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The complex overhead system featuring a double-pendulum payload is a severely 

underactuated system. The system only has two control inputs, while six state variables 

need to be controlled. Therefore, anti-swing control for this system is a significant 

challenge. Furthermore, it is a nonlinear system with uncertain parameters and is strongly 

affected by external disturbances, which makes anti-swing control even more difficult. 

This research presents a time-delay estimation-based adaptive sliding mode controller for 

a 6 degree of freedom (DOF) double-pendulum overhead crane system. The dynamic 

model of the 6-DOF overhead crane is first presented. Next, a sliding surface is constructed 

by analyzing the relationship between the unactuated and actuated states. Adaptive control 

based on time-delay estimation techniques and the anti-swing sliding mode control method 

is designed to handle system parameter uncertainties. Lyapunov stability theory is 

employed to analyze and establish the stability of the closed-loop system. Subsequently, 

simulations are performed to validate both the anti-swing performance and the robustness 

of the proposed controller. 

Keywords: 

time-delay estimation, double-pendulum 

crane, adaptive sliding mode control, 6-DOF, 

three-dimensional double-pendulum 

1. INTRODUCTION

In recent years, underactuated systems (where the number 

of variables to be controlled exceeds the number of control 

inputs) have developed rapidly. In particular, the overhead 

crane is a typical underactuated system, widely used in various 

fields such as construction, manufacturing, and transportation 

due to its high load capacity, efficient material handling, and 

small footprint. Due to the great applicability of overhead 

crane systems, they have drawn significant interest among 

researchers. During operation, several main issues are always 

of concern: moving the payload to the desired position 

accurately while simultaneously limiting its swing within an 

allowable range. Input shaping feedforward control [1, 2], 

which employs a linear model and swarm optimization, has 

been used to reduce payload oscillations. This control strategy 

performs well without the influence of external disturbances 

or variations in system parameters. However, since open-loop 

control lacks feedback, it cannot eliminate the effects of 

external disturbances, making it difficult to achieve control 

objectives. Feedback control can overcome this limitation. A 

backstepping controller with tuned parameters is proposed to 

enhance steady-state performance [3]. A terminal sliding 

mode controller, combined with the construction of an S-

shaped reference trajectory [4], is used to optimize operational 

efficiency and reduce payload oscillation. The issues of 

disturbance estimation and rejection are addressed in the 

studies [5, 6] through the use of a finite-time disturbance 

observer. The problem of system model uncertainty has been 

addressed through adaptive control. An online adaptive output 

shaping controller is effective for a system with an uncertain 

payload in the study [7]. The controller parameters are tuned 

by a fuzzy controller, which improved performance as well as 

controllability [8]. The collision-free motion planning 

proposed in the study [9], utilizing a second-order sliding 

mode controller combined with an extended state observer, 

effectively tackles system uncertainties and external 

disturbances. The terminal sliding mode controller combined 

with a fixed-time extended state observer, along with the 

optimal motion planning based on flatness theory proposed in 

the study [10], has ensured robust payload transportation in the 

shortest time. 

However, the above studies only focused on single 

pendulum crane systems without considering the swing of the 

hook. In practice, the hook swing has a significant impact on 

payload stability. When the crane system takes hook 

oscillations into account, the number of degrees of freedom of 

the system increases, making the suppression of payload swing 

more challenging. Therefore, anti-sway control for double 

pendulum crane systems in three-dimensional space is a 

challenging problem that has attracted considerable attention. 

Based on system dynamics, an auxiliary control input is 

introduced to develop a nonlinear anti-sway control method as 

described in the study [11]. Another approach, an energy-

based controller that also considers saturation constraints [12], 

successfully eliminated payload swing. A hierarchical sliding 

mode controller with a statedependent switching gain is 

proposed in the study [13], which effectively suppressed the 

oscillations of both the hook and the payload. A disturbance 

observer is developed based on the dynamics of the system, 

Journal Européen des Systèmes Automatisés 
Vol. 58, No. 9, September, 2025, pp. 1799-1811 

Journal homepage: http://iieta.org/journals/jesa 

1799

https://orcid.org/0009-0000-7083-9037
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580903&domain=pdf


 

reformulated with an additional auxiliary signal to eliminate 

the effects of disturbances in the studies [14, 15]. An integral 

sliding mode controller that constrains system errors, 

combined with a neural network to estimate unknown terms, 

is presented in the study [16]. An S-shaped trajectory 

combined with minimal position error is introduced, and a 

trajectory tracking adaptive anti sway controller is used to 

estimate the system parameters online in the study [17]. An 

adaptive backstepping based hierarchical sliding mode 

controller is developed by using a simplified dynamic model 

of the system in the study [18]. The adaptive neural tracking 

controller presented in the study [19] ensures that the jib and 

trolley quickly follow the desired trajectory, while eliminating 

oscillations of the hook and payload. Meanwhile, Yumin et al. 

[20] introduced an adaptive mutation approach to update the 

mutation factor in real time, where the controller parameters 

are tuned using a differential evolution algorithm. 

In 6-DOF overhead crane control, challenges arising from 

strong nonlinearity, the large number of degrees of freedom 

(DOFs), and significant uncertainties have spurred the 

development of numerous robust control schemes. Among 

these, methods based on adaptive sliding mode control 

(ASMC) are widely applied to ensure robustness and adapt to 

parametric uncertainties [21, 22]. However, designing the 

adaptive laws for a 6-DOF system is computationally complex 

and prone to chattering. Consequently, standalone ASMC 

often struggles to maintain high performance and durability in 

real industrial environments. 

Concurrently, the Time Delay Estimation (TDE) technique 

is also employed as a model-free approach to estimate lumped 

uncertainty [23], but its performance is highly dependent on 

the sampling rate. When the sampling rate is low, estimation 

errors increase, which degrades the controller's robustness, 

particularly in fast-dynamic systems such as 6-DOF overhead 

cranes. Therefore, the independent application of these 

schemes frequently entails inherent limitations, necessitating 

a more effective combined solution. 

Indeed, most of the controllers for 6-DOF overhead crane 

systems discussed above are developed based on detailed 

system dynamics models or possess complex structures that 

demand significant computational resources. In this research, 

a time-delay estimation-based adaptive sliding mode 

controller (ASMC-TDE) is introduced to control the tracking 

trajectory of the trolley and effectively suppress the 

oscillations of both the hook and the payload. The proposed 

controller not only ensures robust stability but also effectively 

compensates for model uncertainties and external disturbances. 

Crucially, it does not require precise model information, 

complex training, or large data collection, thus consuming 

minimal computational resources. 

 

 

2. MATHEMATICAL MODEL OF A THREE-

DIMENSIONAL DOUBLE-PENDULUM OVERHEAD 

CRANE SYSTEM 

 

As illustrated in Figure 1, the 6-DOF overhead crane model 

is presented. 

Movement of the trolley occurs along the x-axis and y-axis. 

under the corresponding forces 𝐹𝑥 and 𝐹𝑦, and is subject to air 

resistance with coefficients 𝑑𝑥  and 𝑑𝑦 , as well as friction 

forces 𝐹𝑟𝑥  and 𝐹𝑟𝑦 , respectively; 𝑥  and 𝑦  are position of the 

trolley along the x-axis and y-axis, respectively. During 

payload transportation, the swing angle hook with angles 𝜃1 

and 𝜃2  in the horizontal (x) and vertical (y) directions, 

respectively, and is affected by air resistance with coefficients 

𝑑1  and 𝑑2 . The payload oscillations along the 𝑥-axis and 𝑦-

axis are denoted by 𝜃3 and 𝜃4, subject to air resistance with 

coefficients 𝑑3  and 𝑑4 . The friction forces 𝐹𝑟𝑥  and 𝐹𝑟𝑦  are 

determined according to the study [24] as follows: 

 

tanh( / ) | |

tanh( / ) | |
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ry ry y ry

F f x k x x

F f y k y y


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

= +
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where, 𝑓𝑟𝑥, 𝑓𝑟𝑦, 𝜀𝑥, and 𝜀𝑦 denote friction at rest coefficients, 

while 𝑘𝑟𝑥 and 𝑘𝑟𝑦 represent the viscous friction coefficients. 
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Figure 1. Three-dimensional crane model with a double 

pendulum 

 

The Euler–Lagrange equations are employed to describe the 

dynamics of the crane system featuring a 3D double pendulum 

[12]. 

 

( ) ( , ) ( ) f+ + + = −M q q C q q q G q D F U  (2) 

 

where, 𝐪 = [𝑥, 𝑦, 𝜃1, 𝜃2, 𝜃3, 𝜃4]𝑇  is the state vector of the 

system; 𝐌(𝐪) ∈ 𝑅6×6  is the inertia matrix; 𝐂(𝐪, 𝐪̇) ∈ 𝑅6×6 

denotes the Coriolis–centrifugal matrix; 𝐆(𝐪) ∈ 𝑅6×1  is the 

gravity vector; 𝐃 ∈ 𝑅6×1  represents external disturbances; 

and 𝐅 ∈ 𝑅6×1  is the control input vector; 𝐔𝑓 ∈ 𝑅6×1 denotes 

the friction/resistance forces of the system. The specific 

matrices and vectors are given as follows: 
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0 0 0 0
T

x yF F =  F ; 

1 1 2 2 3 3 4 4

T

f rx x ry yF d x F d y d d d d    = + + U . 

 

The detailed components of the matrices and vectors can be 

found in the study [17]. 

 

11 1 1 2M M m m= + + ; 12 21 0M M= = ; 

13 31 1 2 1 1 2( )M M m m l C C= = + ; 

14 41 1 2 1 1 2( )M M m m l S S= = − + ; 

15 51 2 2 3 4M M m l C C= = ; 16 61 2 2 3 4M M m l S S= = − ; 

22 2 1 2M M m m= + + ; 23 32 0M M= = ; 

24 42 1 2 1 2( )M M m m l C= = + ; 25 52 0M M= = ; 

26 62 2 2 4M M m l C= = ; 2 2
33 1 2 1 2( )M m m l C= + ; 

34 43 0M M= = ; 

35 53 2 1 2 1 2 3 4 1 2 3 4( )M M m l l C C C C S C S C= = + ; 

36 63 2 1 2 1 2 3 4 1 2 3 4( )M M m l l S C C S C C S S= = − ; 

2
44 1 2 1( )M m m l= + ; 

45 54 2 1 2 1 2 3 4 1 2 3 4( )M M m l l C S S C S S C C= = − ; 

46 64 2 1 2 2 4 1 2 3 4 1 2 3 4( )M M m l l C C C S C S S S S S= = + + ; 

2 2
55 2 2 4M m l C= ; 56 65 0M M= = ; 2

66 2 2M m l= . 

11 ;rxC F=  12 0;C =  

13 1 2 1 1 2 1 1 2 2( ) ( );C m m l S C C S = − + +  

14 1 2 1 1 2 1 1 2 2( ) ( );C m m l C S S C = − + +  

15 2 2 3 4 3 3 4 4( );C m l S C C S = − +  

16 2 2 3 4 3 3 4 4( );C m l C S S C = − + 21 0;C = 22 ;ryC F=  

23 0;C =  24 1 2 1 2 2( ) ;C m m l S = − + 25 0;C =

26 2 2 4 4 ;C m l S = −  31 0;C = 32 0;C =  

2
33 1 2 1 2 2 2( ) ;C m m l S C = − +  

2
34 1 2 1 2 2 1( ) ;C m m l S C = − +  

35 2 1 2 1 3 2 4 3 2 4 4( );C m l l S C C S S −= +  

36 2 1 2 2 1 3 4 3 1 3 4 3 1 3 4 4 1 3 4 4( );C m l l C C C S S S S C S C S C C   = − + + −  

41 0;C =  42 0;C =  2
43 1 2 1 2 2 1( ) ;C m m l S C = +  44 0;C =  

45 2 1 2 2 1 3 4 3 1 3 4 3 1 3 4 4 1 3 4 4( );C m l l S C C C S S C C S S S C S   = + − +  
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);

C m l l C S C C S S S C C S

C S S S S S C S

  

 

= + −

− +
 

51 0;C =  52 0;C =  

53 2 1 2 4 1 2 3 1 1 2 3 1 1 2 3 2 1 2 3 2( );C m l l C S C C C C S C S C S S S   = − − + +  

54 2 1 2 4 1 2 3 1 1 2 3 1 1 2 3 2 1 2 3 2( );C m l l C C S C S S S C C S S C C   = − + − +  

2
55 2 2 4 4 4;C m l S C = −  2

56 2 2 4 4 3;C m l S C = −  

61 0;C =  62 0;C =  

63 2 1 2 4 1 2 3 1 1 2 3 1 1 2 3 2 1 2 3 2( );C m l l S C C C S C S C C S S S C   = + + −  
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1 2 3 4 1 1 2 3 4 1

(
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2
65 2 2 4 4 3;C m l S C =  66 0;C =  

33 1 2 1 1 2( )G m m gl S C= + ; 44 1 2 1 1 2( )G m m gl C S= + ; 

55 2 2 3 4G m gl S C= ; 66 2 2 3 4G m gl C S= ; 

with cosi iC = ; sini iS = ; ( 1 4i =  ) 

 

where, M1 and M2 are trolley mass along x-axis and y-axis, 

respectively; m1 is hook mass; m2 denotes payload mass; l1 and 

l2 denote hook length vaf cable length, respectively. 

 

 

3. TIME-DELAY ESTIMATION-BASED ADAPTIVE 

SLIDING MODE CONTROL 

 

The objective of controlling the 3D double-pendulum 

overhead crane system (3DDOC) must achieve two 

simultaneous goals: (i) the actuated state variables 𝑥(𝑡) and 

𝑦(𝑡)  are controlled to follow a trajectory to the desired 

position (𝑥𝑑 , 𝑦𝑑) , 𝑥(𝑡) → 𝑥𝑑 , 𝑦(𝑡) → 𝑦𝑑 ; and (ii) the 

unactuated state variables 𝜃𝑖  (𝑖 = 1 ÷ 4) are suppressed to 

zero, 𝜃𝑖 → 0 . To facilitate the controller design for the 

3DDOC system, the system is divided into two subsystems: 

the actuated subsystem and the unactuated subsystem, 

corresponding to the state variables 𝐪𝑎 = [𝑥, 𝑦]𝑇  and 𝐪𝑢 =
[𝜃1, 𝜃2, 𝜃3, 𝜃4]𝑇 , respectively. The system dynamics (2) can 

then be rewritten as follows: 
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From Eq. (4), it follows that 𝐪̈𝑢 = 𝐡𝑢(𝐪, 𝐪̇), which is then 

substituted into Eq. (3). The system dynamics can be rewritten 

as a fully actuated system as follows: 

 

( ) ( , )a a a a+ =M q q h q q F  (5) 

 

with 1( ) ( ) ( ) ( )a aa au uu ua
−= −M M q M q M q M q ; 

( )1( , ) ( , ) ( ) ( ) ( , )a aa au uu ua a
−= −h q q C q q M q M q C q q q  

( )1( , ) ( ) ( ) ( , )au au uu uu u aa aa fa
−+ − + + +C q q M q M q C q q q G D U  

( )1( ) ( )au uu uu uu fu
−− + +M q M q G D U . 

The nominal mass matrix of 𝐌𝑎(𝐪) is defined as 𝐌𝑐𝑜𝑛𝑠𝑡 . 

Eq. (5) can be rewritten as follows: 

 

( , , )const a a a+ =M q f q q q F  (6) 

 

where: 𝐌𝑐𝑜𝑛𝑠𝑡 = diag(𝑀𝑐𝑜𝑛𝑠𝑡1, 𝑀𝑐𝑜𝑛𝑠𝑡2) , with 𝑀𝑐𝑜𝑛𝑠𝑡1  and 

2constM  are positive coefficients 𝐟𝑎(𝐪, 𝐪̇, 𝐪̈) = (𝐌𝑎 −

𝐌𝑐𝑜𝑛𝑠𝑡)𝐪̈𝑎 + 𝐡𝑎. 
In Eq. (6), the uncertainties and external disturbances of the 

3DDOC system are contained in the vector 𝐟𝑎(𝐪, 𝐪̇, 𝐪̈). 

Based on the relationship between the actuated and 

unactuated state variables, the signal error is defined as 

follows: 

 

a r lu= − −e q q q  (7) 

 

with 𝐪𝑟 = [𝑥𝑟 , 𝑦𝑟]𝑇 , The reference trajectory of the trolley 

when moving along the axis 𝑥, axis 𝑦; 𝐞𝑎 = 𝐪𝑎 − 𝐪𝑟: tracking 

error of position control; 𝐪𝑙𝑢 = [𝑙1𝜃1 + 𝑙2𝜃3 𝑙1𝜃2 + 𝑙2𝜃4]. 
The sliding surface is designed with the following structure: 

 

= +s e Γe  (8) 

 

with 𝚪 = diag(Γ1, 𝛤2) is the matrix of positive coefficients and 

the sliding surface matrix. The derivative of the sliding surface 

(8) with respect to time is expressed as: 

 

( )a r lu

a ac

= +

= − + −

= −

s e Γe

q q q Γe

q q

 (9) 

 

where: 𝐪̈𝑎𝑐 = 𝐪̈𝑟 + 𝐪̈𝑙𝑢 − 𝚪𝒆̇ , with 𝐪̈𝑟 = [𝑥̈𝑟 , 𝑦̈𝑟]𝑇 ; 𝐪̈𝑙𝑢 =

[𝑙1𝜃1

..

+ 𝑙2𝜃3

..

𝑙1𝜃2

..

+ 𝑙2𝜃4

..
]

𝑇
; 𝐞̇ = 𝐪̇𝑎 − 𝐪̇𝑟 − 𝐪̇𝑙𝑢 ; 𝐪̇𝑎 = [𝑥̇,

𝑦̇]𝑇; 𝐪̇𝑟 = [𝑥̇𝑟 , 𝑦̇𝑟]𝑇; 𝐪̇𝑙𝑢 = [𝑙1𝜃1

.

+ 𝑙2𝜃3

.

𝑙1𝜃2

.

+ 𝑙2𝜃4

.
]

𝑇
. 

An adaptive sliding mode controller leveraging time-delay 

estimation (ASMC-TDE) is proposed as follows: 

 

( )sign( )aa const ac= + − −F f M q Λ s Ks  (10) 

 

𝐟𝑎 is the estimate of 𝐟𝑎. Then, the estimation error is defined 

as: 

a a= −σ f f  (11) 

 

Meanwhile, 𝚲 = diag(Λ1, 𝛬2) is switching gain matrix and 

matrice 𝐊 = diag(𝐾1, 𝐾2) is linear gain matrix, where 𝛬1 and 

𝛬2  are chosen such that 𝛬𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝛬1 , 𝛬2) , with 𝜉 =
||𝐌𝑐𝑜𝑛𝑠𝑡

−1 𝛔||. 
Using the time-delay estimation technique [25] the estimate 

𝐟𝑎 is structured as follows: 

 

( ) ( ) const ( )a a t T a t T a t T− − −= = −f f F M q  (12) 

 

where, 𝑇 is a very small time delay, selected to be the same as 

the sampling time (TDE). 

The parameters in the proposed ASMC-TDE controller are 

systematically selected to ensure Lyapunov stability and 

optimize tracking performance, while effectively mitigating 

chattering:  

𝚪  is chosen such that the eigenvalues of 𝚪  establish the 

desired exponential convergence rate of the error to zero. 

𝐌const must be chosen as a constant, positive definite matrix 

that is the best approximation of the actual mass matrix 𝐌𝑎(𝒒) 

to minimize the residual uncertainty. 

𝑇 is set equal to the smallest possible sampling period of the 

discrete-time control system to minimize the TDE estimation 

error. 

𝚲 is a positive diagonal matrix determined by the upper 

bound of the residual uncertainty. 

𝐊 is selected through simulation tuning to balance a fast 

transient response with the need to avoid actuator saturation. 

Theorem 3.1. The sliding surface designed in Eq. (8), the 

proposed controller in Eq. (10), and the uncertainties and 

disturbances estimated in Eq. (12) are employed for the 

3DDOC system. The signal error 𝐞  will converge to zero. 

Simultaneously, the actuated state variables 𝑥 and 𝑦 converge 

to the desired positions 𝑥𝑑 and 𝑦𝑑  (𝑥 → 𝑥𝑑 , 𝑦 → 𝑦𝑑), and the 

swing angles of the hook and payload will converge to zero 

(𝜃𝑖 → 0). 

Proof: The following is the chosen candidate Lyapunov 

function: 

 

1

2

TV = s s  (13) 

 

By differentiating the Lyapunov function (13) with respect 

to time and subsequently substituting (9) and (10) into it, we 

obtain: 

 

( )

( )
( )

1

1

( ) sign( )

sign( )

|| || 0

T
aconst a

T
const

T
min

V



 

−

−

= − − −

= − −

− − −

s M f f Λ s Ks

s M Λ s Ks

s s Ks

 (14) 

 

By applying the Lyapunov stability principle, it is ensured 

that the system is stable and the sliding surface 𝐬 reaches zero, 

𝐬 → 0 as 𝑡 → ∞. This implies that 𝐞̇ + 𝚪𝐞 → 0. For this first-

order differential equation, the solution is expressed as 𝑒𝑖 =
𝑒−𝛤𝑖𝑡 → 0. 

When the system reaches stability, the following equation 

holds: 
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1 1 2 3 1 1 2 3

1 2 2 4 1 2 2 4

 ;

;

d

d

x l l x x l l

y l l y y l l

   

   

= + + = +

= + + = +
 (15) 

 

where: 𝐪̇𝑎 = [𝑥̇, 𝑦̇]𝑇 = 𝐊𝑢𝐪̇𝑢 , with 𝐊𝑢 = [
𝑙1 0 𝑙2 0
0 𝑙1 0 𝑙2

] ; 

𝐪̈𝑎 = 𝐊𝑢𝐪̈𝑢. 

Since the hook and payload swing angles are typically small 

during the trolley motion, it is reasonable to approximate 

𝑐𝑜𝑠 𝜃𝑖 ≈ 1 and 𝑠𝑖𝑛 𝜃𝑖 ≈ 𝜃𝑖. Consequently: 

 

1 2 1

1 2 1

2 2

2 2

( ) 0

0 ( )

0

0

ua
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2
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2
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2
2 1 2 2 2

2
2 1 2 2 2
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0 0
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uu

m m l m l l

m m l m l l

m l l m l
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 
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 
 

M ; 

1 2 1 1 1 2 1 2 2 2 3 2 2 4[( ) , ( ) , , ]Tuu m m gl m m gl m gl m gl    + +G

G u=K q  

with ( )1 2 1 1 2 1 2 2 2 2diag ( ) ,( ) , ,G m m gl m m gl m gl m gl= + +K . 

0 0

0 0
( , )

0 0

0 0

ua

 
 
 
 
 
 

C q q ; 

0 0 0

0 0 0
( , )

0 0 0

0 0 0

uu

 
 
 
 
 
 

C q q  

 

This is because most components of the 𝐂𝑢𝑎(𝐪, 𝐪̇)  and 

𝐂𝑢𝑢(𝐪, 𝐪̇) are approximately zero, as they contain products of 

angles (𝜃𝑖) with angular velocities (𝜃𝑖

.

), which are treated as 

higher-order terms. 

From the above approximation and Eq. (4), we obtain: 

 

0

 ua u u uu u ua u u uu u

G u u

+ + +

+ + =

M K q M q C K q C q

K q dq
 (16) 

 

with 𝐝 = diag(𝑑1, 𝑑2, 𝑑3, 𝑑4). 

The underactuated dynamic Eq. (16) can be rewritten as 

follows: 

( )u a G u a ua u uu u= − − + +q H K q H C K C d q  (17) 

 

where, 𝐇𝑎 = (𝐌𝑢𝑎𝐊𝑢 + 𝐌𝑢𝑢)−1. 

The state vector 𝐳 ∈ 𝑅8×1  representing the swing angles 

and angular velocities of the hook and payload is defined as 

follows: 

 

[ , ]Tu u=z q q  (18) 

 

Based on Eq. (18), Eq. (17) can be rewritten as follows: 

 

=z B z  (19) 

 

in which the state matrix 𝐁 is described as follows: 

 

4 4 4 4

1 2

  
=  
 

0 I
B

B B
, with 1 a G= −B H K ;

2 ( )a ua u uu= − + +B H C K C d  

 

The characteristic equation of 𝐁 is given as follows: 

 

4 4| | 0  − =I B  (20) 

 

Considering the parameters of the 3DDOC system, the 

eigenvalues of Eq. (20) all have real parts located on the left 

half of the imaginary axis, hence the system Eq. (17) is 

asymptotically stable. This means that: 

 

lim 0
t→

=z  
(21) 

 

Substituting Eq. (21) into Eq. (15), we obtain: 

 

lim[ ] [ 0 0]T T
d d

t
x y x y x y

→
=  (22) 
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Figure 2. The designed control scheme 
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Hence, the proof of Theorem 3.1 is complete. 

The operation of the 3DDOC system under ASMC-TDE 

control is illustrated in Figure 2, which presents the closed-

loop block diagram. 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

 

This section evaluates the performance of the proposed 

controller through MATLAB/SIMULINK simulations. In 

order to evaluate the effectiveness and robustness of the 

proposed adaptive controller Eq. (10), two the simulations will 

be carried out in comparison with the sliding mode controller 

designed to restrict the swing angles of both the hook and the 

payload. Two simulation scenarios will be performed: 

•  Scenario 1: The robustness of the controller is evaluated 

by introducing harmonic external disturbances into the 

system. The hook and payload swing angles are nonzero, 

set to 30 = 0.052rad at the initial time of transportation. 

•  Scenario 2: The adaptability and robustness of the 

controller are validated when the system experiences 

parameter changes and external disturbances represented 

as random noise (white noise). Meanwhile, the hook and 

payload swing angles remain nonzero, set to 30 =
0.052rad at the initial time. 

The following are the parameters of the system: 

 

𝑀1 = 15 kg; 𝑀2 = 35 kg; 𝑚1 = 5 kg; 𝑚2 = 5 kg; 𝑙1 = 1 m; 

𝑙2 = 0.2m; 𝑔 = 9.8𝑚/𝑠2; 

 

The payload starts at coordinates [𝑥0, 𝑦0] = [0, 0] (𝑚) and 

needs to reach the desired position [𝑥𝑑 , 𝑦𝑑] = [3, 3] (𝑚) . 

Both its initial and final velocities and accelerations are set to 

zero. The travel time for the payload to reach the desired 

position is 𝑇𝑥 = 30 s for movement along the 𝑥-axis and 𝑇𝑦 =

20 s for the 𝑦-axis. The trajectory of the payload is detailed 

below: 

 
5 4 3

6 15 10 ,

,

d d d x
r x x x

d x

t t t
x x x t T

x T T T

x t T

      
 − +      

=       




 (23) 

 
5 4 3

6 15 10 ,

,

d d d y
r y y y

d y

t t t
y y y t T

y T t T

y t T

      
 − +           =       




 (24) 

 

All initial and simulation conditions are summarized in 

Table 1. 

The sliding mode controller designed to constrain the swing 

angles of both the hook and the payload (Sliding Mode 

Controller with Swing Angle Constraint) (SMC-SAC) is given 

in Eq. (25). 

 

Table 1. Simulation conditions 

 
Parameter Category Symbol Value Unit 

I. Initial Conditions    

Trolley position (x) x(0) 0 m 

Trolley position (y) y(0) 0 m 

Hook swing angle (x-z plane) 
1(0)  0.052 rad 

Hook swing angle (y-z plane) 
2(0)  0.052 rad 

Payload swing angle (x-z plane) 
3(0)  0.052 rad 

Payload swing angle (y-z plane) 
4(0)  0.052 rad 

All initial and final velocities (0)q , fq  0 m/s or rad/s 

All initial and final accelerations (0)q , fq  0 m/s2 or rad/s2 

II. Trajectory/reference    

x-reference trajectory xd(t) Fifth-order polynomial m 

Reference trajectory time for the x-axis 
xT  30  s 

y-reference trajectory yd(t) Fifth-order polynomial m 

Reference trajectory time for the y-axis 
yT  20 s 

Total simulation time tsim 50 s 

III. External Disturbances     

Disturbance applied to x D(1)  
8sin(105 t+

6


) 

N 

Disturbance applied to y D(2) 
8sin(85 t+

2

3


) 

N 

Disturbance applied to hook D(3), D(4) 0.4sin(85 t)  N 

Disturbance applied to payload D(5), D(6) 0.4sin(100 t) N 

IV. Control Parameters    

Sampling Time (TDE) T 0.002 s 

Sliding surface matrix   diag(12,15)  

Nominal mass matrix 
const  diag(0.7,0.7)  

Switching gain matrix   diag(1.5,2.5)  

Linear gain matrix K diag(5,10)  
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( )sign( )as a const ac s s= + − −F f M q Λ s K s  (25) 

 

The parameters of the controller are chosen as follows: 

𝚲𝑠 = diag(10,13), 𝐊𝑠 = diag(5,10). 
 

4.1 Scenario 1 

 

In this section, simulations are performed under conditions 

where the system parameters remain constant, but the system 

experiences external disturbances given by: 

 





8sin(105 / 6) 8sin(85 2 / 3) 0.4sin(85 )

0.4sin(85 ) 0.4sin(100 ) 0.4sin(100 )
T

t t t

t t t

    

  

= + +D
 

 

The outcomes of Scenario 1 are presented in Figures 3-6. 

 

 
 

Figure 3. Position trajectory and the corresponding errors (Scenario 1) 

 

 
 

Figure 4. Swing angles of the hook (Scenario 1) 
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Figure 5. Swing angles of the payload (Scenario 1) 

 

 
 

Figure 6. The force acting on the trolley (Scenario 1) 

 

4.2 Scenario 2 

 

The robustness and adaptive capability of the proposed 

controller are validated through system simulations under the 

following conditions: the payload mass is increased to 6 kg, 

and the cable length 𝑙1 is increased by 1.2 times. In particular, 

the system is also subjected to a more severe and pronounced 

external disturbance compared to Scenario 1, specifically 

white noise, as illustrated in Figure 7. The results of the second 

scenario are presented in Figures 8-11. The performance 

indices of the state variables, which use ISE, ITSE, IAE, and 

ITAE as evaluation criteria, are also shown in Tables 2 and 3. 

From the simulation results of the two scenarios, it can be 

seen that even under the influence of different types of 

disturbances: harmonic disturbance and random disturbance 

(white noise), with the system parameters changed, and with 

nonzero initial conditions for the swing angle of the hook and 

the payload, the system still operates stably. This is 

demonstrated through the position trajectories in Figure 3 and 

Figure 8, where the trajectories x(t) and y(t) track the reference 

trajectory with errors oscillating around zero with small 

amplitudes (< 4 cm) during the transient period, and then 

rapidly converge to zero as the payload reaches the desired 

position. However, ASMC-TDE significantly improves 

tracking accuracy and minimizes steady-state position error, 

demonstrating a much faster error convergence rate compared 

with the SMC-SAC controller. Given the initial condition that 

the hook swing angle at the beginning of the system motion is 

a nonzero value, the hook swing angle always remains within 

a very small bound, not exceeding its initial value, as shown 

in Figure 4 and Figure 9. Furthermore, ASMC-TDE 

significantly improves this performance. As for the payload 
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oscillation, under all conditions, it also stays within a very 

small range, not exceeding 0.052 rad, as illustrated in Figure 5 

and Figure 10. This superior ability to tightly constrain the 

oscillations confirms the outstanding stability and 

effectiveness of the proposed ASMC-TDE controller. 

Additionally, the force signals acting on the trolley, shown in 

Figure 6 and Figure 11, indicate that the control force varies, 

exhibiting oscillations with amplitudes that change over time. 

This demonstrates that the controller operates continuously to 

compensate for disturbances and uncertainties, and 

subsequently, the applied force gradually decreases and 

stabilizes as the payload reaches the desired position. 

Nevertheless, the ASMC-TDE is far superior to the SMC-SAC 

because it constrains the control force to a much smaller 

amplitude and rapidly decreases to zero in the steady state, 

whereas the SMC-SAC maintains the force at a large 

amplitude. Consequently, ASMC-TDE achieves superior 

control performance while offering significantly better energy 

efficiency and reduced mechanical wear compared to the 

SMC-SAC.  

 

 
 

Figure 7. White noise acting on the system (Scenario 2) 

 

 
 

Figure 8. Position trajectory and the corresponding errors (Scenario 2) 
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Figure 9. Swing angles of the hook (Scenario 2) 

 

 
 

Figure 10. Swing angles of the payload (Scenario 2) 

 

The performance indices in Table 2 and Table 3 show that 

the proposed controller outperforms the sliding mode 

controller designed to restrict the swing angles of both the 

hook and the payload, in terms of reducing error and 

improving the convergence speed of all output variables. For 

the trolley position, the ISE and ITSE indices are reduced by 

60.4% and 79.5%, respectively, while the IAE and ITAE 

indices decrease by 53.7% and 68.1%, respectively. The 

reduction is even more significant for the hook swing angle, 

with decreases of 67.9% and 87.2%. The payload swing angle 

is also improved, but to a lesser extent, with reductions of 

32.9% and 31% for ISE and ITSE, and 19.3% and 17.9% for 

IAE and ITAE, respectively. This indicates that reducing 

payload oscillations is more challenging due to inertia and 

coupling effects. Hence, the results demonstrate that the 

ASMC-TDE significantly outperforms the sliding mode 

controller designed to constrain the swing angles of the hook 

and payload in terms of improving tracking accuracy and 

minimizing error. 
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Figure 11. The force acting on the trolley (Scenario 2) 

 

Table 2. Performance evaluation criteria: ISE and ITSE 

 
Output 

Variable 

Control 

Strategy 
ISE ITSE 

Trolley 

position 

ASMC-TDE 0.0077089 0.051702 

ASMC 0.019458 0.25214 

Hook swing 

angle 

ASMC-TDE 0.0039476 0.020333 

ASMC 0.0123 0.1589 

Payload 

swing angle 

ASMC-TDE 0.024803 0.53393 

ASMC 0.036979 0.7737 

 

Table 3. Performance evaluation criteria: IAE and ITAE 

 
Output 

Variable 

Control 

Strategy 
IAE ITAE 

Trolley 

position 

ASMC-TDE 0.50251 6.1672 

ASMC 1.0855 19.3177 

Hook swing 

angle 

ASMC-TDE 0.33547 4.7794 

ASMC 0.86297 15.3362 

Payload 

swing angle 

ASMC-TDE 1.2036 27.3242 

ASMC 1.4921 33.2782 

 

Thus, the simulation results show that the 3D double 

pendulum overhead crane system, under conditions of external 

disturbances and uncertain system parameters, the proposed 

ASMC-TDE enables the trolley trajectory to accurately track 

the reference trajectory, while the swing angles of both the 

hook and the payload are confined within very small bounds, 

not exceeding the initial swing angle. It can be concluded that 

the controller operates effectively and proves its feasibility. 

 

 

5. FEASIBILITY AND IMPLEMENTATION 

ASSESSMENT 

 

The proposed ASMC-TDE controller is highly suitable for 

real-time implementation due to its computational simplicity 

and inherent robustness to practical constraints. 

 

5.1 Real-time feasibility and sampling time 

 

The control structure is primarily algebraic, involving only 

matrix additions and multiplications of state variables, thereby 

avoiding computationally intensive tasks like online Jacobian 

inversion or complex adaptive laws. This low computational 

load ensures the controller is highly efficient for real-time 

execution on standard industrial microcontrollers or PLCs. 

Crucially, the TDE technique relies on setting the time delay 

𝑇  equal to twice the sampling period 𝑇𝑠 . For the overhead 

crane system, 𝑇𝑠  can typically be set very small (e.g., 1−10 

ms), ensuring that the unmodeled dynamics and uncertainty 

remain approximately constant over 𝑇𝑠. This guarantees that 

the TDE estimation error is minimized, maintaining the high 

precision of the ASMC-TDE scheme. 

 

5.2 Actuator saturation mitigation 

 

Actuator saturation is a critical practical issue. The ASMC-

TDE architecture inherently addresses this: 

- Compensation: The TDE term 𝐟𝑎  compensates for the 

majority of the large, nonlinear dynamics of the system, 

drastically reducing the required control effort from the 

SMC component. 

- Chattering Reduction: The small switching gain used in the 

ASMC-TDE (as justified in Section 3) ensures that the 

high-frequency control energy is minimized. 

This combination allows the total required control input 

(𝐅𝒂)  to remain well within the physical limits of typical 

industrial actuators, avoiding saturation under most 

operational conditions. 

 

 

6. CONCLUSIONS 

 

This study presents an adaptive sliding mode control 

method designed using time-delay estimation to achieve 

trajectory tracking of the payload position and anti-swing of 

both the hook and the payload in a 3D double-pendulum 

overhead crane system, while accounting for system 

uncertainties and external disturbances during operation. The 

controller effectively handles system uncertainties and 

disturbances by providing an online estimation of the total 

model uncertainty. The stability of the closed-loop system is 

proven through mathematical analysis. Simulations have been 

carried out to validate the effectiveness and reliability of the 
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proposed controller. The results confirm that the proposed 

control strategy can ensure high performance and robustness 

even under conditions of system uncertainty and external 

disturbances. Furthermore, the ASMC-TDE controller not 

only achieves robust stability and high-precision trajectory 

tracking under significant uncertainties but also demonstrates 

superior performance over the baseline SMC-SAC, 

particularly regarding the suppression of chattering and the 

fast convergence of swing angles. 

 

 

REFERENCES  

 

[1] Maghsoudi, M.J., Mohamed, Z., Sudin, S., Buyamin, S., 

Jaafar, H.I., Ahmad, S.M. (2017). An improved input 

shaping design for an efficient sway control of a 

nonlinear 3D overhead crane with friction. Mechanical 

Systems and Signal Processing, 92: 364-378. 

https://doi.org/10.1016/j.ymssp.2017.01.036 

[2] Maghsoudi, M.J., Ramli, L., Sudin, S., Mohamed, Z., 

Husain, A.R., Wahid, H. (2019). Improved unity 

magnitude input shaping scheme for sway control of an 

underactuated 3D overhead crane with hoisting. 

Mechanical Systems and Signal Processing, 123: 466-

482. https://doi.org/10.1016/j.ymssp.2018.12.056 

[3] Li, N., Liu, X., Liu, C., Wang, H., Ju, J., Li, C. (2025). A 

novel block backstepping-based trajectory tracking 

control with zero dynamics stability for underactuated 

overhead cranes. ISA Transactions, 166: 379-392. 

https://doi.org/10.1016/j.isatra.2025.07.024 

[4] Wang, S., Jin, W. (2024). Recursive terminal sliding 

mode control for the 3D overhead crane systems with 

motion planning. Mechatronics, 104: 103267. 

https://doi.org/10.1016/j.mechatronics.2024.103267 

[5] Wu, X., Xu, K., He, X. (2020). Disturbance-observer-

based nonlinear control for overhead cranes subject to 

uncertain disturbances. Mechanical Systems and Signal 

Processing, 139: 106631. 

https://doi.org/10.1016/j.ymssp.2020.106631 

[6] Thi, H.L., Nguyen, T.L. (2025). Adaptive finite-time 

extended state observer-based model predictive control 

with Flatness motivated trajectory planning for 5-DOF 

tower cranes. European Journal of Control, 81: 101149. 

https://doi.org/10.1016/j.ejcon.2024.101149 

[7] Abdullahi, A.M., Mohamed, Z., Selamat, H., Pota, H.R., 

Abidin, M.Z., Ismail, F.S., Haruna, A. (2018). Adaptive 

output-based command shaping for sway control of a 3D 

overhead crane with payload hoisting and wind 

disturbance. Mechanical Systems and Signal Processing, 

98: 157-172. 

https://doi.org/10.1016/j.ymssp.2017.04.034 

[8] Yao, J., Hu, S. (2024). Adaptive trajectory tracking anti-

swing control strategy with gain self-tuning for 3D 

overhead cranes with payload hoisting and lowering. 

Proceedings of the Institution of Mechanical Engineers, 

Part I: Journal of Systems and Control Engineering, 

239(9): 09596518251341929. 

https://doi.org/10.1177/09596518251341929 

[9] Thi, H.L., Khanh, H.B.T., Danh, H.N., Duc, D.P., 

Nguyen, T.L. (2024). An integrated solution for 3D 

overhead cranes: Time-optimal motion planning, 

obstacle a voidance, and anti-swing. Engineering Science 

and Technology, an International Journal, 59: 101852. 

https://doi.org/10.1016/j.jestch.2024.101852 

[10] Thi, H.L., Khanh, H.B.T., Nguyen, D.H., Vu, M.N., 

Nguyen, T.L. (2024). Flatness-based motion planning 

and control strategy of a 3D overhead crane. IEEE 

Access, 13: 7053-7070. 

https://doi.org/10.1109/ACCESS.2024.3524404 

[11] Zhao, Y., Wu, X., Li, F., Zhang, Y. (2024). Positioning 

and swing elimination control of the overhead crane 

system with double-pendulum dynamics. Journal of 

Vibration Engineering & Technologies, 12(1): 971-978. 

https://doi.org/10.1007/s42417-023-00887-8 

[12] Ouyang, H., Zhao, B., Zhang, G. (2021). Swing 

reduction for doublependulum three-dimensional 

overhead cranes using energy-analysisbased control 

method. International Journal of Robust and Nonlinear 

Control, 31(9): 4184-4202. 

https://doi.org/10.1002/rnc.5466 

[13] Idrees, M. (2024). Control of a double-pendulum 

overhead crane system based on hierarchical sliding 

mode control techniques. Biophysical Reviews and 

Letters, 19(4): 375-390. 

https://doi.org/10.1142/S1793048023410023 

[14] Zhang, Y., Dai, C., Wu, X. (2024). Finite-time plant-

parameter-free trajectory tracking control for overhead 

cranes with double-pendulum dynamics and uncertain 

disturbances. Transactions of the Institute of 

Measurement and Control, 01423312241295579. 

https://doi.org/10.1177/01423312241295579 

[15] Zhao, Y., Wu, X., Zhang, Y., Ke, L. (2024). Lyapunov 

approach for the control of overhead crane systems with 

double-pendulum dynamicsand uncertain disturbances. 

Proceedings of the Institution of Mechanical Engineers, 

Part I: Journal of Systems and Control Engineering, 

238(6): 1002-1012. 

https://doi.org/10.1177/09596518241228331 

[16] Wang, S., Jin, W., Zhang, X. (2025). Neural network–

based adaptive sliding mode control of three-dimensional 

double-pendulum overhead cranes with prescribed 

performance. Transactions of the Institute of 

Measurement and Control, 47(6): 1031-1045. 

https://doi.org/10.1177/01423312241261046 

[17] Li, D., Xie, T., Li, G., Hu, S., Yao, J. (2025). Research 

on adaptive coupling trajectory tracking anti-swing 

control strategy for three dimensional double-pendulum 

overhead crane. Transactions of the Institute of 

Measurement and Control, 47(1): 84-99. 

https://doi.org/10.1177/0142331224123936 

[18] Fang, Z., Ouyang, H., Yi, H., Miao, X. (2025). Load 

sway suppression for double-pendulum tower cranes 

using adaptive backstepping sliding mode control 

approach. IEEE Transactions on Industrial Electronics, 

72(10): 10781-10792. 

https://doi.org/10.1109/TIE.2025.3554994 

[19] Zhang, M., Jing, X. (2021). Adaptive neural network 

tracking control for double-pendulum tower crane 

systems with nonideal inputs. IEEE Transactions on 

Systems, Man, and Cybernetics: Systems, 52(4): 2514-

2530. https://doi.org/10.1109/TSMC.2020.3048722 

[20] Yumin, H., Jing, Z., Jinhua, Z., Xiansong, Z., Ying, H., 

Ting, L., Liu, D., Men, X. (2023). Adaptive swing 

reduction control of double pendulum tower crane time-

varying system based on real-time update mutation factor. 

Proceedings of the Institution of Mechanical Engineers, 

Part C: Journal of Mechanical Engineering Science, 

237(20): 4631-4642.  

1810



 

https://doi.org/10.1177/09544062231153556 

[21] Kim, G.H., Hong, K.S. (2019). Adaptive sliding-mode 

control of an offshore container crane with unknown 

disturbances. IEEE/ASME Transactions on 

Mechatronics, 24(6): 2850-2861. 

https://doi.org/10.1109/TMECH.2019.2946083 

[22] Hoang, Q.D., Woo, S.H., Lee, S.G., Le, A.T., Pham, D.T., 

Mai, T.V., Nguyen, V.T. (2022). Robust control with a 

novel 6-DOF dynamic model of indoor bridge crane for 

suppressing vertical vibration. Journal of the Brazilian 

Society of Mechanical Sciences and Engineering, 44(5): 

169. https://doi.org/10.1007/s40430-022-03465-3 

[23] Hu, Q., Xu, W. (2021). TDE-based model reference 

adaptive second order sliding mode control for overhead 

crane. International Core Journal of Engineering, 7(8): 

75-89. https://doi.org/10.6919/ICJE.202108_7(8).0012 

[24] Shi, H., Yao, F., Zhe, Y., Tong, S., Tang, Y., Han, G. 

(2022). Research on nonlinear coupled tracking 

controller for double pendulum gantry cranes with load 

hoisting/lowering. Nonlinear Dynamics, 108(1): 223-

238. https://doi.org/10.1007/s11071-021-07185-6 

[25] Boudjedir, C.E., Bouri, M., Boukhetala, D. (2022). An 

enhanced adaptive time delay control-based integral 

sliding mode for trajectory tracking of robot 

manipulators. IEEE Transactions on Control Systems 

Technology, 31(3): 1042-1050. 

https://doi.org/10.1109/TCST.2022.3208491 

 

 

NOMENCLATURE 

 

DOF degree of freedom 

D external disturbances 

xd  coefficient of air resistance in the x-

direction 

yd  coefficient of air resistance in the y-

direction 

1d  and 2d  hook swing-angle air-resistance coefficient 

3d  and 4d  payload swing-angle air-resistance 

coefficient 

( , )C q q  matrix of Coriolis–centrifugal terms 

( )G q  vector of gravitational forces 

g gravitational acceleration, m.s-2 

Fx force applied to the trolley in the x-

direction, N 

Fy force applied to the trolley in the x-

direction, N 

rxF  friction forces along the x-axis, N 

rxk  viscous friction coefficients 

rxf , x  friction at rest coefficients 

ryF  friction forces along the y-axis, N 

ryk  viscous friction coefficients 

ryf , y  friction at rest coefficients 

F control input vector, N 

K linear gain matrix 

M(q) inertia matrix 

constM  nominal mass matrix 

M1 trolley mass along x-axis, kg 

M2 trolley mass along y-axis, kg 

m1 hook mass, kg 

m2 payload mass, kg 

l1 hook length, m 

l2 cable length, m 

fU  friction/resistance forces of the system, N 

T  sampling time (TDE) 

q state vector of the system 

aq  actuated state vector 

uq  unactuated state vector 

rq  reference trajectory of the trolley 

x  trolley position in the x-direction, m 

y trolley position in the y-direction, m 

xd, yd desired position 

 

Greek symbols 

 

1   hook swing angle around the x-axis, rad 

2  hook swing angle around the y-axis, rad 

3  payload swing angle around the x-axis, rad 

4  payload swing angle around the y-axis, rad 

Γ  sliding surface matrix 
σ  estimation error 

  switching gain matrix 
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