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Addressing the critical need for efficient railway track irregularity detection in Indonesia,
this article presents a novel data-driven approach for continuous track condition monitoring.
By leveraging on-board accelerometer measurements from in-service trains, rigorously
validated against traditional Track Recording Vehicle (TRV) data, this work offers a
significant advancement over conventional periodic inspections. The methodology
uniquely utilizes vibration data from both sides of the train body, enabling precise
identification and classification of various track irregularities. Among several evaluated
machine learning algorithms, a hyperparameter-tuned Random Forest model demonstrated
superior performance, achieving an accuracy of 96.62% and a macro F1-Score of 47.77%.
While achieving an overall classification accuracy of 96.62%, the macro F1-Score of
47.77% highlights the challenges posed by the inherent class imbalance in track defect data,
where the model performs well at identifying normal track conditions but struggles to detect
rare yet critical anomaly classes. Crucially, its high recall for critical irregularities, such as
Twist over 3m (40.75%) and Track Gauge (46.10%), is paramount for safety-critical
railway applications, effectively minimizing dangerous false negatives and ensuring
comprehensive detection of potential hazards. This research highlights the significant
potential of integrating on-board accelerometer data with advanced machine learning to
enable proactive, cost-effective railway asset management, thereby enhancing operational
safety and efficiency.

1. INTRODUCTION

Railway infrastructure is

the backbone of modern

lead to excessive vibrations, premature stress on components,
and uneven wear [7]. Most critically, in extreme cases, these
irregularities can directly trigger train derailments—the most

transportation, enabling the mass movement of goods and
passengers on a national scale [1]. The integrity of this
network hinges on the quality and condition of its tracks,
which are fundamental to operational safety, passenger
comfort, and service reliability [2]. At the heart of track quality
lies track geometry—the precise spatial configuration of the
rails, including parameters like track gauge, alignment, and
vertical profile [3]. While the ideal is a perfectly consistent
track, real-world conditions such as heavy traffic loads,
environmental factors, and infrastructure aging inevitably lead
to geometric deviations [4]. These flaws, known as track
irregularities, represent critical departures from the track's
intended design and position [5].

Track irregularities manifest in three critical dimensions:
vertical (longitudinal level), horizontal (alignment), and
rotational (twist) [6]. Though often invisible to the naked eye,
these geometric faults have a profound impact on train
dynamics. The unsmooth wheel-rail interaction they cause can

2211

catastrophic failure in railway operations—resulting in
substantial material losses and potential casualties [8].
Nowhere is this challenge more pressing than in Indonesia,
where increasing railway traffic and operational speeds
demand unprecedented levels of track quality [9]. Research
indicates that even minor irregularities, those with amplitudes
as small as 0.08 mm, can accelerate the overall deterioration
of track geometry [4]. This makes early and accurate detection
critically important, not just for diagnosing existing problems
but for enabling predictive maintenance strategies [10].
However, traditional inspection methods in Indonesia, which
rely on periodic TRV measurements, lack the frequency
needed for such early detection, making it challenging to
prioritize maintenance and allocate resources effectively [11].
This article addresses this critical gap by proposing and
validating a novel monitoring approach. We demonstrate how
accelerometer data from regular in-service trains can be used
to detect track irregularities more frequently and cost-
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effectively, with performance validated against official TRV
measurements.

Several fundamental reasons underscore the urgency of
measuring track irregularity in modern railway infrastructure
management. First and foremost is operational safety. Track
irregularities directly affect the stability and safety of train
operations [12]. Significant geometric deviations can cause
excessive lateral and vertical oscillations in trains, increasing
the risk of derailment, especially at high speeds [7]. For
instance, extreme twists can cause train wheels to lose contact
with the rails, while severe longitudinal level and alignment
issues can trigger dynamic forces exceeding component design
limits [13]. By identifying and correcting these irregularities,
the potential for accidents can be minimized, protecting the
lives of passengers and crew and preventing costly property
damage.

Secondly, measuring track irregularity improves passenger
comfort. A smooth and stable ride is an indicator of railway
service quality [14]. Track irregularities, even at levels that do
not endanger safety, can cause vibrations and noise that disturb
passenger comfort [5]. Accurate measurements allow
operators to maintain ride quality within acceptable limits,
thereby enhancing passenger satisfaction.

Thirdly, tracking irregularity measurement is vital for
operational efficiency and cost-effective maintenance. By
precisely knowing the location and severity of irregularities,
track managers can plan proactive and targeted maintenance
interventions [15]. Reactive maintenance, performed after
irregularities or incidents occur, tends to be more expensive
and disruptive to operational schedules. Conversely,
predictive maintenance based on irregularity measurement
data allows repairs to be carried out before problems become
critical, thus reducing emergency repair costs, extending the
lifespan of rail components, and minimizing service
disruptions [16]. Furthermore, good track conditions enable
trains to operate at their design speeds without restrictions,
which increases the overall capacity and efficiency of the
network [17].

Fourthly, track irregularity measurement data forms an
essential basis for strategic decision-making regarding
infrastructure investment [18]. By analyzing irregularity
trends over time, operators can identify track segments prone
to degradation, evaluate the effectiveness of existing
maintenance programs, and plan future rehabilitation or
upgrade projects. This ensures that investments are made in
areas most in need, maximizing the value of every expenditure
[19].

The development of modern technology has opened new
opportunities in rail condition monitoring. Most railway
operators now use Track Geometry Measurement Systems
(TGMS) to measure track geometry automatically [20].
However, traditional approaches relying on periodic
measurements using specialized vehicles like TRVs have
limitations in terms of measurement frequency and operational
costs [21]. Therefore, recent research has begun to explore the
use of on-board accelerometer sensors on regularly operating
trains as a more efficient and sustainable alternative [5].
Overall, track irregularity measurement is not merely a
technical routine but an essential practice that supports the
main pillars of railway operations: safety, comfort, efficiency,
and sustainability [1]. It is an investment in the long-term
integrity and performance of the entire railway system,
becoming increasingly important as demands for safe,
comfortable, and reliable transportation services rise.
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The growing demand for train-based land transportation in
Indonesia is driven by the absence of traffic congestion, which
results in more predictable travel times. To continuously
enhance the trust and comfort of train users, monitoring and
maintaining railway track conditions are essential. Currently,
rail maintenance in Indonesia predominantly employs time-
based maintenance, involving daily inspections by track
inspectors (Juru Pemeriksa Jalan rel - JPJ) who walk 4-6 km
before the first train traverses the inspected segment. This
approach requires significant effort, a large workforce, and is
relatively time-consuming. In addition to daily routine
inspections, rail condition checks are also performed using
TRVs every three months. The use of TRVs to monitor rail
conditions yields a set of Track Quality Index (TQI) values
that serve as a reference for determining optimal speeds on
specific track segments. TQI is calculated by assessing four
track geometry parameters: superelevation, alignment,
gradient, and curvature. TRV measurement results are
recorded through a set of relevant sensors that also log the
TRV's speed.

Globally, the railway industry is experiencing a
transformative shift from classical time-based maintenance
schedules toward data-driven predictive maintenance (PdM)
strategies. A systematic review by Bianchi et al. [1] affirms
that the growth in number and performance of Structural
Health Monitoring (SHM) tools and innovative data-driven
models, particularly those based on Al, is rapidly rendering
classical approaches obsolete. International trends
demonstrate increasing adoption of Wireless Sensor Networks
(WSN) and Al models for collecting and processing real-time
data from various infrastructure components. This integrated
approach enables comprehensive track failure prediction and
more effective resource management. By positioning our
research within this global context, we aim to bridge the gap
between current monitoring practices in Indonesia and cutting-
edge technological advances adopted internationally.

To address the specific challenges of Indonesian railway
infrastructure monitoring, this study develops and validates a
novel methodology that integrates on-board accelerometer
data with machine learning. The following section details our
approach to continuous track condition monitoring and
irregularity detection.

2. METHODOLOGY

This research introduces an alternative approach to
identifying track irregularities by correlating Track Recording
Vehicle (TRV) measurements with vibration metrics collected
from accelerometers on in-service trains. The analyzed track
geometry parameters include vertical irregularity, horizontal
alignment, cross-level, twist (over 3m), and track gauge. By
integrating data from both sources, this study aims to improve
the detection and mapping of irregularities along selected track
segments.

Low-cost tri-axial accelerometers are installed on the bodies
of operational trains traversing specific track sections within
DAOP 2 Bandung (Daerah Operasi/Operational Area 2,
Bandung) to measure vibration metrics. Sensor placement on
the train body enables the capture of dynamic responses
resulting from interactions between the wheels and the track.
On-board monitoring reduces installation risk versus under-
car mounting and lowers exposure to debris or harsh
environments, thereby improving sensor longevity. This



approach significantly enhances ease and safety of installation,
as sensors can be placed in accessible, protected locations
within or on the train body structure, minimizing the need for
complex, high-risk technical interventions under the train or
near the wheels. Furthermore, the risk of irregularity sensor
from direct contact with track elements, debris, or extreme
environmental conditions (such as water, mud, or undamped
excessive vibrations) is drastically minimized, ensuring the
integrity and longevity of the devices. From an environmental
impact perspective, mounting the sensor on the train body also
reduces direct exposure to extreme temperature variations,
high humidity, and other contaminants common under the
train, thereby maintaining the accuracy and reliability of the
collected data. Recent research supports the effectiveness of
this method, as demonstrated by a 2024 study that successfully
estimated track irregularities from train body vibrations [22],
and a 2025 study that integrated accelerometers with machine
learning for track gauge detection, emphasizing the reliability
of models combined with on-board accelerometer data [23].
The use of accelerometers in on-board monitoring not only
optimizes the monitoring process but also aligns with modern
trends in data-driven predictive maintenance for railway
infrastructure. These sensors provide detailed acceleration
data in the vertical, lateral, and longitudinal directions, which
is crucial for identifying irregularities. The accelerometer data
is recorded on the same day and at the exact locations as the
TRV measurements, with time-stamp synchronization to
ensure accurate alignment between the datasets. Vibration
measurements using accelerometers on the train body are also
equipped with a GPS sensor to record the train's position.
While GPS provides essential location information, its
inherent inaccuracies can make it difficult to synchronize
accelerometer measurements with the actual track location
precisely, necessitating the use of additional correction or
validation methods.

The decision to install accelerometers on both left and right
sides of the train body represents a fundamental aspect of our
methodology, designed to capture directional vibration
differences essential for comprehensive track irregularity
diagnosis. This bilateral configuration enables simultaneous
comparative analysis of the train's dynamic response under
left- and right-rail conditions. As supported by previous
research [24, 25], this configuration is critical for identifying
geometric irregularities such as cross-level (elevation
difference between two rails) and twist (change in cross-level
over a specified distance). By analyzing phase and amplitude
differences between left and right accelerometer signals, our
model can effectively distinguish between pure vertical
motion and rolling or lateral motion, which are key indicators
of safety-critical track defect types.

A data-driven approach is employed to process and analyze
the measurement results. Machine learning models are used to
detect anomalies in track geometry, map irregularities to their
corresponding track locations, and categorize them based on
severity and type. The analysis leverages both spatial and
temporal correlations between the TRV and accelerometer
datasets to build a robust predictive framework for track
condition monitoring. By analyzing the train body’s dynamic
response to track irregularities, this methodology enables the
development of predictive models to identify potential issues
and prioritize maintenance actions. The approach provides an
efficient and scalable solution for continuous track
monitoring, ultimately enhancing railway safety and
maintenance strategies.
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The procedural workflow of this research is illustrated in
Figure 1, which shows the complete process from data
collection through TRV and accelerometer measurements,
preprocessing and feature extraction, machine learning model
development, to final track irregularity classification and
validation.

Data collection

h

Track Geometry
result of TRV

i
i

Train dyna
accelerom

[

ic response
ter results

h 4

Descriptive analysis b
of measurement
results

Preprocessing and
feature exctraction

A

Analysis of
measurement
results using
machine learning
algorithms

A

A 4

Track irregularity condition based
on track geometry of train
dynamic response results

( END )

Figure 1. Track irregularity identification using a data-driven
approach

The proposed monitoring approach emphasizes analyzing
trains’ dynamic responses as they traverse track irregularities
caused by geometric abnormalities. Accelerometers installed
on regular passenger trains capture acceleration data reflecting
the train’s interaction with the track geometry. This data is
then compared with TRV (EMI120 measuring train)
measurements collected on the same railway segments.
Machine learning techniques correlate findings from the two
methods, identifying specific track anomalies. Detailed
methodologies, including sensor placement, data collection,
and model development, are elaborated further in subsequent
sections of the paper.

3. RESULTS AND DISCUSSION

TRV measurements are conducted continuously along
specific track segments. The data from these measurements
serve as the 'ground truth' or validation data for newer
methods, as indicated in studies [22, 26], which use actual
measurement data to validate irregularity estimation models.
The four track geometry parameters modeled for irregularity
estimation are:



a. Track gauge: Measured with front, middle, and rear
trolleys over a distance of 20 meters.

b. Vertical profile: Refers to the average longitudinal
alignment. The deviation of the vertical profile of the right
and left rails is calculated over a distance of 40 meters.

c. Horizontal alignment: Measured every 40 meters for the
right and left rails.

d. Cross-level/cant: Calculated using the formula

S=gXxsiné 1
where, S is the superelevation (cant), g is the distance between
the railheads, and 6 is the angle of the track's horizontal curve.

The value for each track geometry parameter is displayed in
millimeters. The accumulation of the standard deviations of
the measured geometry parameters yields the TQI value, as per
the following formula:

TQI = Z(Std Dev of geometry parameter)
X TQI multiplier

2

The TQI value determines the comfort and safety of the
train journey, making it a reference for setting speed limits on
measured track segments. Currently, the speed reference for
track segments in Indonesia based on TQI values is shown in
Table 1.

Table 1. Track condition categories based on TQI [27]

Total TQI  Speed (km/h)
<20 100 — 200
20 -35 80— 100
35-50 60 — 80
> 50 <60

The results of track condition monitoring, whether by JPJ or
TRV, produce a record of the track's state, which guides
necessary maintenance actions. If track irregularity is
indicated, a repair plan is formulated, including the schedule,
repair type, supporting equipment, and cost. TRV
measurement data is stored in a specific format prepared by
the TRV. The railway operator in Indonesia uses the
measurement results in two report formats: '"Track Quality by
device' and 'exception report'. The data structures for these two
reports are summarized in Tables 2 and 3.

Table 2. Data format for track quality by device

No. Field Data Type
1 Track Identity String
2 Segment Code Char [7]
3 Speed Integer
4 Class ID Integer
5 Measurement Date Date
6 Start position (km) Integer
7 Start position (m) Integer
8 End position (km) Integer
9 End position (m) Integer
10 Device type Char [4]
11 Length (m) Integer
12 Class Integer
13 Cant (mm) Real
14 Longitudinal Level (mm) Real
15 Alignment (mm) Real
16 Track Gauge (mm) Real
17 Total TQI Real

2214

The track irregularity identified in the exception report is
limited to track geometry parameters, which consist of:

a. Longitudinal Level (Vertical Irregularity): Refers to the
vertical deviation or change in rail elevation from the
intended longitudinal profile, which should be straight or
follow a planned vertical curve. This can manifest as
undulations (wave-like up-and-down movements) or local
depressions (sudden drops). This type of irregularity can
cause vertical vibrations in the train, increase dynamic
loads on the rails and wheels, and affect passenger
comfort. Common causes include uneven subgrade
consolidation, ballast settlement, or sleeper irregularity.

Table 3. Data format for exception report

Field
Track Identity
Segment Code
Speed
Class ID
Measurement Date
Start position (km)
Start position (m)
End position (km)
End position (m)
Measurement Distance (m)
Parameter (irregularity)
Irregularity Length(mm)
Max Location (km)
Max Location (m)
Rail Class

Data Type
String
Char [7]
Integer
Integer
Date
Integer
Integer
Integer
Integer
Integer
String
Integer
Integer
Integer
Integer

:gxooo\xcxw.nww»—g

12
13
14
15

Alignment (Horizontal Irregularity): Describes the
horizontal deviation of the rail from the planned lateral
alignment, on both straight and curved segments.
Alignment issues can involve inward or outward
deflection from the track's centerline. Horizontal
irregularities can trigger lateral oscillations (sideways
movements) in the train, increase lateral forces on the
rails, and accelerate wear on the rail sides and wheel
flanges. Contributing factors include lateral ground
movement, lateral pressure from train traffic, or improper
maintenance.

Cant (Cross-level or Superelevation Irregularity): This is
the difference in height between the two rails in a cross-
sectional view of the track. On straight segments, the ideal
cant is zero (both rails are horizontally level). On curved
segments, cant is intentionally introduced (one rail is
higher than the other) to counteract centrifugal force.
Irregularity occurs when this height difference deviates
from the planned value. This can lead to an imbalance of
centrifugal forces on curves, trigger lateral vibrations, and
increase the risk of derailment if the cant is too large or
too small for the train's speed.

Track Gauge Irregularity: Refers to the deviation of the
distance between the inner faces of the railheads from the
standard gauge (e.g., 1067 mm for tracks in Indonesia). A
gauge that is too narrow can cause wheels to jam or climb
the rail, while a gauge that is too wide can cause wheels
to drop into the track or increase wheel flange wear. Both
conditions are hazardous and can lead to derailment.
Changes in track gauge can be caused by rail wear, sleeper
movement, or fastening failure.

Twist Irregularity: This is the relative change in cant over
a specific distance. A twist measured over 3 meters is
called 'Skilu 3m'. Twist occurs when one rail rises or falls



significantly relative to the other over a short distance.
This type of irregularity is hazardous because it can cause
one wheel to lose contact with the rail, increasing the load
on the other wheels and potentially leading to derailment.
Twist is often a combination of non-uniform longitudinal
level and cant.

Track condition measurement data were collected from
eight quarterly measurements, spanning from early 2020 to the
end of 2022, using a TRV on the track between Bandung and
Cikampek stations (BD — CKP). The TRV's speed was 100
km/h over a distance of 71 km, from km 84+007 to km
155+134. The irregularity value thresholds set in Indonesian
rail maintenance regulations, according to Kurniawan and
Rulhendri [27], are described in Table 4.

Table 4. Irregularity value thresholds per category

Parameter New Catl Cat2 Cat3 Cat4
Longitudinal Level (mm) 1 2 5 8 >8
Alignment (mm) 1 15 4 10 >10
Cant (mm) 1 2 6 9 >9

Track Gauge (mm) 0 2 5 10 >10
Twist over 3 m (mm) 2 6.5 9 12 >12
TQI (max) 10 20 35 50 >50
Gapeka speed(km/h) 120-100 100-80 80-60 <60

According to Alamsyah [28], irregularity values exceeding
the tolerance range fall into Category 3 and Category 4. This
is used to determine the irregularity parameters in the
Exception Report that require maintenance intervention.

Based on the irregularity parameter measurement data and
exception reports, the data in this article show a defect
percentage below 7%, with the profile depicted in Figure 2.
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SR Lt vertical Algnment
1.17% eft Vertical Alignmen

® Right Horizontal Alignment

Regular Twist over 3m

H Right Vertical Alignment
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Cross-level w

0.54% ® Regular

Left Horizontal
Alignment
1.03%

Left Vertical
Alignment
0.31%

Right Horizontal Right Vertical
Alignment

0.19%

Alignment
1.87%

Figure 2. Percentage of track irregularities in the data

Figure 2 illustrates the distribution of track irregularities
across the eight measurement periods, revealing that 93.79%
of the TRV measurement data indicates normal track
conditions within standard thresholds. Among the irregularity
categories, Right Horizontal Alignment (1.87%) and Left
Horizontal Alignment (1.03%) have the highest occurrences,
while Right Vertical Alignment (0.19%) has the lowest. This
distribution pattern is characteristic of well-maintained
railway infrastructure, where major defects are relatively rare
but require immediate attention when detected.

The predominance of regular conditions, while positive
from a safety perspective, presents a significant challenge for
machine learning classification due to severe class imbalance,
necessitating careful selection of evaluation metrics and
potentially requiring specialized techniques such as class
weighting or synthetic minority oversampling.
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3.1 Data-driven approach with on-board accelerometers

Considering that the current track condition measurement
process in Indonesia is conducted every three months using a
TRV, this research aims to find an alternative monitoring
mechanism that can be performed more intensively with more
optimal use of human resources, time, and monitoring costs
[5]. Kurniawan and Rulhendri [27] state that vibrations felt
during a train journey can be caused by defects in the rail
structure or by non-compliance with the ideal track geometry
conditions set when the track was built. Similarly, De Rosa et
al. [29] describe a machine learning classification model for
predicting lateral and cross-level track geometry irregularities
using accelerometers installed on in-service passenger trains.
Considering several relevant studies [30-32], the explored
alternative for track monitoring is to map the vibration
measurement data from accelerometers installed on the body
of an in-service passenger train with the TRV measurement
results at relatively the same time and position. The TRV
measurement values, which specifically identify track
irregularities based on rail geometry, will serve as a reference
for mapping the measured vibrations.

Recent research has investigated the use of in-service trains
as a viable method for measuring geometry-based rail
abnormalities [33]. According to Tsunashima [34], installing
on-board sensors on in-service trains generates real-time data
during routine operations, thereby eliminating the need for
specialized inspection trains (TRVs). This method has proven
effective in detecting minor anomalies that might otherwise go
unnoticed, making it a cost-effective solution for continuous
monitoring—for example, Weston et al. [31] found that
equipping in-service trains with modern measurement
instruments enabled consistent, precise assessment of track
geometry over time. The study concluded that monitoring
track conditions with in-service trains can significantly reduce
operational expenses while enhancing safety and maintenance
efficiency.

Given various factors related to accelerometer placement,
this study chose the train body for installation. The
accelerometer used is the DFRobot SEN0386, which offers
high accuracy and provides a 6-axis gyroscope value. This
module is equipped with advanced Kalman filtering,
effectively reducing measurement noise and improving
accuracy. A Sth-order Butterworth high-pass filter with a
cutoff frequency of 0.5 Hz was applied to the accelerometer
data. This cutoff frequency was selected using the carriage-
passing frequency approach, in which the cutoff is set at
approximately one-half to one-third of the carriage-passing
frequency. For typical train speeds of 80-120 km/h and
carriage lengths of 20-25 m, the carriage passing frequency
ranges from 0.9 to 1.7 Hz, making 0.5 Hz an appropriate lower
bound that preserves track geometry-related vibrations (0.5-20
Hz) while removing DC offset and ultra-low-frequency drift.
The fifth-order design provides a sharp transition between the
stopband and passband, effectively removing gravitational
bias while maintaining signal integrity in the frequency range
of interest. It generates acceleration data in 3 axes (Ax, Ay,
Az) and is mounted on the left and right sides of the train body.
The accelerometers monitor three acceleration channels (in g
units) and three rotation channels for each carriage. Time and
GPS sensors are also installed to obtain current position data.
The output specifications of this accelerometer are:

a. Acceleration (3D) in the range of +/- 2/4/8/64 g (optional)



b. Angular velocity (3D) in the of +/-

250/500/1000/2000 °/s

Attitude angle (3D) of +/- 180°.
These sensors provide acceleration data for each of the six
DOFs in the car body. The measured train acceleration on each
side is divided into three axes: the X-axis represents the
direction of train movement, the Y-axis represents the lateral
direction, and the Z-axis represents vertical vibration. Due to
gravity, a low-frequency signal component causes the
acceleration to shift upward on the z-axis by approximately 9.8
m/s%. To eliminate this effect, a high-pass filtering procedure
is used.

The measurement media in this research consist of
accelerometer sensors, positioning sensors, and storage for the
measurement results. Figure 3 shows an image of this

measurement media.

range

C.

1k

Figure 3. Measurement media with DFRobot accelerometer

The measurement results are stored on a memory card, with
the file structure is summarized in Table 5.

Table 5. Data storage format for accelerometer results

No. Field Data Type
1 Measurement Date Date
2 Time Time
3 Longitude Real
4 Latitude Real
5 Speed Real
6 Left Ax Real
7 Left Ay Real
8 Left Az Real
9 Right Ax Real

10 Right Ay Real
11 Right Az Real

3.2 Machine learning for irregularity classification

In line with the research objectives, the next step is to apply
a data-driven approach to map the accelerometer measurement
results from the in-service train with the exception report from
the TRV measurements. The process involves the following
steps:
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Data Preprocessing: The data that will serve as the
validator for determining track irregularities is
preprocessed. Each rail measurement result from the
TRV is examined. Each geometry parameter's value
is checked against the standard and irregularity
thresholds.

Validation: Track segment data with a status above
the standard threshold is validated against the
exception report data, which contains explicit rail
geometry values in categories 3 and 4. If the location
of the irregularity does not match the data in the
exception report, the standard deviation of the data
set in the corresponding track segment is calculated.
Anomaly Mapping: The position and irregularity
parameters of the anomalies identified from the
comparison of TRV measurements are determined
and used as a reference for mapping the track status
from the accelerometer measurements on the in-
service train.

Data Integration: The in-service train measurement
results are combined with the track irregularity
measurements from the TRV after spatial and
temporal synchronization. Spatial synchronization is
achieved by matching GPS coordinates from both
datasets, with a tolerance of £5 meters to account for
GPS positioning inaccuracies. Temporal
synchronization  ensures that  accelerometer
measurements are matched with TRV data collected
within the same measurement period (+7 days) to
minimize the effects of changes in track condition
over time. In cases where multiple TRV
measurements are available for a given location, the
temporally closest measurement is selected as the
ground truth reference.

Machine Learning Modeling: A classification model
is developed to classify the magnitude of
vibration/acceleration from the 3-axis accelerometers
on both sides of the in-service train, using the
irregularity labels from the TRV data at relatively the
same position and time.

Classification: The classification results will identify
the magnitude of acceleration from the three axes (x,
y, z) on both sides of the train based on the seven
established track irregularity parameters.

Testing: The model is tested with acceleration data to
predict the relevant track irregularity parameters.
Performance Evaluation: The performance of the
classification model is measured, with a focus on
accuracy and other relevant metrics.

Following this process, a dataset of 75,990 records was
obtained, comprising eight features: velocity, acceleration in
three axes (from the accelerometer) on both sides of the in-
service train, and the type of track irregularity parameter from
the TRV measurements.

The track irregularity parameter is divided into eight labels
for classification (1 normal/regular condition and seven
irregularity conditions). The other seven features are
continuous (numeric).

Figure 4 shows the distribution of data across the 7 track
irregularity classes, with the regular' class comprising 71,272
records (93.79% of the total). This study examines the
effectiveness of various machine learning classification
algorithms in identifying railway track irregularities using



accelerometer data from an in-service train. Unlike
conventional approaches that rely solely on accelerometer data
from one side, this study utilizes explicit vibration data from
both sides of the train body. This approach allows the model
to distinguish between vibrations originating from
irregularities on the left rail and those on the right, which often
have different signal characteristics. The primary goal of this
classification is to accurately identify various types of track
irregularities, particularly those that pose critical conditions
requiring maintenance intervention. This approach aligns with
the global trend in rail condition monitoring, which is shifting
from periodic manual or semi-automated inspections to more
proactive and sustainable data-driven systems [1, 35].

3.3 Performance metrics and model evaluation

A preliminary analysis of the TRV data reveals significant
class imbalance: normal/regular track conditions comprise
93% of the dataset (71,272 records). In comparison,
irregularity classes account for only 6.21% (4,718 records)
across seven defect categories (Figure 4). This imbalance
poses a critical challenge for classification algorithms, as

models may achieve high overall accuracy by predominantly
predicting the majority class while failing to detect rare but
safety-critical anomalies.
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Figure 4. Data based on irregularity track

Table 6. Algorithm performance for classification model

Algorithm Accurac Macro F1- Recall for Recall for Notes
Y y Score Twist over 3m Track Gauge
Na'we Bayes 93.87% 24.48% 0% 1.12% 3 classes had no precision and
recall values.
Support Vector Machine (SVM) 93.79% 12.10% 0% 0% Only the ‘Regular’ class had
precision and recall values.
K-NN (k = 5) 95.01% 32.07% 10.04% 1423y L Class (Right Vertical Alignment)
had no precision and recall values.
2 classes (Left Vertical Alignment,
Decision Tree 93.97% 46.89% 2.31% 1.14% and Right Vertical Alignment) had
no precision and recall values.
Tuning with criterion: information
Decision Tree w/ hyperparameter tuning 94.60% 71.73% 10.32% 8.28% gain, and maX|ma_I erth =18 (All
classes had precision and recall
values).
Random Forest 93.92% 64.22% 0.53% 03205 1 olass (Left Vertical Alignment)
had no precision and recall values.
Tuning with criterion: Information
Random Forest w/ hyperparameter 96.62% 47.77% 40.75% 46.10% gain, number of trees: 100,

tuning

maximal depth: 40 (All classes
defined).

To address this challenge and ensure comprehensive model
evaluation, we employ multiple performance metrics that
provide different perspectives on classification effectiveness.
Given that irregularity data constitute less than 7% of the total,
accuracy alone is not a suitable metric. For detecting track
irregularities, especially those that can pose a danger (such as
Twist over 3m or extreme Track Gauge), high recall is the top
priority. A focus on recall ensures that all potential safety
issues are detected, even if it means conducting some extra
inspections due to False Positives. The cost of False Negatives
(accidents) is far higher than the cost of False Positives
(unnecessary inspections). Additionally, the macro F1-Score
is used to evaluate the classification performance, as it gives
equal weight to each class, regardless of its size. The macro
F1-Score is excellent for assessing performance on minority
classes. The choice of these metrics is crucial given the
imbalanced nature of the track irregularity data, where the
'normal' class is far more dominant than the 'defective' or
"irregular’ classes. In this context, accuracy alone is insufficient
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for a comprehensive assessment of model performance, as a
model could achieve high accuracy simply by classifying most
samples as 'normal'. Therefore, the macro F1-Score and Recall
for the minority classes are more relevant indicators of the
model's ability to detect actual irregularities [36].

The implementation results of the machine learning
algorithms in this study are summarized in Table 6.

Initial analysis shows that algorithms like Naive Bayes and
Support Vector Machine (SVM) exhibit high overall accuracy
(93.87% and 93.79%, respectively). Still, their performance in
identifying minority classes is abysmal, with 0% recall for
Twist and minimal recall for Track Gauge (1.12% and 0%).
This indicates that these models tend to classify most
irregularities as usual conditions, potentially jeopardizing
operational safety. This phenomenon is common in
imbalanced datasets, where models are biased towards the
majority class [37].

In contrast, decision tree-based algorithms show more
promising performance in detecting minority classes. A



Decision Tree without initial tuning has a macro F1-Score of
46.89% with a Recall for Twist over 3m of 2.31% and Track
Gauge of 1.14%. However, after hyperparameter tuning, the
Decision Tree's performance significantly improves,
achieving a macro F1-Score of 71.73%, a Recall for Twist
over 3m of 10.32%, and for Track Gauge of 8.28%. This
improvement demonstrates that model parameter optimization
is crucial for enhancing irregularity detection capabilities.
Although several ensemble algorithms were evaluated,
Random Forest (RF) was selected for further hyperparameter
tuning due to its superior accuracy and stability. In similar

100%
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40%
30%
20%
10%

0%

Naive Bayes Support Vector  k-NN (with k = 5)

Machine (SVN)

. Accuracy

Decision Tree

= Macro F1-Score

railway infrastructure monitoring applications, RF has been
shown to achieve the highest accuracy and more consistent F1
scores than gradient boosting methods such as XGBoost and
LightGBM [38]. The bagging-based nature of RF makes it
inherently more resistant to overfitting on imbalanced
datasets, which characterizes our track defect data. While
XGBoost and LightGBM exhibited high recall, RF provided a
better balance between precision and recall, making it a more
reliable choice for this safety-critical classification task.
Therefore, optimization efforts were focused on RF
hyperparameter tuning to maximize its predictive potential.

Random Forest Random Forest w/
hyperparameter
tuning

Decision Tree w/
hyperparameter
tuning

»Recall for Twist over 3m Recall for Track Gauge

Figure 5. Classification algorithm performance

The RF algorithm, especially after tuning, shows the best
recall for minority classes. The tuned RF, using the
information gain criterion, achieves an accuracy of 96.62%, a
macro F1-Score of 47.77%, a Recall for Twist over 3m of
40.75%, and a Recall for Track Gauge of 46.10%. Although
its macro F1-Score is slightly lower than the tuned Decision
Tree, the significantly higher recall values for Twist over 3m
and Track Gauge indicate Random Forest's superior ability to
identify actual irregularities. The performance of the
classification algorithm is illustrated in Figure 5, showing the
macro F1-Score and recall for two irregularity parameters
sensitive to train safety. Accuracy, despite its high value, is
still less important in this case.

It should be noted that the recall rate for the "Twist over 3m'
category is 40.75%, raising questions about its safety
implications. We acknowledge that this detection rate is
inadequate for a standalone real-time warning system.
However, the primary purpose of this accelerometer-based
system is to function as a complementary predictive
maintenance tool, not as a replacement for periodic Track
Recording Vehicle (TRV) inspections. In safety-critical
domains such as railways, the trade-off between precision and
recall must be carefully managed, where the consequences of
false negatives far exceed those of false positives [39]. By
identifying 41% of existing twist defects, this system provides
valuable insights that enable targeted inspection scheduling
and more efficient allocation of maintenance resources,
thereby enhancing overall safety by reducing the time window
during which critical defects may remain undetected.

This is crucial for predictive maintenance applications,
where early detection of problems, however rare, is essential
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[40]. The success of Random Forest can be attributed to its
ensemble nature, which reduces overfitting and improves
generalization, making it a robust choice for complex
accelerometer data [41].

4. LIMITATIONS AND FUTURE RESEARCH

While this study successfully demonstrates the feasibility of
using on-board accelerometers for track monitoring in
Indonesia, its limitations pave the way for critical future
research. The model, trained on data from the Bandung-
Cikampek line, is inherently specific to its unique track
characteristics and operational conditions; its performance on
tracks with different geometries, subgrade conditions, or
traffic densities remains an open question. Model
performance may be significantly influenced by various
specific track characteristics that warrant further investigation.
These factors include, but are not limited to, track curvature,
where lateral forces in curved sections can alter vibration
response compared to straight track; ballast type and
condition, as different materials (e.g., crushed stone vs.
concrete slab) exhibit varying stiffness and damping
properties; track support conditions, such as subgrade quality
and the presence of unsupported sleepers, which can lead to
non-uniform dynamic responses [4]; and variations in traffic
load and train speed, which directly affect the magnitude of
wheel-rail dynamic forces.

Therefore, a crucial next step is to validate and retrain the
model on a more diverse set of railway lines across Indonesia
to develop a more generalized and robust national-level



detection system. Furthermore, while our dual-sensor
approach significantly improves the classification of
irregularity types, the model's recall for critical faults, such as
'"Twist' (40.75%), indicates that it should be considered a
powerful early-warning system to complement, rather than
replace, traditional TRV inspections. The next frontier of
research should focus on bridging this performance gap
through sensor fusion—integrating accelerometer data with
other on-board sensors, such as gyroscopes (for rotational
dynamics) and GPS/IMU (for more precise localization). This
multi-modal approach could unlock a deeper understanding of
vehicle-track dynamics and push the system's predictive
accuracy towards the level required for fully autonomous, real-
time railway asset management.

5. CONCLUSIONS

This study successfully pioneered a data-driven framework
for railway track monitoring in Indonesia, proving that on-
board accelerometers in regular in-service trains can serve as
a viable, high-frequency supplement to traditional TRV
inspections. Our analysis culminated in the development of a
hyperparameter-tuned Random Forest model that achieved an
overall accuracy of 96.62%. More critically, it delivered the
highest recall rates for the most dangerous types of track
defects: 40.75% for Twist over 3m and 46.10% for Track
Gauge irregularities. This achievement marks a significant
innovation, providing Indonesian railway operators with a
reliable method to detect high-risk conditions before they
escalate, thereby directly enhancing operational safety.

The key innovation presented is not merely the application
of machine learning, but the validation of a dual-sided
accelerometer approach against Indonesia's specific regulatory
standards. By proving this model's capability to identify
critical faults, this research establishes a precise and reliable
foundation for the next generation of railway maintenance.
The immediate follow-up is to transition this validated proof
of concept into a scalable, real-time monitoring system. This
work represents a definitive step away from reactive, time-
based maintenance and toward a predictive, data-centric asset
management strategy, promising a future of safer, more
efficient, and more resilient railway infrastructure for
Indonesia.

Key Implications

The main implications of this research are highly significant
for railway infrastructure maintenance, particularly in
developing countries like Indonesia. By demonstrating the
feasibility and potential of using on-board accelerometers on
regularly operating trains to monitor track irregularities, this
study paves the way for a transition from resource-intensive
time-based maintenance to a more efficient and sustainable
predictive maintenance approach. The ability to identify and
track anomalies more frequently and in real-time, validated
with accurate TRV data, can not only enhance operational
safety and passenger comfort through early problem detection
but also optimize maintenance resource allocation, reduce
long-term costs, and extend the lifespan of rail assets. This is
a crucial step towards a smarter and more adaptive railway
asset management system, ultimately supporting the growth
and reliability of the national transportation network.
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From a practical deployment perspective, while
acknowledging the current model's limitations for the
Bandung-Cikampek line, the proposed system offers a feasible
and cost-effective solution for enhancing railway maintenance
regimes. Hardware costs, primarily consisting of MEMS
accelerometers, GPS modules, and microprocessors, are
significantly lower than the operational costs of dedicated
Track Recording Vehicles (TRV), aligning with industry
needs for economical monitoring solutions [24]. For data
analysis, the system can be configured for edge processing
within the train to enable low-latency alerts, or it can transmit
data to cloud platforms for more in-depth analysis. Successful
integration into existing systems will depend on data format
standardization and API development to interface with
existing maintenance management software.

Before broader deployment across diverse railway
networks, the model should be validated and retrained on data
from various track characteristics, including different
curvatures, ballast types, and traffic conditions, as discussed
in the limitations section. By functioning as a first-tier
continuous monitoring system, this accelerometer-based
approach can effectively prioritize and optimize the
deployment of more expensive inspection assets, such as
TRVs, thereby taking a practical step toward a more efficient
and proactive predictive maintenance framework aligned with
the broader digital transformation in the railway sector [1].

AUTHOR CONTRIBUTIONS

All authors have contributed to the results of this study.
They begin with research preparation, including finding
references, system design, system testing, and manuscript
preparation, and continue through to the final revision results.

ACKNOWLEDGMENT

The authors would like to express their deepest gratitude to
the Institut Teknologi Bandung for providing the necessary
resources and support throughout this research. The author
also expresses his appreciation to the Infrastructure Division
of PT Kereta Api Indonesia (PT KAI) for their willingness to
participate in discussions and assist in the implementation of
this research.

REFERENCES

Bianchi, G., Fanelli, C., Freddi, F., Giuliani, F., La Placa,
A. (2025). Systematic review railway infrastructure
monitoring: From classic techniques to predictive
maintenance. Advances in Mechanical Engineering,
17(1): 16878132241285631.
https://doi.org/10.1177/16878132241285631
Haigermoser, A., Eickhoff, B., Thomas, D., Coudert, F.,
et al. (2014). Describing and assessing track geometry
quality. Vehicle System Dynamics, 52(supl): 189-206.
https://doi.org/10.1080/00423114.2014.889318

Farkas, A. (2020). Measurement of railway track
geometry: A state-of-the-art review. Periodica
Polytechnica Transportation Engineering, 48(1): 76-88.
https://doi.org/10.3311/PPtr.14145

Loidolt, M., Weilguny, R., Marschnig, S. (2024). Impact

(1]

(2]

(4]



(3]

(8]
[9]

[10]

[11]

[12]

[16]

[17]

(18]

of rail irregularities on longitudinal level deterioration
based on deconvoluted data. Infrastructures, 9(9): 162.
https://doi.org/10.3390/infrastructures9090162

Sansifiena, A., Rodriguez-Arana, B., Arrizabalaga, S.
(2025). A systematic review of acceleration-based
estimation of railway track quality. Vehicle System

Dynamics, 2483972: 1-28.
https://doi.org/10.1080/00423114.2025.2483972
Track geometry — Wikipedia. Wikipedia. (2024).

https://en.wikipedia.org/wiki/Track geometry.

Choi, I.I.Y., Um, J.H., Lee, J.S., Choi, H.H. (2013). The
influence of track irregularities on the running behavior
of high-speed trains. Proceedings of the Institution of
Mechanical Engineers, Part F: Journal of Rail and Rapid
Transit, 227(1): 94-102.
https://doi.org/10.1177/0954409712455146

Chai, G., Liu, W. (2019). Safety analysis of railway track
irregularity. China Safety Science Journal, 29(S2): 57.
Peixer, M.A., Montenegro, P.A., Carvalho, H., Ribeiro,
D., Bittencourt, T.N., Cal¢ada, R. (2021). Running safety
evaluation of a train moving over a high-speed railway
viaduct under different track conditions. Engineering
Failure Analysis, 121: 105133.
https://doi.org/10.1016/j.engfailanal.2020.105133

Qiu, L., Zhu, M., Jiang, Y., Teng, H.H., Park, J.W.
(2025). Non-disruptive rail track geometry measurement
system using an unmanned aerial vehicle and a light
detection and ranging sensor. International Journal of
Transportation Science and Technology, 2: 8.
https://doi.org/10.1016/j.ijtst.2025.02.008

Chen, Q., Niu, X., Zuo, L., Zhang, T., Xiao, F., Liu, Y.,
Liu, J. (2018). A railway track geometry measuring
trolley system based on aided INS. Sensors, 18(2): 538.
https://doi.org/10.3390/s18020538

Cai, X., Tang, X., Wang, Y., Wang, T., Yang, F., Sun, J.
(2024). Advanced VTCDREM for dynamic reliability
evaluation of railway systems: Integration of fully
probabilistic track irregularities and multifaceted random
factors. Journal of Sound and Vibration, 584: 118460.
https://doi.org/10.1016/j.jsv.2024.118460

De Rosa, A., Alfi, S., Bruni, S. (2019). Estimation of
lateral and cross alignment in a railway track based on
vehicle dynamics measurements. Mechanical Systems
and Signal Processing, 116: 606-623.
https://doi.org/10.1016/j.ymssp.2018.06.041

Ingenius. (2025). Monitoring damage to railway tracks.
https://ingenius.ecoledesponts.fr/en/articles/monitoring-
damage-to-railway-tracks/.

Binder, M., Mezhuyev, V., Tschandl, M. (2023).
Predictive maintenance for railway domain: A systematic
literature review. IEEE Engineering Management
Review, 51(2): 120-140.
https://doi.org/10.1109/EMR.2023.3262282

VLink. (2025). Al in Railways: Predictive Analytics for
Maintenance. https://vlinkinfo.com/blog/ai-in-railways.
Vale, C., Simdes, M.L. (2022). Prediction of railway
track condition for preventive maintenance by using a
data-driven approach. Infrastructures, 7(3): 34.
https://doi.org/10.3390/infrastructures7030034

Braga, J.A., Andrade, A.R. (2023). Data-driven decision
support system for degrading assets and its application
under the perspective of a railway component.
Transportation Engineering, 12: 100180.
https://doi.org/10.1016/j.treng.2023.100180

2220

[19]

[22]

(23]

[24]

[25]

[26]

[30]

Nigam, S., Kumar, D., Mukherji, S., Tomar, S.S., Shastri,
S., Gupta, P. (2024). Predictive maintenance of railway
tracks using LSTM. In 2024 IEEE International
Conference on Intelligent Signal Processing and
Effective Communication Technologies (INSPECT),
Gwalior, India, pp. 1-5.
https://doi.org/10.1109/INSPECT63485.2024.10896208
Register, F. (2024). Track Geometry Measurement
System (TGMS) Inspections.
https://www.federalregister.gov/documents/2024/10/24/
2024-24153/track-geometry-measurement-system-tgms-
inspections.

Haigermoser, A., Luber, B., Rauh, J., Grife, G. (2015).
Road and track irregularities: Measurement, assessment
and simulation. Vehicle System Dynamics, 53(7): 878-
957. https://doi.org/10.1080/00423114.2015.1037312
Tsunashima, H., Yagura, N. (2024). Railway track
irregularity estimation using car body vibration: A data-
driven approach for regional railway. Vibration, 7(4):
928-948.

Sresakoolchai, J., Manakul, C., Cheputeh, N.A. (2025).
Integration of accelerometers and machine learning with
BIM for railway Tight-and Wide-Gauge detection.
Sensors, 25(7): 1998. https://doi.org/10.3390/s25071998
Hu, Z., Lau, A., Dai, J., Freseth, G.T. (2024).
Identification of optimal accelerometer placement on
trains for railway switch wear monitoring via multibody
simulation. Frontiers in Built Environment, 10: 1396578.
https://doi.org/10.3389/fbuil.2024.1396578

Westeon, P.F., Ling, C.S., Roberts, C., Goodman, C.J.,
Li, P., Goodall, R.M. (2007). Monitoring vertical track
irregularity  from in-service railway  vehicles.
Proceedings of the institution of mechanical engineers,
Part F: Journal of Rail and Rapid Transit, 221(1): 75-88.
https://doi.org/10.1243/0954409JRRT65

Xie, Q., Peng, F., Tao, G., Ren, Y., Liu, F., Yang, J.,
Wen, Z. (2025). Monitoring track irregularities using
multi-source on-board measurement data. Railway
Engineering Science, 2025: 1-20.
https://doi.org/10.1007/s40534-024-00374-0
Kurniawan, W., Rulhendri, R. (2015). Tinjauan volume
pemeliharaan tahunan jalan rel berdasarkan hasil track
quality index (TQI)(Studi kasus: Lintas Manggarai-
Bogor). Astonjadro, 4(2): 1-17.
https://doi.org/10.32832/astonjadro.v4i2.823

Alamsyah, A. (2003). Rekayasa Jalan Rel. Malang:
Bayumedia.

De Rosa, A., Kulkarni, R., Qazizadeh, A., Berg, M., Di
Gialleonardo, E., Facchinetti, A., Bruni, S. (2021).
Monitoring of lateral and cross level track geometry
irregularities through onboard vehicle dynamics
measurements using machine learning classification
algorithms. Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit,
235(1): 107-120.
https://doi.org/10.1177/0954409720906649

Sadeghi, J. (2010). Development of railway track
geometry indexes based on statistical distribution of
geometry data. Journal of Transportation Engineering,
136(8): 693-700. https://doi.org/10.1061/(ASCE)0733-
947X(2010)136:8(693)

Weston, P., Roberts, C., Yeo, G., Stewart, E. (2015).
Perspectives on railway track geometry condition
monitoring from in-service railway vehicles. Vehicle



[32]

[33]

[35]

[36]

[37]

System Dynamics, 53(7): 1063-1091.
https://doi.org/10.1080/00423114.2015.1034730

Yeo, G.J. (2017). Monitoring railway track condition
using inertial sensors on an in-service vehicle (Doctoral
dissertation, University of Birmingham).
Soleimanmeigouni, 1., Ahmadi, A., Kumar, U. (2018).
Track geometry degradation and maintenance modelling:
A review. Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit,
232(1): 73-102.
https://doi.org/10.1177/0954409716657849
Tsunashima, H. (2019). Condition monitoring of railway
tracks from car-body vibration using a machine learning
technique.  Applied  Sciences, 9(13):  2734.
https://doi.org/10.3390/app9132734

Jin, Z., Zhang, W., Yin, Z. Y., Zhang, N., Geng, X.
(2025). Estimating track geometry irregularities from in-
service train accelerations wusing deep learning.
Automation in  Construction, 173: 106114.
https://doi.org/10.1016/j.autcon.2025.106114

Pires, A.C., Viana, M.C.A., Scaramussa, L.M., Santos,
G.F.M.D., Ramos, P.G., Santos, A.A. (2024). Measuring
vertical track irregularities from instrumented heavy haul
railway vehicle data wusing machine learning.
Engineering Applications of Artificial Intelligence, 127:
107191. https://doi.org/10.1016/j.engappai.2023.107191
Shaikh, K., Hussain, 1., Chowdhry, B.S. (2023). Wheel

2221

[38]

[40]

[41]

defect detection using a hybrid deep learning approach.
Sensors, 23(14): 6248.
https://doi.org/10.3390/s23146248
Soleimani-Chamkhorami, K., Karbalaie, A., Kasraei, A.,
Haghighi, E., Famurewa, S.M., Garmabaki, A.H.S.
(2024). Identifying climate-related failures in railway
infrastructure using machine learning. Transportation
Research Part D: Transport and Environment, 135:
104371. https://doi.org/10.1016/j.trd.2024.104371
Pineda-Jaramillo, J., Bigi, F., Villalba-Sanchis, I,
Salvador-Zuriaga, P. (2025). Anomaly detection in
railway tracks using hybrid clustering and spectral
analysis for predictive maintenance. IEEE Access, 13:
164265-164287.
https://doi.org/10.1109/ACCESS.2025.3611009
Traquinho, N., Vale, C., Ribeiro, D., Meixedo, A.,
Montenegro, P., Mosleh, A., Calgada, R. (2023). Damage
identification for railway tracks using onboard
monitoring systems in in-service vehicles and data
science. Machines, 11(10): 981.
https://doi.org/10.3390/machines 11100981

Tsunashima, H., Ono, H., Takata, T., Ogata, S. (2023).
Development and operation of track condition
monitoring system using in-service train. Applied
Sciences, 13(6): 3835.
https://doi.org/10.3390/app 13063835





