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Addressing the critical need for efficient railway track irregularity detection in Indonesia, 

this article presents a novel data-driven approach for continuous track condition monitoring. 

By leveraging on-board accelerometer measurements from in-service trains, rigorously 

validated against traditional Track Recording Vehicle (TRV) data, this work offers a 

significant advancement over conventional periodic inspections. The methodology 

uniquely utilizes vibration data from both sides of the train body, enabling precise 

identification and classification of various track irregularities. Among several evaluated 

machine learning algorithms, a hyperparameter-tuned Random Forest model demonstrated 

superior performance, achieving an accuracy of 96.62% and a macro F1-Score of 47.77%. 

While achieving an overall classification accuracy of 96.62%, the macro F1-Score of 

47.77% highlights the challenges posed by the inherent class imbalance in track defect data, 

where the model performs well at identifying normal track conditions but struggles to detect 

rare yet critical anomaly classes. Crucially, its high recall for critical irregularities, such as 

Twist over 3m (40.75%) and Track Gauge (46.10%), is paramount for safety-critical 

railway applications, effectively minimizing dangerous false negatives and ensuring 

comprehensive detection of potential hazards. This research highlights the significant 

potential of integrating on-board accelerometer data with advanced machine learning to 

enable proactive, cost-effective railway asset management, thereby enhancing operational 

safety and efficiency. 
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1. INTRODUCTION

Railway infrastructure is the backbone of modern 

transportation, enabling the mass movement of goods and 

passengers on a national scale [1]. The integrity of this 

network hinges on the quality and condition of its tracks, 

which are fundamental to operational safety, passenger 

comfort, and service reliability [2]. At the heart of track quality 

lies track geometry—the precise spatial configuration of the 

rails, including parameters like track gauge, alignment, and 

vertical profile [3]. While the ideal is a perfectly consistent 

track, real-world conditions such as heavy traffic loads, 

environmental factors, and infrastructure aging inevitably lead 

to geometric deviations [4]. These flaws, known as track 

irregularities, represent critical departures from the track's 

intended design and position [5]. 

Track irregularities manifest in three critical dimensions: 

vertical (longitudinal level), horizontal (alignment), and 

rotational (twist) [6]. Though often invisible to the naked eye, 

these geometric faults have a profound impact on train 

dynamics. The unsmooth wheel-rail interaction they cause can 

lead to excessive vibrations, premature stress on components, 

and uneven wear [7]. Most critically, in extreme cases, these 

irregularities can directly trigger train derailments—the most 

catastrophic failure in railway operations—resulting in 

substantial material losses and potential casualties [8].  

Nowhere is this challenge more pressing than in Indonesia, 

where increasing railway traffic and operational speeds 

demand unprecedented levels of track quality [9]. Research 

indicates that even minor irregularities, those with amplitudes 

as small as 0.08 mm, can accelerate the overall deterioration 

of track geometry [4]. This makes early and accurate detection 

critically important, not just for diagnosing existing problems 

but for enabling predictive maintenance strategies [10]. 

However, traditional inspection methods in Indonesia, which 

rely on periodic TRV measurements, lack the frequency 

needed for such early detection, making it challenging to 

prioritize maintenance and allocate resources effectively [11]. 

This article addresses this critical gap by proposing and 

validating a novel monitoring approach. We demonstrate how 

accelerometer data from regular in-service trains can be used 

to detect track irregularities more frequently and cost-
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effectively, with performance validated against official TRV 

measurements. 

Several fundamental reasons underscore the urgency of 

measuring track irregularity in modern railway infrastructure 

management. First and foremost is operational safety. Track 

irregularities directly affect the stability and safety of train 

operations [12]. Significant geometric deviations can cause 

excessive lateral and vertical oscillations in trains, increasing 

the risk of derailment, especially at high speeds [7]. For 

instance, extreme twists can cause train wheels to lose contact 

with the rails, while severe longitudinal level and alignment 

issues can trigger dynamic forces exceeding component design 

limits [13]. By identifying and correcting these irregularities, 

the potential for accidents can be minimized, protecting the 

lives of passengers and crew and preventing costly property 

damage. 

Secondly, measuring track irregularity improves passenger 

comfort. A smooth and stable ride is an indicator of railway 

service quality [14]. Track irregularities, even at levels that do 

not endanger safety, can cause vibrations and noise that disturb 

passenger comfort [5]. Accurate measurements allow 

operators to maintain ride quality within acceptable limits, 

thereby enhancing passenger satisfaction.  

Thirdly, tracking irregularity measurement is vital for 

operational efficiency and cost-effective maintenance. By 

precisely knowing the location and severity of irregularities, 

track managers can plan proactive and targeted maintenance 

interventions [15]. Reactive maintenance, performed after 

irregularities or incidents occur, tends to be more expensive 

and disruptive to operational schedules. Conversely, 

predictive maintenance based on irregularity measurement 

data allows repairs to be carried out before problems become 

critical, thus reducing emergency repair costs, extending the 

lifespan of rail components, and minimizing service 

disruptions [16]. Furthermore, good track conditions enable 

trains to operate at their design speeds without restrictions, 

which increases the overall capacity and efficiency of the 

network [17]. 

Fourthly, track irregularity measurement data forms an 

essential basis for strategic decision-making regarding 

infrastructure investment [18]. By analyzing irregularity 

trends over time, operators can identify track segments prone 

to degradation, evaluate the effectiveness of existing 

maintenance programs, and plan future rehabilitation or 

upgrade projects. This ensures that investments are made in 

areas most in need, maximizing the value of every expenditure 

[19]. 

The development of modern technology has opened new 

opportunities in rail condition monitoring. Most railway 

operators now use Track Geometry Measurement Systems 

(TGMS) to measure track geometry automatically [20]. 

However, traditional approaches relying on periodic 

measurements using specialized vehicles like TRVs have 

limitations in terms of measurement frequency and operational 

costs [21]. Therefore, recent research has begun to explore the 

use of on-board accelerometer sensors on regularly operating 

trains as a more efficient and sustainable alternative [5]. 

Overall, track irregularity measurement is not merely a 

technical routine but an essential practice that supports the 

main pillars of railway operations: safety, comfort, efficiency, 

and sustainability [1]. It is an investment in the long-term 

integrity and performance of the entire railway system, 

becoming increasingly important as demands for safe, 

comfortable, and reliable transportation services rise. 

The growing demand for train-based land transportation in 

Indonesia is driven by the absence of traffic congestion, which 

results in more predictable travel times. To continuously 

enhance the trust and comfort of train users, monitoring and 

maintaining railway track conditions are essential. Currently, 

rail maintenance in Indonesia predominantly employs time-

based maintenance, involving daily inspections by track 

inspectors (Juru Pemeriksa Jalan rel - JPJ) who walk 4-6 km 

before the first train traverses the inspected segment. This 

approach requires significant effort, a large workforce, and is 

relatively time-consuming. In addition to daily routine 

inspections, rail condition checks are also performed using 

TRVs every three months. The use of TRVs to monitor rail 

conditions yields a set of Track Quality Index (TQI) values 

that serve as a reference for determining optimal speeds on 

specific track segments. TQI is calculated by assessing four 

track geometry parameters: superelevation, alignment, 

gradient, and curvature. TRV measurement results are 

recorded through a set of relevant sensors that also log the 

TRV's speed. 

Globally, the railway industry is experiencing a 

transformative shift from classical time-based maintenance 

schedules toward data-driven predictive maintenance (PdM) 

strategies. A systematic review by Bianchi et al. [1] affirms 

that the growth in number and performance of Structural 

Health Monitoring (SHM) tools and innovative data-driven 

models, particularly those based on AI, is rapidly rendering 

classical approaches obsolete. International trends 

demonstrate increasing adoption of Wireless Sensor Networks 

(WSN) and AI models for collecting and processing real-time 

data from various infrastructure components. This integrated 

approach enables comprehensive track failure prediction and 

more effective resource management. By positioning our 

research within this global context, we aim to bridge the gap 

between current monitoring practices in Indonesia and cutting-

edge technological advances adopted internationally.  

To address the specific challenges of Indonesian railway 

infrastructure monitoring, this study develops and validates a 

novel methodology that integrates on-board accelerometer 

data with machine learning. The following section details our 

approach to continuous track condition monitoring and 

irregularity detection. 

2. METHODOLOGY

This research introduces an alternative approach to 

identifying track irregularities by correlating Track Recording 

Vehicle (TRV) measurements with vibration metrics collected 

from accelerometers on in-service trains. The analyzed track 

geometry parameters include vertical irregularity, horizontal 

alignment, cross-level, twist (over 3m), and track gauge. By 

integrating data from both sources, this study aims to improve 

the detection and mapping of irregularities along selected track 

segments. 

Low-cost tri-axial accelerometers are installed on the bodies 

of operational trains traversing specific track sections within 

DAOP 2 Bandung (Daerah Operasi/Operational Area 2, 

Bandung) to measure vibration metrics. Sensor placement on 

the train body enables the capture of dynamic responses 

resulting from interactions between the wheels and the track. 

On-board monitoring reduces installation risk versus under-

car mounting and lowers exposure to debris or harsh 

environments, thereby improving sensor longevity. This 
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approach significantly enhances ease and safety of installation, 

as sensors can be placed in accessible, protected locations 

within or on the train body structure, minimizing the need for 

complex, high-risk technical interventions under the train or 

near the wheels. Furthermore, the risk of irregularity sensor 

from direct contact with track elements, debris, or extreme 

environmental conditions (such as water, mud, or undamped 

excessive vibrations) is drastically minimized, ensuring the 

integrity and longevity of the devices. From an environmental 

impact perspective, mounting the sensor on the train body also 

reduces direct exposure to extreme temperature variations, 

high humidity, and other contaminants common under the 

train, thereby maintaining the accuracy and reliability of the 

collected data. Recent research supports the effectiveness of 

this method, as demonstrated by a 2024 study that successfully 

estimated track irregularities from train body vibrations [22], 

and a 2025 study that integrated accelerometers with machine 

learning for track gauge detection, emphasizing the reliability 

of models combined with on-board accelerometer data [23]. 

The use of accelerometers in on-board monitoring not only 

optimizes the monitoring process but also aligns with modern 

trends in data-driven predictive maintenance for railway 

infrastructure. These sensors provide detailed acceleration 

data in the vertical, lateral, and longitudinal directions, which 

is crucial for identifying irregularities. The accelerometer data 

is recorded on the same day and at the exact locations as the 

TRV measurements, with time-stamp synchronization to 

ensure accurate alignment between the datasets. Vibration 

measurements using accelerometers on the train body are also 

equipped with a GPS sensor to record the train's position. 

While GPS provides essential location information, its 

inherent inaccuracies can make it difficult to synchronize 

accelerometer measurements with the actual track location 

precisely, necessitating the use of additional correction or 

validation methods. 

The decision to install accelerometers on both left and right 

sides of the train body represents a fundamental aspect of our 

methodology, designed to capture directional vibration 

differences essential for comprehensive track irregularity 

diagnosis. This bilateral configuration enables simultaneous 

comparative analysis of the train's dynamic response under 

left- and right-rail conditions. As supported by previous 

research [24, 25], this configuration is critical for identifying 

geometric irregularities such as cross-level (elevation 

difference between two rails) and twist (change in cross-level 

over a specified distance). By analyzing phase and amplitude 

differences between left and right accelerometer signals, our 

model can effectively distinguish between pure vertical 

motion and rolling or lateral motion, which are key indicators 

of safety-critical track defect types. 

A data-driven approach is employed to process and analyze 

the measurement results. Machine learning models are used to 

detect anomalies in track geometry, map irregularities to their 

corresponding track locations, and categorize them based on 

severity and type. The analysis leverages both spatial and 

temporal correlations between the TRV and accelerometer 

datasets to build a robust predictive framework for track 

condition monitoring. By analyzing the train body’s dynamic 

response to track irregularities, this methodology enables the 

development of predictive models to identify potential issues 

and prioritize maintenance actions. The approach provides an 

efficient and scalable solution for continuous track 

monitoring, ultimately enhancing railway safety and 

maintenance strategies. 

The procedural workflow of this research is illustrated in 

Figure 1, which shows the complete process from data 

collection through TRV and accelerometer measurements, 

preprocessing and feature extraction, machine learning model 

development, to final track irregularity classification and 

validation. 

Figure 1. Track irregularity identification using a data-driven 

approach 

The proposed monitoring approach emphasizes analyzing 

trains’ dynamic responses as they traverse track irregularities 

caused by geometric abnormalities. Accelerometers installed 

on regular passenger trains capture acceleration data reflecting 

the train’s interaction with the track geometry. This data is 

then compared with TRV (EM120 measuring train) 

measurements collected on the same railway segments. 

Machine learning techniques correlate findings from the two 

methods, identifying specific track anomalies. Detailed 

methodologies, including sensor placement, data collection, 

and model development, are elaborated further in subsequent 

sections of the paper. 

3. RESULTS AND DISCUSSION

TRV measurements are conducted continuously along 

specific track segments. The data from these measurements 

serve as the 'ground truth' or validation data for newer 

methods, as indicated in studies [22, 26], which use actual 

measurement data to validate irregularity estimation models. 

The four track geometry parameters modeled for irregularity 

estimation are: 
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a. Track gauge: Measured with front, middle, and rear

trolleys over a distance of 20 meters.

b. Vertical profile: Refers to the average longitudinal

alignment. The deviation of the vertical profile of the right

and left rails is calculated over a distance of 40 meters.

c. Horizontal alignment: Measured every 40 meters for the

right and left rails.

d. Cross-level/cant: Calculated using the formula

S = g × sin 𝜃 (1) 

where, S is the superelevation (cant), g is the distance between 

the railheads, and θ is the angle of the track's horizontal curve. 

The value for each track geometry parameter is displayed in 

millimeters. The accumulation of the standard deviations of 

the measured geometry parameters yields the TQI value, as per 

the following formula: 

𝑇𝑄𝐼 = ∑(𝑆𝑡𝑑 𝐷𝑒𝑣 𝑜𝑓 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)  

× 𝑇𝑄𝐼 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 
(2) 

The TQI value determines the comfort and safety of the 

train journey, making it a reference for setting speed limits on 

measured track segments. Currently, the speed reference for 

track segments in Indonesia based on TQI values is shown in 

Table 1. 

Table 1. Track condition categories based on TQI [27] 

Total TQI Speed (km/h) 

< 20 100 – 200 

20 -35 80 – 100 

35 – 50 60 – 80 

> 50 < 60 

The results of track condition monitoring, whether by JPJ or 

TRV, produce a record of the track's state, which guides 

necessary maintenance actions. If track irregularity is 

indicated, a repair plan is formulated, including the schedule, 

repair type, supporting equipment, and cost. TRV 

measurement data is stored in a specific format prepared by 

the TRV. The railway operator in Indonesia uses the 

measurement results in two report formats: 'Track Quality by 

device' and 'exception report'. The data structures for these two 

reports are summarized in Tables 2 and 3. 

Table 2. Data format for track quality by device 

No. Field Data Type 

1 Track Identity String 

2 Segment Code Char [7] 

3 Speed Integer 

4 Class ID Integer 

5 Measurement Date  Date 

6 Start position (km) Integer 

7 Start position (m) Integer 

8 End position (km) Integer 

9 End position (m) Integer 

10 Device type Char [4] 

11 Length (m) Integer 

12 Class Integer 

13 Cant (mm) Real 

14 Longitudinal Level (mm) Real 

15 Alignment (mm) Real 

16 Track Gauge (mm) Real 

17 Total TQI Real 

The track irregularity identified in the exception report is 

limited to track geometry parameters, which consist of: 

a. Longitudinal Level (Vertical Irregularity): Refers to the

vertical deviation or change in rail elevation from the

intended longitudinal profile, which should be straight or

follow a planned vertical curve. This can manifest as

undulations (wave-like up-and-down movements) or local

depressions (sudden drops). This type of irregularity can

cause vertical vibrations in the train, increase dynamic

loads on the rails and wheels, and affect passenger

comfort. Common causes include uneven subgrade

consolidation, ballast settlement, or sleeper irregularity.

Table 3. Data format for exception report 

No. Field Data Type 

1 Track Identity String 

2 Segment Code Char [7] 

3 Speed Integer 

4 Class ID Integer 

5 Measurement Date Date 

6 Start position (km) Integer 

7 Start position (m) Integer 

8 End position (km) Integer 

9 End position (m) Integer 

10 Measurement Distance (m) Integer 

11 Parameter (irregularity) String 

12 Irregularity Length(mm) Integer 

13 Max Location (km) Integer 

14 Max Location (m) Integer 

15 Rail Class Integer 

b. Alignment (Horizontal Irregularity): Describes the

horizontal deviation of the rail from the planned lateral

alignment, on both straight and curved segments.

Alignment issues can involve inward or outward

deflection from the track's centerline. Horizontal

irregularities can trigger lateral oscillations (sideways

movements) in the train, increase lateral forces on the

rails, and accelerate wear on the rail sides and wheel

flanges. Contributing factors include lateral ground

movement, lateral pressure from train traffic, or improper

maintenance.

c. Cant (Cross-level or Superelevation Irregularity): This is

the difference in height between the two rails in a cross-

sectional view of the track. On straight segments, the ideal

cant is zero (both rails are horizontally level). On curved

segments, cant is intentionally introduced (one rail is

higher than the other) to counteract centrifugal force.

Irregularity occurs when this height difference deviates

from the planned value. This can lead to an imbalance of

centrifugal forces on curves, trigger lateral vibrations, and

increase the risk of derailment if the cant is too large or

too small for the train's speed.

d. Track Gauge Irregularity: Refers to the deviation of the

distance between the inner faces of the railheads from the

standard gauge (e.g., 1067 mm for tracks in Indonesia). A

gauge that is too narrow can cause wheels to jam or climb

the rail, while a gauge that is too wide can cause wheels

to drop into the track or increase wheel flange wear. Both

conditions are hazardous and can lead to derailment.

Changes in track gauge can be caused by rail wear, sleeper

movement, or fastening failure.

e. Twist Irregularity: This is the relative change in cant over

a specific distance. A twist measured over 3 meters is

called 'Skilu 3m'. Twist occurs when one rail rises or falls
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significantly relative to the other over a short distance. 

This type of irregularity is hazardous because it can cause 

one wheel to lose contact with the rail, increasing the load 

on the other wheels and potentially leading to derailment. 

Twist is often a combination of non-uniform longitudinal 

level and cant. 

Track condition measurement data were collected from 

eight quarterly measurements, spanning from early 2020 to the 

end of 2022, using a TRV on the track between Bandung and 

Cikampek stations (BD – CKP). The TRV's speed was 100 

km/h over a distance of 71 km, from km 84+007 to km 

155+134. The irregularity value thresholds set in Indonesian 

rail maintenance regulations, according to Kurniawan and 

Rulhendri [27], are described in Table 4. 

Table 4. Irregularity value thresholds per category 

Parameter New Cat 1 Cat 2 Cat 3 Cat 4 

Longitudinal Level  (mm) 1 2 5 8 >8

Alignment (mm) 1 1.5 4 10 >10

Cant (mm) 1 2 6 9 >9

Track Gauge (mm) 0 2 5 10 >10

Twist over 3 m (mm) 2 6.5 9 12 >12

TQI (max) 10 20 35 50 >50

Gapeka speed(km/h) 120-100 100-80 80-60 < 60

According to Alamsyah [28], irregularity values exceeding 

the tolerance range fall into Category 3 and Category 4. This 

is used to determine the irregularity parameters in the 

Exception Report that require maintenance intervention. 

Based on the irregularity parameter measurement data and 

exception reports, the data in this article show a defect 

percentage below 7%, with the profile depicted in Figure 2. 

Figure 2. Percentage of track irregularities in the data 

Figure 2 illustrates the distribution of track irregularities 

across the eight measurement periods, revealing that 93.79% 

of the TRV measurement data indicates normal track 

conditions within standard thresholds. Among the irregularity 

categories, Right Horizontal Alignment (1.87%) and Left 

Horizontal Alignment (1.03%) have the highest occurrences, 

while Right Vertical Alignment (0.19%) has the lowest. This 

distribution pattern is characteristic of well-maintained 

railway infrastructure, where major defects are relatively rare 

but require immediate attention when detected.  

The predominance of regular conditions, while positive 

from a safety perspective, presents a significant challenge for 

machine learning classification due to severe class imbalance, 

necessitating careful selection of evaluation metrics and 

potentially requiring specialized techniques such as class 

weighting or synthetic minority oversampling. 

3.1 Data-driven approach with on-board accelerometers 

Considering that the current track condition measurement 

process in Indonesia is conducted every three months using a 

TRV, this research aims to find an alternative monitoring 

mechanism that can be performed more intensively with more 

optimal use of human resources, time, and monitoring costs 

[5]. Kurniawan and Rulhendri [27] state that vibrations felt 

during a train journey can be caused by defects in the rail 

structure or by non-compliance with the ideal track geometry 

conditions set when the track was built. Similarly, De Rosa et 

al. [29] describe a machine learning classification model for 

predicting lateral and cross-level track geometry irregularities 

using accelerometers installed on in-service passenger trains. 

Considering several relevant studies [30-32], the explored 

alternative for track monitoring is to map the vibration 

measurement data from accelerometers installed on the body 

of an in-service passenger train with the TRV measurement 

results at relatively the same time and position. The TRV 

measurement values, which specifically identify track 

irregularities based on rail geometry, will serve as a reference 

for mapping the measured vibrations. 

Recent research has investigated the use of in-service trains 

as a viable method for measuring geometry-based rail 

abnormalities [33]. According to Tsunashima [34], installing 

on-board sensors on in-service trains generates real-time data 

during routine operations, thereby eliminating the need for 

specialized inspection trains (TRVs). This method has proven 

effective in detecting minor anomalies that might otherwise go 

unnoticed, making it a cost-effective solution for continuous 

monitoring—for example, Weston et al. [31] found that 

equipping in-service trains with modern measurement 

instruments enabled consistent, precise assessment of track 

geometry over time. The study concluded that monitoring 

track conditions with in-service trains can significantly reduce 

operational expenses while enhancing safety and maintenance 

efficiency.  

Given various factors related to accelerometer placement, 

this study chose the train body for installation. The 

accelerometer used is the DFRobot SEN0386, which offers 

high accuracy and provides a 6-axis gyroscope value. This 

module is equipped with advanced Kalman filtering, 

effectively reducing measurement noise and improving 

accuracy. A 5th-order Butterworth high-pass filter with a 

cutoff frequency of 0.5 Hz was applied to the accelerometer 

data. This cutoff frequency was selected using the carriage-

passing frequency approach, in which the cutoff is set at 

approximately one-half to one-third of the carriage-passing 

frequency. For typical train speeds of 80-120 km/h and 

carriage lengths of 20-25 m, the carriage passing frequency 

ranges from 0.9 to 1.7 Hz, making 0.5 Hz an appropriate lower 

bound that preserves track geometry-related vibrations (0.5-20 

Hz) while removing DC offset and ultra-low-frequency drift. 

The fifth-order design provides a sharp transition between the 

stopband and passband, effectively removing gravitational 

bias while maintaining signal integrity in the frequency range 

of interest. It generates acceleration data in 3 axes (Ax, Ay, 

Az) and is mounted on the left and right sides of the train body. 

The accelerometers monitor three acceleration channels (in g 

units) and three rotation channels for each carriage. Time and 

GPS sensors are also installed to obtain current position data. 

The output specifications of this accelerometer are: 

a. Acceleration (3D) in the range of +/- 2/4/8/64 g (optional)
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b. Angular velocity (3D) in the range of +/-

250/500/1000/2000 °/s

c. Attitude angle (3D) of +/- 180°.

These sensors provide acceleration data for each of the six

DOFs in the car body. The measured train acceleration on each 

side is divided into three axes: the X-axis represents the 

direction of train movement, the Y-axis represents the lateral 

direction, and the Z-axis represents vertical vibration. Due to 

gravity, a low-frequency signal component causes the 

acceleration to shift upward on the z-axis by approximately 9.8 

m/s². To eliminate this effect, a high-pass filtering procedure 

is used. 

The measurement media in this research consist of 

accelerometer sensors, positioning sensors, and storage for the 

measurement results. Figure 3 shows an image of this 

measurement media. 

Figure 3. Measurement media with DFRobot accelerometer 

The measurement results are stored on a memory card, with 

the file structure is summarized in Table 5. 

Table 5. Data storage format for accelerometer results 

No. Field Data Type 

1 Measurement Date Date 

2 Time Time 

3 Longitude Real 

4 Latitude Real 

5 Speed Real 

6 Left Ax Real 

7 Left Ay Real 

8 Left Az Real 

9 Right Ax Real 

10 Right Ay Real 

11 Right Az Real 

3.2 Machine learning for irregularity classification 

In line with the research objectives, the next step is to apply 

a data-driven approach to map the accelerometer measurement 

results from the in-service train with the exception report from 

the TRV measurements. The process involves the following 

steps: 

a. Data Preprocessing: The data that will serve as the

validator for determining track irregularities is

preprocessed. Each rail measurement result from the

TRV is examined. Each geometry parameter's value

is checked against the standard and irregularity

thresholds.

b. Validation: Track segment data with a status above

the standard threshold is validated against the

exception report data, which contains explicit rail

geometry values in categories 3 and 4. If the location

of the irregularity does not match the data in the

exception report, the standard deviation of the data

set in the corresponding track segment is calculated.

c. Anomaly Mapping: The position and irregularity

parameters of the anomalies identified from the

comparison of TRV measurements are determined

and used as a reference for mapping the track status

from the accelerometer measurements on the in-

service train.

d. Data Integration: The in-service train measurement

results are combined with the track irregularity

measurements from the TRV after spatial and

temporal synchronization. Spatial synchronization is

achieved by matching GPS coordinates from both

datasets, with a tolerance of ±5 meters to account for

GPS positioning inaccuracies. Temporal 

synchronization ensures that accelerometer 

measurements are matched with TRV data collected 

within the same measurement period (±7 days) to 

minimize the effects of changes in track condition 

over time. In cases where multiple TRV 

measurements are available for a given location, the 

temporally closest measurement is selected as the 

ground truth reference. 

e. Machine Learning Modeling: A classification model

is developed to classify the magnitude of

vibration/acceleration from the 3-axis accelerometers

on both sides of the in-service train, using the

irregularity labels from the TRV data at relatively the

same position and time.

f. Classification: The classification results will identify

the magnitude of acceleration from the three axes (x,

y, z) on both sides of the train based on the seven

established track irregularity parameters.

g. Testing: The model is tested with acceleration data to

predict the relevant track irregularity parameters.

h. Performance Evaluation: The performance of the

classification model is measured, with a focus on

accuracy and other relevant metrics.

Following this process, a dataset of 75,990 records was 

obtained, comprising eight features: velocity, acceleration in 

three axes (from the accelerometer) on both sides of the in-

service train, and the type of track irregularity parameter from 

the TRV measurements.  

The track irregularity parameter is divided into eight labels 

for classification (1 normal/regular condition and seven 

irregularity conditions). The other seven features are 

continuous (numeric).  

Figure 4 shows the distribution of data across the 7 track 

irregularity classes, with the 'regular' class comprising 71,272 

records (93.79% of the total). This study examines the 

effectiveness of various machine learning classification 

algorithms in identifying railway track irregularities using 
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accelerometer data from an in-service train. Unlike 

conventional approaches that rely solely on accelerometer data 

from one side, this study utilizes explicit vibration data from 

both sides of the train body. This approach allows the model 

to distinguish between vibrations originating from 

irregularities on the left rail and those on the right, which often 

have different signal characteristics. The primary goal of this 

classification is to accurately identify various types of track 

irregularities, particularly those that pose critical conditions 

requiring maintenance intervention. This approach aligns with 

the global trend in rail condition monitoring, which is shifting 

from periodic manual or semi-automated inspections to more 

proactive and sustainable data-driven systems [1, 35]. 

3.3 Performance metrics and model evaluation 

A preliminary analysis of the TRV data reveals significant 

class imbalance: normal/regular track conditions comprise 

93% of the dataset (71,272 records). In comparison, 

irregularity classes account for only 6.21% (4,718 records) 

across seven defect categories (Figure 4). This imbalance 

poses a critical challenge for classification algorithms, as 

models may achieve high overall accuracy by predominantly 

predicting the majority class while failing to detect rare but 

safety-critical anomalies. 

Figure 4. Data based on irregularity track 

Table 6. Algorithm performance for classification model 

Algorithm Accuracy 
Macro F1-

Score 

Recall for 

Twist over 3m 

Recall for 

Track Gauge 
Notes 

Naïve Bayes 93.87% 24.48% 0% 1.12% 
3 classes had no precision and 

recall values. 

Support Vector Machine (SVM) 93.79% 12.10% 0% 0% 
Only the 'Regular' class had 

precision and recall values. 

k-NN (k = 5) 95.01% 32.07% 10.04% 14.23% 
1 class (Right Vertical Alignment) 

had no precision and recall values. 

Decision Tree 93.97% 46.89% 2.31% 1.14% 

2 classes (Left Vertical Alignment, 

and Right Vertical Alignment) had 

no precision and recall values. 

Decision Tree w/ hyperparameter tuning 94.60% 71.73% 10.32% 8.28% 

Tuning with criterion: information 

gain, and maximal depth = 18 (All 

classes had precision and recall 

values). 

Random Forest 93.92% 64.22% 0.53% 0.32% 
1 class (Left Vertical Alignment) 

had no precision and recall values. 

Random Forest w/ hyperparameter 

tuning  
96.62% 47.77% 40.75% 46.10% 

Tuning with criterion: Information 

gain, number of trees: 100, 

maximal depth: 40 (All classes 

defined). 

To address this challenge and ensure comprehensive model 

evaluation, we employ multiple performance metrics that 

provide different perspectives on classification effectiveness. 

Given that irregularity data constitute less than 7% of the total, 

accuracy alone is not a suitable metric. For detecting track 

irregularities, especially those that can pose a danger (such as 

Twist over 3m or extreme Track Gauge), high recall is the top 

priority. A focus on recall ensures that all potential safety 

issues are detected, even if it means conducting some extra 

inspections due to False Positives. The cost of False Negatives 

(accidents) is far higher than the cost of False Positives 

(unnecessary inspections). Additionally, the macro F1-Score 

is used to evaluate the classification performance, as it gives 

equal weight to each class, regardless of its size. The macro 

F1-Score is excellent for assessing performance on minority 

classes. The choice of these metrics is crucial given the 

imbalanced nature of the track irregularity data, where the 

'normal' class is far more dominant than the 'defective' or 

'irregular' classes. In this context, accuracy alone is insufficient 

for a comprehensive assessment of model performance, as a 

model could achieve high accuracy simply by classifying most 

samples as 'normal'. Therefore, the macro F1-Score and Recall 

for the minority classes are more relevant indicators of the 

model's ability to detect actual irregularities [36]. 

The implementation results of the machine learning 

algorithms in this study are summarized in Table 6. 

Initial analysis shows that algorithms like Naïve Bayes and 

Support Vector Machine (SVM) exhibit high overall accuracy 

(93.87% and 93.79%, respectively). Still, their performance in 

identifying minority classes is abysmal, with 0% recall for 

Twist and minimal recall for Track Gauge (1.12% and 0%). 

This indicates that these models tend to classify most 

irregularities as usual conditions, potentially jeopardizing 

operational safety. This phenomenon is common in 

imbalanced datasets, where models are biased towards the 

majority class [37]. 

In contrast, decision tree-based algorithms show more 

promising performance in detecting minority classes. A 
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Decision Tree without initial tuning has a macro F1-Score of 

46.89% with a Recall for Twist over 3m of 2.31% and Track 

Gauge of 1.14%. However, after hyperparameter tuning, the 

Decision Tree's performance significantly improves, 

achieving a macro F1-Score of 71.73%, a Recall for Twist 

over 3m of 10.32%, and for Track Gauge of 8.28%. This 

improvement demonstrates that model parameter optimization 

is crucial for enhancing irregularity detection capabilities. 

Although several ensemble algorithms were evaluated, 

Random Forest (RF) was selected for further hyperparameter 

tuning due to its superior accuracy and stability. In similar 

railway infrastructure monitoring applications, RF has been 

shown to achieve the highest accuracy and more consistent F1 

scores than gradient boosting methods such as XGBoost and 

LightGBM [38]. The bagging-based nature of RF makes it 

inherently more resistant to overfitting on imbalanced 

datasets, which characterizes our track defect data. While 

XGBoost and LightGBM exhibited high recall, RF provided a 

better balance between precision and recall, making it a more 

reliable choice for this safety-critical classification task. 

Therefore, optimization efforts were focused on RF 

hyperparameter tuning to maximize its predictive potential. 

Figure 5. Classification algorithm performance 

The RF algorithm, especially after tuning, shows the best 

recall for minority classes. The tuned RF, using the 

information gain criterion, achieves an accuracy of 96.62%, a 

macro F1-Score of 47.77%, a Recall for Twist over 3m of 

40.75%, and a Recall for Track Gauge of 46.10%. Although 

its macro F1-Score is slightly lower than the tuned Decision 

Tree, the significantly higher recall values for Twist over 3m 

and Track Gauge indicate Random Forest's superior ability to 

identify actual irregularities. The performance of the 

classification algorithm is illustrated in Figure 5, showing the 

macro F1-Score and recall for two irregularity parameters 

sensitive to train safety. Accuracy, despite its high value, is 

still less important in this case. 

It should be noted that the recall rate for the 'Twist over 3m' 

category is 40.75%, raising questions about its safety 

implications. We acknowledge that this detection rate is 

inadequate for a standalone real-time warning system. 

However, the primary purpose of this accelerometer-based 

system is to function as a complementary predictive 

maintenance tool, not as a replacement for periodic Track 

Recording Vehicle (TRV) inspections. In safety-critical 

domains such as railways, the trade-off between precision and 

recall must be carefully managed, where the consequences of 

false negatives far exceed those of false positives [39]. By 

identifying 41% of existing twist defects, this system provides 

valuable insights that enable targeted inspection scheduling 

and more efficient allocation of maintenance resources, 

thereby enhancing overall safety by reducing the time window 

during which critical defects may remain undetected. 

This is crucial for predictive maintenance applications, 

where early detection of problems, however rare, is essential 

[40]. The success of Random Forest can be attributed to its 

ensemble nature, which reduces overfitting and improves 

generalization, making it a robust choice for complex 

accelerometer data [41]. 

4. LIMITATIONS AND FUTURE RESEARCH

While this study successfully demonstrates the feasibility of 

using on-board accelerometers for track monitoring in 

Indonesia, its limitations pave the way for critical future 

research. The model, trained on data from the Bandung-

Cikampek line, is inherently specific to its unique track 

characteristics and operational conditions; its performance on 

tracks with different geometries, subgrade conditions, or 

traffic densities remains an open question.  Model 

performance may be significantly influenced by various 

specific track characteristics that warrant further investigation. 

These factors include, but are not limited to, track curvature, 

where lateral forces in curved sections can alter vibration 

response compared to straight track; ballast type and 

condition, as different materials (e.g., crushed stone vs. 

concrete slab) exhibit varying stiffness and damping 

properties; track support conditions, such as subgrade quality 

and the presence of unsupported sleepers, which can lead to 

non-uniform dynamic responses [4]; and variations in traffic 

load and train speed, which directly affect the magnitude of 

wheel-rail dynamic forces. 

Therefore, a crucial next step is to validate and retrain the 

model on a more diverse set of railway lines across Indonesia 

to develop a more generalized and robust national-level 
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detection system. Furthermore, while our dual-sensor 

approach significantly improves the classification of 

irregularity types, the model's recall for critical faults, such as 

'Twist' (40.75%), indicates that it should be considered a 

powerful early-warning system to complement, rather than 

replace, traditional TRV inspections. The next frontier of 

research should focus on bridging this performance gap 

through sensor fusion—integrating accelerometer data with 

other on-board sensors, such as gyroscopes (for rotational 

dynamics) and GPS/IMU (for more precise localization). This 

multi-modal approach could unlock a deeper understanding of 

vehicle-track dynamics and push the system's predictive 

accuracy towards the level required for fully autonomous, real-

time railway asset management. 

5. CONCLUSIONS

This study successfully pioneered a data-driven framework 

for railway track monitoring in Indonesia, proving that on-

board accelerometers in regular in-service trains can serve as 

a viable, high-frequency supplement to traditional TRV 

inspections. Our analysis culminated in the development of a 

hyperparameter-tuned Random Forest model that achieved an 

overall accuracy of 96.62%. More critically, it delivered the 

highest recall rates for the most dangerous types of track 

defects: 40.75% for Twist over 3m and 46.10% for Track 

Gauge irregularities. This achievement marks a significant 

innovation, providing Indonesian railway operators with a 

reliable method to detect high-risk conditions before they 

escalate, thereby directly enhancing operational safety. 

The key innovation presented is not merely the application 

of machine learning, but the validation of a dual-sided 

accelerometer approach against Indonesia's specific regulatory 

standards. By proving this model's capability to identify 

critical faults, this research establishes a precise and reliable 

foundation for the next generation of railway maintenance. 

The immediate follow-up is to transition this validated proof 

of concept into a scalable, real-time monitoring system. This 

work represents a definitive step away from reactive, time-

based maintenance and toward a predictive, data-centric asset 

management strategy, promising a future of safer, more 

efficient, and more resilient railway infrastructure for 

Indonesia. 

Key Implications 

The main implications of this research are highly significant 

for railway infrastructure maintenance, particularly in 

developing countries like Indonesia. By demonstrating the 

feasibility and potential of using on-board accelerometers on 

regularly operating trains to monitor track irregularities, this 

study paves the way for a transition from resource-intensive 

time-based maintenance to a more efficient and sustainable 

predictive maintenance approach. The ability to identify and 

track anomalies more frequently and in real-time, validated 

with accurate TRV data, can not only enhance operational 

safety and passenger comfort through early problem detection 

but also optimize maintenance resource allocation, reduce 

long-term costs, and extend the lifespan of rail assets. This is 

a crucial step towards a smarter and more adaptive railway 

asset management system, ultimately supporting the growth 

and reliability of the national transportation network. 

From a practical deployment perspective, while 

acknowledging the current model's limitations for the 

Bandung-Cikampek line, the proposed system offers a feasible 

and cost-effective solution for enhancing railway maintenance 

regimes. Hardware costs, primarily consisting of MEMS 

accelerometers, GPS modules, and microprocessors, are 

significantly lower than the operational costs of dedicated 

Track Recording Vehicles (TRV), aligning with industry 

needs for economical monitoring solutions [24]. For data 

analysis, the system can be configured for edge processing 

within the train to enable low-latency alerts, or it can transmit 

data to cloud platforms for more in-depth analysis. Successful 

integration into existing systems will depend on data format 

standardization and API development to interface with 

existing maintenance management software.  

Before broader deployment across diverse railway 

networks, the model should be validated and retrained on data 

from various track characteristics, including different 

curvatures, ballast types, and traffic conditions, as discussed 

in the limitations section. By functioning as a first-tier 

continuous monitoring system, this accelerometer-based 

approach can effectively prioritize and optimize the 

deployment of more expensive inspection assets, such as 

TRVs, thereby taking a practical step toward a more efficient 

and proactive predictive maintenance framework aligned with 

the broader digital transformation in the railway sector [1]. 
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