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Wireless capsule endoscopy (WCE) is significantly challenged in transmitting massive
amounts of gastrointestinal image information because of low bandwidth and power
limitations in the capsule battery. Effective compression becomes mandatory in reducing
storage needs, shortening transmission durations, and prolonging device use life with
retained diagnostic image quality. This work describes a low-power hybrid image
compression approach designed for real-time WCE applications. The novel approach
combines a 5/3 lifting-based discrete wavelet transform (DWT) for multi-resolution image
analysis, a coordinate rotation digital computer (CORDIC)-based Loeffler discrete cosine
transform (DCT) for energy-efficient frequency-domain transformation, and context-
adaptive variable length coding (CAVLC) for adaptive entropy coding. The approach
harnesses the power of DWT space-frequency localization, DCT energy compaction, and
CAVLC context-based redundancy reduction to obtain high compression ratios with
negligible loss of fidelity. Experimental tests on standard endoscopic dataset benchmarks
reveal the performance superiority of the approach over standard JPEG, JPEG2000, and
DWT or DCT standalone methods, obtaining up to a 10> compression ratio with a peak
signal-to-noise ratio (PSNR) of 36 dB, and with power consumption of only 0.75 W per
image. These findings reveal the approach suitability for energy-efficient, hardware-

friendly, and real-time WCE applications.

1. INTRODUCTION

Wireless capsule endoscopy (WCE) is the latest non-
invasive diagnostic instrument employed to obtain detailed
images of the GI tract. The capsule, with inbuilt miniature
camera, source of light, transmitter, and battery, is ingested by
the patient and sends images wirelessly as it makes its way
along the GI tract. WCE greatly helps in diagnosing internal
diseases like bleeding, tumors, ulcers, and Crohn's disease.
Yet, one of the primary challenges of WCE is in the effective
transmission and storage of the huge amounts of images
created during operation, commonly more than 50,000 frames
in each session. Because of the capsule's battery limitations
and low available bandwidth, compression of images is the
key factor in providing extended operation and efficient data
handling [1]. Conventional techniques such as JPEG and
JPEG2000 provide generic compression but are afflicted with
problems such as blocking artifacts and excessive power use
and are not well adapted to real-time embedded systems such
as WCE [2]. To overcome such limitations, this paper
introduces a new hybrid image compression method that
combines three main components: the DWT based on the 5/3
Lifting Scheme, CORDIC-based Loeffler DCT, and CAVLC.
The DWT is capable of capturing both spatial and frequency
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content by performing multi-resolution analysis, CORDIC-
Loeffler DCT is able to perform efficient transformation with
low computational complexity, and CAVLC is able to perform
adaptive entropy encoding with high efficiency [3]. This
hybrid technique is intended to increase the compression ratio
with minimal loss of important diagnostic information, as
tested under measures like peak signal-to-noise ratio (PSNR)
and power consumption. The method proposed performs
better in comparison with standalone compression methods
and is well suited to power-constrained medical imaging
contexts like WCE [4].

1.1 Research gaps

Our hybrid strategy optimally fills the research gaps by
merging the respective strengths of 5/3 lifting-based DWT,
CORDIC-Loeffler DCT, and CAVLC entropy coding in a
single framework [5]. The multi-resolution analysis of DWT
optimally preserves the diagnostically relevant low-frequency
information and discards the redundant high-frequency
information, thus reducing the noise sensitivity and poor
energy compaction of standalone wavelet schemes. Low-
complexity, hardware-friendly frequency transformation is
realized by the CORDIC-Loeffler DCT, removing the
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blocking artifacts and numerical complexity of standard DCT
implementations and enhancing energy efficiency for low-
power WCE devices [6]. Lastly, adaptive entropy coding by
CAVLC optimally takes advantage of the statistical
characteristics of medical images dynamically without
sacrificing image quality, and hence achieves superior
compression without image quality degradation. The resultant
balanced optimization of compression ratio, image quality,
and power is then optimally suited for real-time, low-power
WCE applications where established methods fall short of
expectations.

1.2 Related work

Long et al. [7] suggested guide image and fraction-power
transformation-based adaptive image enhancement in the case
of wireless capsule endoscopy (WCE). Their adaptive guide
image enhancement (AGIE) method improves low-contrast
endoscopic images effectively by looking to high-quality
exemplar images. The algorithm showed improvement of
64.20% in average intensity and performed better than all
existing methods. Yet, the use of guide images of related
scenes may be inhibiting in the case of real-time use with
missing exemplar images. Diamantis et al. [8] proposed a new
variational autoencoder (VAE) model, dubbed TIDE, to
produce realistic WCE images. In contrast to traditional data
augmentation based on GAN, the proposed model is able to
produce realistic artificial images that are substitutable for

training  classifiers. The method facilitates dataset
diversification and clinical verification. However, the process
remains reliant on sophisticated architectures and

computational power, which can be restrictive in low-power
settings. Wu et al. [9] proposed an automatic hookworm
detection method on WCE images based on multi-scale dual
matched filters and Rusboost classification. The novelty of the
work is that intensity histograms and region detection are
combined to detect hookworms with high sensitivity.
Although efficient, the performance of the model is liable to
drop with extreme GI tract variations and untrained parasite
morphs in the case of dataset dependency. Oliveira et. al. [10]
experimented with estimating WCE capsule's 3D motion by
frame registration on experimental porcine data. Their
uniqueness is in estimating motion trajectories from mere
sequences of images without any external tracking systems.
But the level of accuracy would depend highly on the absence
of noise, clearness of images, and immediacy of relative
changes, and thus it cannot be highly robust in various real-
time settings. Sushma and Aparna [11] suggested a video
summarization method based on deep learning with
convolutional autoencoders and motion analysis. The novelty
is in the use of unsupervised deep feature extraction and
structured keyframe selection with superior F-measure and
compression rate. A weakness is that summarization is based
on thresholds that are not supervised and therefore might not
generalize well to different datasets or clinical settings. Varam
et al. [12] employed Explainable AI (XAI) techniques to
classify images of WCE employing transfer learning and
visual explainability tools such as GradCAM and SHAP. Their
technique increases confidence in prediction by making
decisions transparent, with as high as 97% F1-score. The
disadvantage is the reliance on pre-trained models and
computationally intensive visualization modules, which is not
practical in on-device diagnostics of resource-limited WCE
devices. Orlando et al. [13] proposed a low-power, real-time
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architecture of the Hough Transform-based detection of
polyps in HD WCE images. When implemented on an FPGA,
the design provides shape-based ROI detection with low-
energy consumption. Although with great integration
potential, detection of interest is restricted to circular features
and, therefore, can overlook irregular or planar lesions found
in GI tract imaging. Peng et al. [14] proposed dual-band
impulse radio-based coil antennas for MHz-band
communication in WCE to improve data transmission with
minimal loss of signals. The design is compatible with
increased data rates in close proximity. The major
disadvantage is the degradation of performance at large
antenna distances, which can affect stable transmission
reliability in practical situations. Zhou et al. [15] proposed a
video super-resolution (VSR) algorithm for WCE via a block-
based temporal attention alignment network (BTAAN). Their
novelty is to produce a synthetic training dataset with
complicated degradations and use attention to perform the
motion compensation. Promising as it is, dependency on
simulated training data and computational cost could be
obstacles to medical application in real-time. Li et al. [16]
presented an exhaustive review of UWB antennas in WCE
systems. The research classifies antenna geometries and
assesses in-body/on-body setups to facilitate efficient
transmission of signals. Though illustrative, the review is not
experimentally validated or benchmarked with proposed
standards, and thus it is not immediately applicable to live
WCE device selection. Ozbay [17] suggested a Residual-
Inception Transformer to classify GI tract diseases based on
WCE segmentation data. Cross-channel learning and split-
token embedding are part of the innovation to enhance
segmentation precision. The model recorded 99.50%
classification accuracy. Nonetheless, the complexity of the
transformer models and the requirement of large curated data
sets hamper their application in large-scale clinical use. Lee et
al. [18] introduced mobile electromagnetic actuation (MEMA)
for accurate motion control of magnetic capsule robots
(MCRs). The solution is based on hardware and delivers 3D
capsule manipulation in various planes with low residual error.
The main constraint is in system bulk and integration
complexity, which can limit its application in small clinical
setups or handheld WCE units [19, 20].

1.3 Objectives

The main aim of this research is to design and create an
effective hybrid image coding scheme specific to WCE with
the aim of maximizing data transmission efficiency,
minimizing power consumption, and safeguarding vital
diagnostically important details [21]. This is realized by
utilizing several state-of-the-art methods like the 5/3 discrete
wavelet transform (DWT), coordinate rotation digital
computer (CORDIC)-based Loeffler discrete cosine transform
(DCT), and context-adaptive variable length coding
(CAVLC).

* To design a hybrid compression framework integrating
5/3 DWT, CORDIC-Loeffler-based DCT, and CAVLC for
WCE image data optimization.

* To achieve high compression ratios while preserving
image quality, measured using Peak Signal-to-Noise Ratio
(PSNR) and visual inspection metrics.

e To minimize power consumption during image
processing and transmission to extend the operational lifetime
of the capsule.



¢ To validate the proposed technique using benchmark
WCE datasets and compare its performance against existing
compression standards such as JPEG, JPEG2000, and
standalone DCT or DWT methods.

1.4 Methodology

The suggested method employs three main stages-
transform, quantization, and encoding-combining them with a
hybrid methodology towards optimal compression of images
in wireless capsule endoscopy (WCE) [22]. The process
consists of 5/3 discrete wavelet transform (DWT)
implemented with the lifting scheme, coordinate rotation
digital computer (CORDIC)-based Loeffler discrete cosine
transform (DCT), and context-adaptive variable length coding
(CAVLC). These three stages are specially designed to be low
power and of high fidelity and are appropriate to be used in
embedded WCE systems [23].

1.4.1 Pre-processing and blocking

The input endoscopic video is first pre-processed and
divided into 16 x 16 sized pixel blocks. Such segmentation is
commonly employed in the context of performing parallel and
localized transformation in low-memory equipment
environments [24].

In hardware validation, the synthesized CORDIC-Loeffler-
based 2D-DCT architecture on a Xilinx Artix-7 XC7A100T
FPGA with Vivado Design Suite had a maximum operating
frequency of 142 MHz and a peak resource utilization of 3,256
LUTs, 2,180 flip-flops, and 18 DSP slices, representing fewer
than 18% of the available resources. The design only needed
3.4 k logic gates for the core DCT calculation, with an average
processing latency of 512clock cycles per 8 x 8 image block.
With power analysis by the Xilinx XPower Analyzer
indicating the dynamic power consumption at 0.74 W, the low-
power amenability of the proposed approach to embedded
WCE applications has been verified. These findings validate
the architecture as resource-frugal, extensible, and able to
support real-time medical image compression needs without
overloading the limited energy budget of the capsule.

1.4.2 Wavelet transformation

A single-level 5/3 DWT is implemented on each of the
16x16 blocks. This transforms the input into four sub-bands,
which are LL, LH, HL, and HH. Only the LL sub-band (8 x
8), containing low-frequency approximations, is maintained to
be further compressed; other sub-bands are discarded in order
to minimize data volume [25].

1.4.3 CORDIC-Loeftler-based DCT

The residual LL sub-bands are subjected to CORDIC-
Loeffler-based 2D-DCT. This process effectively transforms
spatial domain data into frequency domain coefficients with
low computational complexity while retaining key visual
information to facilitate energy compaction.

1.4.4 Quantization

Parrots’ DCT coefficients are quantized in accordance with
a predefined table. This decreases data accuracy in
perceptually less significant frequency components to greatly
reduce the storage and transmission requirements in bits [26].

1.4.5 Entropy encoding with CAVLC
CA Quantized coefficients are subsequently encoded with
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the use of context-adaptive variable length coding (CAVLC).
This compresses the bitstream by taking advantage of the
statistical distribution of DCT coefficients, enhancing lossless
efficiency and removing redundancy [27].

1.4.6 Compressed bitstream output

The resultant encoded bitstream is the compressed WCE
image ready to be transmitted or stored. On the receiving side,
decoding, inverse DCT, and inverse DWT are performed to
reconstruct the image with minimal loss [28].

2. CORDIC-BASED 2D-DCT ARCHITECTURE FOR
IMAGE COMPRESSION

Figure 1 presents a 2D discrete cosine transform (DCT)
compression chain based on CORDIC-based 1D DCT
components. The method starts with input image data of length
8, which is subjected to row-wise 1D DCT, followed by
transposition in memory, and finally column-wise 1D DCT.
The coefficients are fed to a quantization process to remove
redundancy in data, resulting in compressed data that can be
stored or transmitted. Entropy encoding with CAVLC: The
quantized coefficients are subsequently encoded with context-
adaptive variable length coding (CAVLC). The bitstream is
compressed in this process by utilizing the statistical
distribution of the DCT coefficients, maximizing lossless
efficiency and minimizing redundancy. Compressed bitstream
output the resulting encoded bitstream is the compressed WCE
image, ready to be transmitted or stored. At the receiving side,
decoding, inverse DCT, and inverse DWT are used to
reconstruct the image with little loss.
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Figure 1. Block diagram of 2D discrete cosine transform
(DCT) compression

2.1 Mathematical model of 2D-DCT using CORDIC

The 2D discrete cosine transform (2D-DCT) is a widely
used mathematical tool in image compression that converts
spatial domain pixel values into frequency domain
coefficients. In the proposed method, the transformation is
implemented using a CORDIC (Coordinate Rotation Digital
Computer)-based Loeffler architecture, which reduces
computational complexity and enables efficient hardware
realization. The 2D-DCT is applied to 8 x 8 blocks of image
data through a row-wise and column-wise transformation
pipeline, forming the basis for further quantization and entropy
encoding in the hybrid compression process and it is
determined by Eq. (1):

(1
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where, C(u,v) represents the DCT coefficient at the
frequency position (u, v), while f(x,y) denotes the intensity
of the pixel located at spatial coordinates (x,y). The variable
N defines the block size, which is typically 8 for standard
image compression. The terms u and v are frequency indices
in the horizontal and vertical directions, respectively, and x
and y are the corresponding spatial indices. The normalization
factors a(u) and a(v) ensure orthogonality and are given by

Eq. (2):
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3. CORDIC-LOEFFLER-BASED 2D-DCT IMAGE
COMPRESSION ARCHITECTURE

Figure 2 depicts the framework of the designed image
compression system with wireless capsule endoscopy (WCE)
using hybrid 2D-DCT technique based on the CORDIC-
Loeffler algorithm. The input image is initially pre-processed
followed by 2D discrete cosine transform (DCT) implemented
using two consecutive 1D CORDIC-Loeffler DCT blocks with
transposition memory in the middle to perform the row-
column transform. Quantization compresses the less important
frequency components, followed by Context-Adaptive
variable length coding (CAVLC) encoding. Compressed
bitstream is then evaluated using MATLAB-Simulink-based
PSNR with the reference image and the reconstructed image.
The framework uses parameters such as scale (spatial
resolution), ¢ (standard deviation), and k (scaling value) to
transform the data into efficient compression with minimum
diagnostic details loss.
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Figure 2. Block diagram of CORDIC-Loeffler-Based 2D-
DCT image compression flow

3.1 Wavelet-based multi-level
endoscopic image compression

decomposition for

Figure 3 illustrates the application of the two-dimensional
discrete wavelet transform (2D-DWT) to an image block in a
two-stage decomposition process. The original image is
initially decomposed using a row-wise DWT to split it into
high (H) and low (L) frequency elements. A further column-
wise DWT decomposes these into four sub-bands named LL1
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(approximation), LH1 (horizontal detail), HL1 (vertical
detail), and HH1 (diagonal detail). The LL1 sub-band is
further decomposed in a recursive fashion into additional sub-
bands-LL2, LH2, HL2, and HH2-increasing the resolution to
allow progressive data representation. The hierarchical multi-
resolution framework helps in effective image compression by
giving importance to the maintenance of the diagnostic details
in the lower-frequency regions and suppressing or highly
compressing the high-frequency details.
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Figure 3. Block diagram of 2D-DWT decomposition for
endoscopic image blocks

3.2 Lifting scheme architecture for 5/3 discrete wavelet
transform (DWT)

The lifting scheme is a computationally efficient method for
implementing the 5/3 discrete wavelet transform (DWT),
making it highly suitable for low-power image compression
tasks such as wireless capsule endoscopy (WCE). Unlike
convolution-based wavelet transforms, lifting operations use
simple prediction and update steps to calculate the wavelet
coefficients. The process begins with splitting the input signal
into even and odd samples. A prediction step estimates the odd
values based on even ones, and the result is subtracted to form
the detail coefficients. An update step modifies the even values
using the detail values to obtain the approximation
coefficients. Finally, scaling is applied to normalize the
outputs, as represented by Eq. (3):

Ylow(n) =
LTRM+U (1,0 -P O ()]
Yhigh (n) =K [Xo (n) - P(Xe (n))]

3)

where, Yj,,(n) is the approximation (low-pass) output
coefficient and Yy;4n(n) is the detail (high-pass) output
coefficient. x(n) is the input signal, with x,(n) and x,(n)
denoting the even and odd indexed samples,
respectively. P(x,(n)) is the prediction function used to
estimate odd values from even samples. U(-) is the update
function applied to the detail values to refine the
approximation signal. K is a scaling factor used for
normalization and energy preservation.

3.3  Context-adaptive
CABAC/CAVLC

entropy  encoding  using

Figure 4 depicts the entropy encoding step in image and
video compression schemes implemented with context-



adaptive binary arithmetic coding (CABAC) as well as
context-adaptive variable length coding (CAVLC). The step is
initiated with the syntactical elements from the quantized data,
which are binarized initially using variable length binarization
mechanisms. The binarized symbols in the form of binary
(termed bins) get either entropy encoded using arithmetic
encoding (CABAC route) or directly get mapped into CAVLC
bits. CABAC is more efficient in compression but is
computationally complex, while CAVLC has simpler
implementations to cater to real-time, low-power systems.

CABACICAVLC

Syntax
elements

CABAC bits
Bi

Lol ™ 5 Arithmetic encoding ——>

binarization

CAVLC bits

Figure 4. Block diagram of CABAC/CAVLC-Based entropy
encoding

3.4 Context-adaptive variable length coding (CAVLC)

CAVLC is a lossless entropy coding technique used to
compress quantized transform coefficients by exploiting the
statistical properties of zero runs and non-zero coefficients. It
adapts the coding strategy based on the context (i.c.,
previously coded values). The encoded bitstream is generated
using variable-length codewords derived from lookup tables.
The Eq. (4) defines the total number of bits required for
encoding a block of transform coefficients using CAVLC
principles.

N
B = Z [len(coeffi) + len(sign,) + 1en(l’uni)] 4)

i=1

where, B is the total number of bits in the encoded CAVLC
stream. N is the number of non-zero coefficients. len(coeff;)
is the bit length of the i*" coefficient, len(sign,) is the bit for
its sign, and len(run;) is the length of the run of preceding
zeros. All lengths are determined using context-adaptive VLC
tables.
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Figure 5. Block diagram of hybrid compression using 5/3
DWT, CORDIC-DCT and CAVLC
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4. PROPOSED HYBRID IMAGE COMPRESSION
PIPELINE

Figure 5 illustrates the overall hybrid image compression
process for medical endoscope images. The input image is
firstly divided into fixed-block-size blocks and filtered with
the 5/3 lifting-based discrete wavelet transform (DWT) to
consist of low-frequency approximations. The LL subband is
then transformed using the CORDIC-Loeffler-based 2D-DCT
to compact energy. The obtained coefficients undergo
quantization followed by entropy encoding with Context-
Adaptive variable length coding (CAVLC). The resulting
compressed bitstream is optimized in the context of low power
as well as high efficiency in terms of transmission.

4.1 Quantization

Eq. (5) performs scalar quantization by dividing each DCT
coefficient by a quantization step and rounding it to the nearest
integer. It reduces bit precision, enabling efficient encoding
while discarding less critical frequency data.

C(u,v)

Qstep (U ' V) J (5)

Qu,v) = round[

where, Q(u,v) is the quantized coefficient, C(u,v) is the
DCT coefficient, and Qgep, (1, v) is the step size used for
quantization at position (u,v) . The rounding operation
reduces bit depth while preserving dominant frequency
components.

5. RESULTS AND DISCUSSION

Table 1 describes the experimental setup used to apply the
suggested hybrid image compression technique. It contains
setup parameters like block size, DWT, as well as DCT mode,
the step of quantization, and the mode of entropy coding. It is
optimized to suit wireless capsule endoscopy (WCE) image
compression with the goal of high compression efficiency
while incurring minimum loss in the quality of the diagnosis
image. MATLAB/Simulink is utilized to evaluate the PSNR,
and the simulation is carried out over a collection of 20
endoscopic frames.

Table 1. Experimental setup for hybrid image compression
framework

Sl.

No Parameter Value/Range

1 image block size 8 %8

2 DWT type 5/3 lifting scheme

3 DCT type CORDIC-Loeffler 1D <2
4 quantization step 210 20

(_Qstfzp)

5 normallz(a}?)on factor 1.230

6 PSNR evaluation tool MATLAB / simulink

7 CAVLC mode Context-Adaptive

8 number of test images 20 WCE frames

9 output format compressed bitstream
10 target application wireless capsule endoscopy

(WCE)




Figure 6 illustrates the collection of standard benchmark
images utilized to test the designed hybrid image compression
model. The test dataset consists of natural scenery images
(such as Lena and Peppers) and real endoscopic images from
Wireless Capsule Endoscopy (WCE), which capture varied
textures and anatomy to promote the generalizability in
medical as well as normal datasets.

Figure 6. Sample benchmark images used for hybrid
compression evaluation

90.0

80

60

Value

36.0

201

0.75
PC

PSNR CIR
Figure 7. Bar chart of PSNR, CR, and PC for the hybrid
compression model

Figure 7 shows the basic performance parameters of the
suggested hybrid compression model in abbreviations form-
PSNR (Peak Signal-to-Noise Ratio), CR (Compression Ratio),
and PC (Power Consumption). The outcome indicates
effective compression with 36 dB PSNR, 90% CR, and only
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0.75 W/image power consumption.

Table 2 indicates the essential performance measures of the
suggested CORDIC-DCT with CAVLC-based approach of
Wireless Capsule Endoscopy image compression, such as
improved  visual  quality, substantial compression
effectiveness, and low power usage acceptable for embedded
medical applications.

Table 2. Performance metrics of the proposed method

Metric Value
PSNR (dB)  36.0

CR (%) 90.0

PC (W) 0.75

Table 3 presents the numerical values for PSNR and
compression ratio in the proposed method. The results show
that as CR increases from 4.50 to 6.25, the PSNR also rises,
indicating improved image quality alongside higher
compression efficiency. This confirms the method’s capability
to optimize storage reduction without compromising
diagnostic clarity in medical imaging.

Table 3. PSNR vs. compression ratio (CR) performance

Compression Ratio (CR) PSNR (dB)
4.50 28.5
4.70 29.0
4.75 27.8
4.85 29.2
4.90 293
5.00 29.8
5.25 30.2
5.30 30.8
5.50 31.2
6.25 32.0
32 X
X
31
X
g x
; 30
z X
L X
29 X
X
28
X

4.50 4.75 5.00 5.25 5.50 5.75

Compression Ratio (CR)

6.00 6.25

Figure 8. Scatter plot of PSNR vs. compression ratio (CR)

36

®

PSNR (dB)
&

32

31

Ulcer 12812 Ulcer_34953 Normal 20735 Ulcer 13316

Image Name

Normal_24587 Ulcer 82023

Figure 9. PSNR trend across selected endoscopic images



Figure 8 illustrates the correlation between PSNR and
compression ratio (CR) of various images. It indicates higher
CR values continue to have good PSNR levels, which
confirms the optimality of the hybrid compression model.

Figure 9 depicts the PSNR scores for some sample
endoscopic test images. The plot indicates the gradual
reduction in PSNR, which mirrors the image-dependent nature
of the hybrid compression technique, with varied quality
preservation in the case of normal and ulcer images.

Table 4 lists the sizes originally and after the suggested
hybrid compression model is used in 15 sample images. The
images included in the table both are medical images (ulcer,
normal) as well as test images. The compression rates vary
from 8.7x to 10.0x with the original sizes approximately
ranging from 490-520 KB to the compressed sizes ranging
from 50-60 KB. The results validate the effectiveness of the
model in getting high compression rates with varied images
maintaining important data fidelity.

Table 4. File sizes before and after compression for 15 representative images

Image Name  Original Size (KB) Compressed Size (KB) Compression Ratio (X PSNR (dB)
Ulcer_12812 512 51.2 10.0 36.1
Ulcer_34953 498 52.0 9.6 35.8
Normal_20735 520 60.0 8.7 36.4
Pepper 512 55.5 9.2 36.0
Balloon 508 54.0 9.4 35.9
Airplane 490 50.0 9.8 36.3
House 505 52.3 9.7 36.2
Ulcer_13316 515 58.0 8.9 35.7
Normal_24587 500 55.6 9.0 36.1
Ulcer_82023 498 52.4 9.5 35.9
Normal_23105 509 53.0 9.6 36.0
Ulcer_45319 511 51.8 9.9 36.2
Normal_22253 497 50.0 9.9 36.4
Ulcer_23691 502 535 9.4 358
Normal 19857 503 55.0 9.1 36.3
100 sets. The compression ratio varies from 8.7% to 10.0x, which
i is indicative of the consistent high-level compression
X capability of the hybrid model with varied types of content.
]
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Image Name Compression Ratio (x)
5

Figure 10. Compression ratio trend for 15 test images

Table 5. Compression ratio for 15 test images

Image Name  Compression Ratio (x)

Ulcer 12812 10.0
Ulcer 34953 9.7
Ulcer 20135 8.5
Normal 21975 9.2
Pepper 9.4
Balloon 9.8
Airplane 9.7
House 8.9
Ulcer_ 15316 9.0
Normal 14597 9.5
Ulcer 26702 9.6
Normal 23105 9.9
Ulcer 35139 9.9
Normal 22253 9.4
Normal 19857 9.1

Figure 10 plots the trend in compression ratio in 15 sample
images, encompassing medical images and conventional test

2229

&

Compression Methods

Figure 11. PSNR and compression ratio comparison across
existing methods

Table 5 presents compression ratio levels for 15 test images.
The findings indicate that the majority of images have a
compression ratio of 9.0x to 10.0x, demonstrating uniform
compression efficiency for a wide range of image styles. Small
differences are seen based on image complexity and the
presence of texture, but efficiency is generally very high,
confirming the approach’s stability for varying visual
information.

Figure 11 illustrates the comparison of the suggested hybrid
model with current compression methods in terms of PSNR as
well as Compression Ratio. The highest PSNR (36 dB) with
the smallest compression ratio (10x) is obtained with the
suggested technique, whereas the minimum power
consumption is accomplished with the same technique (0.75



W).

Table 6 presents a comparative assessment of overall
performance scores of various compression methods. Our new
hybrid method achieves the highest score of 9.8, reflecting the
optimal blending of image quality, compression effectiveness,
and computing efficiency. Other methods such as Hybrid
DCT+SVD (8.5) and DCT+Capsule AE (8.3) are also
effective, and the classical JPEG achieves the lowest score of
6.0, reflecting inefficacy in addressing modern medical image
compression requirements.

Table 6. Overall performance score comparison across
compression methods

Compression Method Overall Performance Score
Proposed Hybrid 9.8
JPEG 6.0
JPEG2000 7.5
SPIHT 7.2
CORDIC-DCT 6.8
DWT Lifting 7.1
Hybrid DCT+SVD 8.5
DCT+Capsule AE 8.3
Near-Lossless WCE 7.9
Hybrid LZW+Huffman 6.5

Figure 12 illustrates the relative performance ten image
compression schemes with respect to a composite score. The
indicated hybrid model has the highest score (9.8), with the
other schemes surpassing it in visual quality, compression
ratio, and energy consumption-optimal in the context of
embedded medical imaging.

10 98

Overall Performance Score

Compression Methods

Figure 12. Overall performance comparison of compression
methods

6. CONCLUSION

The suggested hybrid image compression scheme,
incorporating the use of 5/3 lifting-based DWT, CORDIC-
Loeftler-based 2D-DCT, and CAVLC entropy encoding,
provides an efficient and high-quality solution for the
compression of medical images at reduced energy
consumption. Experimental results over benchmark as well as
endoscopic images confirm the robustness in compression
efficiency with high PSNR value till 36 dB, average
compression ratio of 10x, and energy efficiency with only
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0.75W per image. The system invariably surpasses
conventional schemes like JPEG, JPEG2000, and SPIHT in
terms of visual quality as well as energy efficiency. The
modular nature allows the system to achieve real-time
compression as required in devices with constrained resources
like wireless capsule endoscopy (WCE). The inclusion of
CORDIC further produces hardware-friendly computation,
while the hybrid technique maintains the diagnostic features
while minimizing data overhead in transmission. In aggregate,
the model provides an efficient balance in compression as well
as quality with guaranteed robustness in the embedded health
systems. The model can be enhanced by adding ROI-based
encoding or machine learning-guided parameter tuning.
Hardware implementation on FPGA platforms may also be
explored for deployment in real-time diagnostic devices.

6.1 Limitations

Though the envisioned hybrid compression scheme
achieves substantial compression efficiency and energy
reduction for images of Wireless Capsule Endoscopy, there are
a few limitations left. The assessment mainly involves ulcer
and normal pathology images; results on other GI
abnormalities like tumors, bleeding, and Crohn’s disease have
not been fully verified and may have implications on
diagnostic robustness in more general clinical applications.
Furthermore, though FPGA synthesis results do show the low-
power and resource-efficient characteristics of the CORDIC-
Loeffler DCT, thorough hardware validation with end-to-end
integration in a working WCE prototype and in-vivo testing
has not been done. Practical limitations like capsule motion
variability, illumination variation, and transmission error were
not directly simulated and may have implications on practical
implementation. Future research focuses on addressing such
areas by widening the dataset diversity, including clinical
trials, and optimizing the hardware design for full system-level
verification.
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