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The complex overhead system featuring a double-pendulum payload is a severely
underactuated system. The system only has two control inputs, while six state variables
need to be controlled. Therefore, anti-swing control for this system is a significant
challenge. Furthermore, it is a nonlinear system with uncertain parameters and is strongly
affected by external disturbances, which makes anti-swing control even more difficult.
This research presents a time-delay estimation-based adaptive sliding mode controller for
a 6 degree of freedom (DOF) double-pendulum overhead crane system. The dynamic
model of the 6-DOF overhead crane is first presented. Next, a sliding surface is constructed
by analyzing the relationship between the unactuated and actuated states. Adaptive control
based on time-delay estimation techniques and the anti-swing sliding mode control method
is designed to handle system parameter uncertainties. Lyapunov stability theory is
employed to analyze and establish the stability of the closed-loop system. Subsequently,
simulations are performed to validate both the anti-swing performance and the robustness

of the proposed controller.

1. INTRODUCTION

In recent years, underactuated systems (where the number
of variables to be controlled exceeds the number of control
inputs) have developed rapidly. In particular, the overhead
crane is a typical underactuated system, widely used in various
fields such as construction, manufacturing, and transportation
due to its high load capacity, efficient material handling, and
small footprint. Due to the great applicability of overhead
crane systems, they have drawn significant interest among
researchers. During operation, several main issues are always
of concern: moving the payload to the desired position
accurately while simultaneously limiting its swing within an
allowable range. Input shaping feedforward control [1, 2],
which employs a linear model and swarm optimization, has
been used to reduce payload oscillations. This control strategy
performs well without the influence of external disturbances
or variations in system parameters. However, since open-loop
control lacks feedback, it cannot eliminate the effects of
external disturbances, making it difficult to achieve control
objectives. Feedback control can overcome this limitation. A
backstepping controller with tuned parameters is proposed to
enhance steady-state performance [3]. A terminal sliding
mode controller, combined with the construction of an S-
shaped reference trajectory [4], is used to optimize operational
efficiency and reduce payload oscillation. The issues of
disturbance estimation and rejection are addressed in the
studies [5, 6] through the use of a finite-time disturbance
observer. The problem of system model uncertainty has been
addressed through adaptive control. An online adaptive output
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shaping controller is effective for a system with an uncertain
payload in the study [7]. The controller parameters are tuned
by a fuzzy controller, which improved performance as well as
controllability [8]. The collision-free motion planning
proposed in the study [9], utilizing a second-order sliding
mode controller combined with an extended state observer,
effectively tackles system uncertainties and external
disturbances. The terminal sliding mode controller combined
with a fixed-time extended state observer, along with the
optimal motion planning based on flatness theory proposed in
the study [10], has ensured robust payload transportation in the
shortest time.

However, the above studies only focused on single
pendulum crane systems without considering the swing of the
hook. In practice, the hook swing has a significant impact on
payload stability. When the crane system takes hook
oscillations into account, the number of degrees of freedom of
the system increases, making the suppression of payload swing
more challenging. Therefore, anti-sway control for double
pendulum crane systems in three-dimensional space is a
challenging problem that has attracted considerable attention.
Based on system dynamics, an auxiliary control input is
introduced to develop a nonlinear anti-sway control method as
described in the study [11]. Another approach, an energy-
based controller that also considers saturation constraints [12],
successfully eliminated payload swing. A hierarchical sliding
mode controller with a statedependent switching gain is
proposed in the study [13], which effectively suppressed the
oscillations of both the hook and the payload. A disturbance
observer is developed based on the dynamics of the system,
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reformulated with an additional auxiliary signal to eliminate
the effects of disturbances in the studies [14, 15]. An integral
sliding mode controller that constrains system errors,
combined with a neural network to estimate unknown terms,
is presented in the study [16]. An S-shaped trajectory
combined with minimal position error is introduced, and a
trajectory tracking adaptive anti sway controller is used to
estimate the system parameters online in the study [17]. An
adaptive backstepping based hierarchical sliding mode
controller is developed by using a simplified dynamic model
of the system in the study [18]. The adaptive neural tracking
controller presented in the study [19] ensures that the jib and
trolley quickly follow the desired trajectory, while eliminating
oscillations of the hook and payload. Meanwhile, Yumin et al.
[20] introduced an adaptive mutation approach to update the
mutation factor in real time, where the controller parameters
are tuned using a differential evolution algorithm.

In 6-DOF overhead crane control, challenges arising from
strong nonlinearity, the large number of degrees of freedom
(DOFs), and significant uncertainties have spurred the
development of numerous robust control schemes. Among
these, methods based on adaptive sliding mode control
(ASMC) are widely applied to ensure robustness and adapt to
parametric uncertainties [21, 22]. However, designing the
adaptive laws for a 6-DOF system is computationally complex
and prone to chattering. Consequently, standalone ASMC
often struggles to maintain high performance and durability in
real industrial environments.

Concurrently, the Time Delay Estimation (TDE) technique
is also employed as a model-free approach to estimate lumped
uncertainty [23], but its performance is highly dependent on
the sampling rate. When the sampling rate is low, estimation
errors increase, which degrades the controller's robustness,
particularly in fast-dynamic systems such as 6-DOF overhead
cranes. Therefore, the independent application of these
schemes frequently entails inherent limitations, necessitating
a more effective combined solution.

Indeed, most of the controllers for 6-DOF overhead crane
systems discussed above are developed based on detailed
system dynamics models or possess complex structures that
demand significant computational resources. In this research,
a time-delay estimation-based adaptive sliding mode
controller (ASMC-TDE) is introduced to control the tracking
trajectory of the trolley and effectively suppress the
oscillations of both the hook and the payload. The proposed
controller not only ensures robust stability but also effectively

compensates for model uncertainties and external disturbances.

Crucially, it does not require precise model information,
complex training, or large data collection, thus consuming
minimal computational resources.

2. MATHEMATICAL MODEL OF A THREE-
DIMENSIONAL DOUBLE-PENDULUM OVERHEAD
CRANE SYSTEM

As illustrated in Figure 1, the 6-DOF overhead crane model
is presented.

Movement of the trolley occurs along the x-axis and y-axis.
under the corresponding forces F, and F,, and is subject to air
resistance with coefficients d, and d,,, as well as friction
forces F., and F,,, respectively; x and y are position of the
trolley along the x-axis and y-axis, respectively. During
payload transportation, the swing angle hook with angles 6,
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and 6, in the horizontal (x) and vertical (y) directions,
respectively, and is affected by air resistance with coefficients
d, and d,. The payload oscillations along the x-axis and y-
axis are denoted by 65 and 8,, subject to air resistance with
coefficients d3 and d,. The friction forces F., and F., are
determined according to the study [24] as follows:

{

where, fr, fry, &, and &, denote friction at rest coefficients,
while k., and k., represent the viscous friction coefficients.

F

rx

Fy

= f, tanh(X/ &) +K | X| X

. _ 1
= f, tanh(y/ &) +ky |1V M

z

Figure 1. Three-dimensional crane model with a double
pendulum

The Euler—Lagrange equations are employed to describe the
dynamics of the crane system featuring a 3D double pendulum
[12].

M(a)d+C(9,9)4+G(q)+D=F-U; ()

where, q = [x,y,60,,60,,05,0,]7 is the state vector of the
system; M(q) € R®*® is the inertia matrix; C(q,q) € R®*®
denotes the Coriolis—centrifugal matrix; G(q) € R®*! is the
gravity vector; D € R®*! represents external disturbances;
and F € R® is the control input vector; U € R®** denotes
the friction/resistance forces of the system. The specific
matrices and vectors are given as follows:

My Mp Mg My My Mg
My My My My My My
M(q): M31 M32 M33 M34 M35 M36 ’
My Mgy My My Mys My
Ms; Mg, Mgz Mg, Mgg Mg
[Mg1 Mg Mgz Mgy Mgs Mg
Cy Cp Cs Cy Cg Cp
Cau Cp Cy Cy Cx Cy
C(q, q) _ C31 C32 C33 C34 C35 C36 :
Ca Cip Ci3 Cuy Cygs Cyg
C51 C52 C53 C54 C55 C56
_C61 C62 C63 C64 C65 C66 _
G=[0 0 Gy Gu Gss G ]T ;



F=[F. F, 0 0 0 0];

. . . AT
Uf =|:Frx+dx)'( Fry+dyy dlgl d202 d393 d494] .

The detailed components of the matrices and vectors can be
found in the study [17].

My =M +m +m,; My, =My, =0;
Mys =Mz = (M +my)hGCy;
Myy =My =—(m +my)LS;S,;
Mys = Mg =My, CiCy s Mg = Mgy =—M,l,S5S,.;
Myp =My +mp +My; My =Mg, =0
Mys =My = (M +m,)LC; 5 My =Ms, =0
Mag =Mgp =Myl,Cy s Mgz = (my +m,)IC3
Mzy =My =0;

Mas = Mgz =mphl, (GC,CC, +5,C,8:Cy) 5
Mg = Mgz =Myl ($,C,C3S, ~CiCy555,) ;
Mg = (my +my)I7 ;

Mys =Mz =mohly(C5,55C4 —5,5,C4Cy)
Myg =Meg, =mohl, (C,C4 +CiS,CsS, +5,5,555,) 5
Mss = myl5C5; Mgs =Mgs =0; Mg =myl3 .
Cu=Fy Cp=0
Cy3 =—(my +m,)L (S,C,6 +C;S,6,);

Ciq = —(My + M) (C,S,6 +$,C,6,);

Cis = —Myl, (S3C465 +C38,46,);

Cis =—Myl5(C38,465 +53C46,); Cp1 =0; Cyy = Fry:
Cp3 =0; Cpy =—(m+my)1;S,6,; Cp5 =0;
Co6 = —MylyS46,; Cy =0; C3p =0
Caz = —(my +My)I7S,C,6;;

Cay = —(My +M,)IPS,Co0;

Cas = Mplyl,S; 5(CoCa6s +5,5,64);

Cas = —Molyl,C5(C1C3S465 +SS55465 +C1S5C46 — $,C3C,6,);

Cy1=0; Cpp =0; Cyy = (m +my)IfS,Co6; Cyy =0
Cys = Mph1;S;, (C1C3C405 +8,S3C46 —C1S3S46; +S1C5846,);
Cas = Mplil5(C5,C3C40, +5,5,55C46; —C,S40,
—C;5,535,46; +5,5,C3S,65);
G5 =0, G =0;
Csz = —My1,C4 (S,C,C56, —CiCpS36 +CiS,C36; +51S,S536,);
Csy = ~Myi1,C4 (C1S,C36, + 518,536, —CiC2S36; + $,C,C36,);
Cos = —M,15S,C40y; Css = —-Myl3S,Cy6s
Ce1=0; Cg, =0;
Cez = Myhil,S4(CLC,C36: + 51,856 +CiC,846; —S,5,C46,);
Cs = Mplil5(C,C,C3840 +5,C,S3846; —S,C40s
+C;5,858,6 — $,5,C58,);
Cos =My155,Cy6s; Ceg =0;
Gyz = (M +my)ghS,Cy 5 Gy =(my +my)ghGS, ;
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Gss =M, 01,5,Cy; Ggg =Myg1,C3S,
with G; =c0sé ; S; =siné; (i=1+4)

where, M; and M, are trolley mass along x-axis and y-axis,
respectively; m; is hook mass; m, denotes payload mass; l; and
I, denote hook length vaf cable length, respectively.

3. TIME-DELAY ESTIMATION-BASED ADAPTIVE
SLIDING MODE CONTROL

The objective of controlling the 3D double-pendulum
overhead crane system (3DDOC) must achieve two
simultaneous goals: (i) the actuated state variables x(t) and
y(t) are controlled to follow a trajectory to the desired
position (xg,y4) » x(t) = x4, y(t) > ys; and (ii) the
unactuated state variables 6; (i = 1 +4) are suppressed to
zero, 6; » 0. To facilitate the controller design for the
3DDOC system, the system is divided into two subsystems:
the actuated subsystem and the unactuated subsystem,
corresponding to the state variables q, = [x,y]" and q, =
[61,6,,65,6,]7, respectively. The system dynamics (2) can
then be rewritten as follows:

Maa (@)8a +May (@)Gy +Caa (.9 +Cay (9, A)Gy

3
+Gaa(Q)+Daa :Fa_Ufa ®)
Mua(q)tja +MUU (q)qu +Cua(q-q)q,a +CUU (qlq)qu (4)
+Guu (q)+Duu =-U fu

where:
My, M My My M My |
Maa(q):{Mn M12:|; M, :|:M13 M14 M15 Mlﬁ
21 22 23 24 25 26 |

M31 M32 M33 M34 M35 M36

M., (q) = My My M. = Mgz My My My .
" M51 M52 , " M53 M54 M55 M56 '
M61 M62 M63 M64 M65 M66_
. C
Caa (qu) = |:211 C12 i| )
21 22
C @i {cls Cuu Cis cm}
au C23 C24 C25 C26
C31 C32
. C4l C42
Cua(0,0) = ;
ua (q q) CSl C52 s
C61 C62
C33 C34 C35 C36
C44 C45 C46

Cas
Cu(@.4) =
- Css G Cos Gy

Ces Cos Cos Cgo
Gaa =[0.01"; Gy =[G33,Gus,Gs5,Gg6] ; Daa € R
Dy € R*; Ry =[F Ry T iU =[Fp +d, X Fy +d, 917

-
Ufu:|:d1‘91 d292 d393 d494}



From Eq. (4), it follows that ¢,, = h,,(q, q), which is then
substituted into Eq. (3). The system dynamics can be rewritten
as a fully actuated system as follows:

Ma (q)qa +ha (q! q) = Fa Q)

with M, =M, (@) =M, (@M (@M, (@) ;

i (06) =(Caa (0,6) ~ My (@M (@)Ca (0.0) s

+(Cau (6.) ~ My (M (@)C (6,0)) G + G +Dag + U,
Mo, @My (@)(Gyy + Dy + Uy )

The nominal mass matrix of M, (q) is defined as M, -
Eq. (5) can be rewritten as follows:

MeonstGa "Hca (0,6.9) = F (6)

where: Mconst = diag(MconstlﬂMconstZ) s with Mconstl and
Mtz are  positive  coefficients f,(q,q, §) = (M, —

Mconst)ﬁa + ha-

In Eq. (6), the uncertainties and external disturbances of the
3DDOC system are contained in the vector f,(q, q, 4).

Based on the relationship between the actuated and
unactuated state variables, the signal error is defined as
follows:

€=0, -0, —qy @)

with q, = [x,,y,]7, The reference trajectory of the trolley

when moving along the axis x, axis y; e, = q, — q,-: tracking

error of position control; q;,, = [[16; + 1,605 1,60, + 1,6,].
The sliding surface is designed with the following structure:

s=é+TI%e

®)

with T = diag(T'y, I3,) is the matrix of positive coefficients and
the sliding surface matrix. The derivative of the sliding surface
(8) with respect to time is expressed as:

6+Te
qa _(Qr +q|u _ré)
Ua _qac

$

)

Wh?re: iiaf tirn'l' A - Eé . with §, = [%,, j}r]T A =
[l191 +1,0; 1,0, + 1294] ;€=0q,—qr — Qu; 9o = [%,
Y]T. qr [x‘r’ yr]T; qlu = [llgl + l263 l192 + l264] .

An adaptive sliding mode controller leveraging time-delay
estimation (ASMC-TDE) is proposed as follows:

Fa = fa + Mconst (Qac _ASign(S) —KS) (10)

f,, is the estimate of f,. Then, the estimation error is defined
as:
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6=fa —fa

(11)

Meanwhile, A = diag(A4, 4,) is switching gain matrix and
matrice K = diag(Ky, K) is linear gain matrix, where 4, and
A, are chosen such that A,,;,, = min(4;,4;) , with & =
[IMzopseoll.

Using the time-delay estimation technique [25] the estimate
f,, is structured as follows:

fa :fa(t—T) = Fa(t—T) - Mconstqa(t—T) (12)

where, T is a very small time delay, selected to be the same as
the sampling time (TDE).

The parameters in the proposed ASMC-TDE controller are
systematically selected to ensure Lyapunov stability and
optimize tracking performance, while effectively mitigating
chattering:

T is chosen such that the eigenvalues of T establish the
desired exponential convergence rate of the error to zero.

M ns: must be chosen as a constant, positive definite matrix
that is the best approximation of the actual mass matrix M, (q)
to minimize the residual uncertainty.

T is set equal to the smallest possible sampling period of the
discrete-time control system to minimize the TDE estimation
CITOr.

A is a positive diagonal matrix determined by the upper
bound of the residual uncertainty.

K is selected through simulation tuning to balance a fast
transient response with the need to avoid actuator saturation.

Theorem 3.1. The sliding surface designed in Eq. (8), the
proposed controller in Eq. (10), and the uncertainties and
disturbances estimated in Eq. (12) are employed for the
3DDOC system. The signal error e will converge to zero.
Simultaneously, the actuated state variables x and y converge
to the desired positions x; and y; (x = x4, v = v4), and the
swing angles of the hook and payload will converge to zero

Proof: The following is the chosen candidate Lyapunov
function:

1+
V==
> S's (13)
By differentiating the Lyapunov function (13) with respect
to time and subsequently substituting (9) and (10) into it, we
obtain:
v =

ST (Mot (Fa =f,) — Asign(s) - Ks)

= s (Mggnsto-—Asign(s) —Ks) (14)

< ~(Ain=E) sl -s"Ks <0

By applying the Lyapunov stability principle, it is ensured
that the system is stable and the sliding surface s reaches zero,
s = 0 ast — o. This implies that é + I'e — 0. For this first-
order differential equation, the solution is expressed as e;
e Tit 5 0,

When the system reaches stability, the following equation
holds:



X=h6 +1,6:+x;; x=L4 +1,0 N )
S . 10? 2 (15) Gy =—HaKsa, _Ha(CuaKu +Cuu +d)qu (17)
y=ho, +1,0,+vyy4; Y=o, +1,0,

here: a. = [ v]T = . ith [ 0 I, 07, where, H, = (MK, + Muu)_1~
where: q, = [x,y]" = K,q, , with K,, = 0 I, 0 L] The state vector z € R®*! representing the swing angles
i, = Kyy. and angular velocities of the hook and payload is defined as
Since the hook and payload swing angles are typically small follows:
during the trolley motion, it is reasonable to approximate
cos 6; = 1and sin ; = 0;. Consequently: .
l e z=[0,,6,1 (18)
(m; +my)ly 0
0 (my +m,)l Based on Eq. (18), Eq. (17) can be rewritten as follows:
M, = ;
ua m,l, 0 ’
0 m,l, z=Bz (19)
(my +m,)I 0 mhl, 0
0 (my +my) 2 0 mll in which the state matrix B is described as follows:
o)l blil2
My, = 2 5
el ° Tl 0 p=| %4 1) i B =—H,Kq:
0 mhl, 0 m2 B, B, %
Gy = [(My +my)ghér, (M +my)gh6,, mygly6;, mygl,6,]" B, =—H,(CpK, +Cy, +0d)
e The characteristic equation of B is given as follows:
with Kg =diag((my, +my)gly, (my +my)gl, mygly, mygly). e characteristic equation of B is given as follows:
00 000
00 00 0 | Al —BI=0 (20)
C ,q) = ; C ,q) =
w@A= ) [ Cw@D= o
0 0 000 Considering the parameters of the 3DDOC system, the

eigenvalues of Eq. (20) all have real parts located on the left
o ) half of the imaginary axis, hence the system Eq. (17) is
This is because most components of the C,,(q,q) and asymptotically stable. This means that:
Cux(q, q) are approximately zero, as they contain products of
angles (6;) with angular velocities (6;), which are treated as limz 0
higher-order terms. tom 21)
From the above approximation and Eq. (4), we obtain:
" . . . Substituting Eq. (21) into Eq. (15), we obtain:
MuaKly +Muygtiy +CuaKyy +Cuuly 16 g Fq. (21)into Ba. (13)
+Kgq, +dg, =0 ) e .
lim[xy X yI' =[xy ¥ 00] (22)
with d = diag(d,,d,, ds,d,).
The underactuated dynamic Eq. (16) can be rewritten as

follows:
g
g
dt
d 2
I
vy
Designed sliding Time delay estimation-based E
surface adaptive sliding mode F,= {FX}
controller (ASMC-TDE) !

€=0,-0,—0y

| F, = fy + Mg (@, — Asign(s) - Ks)
A =[16,+1.6, 10,+1,6,]

ar =0x y 1"

A

f.

Estimation of da=[x yI'
lumped i d?
2 » Time
LZ uncertainty delay T ra
dt (12)

|

I

|

I

|

I

|

|

I

|

I

|

| "

Reference trajectory | s=é+Te

| |
I

|

I

|

|

I

|

I

|

|

|

|

I

|

Figure 2. The designed control scheme
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Hence, the proof of Theorem 3.1 is complete.

The operation of the 3DDOC system under ASMC-TDE
control is illustrated in Figure 2, which presents the closed-
loop block diagram.

4. SIMULATION RESULTS AND DISCUSSION

This section evaluates the performance of the proposed
controller through MATLAB/SIMULINK simulations. In
order to evaluate the effectiveness and robustness of the
proposed adaptive controller Eq. (10), two the simulations will
be carried out in comparison with the sliding mode controller
designed to restrict the swing angles of both the hook and the
payload. Two simulation scenarios will be performed:

e Scenario 1: The robustness of the controller is evaluated
by introducing harmonic external disturbances into the
system. The hook and payload swing angles are nonzero,
set to 3° = 0.052rad at the initial time of transportation.
e Scenario 2: The adaptability and robustness of the
controller are validated when the system experiences
parameter changes and external disturbances represented
as random noise (white noise). Meanwhile, the hook and
payload swing angles remain nonzero, set to 3° =
0.052rad at the initial time.

The following are the parameters of the system:

M; =15kg; M, = 35kg; my =5kg;m, =5kg; [; = 1 m;

I, =0.2m; g = 9.8m/s?;

The payload starts at coordinates [x,, yo] = [0, 0] (m) and
needs to reach the desired position [x4,y4] = [3,3] (m).
Both its initial and final velocities and accelerations are set to
zero. The travel time for the payload to reach the desired
position is T, = 30 s for movement along the x-axis and T), =
20 s for the y-axis. The trajectory of the payload is detailed

below:
5 4
6x L —15x L +10 L t<T
x =17 ) N ) TR ) TS @)
Xd ,t>TX
5 4
6y L -15y t +10y L t<T,
Yr=1 ¢ T ‘ t, I Y (24
Yy ,t>-|-y

All initial and simulation conditions are summarized in
Table 1.
The sliding mode controller designed to constrain the swing
angles of both the hook and the payload (Sliding Mode
Controller with Swing Angle Constraint) (SMC-SAC) is given
in Eq. (25).

Table 1. Simulation conditions

Parameter Category Symbol Value Unit
L. Initial Conditions
Trolley position (x) x(0) 0 m
Trolley position (y) y(0) 0 m
Hook swing angle (x-z plane) gl(O) 0.052 rad
Hook swing angle (y-z plane) 92 (0) 0.052 rad
Payload swing angle (x-z plane) g3 (0) 0.052 rad
Payload swing angle (y-z plane) 94 (0) 0.052 rad
All initial and final velocities C](O) P 0 m/s or rad/s
L . . . 2 2
All initial and final accelerations CI(O) P 0 m/s* or rad/s
II. Trajectory/reference
x-reference trajectory xa(t) Fifth-order polynomial m
Reference trajectory time for the x-axis Tx 30 s
y-reference trajectory d(t) Fifth-order polynomial m
Reference trajectory time for the y-axis Ty 20 ]
Total simulation time tsim 50 ]
II1. External Disturbances
Disturbance applied to x D(1) 8sin(105 77 t+% ) N
Disturbance applied to y D(2) 8sin(85 77 t+2?ﬂ) N
Disturbance applied to hook D(3), D(4) 0.4sin(85 7T t) N
Disturbance applied to payload D(5), D(6) 0.4sin(100 7 t) N
IV. Control Parameters
Sampling Time (TDE) T 0.002 ]
Sliding surface matrix I diag(12,15)
Nominal mass matrix Mconst diag(0.7,0.7)
Switching gain matrix A diag(1.5,2.5)
Linear gain matrix K diag(5,10)
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. . where the system parameters remain constant, but the system
Fas =fa +Meong (qac —Agsign(s) _KSS) (25) experiences external disturbances given by:
The parameters of the controller are chosen as follows: D:[SSin(]'OSM’L” /6) 8sin(857t+27/3) 0.4sin(85xt)
A = diag(10,13), K, = diag(5,10). 0.4sin(857t) 0.4sin(100zt) 0.4sin(1007t)]

4.1 Scenario 1
The outcomes of Scenario 1 are presented in Figures 3-6.

In this section, simulations are performed under conditions

] Reference SMC-SAC ASMC-TDE |
af : 0.02
=
_2f 3 =0
£ =
5 2.95 $
1k 55 -0.02
28575 40 50
0 : : : : 2 -0.04 - ' : :
0 10 20 30 40 50 0 10 20 30 40 50
Timc[s] Time [b]
: T 0.04
3 L
3.05 0.02
2T El
f Py
= 3 e 3 0
1F
-0.02 {
2.95
30 40 50
0 ' ‘ ' : 4 .0.04 : : ' :
0 10 20 30 40 50 0 10 20 30 40 50
Time ] Time [s]
Figure 3. Position trajectory and the corresponding errors (Scenario 1)
| SMC-SAC ASMC-TDE |
0.06 T T T T
0.04 i
= 0.02 —
g
< 0H
-0.02 i
-0.04 1 L 1 I
0 10 20 30 40 50
Ti
0.06 : — Timels] :
0.04 .
= 0.02 i
g
< 0 R
-0.02 1 i
-0.04 I 1 I 1
0 10 20 30 40 50
Time [s]

Figure 4. Swing angles of the hook (Scenario 1)
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SMC-SAC

ASMC-TDE

T T

0.04
0.02

-0.02

92 [rad]

-0.04

T T

-0.06 ! !

Time [s]

30 40

0.04
_0.02

6, [rad

-0.02
-0.04

-0.06 ! '

10 20

30

Time [s]

Figure 5. Swing angles of the payload (Scenario 1)
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Figure 6. The force acting on the trolley (Scenario 1)

4.2 Scenario 2

The robustness and adaptive capability of the proposed
controller are validated through system simulations under the
following conditions: the payload mass is increased to 6 kg,
and the cable length [, is increased by 1.2 times. In particular,
the system is also subjected to a more severe and pronounced
external disturbance compared to Scenario 1, specifically
white noise, as illustrated in Figure 7. The results of the second
scenario are presented in Figures 8-11. The performance
indices of the state variables, which use ISE, ITSE, TAE, and
ITAE as evaluation criteria, are also shown in Tables 2 and 3.

From the simulation results of the two scenarios, it can be
seen that even under the influence of different types of
disturbances: harmonic disturbance and random disturbance
(white noise), with the system parameters changed, and with
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nonzero initial conditions for the swing angle of the hook and
the payload, the system still operates stably. This is
demonstrated through the position trajectories in Figure 3 and
Figure 8, where the trajectories x(¢) and () track the reference
trajectory with errors oscillating around zero with small
amplitudes (< 4 cm) during the transient period, and then
rapidly converge to zero as the payload reaches the desired
position. However, ASMC-TDE significantly improves
tracking accuracy and minimizes steady-state position error,
demonstrating a much faster error convergence rate compared
with the SMC-SAC controller. Given the initial condition that
the hook swing angle at the beginning of the system motion is
a nonzero value, the hook swing angle always remains within
a very small bound, not exceeding its initial value, as shown
in Figure 4 and Figure 9. Furthermore, ASMC-TDE
significantly improves this performance. As for the payload



oscillation, under all conditions, it also stays within a very
small range, not exceeding 0.052 rad, as illustrated in Figure 5
and Figure 10. This superior ability to tightly constrain the
oscillations confirms the outstanding stability and
effectiveness of the proposed ASMC-TDE controller.
Additionally, the force signals acting on the trolley, shown in
Figure 6 and Figure 11, indicate that the control force varies,
exhibiting oscillations with amplitudes that change over time.
This demonstrates that the controller operates continuously to
compensate for disturbances and uncertainties, and

subsequently, the applied force gradually decreases and
stabilizes as the payload reaches the desired position.
Nevertheless, the ASMC-TDE is far superior to the SMC-SAC
because it constrains the control force to a much smaller
amplitude and rapidly decreases to zero in the steady state,
whereas the SMC-SAC maintains the force at a large
amplitude. Consequently, ASMC-TDE achieves superior
control performance while offering significantly better energy
efficiency and reduced mechanical wear compared to the
SMC-SAC.

Actuated disturbance

{
o e =
o =

Unactuated disturbance

-1.5
0 10 20 t[s] 30 40 50
Figure 7. White noise acting on the system (Scenario 2)
Reference SMC-SAC ASMC-TDE|
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Figure 8. Position trajectory and the corresponding errors (Scenario 2)
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Figure 10. Swing angles of the payload (Scenario 2)

The performance indices in Table 2 and Table 3 show that
the proposed controller outperforms the sliding mode
controller designed to restrict the swing angles of both the
hook and the payload, in terms of reducing error and
improving the convergence speed of all output variables. For
the trolley position, the ISE and ITSE indices are reduced by
60.4% and 79.5%, respectively, while the IAE and ITAE
indices decrease by 53.7% and 68.1%, respectively. The
reduction is even more significant for the hook swing angle,
with decreases of 67.9% and 87.2%. The payload swing angle
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is also improved, but to a lesser extent, with reductions of
32.9% and 31% for ISE and ITSE, and 19.3% and 17.9% for
IAE and ITAE, respectively. This indicates that reducing
payload oscillations is more challenging due to inertia and
coupling effects. Hence, the results demonstrate that the
ASMC-TDE significantly outperforms the sliding mode
controller designed to constrain the swing angles of the hook
and payload in terms of improving tracking accuracy and
minimizing error.
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Figure 11. The force acting on the trolley (Scenario 2)

Table 2. Performance evaluation criteria: ISE and ITSE

Output Control

Variable Strategy ISE ITSE
Trolley ASMC-TDE 0.0077089 0.051702
position ASMC 0.019458 0.25214
Hook swing ASMC-TDE 0.0039476 0.020333

angle ASMC 0.0123 0.1589
Payload ASMC-TDE 0.024803 0.53393

swing angle ASMC 0.036979 0.7737

Table 3. Performance evaluation criteria: IAE and ITAE

Output Control

Variable Strategy TAE ITAE
Trolley ASMC-TDE 0.50251 6.1672
position ASMC 1.0855 19.3177
Hook swing ASMC-TDE 0.33547 4.7794
angle ASMC 0.86297 15.3362
Payload ASMC-TDE 1.2036 27.3242
swing angle ASMC 1.4921 33.2782

Thus, the simulation results show that the 3D double
pendulum overhead crane system, under conditions of external
disturbances and uncertain system parameters, the proposed
ASMC-TDE enables the trolley trajectory to accurately track
the reference trajectory, while the swing angles of both the
hook and the payload are confined within very small bounds,
not exceeding the initial swing angle. It can be concluded that
the controller operates effectively and proves its feasibility.

S. FEASIBILITY IMPLEMENTATION

ASSESSMENT

AND

The proposed ASMC-TDE controller is highly suitable for
real-time implementation due to its computational simplicity
and inherent robustness to practical constraints.

5.1 Real-time feasibility and sampling time

The control structure is primarily algebraic, involving only
matrix additions and multiplications of state variables, thereby
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avoiding computationally intensive tasks like online Jacobian
inversion or complex adaptive laws. This low computational
load ensures the controller is highly efficient for real-time
execution on standard industrial microcontrollers or PLCs.

Crucially, the TDE technique relies on setting the time delay
T equal to twice the sampling period T;. For the overhead
crane system, Ty can typically be set very small (e.g., 1-10
ms), ensuring that the unmodeled dynamics and uncertainty
remain approximately constant over T;. This guarantees that
the TDE estimation error is minimized, maintaining the high
precision of the ASMC-TDE scheme.

5.2 Actuator saturation mitigation

Actuator saturation is a critical practical issue. The ASMC-
TDE architecture inherently addresses this:

- Compensation: The TDE term f, compensates for the
majority of the large, nonlinear dynamics of the system,
drastically reducing the required control effort from the
SMC component.

- Chattering Reduction: The small switching gain used in the
ASMC-TDE (as justified in Section 3) ensures that the
high-frequency control energy is minimized.

This combination allows the total required control input
(F,) to remain well within the physical limits of typical
industrial actuators, avoiding saturation under most
operational conditions.

6. CONCLUSIONS

This study presents an adaptive sliding mode control
method designed using time-delay estimation to achieve
trajectory tracking of the payload position and anti-swing of
both the hook and the payload in a 3D double-pendulum
overhead crane system, while accounting for system
uncertainties and external disturbances during operation. The
controller effectively handles system uncertainties and
disturbances by providing an online estimation of the total
model uncertainty. The stability of the closed-loop system is
proven through mathematical analysis. Simulations have been
carried out to validate the effectiveness and reliability of the



proposed controller. The results confirm that the proposed
control strategy can ensure high performance and robustness
even under conditions of system uncertainty and external
disturbances. Furthermore, the ASMC-TDE controller not
only achieves robust stability and high-precision trajectory
tracking under significant uncertainties but also demonstrates

superior

performance over the baseline SMC-SAC,

particularly regarding the suppression of chattering and the
fast convergence of swing angles.
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NOMENCLATURE

DOF degree of freedom

D external disturbances

d, coefficient of air resistance in the x-
direction

dy coefficient of air resistance in the y-
direction

d, and d, hook swing-angle air-resistance coefficient

d and d, payload swing-angle air-resistance
coefficient

C(a,9) matrix of Coriolis—centrifugal terms

G(q) vector of gravitational forces

g gravitational acceleration, m.s

Fx force applied to the trolley in the x-
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Xd, Yd

Greek symbols

G
0,
03
O
r
c

A

direction, N

force applied to the trolley in the x-
direction, N

friction forces along the x-axis, N

viscous friction coefficients
friction at rest coefficients
friction forces along the y-axis, N
viscous friction coefficients
friction at rest coefficients

control input vector, N
linear gain matrix
inertia matrix

nominal mass matrix

trolley mass along x-axis, kg

trolley mass along y-axis, kg

hook mass, kg

payload mass, kg

hook length, m

cable length, m

friction/resistance forces of the system, N

sampling time (TDE)
state vector of the system
actuated state vector

unactuated state vector
reference trajectory of the trolley

trolley position in the x-direction, m
trolley position in the y-direction, m
desired position

hook swing angle around the x-axis, rad
hook swing angle around the y-axis, rad
payload swing angle around the x-axis, rad
payload swing angle around the y-axis, rad

sliding surface matrix
estimation error
switching gain matrix





