 0.84 0.80 0.79 0.80 0.97 0.72
DNN 0.81 0.80 0.81 0.79 0.97 0.72
LSTM 0.49 0.55 0.54 0.49 0.81 0.53
Ours 0.93 0.92 0.93 0.93 0.93 0.89

Researchers and developers use the APTOS dataset to train
and evaluate deep learning algorithms, aiming to improve the
accuracy and reliability of automated diabetic retinopathy
screening tools. Given the global burden of diabetic
retinopathy as a leading cause of blindness, datasets like
APTOS play a crucial role in advancing telemedicine and Al-
driven healthcare solutions, enabling earlier detection and
treatment of this preventable condition.

5.6 Ablation study

To evaluate the impact of the proposed method on the
pipeline, an ablation study was conducted. Table 14 presents
the results for key components, including resizing (RS),
CLAHE preprocessing (CL), and data augmentation (DA),
highlighting their individual contributions to overall
performance.

Table 14. Ablation study of individual contributions to the overall performance on the three datasets

MESSIDOR-2 APTOS-2019 IDRID
Pipeline Acc CK Pipeline Acc CK Pipeline Acc CK
RS+ALMMo-0 0.37 0.11 RS+ALMMo-0 0.61 0.43 RS+ALMMo-0 0.30 0.07
RS+CL+ALMMo-0 0.41 0.17 RS+CL+ALMMo-0 0.71 0.53 RS+CL+ALMMo-0 0.42 0.19
RS+CL+D13+ALMMO- 087 082 RS+CL+D13+ALMMO- 0.93 0.89 RS+CL+D13+ALMMO- 097 096

The results demonstrate that resizing the images is a critical
first step, providing the foundation for subsequent
improvements. The inclusion of CLAHE preprocessing
significantly boosts accuracy, and its combination with data
augmentation creates the most effective pipeline. Specifically,
the combination of resizing, preprocessing, and data
augmentation yields the best performance, underscoring the
importance of these components working in harmony. The
addition of CLAHE preprocessing alone improves accuracy,
while the integration of data augmentation further enhances
performance, reinforcing the effectiveness of the combined
approach. These findings highlight the complementary nature
of preprocessing and augmentation techniques in optimizing
the overall performance of the method.

5.7 Comparison of results

Table 15 compares our results with the best-reported
accuracies from the studies summarized in Table 1. The
comparison is divided into three datasets: MESSIDOR-2,
APTOS-2019, and IDRID. For each dataset, our accuracy is
compared against the accuracies reported in the literature,

along with the model used to achieve that performance.

* MESSIDOR-2 Dataset. The obtained accuracy (0.87%)
on the MESSIDOR-2 dataset is slightly lower than the 91.9%
accuracy achieved by Jena et al. [19] using asymmetric deep
learning features.

e APTOS-2019 Dataset. On the APTOS-2019 dataset, our
accuracy of 0.93% is competitive but falls short of the state-
of-the-art results. For instance, Mecili et al. [11] achieved
99.7% accuracy using the XDNN model, and Ainapur et al.
[14] reported 99.63% accuracy using Vision Transformers.
These results indicate that incorporating advanced
architectures like xDNN or Vision Transformers could
significantly improve our model’s performance.

¢ IDRID Dataset. Our accuracy of 0.97% on the IDRID
dataset is an excellent result. However, since none of the
studies in Table 1 report results on IDRID, it is difficult to
contextualize our performance against existing work. This
result could serve as a benchmark for future studies on this
dataset.

Although the proposed ALMMo-0-based model
demonstrates strong overall performance, some evaluation
metrics are slightly lower than those achieved by certain

2264



traditional ensemble methods. This difference reflects the
model’s design philosophy, which prioritizes explainability
and generalization rather than solely optimizing predictive
accuracy. While ensemble techniques often function as black-
box systems with limited interpretability, the ALMMo-0
classifier integrates fuzzy rule-based reasoning with deep
feature representations extracted from VGG16 and ResNet50,

enabling transparent and interpretable decision-making. This
balance between accuracy and interpretability is particularly
important in medical diagnosis, where understanding the
rationale behind predictions is as critical as the performance
itself. Furthermore, the proposed approach shows stable and
reliable behavior across various datasets, confirming its
robustness and clinical relevance.

Table 15. Comparison of our results with the main related works

Reference Method/Model Accuracy
Mecili et al. [11] xDNN model 99.7% (APTOS-2019)
Thanikachalam et al. [13] CNN + Adaptive g)arté(;:sFllters + Random 98%
Ainapur and Patil [14] Attention mechanisms + Vision Transformers 99.63%
Jena et al. [19] Asymmetric deep learning features 98.6% (APTOS-2019), 91.9% (MESSIDOR)
Nur-A-Alam et al. [20] Feature fusion for classification 95.75%
Incir and Bozkurt [21] K-Means + EfficientNetV2-M 95.16%
Omer [22] Bilayered neural network (DREAM) 98.5%
Akhtar et al. [23] Transfer learning for binary classification 97.82% (APTOS-2019)
Costaner et al. [25] LBP + Wavelet transform + SVM 95.59%

Ours Almoo-0

0.87% (MESSIDOR-2), 0.93% (APTOS-2019),
0.97% (IDRID)

On MESSIDOR-2 Our result of 0.87% accuracy is slightly
lower than the 91.9% accuracy reported using asymmetric
deep learning features. On APTOS-2019 Our result of 0.93%
is competitive but falls short of the top-performing models like
xDNN 99.7% and Vision Transformers 99.63%. Finally, on
IDRID Our result 0.97% is excellent, but no direct
comparisons are available in the table.

6. CONCLUSION

This research paper introduces a novel method for efficient
diabetic retinopathy detection using the Adaptive learning
multimodal optimization-oriented (ALMMo-0) model. Unlike
traditional deep learning techniques, this approach offers a
transparent and interpretable internal architecture. The
ALMMo-0 model not only ensures excellent accuracy, but
also significantly improves training efficiency and
explainability.

Training Efficiency. One of the key advantages of the
ALMMo-0 model is its efficiency in terms of computational
resources and training time. Unlike conventional deep learning
methods that often require powerful GPUs and extended
training periods, ALMMo-0 operates effectively with minimal
computational demands.

Prototype-Based Architecture. The ALMMo-0 architecture
is built on a prototype-based framework, leveraging real
training data samples that correspond to local maxima in the
data distribution. The resulting prototypes capture
characteristic data points and density patterns, serving as the
foundation for a generative model expressed in a closed-form
solution. As a result, the model operates without requiring user
defined thresholds, parameters, or manual tuning, making it
fully data-driven and systematically derived from the training
set.

Harmonized Learning and Reasoning. ALMMo-0 combines
learning and reasoning in a non-parametric, non-iterative and
cohesive approach, improving both efficiency and
interpretability. This approach provides a clear and
understandable classifier that is easily interpretable by human
users.
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Outstanding Performance. Our empirical findings indicate
that the ALMMo-0 model outperforms leading deep learning
models, such as VGG-VD-16, in terms of training efficiency,
accuracy a well as clarity of its decision-making process.

While the results of our study are promising, we recognize
certain limitations that must be addressed to broaden the
model’s applicability. The datasets used, such as MESSIDOR-
2, APTOS-2019, and IDRID, may not fully represent the
geographic and demographic diversity required for global
generalizability. Despite careful preprocessing, image quality
variability remains an issue, and the datasets are primarily
focused on diabetic retinopathy and related conditions.
Additionally, the model’s interpretability for clinicians,
particularly in fast-paced clinical environments, requires
further validation.

To overcome these challenges, future research will focus on
acquiring more diverse datasets that encompass a broader
range of demographics and retinal conditions. We will also
explore advanced preprocessing and augmentation techniques,
along with adaptive learning strategies, to enhance the model’s
robustness. Pilot studies in various clinical settings will be
conducted to validate the model’s performance and gather
feedback for improving its integration into healthcare systems.
Developing more intuitive explanation interfaces and
interactive training modules for clinicians will be crucial for
ensuring the model’s practical utility.

Our assumptions regarding the effectiveness of
preprocessing techniques, the representativeness of the
datasets, and the clinical relevance of the model’s explanations
require further empirical validation. Future research will
explore adaptive learning methods for minimal intervention
updates and develop advanced monitoring tools for deeper
performance insights. By addressing these limitations and
pursuing these future directions, we aim to create a
comprehensive and reliable model suitable for diverse clinical
applications.

In future work, we aim to enhance the generalizability and
clinical reliability of our approach through two main
directions. First, we will integrate datasets from diverse
geographic and clinical sources—or collect new ones—to
reduce dataset bias and better represent global retinal



variations. Second, we plan to collaborate with medical
professionals to validate the system’s explainability by
extracting and visualizing the fuzzy rules triggered during
each diagnostic decision. This will provide clinicians with
transparent insights into the model’s reasoning, supporting the
development of a more interpretable and trustworthy
diagnostic support system.
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