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Wireless capsule endoscopy (WCE) is significantly challenged in transmitting massive 

amounts of gastrointestinal image information because of low bandwidth and power 

limitations in the capsule battery. Effective compression becomes mandatory in reducing 

storage needs, shortening transmission durations, and prolonging device use life with 

retained diagnostic image quality. This work describes a low-power hybrid image 

compression approach designed for real-time WCE applications. The novel approach 

combines a 5/3 lifting-based discrete wavelet transform (DWT) for multi-resolution image 

analysis, a coordinate rotation digital computer (CORDIC)-based Loeffler discrete cosine 

transform (DCT) for energy-efficient frequency-domain transformation, and context-

adaptive variable length coding (CAVLC) for adaptive entropy coding. The approach 

harnesses the power of DWT space-frequency localization, DCT energy compaction, and 

CAVLC context-based redundancy reduction to obtain high compression ratios with 

negligible loss of fidelity. Experimental tests on standard endoscopic dataset benchmarks 

reveal the performance superiority of the approach over standard JPEG, JPEG2000, and 

DWT or DCT standalone methods, obtaining up to a 10× compression ratio with a peak 

signal-to-noise ratio (PSNR) of 36 dB, and with power consumption of only 0.75 W per 

image. These findings reveal the approach suitability for energy-efficient, hardware-

friendly, and real-time WCE applications.  
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1. INTRODUCTION

Wireless capsule endoscopy (WCE) is the latest non-

invasive diagnostic instrument employed to obtain detailed 

images of the GI tract. The capsule, with inbuilt miniature 

camera, source of light, transmitter, and battery, is ingested by 

the patient and sends images wirelessly as it makes its way 

along the GI tract. WCE greatly helps in diagnosing internal 

diseases like bleeding, tumors, ulcers, and Crohn's disease. 

Yet, one of the primary challenges of WCE is in the effective 

transmission and storage of the huge amounts of images 

created during operation, commonly more than 50,000 frames 

in each session. Because of the capsule's battery limitations 

and low available bandwidth, compression of images is the 

key factor in providing extended operation and efficient data 

handling [1]. Conventional techniques such as JPEG and 

JPEG2000 provide generic compression but are afflicted with 

problems such as blocking artifacts and excessive power use 

and are not well adapted to real-time embedded systems such 

as WCE [2]. To overcome such limitations, this paper 

introduces a new hybrid image compression method that 

combines three main components: the DWT based on the 5/3 

Lifting Scheme, CORDIC-based Loeffler DCT, and CAVLC. 

The DWT is capable of capturing both spatial and frequency 

content by performing multi-resolution analysis, CORDIC-

Loeffler DCT is able to perform efficient transformation with 

low computational complexity, and CAVLC is able to perform 

adaptive entropy encoding with high efficiency [3]. This 

hybrid technique is intended to increase the compression ratio 

with minimal loss of important diagnostic information, as 

tested under measures like peak signal-to-noise ratio (PSNR) 

and power consumption. The method proposed performs 

better in comparison with standalone compression methods 

and is well suited to power-constrained medical imaging 

contexts like WCE [4]. 

1.1 Research gaps 

Our hybrid strategy optimally fills the research gaps by 

merging the respective strengths of 5/3 lifting-based DWT, 

CORDIC-Loeffler DCT, and CAVLC entropy coding in a 

single framework [5]. The multi-resolution analysis of DWT 

optimally preserves the diagnostically relevant low-frequency 

information and discards the redundant high-frequency 

information, thus reducing the noise sensitivity and poor 

energy compaction of standalone wavelet schemes. Low-

complexity, hardware-friendly frequency transformation is 

realized by the CORDIC-Loeffler DCT, removing the 
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blocking artifacts and numerical complexity of standard DCT 

implementations and enhancing energy efficiency for low-

power WCE devices [6]. Lastly, adaptive entropy coding by 

CAVLC optimally takes advantage of the statistical 

characteristics of medical images dynamically without 

sacrificing image quality, and hence achieves superior 

compression without image quality degradation. The resultant 

balanced optimization of compression ratio, image quality, 

and power is then optimally suited for real-time, low-power 

WCE applications where established methods fall short of 

expectations. 

1.2 Related work 

Long et al. [7] suggested guide image and fraction-power 

transformation-based adaptive image enhancement in the case 

of wireless capsule endoscopy (WCE). Their adaptive guide 

image enhancement (AGIE) method improves low-contrast 

endoscopic images effectively by looking to high-quality 

exemplar images. The algorithm showed improvement of 

64.20% in average intensity and performed better than all 

existing methods. Yet, the use of guide images of related 

scenes may be inhibiting in the case of real-time use with 

missing exemplar images. Diamantis et al. [8] proposed a new 

variational autoencoder (VAE) model, dubbed TIDE, to 

produce realistic WCE images. In contrast to traditional data 

augmentation based on GAN, the proposed model is able to 

produce realistic artificial images that are substitutable for 

training classifiers. The method facilitates dataset 

diversification and clinical verification. However, the process 

remains reliant on sophisticated architectures and 

computational power, which can be restrictive in low-power 

settings. Wu et al. [9] proposed an automatic hookworm 

detection method on WCE images based on multi-scale dual 

matched filters and Rusboost classification. The novelty of the 

work is that intensity histograms and region detection are 

combined to detect hookworms with high sensitivity. 

Although efficient, the performance of the model is liable to 

drop with extreme GI tract variations and untrained parasite 

morphs in the case of dataset dependency. Oliveira et. al. [10] 

experimented with estimating WCE capsule's 3D motion by 

frame registration on experimental porcine data. Their 

uniqueness is in estimating motion trajectories from mere 

sequences of images without any external tracking systems. 

But the level of accuracy would depend highly on the absence 

of noise, clearness of images, and immediacy of relative 

changes, and thus it cannot be highly robust in various real-

time settings. Sushma and Aparna [11] suggested a video 

summarization method based on deep learning with 

convolutional autoencoders and motion analysis. The novelty 

is in the use of unsupervised deep feature extraction and 

structured keyframe selection with superior F-measure and 

compression rate. A weakness is that summarization is based 

on thresholds that are not supervised and therefore might not 

generalize well to different datasets or clinical settings. Varam 

et al. [12] employed Explainable AI (XAI) techniques to 

classify images of WCE employing transfer learning and 

visual explainability tools such as GradCAM and SHAP. Their 

technique increases confidence in prediction by making 

decisions transparent, with as high as 97% F1-score. The 

disadvantage is the reliance on pre-trained models and 

computationally intensive visualization modules, which is not 

practical in on-device diagnostics of resource-limited WCE 

devices. Orlando et al. [13] proposed a low-power, real-time 

architecture of the Hough Transform-based detection of 

polyps in HD WCE images. When implemented on an FPGA, 

the design provides shape-based ROI detection with low-

energy consumption. Although with great integration 

potential, detection of interest is restricted to circular features 

and, therefore, can overlook irregular or planar lesions found 

in GI tract imaging. Peng et al. [14] proposed dual-band 

impulse radio-based coil antennas for MHz-band 

communication in WCE to improve data transmission with 

minimal loss of signals. The design is compatible with 

increased data rates in close proximity. The major 

disadvantage is the degradation of performance at large 

antenna distances, which can affect stable transmission 

reliability in practical situations. Zhou et al. [15] proposed a 

video super-resolution (VSR) algorithm for WCE via a block-

based temporal attention alignment network (BTAAN). Their 

novelty is to produce a synthetic training dataset with 

complicated degradations and use attention to perform the 

motion compensation. Promising as it is, dependency on 

simulated training data and computational cost could be 

obstacles to medical application in real-time. Li et al. [16] 

presented an exhaustive review of UWB antennas in WCE 

systems. The research classifies antenna geometries and 

assesses in-body/on-body setups to facilitate efficient 

transmission of signals. Though illustrative, the review is not 

experimentally validated or benchmarked with proposed 

standards, and thus it is not immediately applicable to live 

WCE device selection. Özbay [17] suggested a Residual-

Inception Transformer to classify GI tract diseases based on 

WCE segmentation data. Cross-channel learning and split-

token embedding are part of the innovation to enhance 

segmentation precision. The model recorded 99.50% 

classification accuracy. Nonetheless, the complexity of the 

transformer models and the requirement of large curated data 

sets hamper their application in large-scale clinical use. Lee et 

al. [18] introduced mobile electromagnetic actuation (MEMA) 

for accurate motion control of magnetic capsule robots 

(MCRs). The solution is based on hardware and delivers 3D 

capsule manipulation in various planes with low residual error. 

The main constraint is in system bulk and integration 

complexity, which can limit its application in small clinical 

setups or handheld WCE units [19, 20]. 

1.3 Objectives 

The main aim of this research is to design and create an 

effective hybrid image coding scheme specific to WCE with 

the aim of maximizing data transmission efficiency, 

minimizing power consumption, and safeguarding vital 

diagnostically important details [21]. This is realized by 

utilizing several state-of-the-art methods like the 5/3 discrete 

wavelet transform (DWT), coordinate rotation digital 

computer (CORDIC)-based Loeffler discrete cosine transform 

(DCT), and context-adaptive variable length coding 

(CAVLC). 

 To design a hybrid compression framework integrating

5/3 DWT, CORDIC-Loeffler-based DCT, and CAVLC for 

WCE image data optimization. 

 To achieve high compression ratios while preserving

image quality, measured using Peak Signal-to-Noise Ratio 

(PSNR) and visual inspection metrics. 

 To minimize power consumption during image

processing and transmission to extend the operational lifetime 

of the capsule. 

2224



 To validate the proposed technique using benchmark

WCE datasets and compare its performance against existing 

compression standards such as JPEG, JPEG2000, and 

standalone DCT or DWT methods. 

1.4 Methodology 

The suggested method employs three main stages-

transform, quantization, and encoding-combining them with a 

hybrid methodology towards optimal compression of images 

in wireless capsule endoscopy (WCE) [22]. The process 

consists of 5/3 discrete wavelet transform (DWT) 

implemented with the lifting scheme, coordinate rotation 

digital computer (CORDIC)-based Loeffler discrete cosine 

transform (DCT), and context-adaptive variable length coding 

(CAVLC). These three stages are specially designed to be low 

power and of high fidelity and are appropriate to be used in 

embedded WCE systems [23]. 

1.4.1 Pre-processing and blocking 

The input endoscopic video is first pre-processed and 

divided into 16 × 16 sized pixel blocks. Such segmentation is 

commonly employed in the context of performing parallel and 

localized transformation in low-memory equipment 

environments [24].  

In hardware validation, the synthesized CORDIC-Loeffler-

based 2D-DCT architecture on a Xilinx Artix-7 XC7A100T 

FPGA with Vivado Design Suite had a maximum operating 

frequency of 142 MHz and a peak resource utilization of 3,256 

LUTs, 2,180 flip-flops, and 18 DSP slices, representing fewer 

than 18% of the available resources. The design only needed 

3.4 k logic gates for the core DCT calculation, with an average 

processing latency of 512clock cycles per 8 × 8 image block. 

With power analysis by the Xilinx XPower Analyzer 

indicating the dynamic power consumption at 0.74 W, the low-

power amenability of the proposed approach to embedded 

WCE applications has been verified. These findings validate 

the architecture as resource-frugal, extensible, and able to 

support real-time medical image compression needs without 

overloading the limited energy budget of the capsule. 

1.4.2 Wavelet transformation 

A single-level 5/3 DWT is implemented on each of the 

16×16 blocks. This transforms the input into four sub-bands, 

which are LL, LH, HL, and HH. Only the LL sub-band (8 × 

8), containing low-frequency approximations, is maintained to 

be further compressed; other sub-bands are discarded in order 

to minimize data volume [25].  

1.4.3 CORDIC-Loeffler-based DCT 

The residual LL sub-bands are subjected to CORDIC-

Loeffler-based 2D-DCT. This process effectively transforms 

spatial domain data into frequency domain coefficients with 

low computational complexity while retaining key visual 

information to facilitate energy compaction.  

1.4.4 Quantization 

Parrots’ DCT coefficients are quantized in accordance with 

a predefined table. This decreases data accuracy in 

perceptually less significant frequency components to greatly 

reduce the storage and transmission requirements in bits [26].  

1.4.5 Entropy encoding with CAVLC 

CA Quantized coefficients are subsequently encoded with 

the use of context-adaptive variable length coding (CAVLC). 

This compresses the bitstream by taking advantage of the 

statistical distribution of DCT coefficients, enhancing lossless 

efficiency and removing redundancy [27]. 

1.4.6 Compressed bitstream output 

The resultant encoded bitstream is the compressed WCE 

image ready to be transmitted or stored. On the receiving side, 

decoding, inverse DCT, and inverse DWT are performed to 

reconstruct the image with minimal loss [28]. 

2. CORDIC-BASED 2D-DCT ARCHITECTURE FOR

IMAGE COMPRESSION

Figure 1 presents a 2D discrete cosine transform (DCT) 

compression chain based on CORDIC-based 1D DCT 

components. The method starts with input image data of length 

8, which is subjected to row-wise 1D DCT, followed by 

transposition in memory, and finally column-wise 1D DCT. 

The coefficients are fed to a quantization process to remove 

redundancy in data, resulting in compressed data that can be 

stored or transmitted. Entropy encoding with CAVLC: The 

quantized coefficients are subsequently encoded with context-

adaptive variable length coding (CAVLC). The bitstream is 

compressed in this process by utilizing the statistical 

distribution of the DCT coefficients, maximizing lossless 

efficiency and minimizing redundancy. Compressed bitstream 

output the resulting encoded bitstream is the compressed WCE 

image, ready to be transmitted or stored. At the receiving side, 

decoding, inverse DCT, and inverse DWT are used to 

reconstruct the image with little loss. 

Figure 1. Block diagram of 2D discrete cosine transform 

(DCT) compression 

2.1 Mathematical model of 2D-DCT using CORDIC 

The 2D discrete cosine transform (2D-DCT) is a widely 

used mathematical tool in image compression that converts 

spatial domain pixel values into frequency domain 

coefficients. In the proposed method, the transformation is 

implemented using a CORDIC (Coordinate Rotation Digital 

Computer)-based Loeffler architecture, which reduces 

computational complexity and enables efficient hardware 

realization. The 2D-DCT is applied to 8 × 8 blocks of image 

data through a row-wise and column-wise transformation 

pipeline, forming the basis for further quantization and entropy 

encoding in the hybrid compression process and it is 

determined by Eq. (1):  

𝐶(𝑢, 𝑣) 

= 𝛼(𝑢)𝛼(𝑣)∑

𝑁−1

𝑥=0

∑  

𝑁−1

𝑦=0

𝑓(𝑥, 𝑦) 

cos⁡ [
𝜋(2𝑥 + 1)𝑢

2𝑁
] cos⁡ [

𝜋(2𝑦 + 1)𝑣

2𝑁
] 

(1) 
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where, 𝐶(𝑢, 𝑣)  represents the DCT coefficient at the 

frequency position (𝑢, 𝑣), while 𝑓(𝑥, 𝑦) denotes the intensity 

of the pixel located at spatial coordinates (𝑥, 𝑦). The variable 

𝑁  defines the block size, which is typically 8  for standard 

image compression. The terms 𝑢 and 𝑣 are frequency indices 

in the horizontal and vertical directions, respectively, and 𝑥 

and 𝑦 are the corresponding spatial indices. The normalization 

factors 𝛼(𝑢) and 𝛼(𝑣) ensure orthogonality and are given by 

Eq. (2): 

1
, if 0

( )
2

, if 0

k
N

k

k
N




=


= 




(2) 

3. CORDIC-LOEFFLER-BASED 2D-DCT IMAGE

COMPRESSION ARCHITECTURE

Figure 2 depicts the framework of the designed image 

compression system with wireless capsule endoscopy (WCE) 

using hybrid 2D-DCT technique based on the CORDIC-

Loeffler algorithm. The input image is initially pre-processed 

followed by 2D discrete cosine transform (DCT) implemented 

using two consecutive 1D CORDIC-Loeffler DCT blocks with 

transposition memory in the middle to perform the row-

column transform. Quantization compresses the less important 

frequency components, followed by Context-Adaptive 

variable length coding (CAVLC) encoding. Compressed 

bitstream is then evaluated using MATLAB-Simulink-based 

PSNR with the reference image and the reconstructed image. 

The framework uses parameters such as scale (spatial 

resolution), σ (standard deviation), and k (scaling value) to 

transform the data into efficient compression with minimum 

diagnostic details loss. 

Figure 2. Block diagram of CORDIC-Loeffler-Based 2D-

DCT image compression flow 

3.1 Wavelet-based multi-level decomposition for 

endoscopic image compression 

Figure 3 illustrates the application of the two-dimensional 

discrete wavelet transform (2D-DWT) to an image block in a 

two-stage decomposition process. The original image is 

initially decomposed using a row-wise DWT to split it into 

high (H) and low (L) frequency elements. A further column-

wise DWT decomposes these into four sub-bands named LL1 

(approximation), LH1 (horizontal detail), HL1 (vertical 

detail), and HH1 (diagonal detail). The LL1 sub-band is 

further decomposed in a recursive fashion into additional sub-

bands-LL2, LH2, HL2, and HH2-increasing the resolution to 

allow progressive data representation. The hierarchical multi-

resolution framework helps in effective image compression by 

giving importance to the maintenance of the diagnostic details 

in the lower-frequency regions and suppressing or highly 

compressing the high-frequency details. 

Figure 3. Block diagram of 2D-DWT decomposition for 

endoscopic image blocks 

3.2 Lifting scheme architecture for 5/3 discrete wavelet 

transform (DWT) 

The lifting scheme is a computationally efficient method for 

implementing the 5/3 discrete wavelet transform (DWT), 

making it highly suitable for low-power image compression 

tasks such as wireless capsule endoscopy (WCE). Unlike 

convolution-based wavelet transforms, lifting operations use 

simple prediction and update steps to calculate the wavelet 

coefficients. The process begins with splitting the input signal 

into even and odd samples. A prediction step estimates the odd 

values based on even ones, and the result is subtracted to form 

the detail coefficients. An update step modifies the even values 

using the detail values to obtain the approximation 

coefficients. Finally, scaling is applied to normalize the 

outputs, as represented by Eq. (3): 

( )

 

( )

1
( ) ( ) ( ( )) ,

( ) ( ) ( ( ))

low

e o e

high o e

Y n

x n U x n P x n
K

Y n K x n P x n

=

+ −  

= −

(3) 

where, 𝑌𝑙𝑜𝑤(𝑛)  is the approximation (low-pass) output

coefficient and 𝑌ℎ𝑖𝑔ℎ(𝑛)  is the detail (high-pass) output

coefficient. 𝑥(𝑛)  is the input signal, with 𝑥𝑒(𝑛)  and 𝑥𝑜(𝑛)
denoting the even and odd indexed samples, 

respectively. 𝑃(𝑥𝑒(𝑛))  is the prediction function used to

estimate odd values from even samples. 𝑈(⋅)  is the update 

function applied to the detail values to refine the 

approximation signal. 𝐾  is a scaling factor used for 

normalization and energy preservation. 

3.3 Context-adaptive entropy encoding using 

CABAC/CAVLC 

Figure 4 depicts the entropy encoding step in image and 

video compression schemes implemented with context-
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adaptive binary arithmetic coding (CABAC) as well as 

context-adaptive variable length coding (CAVLC). The step is 

initiated with the syntactical elements from the quantized data, 

which are binarized initially using variable length binarization 

mechanisms. The binarized symbols in the form of binary 

(termed bins) get either entropy encoded using arithmetic 

encoding (CABAC route) or directly get mapped into CAVLC 

bits. CABAC is more efficient in compression but is 

computationally complex, while CAVLC has simpler 

implementations to cater to real-time, low-power systems. 

Figure 4. Block diagram of CABAC/CAVLC-Based entropy 

encoding 

3.4 Context-adaptive variable length coding (CAVLC) 

CAVLC is a lossless entropy coding technique used to 

compress quantized transform coefficients by exploiting the 

statistical properties of zero runs and non-zero coefficients. It 

adapts the coding strategy based on the context (i.e., 

previously coded values). The encoded bitstream is generated 

using variable-length codewords derived from lookup tables. 

The Eq. (4) defines the total number of bits required for 

encoding a block of transform coefficients using CAVLC 

principles. 

𝐵 = ∑  

𝑁

𝑖=1

[len(coeff𝑖) + len(sign
𝑖
) + len(run𝑖)] (4) 

where, 𝐵 is the total number of bits in the encoded CAVLC 

stream. 𝑁 is the number of non-zero coefficients. len(coeff𝑖)
is the bit length of the 𝑖𝑡ℎ coefficient, len(sign

𝑖
) is the bit for

its sign, and len(run𝑖) is the length of the run of preceding

zeros. All lengths are determined using context-adaptive VLC 

tables. 

Figure 5. Block diagram of hybrid compression using 5/3 

DWT, CORDIC-DCT and CAVLC 

4. PROPOSED HYBRID IMAGE COMPRESSION

PIPELINE

Figure 5 illustrates the overall hybrid image compression 

process for medical endoscope images. The input image is 

firstly divided into fixed-block-size blocks and filtered with 

the 5/3 lifting-based discrete wavelet transform (DWT) to 

consist of low-frequency approximations. The LL subband is 

then transformed using the CORDIC-Loeffler-based 2D-DCT 

to compact energy. The obtained coefficients undergo 

quantization followed by entropy encoding with Context-

Adaptive variable length coding (CAVLC). The resulting 

compressed bitstream is optimized in the context of low power 

as well as high efficiency in terms of transmission. 

4.1 Quantization 

Eq. (5) performs scalar quantization by dividing each DCT 

coefficient by a quantization step and rounding it to the nearest 

integer. It reduces bit precision, enabling efficient encoding 

while discarding less critical frequency data. 

( , )
( , ) round

( , )step

C u v
Q u v

Q u v

 
=  

 
 

(5) 

where, 𝑄(𝑢, 𝑣)  is the quantized coefficient, 𝐶(𝑢, 𝑣)  is the 

DCT coefficient, and 𝑄𝑠𝑡𝑒𝑝(𝑢, 𝑣)  is the step size used for

quantization at position (𝑢, 𝑣) . The rounding operation 

reduces bit depth while preserving dominant frequency 

components. 

5. RESULTS AND DISCUSSION

Table 1 describes the experimental setup used to apply the 

suggested hybrid image compression technique. It contains 

setup parameters like block size, DWT, as well as DCT mode, 

the step of quantization, and the mode of entropy coding. It is 

optimized to suit wireless capsule endoscopy (WCE) image 

compression with the goal of high compression efficiency 

while incurring minimum loss in the quality of the diagnosis 

image. MATLAB/Simulink is utilized to evaluate the PSNR, 

and the simulation is carried out over a collection of 20 

endoscopic frames. 

Table 1. Experimental setup for hybrid image compression 

framework 

Sl. 

No. 
Parameter Value/Range 

1 image block size 8 × 8 

2 DWT type 5/3 lifting scheme 

3 DCT type CORDIC-Loeffler 1D × 2 

4 
quantization step 

(𝑄𝑠𝑡𝑒𝑝)
2 to 20 

5 
normalization factor 

(𝐾) 
1.230 

6 PSNR evaluation tool MATLAB / simulink 

7 CAVLC mode Context-Adaptive 

8 number of test images 20 WCE frames 

9 output format compressed bitstream 

10 target application 
wireless capsule endoscopy 

(WCE) 
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Figure 6 illustrates the collection of standard benchmark 

images utilized to test the designed hybrid image compression 

model. The test dataset consists of natural scenery images 

(such as Lena and Peppers) and real endoscopic images from 

Wireless Capsule Endoscopy (WCE), which capture varied 

textures and anatomy to promote the generalizability in 

medical as well as normal datasets. 

Figure 6. Sample benchmark images used for hybrid 

compression evaluation 

Figure 7. Bar chart of PSNR, CR, and PC for the hybrid 

compression model 

Figure 7 shows the basic performance parameters of the 

suggested hybrid compression model in abbreviations form-

PSNR (Peak Signal-to-Noise Ratio), CR (Compression Ratio), 

and PC (Power Consumption). The outcome indicates 

effective compression with 36 dB PSNR, 90% CR, and only 

0.75 W/image power consumption. 

Table 2 indicates the essential performance measures of the 

suggested CORDIC-DCT with CAVLC-based approach of 

Wireless Capsule Endoscopy image compression, such as 

improved visual quality, substantial compression 

effectiveness, and low power usage acceptable for embedded 

medical applications. 

Table 2. Performance metrics of the proposed method 

Metric Value 

PSNR (dB) 36.0 

CR (%) 90.0 

PC (W) 0.75 

Table 3 presents the numerical values for PSNR and 

compression ratio in the proposed method. The results show 

that as CR increases from 4.50 to 6.25, the PSNR also rises, 

indicating improved image quality alongside higher 

compression efficiency. This confirms the method’s capability 

to optimize storage reduction without compromising 

diagnostic clarity in medical imaging. 

Table 3. PSNR vs. compression ratio (CR) performance 

Compression Ratio (CR) PSNR (dB) 

4.50 28.5 

4.70 29.0 

4.75 27.8 

4.85 29.2 

4.90 29.3 

5.00 29.8 

5.25 30.2 

5.30 30.8 

5.50 31.2 

6.25 32.0 

Figure 8. Scatter plot of PSNR vs. compression ratio (CR) 

Figure 9. PSNR trend across selected endoscopic images 

2228



Figure 8 illustrates the correlation between PSNR and 

compression ratio (CR) of various images. It indicates higher 

CR values continue to have good PSNR levels, which 

confirms the optimality of the hybrid compression model. 

Figure 9 depicts the PSNR scores for some sample 

endoscopic test images. The plot indicates the gradual 

reduction in PSNR, which mirrors the image-dependent nature 

of the hybrid compression technique, with varied quality 

preservation in the case of normal and ulcer images. 

Table 4 lists the sizes originally and after the suggested 

hybrid compression model is used in 15 sample images. The 

images included in the table both are medical images (ulcer, 

normal) as well as test images. The compression rates vary 

from 8.7× to 10.0× with the original sizes approximately 

ranging from 490-520 KB to the compressed sizes ranging 

from 50-60 KB. The results validate the effectiveness of the 

model in getting high compression rates with varied images 

maintaining important data fidelity.

Table 4. File sizes before and after compression for 15 representative images 

Image Name Original Size (KB) Compressed Size (KB) Compression Ratio (×) PSNR (dB) 

Ulcer_12812 512 51.2 10.0 36.1 

Ulcer_34953 498 52.0 9.6 35.8 

Normal_20735 520 60.0 8.7 36.4 

Pepper 512 55.5 9.2 36.0 

Balloon 508 54.0 9.4 35.9 

Airplane 490 50.0 9.8 36.3 

House 505 52.3 9.7 36.2 

Ulcer_13316 515 58.0 8.9 35.7 

Normal_24587 500 55.6 9.0 36.1 

Ulcer_82023 498 52.4 9.5 35.9 

Normal_23105 509 53.0 9.6 36.0 

Ulcer_45319 511 51.8 9.9 36.2 

Normal_22253 497 50.0 9.9 36.4 

Ulcer_23691 502 53.5 9.4 35.8 

Normal_19857 503 55.0 9.1 36.3 

Figure 10. Compression ratio trend for 15 test images 

Table 5. Compression ratio for 15 test images 

Image Name Compression Ratio (×) 

Ulcer_12812 10.0 

Ulcer_34953 9.7 

Ulcer_20135 8.5 

Normal_21975 9.2 

Pepper 9.4 

Balloon 9.8 

Airplane 9.7 

House 8.9 

Ulcer_15316 9.0 

Normal_14597 9.5 

Ulcer_26702 9.6 

Normal_23105 9.9 

Ulcer_35139 9.9 

Normal_22253 9.4 

Normal_19857 9.1 

Figure 10 plots the trend in compression ratio in 15 sample 

images, encompassing medical images and conventional test 

sets. The compression ratio varies from 8.7× to 10.0×, which 

is indicative of the consistent high-level compression 

capability of the hybrid model with varied types of content. 

Figure 11. PSNR and compression ratio comparison across 

existing methods 

Table 5 presents compression ratio levels for 15 test images. 

The findings indicate that the majority of images have a 

compression ratio of 9.0× to 10.0×, demonstrating uniform 

compression efficiency for a wide range of image styles. Small 

differences are seen based on image complexity and the 

presence of texture, but efficiency is generally very high, 

confirming the approach’s stability for varying visual 

information. 

Figure 11 illustrates the comparison of the suggested hybrid 

model with current compression methods in terms of PSNR as 

well as Compression Ratio. The highest PSNR (36 dB) with 

the smallest compression ratio (10×) is obtained with the 

suggested technique, whereas the minimum power 

consumption is accomplished with the same technique (0.75 
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W). 

Table 6 presents a comparative assessment of overall 

performance scores of various compression methods. Our new 

hybrid method achieves the highest score of 9.8, reflecting the 

optimal blending of image quality, compression effectiveness, 

and computing efficiency. Other methods such as Hybrid 

DCT+SVD (8.5) and DCT+Capsule AE (8.3) are also 

effective, and the classical JPEG achieves the lowest score of 

6.0, reflecting inefficacy in addressing modern medical image 

compression requirements. 

Table 6. Overall performance score comparison across 

compression methods 

Compression Method Overall Performance Score 

Proposed Hybrid 9.8 

JPEG 6.0 

JPEG2000 7.5 

SPIHT 7.2 

CORDIC-DCT 6.8 

DWT Lifting 7.1 

Hybrid DCT+SVD 8.5 

DCT+Capsule AE 8.3 

Near-Lossless WCE 7.9 

Hybrid LZW+Huffman 6.5 

Figure 12 illustrates the relative performance ten image 

compression schemes with respect to a composite score. The 

indicated hybrid model has the highest score (9.8), with the 

other schemes surpassing it in visual quality, compression 

ratio, and energy consumption-optimal in the context of 

embedded medical imaging. 

Figure 12. Overall performance comparison of compression 

methods 

6. CONCLUSION

The suggested hybrid image compression scheme, 

incorporating the use of 5/3 lifting-based DWT, CORDIC-

Loeffler-based 2D-DCT, and CAVLC entropy encoding, 

provides an efficient and high-quality solution for the 

compression of medical images at reduced energy 

consumption. Experimental results over benchmark as well as 

endoscopic images confirm the robustness in compression 

efficiency with high PSNR value till 36 dB, average 

compression ratio of 10×, and energy efficiency with only 

0.75 W per image. The system invariably surpasses 

conventional schemes like JPEG, JPEG2000, and SPIHT in 

terms of visual quality as well as energy efficiency. The 

modular nature allows the system to achieve real-time 

compression as required in devices with constrained resources 

like wireless capsule endoscopy (WCE). The inclusion of 

CORDIC further produces hardware-friendly computation, 

while the hybrid technique maintains the diagnostic features 

while minimizing data overhead in transmission. In aggregate, 

the model provides an efficient balance in compression as well 

as quality with guaranteed robustness in the embedded health 

systems. The model can be enhanced by adding ROI-based 

encoding or machine learning-guided parameter tuning. 

Hardware implementation on FPGA platforms may also be 

explored for deployment in real-time diagnostic devices. 

6.1 Limitations 

Though the envisioned hybrid compression scheme 

achieves substantial compression efficiency and energy 

reduction for images of Wireless Capsule Endoscopy, there are 

a few limitations left. The assessment mainly involves ulcer 

and normal pathology images; results on other GI 

abnormalities like tumors, bleeding, and Crohn’s disease have 

not been fully verified and may have implications on 

diagnostic robustness in more general clinical applications. 

Furthermore, though FPGA synthesis results do show the low-

power and resource-efficient characteristics of the CORDIC-

Loeffler DCT, thorough hardware validation with end-to-end 

integration in a working WCE prototype and in-vivo testing 

has not been done. Practical limitations like capsule motion 

variability, illumination variation, and transmission error were 

not directly simulated and may have implications on practical 

implementation. Future research focuses on addressing such 

areas by widening the dataset diversity, including clinical 

trials, and optimizing the hardware design for full system-level 

verification. 

ACKNOWLEDGMENT 

The authors would like to thank, JSS Science and 

Technology University, Mysuru, India., JSS Academy of 

Technical Education, Bengaluru, JSS Science and Technology 

University Mysuru, JSSATEB STEP and JSSATEB AICTE 

Idea Lab for all the support and encouragement provided by 

them to take up this research work and publish this paper.  

REFERENCES 

[1] Wang, N., Yang, C., Xu, J., Shi, W., Huang, W., Cui, Y.,

Jian, X. (2020). An improved chirp coded excitation

based on compression pulse weighting method in

endoscopic ultrasound imaging. IEEE Transactions on

Ultrasonics, Ferroelectrics, and Frequency Control,

68(3): 446-452.

https://doi.org/10.1109/TUFFC.2020.3008920

[2] Chen, C.A., Chen, S.L., Lioa, C.H., Abu, P.A.R. (2019).

Lossless CFA image compression chip design for

wireless capsule endoscopy. IEEE Access, 7: 107047-

107057.

https://doi.org/10.1109/ACCESS.2019.2930818

[3] Mohammed, S.K., Rahman, K.M., Wahid, K.A. (2017).

2230



Lossless compression in Bayer color filter array for 

capsule endoscopy. IEEE Access, 5: 13823-13834. 

https://doi.org/10.1109/ACCESS.2017.2726997 

[4] Gu, Y., Xie, X., Li, G., Sun, T., et al. (2014). Design of

endoscopic capsule with multiple cameras. IEEE

Transactions on Biomedical Circuits and Systems, 9(4):

590-602. https://doi.org/10.1109/TBCAS.2014.2359012

[5] Chen, S.L., Liu, T.Y., Shen, C.W., Tuan, M.C. (2016).

VLSI implementation of a cost-efficient near-lossless

CFA image compressor for wireless capsule endoscopy.

IEEE Access, 4: 10235-10245.

https://doi.org/10.1109/ACCESS.2016.2638475

[6] MacMullin, M.N., Gu, T., Landry, T.G., Campbell, N.,

Christie, S.D., Brown, J.A. (2025). A high frequency

ultrasound endoscope for minimally invasive spine

surgery. IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, 72(6): 828-836.

https://doi.org/10.1109/TUFFC.2025.3559870

[7] Long, M., Li, Z., Xie, X., Li, G., Wang, Z. (2018).

Adaptive image enhancement based on guide image and

fraction-power transformation for wireless capsule

endoscopy. IEEE Transactions on Biomedical Circuits

and Systems, 12(5): 993-1003.

https://doi.org/10.1109/TBCAS.2018.2869530

[8] Diamantis, D.E., Gatoula, P., Koulaouzidis, A.,

Iakovidis, D.K. (2024). This intestine does not exist:

Multiscale residual variational autoencoder for realistic

wireless capsule endoscopy image generation. IEEE

Access, 12: 25668-25683.

https://doi.org/10.1109/ACCESS.2024.3366801

[9] Wu, X., Chen, H., Gan, T., Chen, J., Ngo, C.W., Peng,

Q. (2016). Automatic hookworm detection in wireless

capsule endoscopy images. IEEE Transactions on

Medical Imaging, 35(7): 1741-1752.

https://doi.org/10.1109/TMI.2016.2527736

[10] Oliveira, M., Araujo, H., Figueiredo, I.N., Pinto, L.,

Curto, E., Perdigoto, L. (2021). Registration of

consecutive frames from wireless capsule endoscopy for

3D motion estimation. IEEE Access, 9: 119533-119545.

https://doi.org/10.1109/ACCESS.2021.3108234

[11] Sushma, B., Aparna, P. (2020). Summarization of

wireless capsule endoscopy video using deep feature

matching and motion analysis. IEEE Access, 9: 13691-

13703. https://doi.org/10.1109/ACCESS.2020.3044759

[12] Varam, D., Mitra, R., Mkadmi, M., Riyas, R.A.,

Abuhani, D.A., Dhou, S., Alzaatreh, A. (2023). Wireless

capsule endoscopy image classification: An explainable

AI approach. IEEE Access, 11: 105262-105280.

https://doi.org/10.1109/ACCESS.2023.3319068

[13] Orlando, C., Andrea, P., Xavier, D., Bertrand, G. (2020).

A low power and real-time architecture for hough

transform processing integration in a full HD-wireless

capsule endoscopy. IEEE Transactions on Biomedical

Circuits and Systems, 14(4): 646-657.

https://doi.org/10.1109/TBCAS.2020.3008458

[14] Peng, Y., Saito, K., Ito, K. (2019). Dual-band antenna

design for wireless capsule endoscopic image

transmission in the MHz band based on impulse radio

technology. IEEE Journal of Electromagnetics, RF and

Microwaves in Medicine and Biology, 3(3): 158-164.

https://doi.org/10.1109/JERM.2019.2896117

[15] Zhou, C., Qiu, K., Chen, C., Zhang, D., Guo, Y. (2022).

Video super-resolution for wireless capsule endoscopy

imaging sensor. IEEE Sensors Journal, 22(17): 17283-

17290. https://doi.org/10.1109/JSEN.2022.3193870 

[16] Li, B., Wang, Y., Zhao, J., Shi, J. (2024). Ultra-wideband

antennas for wireless capsule endoscope system: A

review. IEEE Open Journal of Antennas and

Propagation, 5(2): 241-255.

https://doi.org/10.1109/OJAP.2024.3355217

[17] Özbay, E. (2024). Gastrointestinal tract disease

classification using residual-inception transformer with

wireless capsule endoscopy images segmentation. IEEE

Access, 12: 197988-197998.

https://doi.org/10.1109/ACCESS.2024.3522009

[18] Lee, H.S., Ko, Y., Kim, C.S. (2025). Enhanced motion

control of magnetically actuated capsule robot using

MEMA-a mobile electromagnetic actuation system.

IEEE/ASME Transactions on Mechatronics, 30(2): 933-

944. https://doi.org/10.1109/TMECH.2024.3521373

[19] Ali, M.A., Alsunaydih, F.N., Rathnayaka, A., Yuce,

M.R. (2024). Implementing an autonomous navigation

system for active wireless capsule endoscopy. IEEE

Sensors Journal, 24(12): 19190-19201.

https://doi.org/10.1109/JSEN.2024.3391797

[20] Noormohammadi, R., Khaleghi, A., Balasingham, I.

(2023). Analog backscatter video transmission for

wireless capsule endoscope. IEEE Access, 11: 18542-

18550. https://doi.org/10.1109/ACCESS.2023.3248019

[21] Fontana, R., Mulana, F., Cavallotti, C., Tortora, G.,

Vigliar, M., Vatteroni, M., Menciassi, A. (2016). An

innovative wireless endoscopic capsule with spherical

shape. IEEE Transactions on Biomedical Circuits and

Systems, 11(1): 143-152.

https://doi.org/10.1109/TBCAS.2016.2560800

[22] Alam, M.J., Rashid, R.B., Fattah, S.A., Saquib, M.

(2022). Rat-capsnet: A deep learning network utilizing

attention and regional information for abnormality

detection in wireless capsule endoscopy. IEEE Journal of

Translational Engineering in Health and Medicine, 10: 1-

8. https://doi.org/10.1109/JTEHM.2022.3198819

[23] Calò, S., Chandler, J.H., Campisano, F., Obstein, K.L.,

Valdastri, P. (2019). A compression valve for sanitary

control of fluid-driven actuators. IEEE/ASME

Transactions on Mechatronics, 25(2): 1005-1015.

https://doi.org/10.1109/TMECH.2019.2960308

[24] Li, C., Tong, Y., Long, Y., Si, W., Yeung, D.C.M., Chan,

J.Y.K., Dou, Q. (2024). Extended reality with HMD-

assisted guidance and console 3d overlay for robotic

surgery remote mentoring. IEEE Robotics and

Automation Letters, 9(10): 9135-9142.

https://doi.org/10.1109/LRA.2024.3455936

[25] Garrido, M., Källström, P., Kumm, M., Gustafsson, O.

(2015). CORDIC II: A new improved CORDIC

algorithm. IEEE Transactions on Circuits and Systems II:

Express Briefs, 63(2): 186-190.

https://doi.org/10.1109/TCSII.2015.2483422

[26] Meher, P.K., Aggarwal, S. (2025). Efficient design and

implementation of scale-free CORDIC with mutually

exclusive micro-rotations. IEEE Transactions on Circuits

and Systems I: Regular Papers, 72(5): 2243-2251.

https://doi.org/10.1109/TCSI.2025.3549974

[27] Mahdavi, H., Timarchi, S. (2020). Improving

architectures of binary signed-digit CORDIC with

generic/specific initial angles. IEEE Transactions on

Circuits and Systems I: Regular Papers, 67(7): 2297-

2304. https://doi.org/10.1109/TCSI.2020.2978765

[28] Chen, H., Cheng, K., Lu, Z., Fu, Y., Li, L. (2020).

2231



Hyperbolic CORDIC-based architecture for computing 

logarithm and its implementation. IEEE Transactions on 

Circuits and Systems II: Express Briefs, 67(11): 2652-

2656. https://doi.org/10.1109/TCSII.2020.2971974

2232




